Large-Scale Pattern-Based Information Extraction
from the World Wide Web

Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften
(Dr. rer. pol.)
von der Fakultit fiir
Wirtschaftswissenschaften
am Karlsruher Institut fiir Technologie

vorgelegte
DISSERTATION

von

M. Sc. Sebastian Blohm

Tag der miindlichen Priifung: 22. Januar 2010
Refernt: Prof. Dr. Rudi Studer
Korreferent: Prof. Dr. Dr. Lars Schmidt-Thieme
2010 Karlsruhe

il

Abstract

Extracting information from text is the task of obtaining structured, machine-
processable facts from information that is mentioned in an unstructured manner. It
thus allows systems to automatically aggregate information for further analysis, effi-
cient retrieval, automatic validation, or appropriate visualization. Information Extrac-
tion systems require a model that describes how to identify relevant target information
in texts. These models need to be adapted to the exact nature of the target information
and to the nature of the textual input, which is typically accomplished by means of
Machine Learning techniques that generate such models based on examples. One par-
ticular type of Information Extraction models are textual patterns. Textual patterns are
underspecified explicit descriptions of text fragments. The automatic induction of such
patterns from example text fragments which are known to contain target information is
a common way to learn this type of extraction models.

This thesis explores the potential of using textual patterns for Information Extrac-
tion from the World Wide Web. We review and discuss a large body of related work by
describing it within a common framework. Then, we empirically analyze the effects
of a multitude of design choices in pattern-based Information Extraction systems. In
particular, we investigate how patterns can be filtered appropriately. We show how cor-
pora of different nature can be exploited beneficially and how the nature of the patterns
influences extraction quality. Finally, we present new ways of mining textual patterns
by modelling pattern induction as a well-understood type of Data Mining problems.

iii

v

Acknowledgements

I am indebted to many people who guided and supported me during working towards
my Ph.D. and writing this thesis. Most prominently, these are my advisors Rudi Studer
and Philipp Cimiano. Rudi Studer gave me the chance to do this research and the
guidance, trust and freedom I needed to complete it and learn a lot. Philipp Cimiano
made this work possible through invaluable discussions, ideas and optimism.

Furthermore, I would like to thank my colleagues at the AIFB institute and in the
X-Media project. The friendly, focused environment and the chance to build on a
large body of previous experience was a great asset to me. Most of all, I would like
to thank Johanna Vélker, Krisztian Buza and Frank Dengler for their commitment,
trust and patience during our collaborations and Sebastian Rudolph for comments and
discussions during the production of this thesis.

Additionally, I am grateful to Yunyao Li, Thomas Hampp and Shiv Vaithyanathan
and their colleagues at IBM for an intense collaboration during my stay at the Un-
structured Information Mining group in Almaden which taught me entirely different
perspectives on my research.

Most of the text in this thesis was written during my stay at TU Delft. T would
like to thank Ursula and Philipp Cimiano and the Web Information Systems group of
Geert-Jan Houben for their hospitality.

I owe a lot to Kathrin Heuser, Olesya Isaenko, Maria Maleshkova, Tobias Hauth,
Stefan Kittler, Pascal Kretschmann, Egon Stemle, Jiirgen Umbrich and Andreas Wag-
ner who contributed their ideas and a lot of labor to my research and project work as
thesis students or assistants in our lab.

Finally, I thank my parents and my sisters for supporting and motivating me not
only but more intensely during my work towards this thesis.

My Ph.D. studies were financially supported by two generous Ph.D. Fellowship
Awards from IBM and a travel grant from the Karlsruhe House of Young Scientists.
During my Ph.D. studies I worked in the X-Media project sponsored by the European
Commission as part of the Information Society Technologies (IST) program under EC
grant number IST-FP6-026978.

vi

Contents

1I

Introduction

1.1 Motivation.
1.2 Problem Statement
1.3 What is Special about Operating at Web Scale?
1.4 Trends in the Field of Information Extraction
1.5 Contribution
1.6 Reader’'sGuide
1.7 PublishedResults

Preliminaries

Methodological and Technical Foundations

2.1 Terminology.
2.2 Natural Language Processing
2.3 Machine Learning and Data Mining
2.4 Information Retrieval

Information Extraction Tasks

3.1 Terminology.
3.2 Dimensions of Information Extraction Tasks .
3.3 Prominent extractiontasks
34 ChallengesinIE.
3.5 FocusofthisThesis

Approaches to Information Extraction

4.1 Applications and Evaluation
4.2 Machine Learning for Information Extraction
4.3 Information Extraction and the Semantic Web

Large-Scale Extraction Methods

The Iterative Pattern Induction Framework
5.1 Framework Overview

vii

AN N R BN

11
11
14
20
28

31
31
32
35
36
37

39
40
44
54

59

61

viii

5.2 Patterns for Relation Extraction.
5.3 The Algorithmic Framework
5.4 Assumptions and Challenges
5.5 ThePronto System
5.6 Related Extraction Systems
5.7 Evaluation Paradigms
5.8 Performance of Systems in the Literature

6 Controlling the Quality of Induced Patterns

6.1 Filtering Functions
6.2 ExperimentalSetup
6.3 AnalysisofResults
6.4 Summary

7 Text Corpus and Extraction Dynamics

7.1 RelatedWork
7.2 The Problem of Low Redundancy
73 Approach
7.4 Experimental Evaluation
7.5 Conclusion

8 Efficient Pattern Induction with DM Methods
8.1 Pattern Induction as Frequent Itemset Mining

8.2 Experimental Evaluation
83 Conclusion,

9 Pattern Expressivity

9.1 The Role of Pattern Expressivity
9.2 RelatedWork
9.3 Taxonomic Sequential Patterns
9.4 PatternMining
9.5 Experiments
9.6 Conclusion

III Applications

10 Web-wide IE for Market Analysis

10.1 The Competitor Scenario Forecast Task
10.2 Information Extractionfor CSF.
10.3 Practical Experience
104 Summary

CONTENTS

CONTENTS ix

11 Communities Generating Structured Knowledge 173
11.1 Combining Human and Machine Intelligence 174
11.2 System Design and Implementation 177
11.3 Practical Experiences, 179
11.4 Related Work 180
11.5 Summary L 181

IV Conclusion 183

12 Synopsis of Results 185
12.1 Controlling Quality of Iterative Pattern Induction 185
12.2 Supervision and Redundancy 186
12.3 Rich Patterns and Scalable Induction 186
12.4 Applications 186

13 Outlook 189
13.1 Application Scenarios 189
13.2 AdvancinglEMethods 190

Appendix 195

References 197

CONTENTS

List of Figures

2.1 Parsetreeexample. 19
2.2 A linear-chain CRF with Markov assumption 23
2.3 Concept Learning Example 24
5.1 Inductioncycle 62
52 NFAexample e 64
5.3 Examplepattern (I)asNFA. 65
5.4 TIterative pattern induction algorithm 67
5.5 Key components of the Pronto System 70
6.1 Pattern learning procedure 100
6.2 Precision over scoring strategies 104
6.3 Precision, recall and F-measure for strategies 105
6.4 Precision over recall for experiments 106
6.5 Impact of filtering on precisionandrecall 108
6.6 Development of precision over iterations 109
6.7 Number of correctly extracted instances 110
7.1 Page co-occurrences on Wikipedia 115
7.2 Combined Web and wiki pattern induction algorithm 117
7.3 Wikipedia datamodel example 119
7.4 Performance comparison over seed setsize 122
7.5 Performance comparison over seed set size for individual relations . . 124
7.6 Performance over iterations for varying seed set sizes 125
8.1 The Apriori algorithm. 131
8.2 Aprioriexample 132
8.3 Extraction quality of the itemset-based approach 137
8.4 Relative differences in F-measure of extraction results with FIM . . . 138
8.5 Runningtimecomparison. 139
9.1 Example sentence with morpho-syntactic token features 141
9.2 Possible choice of features for a pattern from the example sentence. . 142
9.3 Possible effects of pattern class variation 144
9.4 The pattern classes considered 147

X1

Xii

9.5
9.6
9.7
9.8
9.9
9.10

11.1
11.2
11.3
11.4

LIST OF FIGURES

The extended Eclat algorithm. 150
Taxonomy mining example 151
Excerpt from the taxonomy 153
F-measurebyrelation 158
Extraction quality for the different pattern languages 159
Extraction quality for the different relations 159
Integrating wikis with IE tools — basic architecture 175
Annotated wiki source text. 177
Query result in Semantic MediaWiki 177

Questions to users displayed at the bottom of wiki pages. 178

List of Tables

2.1 Partsof speechinthe WSJtagset 17
5.1 Performance results reported in the literature 91
6.1 Parameter settings for experiments 102
6.2 Significance test on extraction precision 103
6.3 Properties of the evaluationrelations 111
7.1 Parameter values for Web and Wikipedia extraction 121
8.1 Parameter values for standard, FIM and FIM tuned 136
9.1 Mining time, counts, precision and recall for the 3 taxonomies 155
10.1 The feature set for CRF-based annotation 169
10.2 Precision of extraction for the different relations 170
10.3 Quality of the supervised entity tagging withCRF 171

Xiii

Xiv LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Technical and economic trends have increased the need for automatic extraction of in-
formation from large bodies of text such as the World Wide Web. The amount of con-
tent available on the Web is not only rapidly increasing but is also being produced in
an ever more individualized manner because a growing number of private users create
and share Web content [O’Reilly, 2009]. Grasping important aspects of this content
automatically has become a key requirement for many applications. Web search in-
creasingly relies on extracted information to establish a better correspondence between
the user’s query and the document’s content by going beyond the mere presence or
absence of words. In the face of a large amount of ever-growing Web content, market
analysts rely on automatically extracted information to generate an overview of trends,
rumors and customer opinions (cf. Chapter 10). As a further example, scientific re-
search faces millions of potentially relevant documents (e.g. 18 million in the Medline
medical literature database) the automatic analysis of which has the potential of sup-
porting and accelerating scientific progress. A detailed description of applications of
Information Extraction is given in Section 4.1.

The task of automatically extracting information from text can be thought of as
compiling a list or some other structured representation of the facts that are needed for
the task at hand. As an example, market analysts may compile a list of all products
in the market they are surveying along with their vendors. From reading a sentence like

“Audi’s new A4 TDI features a new common-rail injection system.”

they conclude among other things that Audi is the maker of the A4 TDI and
may add a corresponding assertion to their list.

Structured information has several advantages over text. In particular it is more
concise, that is, looking at an appropriate table may save us reading hundreds of pages
of text. Furthermore, it is machine interpretable. If the structure of the information is
formalized in a way that a computer can process, the computer can carry out tasks with

2 CHAPTER 1. INTRODUCTION

this information. If for example, a further list exists that specifies that “TDI” models
feature a diesel engine, a computer would be able to answer the question “Does Audi
produce vehicles with diesel engines?”

Concluding that Audi produces the A4 TDI when reading “Audi’s new A4 TDI” is
an almost trivial inference for a human reader and is yet hard for a machine because
machines are limited to executing previously encoded instructions. Human readers
would recognize Audi as a vehicle maker and if not would know that an unfamiliar
capitalized word is likely to denote a company if the context suggests this. They further
know that car makers tend to release new models which have names that frequently
consist of combinations of letters and numbers. Several phenomena make it difficult if
not impossible to produce a computer system that approaches such a phrase with the
same inferences and the same ease as human readers. The large variability of language
requires to account for an infinite amount of possible expressions that imply the same
information. The ambiguity of terms and phrases further makes interpretation difficult.
For instance, “A4” may also refer to an ISO standard paper size or a fashion magazine.
Finally, the extraction has to perform faster than human interpretation of the content
in order to keep up with the scale of the text bodies to be processed. Information
Extraction therefore relies on strongly simplifying models that encode how relevant
information may be mentioned in text. For the example phrase, such a model could
contain the following instructions: If the sequence “’s new” is present in a text that is
about the automotive domain and is preceded by a capitalized word = and followed by
a combination of letters and numbers y, assume that x stands for the maker of y. This
thesis is about ways to create and apply such models for extracting information from
large amounts of Web documents.

1.2 Problem Statement

This thesis investigates a paradigm of Information Extraction that can be characterized
as global relation extraction based on seed examples. This means that processing starts
with a pre-defined relation and a small set of examples that stand in this relation (the
“seeds”). Throughout this thesis, we will use the locatedIn relation as an example
target relation. The following is an example seed set that can define a target relation:

Amsterdam The Netherlands
Angers France
Camptown Lesotho
Hollywood California
Karpacz Poland
Mannheim Germany
Plymouth Massachusetts
Salinas Brazil

Note that this is the only information on the relation the system has. Human readers
can see from this list that on the left hand side, all items are cities and on the right hand
side are countries. They know that a single city can be in only one country, that there
are cities that carry the same name in different countries but that country names are

1.2. PROBLEM STATEMENT 3

relatively few and in the general case unique. However, this additional information
relies on human background knowledge and is therefore not available for an automated
system. It thus helps to imagine the seed examples as sequences of characters in an
unfamiliar alphabet. All one would be able to do is to spot mentions of the seeds and
observe commonalities and differences among them. The goal is to generate many
more records for this table i.e., extracting further instances of this relation. To come up
with these instances, observations are made about how known instances are mentioned
in the text. These observations are generalized to a model that is characteristic of the
relation. The model describes those properties (features) of text fragments that are
good indicators that the fragments mention a target relation instance. In sum, the input
is a small list of relation instances that (by example) define a relation and the intended
output is a larger list of instances of the same relation. The focus of this work is global
relation extraction, that is to find and formalize knowledge that holds generally true as
opposed to local extraction that aims at deriving the information provided by a given
sentence regardless of the question if it holds generally true. Furthermore we focus on
pattern-based Information Extraction which is the most appropriate approach for Web-
based extraction. Patterns are descriptions of text fragments that can be read as a rule:
If a given pattern is present in a text fragment (i.e. the pattern matches that fragment)
relevant information is present. We aim at automatically deriving such patterns from
seed examples.

More formally, the task can be characterized as follows: Given a specific binary
relation R, find instances (21, 22) € Domaing X Range that stand in the relation R.
Thereby, Domaing and Ranger need not be known. The approach, i.e. learning an
extraction model means finding a relation-specific mapping matchpr : T — {0, 1} that
decides for each fragment of text ¢t € 7', whether or not a given relation is expressed
and in addition, an extraction function extracty : T — NPomainrxRangerl that
determines the relation instance that is present.

extractp(t) = {(x1,22)|(x1,22) is expressed at some position in ¢}

The decision that matchr and extractp stand for may or may not happen in the same
processing step. Clearly, with the help of statistical methods and with limited knowl-
edge, matchg can only be approximated. The goal is to produce an approximation
that is precise in the sense that it does not produce many incorrect matches and has a
large coverage thus identifying many of the possible extractions.

Given that we want to learn matchp using observations on known outcomes on
a subset of matchg’s domain we need countable features to actually formalize these
observations. In its most general sense, each feature is a partial function f : " — Dy
which decides if a given feature is present in a given text fragment ¢ € 7" and if so, to
which degree d € Dy. We can assume Dy = [0, 1] and for most features even {0, 1}.

"'We use 24 to denote the powerset of A and N to denote the set of all possible multisets of zero or
more elements from A.

4 CHAPTER 1. INTRODUCTION

1.3 What is Special about Operating at Web Scale?

The special focus of this thesis is on extracting information from very large document
collections. There are several reasons why the large scale of the extraction task requires
a set of approaches distinct from classical Information Extraction. Most prominently,
both the computational costs for the induction of the extraction models (“learning”)
and their application (“matching”) heavily depend on the amount of text that is pro-
cessed. Most matching mechanisms evaluate all text fragments one by one making the
amount of processing time grow linear with the amount of text. When operating with
the entire Web, this is no longer acceptable. It is hence required to make use of index-
ing techniques to access relevant text sections directly. The focus of this thesis is thus
on textual patterns which can be applied to search indicators for efficient matching.
In very abstract terms, learning for Information Extraction is the process of observing
relevant properties that allow the system to automatically identify in the data relevant
information. This process requires to compare different relevant text fragments. The
amount of possible comparisons grows more than linear with the amount of training in-
put to be mined. Due to the diverse and uncontrolled nature of Web corpora techniques
for mining large amount of text become necessary.

On the upside, large corpora like the Web are an attractive source as they are rich
in up-to-date information. At the same time, most relevant information is likely to
appear in several positions redundantly so that errors that occur at one position may be
corrected by extractions in other positions.

1.4 Trends in the Field of Information Extraction

While the extraction of information has been studied for a long time (cf. Section 4),
recent developments in various areas of Computer Science, some of which we men-
tion below, have shifted both the goals and the methods of Information Extraction
research. Research in the area of Semantic Web Technologies has provided standard
representations for formalized knowledge. These formalisms allow systems to express
information about document content in a structure with a formally defined meaning
that in turn enables automatic integration and interpretation of content. Semantic Web
technologies allow for presentation (e.g. browsing or searching) of documents in a way
that does justice to the formalized content or to infer information that is not explicitly
specified but can be inferred by means of logical reasoning. At the same time, Machine
Learning and Data Mining methods have experienced trends towards processing larger
amounts of data as well as modeling and exploiting structure that is present in the data
(cf. Section 2.3). These developments have enabled the uptake of Machine Learn-
ing and Data Mining methods in the field of Computational Linguistics. Today, many
linguistic analysis steps such as parsing and part-of-speech tagging are routinely done
with the help of learned models. In recent years, Information Extraction also started
benefiting from such models. Finally, the sheer processing power that is available for
extraction tasks has increased. Apart from the development of faster processors and
data transfer mechanisms as well as larger main memory and storage solutions, this in-
crease is due to the development of methods for distributed computing. As an example,

1.5. CONTRIBUTION 5

the MapReduce framework [Dean and Ghemawat, 2008], one of the key technologies
in Cloud Computing has been designed particularly with document analysis tasks in
mind.

In addition to the technical novelties, the nature of the available content has trig-
gered research in Information Extraction. The most prominent example is Wikipedia,
which provides millions of articles of relatively high quality organized in categories
and portals and partially enriched with semi-structured information. Examples of other
attractive sources that have become available and processable for Information Extrac-
tion are the above-mentioned Medline texts and online forums.

1.5 Contribution

The contribution of this thesis consists of three major aspects.

* An overview is given of pattern-based Information Extraction systems with a
strong focus on methods for the automatic induction of such patterns which have
evolved approximately over the last 10 years. Furthermore, the focus is put on the
extraction of binary relations the meaning of which is specified by example. A
variety of pattern induction systems is summarized in an abstract framework and
many design and configuration options are introduced. Such a framework is nec-
essary as there is no agreed-upon view of the problem in this field of research, let
a lone an accepted evaluation standard specialized on large-scale extraction. We
use the framework to illustrate key design alternatives abstracting over different
target relations and output structures, input sources and supervision models as
well as implementation aspects. The framework is introduced in Chapter 5 along
with a plugable implementation which is used in the experiments that constitute
the technical contribution of this thesis.

* This thesis presents a series of experiments that aim at deepening the understand-
ing of important design choices within the pattern induction framework. Most
contributions that have been published in the field so far discuss their work on the
system level. That is, almost every new study introduces a new extraction sys-
tem which typically makes assumptions with regards to many dimensions of the
extraction task and alters many design choices at once. However, to understand
which key variables govern the setup of a good extraction system, the impact of
alternative choices of each of them has to be understood. In particular with the
aim of minimal supervision and automatic adaptation to new extraction tasks in
mind, understanding the impact of design choices is important. In Chapter 6, al-
ternative choices of how to filter for appropriate patterns is analyzed. Chapter 7
shows how corpus structure and size have impact on the bootstrapping behavior
and in Chapter 9, the choice of pattern language is analyzed.

* Finally, an important focus of this work is on large scale extraction. While
the application of patterns to the Web is quite common, scalability problems
during mining have not been addressed in the literature. Most mining algo-
rithms explore a huge space of possible patterns either by pairwise abstrac-

6 CHAPTER 1. INTRODUCTION

tion or top-down exploration of the search space (cf. Section 5.6.2 for details).
Some other approaches are scalable, but do not allow for rich feature integration
[Ravichandran and Hovy, 2001; Talukdar et al., 2006]. In Chapter 8, pattern in-
duction is modelled as a standard Data Mining problem (frequent itemset min-
ing) which can be tackled with highly optimized data structures. In Chapter 9,
this approach is taken further to allow for more flexible modeling of pattern lan-
guages. This way, we analyze, what elements patterns should be able to contain
to improve extraction results.

The techniques presented in this thesis are discussed in the context of two applica-
tion scenarios. One of them is based on a use case from a marketing department in the
automotive industry (Chapter 10), the other builds on the idea of supporting communi-
ties in the compilation of knowledge resources that are useful for human and machine
processing (Chapter 11).

1.6 Reader’s Guide

This thesis consists of four parts. Part I: Preliminaries, introduces the context of this
work. In Chapter 2, methodological and technical foundations from the neighboring
fields are presented before the major Information Extraction tasks are introduced in
Chapter 3. Chapter 4 presents related work from the field of Information Extraction
along with applications and an overview of the relevant tools. Part II: Large Scale Ex-
traction Methods begins by presenting a framework of iterative pattern-induction for
Information Extraction (Chapter 5). Related systems are described by means of this
framework. Further an implementation, the Pronto system, is introduced. Chapter 6
presents experimental results on the application of the Pronto system to Information
Extraction from the Web using a standard search engine. In Chapter 7, further exper-
iments show results about the extraction on a smaller corpus and the added benefit of
Web extraction results to reduce the required input seeds. Chapter 8 presents an effi-
cient mining algorithm for pattern induction applied in the Pronto system before Chap-
ter 9 investigates alternatives in the choice of pattern structures. Part I11: Applications
describes two applications of the methods presented in this thesis. One of them sup-
ports market analysts in the automotive industry (Chapter 10) and one supports online
communities in collaborative generation of semi-structured documents (Chapter 11).
Part 1V: Conclusion summarizes the findings and indicates potential for future work.

1.7 Published Results

We published the analysis of pattern filtering approaches as discussed in Chapter 6 to
a large extend at the AAAI conference 2007 together with Philipp Cimiano and Egon
Stemle [Blohm et al., 2007]. Some further results were presented at the 3rd Web as
Corpus Workshop 2007 [Blohm and Cimiano, 2007]. Furthermore, we published re-
sults on the interaction of extraction from the Web and from Wikipedia at the ECML
PKDD 2007 together with Philipp Cimiano [Blohm and Cimiano, 2007]. We presented

1.7. PUBLISHED RESULTS 7

the mining algorithm for pattern induction (Chapter 8) at the Ontology-Based Infor-
mation Extraction Workshop at KI 2008 [Blohm and Cimiano, 2008]. The work on
pattern expressivity (Chapter 9) is joint work with Krisztian Buza, Philipp Cimiano,
and Lars Schmidt-Thieme and has been submitted to Taylor and Francis as a chapter of
the book “Applied Semantic Technologies: Using Semantics in Intelligent Information
Processing.” Concerning the applications, the system for market analysis (Chapter 10)
is deployed at an industrial partner’s site as part of the software from the X-Media
project. A paper about the on online community support (Chapter 11) has been pub-
lished at the workshop on Wikipedia and Artificial Intelligence at AAAI 2008 with
Markus Krétzsch and Philipp Cimiano [Blohm et al., 2008].

Exploratory studies on Machine Learning and Information Extraction have been
conducted and published with Stephan Bloehdorn [Bloehdorn and Blohm, 2006] and
Jiirgen Umbrich [Umbrich and Blohm, 2008].

CHAPTER 1. INTRODUCTION

Part I

Preliminaries

Chapter 2

Methodological and Technical
Foundations

The work in this thesis makes use of concepts and methods from various fields of re-
search. In this chapter, we give an overview of these fields in order to put the work
in this thesis in a context and to facilitate understanding for readers from various dis-
ciplines. Our goal is to convey an idea of the general concepts of the fields and then
give details relevant to the work presented in this thesis. Hence, the overview is not in-
tended to be exhaustive nor to balance the depth in which different aspects of the fields
are covered. Books and seminal works that cover the respective fields in more depth
are referenced in the respective sections. After introducing some basic concepts and
terminology in the following sections, we present foundations of the field of Natural
Language Processing before introducing methods from Machine Learning and Data
Mining and explaining some basics of Information Retrieval.

2.1 Terminology

Various fields of research are concerned with the question of how information about
facts in the world can be best represented for further processing. Research areas such
as Logics, Databases, Semantic Web, Computational Linguistics and Artificial Intel-
ligence have investigated this question from various points of view and with various
goals in mind. Like most works in the field of Information Extraction, we approach
the question how to represent information in a task-oriented way. In the following, we
introduce the corresponding notation and terminology. Most of the terms should be in-
tuitively clear to the reader; for some of them we point out the context from which they
have been adopted. To ensure a general understandability of the thesis, we give pref-
erence to terms from widely adopted Computer Science and mathematical terminol-
ogy. They are enriched and complemented by terms from Computational Linguistics
as well as Semantic Web research and Description Logics as its formal foundation. An
overview of the history of formal modeling in general and Semantic Web formalisms
can be found in a book by Pascal Hitzler et al. [2009].

11

12 CHAPTER 2. METHODOLOGICAL AND TECHNICAL FOUNDATIONS

2.1.1 Concepts and Relations

Almost all knowledge representation formalisms have in common that they allow state-
ments about objects. Objects, also called individuals, are elementary units of pro-
cessing and can stand in relations to each other. In the context of NLP, objects are
sometimes referred to as (named) entities. In addition to objects there are values (e.g.
numbers, specific strings etc.) which are used to describe objects and referred to as
literals.

Objects are grouped in classes. Many statements are made on the level of classes
of objects rather than on individual objects. In

“Tomatoes are red,”

the class of objects that qualify as tomato and the class of objects that qualify as
red are under discussion. An object (such as a given tomato) can belong to one or more
classes and is then called its instance. A class can be thought of as a mathematical set
(e.g. X) of objects; its instances are the elements in the set. The number of instances
that belong to a given class is called its cardinality. In particular in the tradition of
formal semantics, the term concept is used for classes of objects. The view behind the
term concept is that a distinction can be made between an extensional description of the
concept which enumerates all instances and an intensional description which specifies
criteria for determining whether an object belongs to a given concept.

When it comes to identifying objects and concepts, words seem to be a natural
choice. For reasons described in Section 2.2, this leads to ambiguity. Semantic Web
formalisms hence put forward unique identifiers and propose name spaces to ensure
uniqueness.

Both, objects and classes can stand in relations. A relation is defined among several
classes (e.g X and Y'). A relation associates object. The associated objects are said to
“stand in” that particular relation. The most common type of relation is binary (i.e. is
defined between instances of two classes). In binary relations, the two classes involved
are called domain and range. If the domain is X and the range is Y the relation can be
formalized as a subset of the cross-product of domain and range R C X x Y. All pairs
(z,y) € R stand in the given relation. They are also called instances of the relation. In
(x,y), we speak of x as the first argument and y as the second argument. All instances
together form the extension of the relation.

Relations can have several general properties that provide additional knowledge
about the instances standing in such a relation.

o Symmetry: A relation is symmetric if for every instance (z, y) the instance (y, x)
exists as well. Symmetry requires that domain and range are the same. An
example for a symmetric relation that specifies that = is married to y.

* Functionality: Functional relations are those for which at most one instance ex-
ists for each element of the domain. i.e. if (z,y) € R we know that there is no
(z,z) € Rwithy # z. An example of a functional relation is that between per-
sons and their birth dates. A functional relation is also called (partial) function.

2.1. TERMINOLOGY 13

e Injection: Injections are relations where no two values from the domain are re-
lated to the same element of the range. i.e. if (z,y) € R we know that there is
no (w,y) € R with w # x. Injectivity is thus a dual property to functionality
and also referred to as inverse functionality. An example of an injective relation
is the relation between a home and its address.

* Transitivity: A relation is called transitive if relatedness is “passed on” in the
sense that if (z,y) stand in a given relation and so do (y, z) also (z, z) stand in
this relation. An example of a transitive relation is that of a person being older
than another person.

* Reflexivity: A relation is reflexive if for every element z in the domain the in-
stance (z, x) is in the extension of the relation. An example is the relation of two
objects having the same color.

Classes can be related as well. The relations between classes correspond essentially
to classical set algebraic operations. We only consider here the sub-class relationship
which corresponds to the subset operator.

2.1.2 Ontologies

If a formal framework with a formally defined meaning is used to specify a shared
conceptualization of a domain of interest, this specification is called an ontology
[Studer et al., 1998]. Ontologies are widely used to formalize knowledge in particular
in topic domains where an unambiguous definition of a complex terminology is needed
such as in Genomics [Ashburner et al., 2000] and Medicine [Smith et al., 2007]. The
benefit of a formally defined ontology is that inferences on the information provided
can be made. If the information that Peter is older than Holger and that Holger is
older than Markus is given and the ontology specifies that the relation “is older than”
is transitive, a system can automatically infer that Peter is older than Markus.

A special simple type of ontologies are taxonomies in which classes are arranged
in a hierarchical structure by means of a single relation. The hierarchical nature of the
relation requires that the relation is transitive and anti-symmetric (i.e. does not have
any cycles). The most common relation for taxonomies is the subclass relation. If a
class X is a subclass of Y, all instances of X are also instances of Y. We show here a
naive and incomplete biological subclass hierarchy:

Living being

Plant Animal

Tree Flower
Mammal Rodent

Nl T

Lion Mouse Squirrel Capybara

14 CHAPTER 2. METHODOLOGICAL AND TECHNICAL FOUNDATIONS

An example of an instance of the subclass relation is the class “Lion” which is a
subclass of the class “Mammal.” Taxonomies allow primarily one type of inference
namely that of inferring relation instances by means of transitivity, thus one can infer
that lions are also animals and living beings. Taxonomies are commonly described
by means of a tree structure in which all classes are connected to their immediately
related classes. Using the tree metaphor, the topmost elements are referred to as roots,
the elements that stand in the relation to a given X and lie above X are called the root
path of X because they constitute exactly those classes which connect X with the root.
An example biological taxonomy could have “Living being” as root and the root path
of “Lion” could be “Lion, Mammal, Animal, Living being.” As in our example there
are no further specifications of types of lions, “Lion” lion is a leaf. Some taxonomies
are not trees but arbitrary partial orders. This would allow a class to be subclass of
several classes.

2.2 Natural Language Processing

Natural Language Processing (NLP) is a subfield of Computational Linguistics that is
concerned with the application of linguistic methods to the analysis and generation of
natural language statements. Natural language is our primary means of communication
and can be characterized as a set of symbols, which we arrange in a structure form to
statements that convey a certain meaning. The structure of a language statement is
referred to as its synfax and the meaning as its semantics. The field of Computational
Linguistics and NLP has proposed a great variety of conceptualizations and formalisms
to describe language. They differ with regard to the aspects of language they capture
and the goals they have been designed for. In fact, the question of how to conceptualize
language interacts heavily with research on human cognition, mathematical logic and
philosophy.

When aiming at NLP, more specifically the extraction of information, the concep-
tualization becomes driven by what helps to computationally process language as far
as that is needed to extract the target information. The methods from the field of NLP
presented here are those which have been widely applied. Therefore they can typically
be handled well both by human designers and administrators of NLP systems and com-
putationally by machines. In the remainder of this section, we first discuss some NLP
terms and methods to describe and model language at a word level before going into
the representation and interpretation of structure.

2.2.1 Words and their Semantics

Words can be characterized in many ways which typically formalize some aspect of
the meaning they convey or the syntactic role they play in the structural composition
of language. A common and rather coarse conceptualization of a word is the so-called
“semiotic triangle” by Ogden and Richard [1923] who distinguish the “symbol” of a
word, its “referent” and the “thought of reference”. The symbol is the realization of the
word for the purpose of communication, i.e. in written language the surface string by
which it is written. The referent constitutes the real world objects that are denoted by

2.2. NATURAL LANGUAGE PROCESSING 15

the symbol and the “thought of reference” (also concept [Sowa, 2000] or analogous in
Section 2.3.1) is the abstract intended meaning which is denoted.

Before text can be processed automatically on a word-level basis, the individual
units in a sentence have to be identified. In NLP, the notion of a token is used for the
minimal textual elements. Most tokenizers which are used for this task separate tokens
by white space and take into account punctuation. The notion of a token is distinct
from that of a word as special characters may be considered tokens, too. Furthermore,
there may be multi-word expressions which are the actual meaning-bearing units. As
an example, the sentence

“I called her on the cell phone.”

contains seven words, eight tokens, and one multi-word expression (“cell phone”).

Lexical Semantics

One way to formalize the meaning of words is to characterize relations between word
senses. As it turns out, one and the same symbol can denote various concepts, and con-
cepts can share (part of) the objects they denote. The following are the most common
lexical relations which capture limited aspects of the meaning of the involved words.

Synonymy is the relation between two words that have the same meaning in some
context. They can be exchanged in that context without altering its meaning (which is
why one synonym of “synonymous” is “interchangeable”).

Homonymy means that the same symbol denotes distinct concepts. For example,
“bow” as the front of a ship or “bow” as the weapon. A special form of homonymy is
polysemy where the two polysemous concepts are different but related (e.g. “foot” as
in football and “foot” as in “foot of the mountain.”

Hyponymy is a relation that holds between terms and generalizations of them. A
hypernym of a word x is a word that denotes the same objects as x but also denotes
further ones. x is then called the hyponym of that word. An example is “car” being a
hyponym of “vehicle.”

Meronymy is a relation that holds between objects and their parts. For example,
“wheel” is a meronym of “car.” There are various types of meronymy. For example,
it can be distinguished, if something is a necessary or an optional part. Also different
types of objects and entities have different types of parthood. As an example, ‘“Frank-
furt” only in a very general sense stands in the same relation to “Germany” as “Queen
Elizabeth II” to “The Royal Family.”

Antonymy is a relation between words that have opposite meanings. Antonymy
is most clear in adjectives which clearly focus on one aspect (‘“hot” vs. “cold”) but
they exist among some verbs (e.g. “accelerate” vs. “break’) as well as among nouns
(“student” vs. “teacher”).

The freely available lexical database WordNet [Miller, 1995] captures the relations
synonymy, hyponymy and meronymy for nouns and several others for verbs and for ad-
jectives. Synonymy is captured in form of “synsets” which list all words that (at least in
one of their meanings) share a given meaning. All other relations are defined between

16 CHAPTER 2. METHODOLOGICAL AND TECHNICAL FOUNDATIONS

such synsets. Apart from that, WordNet explicitly lists coordinate terms (words with a
common hypernym) and indicators of frequency of usage.

Part-of-speech

A common way to capture the roles of words in the syntactic structure or specific as-
pects of their meaning is to assign them to word classes. The most common type of
word class is called part of speech or grammatical category. The most prominent parts
of speech are noun, verb and adjective. Nouns typically refer to real world things,
like “espresso”, “love” or “garbage” which can be further described by means of ad-
jectives (“hot”, “desperate”, “worthless”). Verbs express actions e.g. “drink”, “make”
or “write.” To test if two words belong to the same part of speech, we can make the
substitution test and replace one for the other in a sentence and check if it remains syn-
tactically correct. The process of assigning parts of speech to words in a text is called
part-of-speech ragging. While a part of speech is a property of an individual word,
one should note that tagging them requires to look at the context in which a word is
used because homonymous words may belong to different parts of speech but cannot
be distinguished by their surface string. For instance, “shower” may be an verb or a
noun.

Table 2.1 lists the parts of speech used in the WSJ tagset [Marcus et al., 1993], a
standard tagset originally used to annotate named entities in the Wall Street Journal
corpus. We use the WSJ tagset in the experiments in Chapter 9. The tagset has special
classes for non-word token types like numbers, symbols and special characters. Fur-
thermore it adds determiners (e.g. “the”), prepositions (e.g. “before”), pronouns (e.g.
“she”) and adverbs (e.g. “violently”) as well as some smaller classes. The major parts
of speech are separated according to variants that are mainly due to inflection. Inflec-
tions are modifications of the words to express which role a given word plays in a given
sentence. Verbs can have different forms for singular (one referent) or plural (several
referents) and encode temporal aspects of the statement (past tense, present, gerund:
“loaded”, “loads”, “loading”). Nouns are separated in singular and plural as well and
adjectives allow for positive (e.g. “big”), comparative (e.g. “bigger”), and superlative
(“biggest”).

The part-of-speech tagging performed for the experiments presented
in Chapter 9 was performed with a probabilistic tagger using an HMM
model [Ciaramita and Altun, 2006] which was trained on the Penn Treebank
[Marcus et al., 1993].

Other Classes of Words

Another way to classify words is grouping them into lexemes. A lexeme represents
a group of words that can be derived from each other by means of morphological
operations. One type of morphological modification is inflection as described above.
Another one is the addition of pre- and postfixes that modify the meaning of the word
(“reload”). For processing in NLP on a lexeme-basis (i.e. to ignore morphological
modifications), words are assigned a lemma, which is a canonical form of a word (e.g.
the infinitive of a verb).

2.2. NATURAL LANGUAGE PROCESSING

CC Coordinating conjunction
TO to

CD Cardinal number

UH Interjection

DT Determiner

VB Verb, base form

EX Existential there

VBD Verb, past tense

FW Foreign word

VBG | Verb, gerund/present participle

IN Preposition/subord.

VBN | Verb, past participle

1 Adjective

VBP Verb, non-3rd person singular present
JJR Adjective, comparative
VBZ Verb, 3rd ps. sing. present
1JS Adjective, superlative
WDT | wh-determiner

LS List item marker

WP wh-pronoun

MD Modal

WP Possessive wh-pronoun
NN Noun, singular or mass

WRB | wh-adverb

NNS Noun, plural

SYM | Symbol

NNP Proper noun, singular

RP Particle

NNPS | Proper noun, plural

RBS Adverb, superlative

PDT Predeterminer

RBR Adverb, comparative

POS Possessive ending
RB Adverb

PRP Personal pronoun
PP Possessive pronoun

Table 2.1: Parts of speech in the WSJ tagset as used in our experiments. Classes for

individual special characters omitted.

18 CHAPTER 2. METHODOLOGICAL AND TECHNICAL FOUNDATIONS

A special class of words in NLP is that of stopwords. This application-dependant
class contains all tokens that can be excluded from further processing because they can
be safely assumed not to bear any meaning important to the application. As an example,
search engines filter out words that are likely to be present on all pages so that their
presence in a document does not contribute to determining the relevance of a page
with regard to a query. Common stopwords are articles (“the”, “a”), pronouns (“he”,
“who”, “this”), prepositions (“on”, “over”) and conjuncts (“and”, “or”’). In several
experiments we exclude patterns that consist only of stopwords. We use a stopword
list that consists of the (alleged) stopwords excluded by Google as presented by the

Wikimedia Foundation.'

2.2.2 Syntactic Analysis

Whether or not a natural language sentence is intelligible and what its exact meaning
is, depends on the order in which words are arranged. The following example contains
a sentence which appears wrong (3) and hence potentially unintelligible to English
speakers and two sentences which share the same set of words but express different
meanings (1,2).

“Mary drove from Saarbriicken to Stuttgart.” (1)

“Mary drove from Stuttgart to Saarbriicken.” (2)

“Stuttgart Mary drove to Saarbriicken from.” (3)

A set of rules defining how correct utterances of a given language are built is called
grammar. Various kinds of grammars exist. Almost all of them have in common
that they break apart sentences into phrases of different types. They are hence called
phrase structure grammars. Sentence (1) from the above example contains the phrase
“drove from Saarbriicken to Stuttgart” which has the role of describing the action that
was taken (verb phrase). It can be further subdivided into the phrases “drove”, “from
Stuttgart” and “to Saarbriicken” (the latter two are examples of prepositional phrases).
The difference in meaning between sentence (1) and sentence (2) can be explained
by the different city names sharing a prepositional phrase with “to” and -likewise —
sharing a prepositional phrase with “from.” Another essential type of phrases are noun
phrases which name and further describe the nouns in a sentence. Phrases of different
kinds can play different syntactic roles. For example, “Mary” plays the role of the
subject performing the action which is an argument of the verb phrase which consists
of the predicate “drove” naming the action and prepositional phrases further specifying
it.

Given a sentence in a language and its grammar, one can determine its phrase struc-
ture. Figure 2.1 visualizes the phrase structure of sentence (1). Such a structure allows

mttp://meta.wikimedia.org/wiki/Stop_word_list/google_stop_word_list

http://meta.wikimedia.org/wiki/Stop_word_list/google_stop_word_list

2.2. NATURAL LANGUAGE PROCESSING 19

S
NP VP
|
Mary
drove PP PP
/\ /\
from Saarbriicken to Stuttgart

Figure 2.1: Parse tree example.

IE systems to derive an assignment of syntactic roles which in turn may facilitate the
extraction of information from the sentence.

The process of determining the phrase structure of a sentence is called syntactic
parsing. Two challenges exist in parsing: ambiguity and a large hypothesis space.
Consider the following example sentence:

“Mary drove Peter from Stuttgart to Saarbriicken.”

The prepositional phrase “from Stuttgart” may be a part of the noun phrase “Pe-
ter from Stuttgart” or directly of “drove Peter from Stuttgart to Saarbriicken.” In the
former case, the phrase “from Stuttgart” names the origin of Peter in the latter the start
of the journey. The parser would have to derive and output both alternative parses.
The large hypothesis space is due to the fact that grammars are built up of many
local rules the application of which may allow for the application of further rules.
In many cases, rule applications are possible at some time during the process but do
not lead to an ultimate result because at some later point, no further rule applications
are possible. This can be thought of as rejecting a hypothesis of a partial parse. Due
to these challenges, parsing takes a significant amount of time for each sentence
processed (cf. the work of Ravichandran [2005] for a comparison of running times
of different NLP techniques for Information Extraction). Full parsing is hence rarely
used in Information Extraction which is why no particular natural language grammars
and parsing systems are discussed here. An introduction to the currently very common
probabilistic approaches to parsing is given by Manning and Schiitze [1999] a detailed
overview of many aspects of the syntactic structure of natural language is given in
a book by Akmajian et al. [1995]. An alternative to parsing is chunking, a heuristic
process to determine some phrases within a sentence without completely analyzing the
phrase structure. Chunkers usually rely on part-of-speech tags in combination with a
set of rules or with a trained statistical classifier and are able to operate much faster.

20 CHAPTER 2. METHODOLOGICAL AND TECHNICAL FOUNDATIONS

2.2.3 Summary

Information Extraction commonly makes use of many linguistic methods for text pro-
cessing. The key concepts were introduced in this section. Techniques consist of clas-
sifying and labelling words along various linguistically motivated dimensions such as
part-of-speech and lemmas. Further, some semantic aspects of words are established
by describing relations that hold between words. Finally, the syntactic structure of text
can be captured by parsing or chunking. An overview of the use of such techniques in
the IE literature is given when individual extraction systems are introduced in Chap-
ter 4 and Section 5.6. Some frameworks that integrate linguistic processing tools are
presented in Section 4.1.2.

2.3 Machine Learning and Data Mining

Machine Learning is a rather interdisciplinary sub-field of computer science which is
concerned with approaches to make computer programs improve by experience. The
behavior of the programs thus not only depends on explicitly coded instructions but
on a predefined model along with observations in the input data. Thereby, machines
become able to adapt to aspects of the data they process which are not known or fully
understood at the time when the machines are set up. Machine Learning can hence
be considered part of the field of Artificial Intelligence and make use of concepts and
methods from formal disciplines like logics, statistics and information theory but also
from biology, cognitive science and other natural sciences as approaches are inspired
by learning in living beings. Data Mining is a field of research that is concerned with
deriving relevant information from large amounts of data. Thereby, both the model by
which the obtained information is structured and the information itself can be derived
during mining. Machine Learning and Data Mining have a large overlap in methods
and models.?

Formally, Mitchell [1997] defines a Machine Learning problem as given by a task, a
performance measure and training experience. As an example, a learning problem may
be to create a named-entity tagger the task of which is to decide for a given word if it is
of a specific entity type. The training experience consists of texts in which the entities
of that type are labelled and the performance measure would be the number of choices
correctly made by the tagger. Generally, the task is captured in form of a target function
f + X — Y which constitutes the decisions that are to be learned. The decisions are
just captured by mapping values from some input space X to values from the output
space Y. The mapping is not known in advance (otherwise learning would not be
necessary) and can only be approximated. The individual dimensions of the input
space are referred to as features. Training experience provides the learning system
with training examples that can be used to learn to approximate the target function.
The performance measure indicates the appropriateness of the approximation to some
task frequently by means of verifying if the decisions the learned system makes on

’In many cases, the distinction of Machine Learning and Data Mining lies in the application. Other
application-oriented bordering and overlapping fields are knowledge discovery in databases (KDD) and in-
telligent data analysis (IDA).

2.3. MACHINE LEARNING AND DATA MINING 21

some test examples are appropriate to the task.

This overview covers methods that can be divided into supervised and unsupervised
Machine Learning methods. This distinction is commonly made in the literature and
affects task definition, performance measure and the nature of training experience. In
supervised learning, training examples are of the form (x,y) € X x) and explicitly
state values the target function should return for the training inputs. The goal is then
to approximate an underlying target function f : X —) which generalizes over the
mapping presented during training. Unsupervised learning means that explicit target
class values are not available. Training examples here are only values from &X’. The
target function learns to assign values from)/, which in the unsupervised case is usually
a set of cluster labels that is not specified in advance. The goal is to yield a target
function that accounts for interesting properties of the data. Other unsupervised Data
Mining methods derive some other abstract descriptions (e.g. Association Rules) of the
data that do not map to individual data points.

The supervised and unsupervised methods discussed here are selected to allow for
an understanding of Machine Learning for Information Extraction in general and the
methods applied in this thesis in particular. We leave out many alternative learning
methods as well as paradigms not prominently employed for Information Extraction
(e.g. reinforcement learning, most regression methods and most clustering techniques).
Broader overviews and in-depth coverage of a large variety of methods can be found
in the classical textbook by Mitchell on Machine Learning [1997] or in a more recent
work by Kononenko and Kukar [2007] who cover both Machine Learning and Data
Mining. An overview with focus on learning and Data Mining for Web-oriented appli-
cations is given by Liu [2007].

2.3.1 Supervised Methods

Supervised Machine Learning, as formalized above, aims at predicting outputs of the
target function based on known training input-output pairs from the function. One
distinguishes the prediction of continuous values, regression, and the prediction of a
finite set of target values (referred to as classes or labels), classification. In both cases,
the goal is to achieve a good generalization over the training examples that captures
the important laws governing the data. Two possible types of errors should thereby
be avoided: When overfitting, the model replicates the training data too closely and
thereby includes into its decision aspects that do not belong to the interesting properties
of the data (noise). On the other hand, if the approximation is too loose, overfitting is
avoided, yet the error on the data may increase.

We present here several recent approaches for supervised learning. They were cho-
sen to be those used most prominently in IE literature.

Support Vector Machines

Support vector machines (SVMs) [Boser et al., 1992; Vapnik, 1995] are a widely used
method for binary classification (i.e. || = 2). They constitute an instance of the class
of linear function models which aim at separating data in a vector space by means of
a hyperplane. More specifically, SVMs compute the maximum margin hyperplane by

22 CHAPTER 2. METHODOLOGICAL AND TECHNICAL FOUNDATIONS

iteratively selecting from the training examples so-called support vectors which along
with some parameters define the separating hyperplane. In a trained SVM, the support
vectors represent the training examples which are closest to the separating hyperplane.
Classification consists of mapping an element from X to the side of the hyperplane it
lies on and returning a label that corresponds to the label of the support vectors on this
side of the hyperplane.

A method based on a separating hyperplane requires that most of the data points
are linearly separatable, i.e. that there exists a hyperplane which correctly divides at
least most of the data points into the desired classes. The so-called Kernel trick is
employed to increase linear separatability by mapping the data from the input space
X to a different, possibly higher-dimensional feature space X* in which the desired
separatability exists. The kernel trick is based on the observation that the only operator
needed to compute a separating hyperplane in the feature space is the inner product.
Conceptually, the kernel is a function x : X' x X — R that given two elements x,y € X
from the input space, computes the inner product of the corresponding elements in the

target space ¢(z), d(y) € X™.
Kx,y) = <o), dy) >

The benefit of the kernel trick is that showing a limited set of properties for
ensures that x is appropriate for the use of the kernel without specifying ¢ explicitly.
For example, the definitions of kernels for text processing in [Giuliano et al., 2007] are
defined directly as a comparison operation on text fragments not separating the steps
of embedding into the feature space and computation of an inner product. A detailed
discussion of kernel-based Machine Learning methods with applications from the field
of natural language processing and with the help of structured knowledge has been
presented by Stephan Bloehdorn [2008].

Conditional Random Fields

Conditional Random Fields (CRF) [Lafferty et al., 2001; Sutton and Mccallum, 2006]
are a class of very general discriminative probabilistic models. Probabilistic models
introduce random variables x and y for the domain X and range) of the target func-
tion. Discriminative probabilistic models are concerned with deriving the probability
distribution p(y|x) which specifies the probability of a classification from)’ given an
input observation from X'. Types of models constitute a function of x and y with a set
of parameters. Training is usually done by means of a maximum-likelihood estimation
of parameters, that is the parameters are set in a way that maximizes the likelihood of
the observed combinations of values from X and).

CRF are very powerful because they model conditional dependance between ob-
servations of X and Y. These dependencies can be arranged in graphs of arbitrary
structure. Connections in the graph can encode linear order of observations or co-
occurrence. Frequently, they are used to assign a sequence of labels to a sequence of
observations a task which is common in computational linguistics (e.g. part-of-speech
tagging), bioinformatics and speech recognition. In their most general version, they are
an undirected graphical model. The graph G represents observations from X and) as

2.3. MACHINE LEARNING AND DATA MINING 23

LN

Figure 2.2: A linear-chain SVM with Markov assumption. Image due to
[Sutton and Mccallum, 2006].

vertices V' and dependencies in the model as edges E. In the following, we describe
the linear-chain CRF in which the structure of the graph is limited to a structure as
indicated in Figure 2.2.

The model of the linear-chain CRF which additionally makes the assumptions that
output labels at position ¢ only depend on the input at ¢ and the output label at position
t — 1 can be formalized as follows:

) K
plylx) = megjp(ZAkﬁc(ytaytl;Xt))
k=1

Thereby Z(x) is a normalization factor, fx(ys,y:—1,%¢) stands for one of the K
feature functions that determine if a given feature is expressed. The choice of f also
binds the position ¢ at which the feature is present. It indicates the probability with
which a given y, is output following a given y;_; based on the distribution of inputs
x; at t. Note that the presence of the same feature at different positions is reflected
by different feature functions. \j stands for the model parameter associated with the
respective feature.

Practical linear-chain CRFs are likely to lift the Markov assumption by allowing
for further dependencies among labels in the output sequence but at the same time tie
parameters to each other assuming for example that a label that depends on a particular
feature in the previous element of the sequence has the same dependency regardless
of the position within the sequence. To account for more complex structures, the set
of feature functions needs to be altered including their domain and range which in
principle allows for the full distribution of observations.

Conditional Random Fields constitute in fact a framework that covers several other
supervised probabilistic learning methods used in the literature including Naive Bayes
classification and Logistic Regression.

Concept Learning

In the following, we introduce Concept Learning, an early, non-statistical type of Ma-
chine Learning tasks [Winston, 1975; Mitchell, 1997]. While the methods from Con-
cept Learning are not in the scope of this thesis, we use its basic notions to later give a

24 CHAPTER 2. METHODOLOGICAL AND TECHNICAL FOUNDATIONS

- - i
— /\
(Was done With) (Was[*,*)W o (*I boml*)
(was,born,in) \/
was,born,on) (was,bom,¥)
was,made,from)
1

(came, away,with)

Figure 2.3: Concepts as sets of text fragments (left) and arranged in a lattice structure
(right).

generalized formal basis for the task of text pattern induction. Concept learning is con-
cerned with deriving a concept as a Boolean function that decides for each object from
a domain based on a set of attributes if it is an instance of a concept. As an example,
in the domain of sportspersons, the concept of a “swimmer” may be detected based on
the attribute “clothing” to have the value “swim suit” and the attribute “competition
type” to be “race.” Or, by the example of pattern-based Information Extraction which
we will introduce later: In the domain of textual mentions, a concept may be the sen-
tences that express the relation of a person being born at a particular date. The decision,
whether a sentence belongs to this concept is based on the words of the mentions and
their positions as attributes. Formally, a concept is a subset of the domain X'. ¢ is the
target function, the values of which are only known for the training examples. Concept
learning is thus a supervised binary classification task () = {0, 1}). Learning is per-
formed by generating and testing hypothesis functions which are of the same type as ¢
with the goal of deriving or approximating c. More specifically, learning is performed
as a search process in the space of allowed hypotheses X C X, which is also called
the hypothesis space or search space. This space is defined by the formalization of
the attributes Att. In the classical notion of concept learning, each attribute or feature
a € Att corresponds to a function a : X — D, with a domain D,. Each hypothesis
and concept consists of a conjunction of constraints. In this simple formalization, each
constraint 7, on an attribute a can have three types of values *, z € D, or . A *
constraint is always true, a () is always false and a constraint written as z is true for all
x € X where a(z) = z. A concept and a hypothesis for a hypothesis space defined by
the attributes ay, . . . a,, can thus be written as a vector of constraints (ay, ..., ay).

We identify two properties of concept learning that are key to the understanding of
text pattern induction:

* Property 1: There are several interesting properties of the hypothesis space. In
particular, there exists a partial ordering < with a single supremum T (“top”)
and single infimum L (“bottom™). If for two concepts, ¢; < ¢y holds, then all
instances of ¢; are also instances of ¢y . For each concept c holds 1. < ¢ < T.
T and L are abbreviations for “top” and “bottom” denoting the concepts that

2.3. MACHINE LEARNING AND DATA MINING 25

contain all or respectively no objects. The search for good hypothesis can start
at the top, at the bottom, or proceed from both sides at a time. The correspond-
ing traversal strategies are called “top-down” and “bottom-up” depending if they
explore concepts in the space based by adding or by removing constraints. Fig-
ure 2.3 shows some concepts as sets of text fragments (left) and arranged in a
lattice structure (right). The right-hand side shows all concepts that have at least
two instances. The best concept in this space may be (was, born, *) which could
be found by starting with (k, %, x) and becoming more restrictive (top-down) or
by starting by concrete phrases and becoming less specific (bottom-up).

* Property 2: The size of the search space depends combinatorially on the number
of attributes and the number of values each attribute can take. Specifically, the
size of the search space correspondingto (a1, ...,a,)is 1+[[; , (|Da,|+1).
The constant 1 stands for L, the added 1 for each constraint stands for the option
of setting it to * (note that all options involving at least one constraint set to () are
equal to L).

Partial Supervision

The provision of training examples for supervised learning is one main cost factor.
Approaches have been developed to reduce the number of labelled examples from X’
needed by making use of unlabelled examples. These techniques are referred to as
“semi-supervised.” One general approach, which plays a major role in the framework
presented in Chapter 5 is bootstrapping which iteratively evolves a classifier by taking
parts of its output as input in the next iteration. Bootstrapping is introduced in more
detail and illustrated by applications from NLP in Section 4.2.2. Bootstrapping can be
performed with any classifier. A special variant called positive-only learning requires
the classifier to output some confidence score with the classification. The classifier is
trained initially on positive examples only and iteratively re-trained always taking the
examples which are classified negative with the highest confidence as artificial nega-
tive examples. Also, semi-supervised variants of supervised learning algorithms exist
[Liu, 2007] such as the transductive SVM or the biased SVM.

2.3.2 Unsupervised Methods

As described above, unsupervised methods derive target functions from data from an
input space X’ in the absence of sample target output values from the functions domain
Y. The aim is to find some function that describes the data well for the purpose at
hand. Such unsupervised methods help to produce an overview of the data without an
explicit specification which distinctions are relevant. Most unsupervised methods are
therefore particularly interesting for Data Mining.

Association Rule Mining

The goal of Association Rule Mining is to describe co-occurrence dependencies
between Boolean attributes of objects. An example association rule is

26 CHAPTER 2. METHODOLOGICAL AND TECHNICAL FOUNDATIONS

“People who buy apples also buy bananas. This true in 85% of the apple purchase
events which make up 20% of all purchase events.”

Association rules formalize implications among the presence of attributes and come
along with frequency indicators on how often the antecedent and the consequent rule
apply. A set of association rules can constitute a target function that given an object
x € X and its attributes outputs associated attributes. The above textual example of an
association rule could be part of a target function that associates apple shoppers with
banana shoppers. However, association rule mining is not concerned with deriving
an appropriate set of rules to describe the relevant underlying properties of the data
but rather enumerates all those association rules that fulfill certain frequency criteria.
In the simplest case, objects are characterized as a set of attributes from an alphabet
A and association rules B — CwithB,C C A give frequencies freq(B U C|B)
(“confidence”) and freq(B U C') (“support”). The frequency criterion is commonly
defined as a frequency threshold freq,,;,, as freq(B U C) > freq,in-

In the above example, “20%” corresponds to the support, “85%” is the confidence.

The challenge in association rule mining is the combinatorially many possible
association rules that exist for a given alphabet A. There exist several standard al-
gorithms for mining (cf. [Schmidt-Thieme, 2007; Liu, 2007] for overviews). The
key idea of all of them is to organize co-occurrence counting in a way that avoids
as far as possible counting attribute sets that will not contribute to any associa-
tion rule. One such algorithm is Apriori [Agrawal and Srikant, 1994] which ex-
plores the space of possible attribute combinations in a depth-first manner and uses
a Prefix tree data structure to count occurrences. Extensions of these algorithms
for objects with complex structures have been proposed [Agrawal and Srikant, 1995;
Srikant and Agrawal, 1997], most commonly, sequences of objects and attribute sets
which are arranged in a taxonomy. In this thesis, we use techniques from association
rule mining to generate textual pattern in Chapters 8 and 9. We do not use association
rules themselves but exploit the algorithms to generate candidates for frequent textual
patterns. The mining algorithms used are introduced in the respective chapters.

Clustering

The most common type of unsupervised learning method is clustering which comes
in a large variety of forms. The general idea is to assign entities from the input space
X to classes without a predefined criterion or set of examples for class membership.
Clustering is done with regard to some notion of similarity. Clustering is not in the
focus of the technical work presented here. However, it is used as a preliminary step in
pattern induction in the Snowball system. [Agichtein and Gravano, 2000]

A popular clustering algorithm is k-means [Kaufman and Rousseeuw, 1990;
Duda et al., 2001]. It is based on the principle of iterative relocation as it iteratively
adapts the position of k elements from the input space X’ until they form good rep-
resentatives of the training examples. More specifically, k-means initializes a set
R C X,|R| = k of representatives and then, given a set of unlabelled training ex-
amples X C X repeats the following two steps until a stopping criterion is reached:

2.3. MACHINE LEARNING AND DATA MINING 27

e for each € X compute the closest representative [(z) in R. [(z) =
arg min,.c p |x — r|. Thereby | - | is (usually) the squared Euclidean distance.

* Relocate r into the center of the cluster r defines: newValue(r) =
centroid(z € X|l(xz) =r).

Because of the local nature of the updates, k-means is of a hill-climbing nature and stan-
dard methods for avoiding local optima can be used such as repeated application, sim-
ulated annealing and an appropriate choice of stopping criteria. The algorithm makes
the assumptions that the number & of target clusters is known beforehand and that all
features of the input space are continuous so that centroids and distances can be com-
puted. For both these assumptions there exist variants of the algorithm that circumvent
the assumptions (e.g. k-medoids for arbitrary input spaces). For some applications,
such as the construction of a terminological taxonomy from text [Cimiano, 2006], it
is desirable to have a hierarchy of clusters. A variant of k-means called bi-section k-
means [Steinbach et al., 2000] does so by recursively partitioning (parts of) the input
space using k-means with k£ = 2.

Geometric Embedding

Another form of unsupervised analysis of data is referred to by the general term Ge-
ometric Embedding which is a way to perform dimension reduction on the data by
associating each data point to one representative out of a set of representatives which is
arranged in some (low-dimensional) structure. The most popular instance of Geometric
Embedding is the Self-Organizing Map (SOM) [Kohonen, 1997], which is defined by
a set of representatives m € M. Each m is associated with a reference element from
the input space rep,, € X and a position in an Euclidean space (the map) pos,,. It
is necessary that there is a distance measure |1, 22| between any two elements 1, 22
from X.

SOM training consists of adjusting the representatives such that assigning each
element from A’ to its closest representative on the map renders a meaningful layout of
the data from X on the map. This is achieved by iterating over the following steps for
each z from a set of unlabelled training instances X repeatedly:

* Find a “winner” representative w = arg min, |repm, |
* Adjust rep,, towards z (such that |rep,,, x|) is decreased.

* Adjust the representatives which are close to w on the map towards x as well to
a decreasing degree the larger the distance on the map.

After having been initialized with random elements from X, followed by sufficient
training, the SOM will develop a selectivity for similar input items in the same region of
amap. This is due to the adjustment of neighbours during training. The arrangement of
the map reflects interesting distributional aspects of the data. However, not necessarily
all interesting aspects are taken into account due to the reduction of dimensions.

The map layout makes SOMs with a 2D space an appropriate tool for data visual-
ization which has been used in an NLP context [Kohonen et al., 2000]. Furthermore,

28 CHAPTER 2. METHODOLOGICAL AND TECHNICAL FOUNDATIONS

we experimented with using the SOM for inducing generative models of sequences
[Strickert et al., 2005] and, by means of an extension, to detect prominent relation types
among hyperlinked documents [Bloehdorn and Blohm, 2006].

2.4 Information Retrieval

Information Retrieval is concerned with the task of presenting for a given query the
documents that are most relevant. The most prominent and extensively investigated re-
trieval task is that of Web Search. The characteristics of Web Search are that documents
have to be chosen from a large amount of heterogeneous hyperlinked Web documents
and that queries are typically posed in form of very few keywords. In this thesis, like
in several other works in the field of Information Extraction, search engines are used
as an interface to document collections. More specifically, we use the Google search
engine the major principles of which we will present in this chapter. Introductions and
overviews of research in the field of Information Retrieval can be found in books by
Chakrabarti [2002], Baeza-Yates and Ribeiro-Neto [1999] as well as Liu [2007].

There are two important aspects in Web search: One is the efficiency of the process-
ing because it is expected that in a period of less than one second the right documents
are retrieved among millions of candidates. The other one is of course the quality of
the search results, that is how well the search results are appropriate for the information
need expressed in the query. Both efficiency and quality are achieved by developing
retrieval data structures that capture the most important aspects of documents. These
data structures are filled ahead of time (indexing time) and accessed, once a query is
posed (query time).

The indexing time data processing in Web search can be described as the following
steps:

e Crawling: Given that Web documents are stored distributed over servers all over
the world without a central register, Web search engines need to detect and down-
load the pages on their own. This is accomplished by recursively downloading
pages and following the links on them for further downloads.

* Document preprocessing: Each page needs to be processed in order to make
the relevant content accessible for search. Typically, this means parsing the data
format (HTML, PDF, etc.) to isolate the textual content and, from there, per-
form normalization tasks which are typically the removal of stopwords and the
replacement of words by their lemmas (see Section 2.2).

* Static rank computation: While the relevance of a document ultimately de-
pends on the query, there are also indicators of relevance that only depend on
the document itself. Indicators of such static ranking are the recency of in-
formation and the authority of a source. The PageRank measure for authority
[Page et al., 1998] has been employed very successfully in the Google search
engine. It recursively defines page authority via the authority of the pages link-
ing to this page.

2.4. INFORMATION RETRIEVAL 29

* Indexing: The resulting document representation is stored in an index. The
general idea of retrieval indices is presented below.

At query time, the following is accomplished:

* Query analysis: Initially, the query needs to be analyzed. Special instructions
like multi-word sequences (via quotes in Google) or the constraints on the target
page’s domain name or file type need to be separated from keywords and key-
words need to undergo preprocessing analogous to the document preprocessing.

* Index lookup: The resulting representation of the query is used to retrieve the
relevant documents from the index.

* Relevance ranking: For typical queries there exist more results than a user is
willing to inspect. Therefore, the results need to be presented in a ranked order.
The above-mentioned static ranking scores need to be integrated with query-
dependant dynamic ranking scores. Their computation depends on the retrieval
model employed (see below).

* Presentation: Ultimately the results need to be presented to the user. Typically,
for each resulting document, a summary is generated that gives an indicator of
why this document may be relevant to the query.

Several retrieval models exist that heuristically capture the relevance of a docu-
ment to a given query. The Boolean model conceives each word in the language as a
boolean attribute to each document which is true, if the word is present in the docu-
ment and false otherwise. The query is processed as a constraint on the attributes of the
documents. Queries may contain the Boolean operators and documents are considered
relevant if they fulfill the constraints. The Vector Space model describes each document
as a point in a vector space which has a dimension for each term in the language. The
document’s value on each dimension depends on the presence of the respective word
in the document. A common function to assign such a value is the TF-IDF score which
relates the number of times a word occurs in a document (term frequency) to the ratio
of documents containing that word. Such vectors can be computed for both documents
and queries and relevance is quantified by vector-space similarity (commonly cosine
similarity). Furthermore, there exist probabilistic approaches such as the Statistical
language model which is based on conditional probability distributions of queries and
documents. The approach is to derive the distribution of a query given a document
Pr(q|d) based on observations in the documents and then use Bayes rule to estimate
the probability of a document given a query Pr(d|q).

Regardless of the retrieval model, Web search engines use a term-based index to re-
trieve documents. The index, sometimes referred to as “inverted index” can be thought
of as an index just like those at the back of a book. It lists for each term all the doc-
uments in which the term appears (postings list). The process of answering a query
composed of multiple terms is thus based on an intersection of the postings lists of the
terms. Additionally, the position of a word within a document can be encoded to allow
queries for sequences of words or to reward proximity of matches. When static ranking
is employed, the postings lists are sorted by the static rank of the documents. Search

30 CHAPTER 2. METHODOLOGICAL AND TECHNICAL FOUNDATIONS

engines then only intersect enough of the postings lists to display as many results as
can be presented at a time. Google usually presents 10 results at a time, so that the
intersection can end early. Along with the results, an estimate of the total number of
results is given. Due to the partial intersection of the postings lists, this estimate can be
Inexact.

Chapter 3

Information Extraction Tasks

In very abstract terms, the goal of Information Extraction (IE) is to get hold of
the key facts in a text in an automatic fashion. Thereby, natural language anal-
ysis is performed and the goal is to produce unambiguous output of a predefined
format [Cunningham, 2005]. When confined from other subfields of Natural Lan-
guage Processing (NLP), Information Extraction focuses on factual information of
a simple nature and trades in-depth analysis for large coverage. It aims more at
identifying important phrases and simple relations than at interpreting, summariz-
ing or representing the content of the text as a whole. Applications of IE lie in
the construction of general purpose resources like dictionaries or ontologies, ad-
vanced indexing for Information Retrieval and in areas where structured informa-
tion about entities needs to be collected (some examples have been given in Sec-
tion 7.2). Research in IE started with the manual generation of patterns and tem-
plates for identifying key information (cf. [Rau, 1991] and [Hearst, 1992] for early
applications as well as [Cunningham, 2005] and [Grishman and Sundheim, 1996] for
overviews). To reduce the manual effort required to create and maintain the patterns,
techniques from the field of Machine Learning were applied to IE [Sarawagi, 2008;
Nadeau and Sekine, 2007]. Today, a major goal is to scale methods up to very large
document collections like Wikipedia (around 3 Million articles in English only), Med-
line (over 18 Million medical publications) or even the entire Web.

This chapter starts out by introducing a terminology for IE aspects as it will be
used in the rest of the thesis. Then, emphasis is put on different IE tasks. To this
end, a series of dimensions in which those can differ are distinguished before several
prominent tasks are discussed. Finally, general challenges in the field of IE are outlined.

3.1 Terminology

Some terminology is required to describe various tasks and approaches in Information
Extraction. In this thesis we will use a terminology which is close to the terminology
used in the ACE 2008 task definition [NIST, 2008] and extends it where necessary
while others will be introduced where they are needed.

31

32 CHAPTER 3. INFORMATION EXTRACTION TASKS

An entity is something that can be referred to textually (such as a person, a real
world object or a numerical value). It is to be distinguished from the text fragment
(string) itself as an individual entity can be referred to by different strings (synonymy)
and the same string can refer to different entities (homonymy or polysemic references).

A relation can hold between two or more entities. If not otherwise specified or
clear from the context, we use the term relation in the sense of semantic relation. By
semantic relation we mean that the entities which stand in the relation as well as the
relation itself are grounded in some meaning outside the text. This grounding can take
place by associating it to a concept in a formal ontology or a task-specific conceptual-
ization. Sometimes, this grounding is made explicit, but most of the time, it is assumed
that it can take place when the extracted information is used. The entities that are re-
lated are called its arguments. An individual assignment of entities to the arguments
is called an instance of the relation, the set of all valid instances is the extension of
the relation. Note that the term “relation” itself is used ambiguously in the literature.
Sometimes authors use the term “relation” or also “relationship” when they mean what
we introduced here as “relation instance.” Relations can be of various arities that is
have different numbers of arguments.

Hence, the goal of IE is to identify entities and relations in text. Depending on the
task at hand, one may output entities and relation instances in a list or return with them
their mentions, that is, the text fragments they occur in. When mentions are produced,
IE can be viewed as an annotation process that is information about individual text
fragments is derived and associated with the text. When extracting information in
terms of entities and relations, several attributes of a given mention are of interest.
For entities, this is typically a fype that specifies what kind of entity has been found.
To resolve synonymy, a unique identifier may be introduced. For relations, multiple
identifiers need to be derived: the identifier of the target relation and one identifier for
each argument.

3.2 Dimensions of Information Extraction Tasks

A great variety of IE tasks have been addressed in the literature, some of which are
described here. Apart from a set of rather small publicly available standard data sets,
IE is performed in many specialized setups. Because the appropriateness and potential
of a given method depends on many factors, the transferability of approaches between
setups is difficult to predict. Thus, each setup can be considered a separate task. We
will define an IE task as the task to produce a particular type of output on a corpus of
a particular nature with a certain given sort of supervision and background knowledge.
In the following, we elaborate on several dimensions for each of these aspects.

The primary reason why automated IE is dependant on so many dimensions is the
fact that it relies on regularities in the input which can be altered by many factors.

Structure of Target Output. One can distinguish the goal of entity extraction and
relation extraction. In both cases, one may perform local or global extraction. While
local extraction annotates entities and relations in the text, global extraction aims at
identifying facts that hold generally true abstracting from their particular mention in

3.2. DIMENSIONS OF INFORMATION EXTRACTION TASKS 33

the text. Note that global and local extraction will be covered to a large extent by
the same methods as both tasks require identifying mentions of instances in the text.
However, global extraction integrates over all mentions of a relation. It can thus afford
to miss mentions without loosing out on performance as long as the same instances
are identified elsewhere in the corpus. At the same time it can increase precision by
deciding on the validity of the extraction based on several mentions. Yet, in order to
be able to do so, global extraction may require greater disambiguation efforts because
several mentions of the same instance can only be detected as such if the instance is
identified in an unambiguous manner. In fact, these two alternative choices (entity
extraction vs. relation extraction and local vs. global) account for four different tasks
in the ACE 2008 evaluation (cf. Section 3.3). As a terminological note, we will use
the term relations both for entities and relations when describing methods that apply to
both entity and relation extraction. In these cases, entity extraction can be considered
the 1-ary special case of relation extraction. Another option when it comes to extraction
is to allow or disallow implicit mentions of a given relation. An implicit mention is one
where the relation in question is not what the text is meant to convey at the position of
the mention. As an example, the sentence “Madrid is the capital of Spain.” does not
say that Madrid is located in Spain, yet it is reasonable to assume so and thus allowing
for implicit extraction but not for explicit.

Apart from entity and relation extraction there is the notion of event extraction.
Events are bigger units of textual content that follow a pre-defined structure. The
structure causes certain textual entities to play predefined roles in this event. The
goal of event extraction is to identify role-fillers in the text. As an example, in the
ACE 2007 evaluation there were events like “Life/Be-born”, “Business/Merge-Org”
and “Personnel/Nominate” allowing for arguments like “Person”, “Place”, “Position”,
“Time-starting”, “Org.” In principle, events can be thought of as n-ary relations where
individual arguments can be left empty and with emphasis on certain particular argu-
ment types (actor and recipient of an action, time, location). A special case of event
extraction is single event extraction in which a given textual unit can be assumed to
reflect exactly one event. One frequently addressed example for a single event extrac-
tion task is the Seminar Announcement extraction task [Freitag, 1998] in which 485
seminar postings have to be processed each describing one talk. The goal is to extract
the speaker name, the title of the talk, as well as start and end time.

Target Output Relations. The nature of the target relations themselves have a great
influence on how a given relation extraction task can be addressed. On the one hand,
formally definable properties like reflexivity, domain and range restrictions, cardinal-
ity, functionality/inverse functionality (cf. Section 2.1 for a formal definition and de-
scription of these properties) can have an influence on how relation instances are ex-
tracted. Two studies [Alfonseca et al., 2006; Normand et al., 2009] have shown that
knowing domain and range restrictions can increase the quality of extraction. Apart
from that, the numerical distribution and linguistic properties of the mentions can have
an influence on how the IE task presents itself. Intuitively, if the relation instances
are mentioned more often and in an unambiguous way, they are easier to extract. The
target relations are therefore an important aspect of the extraction task.

34 CHAPTER 3. INFORMATION EXTRACTION TASKS

Nature of Input Text. The appropriateness of a given extraction method strongly
depends on the nature of the text that it is applied to. Hence, we consider the na-
ture of the text as part of the extraction task definition. Information Extraction has
been frequently applied to news wire articles [Suchanek et al., 2009], classified ad-
vertisements [Embley et al., 1998], blog posts [Reiss et al., 2008], Wikipedia articles
[Wu and Weld, 2007] or the entire Web [Brin, 1999]. For the task definition, we con-
sider the following dimensions of text corpora as relevant:

* Corpus size. The size of a corpus naturally has a big impact on processing time.
Most extraction mechanisms operate linear w.r.t the size of the corpus. Still,
when very scarcely mentioned information is looked for in very large corpora,
linearly processing the entire corpus may take too long. Some systems allow
for faster extraction by using web search indexing techniques to be able to op-
erate faster at extraction time [Cafarella et al., 2005; Cimiano and Staab, 2004,
Blohm et al., 2007].

* Lexical and syntactic variability. Given that IE exploits regularities in the way
in which instances are mentioned in the text, the rich variability that natural lan-
guage allows may render extraction difficult. Depending on the text source and
purpose, variability may be limited. With this observation in mind, many studies
have been conducted on text corpora that can be assumed to be well structured.
For example, Hearst [1992] operated on Grolier’s American Academic Ency-
clopedia, Suchanek et al. [2008] specifically exploited page category names in
Wikipedia and Embley et al. [1998] specialized in classified advertisements.

* Domain terminology. A large body of work in IE is concerned with adapting IE
systems to different topic domains. The biomedical domain for example fea-
tures synonyms and surface string variations that can only be recognized by
experts [Saric et al., 2004] as well as topic domain specific linguistic particu-
larities [Netzel et al., 2003]. Some domain-specific studies and applications are
discussed in Section 4.1.1.

* Confidence in content. While the representation and aggregation of uncer-
tain knowledge is a research area in its own right, contradictions, errata and
possibly even spam have to be dealt with when aiming at global extraction
(i.e. finding globally true statements). Sources for such errors are multi-
ple. On the one hand, extraction models are usually imperfect and generate
a certain amount of false extractions. On the other hand, information may
change over time, may depend on the point of view on a topic or may sim-
ply be false. Most global IE systems make choices with respect to exclu-
sion of improbable information ranging from a support threshold (suggested by
Brin [1999]) to entire frameworks for knowledge integration [Iria et al., 2006;
Suchanek et al., 2009].

* Language. Finally, the language of the input is an important factor. Most re-
search has been done on IE from the English language which is reflected by
the fact that almost all studies cited here exclusively discuss English examples
(for an overview with regard to entity extraction cf. [Nadeau and Sekine, 2007]).

3.3. PROMINENT EXTRACTION TASKS 35

How much a given approach depends on the language typically depends on the
use of language specific linguistic resources, features and heuristics.

Available Knowledge and Supervision. Apart from text, three types of input can
be provided to IE. An extraction model encodes knowledge on how target information
occurs in text. Such models can consist of textual patterns that are intended to match
relevant text fragments or formalizations of statistical knowledge about such fragments.
An example pattern for the locatedlIn relation that contains cities and the countries they
are located in is:

“flights to ANYara, » ANYarg, from ANY airport”

Alternatively, in Machine Learning-based IE, the extraction model is learned from
examples. In such cases, fraining data is required which comes usually in form
of example annotations or example relation instances. Training data for the same
relation could be the following set of positive examples {(Karlsruhe, Germany),
(Tournat, Belgium)}.

Finally, further information on the structure of the textual input or the target
output may be available. We will refer to this as background knowledge. Background
knowledge could consist of a lexicon of possible arguments of relation instances:
{Karlsruhe, Tournai} and {Belgium,Germany}. Background knowledge can
be general linguistic knowledge or information that specifically helps at extracting
information of a particular type. Among those there is no clear-cut border. Lin-
guistic knowledge may range from simple, generally applicable models that allow
for token-wise tagging to formalized semantic knowledge. The most common
example of the former is part-of-speech tagging [Rozenfeld and Feldman, 2006;
Pantel and Pennacchiotti, 2006; Califf and Mooney, 1997, ‘Wu and Weld, 2007;
Bunescu and Mooney, 2006; Ruiz-Casado et al., 2005; Ciravegna, 2001;
Culotta et al., 2006; Snow et al., 2004]. An example of the use of specific infor-
mation is SOFIE [Suchanek et al., 2009] which incorporates a large ontology for
verification and integration of extracted knowledge. More detailed examples on how
background knowledge is employed in practice are given in Section 4. Some general
principles of the formalization of semantic knowledge are described in Section 2.1.

3.3 Prominent extraction tasks

Some text corpora have been frequently used for evaluation and thus have contributed
to defining interesting IE tasks. Among them are the seminar announcement dataset by
Freitag [1998] and a job postings list by Calift [1997].

Initial comparative evaluations in the field of IE have been performed in the context
of the Message Understanding Conferences (MUC) which were held between 1987 and
1997. An overview of the history of MUC has been published after the completion of
the sixth of seven events [Grishman and Sundheim, 1996]. The tasks at MUC focused
mainly on single event extraction on military reports and newswire texts. Over time,
more and more complex templates were developed. As an example, the annotation of

36 CHAPTER 3. INFORMATION EXTRACTION TASKS

an entity of type organization would not only feature the organization’s name but also
a type (e.g. company), location information and alias names.

The ACE program' operated by the Speech Group at the U.S. National Institute of
Standards and Technology (NIST) has set some standards for IE tasks. ACE stands
for Automatic Content Extraction as the program aims to facilitate the investigation of
various extraction paradigms. They are classified as “Entity Detection and Tracking”
(EDT), “Relation Detection and Characterization” (RDC) and “Event Detection and
Characterization” (EDC, not in 2008). In the 2008 competition [NIST, 2008], entity
and relation extraction were evaluated separately, each in a local and a global manner
and each with texts in the English and the Arabic language. Six pairs of training and
testing corpora have been made available each with a different nature of text. The text
types are broadcast news, broadcast conversations, newswire, weblog, usenet, conver-
sational telephone speech. The size of the training corpora range around 50 thousand
words). Seven types of target relations are considered with 18 subtypes in total 2.

All ACE tasks implicitly assume that entity extraction is a necessary prerequisite
of relation extraction as all relations consider ACE entities a the candidate arguments
for the relation instances.

3.4 Challenges in IE

There are three basic ideals that govern research in IE. Quality of extraction is one
of them. Clearly, all IE systems try to avoid extracting wrong pieces of information
or missing out on important content. Secondly, it is an ideal to minimize human su-
pervision in the sense that as little information (which may come in various forms) as
possible needs to be formalized by humans in advance. This can be achieved by resort-
ing to available knowledge resources and by designing extraction algorithms in a way
that allows them to make optimal use of as little supervision as possible. Finally, with
a growing body of available texts and with increasing computational capacities, scale
becomes an interesting factor for IE algorithms. On a technical level, a large variety of
challenges exist:

* Cost of preprocessing: In spite of large advancements in recent years, the high
computational costs and also the brittleness of tools for linguistic analysis (part-
of-speech tagging, syntactic parsing etc.) is still an issue. As an example, a study
from 2005 [Ravichandran, 2005] argues based on experiments that a corpus of
the size of one Terabyte would take a syntactic parser 388 years to parse.

* Adaptivity: As research strives to provide general understanding and solutions,
care has to be taken in an inherently goal-driven field like IE not to develop
systems that are only applicable to serving one particular task. Recognizing this
issue, the MUC conferences started with MUC-5 to organize their challenges in
two phases [Grishman and Sundheim, 1996] limiting the amount of adaptation
effort: One phase in which only the general task was known and one (short)

Mttp://www.itl.nist.gov/iad/mig/tests/ace/
2Note that there has not been an ACE evaluation in 2009. The Knowledge Base Population Track at TAC
20009 is the organizational successor. http://apl.jhu.edu/~paulmac/kbp.html

http://www.itl.nist.gov/iad/mig/tests/ace/
http://apl.jhu.edu/~paulmac/kbp.html

3.5. FOCUS OF THIS THESIS 37

phase in which the actual data was provided and the systems could be configured
to work with this data.

* Ambiguity: Language is by no means unambiguous. Although Information Ex-
traction does not translate the textual content in an unambiguous representation
but merely checks for the presence of certain words or other features at cer-
tain positions, the integration of synonyms and the resolution of polysemy are
of importance. On a related note, the treatment of pronouns and other cases of
coreferences may be required in order to get hold of the desired information.

* Uncertainty handling: When performing global IE, identifying the fact conveyed
at a particular position in the text is not sufficient. Whether an extraction result
constitutes a fact that holds true is not easy to assess. Reasons for that may be the
evolution of facts over time, the limited reliability of resources, different views
or conceptualizations of the aspects covered in the text or the limited reliability
of the extraction process itself. The reliability of facts needs to be assessed when
information is integrated globally. One way of handling the limited reliability of
extraction results is assigning each fact a confidence score. However, in the gen-
eral case, the different sources of lacking reliability cannot be weighted against
each other.

3.5 Focus of this Thesis

This thesis studies approaches for Information Extraction at Web scale. The goal is
to facilitate the collection of facts into knowledge repositories. We will demonstrate
application of such automatically extracted repositories for informing user of market
developments and supporting the creation of new information sources. This thesis is
hence focuses on global extraction. Moreover, like in most studies in the literature,
the focus is set on binary relations. This is due to several reasons. Knowledge Rep-
resentation based on binary relations have been well studied both in theory (e.g. in
the field of Description Logics (DL)) and in practical applications (as the widely used
and standardized Semantic Web languages rely on binary relations). The wide adapta-
tion of the DL-based OWL standard has shown how complex states of affairs can be
modelled by means of several binary relations. With global extraction in mind, it is
straight-forward that no distinction will be made between explicit and implicit relation
mentions because the target output are not the mentions but the relation instances.

The studies presented in this thesis will work on a set of non-taxonomic relations
with varying properties. While no assumptions are made with regard to logical proper-
ties of the target relations, it turns out that most relations are one-to-many or many-to-
one or violate these constraints only rarely.

The main focus of this work lies in the extraction from the Web. This has several
implications with regard to the nature of the input text. Most prominently, it is large
and ever-evolving. In the general case, large lexical and syntactic variances have to
be assumed as there is no central control governing the generation of web content.
Wikipedia has also been studied as part of this thesis work. While still a Web corpus,
Wikipedia provides a more controlled terminology and content quality which makes it

38 CHAPTER 3. INFORMATION EXTRACTION TASKS

a much-studied text collection for Information Extraction. At the same time, Wikipedia
is less redundant. The differences (and potential of mutual benefit) of Wikipedia and
Web data extraction are studied in this thesis.

The supervision paradigm applied in this work relies on the provision of a small
number of positive examples for relation instances. Training is thus done in the absence
of negative examples or with automatically generated negative examples. This makes it
a semi-supervised learning task. The impact of token-wise lexico-semantic background
knowledge (cf. Section 3.2) is studied as part of this thesis.

Chapter 4

Approaches to Information
Extraction

This chapter gives an overview of the body of research and a range of applications re-
lated to this thesis. The goal is to present the previous studies on which the technical
work of this thesis is built and to explore alternative and complementary approaches.
The chapter is divided into three sections. By starting the related work overview with
discussing Applications and Evaluation, we try to do justice to the fact that the field of
Information Extraction is inherently goal-driven in the sense that it is less about model-
ing and understanding language as a whole and also less about modeling and handling
the knowledge. IE rather aims at the efficient, possibly heuristic process of spotting key
information in the text. Like in this thesis, Machine Learning for Information Extrac-
tion is the focus of most recent studies in the field of IE. The field of Machine Learning
(ML) is concerned with inducing a model of given data by means of examples. This is
attractive for IE because a task-specific model of how information is mentioned in text
is required for each IE process and in many cases providing examples is easier than
formalizing such a model manually. Finally, an overview is given on studies that are
concerned with Information Extraction and the Semantic Web. The Semantic Web is
concerned with making Web content machine understandable describing it by means of
formalisms with explicit formal semantics. The Semantic Web thereby provides both
attractive sources of formalized background knowledge and interesting applications
because IE can be used to generate formalized metadata for Web content.

Recent overviews of IE literature include surveys by Sarawagi [2008] as well as
Nadeau and Sekine [2007]. Sarawagi discusses entity extraction and relation extrac-
tion and further divides the field into rule-based and statistical approaches. A large
set of tasks and applications is reviewed. Approaches are categorized by the task they
solve, the methods they employ and the features that are used to describe mentions of
entities and relations. When it comes to the detailed description of IE approaches, the
survey limits itself to a small set of example solutions without discussing design alter-
natives. Furthermore, the survey features an overview over the task of “Management of
Information Extraction Systems” covering aspects of document access and information

39

40 CHAPTER 4. APPROACHES TO INFORMATION EXTRACTION

integration. Nadeau and Sekine describe research in the field of named entity extraction
in detail. Starting out with an overview over the development of the field since 1991, re-
search is described in terms of the task addressed, the learning methods employed, the
features used to describe textual mentions, and the methodology of evaluation. While
this survey only covers entity extraction, many techniques, especially those concerned
with learning extraction models, can be carried over to the extraction of relations. In
both studies, the observation is made that while historically, IE operated with manually
defined rules or patterns, more recent studies feature Machine Learning methods. They
find the IE tasks to differ greatly in terms of the target corpora and the intended out-
put. Furthermore, both surveys observe that, even though statistical models are more
recent, both pattern-based and statistical models co-exist and there is no clear winner
among them in the general case. In an article in the “Encyclopedia of Language and
Linguistics”, Cunningham [2005] gives an overview of the history of the field of IE
and provides an overview of applications and some current developments.

4.1 Applications and Evaluation

Given the goal-oriented nature of IE, evaluation with respect to some target applica-
tion is an important aspect of IE research. Evaluation of a system cannot take place
ignoring the application it was designed for and conversely, systems need to show the
appropriateness for some task in order constitute a valid contribution to the field. This
section explores fields of applications for IE along with the text corpora and other re-
sources they employ before introducing relevant tools and frameworks. Finally, modes
of scientific evaluation are presented and discussed.

4.1.1 Evolution of Tasks and Applications

Research and development was driven by the growing interest in consolidated infor-
mation on the Web in corporate settings as well as in science and research. Specialized
search and browsing tools require extracted information to be able to provide relevant
documents and facts. Another driving factor was the availability of resources that on
the one hand provide a lot of information for extraction and on the other hand serve as
auxiliary sources of background knowledge. We describe here some prominent appli-
cations, corpora and resources.

A prominent type of application for IE are specialized Web search and browsing
tools. A popular subform of this, tools for aggregating advertisements such as price
comparison websites or job search engine have been a focus of research from early on
[Soderland et al., 1999; Embley et al., 1998]. Recently, IE results for many domains
have been integrated in the general domain Web search engine Bing.! Bing thereby
relies on IE results provided by Powerset [Converse et al., 2008]. Powerset’s results
are output of IE processing involving linguistic analysis on selected Web resources
including Wikipedia.

Corporate applications differ from Web settings in several ways. On the one hand,
size, confidentiality and nature of the texts are different, so that the IE tasks are posed

"http://www.bing.com/

http://www.bing.com/

4.1. APPLICATIONS AND EVALUATION 41

differently [Fagin et al., 2003]. On the other hand, content authors, information sys-
tem providers and information system users follow a common interest because they
belong to the same organization [Blohm, 2005]. The possibly smaller size, the more
uniform nature of the corpus and the common interest facilitate the use of IE as com-
pared to open Web setups. Facilitating factors are that more background resources
are available, the added value for the system provider is higher and spam can be
neglected. In the field of information retrieval, specialized enterprise search solu-
tions were developed such as Ontoprise SemanticMiner [Moench et al., 2003] or IBM
Omnifind which provide enhanced and flexible text analysis as features. Special se-
tups have been developed to extract and use corporate knowledge [Dadzie et al., 2008;
Iria et al., 2007]. Due to the inherently closed and confidential setting of enterprise
information systems, scientific evaluation is difficult in particular when it comes to
comparing work on the same dataset. An exception is the Enron dataset which com-
prises 400 Megabytes of corporate e-mails which have been made public in the course
of a lawsuit [Klimt and Yang, 2004]. This corpus has been used for IE for example by
Yunyao Li et al. [2008].

In the domain of scientific research, CiteSeer [Giles et al., 1998] was one of the
very early specialized search tools on the Web that heavily rely on IE. It uses IE to
build a citation index of research publications that are available on the Web. Its initial
form relied on a rule-based extraction process with manually encoded rules. While
CiteSeer aims at indexing of research papers from all subject areas, much research
effort has been put into facilitating research of particular domains. These and other
efforts are sometimes referred to by the term “eScience”, possibly to suggest that the
automated processing actually takes over some of the work of the scientists. Depend-
ing on the subject, special measures need to be taken to account for domain specific
terminology [Saric et al., 2004]. For the biomedical domain there are standard datasets
for evaluation along with competitive challenges available. One example is the BioCre-
AtIVE event [Hirschman et al., 2005] for which the set of tasks consists of entity ex-
traction tasks like gene name identification and normalization and relation extraction
like protein-protein interaction.

Most applications that are in use today are search oriented. For search, template-
like metadata (e.g. bibliographic or product data) and entity detection are particularly
useful. In addition there are applications that aim at summarizing and aggregating
information across document borders. To this end, like in this thesis, global relation
extraction is performed. For example Martin Hofmann-Apitius et al. [2008] detect
entities and relations in biomedical texts and make them available for knowledge-aware
browsing. Further areas of application for global relation extraction exist in fields like
market analysis and in the creation of large knowledge bases as discussed in more detail
in Chapters 10 and 11.

One of the most popular resources for IE is Wikipedia? which is a hypertextual
encyclopedic reference that is continuously developed by volunteer authors following
a wiki paradigm. It is available in many languages featuring 2.9 Million documents
in English as of July 2009. Wikipedia is widely used for IE not only due to the broad
domain coverage and the high quality of the content but also because of the rich amount

2http://www.wikipedia.org

http://www.wikipedia.org

42 CHAPTER 4. APPROACHES TO INFORMATION EXTRACTION

of formalized or semi-formalized content in form of page categorization and attribute-
value pairs presented in so-called infoboxes. This thesis comprises a set of experiments
on IE on Wikipedia (Chapter 7) in the course of which related work on Wikipedia IE
is discussed (Section 7.1).

An even larger and also rich information source is the Medline literature database
provided by the U.S. National Library of Medicine.? It contains 18 million records
describing publications in the life sciences domain from the 1960s on. The ab-
stracts provided in the records are a popular source for IE (e.g. [Saric et al., 2004;
Mclntosh and Curran, 2009]). WordNet [Miller, 1995] is a highly structured and man-
ually compiled lexical resource is which also has been used as background knowledge
for IE (e.g. [Snow et al., 2004]). Recently, resources provided by the Open Linked Data
initiative such as DBPedia [Auer et al., 2007] (e.g. [Kobilarov et al., 2009]) and YAGO
[Suchanek et al., 2008] (e.g. [Suchanek et al., 2009]) have found use as resources for
IE as well as the APIs of Web search engines (e.g. [Ravichandran and Hovy, 2001;
Cimiano and Staab, 2004; Rosenfeld and Feldman, 2006]).

4.1.2 Tools and Frameworks

Information Extraction systems are relatively complex software artifacts. Apart from
the actual decision where in the text a relevant entity or relation is mentioned, there
are several tasks to accomplished. In particular, document input has to be processed,
textual content has to be separated from markup and other non-textual document con-
tent. Furthermore, the descriptive features upon which the decision is based need
to be computed which requires running NLP tools like sentence or paragraph split-
ters, part-of-speech taggers, chunkers, parsers and possibly supplemental IE tools.
These features as well as extraction results have to be stored and represented in a
way that provides convenient access for further processing. The most widely used
IE frameworks are GATE [Cunningham et al., 2002] which is developed by the Uni-
versity of Sheffield and UIMA [Ferrucci and Lally, 2004] which was initially devel-
oped by IBM Research and is now an open source incubator project hosted by the
Apache foundation. Both GATE and UIMA view feature computation and IE it-
self as annotation of text spans. They allow users to configure a cascade of an-
notators which is subsequently applied to the text on a document by document ba-
sis. Annotators access the text and previous annotations via a common data model.
One of UIMA’s key features is that this data model is strongly typed and can be
extended programmatically. Both frameworks come with a set of basic annotators
and provide a programming interface that allows developers to create annotators
that execute arbitrary Java code. GATE comes with a rich and widely used pat-
tern matcher called JAPE. From some personal experience with UIMA [Blohm, 2005;
Umbrich and Blohm, 2008], we find it a convenient platform for developing light-
weight annotators that enable the identification of straight-forward entities or perform
relevant preprocessing steps. The developer has a lot of freedom as arbitrary code can
be executed. This comes at the expense of interoperability and integratedness. Anno-
tators can only be exchanged if they follow the same data model. Efforts exist to make

Shttp://www.nlm.nih.gov

http://www.nlm.nih.gov

4.1. APPLICATIONS AND EVALUATION 43

use of the type system facility to increase interoperability [Hahn et al., 2007]. A further
challenge for using UIMA with large scale IE is the not necessarily efficient access to
annotations provided (due to specific API issues).

A recent rule-based IE system, “System Text for Information Extraction” or “Sys-
tem T”, 4 has been released as a prototype by IBM Research. It allows pattern authors
to define mentions of target instances and n-ary relations by means of a rule language
called AQL. AQL has a syntax very similar to SQL but queries for text spans instead
of database rows. Intuitively, user-defined types of text spans take the role of columns
and co-occurrences of these spans take the role of rows. As an example, one could
query for all phone numbers occurring within a maximum distance from a person
name. Thereby, special AQL operators allow the user to define how phone numbers
and person names are identified. The underlying view of IE taken is an algebraic one
[Reiss et al., 2008] much like in database query processing which opens the way to
matching optimizations. If in the above example, phone numbers are much cheaper
to identify than person names, then System T would decide to search for numbers in
the entire text and search for person names only within the relevant context window
around the phone numbers.

A popular tool for Machine Learning for Information Extraction is the “Mallet”
tool suite [McCallum, 2002]. It contains a set of sequence tagging tools that allow
for supervised extraction by means of a user-defined set of token features. It supports
learning methods like Hidden Markov Models, Maximum Entropy Markov Models,
and Conditional Random Fields.

4.1.3 Evaluation

A number of evaluation initiatives and standard corpora exist for Information Extrac-
tion (cf. Section 3.3). Still evaluation is not straight-forward. Alberto Lavelli et al.
[2008] give an overview of problems that may arise when evaluating and comparing IE
systems. Upon these observations, they derive suggestions for improved IE evaluation.
They distinguish “data problems”, “problems of experimental design,” and “problems
of presentation.” While data problems are mostly related to potential errors in anno-
tation and formatting, problems in experimental design include varying approaches to
train/test split selection, the lack of study of the impact of individual features, incon-
sistencies in penalization of variabilities in the text fragments extracted and incompat-
ibilities of match count strategies. Concerning the presentation of results they observe
that frequently not all interesting measures or diagrams are reported or that only an in-
sufficient subset of standard corpora are used for evaluation. One should note that this
survey has been written with a closed-corpus supervised extraction paradigm in mind.
Many recent studies have varied the supervision method and aimed at extraction from
the World Wide Web. This adds at least the following additional problems with regard
to comparability.

* The uncountability of negatives: As the procedures do not actually process the
entire Web, the amount of (correctly or incorrectly) not extracted information

‘http://www.alphaworks.ibm.com/tech/systemt/

http://www.alphaworks.ibm.com/tech/systemt/

44 CHAPTER 4. APPROACHES TO INFORMATION EXTRACTION

(“negatives”) is not known. In the absence of false negative counts, recall can-
not be given. Studies on Web-based extraction report absolute result counts
[Ruiz-Casado et al., 2005; Tomita et al., 2006; Talukdar et al., 2006] or notions
of relative recall [Pantel and Pennacchiotti, 2006].

* The incomparability of corpus and corpus access: Studies vary in the
way the Web is accessed. Hardly reproducible approaches include down-
loading a fraction of the Web based on a set of queries beforehand
[Rosenfeld and Feldman, 2006] and crawling an undefined portion of the Web
accessing it via an own search engine [Cafarella et al., 2005].

In principle, all Web-based extraction systems suffer from these problems as the con-
tent of the Web and the view search engines provide on them is changing permanently.

4.2 Machine Learning for Information Extraction

It is widely assumed in the Information Extraction community that Machine Learn-
ing techniques enable much faster and less labor intensive adaptation to tasks and
domains [Sarawagi, 2008; Nadeau and Sekine, 2007; Ravichandran, 2005]. While the
setup or domain adaptation of early IE systems consisted in formalizing general and
task-specific linguistic knowledge, ML-based IE makes it possible to limit the human
input to training examples in form of target instances or annotation of their mentions
in the text. Most recent research, including this thesis, therefore focus on the auto-
matic learning of IE models. One should note that few studies actually investigate
the issue of saving labor and costs through the use of ML techniques for IE. Among
the literature studied for this thesis, only one study quantifies the effort of training a
system for an industrial application [Ciravegna, 2001]. To further investigate this is-
sue one would have to contrast machine-learned versus manually created models both
regarding performance and setup costs. However, a clear indicator for the trend to-
wards ML is the large number of conference tracks and workshops at ML conferences
devoted to IE [Kok et al., 2007; Blohm et al., 2008; Li et al., 2008] and conversely
ML-dominated tracks and workshops at NLP conferences [Cardie and Isabelle, 2006;
Carroll et al., 2007; Mooney et al., 2005].

This section focuses on three aspects in ML for IE, namely feature representation
of text segments, the selection of models for learning and the training paradigm. A dis-
tinction is made between statistical ML methods and pattern-based approaches. Statis-
tical methods are those which evolve a statistical model to decide if target information
is present in a given text fragment. Pattern-based systems are often also referred to as
rule-based. Their model is based on constraints on the input sequence they accept for
abstraction. After presenting both types of approaches, we discuss their relative bene-
fits and drawbacks in a separate subsection. Further closely related work is discussed
when individual systems are introduced either in Sections 4.2.5 and 4.3 or in Chapter 5.

4.2. MACHINE LEARNING FOR INFORMATION EXTRACTION 45

4.2.1 Features for Describing Textual Mentions

Information Extraction can take into account many different aspects of text segments
to decide if a relevant piece of information is mentioned at a particular position. Those
aspects have to be modelled as accessible features. In the simplest case, the features
are exactly the tokens that constitute a textual mention. Those can be represented as
a sequence or a set. Usually, further features improve the quality of extraction as they
provide further information about the mentions. A feature d can be thought of as a
function f4(s) with f; : Sq — R4 which assigns each textual segment s from the set
of possible segments S; a value from the feature’s range R4. Depending on the choice
of Sy and R different types of features can be distinguished:

» Token-based features are those features in which Sy is the set of all individual
minimal textual units (tokens). The most straight-forward token-based feature is
the token’s surface string itself. All others provide information that describe the
token on a more general level or incorporate information that can be concluded
from the context. Token-based features can capture lexical and semantic features
of tokens like part-of-speech, number, case and synonyms as well as type infor-
mation of various kinds (based on lists, taxonomies, named-entity taggers etc.)
and orthographic features (capitalization, characters used etc.).

* Mention-based features encode information that holds for the entire mention
(i.e. the text fragment which is under consideration) which is relevant for decid-
ing whether or not the target relation is present at that position. Mention-based
features can be any property that can be observed about a fragment of text.

o Structural features usually need to be encoded as combinations of several token-
based or mention-based features. They describe the layout structure of the docu-
ment or the textual or grammatical structure present in or derived from the text.

The most frequently used token-based features in IE apart from the surface
string are POS [Rozenfeld and Feldman, 2006; Pantel and Pennacchiotti, 2006;
Califf and Mooney, 1997, Bunescu and Mooney, 2006; Ruiz-Casado et al., 2005;
Wu and Weld, 2007; Ciravegna, 2001; Culotta et al., 2006; Alfonseca et al., 2006] and
named-entity types [Rosenfeld and Feldman, 2006; Rozenfeld and Feldman, 2006;
Agichtein and Gravano, 2000; Bunescu and Mooney, 2006; Ruiz-Casado et al., 2005;
Ciravegna, 2001; Culotta et al., 2006]. Furthermore, regular expression matches
can distinguish orthographic speciality [Brin, 1999; Wu and Weld, 2007,
Culotta et al., 2006] (e.g. those which render the presence of proper names likely).
Several studies [Califf and Mooney, 1997; Yangarber, 2003] use synonym information
by annotating WordNet synsets. The Yago ontology is used for the same purpose
[Suchanek et al., 2009]. Morphological information for tokens is also applied
[Ciravegna, 2001].

Wu and Weld [2007] as well as Wang et al. [2007] use corpus-specific mention-
based features which are derived from structured information given on the page. The
document URL is used as a feature by Brin [1999]. Claudio Giuliano et al. [2007]
use typical word-based features (in particular the surface string and punctuation) in
mention-based manner by aggregating surrounding tokens in a bag-of-words manner

46 CHAPTER 4. APPROACHES TO INFORMATION EXTRACTION

and combine token-based and mention-based features as a linear combination of ker-
nels. Examples of structural features are dependency parse trees [Snow et al., 2004;
Xu et al., 2007] and connecting paths in an ontology [Culotta et al., 2006].

4.2.2 Statistical Learning: Methods and Training

As introduced in Section 1.2, relation extraction (and entity extraction analogously)
can be viewed as a classification task that decides if a given text fragment expresses the
target relation and an additional processing step that identifies the arguments within the
mention.

There are several ways in which these two steps are combined when relation ex-
traction is modelled as a statistical learning problem.

o Argument-driven: First detect potential arguments of the relation in text and
then decide, if they stand in the target relation. In the sentence “Sheffield is a
city in England.”, an argument-driven system would first spot “Sheffield” and
“England” as possible relation arguments and then decide, if the textual context
justifies asserting a locatedIn relation instance between them. Most statistical
models base on a previous identification of the argument slots either by assuming
named-entity tagging (possibly in coarse categories) to be performed prior to
relation extraction or by employing sequence models that distinguish tokens.

Fragment-driven: Alternatively, one can first identify a text fragment that is
likely to hold a mention of a relation instance and then identify the arguments. In
the above example, a fragment-driven approach would first spot “is a city in” as a
good indicator of the locatedIn relation and then spot the arguments “Sheffield”
and “England” in the text.

Argument-driven processing by means of named-entity tagging is almost the stan-
dard procedure [Rosenfeld and Feldman, 2006; Rozenfeld and Feldman, 2006;
Agichtein and Gravano, 2000; Yangarber, 2003; Bunescu and Mooney, 2006;
Ruiz-Casado et al., 2005]. An alternative is the use of otherwise distinguished
entities such as link-title pairs [Culotta et al., 2006]. Also argument-driven ex-
tractors are those relying on sequential models operating on token-based features
[Culotta et al., 2006].

Details of these systems along with additional uses of classifiers for Information
Extraction are discussed in Section 5.6.

A great variety of statistical classifiers have been applied to Information Extraction.
The most common techniques are introduced in Chapter 2. Many approaches model
the IE task as classification in a vector space using SVM [Snow et al., 2004], Naive
Bayes [Etzioni et al., 2005] and classical Logistic Regression models. Due to the se-
quential nature of language, models that incorporate sequence structure like SVMs with
sequence Kernels [Zelenko et al., 2003; Giuliano et al., 2007] and linear-chain Condi-
tional Random Fields (CRF) are frequently employed. Finally, models that enable
capturing more complex graph-like structures are frequently used [Culotta et al., 2006;
Wu and Weld, 2007; Giuliano et al., 2007]. The graph structure can represent gram-
matical structure, hyperlinks between text segments, document metadata or similarity.

4.2. MACHINE LEARNING FOR INFORMATION EXTRACTION 47

Examples of the different uses for the literature are given below sorted both by the mod-
els they employ and the nature of the supervision. Furthermore unsupervised models
like vector space clustering and the induction of Hidden Markov Models (HMMs) or
statistics via suffix-tree computation have been used as intermediary learning steps to
generate text patterns.

In Section 2.3 the distinction between supervised and unsupervised ML was intro-
duced. When it comes to IE, several special forms of supervision have been proposed
in the literature. This is due to the fact that the cost of supervision is one of the key
cost factors of IE and some types of supervision are cheaper to come up with than oth-
ers. Training of classifiers usually requires positive and negative examples to derive an
appropriate model. There are so-called semi-supervised models that make use of both
labelled an unlabelled data for training. For IE, those approaches which only require la-
belled input from positive examples, are a common variant of semi-supervision. They
build on the idea of generating negative from unlabelled training data by assuming
unlabelled positions to be negative.

One popular extension of supervised ML is bootstrapping. The general idea of
bootstrapping-based IE is that models and extraction output can be co-evolved. A
model can lead to new extraction output and extraction output can be used as training
instances to improve the model. Bootstrapping approaches run over several iterations
of training and application of the model. In terms of supervision, bootstrapping re-uses
classification output as training examples to re-train the model in the next iteration.
The assumption is that output is improved over the iterations. Thereby, bootstrapping
can be applied to pattern-based or statistical models. The term bootstrapping is a
reference to a proverb about pulling oneself out of a swamp by one’s bootstraps.
Initial work in applying this principle to IE has been done by Brin [1999] and Riloff
and Jones [1999]. Since then, many adaptations of this paradigm have followed
[Agichtein and Gravano, 2000; Etzioni et al., 2005; Pantel and Pennacchiotti, 2006;
Yangarber, 2003; Culotta et al., 2006; Tomita et al., 2006; Talukdar et al., 2006;
Xuetal.,, 2007]. Results show that hundreds and thousands of instances can be
extracted with the provision of only around 10 training examples. The principle of
bootstrapping is also at the heart of the framework introduced in Chapter 5 and a
subject of investigation in Chapters 6 and 7.

One further variant of semi-supervised learning is self-supervised learning in
which examples are generated from unlabelled data by means of labelling heuristics
[Banko et al., 2007; Downey and Etzioni, 2008; Rozenfeld and Feldman, 2008]. Fi-
nally, Active Learning has been widely studied in the ML community and applied to
Information Extraction [Thompson et al., 1999; Soderland et al., 1999].

Many ML methods for IE use methods that represent the input space as a vector
space in which each dimension stands for some feature typically discarding order and
structure of the text; other models use input space representations that preserve the
sequential order of text or other structures. Approaches using vector space models in-
clude the one by Snow et al. [2004], TextRunner [Banko et al., 2007] and KnowItAll
[Etzioni et al., 2005] who use Naive Bayes (or in the first case also standard Logistic
Regression-based) classification to assess the quality of extracted instances. The fea-
ture sets for the Machine Learning method differ: Snow et al. and the KnowlItAll system
perform classification of instances based on which patterns they match. The Snowball

48 CHAPTER 4. APPROACHES TO INFORMATION EXTRACTION

system performs clustering based on the presence or absence of words. The clusters
are then used to induce patterns which are further refined by means of bootstrapping.

In terms of sequence models, SVMs with appropriate Kernels are used
[Suchanek et al., 2006; Bunescu and Mooney, 2006; Culotta and Sorensen, 2004;
Giuliano et al., 2007]. Recently, CRF have become quite popular for this purpose
[McCallum and Li, 2003; Culotta et al., 2006]. Giuliano et al. use a CRF for the entity
extraction part of the study.

There are several sequence models that perform unsupervised learning to find rel-
evant properties in the data, which are then used to generate textual patterns. Talukdar
et al. [2006] use an algorithm for the induction of HMMs which describes words as
emissions of an HMM. These emissions occur in the linear order of the words in the
text. Each HMM describes a set of sequences that were aligned by so-called “trigger
phrases.” With appropriate techniques, HMMs on language-like sequences can be in-
duced even from relatively noisy data [Strickert et al., 2005]. The induced transition
probabilities are used to generate salient text patterns. Similarly, text sequences can be
counted into a Suffix Tree data structure [Ravichandran and Hovy, 2001] which allows
also to find frequent sequences that are likely to constitute good patterns.

Work on structured input frequently is also based on CRFs or SVMs. Zelenko et
al. [2003] use Tree Kernels in combination with an SVM to represent dependency
parse structure. A similar setup is presented by Culotta and Sorensen [2004] but
augmented by token-wise structured features such as WordNet hypernyms. A graph-
labeling model is used by Chen et al. [2006]. Known and candidate relation instances
are modelled as vertices in a graph. Edges are introduced and weighted based on the
similarity of the contexts they occur in. Known instances are assigned labels depend-
ing on the relation. The labels are then propagated in a way that allows for appropriate
generalization over the examples.

4.2.3 Pattern Induction

Text patterns are underspecified and explicit representations of text sequences that are
of the same nature as the textual content itself. Each text sequences either matches
a given pattern or does not match it. Textual patterns are the most prominent form
of rule-based extraction. They can be viewed as a set of constraints that each text
fragment matching these patterns has to fulfill. Patterns are formalized as a sequence
of text plus additional markup that essentially serves two purposes: On the one hand
restricting matches with regard to additional features and on the other hand introducing
underspecification by means of markup that allows for alternatives in matching. The
set of markup allowed determines the expressivity of the patterns that can be written
and thereby defines a pattern class.
An example of a pattern is:

“flights/NNP to/IN ANY arc, /s ANYarc, from/IN ANY airport/NN” (1)

Thereby, ANYsrq, is a “wildcard” that matches any token and the codes after
the slashes specify part-of-speech constraints. The pattern thus encodes two types of
token-based features: the token itself and its part-of-speech. The pattern matches at

4.2. MACHINE LEARNING FOR INFORMATION EXTRACTION 49

all positions where words which have the specified combinations of surface string and
part-of-speech occur in the same order as in the pattern allowing for arbitrary matches
at the wildcard positions. Argument wildcards distinguish position which hold the
desired target information.

This section describes key developments in the automatic induction of patterns for
Information Extraction and presents several dimensions in which induction approaches
differ. A framework for pattern induction for relation extraction is presented in Chap-
ter 5 which features also a more formal introduction to the notion of pattern used for
the technical work presented in this thesis. A variety of approaches from the litera-
ture are then described by means of this framework. While this section provides an
overview of the literature, we refer the reader to Section 5.6 for a systematic and de-
tailed overview of pattern-based design alternatives. Furthermore, Chapter 9 presents
a study on the impact of features from the pattern classes and therefore surveys related
work with interesting pattern languages.

Approaches to learning textual patterns for IE differ with regard to the pattern class
employed and with regard to the algorithm that is used.

All pattern induction algorithms create the patterns as generalizations over one or
several textual mentions. These mentions along with the pattern class define a space of
potential patterns. The algorithms differ with regard to how this space is explored. The
most important requirements for pattern induction algorithms are good precision and
recall as well as good runtime behavior. There are three general approaches to pattern
induction.

* Guided exploration: Some algorithms explore the space top-down starting with
very general patterns which tend to match too many mentions and then refine
those by making them more specific i.e. adding constraints. The alternative
is the bottom-up exploration where overly specific patterns are generalized by
removing constraints. In both cases, pattern quality assessment plays an im-
portant role in deciding to remove or add constraints. A frequent approach to
bottom-up induction is based on pairwise alignment of mentions. Based on
the alignment, shared features are added as constraints and all others can take
arbitrary values [Rosenfeld and Feldman, 2006; Rozenfeld and Feldman, 2006;
Ruiz-Casado et al., 2005; Pantel et al., 2004]. In some cases, derived patterns
are recursively fed back as candidates for further pairwise abstraction. Similarly,
Brin groups mentions by common text between the arguments and then general-
izes by deriving longest common substrings [Brin, 1999].

Top-down approaches make additional assumptions to guide the exploration.
Califf and Mooney [1997] operate top-down but only within the potential ab-
stractions over two randomly selected mentions at a time. Soderland et al. op-
erate similarly [1999] but additionally extend the patterns so that they are able
to impose constraints on the content of the arguments. The (LP)? algorithm
[Ciravegna, 2001] operates top-down adding constraints from one pattern only
but ruling out alternatives in a greedy manner. This greediness has as a conse-
quence that all mentions that are covered by a pattern that was induced will not
take part in the induction of further patterns.

50 CHAPTER 4. APPROACHES TO INFORMATION EXTRACTION

* Frequency of mentions: Other implementations guide the exploration of the pat-
tern space with the help of information about the mentions, in particular their
counts. Mentions are counted with the help of specialized datastructures like
suffix trees [Ravichandran and Hovy, 2001; Pantel and Pennacchiotti, 2006] or
automata [Talukdar et al., 2006] which are then used to determine appropriate
generalizations.

* Underspecified representation: In the extreme case, no exploration takes place
at all. Simply, the abstraction that makes text mentions to patterns takes place
by discarding information when each mention is transferred to a pattern. The
generalization is then implicitly done by the selection of the features that are
not discarded and the quality is assured by subsequent pattern evaluation. Such
approaches are taken by Mclntosh and Curran [2009] using the two preceding
and two following tokens as pattern, by Fabian Suchanek et al. [2009] using
all tokens between the arguments as well as by Snow et al. [2004] who use de-
pendency paths. Another approach which does not perform exploration of the
pattern space is presented by Pagca et al. [2006]. Their patterns allow for un-
derspecification because each token not only matches the exact word found at a
position but all words that are distributionally similar within some corpus.

In Part II of this thesis, one algorithm is presented that finds all patterns with a cer-
tain minimum number of constraints that are the abstraction of at least two sequences
in a bottom-up manner (Section 6.2.1) and two algorithms based on frequent itemset
mining that exhaustively find all patterns with a certain number of mentions in the
training data and certain minimum requirements on the constraints (Chapters 8 and 9).

While there exist a large amount of design alternatives for pattern-based Informa-
tion Extraction, few studies actually compare the impact of design alternatives. Ex-
ceptions include a study by Tomita et al. [2006] in which setups very close to DIPRE
[Brin, 1999] and Snowball [Agichtein and Gravano, 2000] are compared. Two stud-
ies investigate the use of knowledge about a relation’s cardinality as additional back-
ground information in order to more precisely assess the quality of induced patterns
[Alfonseca et al., 2006; Normand et al., 2009]. Alfonseca et al. develop a relatively
task-specific filtering mechanism for patterns in a question answering scenario. Nor-
mand et al. show for one relation in a very simple but statistically nicely modelled
extraction framework that precision and recall can be increased if it is known that a
target relation is functional.

The PORE [Wang et al., 2007] system learns link-title relations in Wikipedia arti-
cles. While no text-based extraction in the stricter sense is performed because most
features used exploit the particular structure of Wikipedia (categories, infoboxes etc.)
rather than its textual context, an interesting extension of the bootstrapping approach is
presented. PORE extends an algorithm for positive-only learning. Positive-only learn-
ing iteratively improves an initially weak classifier which is trained knowing a set of
positive examples P. In each iteration, those examples which are classified as negative
are added as negative training examples for the next iteration. PORE extends this pro-
cedure by evolving the positive examples also in a bootstrapping manner. Results show
that this bootstrapping procedure performs better than extraction with one iteration of
positive only learning alone.

4.2. MACHINE LEARNING FOR INFORMATION EXTRACTION 51

In a recent study by McIntosh and Curran [2009], several aspects with regard to
the choice of examples for bootstrapping of a Named-Entity-Categorizer are investi-
gated in detail. They base on the observation that the choice of the seed instances is of
crucial importance for the quality of the output. Even when starting out with 10 seeds
and extracting 100 instances, precision can vary by up to 30%. The paper proposes to
account for this phenomenon by taking an unsupervised bagging approach to extend
the seeds: The instances extracted in the first iteration are distributed into many over-
lapping seed sets (the bags). Those then serve as seeds for the next iteration which is
run once for each bag separately. The instances extracted starting with each of these
bags is combined after one iteration and serves as a more stable and high-quality set of
instances. Furthermore, Mclntosh and Curran use distributional similarity as a mea-
sure for instance filtering: Newly derived instances are only accepted if they are more
similar to the seeds than to other candidates. This is meant to prevent “semantic drift”
i.e. the change of the semantics of the target relations by the introduction of more and
more instances from a different relation.

4.2.4 Patterns vs. Statistical Models

The distinction in pattern-based approaches and approaches based on statistical ML is
fairly commonly done [Sarawagi, 2008; Nadeau and Sekine, 2007]. While early work
almost exclusively focused on patterns and fundamental methods in the field of ML
continue to evolve, one cannot say that patterns are about to be replaced by learned
methods. We present here the benefits of both types of approaches before discussing
several studies that use both, patterns and statistical ML.

The strengths of pattern-based approaches stem from their explicit nature. On
the one hand, the explicit nature allows human interpretation and verification. On
the other hand, explicit patterns can be mined and matched with methods that use
the explicit nature for optimization. For example, we present studies of this as-
pect in Chapters 8 and 9 in which optimized mining takes place by means of Fre-
quent Itemset Mining. A similar approach is the one taken by Jindal and Liu
[2006]. They use Sequential Pattern Mining — a modification of Frequent Itemset
Mining — to derive textual patterns for classifying comparative sentences in prod-
uct descriptions. While, like our approach, encoding sequence information, their
model is not able to account for several constraints per word. Additionally, the
scalability aspect has not been a focus of their study as mining has only been per-
formed on a corpus of 2684 sentences with a very limited alphabet. For optimized
matching, information retrieval indices have been used [Cimiano and Staab, 2004;
Etzioni et al., 2005]. A notable variant of this approach is presented by Michael Ca-
farella et al. [2005] who use a specialized search engine that allows them to encode ad-
ditional features (in particular part-of-speech tags) into the query. The study presented
in Chapter 6 uses the Google Web search engine for pattern matching. Even in the ab-
sence of such an index, patterns can be matched efficiently using finite-state automata
[Jurafsky and Martin, 2000]. A further advantage of patterns is that by using distin-
guished tokens as argument slots, the identification of arguments is straight-forward
while statistical methods in most cases require previous identification of the argu-
ments by means of named-entity-taggers or other markup [Bunescu and Mooney, 2006;

52 CHAPTER 4. APPROACHES TO INFORMATION EXTRACTION

Culotta et al., 2006].

Statistical models numerically compare descriptions of present candidate mentions
to the model. During the process, a value is computed that quantifies how well the
candidate fits the model. Thereby, each feature contributes to this score to a certain
extent. This makes statistical models more robust to noise or variability in the data as
a deviation in one feature can be compensated for by others. In the literature, statis-
tical models are commonly used when a large number of features is integrated. For
example, Culotta et al. [2006] integrate surrounding words, presence on type lexicons,
matches of regular expressions for orthographic specialities, part-of-speech, frequent
prefixes and suffixes and conjunctions of theses features. Yet, the pattern-based algo-
rithm presented in Chapter 8 also allows us to integrate arbitrarily many finite-domain
token-based features.

Because both patterns and statistical models have their advantages, they have
been combined in various ways. Talukdar et al. [2006] induce a probabilistic
model (an HMM) which is then used to generate patterns. The Snowball system
[Agichtein and Gravano, 2000] employs a mixture model which uses vector space
clustering to group relation mentions and then generates from each cluster patterns
which also allow for inexact weighted matches. In several studies [Snow et al., 2004;
Etzioni et al., 2005; Suchanek et al., 2009], pattern matches serve as features for a sta-
tistical model which decides which relation instances to keep and thereby integrates
individual mentions of relation instances into global extraction results.

4.2.5 Systems and Tools

This section describes some learning IE tools that have been presented in the literature.
The descriptions are meant to provide an overview of the systems. Implementation
details that are relevant to the scope of this thesis are presented in more detail in Sec-
tion 5.6.

The first system that combined pattern-based IE, a bootstrapping-based learning
algorithm and the use of data from the Web was DIPRE by Brin [1999]. DIPRE was
shown to learn instances of the authorOf relation starting from five positive examples.
It takes an iterative induction approach which bootstraps a set of textual patterns. The
induction algorithm is simple but effective as far as the evaluation on 20 output in-
stances goes. DIPRE provides simple examples of a lot of design choices that were
later refined. Patterns were filtered by “specificity” as measured by the number of to-
kens they contain. Arguments are filtered by regular expression patterns to ensure that
they matched the format in which author names and their works are usually presented.

The Snowball relation extraction system [Agichtein and Gravano, 2000] is an early
successor of DIPRE which comprises many refinements that have been influential on
later developments. While Snowball like DIPRE builds on iterative pattern induction
trained with a few seed examples, it presents a new view on patterns which allows
for partial matches and it assumes that the arguments are identified prior to matching
by a named-entity tagger. Also, the evaluation of extracted instances is introduced
which builds on the degree of match and on the assumption that the extracted relation
is many-to-one. The degree of match is essentially the Euclidean distance between
bag-of-words vectors. Snowball’s pattern induction algorithm which is introduced in

4.2. MACHINE LEARNING FOR INFORMATION EXTRACTION 53

Section 5.6.2 makes use of vector space clustering to group mentions which should
be combined to a pattern. Snowball has been evaluated on a relatively large corpus of
180,000 news articles for extraction of instances of the headquarteredIn relation, i.e.
companies and the location of their headquarters. The evaluation reports that for this
relation, precision and recall of Snowball range at about 85%. It is compared against
a baseline which simply counts co-occurrences of named entities which is aroung 5
percentage points worse in precision and has approximately the same recall.

The (LP)? single event extraction system [Ciravegna, 2001] somewhat stands in
the tradition of wrapper induction. It takes a new perspective on the extraction task
by viewing it as the insertion for start and end tags before and after the argument.
Thereby, separate patterns are induced for start and end tags. (LP)? makes use of
relatively many token-based features (part-of-speech, case, lemma, type-specific lexi-
cons). Patterns (called rules in (LP)?) are induced with a greedy bottom-up algorithm
(cf. Section 5.6.2). As a novelty, (LP)? makes use of “contextual rules” to make sure
that opening and closing tags are present in combination and of “correction rules” that
eliminate small errors if the argument borders are misplaced by a small number of
tokens. (LP)? has been evaluated on two standard datasets, the CMU seminar an-
nouncements and the job postings dataset (cf. Section 3.3) showing precision between
75% and 99% depending on the event slot.

The KnowltAll system [Etzioni et al., 2005] is an entity and relation extraction sys-
tem that aims at global extraction. It takes a bootstrapping approach but features new
ways in which supervision is provided. KnowlItAll is among the first systems that ac-
cess the Web via a search engine for IE. Instead of requiring seed examples as input,
KnowlItAll generates examples by means of generic text patterns (similar to Hearst
patterns [1992]). A further novelty presented by KnowItAll is the use of distributional
features, so-called “discriminators” for instance evaluation. Discriminators are simple
generic patterns that have been designed for the purpose of searching for them on the
Web in combination with newly extracted instances. The match counts in combination
with various discriminators serve as features of an instance which are provided to a
Naive Bayes classifier in order to decide if the instance is actually correct. KnowItAll
has been evaluated on Web extraction of city and country entities as well as the relation
between movies and the actors starring in them. Precision of between 60% and 80%
has been reported for lists of between 100 and 1000 instances.

As an example of a fairly recent line of work which aims at IE from Wikipedia,
we discuss here the Kylin system [Wu and Weld, 2007] which performs single event
extraction on Wikipedia pages with the goal to enrich Wikipedia’s semi-structured con-
tent presented in so-called “infoboxes.” A study on IE from Wikipedia along with the
discussion of further related work can be found in Chapter 7. Kylin learns to identify
missing attribute values for infoboxes by training a cascade of statistical classifiers for
three decisions: “Document classification” decides if a given infobox is appropriate
for a given document. “Sentence classification” decides if a given sentence contains a
target attribute value and an “extractor” finally extracts the argument. While document
classification is done by a heuristic, sentence classification is done using a Maximum
Entropy model with tokens and part-of-speech as features. The extractor then uses
CRFs with a very large feature set most of which are token-based in nature. Kylin has
been evaluated on four types of infoboxes reporting between 75% and 98% precision

54 CHAPTER 4. APPROACHES TO INFORMATION EXTRACTION

and around 60% recall.

A fairly generic and recent implementation of a system for closed-corpus rela-
tion extraction by means of statistical Machine Learning has been presented by Clau-
dio Giuliano et al. [2007]. Relation extraction is done as a two step process featur-
ing named-entity classification followed by relation classification. Named-entities are
identified with a CRF model with a set of token-based features (surface string, part-
of-speech, orthographic features such as capitalization, gazetter matches and n-gram
context). Relations are extracted by means of classifying co-occurrences of identified
named entities. For this purpose, an SVM with two different types of kernel is used:
a bag-of words kernels that features the greater context and a sequence kernel for the
local surroundings with a larger set of features (similar to the above). The system has
mainly been built to study the impact of these kernels showing that the combination in-
deed leads to an improvement. Precision and recall are reported to be around 70%-80%
on a TREC information retrieval evaluation corpus.

4.3 Information Extraction and the Semantic Web

The general idea of the Semantic Web vision [Berners-Lee et al., 2001] is to make
Web data available for automatic inference. In particular, this requires the data to
be structured according to a given schema. The Semantic Web community advocates
formal ontologies as schemata. Both the creation of ontologies and the structuring of
information are highly labour-intensive but can be partially performed or assisted by
IE technology. In the following, we present work from the field of Ontology Learning
as well as work that extracts data particularly with a Web scenario in mind.

4.3.1 Ontology Learning and Population

Ontology Learning aims at acquiring a domain model from data
[Midche and Staab, 2004] and is thus — if it is done from text — akin to Information
Extraction. If it is done with the aim of finding new concepts and properties, Ontology
Learning complements IE by providing the schema that extracted information can be
formalized in.

Philipp Cimiano [2006] presents a topology of Ontology Learning tasks called “On-
tology Learning Layer Cake” which organizes tasks belonging to Ontology Learning
by increasing complexity meaning that more complex tasks rely on the output of less
complex tasks. At the lower end of the layer cake, terminology-based tasks like “ac-
quisition of the relevant terminology” and “acquisition of synonym terms / linguistic
variants” can be found followed by the identification and organization of concepts and
relations. “Instantiation of axiom schemata” and “definition of arbitrary axioms” form
the upper end with regard to complexity.

Cimiano gives an overview of a large body of work in Ontology Learning before
presenting approaches which among other things advance organization of concepts by
means of agglomerative clustering and Formal Concept Analysis (FCA), a technique
which is based on deriving a concept lattice (a partially ordered set with a distinguished
supremum and infimum) that orders concepts by their properties. On a higher level in

4.3. INFORMATION EXTRACTION AND THE SEMANTIC WEB 55

the layer cake, possible properties for concepts are learned by means of a set of prede-
fined patterns and statistical correlation. Finally, among others, the PANKOW system
is presented that performs global entity extraction for the purpose of adding instances
to an ontology (“Ontology Population”). It matches a set of predefined patterns by
means of a Web search engine. Match count estimates provided by the search engine
are used to statistically assess the correctness of candidate entities.

Starting from the observation that most Ontology Learning systems do not exploit
the expressivity that ontology formalisms like OWL provide, Johanna Volker [2008]
focuses on learning “expressive ontologies”, i.e. ontologies that formally give rich
descriptions of their concepts and relations. The LExO and RELExO systems she
presents are able to acquire class description in a semi-automatic manner. Sentences
that describe a class are parsed using a dependency parser. With a set of hand-coded
rules, the resulting dependency parse trees are translated into class descriptions. For
example, one rule states that the application of an intersective adjective Adj (i.e. an ad-
jective that further restricts the meaning of the noun it refers to) to a noun phrase N P
defines a class consisting of the intersection of all entities for which N P applies with
those for which Adj applies. e.g. “foul apples” is the intersection of the class of all
apples with the class of all foul objects. In RELExO, the so-derived class descriptions
are refined by asking questions to a user. Furthermore, the RoLExO system is able to
learn restrictions for domain and range of relations (e.g. that the author of a publication
needs to be a person) based on user answers on carefully chosen questions plus optional
empirical observations (i.e. that the authors of all publications in the KB happen to be
persons). To add more expressivity to learned ontologies, an algorithm called LeDA
was presented that decides if two classes A and B are disjoint (e.g. by definition are not
allowed to share any instance). For this purpose, a decision tree classifier was trained
with a large set of features including comparison of the surface string, differences in
distributional features of the class labels in several corpora and distance measures of
associated texts (e.g. Wikipedia articles).

A recently published system by McDowell and Cafarella [2008] integrates
several ideas from previous systems for extending existing ontologies. Their
system, called OntoSyphon relies on both Hearst patterns for extraction (as in
PANKOW [Cimiano et al., 2004]) and match counts for discrimination (as in Know-
ItAll [Etzioni et al., 2005]). It uses the Bindings Engine [Cafarella et al., 2005] for ef-
ficient annotation-aware matching.

4.3.2 Bringing Semantics to the World Wide Web

In the following, we present several pieces of related work that address the task of de-
riving knowledge from Web pages. These fall into two categories. Those, which focus
on a rich schema [Suchanek et al., 2007; Suchanek et al., 2009; Culotta et al., 2006]
and those which focus on operating at the scale of the Web but with lighter or un-
defined schema [Ravichandran, 2005; Banko et al., 2007; Davidov et al., 2007]. The
technical work of this thesis can also be viewed as part of the category with large scale
and light-weight schema.

A widely used and large ontology that has been constructed by (heuristic) large
scale IE from Web data is the YAGO ontology [Suchanek et al., 2008]. It has been

56 CHAPTER 4. APPROACHES TO INFORMATION EXTRACTION

constructed by bringing semi-structured data in Wikipedia into a structured form and
has been used to integrate various data sources in the course of the Linked Data ini-
tiative [Bizer et al., 2009]. The construction of Yago makes use of the observation that
authors assign articles to “Conceptual Categories” and “Relational Categories.” Con-
ceptual categories like “American physicists” allow the system to conclude by means
of linguistic processing (among other things an alignment with WordNet) that the en-
tity described on a page in this category is in fact a physicist. Similarly, relational
categories like “1879 births” or “rivers in Germany” are translated to ontological facts.
Furthermore, manually written patterns for the translation of Wikipedia infoboxes to
ontological facts are employed as well as redirecting pages, which are used to conclude
synonymy.

The authors of YAGO also present an innovative approach of integrating
ontology T-box and A-box knowledge (from Yago) into the extraction process
[Suchanek et al., 2009] by modeling the decision whether a given pattern match actu-
ally expresses a target relation instance in logical formulae. Ontological facts, pattern
matches, the ontology T-box and some general rules on how a new relation instance
can be deduced from them are modeled as formulae in propositional logic with associ-
ated weights. A good choice of patterns and instances is identified simultaneously by
solving a maximum satisfiability problem (MAX-SAT). Solving a MAX-SAT problem
is done by determining a variable assignment that maximises the number of satisfied
clauses. Using the weights of the formulae solution of the MAX-SAT problem as-
signs weights to the variable assignments which indicate if they can be added to the
knowledge base while keeping it as consistent as possible. The advantage of such a
model is that three steps that frequently occur separately in Information Extraction can
be treated by solving one maximum satisfiability problem: pattern selection, entity
disambiguation and consistency checking. The system is evaluated on small text cor-
pora of up to 2000 Wikipedia articles, 150 newspaper texts and 3440 Web documents.
It produces results with very high precision (> 90% for most relations) which beats
state-of-the-art systems while maintaining the same level of recall. From the perfor-
mance figures provided, the generation of the probabilistic logical formulae presents
itself as a computational bottleneck while the satisfyability problem is solved rather
quickly.

Another work that aims at integrating an ontology in the extraction process is pre-
sented by Culotta et al. [2006]. They learn what they call relational patterns which con-
stitute paths of length > 1 in ontologies represented as networks of relations between
instances. These relational patterns serve as features to a CRF model that performs
the identification of mentions in the text. As an example a father — wife could sup-
port the mother relation, i.e. the confidence of a mother(m, s) increases if we know
that s has a father of which m is the wife. In the study by Culotta et al. the relational
patterns and the extraction result are co-evolved by training an SVM which uses both
relational patterns (initially a large set of candidate paths) and textual features. This
framework straightforwardly also allows integrating background knowledge by adding
relational paths or individual relation instances from external sources (e.g. an ontol-
ogy). The approach has been evaluated on 271 Wikipedia articles. Relations have been
assumed to be expressed in hyperlinks which have been manually labelled for training.
An increase in precision from 65% to 72% can be observed whith the help of relational

4.3. INFORMATION EXTRACTION AND THE SEMANTIC WEB 57

patterns while recall is also slightly improved.

While the above studies focus on the integration of an ontology with Web docu-
ments, the following work focuses on scale. The work of Ravichandran [2005] explic-
itly focuses on IE from large “terascale” corpora with the aim of extracting the taxo-
nomic is-a relation. Evaluation is done one 70 million page Web corpus (116 GB) and
a smaller newspaper corpus. The work integrates a pattern-based approach using pat-
terns that are automatically learned and evaluated and a clustering-based approach us-
ing standard token-based features as well as pattern matches and co-occurrence counts.
This combination reaches a precision of around 70% and yields around 1 million in-
stances.

Recently Banko et al. [2007] introduced the idea of “Open Information Extraction”,
aiming to extract all relations contained in a large Web corpus (9 million Web pages).
To this end, a CRF classifier is trained that identifies subject, predicate, and object of a
relation in a sentence. Training of this classifier is done in a semi-supervised manner
by providing unlabelled but parsed text along with heuristics that allow the system to
identify relation instances in parse trees. While the output of Open IE may be useful
for search applications, it differs from other IE results in that it does not adhere to a
predefined schema. Concretely, predicates are derived on a by sentence basis which
leads to the fact that the same relation expressed by sentences with different predicates
will not be integrated. Recently, it has been shown that the output of Open IE can be
used as features for classical IE to increase precision [Banko and Etzioni, 2008]. A
similar, schema-less approach is taken by Davidov et al. [2007] operating on a smaller
scale but attempting to integrate relation instances expressed with different predicates.

58

CHAPTER 4. APPROACHES TO INFORMATION EXTRACTION

Part 11

Large-Scale Extraction Methods

59

Chapter 5

The Iterative Pattern Induction
Framework

This chapter presents a framework that abstracts over various approaches to large-scale
global relation extraction found in the literature. Critical points in this framework are
identified and a series of experimental investigations is presented that shed light on
these critical points.

As outlined in Chapter 4, key challenges in large scale global Information Extrac-
tion are on the one hand to minimize the amount of expensive human knowledge that
has to be put into the process in form of training examples or other form of supervision
and on the other hand to cope with massive amounts of input texts. For this reasons,
iterative bootstrapping approaches are widely used on the task in combination with
textual patterns. The framework used here is a general version of bootstrapping for
pattern induction. The general idea of bootstrapping and related work on the subject
have been introduced in Section 4.2.2.

Patterns can be thought of as simple crisp binary classifiers which have an explicit
and intuitive interpretation. Initial successes with (manually specified) textual patterns
for relation extraction date back to the work of Hearst [1992]. When aiming at operat-
ing at large scale, they are frequently used due to the following advantages over learned
statistical models:

* In particular with the goal of global relation extraction in mind, one important
problem is identifying the actual relation instance within a sentence. That is, it
is one thing to decide, if the sentence “The Hague is the seat of the government
of The Netherlands™ expresses the locatedin relation and another one to actu-
ally spot (TheHague, TheNetherlands) as the instance. With patterns, this can
be done easily by distinguishing certain elements of the patterns as “argument
slots.” Otherwise additional measures are necessary. In many works that apply
other types of classifiers to the task, this is either done by using a named-entity
tagger [Snow et al., 2004] or with two cascaded classifiers [Wu and Weld, 2007].

* A pattern-based representation enables the use of techniques from the field of of

61

62 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

1
match

goodinstanc? instances \mentions

6 filter learn

instances patterns

instances patterns

> extract filter

instances patterns

o

good patterns

4

mentions match

patterns

Figure 5.1: Illustration of the sequence of steps in the induction cycle.

Data Mining that efficiently and exhaustively find patterns. These algorithms, as
discussed in Section 2.3, are optimized for high volumes of data that are analyzed
in near-linear time. They integrate interesting types of structure and background
knowledge into the mining process as required for mining.

 Patterns as opposed to discriminative models have a more or less direct tex-
tual interpretation which allows using Information Retrieval techniques for ef-
ficient matching [Cafarella et al., 2005; Blohm et al., 2007]. Information Re-
trieval techniques as described in Section 2.4 separate processing into indexing-
time processing and query-time processing. The expensive data-linear processes
can be done once as preprocessing (or existing indices can be used) while the
extraction itself can be considered a query-time process that makes use of effi-
ciently structured data.

5.1 Framework Overview

Intuitively the idea of iterative induction of extraction patterns can be described as
follows:
The process starts out with a set of relation instances that are known to be correct:

{(Hollywood, U.S.), (Osnabruck, Germany), (Nice, France)}

5.2. PATTERNS FOR RELATION EXTRACTION 63

It then looks, how they are mentioned in the corpus, which could be:
* “The richest people in the U.S. live in Hollywood”
* “The happiest people in Germany live in Osnabriick”
* “The luckiest people in France work in Nice”

It then looks what else is mentioned in the same way in the corpus and conclude
that those are also instances of the relation. e.g. conclude (Sheffield, U K) from

“The hardest-working researchers in the UK live in Sheffield”

With those new instances, repeat the process if more instances are needed. In this
example, the complexity of the task is hidden in the step of looking for “what else
is mentioned in the same way.” It comprises representing relation mentions in a way
that makes their key features computationally accessible, identifying general patterns
in those mentions and identifying mentions of these patterns. How these tasks are ac-
complished is the focus of much research some of which is summarized in this chapter.

The diagram in Figure 5.1 gives an overview of this process which can be divided
into six steps. First, the instances are matched in the corpus (1) which generates a set
of instance mentions. Pattern learning then takes place (2). Patterns, i.e. underspecified
generalized descriptions of the mentions are generated. These are then filtered (3) to
yield only those patterns that are likely to produce good results when they are subse-
quently matched (4). The thus produced mentions are processed to extract new relation
instances (5) which are in turn filtered. In the following, a more formal description of
the processing will be given.

Note the symmetry in the cycle: For both patterns and instances there is one step
where they are matched, another one where they are generated from mentions and for
both a filtering step exists. In fact, the set of patterns and instances co-evolve. This
state of affairs was called Pattern-relation duality by Brin [1999].

It may seem unnecessary to list filtering of patterns and instances as a separate
step. It could be considered the task of the pattern learner and the instance extractor to
produce high-quality output. Yet, in the literature, these steps are usually separate in the
sense that they build on different assumptions or input. The separation thus facilitates
the discussion of the approaches.

5.2 Patterns for Relation Extraction

Before describing the bootstrapping algorithm in more detail, we define here the ex-
traction pattern language. The exact nature of the patterns is an important design choice
for the extraction system and many variants have been proposed in the literature. The
patterns described here are those used in the experiments in Chapters 6, 7 and 8. Alter-
native pattern languages are presented and discussed in Chapter 9. Patterns may look
as follows.

“flights to ANYArG, s ANY4Rrg, from ANY airport” (1)

64 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

Figure 5.2: NFA representation of pattern elements. A = a,b,¢,d, T = b, c.

In terms of the task formalization in Section 1.2, a pattern is a function m :
M — {0,1} that returns 1 if a given fragment of text ¢ € M expresses the tar-
get relation and 0 otherwise. Furthermore, if required, it also constitutes a function
e : 2M— Domain: xRanger that returns the relation instances that are present. We use an
r subscript to indicate sets that are assumed to be constant over the run of the algorithm
but which depend on the relation in question.

Patterns are usually strongly limited subsets of regular expressions. They thus rep-
resent languages that can be described with regular grammars and accepted by non-
deterministic Finite State Automata (NFA). NFAs are finite state machines which can
have a finite set of states and which accept input sequences if they lead from a speci-
fied start state via permitted transitions to an accepting end state. A transition is only
possible if the transition label matches the next element of the input sequence (cf.
[Jurafsky and Martin, 2000] for a discussion of regular expression and NFAs in the
context of Natural Language Processing). Regular expressions consist of the follow-
ing symbols and operators: Terminal tokens from an alphabet A, the empty string ¢,
the concatenation operator (represented by whitespace here), the alternation operator
| and the Kleene star repetition operator *, and) representing the empty language.
While approaches to learn (almost) the full expressivity of regular expressions exist
[Li et al., 2008], the full expressivity is hardly ever used when operating with automat-
ically matched patterns.

Figure 5.2 shows regular expression operators and their interpretation as portions
of an NFA in the standard graph-based visualization. States are visualized as graph
nodes displayed as circles containing the state’s label. Transitions are visualized as
labelled directed edges. Figure 5.3 shows the example pattern (1) as a NFA. Note that
the token alphabet is the lexicon of words. We use an abbreviation for large alternations
in writing ||(B) for the alternation of all elements in B and ANY denotes all words
from the alphabet A, i.e. ||(A). Note that we will interprete patterns such that they are

5.3. THE ALGORITHMIC FRAMEWORK 65

Figure 5.3: Example pattern (1) as NFA.

allowed to start and end anywhere in the text.

As the full expressivity of regular expressions is not used in Information Extraction
from large scale text collections, this thesis uses a simplified representation that allows
us to describe all pattern languages discussed. It consists of the following elements:

» Token: a. A token from the input text represented by its surface string.

* (Typed) Wildcards: ANY/||(T). An element of the pattern that matches an arbi-
trary single token in the input sequence. In the typed case, matching only occurs
for tokens of a certain type T' (with respect to POS, NE-tag or another type of
background knowledge available).

o Skips: ANYx. An element of the pattern that matches zero to many tokens in
the input sequence regardless of their type.

* (Restricted) Skips: ||(A\T)*. A token in the pattern that matches zero to many
tokens in the input sequence regardless of their type unless it is of the type it has
been restricted to.

Any of the above pattern element types can be marked as argument slot. Most
commonly, typed wildcards are used for this purpose. We distinguish arguments slots
by adding an arg,, subscript. Note that patterns formalized in this manner do not make
use of the Kleene star (except implicitly by allowing starts and ends anywhere in the
text). Not all systems make use of all possible pattern elements. The choice of allow-
able pattern elements defines the set of possible patterns and hence their expressivity
(cf. Chapter 9). We call such a configuration a pattern class.

5.3 The Algorithmic Framework

Figure 5.4 describes the generic pattern learning algorithm as it is used in our exper-
iments. It subsumes many of the approaches from the literature, the most prominent
of which are discussed in Section 5.6. For most of the experiments presented here,
the Pronto system has been developed as a generic implementation of this algorithm.
An overview of Pronto’s functionality is given in Section 5.5. Implementation and
configuration details are discussed along with the respective studies in the following
chapters.

66 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

The types of entities are handled by the algorithm are relation instances, pat-
terns and textual mentions. As introduced above, relation instances are of type
Domain, x Range,. The algorithm receives a seed set of instances Inst’ as input
and maintains during its processing a set Inst of instances which will contain the de-
sired output when the algorithm terminates. Patterns are composed of the elements
described in Section 5.2. At the level of abstraction discussed here, patterns are primi-
tive objects from the set of all possible patterns P, which is defined by the pattern class
pc that is used. During the execution of the algorithm a set P, of patterns is main-
tained that constitutes the currently learned model for relation extraction. An initial set
of patterns P;,;; may be provided at starting time of the algorithm [Yangarber, 2003].
Textual mentions can be any fragment of text in the corpus. 71" constitutes the set of all
text fragments (i.e. all possible mentions. When the focus is pattern mining and match-
ing the composition of patterns and textual mentions will be discussed. Mentions are
temporarily generated by pattern and instance matching. The sets M), and M; contain
them.

The algorithm starts with a set of initial instances Inst’ of the relation in ques-
tion — so called seeds — and loops over a procedure which starts by acquiring men-
tions of the instances currently in Inst. For the locatediIn relation the seed set may be
{(Vancouver, Canada), (K arlsruhe, Germany), ...} Further, patterns are learned
by abstracting over the text mentions of the instances. The new patterns are then eval-
uated and filtered before they are matched. From these matches, new instances are
extracted, evaluated and filtered. The process is stopped when the termination con-
dition DONE is fulfilled (typically, a fixed number of iterations is set). In detail, the
function calls have the following effect.

* The matching functions MATCH-INSTANCES: 2(PomainsxRanger) _y NT apd
MATCH-PATTERNS: 2P — 27T take as input a set of instances or patterns
respectively. They produce a set of mentions by matching the relation instances
or the patterns to the corpus. A match of a relation instance is a co-occurrence
of its arguments within a defined context. For patterns, all their matches in the
corpus are returned. How exactly a match is defined and how the access to the
corpus takes place are design choices for the implementation.

* The function LEARN-PATTERNS: N7 — 27¢ represents the actual pattern in-
duction process which abstracts over a set of instance mentions M; and returns
patterns that are likely to match correct relation instances and not irrelevant men-
tions. Several alternative induction algorithms will be discussed in the following
chapters.

Patterns and instances are then evaluated and filtered. These steps are listed sepa-
rately for conceptual clarity. They may consist of a scoring and ranking process fol-
lowed by the application of a percentile or threshold cut-off. Note that several evalua-
tion processes or conditions may be combined. EVALUATE-PATTERNS: N e — RFre
and EVALUATE-INSTANCES: N(Pomain.xRanger) _, RDomainyxRanger hyg re-
flect the traversal over P or Inst respectively while PATTERN-FILTER-CONDITION:
Ppe x RFre — {true, false} and INSTANCE-FILTER-CONDITION: (Domain, x
Range,) x RPomain-xRanger _y firye false} stand for the application of a filtering

5.4. ASSUMPTIONS AND CHALLENGES 67

ITERATIVE PATTERN INDUCTION(Patterns Pjnit, Instances Inst’)
1 Inst < Inst’
Ppool — Pinit
while not DONE
do M; < MATCH-INSTANCES(Inst)
Ppoot < Ppoor U LEARN-PATTERNS(M;)
Evalp < EVALUATE-PATTERNS(Ppoo0t)
Ppool < {p € Ppoor | PATTERN-FILTER-CONDITION(p, Evalp)}
M, < MATCH-PATTERNS(Ppoot)
Inst < Inst + EXTRACT-INSTANCES(M,,)
Eval; < EVALUATE-INSTANCES(Inst)
Inst < {i € Inst | INSTANCE-FILTER-CONDITION(%, Evalr)}

— O 0 00 OB W

—_ —

Figure 5.4: Tterative pattern induction algorithm starting with initial patterns P;,,;; and
instances Inst’

criterion. When for a given pattern p or an instance ¢ the corresponding filter condition
function maps to true, it is kept, otherwise it is removed. Note that by this formaliza-
tion, the patterns are kept in P, over iterations. P is thus an evolving collection of
rule-based knowledge about how relation instances are mentioned in text. In this sense,
the pattern induction process as presented here can be considered a simple instance of
Genetic Programming: A population of patterns is kept that reproduces by means of
producing instances which lead to new patterns. Fitness is measured by pattern quality
measures and filtering performs the corresponding selection.

In the system presented by Riloff and Jones [1999] patterns are not taken over in
next iteration. The only gained information after each iteration is a (carefully filtered)
set of new instances. They refer to this variation as “mutual bootstrapping.”

The function EXTRACT-INSTANCES: N7 — 2Domain.xRange: reflects the pre-
viously mentioned tasks of identifying the relation instances present in the relation
mentions identified and then integrating the extracted instances into one set.

5.4 Assumptions and Challenges in Iterative Pattern
Induction

The above algorithm makes several assumptions which are important to be kept in mind
as they determine limits of the approach. We mention the major assumptions here in a
very abstract manner before deriving challenges that arise from a more practical point
of view.

Assumption 1: Uniform Mentions There are one or more uniform ways in which
instances of a target relation are mentioned in text that distinguishes them from non-
mentions. This uniformity can be observed by looking at the contexts of a limited set
of mentions.

68 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

Assumption 2: Redundant Instances In order for the iterative nature of the algo-
rithm to be beneficial , instances that are derived during one iteration should improve
the model for the next iteration. Thus, relation instances are supposed to be mentioned
in multiple contexts. An example, probably explains this best. Consider the inference
made in Section 5.1 where it is concluded that (Sheffield, UK) is an appropriate in-
stance because it occurs in the sentence “The hardest-working researchers in the UK
live in Sheffield.” The benefit of bootstrapping is that in the next iteration, all matches
of (Sheffield, UK) can be used as candidates for patterns. If this is the only time,
Sheffield is mentioned, (Sheffield, U K) is not very valuable in the next iteration. So,
bootstrapping can only work if the same facts are entailed from several mentions, which
we refer to as redundancy here.

Assumption 3: Explicit Model When operating with patterns as opposed to arbi-
trary (statistical) discriminative models, one makes the assumption that the uniformity
assumed under (1) can be represented as a reasonably compact set of constraints.

Assumption (1) and (2) together can be paraphrased with “observing mentions of
instances can lead to new instances.” Thereby (1) requires that mentions of several
instances share some aspects that can be identified and (2) requires that sufficiently
many instances occur in several contexts. The practical impact of this assumption is
discussed in Chapter 7. (3) requires that it is beneficial to write the model down as
a pattern. Patterns mostly consist of conjunctions of non-negated constraints. Please
refer to Section 4.2.4 for a discussion of benefits of pattern representation and other
representations.

Bootstrapping-based systems have been developed to achieve relatively large out-
put with very little input by re-using previous output as training input. However, one
needs to keep in mind that output quality during bootstrapping underlies complex dy-
namics: Both, precision and recall need to be kept under control while other side condi-
tions like time efficiency need to be considered. In the following, a set of fundamental
challenges for Information Extraction by means of iterative pattern induction are iden-
tified.

Challenge 1: Cost of Supervision. The vision behind this research is developing a
system that is relatively autonomously able to inform itself from Web sources. Costly
human intervention is to be avoided. Such intervention may occur in two forms. On
the one hand, it occurs in the form of example instances. On the other hand, an impor-
tant, less obvious way of providing knowledge to the extraction system is intelligently
choosing extraction parameters, appropriate filtering strategies and the level of pattern
representation according to the task at hand.

Challenge 2: Generalization Complexity. Patterns are underspecified representa-
tions of text fragments that aim at describing a salient subset of the set of available
fragments. They are induced in the LEARN-PATTERNS step of the algorithm by ab-
stracting over textual mentions. This requires to detect commonalities between textual
mentions. Depending on the notion of commonality applied, this may quickly become

5.5. THE PRONTO SYSTEM 69

computationally complex. If for example, pairwise comparison of the mentions in M;
is required, this would amount to O(|M;|?) comparisons. This for example becomes
necessary in the algorithm presented by Rosenfeld and Feldmann [2006], where se-
quences are aligned in a pairwise manner and pattern are generated if the alignment
fulfills certain criteria.

Challenge 3: Pattern Quality Prediction Dilemma. The quality of a pattern — like
of any other crisp binary classifier — can be assessed by counting the two types of errors
possible (erroneous positive and negative classifications). However, assessing those
would require full knowledge of the target relation. PATTERN-FILTER-CONDITION
thus needs to make an uninformed estimate of the quality of a pattern.

Challenge 4: Dependance on Redundancy. Pattern-based Information Extraction
relies on the fact that relation instances are mentioned in the corpus in a way that
makes it possible to detect and exploit commonalities in these mentions. Primarily this
requires that relevant commonalities exist. If no interesting commonalities are present,
neither pattern-based nor statistical IE can be performed. Additionally however the
bootstrapping nature of the algorithm requires that a critical mass of relation instances
is mentioned in more than one context. As an illustration consider the state a system is
in after one iteration of the loop in Figure 5.4. Inst contains all relation instances that
can be found by patterns that can be derived from abstracting over the contents of Inst’.
In the second iteration, new patterns can only be derived if Inst \ Inst’ are mentioned
in a way that allows to derive new interesting contexts which usually requires that M;
of the second iteration contains more than M, from the first iteration.

Challenge 5: Error Proliferation. Finally, if wrong instances are accepted into Inst,
they contribute in the next iteration to the generation of patterns. It may thus happen
that patterns are induced that are trained to generate wrong instances.

These challenges will be tackled in the following chapters. Chapter 6 puts a par-
ticular focus on the problem of quality prediction (3) which also has implications for
Challenge (5). In Chapter 7, the notion of redundancy (4) is in the focus which is
addressed in a way that relates also to the cost of supervision (1). The generalization
complexity is a particular focus in Chapter 8.

5.5 The Pronto System

An Information Extraction system called Pronto has been developed for the studies
presented in this thesis. Its major purpose is to serve as a workbench to enable experi-
ments that allow us to further understand the dynamics behind large-scale Information
Extraction with little supervision. To this end, the system has been developed to show
a great degree of plugability and configurabilty. A general overview of the system is
given here while the design and configuration of individual components are discussed
in more detail along with the experiments they are applied with in Chapters 6, 7, 11
and 10.

70 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

[

Engine

L

Instance Filter

<:> Instance Matcher q
Web Search Engine : : l
Pattern Learner)
Knowledge
l Repository
Hand-crafted Index
Search API Pattern Filter) RatiSiiRepesitery
l Extraction Control
Annotation Search <:>
I) Pattern Matcher <:>

Figure 5.5: Key components of the Pronto System.

5.5.1 Key components of Pronto

The Pronto system reflects the above formalization of the iterative pattern induction
cycle. The structure of the algorithm is captured in an extensible manner by means of
interfaces that define the individual processing units as well as the data structures for
patterns, instances and textual mentions.

The data structures for patterns and mentions have an analogous structure. For each
token, a set of feature expressions can be specified. In a Mention, the features describe
the text in the mention, in a Pattern, these features serve as constraints for matching.
A pattern matches if all its constraints are fulfilled. Tokens can be distinguished as
argument slots. The following is a feature-based representation of a mention of the
example pattern from Section 5.2. The constraint-based view on patterns used in
Pronto is similar to that used by Fabio Ciravegna [2001].

surface capitalization POS
We true PRP
offer false VB
flights false NNS
to false TO
Hamburg true NNP
s false s
Germany true NNP
from false IN
Rotterdam true NNP
airport false NN

false

5.5. THE PRONTO SYSTEM 71

Relation instances are stored by implementations of the Instance interface which
allows specifying possibly n-ary instances (although all experiments and the current
implementation operate with binary relations only). For flexible evaluation, pointers
are kept between patterns, instances and mentions. In particular for a pattern, all its
previously matched mentions can be retrieved as well as all instances extracted. Anal-
ogously, all matching patterns for an instance or a mention can be retrieved.

The composition and configuration of iterations in the induction framework can
be configured in an XML-based file format depending on the task at hand. Work-
flowltem interfaces are available for the steps presented in the algorithm in Figure 5.4
(InstanceMatcher, PatternLearner, PatternEvaluatior, PatternMatcher, InstanceGenerator, In-
stanceEvaluator). The configuration is loaded by a runtime environment which then
executes the individual workflow items. The runtime environment loads the individual
workflow items, provides them with the data environment and controls iterations and
termination.

Pronto is being used in the X-Media research project (cf. Chapter 10). A brief
user guide for Pronto is available in a report we published within the X-Media research
project [Iria et al., 2009]. Pronto can be downloaded as open source software from
https://sourceforge.net/projects/prontoie/.

5.5.2 Pronto Matching with Google Search

Pronto is able to use the Web as a corpus and access it via Web search. In partic-
ular, the Google API has been implemented. In the following, pattern and instance
matching by means of the Google API is described. In order to identify mentions
of instances in Inst on the Web, the search index is accessed via Google’s Java API
querying for pages on which all words present in both arguments of the instance can
be found. The arguments themselves are quoted. A fixed number nuM,atchinstances
of results is retrieved. From those, only the result headers and text snippets are kept
which contain all arguments within a distance of at most maq,gpist- As an example,
the instance (SanJose, California) would be translated to the query "San Jose"
"California".
A fictional Google result for this query is:

Cheap flights in California - San Jose departures

We offer flights to San Jose, California airport from all major destinations on the West Coast of the
U.S. and Canada . ..

From this, with mazgrgpist = 10 and tpefic = tsugic = 2, the following mentions
will be processed further (white space indicates token borders):

flights in California - San Jose departures

flights to San Jose, California airport from
From these and other mentions, pattern induction may produce the pattern:

“flights to ANYara, s ANYarg, from ANY airport”

https://sourceforge.net/projects/prontoie/

72 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

MATCH-PATTERNS(P) matches each pattern in P by running a set of queries to
the Google API. For each query, a fixed number of search results num,qtchPatterns
is retrieved. The queries are generated by taking the surface string constraint for each
token in a blank-separated manner. Tokens with empty surface string constraints (above
marked by ANY') are represented by a * wildcard, which - when used in quotes - will
be replaced with any word or very few words in this position in the Google results. This
sequence is stripped from leading and closing * wildcards and surrounded by quotes.
For instance, the above pattern example would be translated into a Google-query as
follows:

"flights to » » x from "

The comma in the pattern is represented as an individual token with the comma
surface string. During querying, however, it is omitted as Google discards punctuation
characters in queries.

In a subsequent analysis step, properties of the pattern that cannot be established
by Google matching are checked. In particular, Google ignores punctuation and only
matches lemmas thus discarding word morphology (e.g. “live” vs. “lived”) and capital-
ization. For this purpose, the individual text fragments (title and snippets) returned by
the Google API are tokenized and the respective features are computed for each token.
The resulting sequence in the Mention format is then matched to the patterns. Matching
mentions are then fed to the InstanceGenerator which identifies the argument slot fillers
and thereby generates new instances.

5.6 Related Extraction Systems

In the following, the most important related work on iterative pattern induction is dis-
cussed. In line with the scope of this thesis we put an emphasis on the aspects of a large
scale (or at least implementations with a potential to scale to large text collections) and
on the task of global relation extraction. After giving a brief overview of the systems,
we organize the presentation of the related work by the algorithmic steps presented in
this framework. In doing so, we intend to shed light on the design alternatives that exist
at each step which would otherwise be difficult as almost each major contribution to
the field has been made based on a new system which makes new assumptions on the
task at hand.

With a few exceptions, the approaches discussed in this chapter are based on a set
of rigid patterns in the line of Hearst [1992], which are matched on corpora of varying
size or the Web via a search engine. The seminal work of Brin [1999] introduced the
basic bootstrapping algorithm, and thereby the automatic generation of patterns, for
relation extraction while Riloff and Jones [1999] proposed an almost identical method
for entity extraction.

Another early system is that of Ravichandran and colleagues [2001] which has
been applied and evaluated in question answering scenarios. An interesting feature of
Ravichandran’s system is the automatic detection of reasonable pattern borders with
suffix trees as a data structure that allows retrieving occurrence counts for all sub-
strings of the mention in linear time.

5.6. RELATED EXTRACTION SYSTEMS 73

Several systems have addressed the task of learning instances of concepts, among
them KnowItAll [Etzioni et al., 2005], PANKOW [Cimiano et al., 2004] and Espresso
[Pantel and Pennacchiotti, 2006]. The KnowItAll system has even been extended with
pattern learning capabilities to discover new patterns [Downey et al., 2004]. Other
recent works vary in pattern structure, induction algorithm and the extraction task
[Rosenfeld and Feldman, 2006; Rozenfeld and Feldman, 2006; Pantel et al., 2004]. A
similar system is that of Snow et al. [2004] which integrates syntactic dependency
structure into pattern representation but has been only applied to the task of learning
instance-of relations or isa-relations. Similarly, Roman Yangarber [2003] operates on
rather abstract syntactic representations. Xu and Uszkoreit [2007] also use dependency
structures but focus on extracting n-ary relations.

A different form of pattern representation was introduced in the Snowball system
[Agichtein and Gravano, 2000] which relies on annotation of named entities with their
category which can be used in formulating the patterns. Parts of the pattern are repre-
sented as bag-of-words vectors and not plain strings, thus capturing the frequency of the
words occurring around the arguments in diverse mentions. Other pattern-based system
are discussed here for particularities of their induction algorithms [Ciravegna, 2001;
Soderland et al., 1999; Califf and Mooney, 1997] which induce pattern in a top-down
or bottom-up manner taking a generate-and-test approach. This is analogous to con-
cept learning as introduced in Section 2.3.1. These works rather stand in the tradition
of wrapper induction and event detection. In the work of Ruiz-Casado et al. [2005],
Information Extraction from Wikipedia text is done using hyperlinks as indicators.

5.6.1 Matching Instances and Identifying Contexts
In DIRPE [Brin, 1999] mentions are viewed as a seven-tuple:
(arg,, arg,, order, url, prefix, middle, suffix)

where the arguments arg; and argo are restricted to match relation-specific regular
expressions. prefix, middle and suffix constitute the text before, between and after the
arguments. order encodes which argument occurs first. url encodes the address of
the document the mention has been found in. Prefix, suffix (and most likely also the
middle part) have a specified maximum length. With appropriate settings, the phrase

“flights to Schiphol, The Netherlands from Heathrow airport”

would be represented as:
(Schiphol, TheNetherlands, 1, url, “flights to”, 7, “from Heathrow airport”)

Similarly, mentions are formalized in the Snowball system
[Agichtein and Gravano, 2000] in terms of prefix, infix and suffix the difference
being that those positions are represented as weighted bags of words, thus discarding
word order. Furthermore, named-entity tags are stored for the argument positions
which apparently also serve for identifying the order.

(arg, type, arg, type, prefix, middle, suffix)

url

74 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

For example:
(City, Country, { “flights”, “to”}, {“,”}, { “airport”, “from”, “Heathrow”})

An alternative approach to representing context is replacing the ar-
guments with a wuniform slot marker and then representing them as
one string [Ravichandran and Hovy, 2001; Pantel and Pennacchiotti, 2006;
Rosenfeld and Feldman, 2006; Rozenfeld and Feldman, 2006]. The mechanism
for instance matching used by the mentioned systems is by querying a web search
engine followed by argument identification on the returned results. It results in text
with highlighted arguments:

“flights to Schiphol; , The Netherlandss from Heathrow airport”

A similar view on mentions is taken by Ciravegna [2001] where start and end mark-
ers of an annotated sequence (like XML tags) are noted as separate tokens. This slightly
different view is taken to allow for separate rules for the introduction of start and end
tags. In addition, for each token, linguistic information (lemma, lexical category, se-
mantic category) is kept in a table.

“flights to <argl>Schiphol</argl>, <arg2>The Netherlands</arg2> from
Heathrow airport”

The different ways of representing mentions (except from a few additional features)
all hold the same information as they constitute different ways to highlight arguments.
The details in which these representations differ come into play when it comes to pat-
tern induction and pattern matching.

5.6.2 Pattern Induction

The task of pattern induction is that of abstracting over the instance mentions in a way
that generates a set of patterns which are likely to describe instances of the target re-
lation. Thereby the induction process faces two challenges. First of all, it is important
that the patterns optimize the quality of future extractions. To do so, the algorithms
must identify the distinguishing features of relation instances while successfully han-
dling two types of noise that may arise: overly specific features (preventing relevant
instances to be matched) and too general features (which when not accompanied by
distinguishing features lead to spurious extractions). Secondly, induction algorithms
need to cope with the extremely large set of possible abstractions. There must be a
way to guide pattern search properly. Both problems are by no means particular to
Information Extraction which is why a few systems base their induction algorithms on
Machine Learning algorithms which have also been applied in other fields. We present
very abstract and possibly simplifying pseudo code for the algorithms which is meant
to convey an intuition of the alternative approaches. A more detailed account can be
found in the referenced publications.

A very simple algorithm for induction has been presented by Brin [1999]. Recall
that, in their system, the pattern structure is a tuple (arg,, arg,, order, url, prefix,

5.6. RELATED EXTRACTION SYSTEMS 75

middle, suffix). The algorithm used mines for a set of patterns with equal middle
string and order flag. Both, the selection of distinguishing features and the search
for appropriate abstraction are quite heuristically by grouping together all mentions
which share the same text between the arguments. The algorithm can be formalized as
follows:
INDUCTION [BRIN, 1999](M entions M)

1 Groups < groups of mentions with equal order and prefix

2 while Groups # ()

3 do

4 remove G € Groups from Groups

5 if PATTERN(G) is not too general

6 then

7 OUTPUT(PATTERN(G))

8 else

9 split G into G} ... G/, by the first char their urls differ
10 ifG) #G
11 then Groups < Groups UG ...G!,

Where OUTPUT(() generates a pattern from a set of mentions G of the form
(order, url, prefix, middle, suffix) where order and middle are the common values
for those positions, url and suffix are the longest common prefix of those values and,
prefix are the longest common suffix of all prefix values of the group. Specificity is
assessed by the product of the character count in prefix, middle, url, and suffix.

The pattern induction algorithm used by Rosenfeld and Feldmann [2006;
2006] as well as in a very similar manner by Ruiz-Casado et al. [2005] and Pantel et
al. [2004] finds pairwise generalizations by aligning strings in an inexact manner. The
patterns are then filtered by several criteria.

INDUCTION [ROSENFELD AND FELDMAN, 2006](Mentions M)
1 for (mi,mg) € M x M
do
P < ALIGN(mq, ma)
if (COST(p) < Maxcost AN HASRELEVANTWORD(p)
AHASANCHOREDSLOTS(p))
then OUTPUT(REMOVESTOPWORDS(p))

AN B W

Thereby ALIGN(m1, ms) finds an optimal alignment of two mentions with respect
to a cost function COST(p) where omissions at both sides are allowed (at a given cost)
and result in skip-markers in the alignment. HASRELEVANTWORD(p) checks that a
the patterns contain at least one out of a list of “relevant words” (an unconventional
way of additional supervision added to the learning) and HASANCHOREDSLOTS(p)
requires that no skip markers are found around the argument slots. REMOVESTOP-
WORDS(p) removes stop words when found in certain positions. Skip markers match
arbitrary sequences (including an empty sequence) during matching. One should note

76 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

that pairwise abstraction if it is done like in this algorithm limits the reach of pattern
induction. For example there may be three sentences:

“We offer cheap one-way flights from X to Y.” (1)

“We regularly offer one-way flights from X to Y.” (2)

“We regularly offer cheap flights from X to Y.” (3)

Three patterns would be generated:

“offer cheap flights from X to Y.” (1 & 3)

“...regularly offer ... flights from X to Y..” (2 & 3)

“We ...offer ...one-way flights from X to Y’ (1 & 2)

The obvious pattern (eliminating “regularly”, “one-way”, and “cheap”) is not found
because pairwise combination does not make the elimination necessary.

Pantel et al. [2004] and Ruiz-Casado et al. [2005] implement abstraction in the
same manner: Abstractions are generated as abstractions of pairs of mentions under
the condition that they are similar enough. Ruiz-Casado et al. are much more explicit
on how ALIGN(m1,ms) and COST(p) are implemented. The costs are based on the
notion of edit distance implemented on a token by token basis. Abstraction is based on
the alignment that minimizes the edit distance between the mentions. For each position,
in which both mentions share the same token, this token will be present at that position
in the pattern. A disjunction is generated at positions where both mentions differ and a
skip marker is added when a token in one mention has no correspondence in the other
one. While the algorithm presented by Pantel et al. is also based on edit distance, fewer
details on the generation of patterns are given.

Given the model of instances as three bag-of-words vectors, Snowball
[Agichtein and Gravano, 2000] is able to guide the search for appropriate abstraction
by means of vector space clustering. The clusters are then turned into patterns by
aggregating the bags of words of each cluster. Thereby terms are weighted by their
frequency in the assumption that frequent terms also are reasonably distinguishing.

5.6. RELATED EXTRACTION SYSTEMS 77

INDUCTION [AGICHTEIN AND GRAVANO, 2000](Mentions M)
1 Groups < CLUSTER(M)

2 for G € Groups

3 do

4 OUTPUT(CENTROID(G))

Thereby, a standard word-vector clustering algorithm is used by CLUSTER(M) and
the groups are enforced to have a certain minimum mutual similarity (by a cross-
product-based “degree of matched”). CENTROID(G) computes the centroids for the
prefix, infix and postfix vector separately and norms them to 1.

For pattern representations that are based on one string with slot markers at
argument positions, one way of identifying relevant abstractions is using suffix trees
[Ravichandran and Hovy, 2001]. Suffix trees contain a node for each substring existing
in a set of strings along with frequency counts of this substring. While frequency
can be used as a (recall-oriented) quality indicator, this approach does not provide
a straight-forward way to guide the search for patterns to prevent having too many
(possibly very similar) patterns. An appropriate choice of the frequency threshold
however may be determined from the suffix tree. This algorithm is an example of the
technique of generating patterns from a summarizing data structure, much like the
Frequent Itemset Mining techniques presented in Chapter 8 and 9. As opposed to the
modeling presented in Chapter 8, the suffix-tree technique discussed here does not
allow for an efficient integration of wildcards or tags on a token basis.

INDUCTION [RAVICHANDRAN AND HoOVY, 2001](M entions M)

1 T < SUFFIXTREE(M)

2 formnode €T

3 do

4 if CONTAINSARGUMENTS (node) A COUNT(node) > threshold
5 then OUTPUT(¢)

A further approach also counts string sequences in an appropriate data structure:
Talukdar et al. [2006] induce automata that represent the observed mentions. Each state
transition is labelled with a token that is observed. A set of relevant start-tokens (“trig-
ger words”) is determined heuristically. For each such start-token an automaton along
with transition probabilities is induced using Markov-Model induction techniques. The
transition probabilities are used to guide the search for relevant patterns while main-
taining quality.

78 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

INDUCTION [TALUKDAR ET AL., 2006](M entions M)
1 W < TRIGGERWORDS (M)

2 forweW

3 do

4 C < all maximal subsequences of all m € M starting with w
5 A < INDUCEAUTOMATON(C)

6 PRUNE(A)

7 OUTPUT(A)

Where INDUCEAUTOMATON(C') counts the sequences in C' into the automaton
data structure, PRUNE(A) removes all transitions which do not contribute to paths that
lie over a certain probability.

Several authors have presented approaches to pattern induction that stand in the
tradition of Inductive Logic Programming (ILP). The goal of ILP is to induce rules (in
the sense of logic programs) which entail the positive examples provided and do not
entail negative examples provided. Information Extraction patterns can be considered
rules that decide on the presence of an instance in a given piece of text. Relation
mentions thereby serve as positive examples.

In the work by Califf and Mooney [1997], rules are conjuncts of constraints that
require a certain surface string or POS tag to be present at a given position. Patterns
are derived by repeatedly generalizing over pairs of mentions or other patterns by
eliminating constraints or allowing the disjunction over individual constraints. The
scope of Califf and Mooney is entity extraction. Mentions are represented as a triple of
token lists (prefix, argument, postfiz). Constraints are allowed on each of these lists.
There are three types of constraints: the surface string of a token, the part of speech of
a token and the length of a list.

INDUCTION [CALIFF AND MOONEY, 1997](Mentions M)

1 Rules < TORULES(M)

2 fails <+ 0

3 while fails < maxFail

4 do

5 take (r1,12) € (Rules x Rules) randomly

6 RuleList < GENERALIZE(r1.argument, rq.argument)

7 n <0

8 while BEST(RuleList) accepts negatives

9 ABEST(RuleList) is improving
10 do
11 n—n+1
12 RuleList+ = NGENERALIZEPRE(n, r1.prefiz, ro.prefir)
13 RuleList+ = NGENERALIZEPOST(n, r1.postfix, ro.postfir)
14 if BEST(RuleList) accepts negatives
15 then fails < fails+1

16 else OUTPUT(BEST(RuleList))

5.6. RELATED EXTRACTION SYSTEMS 79

Note that GENERALIZE can produce multiple generalizations. In particular, for
each constraint in which 7 and 79 differ, either their disjunction or the elimination of
the constraint are added as two variants. NGENERALIZEPRE produces a sub-pattern
with generalizations of the last n constraints left. NGENERALIZEPOST generalizes the
postfix keeping generalizations of the last n constraints respectively. The algorithm
constitutes an interesting combination of bottom-up and top-down processing. Be-
cause the set of patterns is initialized with the exact mentions (thus the most restrictive
possible) and later generalizes patterns more and more it is bottom-up in nature. Yet,
for a given pair of patterns to be generalized, generalization takes place in a top-down
manner.

The algorithm employed by Soderland [1999] works in much the same way. Except
that there argument patterns are learned analogously to the prefix and postfix patterns.
Thus, for each pair of patterns, the algorithm starts with an empty pattern which is
gradually made more and more specific. Some special treatment takes place at the
argument borders to ensure that the position of the argument borders is not underspec-
ified. These algorithms generate a lot of candidate patterns and check their quality in
order to guide the further exploration of the space of possible patterns. Hence, a larger
amount of supervision is required than in other scenarios. In particular — as opposed
to all other algorithms presented here — negative examples (i.e. mentions that should
not be matched) are required. Califf and Mooney [1997] generated negative examples
from annotated documents (in which the absence of an annotation can be considered a
negative example) and Soderland enables interactive annotation.

In Ciravegna’s system [2001], the task of relation extraction is viewed as that of
introducing HTML.-like tags into the text. The insertion is triggered by patterns (called
rules by Ciravegna) that constrain the surface string or some other features of a se-
quence of tokens. Even though each argument that is identified consists of a start and
an end tag, both of them are induced by separate patterns. Two types of patterns exist:
Stronger tag patterns and weaker contextual patterns. Contextual patterns only match
if the match of a tag pattern has been found in the vicinity.! For a given mention, all
possible abstractions are considered (GENERALIZE(m)), evaluated (BESTK) and de-
pending on the quality taken up as pattern. The quality of extraction is ensured by
evaluating the candidate patterns by multiple criteria on training annotations. Patterns
not belonging to the best & patterns are taken as contextual patterns if their quality
fulfills some minimal standards (FILTER). The amount of inserted abstractions is con-
trolled by a covering criterion which ensures that if a pattern is induced that matches
a positive instance, this instance will no longer count towards the evaluation of future
patterns (this is known as sequential covering [Mitchell, 1997]). Hence, the abstraction
takes place in a bottom-up manner. The search-space for good patterns is nondetermin-
istically controlled by the order in which mentions are processed for rule induction.

UIn fact, there is a third type of patterns that take care of the correction of slightly misplaced tags.

80 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

INDUCTION [CIRAVEGNA, 2001](Mentions M)
1 tagPatterns < ()
2 contextPatterns <)

3 while M # 0

4 do take m € M

5 best Patterns < BESTK(GENERALIZE(m))

6 M «+ M \ MATCHES (best Patterns)

7 tagPatterns < tagPatterns U best Patterns

8 contextPatterns < contextPatterns

9 U FILTER (GENERALIZE(m) \ best Patterns)

Some work has been done in inducing patterns not on the textual form but on the
grammatical structure of the mentions. For this purpose, paths within dependency
parse trees [Snow et al., 2004; Xu et al., 2007] as well as very abstract subject-verb-
object structures [Yangarber, 2003] were used. Probably due to the large number of
degrees of freedom along which these structures can be abstracted over, the three works
cited here do not use structured mining approaches but rather generate a set of only
slightly abstracted patterns and then leave the quality assurance to a filtering step. More
specifically, Xu and Uszkoreit use all minimal subtrees that span all arguments, Snow
et al. all paths that connect two arguments and Yangarber replaces either subject, verb
or object by a wildcard.

Overall, there is a large variety of approaches to induce patterns that exist in paral-
lel. All of them aim at identifying good combinations of relevant features. Due to the
large amount of possible combinations, various approaches are taken to guide the ex-
ploration. Most of them can be conceptualized as a concept learning task as introduced
in Section 2.3.1 because a pattern defining a set of relation instances is in the same way
a conjunction of constraints as a formal concept. We described here approaches that
explore the space of patterns top-down [Ciravegna, 2001] and bottom-up [Brin, 1999;
Rosenfeld and Feldman, 2006; Califf and Mooney, 1997]. Other approaches use a
mapping to a vector space [Agichtein and Gravano, 2000] or supporting data structures
[Ravichandran and Hovy, 2001; Talukdar et al., 2006].

5.6.3 Estimating Pattern Performance

After inducing patterns, it is important to exclude patterns that are likely to generate
an unacceptable amount of wrong instances. The quality of patterns is estimated in
the literature in many different ways. Most approaches to pattern evaluation can be
described in terms of a pattern-instance incidence matrix

instances
e(1,1) ¢(1,2)
O, = c(2,2) c(2,2) ... patterns

5.6. RELATED EXTRACTION SYSTEMS 81

where each cell stands for the incidence of pattern p € P, and instance 7. Different
values ¢ : Ppoor X I — R numerically describe each incidence.

The approaches can be characterized by different choices of the incidence function
¢, the choice of instances that are considered for the incidence matrix Evallnst and
the way, these values are aggregated to a score. We denote the set of mentions of a
pattern p extracting with an instance (i1,i2) with < 41, p,i2 > and use i1, p,iz| as a
shorthand for | < 41,p,i2 > |. The most common choice of ¢ are incidence counts
Ceount and a Boolean indicator ¢ (p, ¢) which is 1 if there is at least one incidence of
p and 7 and O otherwise.

Ccount (p7 Z) = |i1 2 i2|

Cbool(p7i) Sgn(|i1)p7i2|)

Thereby, |i1,p, i2| gives the count of mentions where the instance ¢ = (i1,142) with
the arguments 7; and iy coincides with the pattern p. Note that we use p both for a
pattern p € P, itself and for its numeric index p € [1,|Ppo0|] in the matrix and
respectively ¢ for i € I C Domain x Range and © € FEwvallnst. While evaluation
approaches all use the same set P, for the rows of the incidence matrix, the set of
instances Evallnst that is used for evaluation and that determines the columns differs
between the approaches. Evallnst contains at least a subset of the instances previously
accepted as correct Inst and may contain others (e.g. negative examples).

Apart from the choice of ¢, pattern evaluation mechanisms differ in the calculation
of the evaluation measure score : Py, — R. In the following, we present the most
common measures adopted in the literature.

One common measure is the support of a pattern. Support means the count of
instances in the training set a pattern occurs with. It is based on adding up each pattern’s
row in the incidence matrix:

SCOT€support (p) = Z C(pa Z)
i€ BEvallnst

FEvallnst = Inst

As for the choice of ¢(p, i), one can opt for counting distinct supporting instances
by setting ¢(p, i) = Cboot (p, ©) (as proposed by Brin [1999] and evaluated in Chapter 6)
or all individual matches of each instance by setting ¢ = ccount as used by Mclntosh
and Curran [2009]. We illstruate the computation of scoregypport by means of the
following example:

Ppoot = {p17p27p3}
Inst = {((Paris, France), (Chicago, U.S.), (Moscow, Russia) }
M = {mlv"'am355}

We can assume for example:

82 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

< Paris, py, France > = {mq7, mse, Mos, M1s3, M236 |
< Paris, po, France > = {mss5, mes, mss, M1s4 }
< Paris, p3, France > =)
< Chicago, p1,U.S. > = {ma, mss, mg7, M1ss}
< Chicago, p2, U.S. > = {mag, me4, Mag, M113, M335 }
< Chicago, p3, U.S. > = {mirs}

< Moscow, p1, Russia > = {mss, m126, Mag3, Mag9 }

< Moscow, pa, Russia > = 0

< Moscow, p3, Russia > = 0

In the support-based case, the set Fvallnst, which corresponds to the columns is
exactly Inst, i.e. the set the three accepted instances. Depending on the choice of
¢(p, i), O looks as follows.

4
)
1

O =
— ==
OO =
O = Ut
S O

@) =

Ccount

@) =

Cbool

The scores can then be computed as follows (using the non-boolean version):

SCOT €syupport (pl) = 5+4+4=13
SCOT€support (p2) = 445+0=9
SCOT E€support (pd) = 0+14+0=1

The scores presented in the following are computed in an analogous manner.

The most common measures are estimates of precision which differ in the way
false positive matches are determined. They share the choice of:

Evallnst = Inst U Neglnst
C(pa Z) = Cbool (p; Z)
Zielnst\NegInst C(p, Z)

Ziefnst C(p, Z)

Here, the computation of false positives is based on a set NegInst of known wrong
matches. The score penalizes the presence of elements from Neglnst in Inst. When
no explicit negative examples are given there are several ways of creating an (inherently
incomplete) NeglInst. One way is to make a functionality assumption that is, assuming
that if x is related to y in a given relation, it cannot also be related to z by this rela-
tion. This assumption is true for many relations (dates of one-time events, geographic

Scoreprecision (p)

5.6. RELATED EXTRACTION SYSTEMS 83

location of non-movable objects etc.). When making this assumption, NegInst can be
computed as follows:

NegInst = {(i1,42)|((41,15) € Inst Nig <ig)}

Thereby, < is some order that ensures for each two ¢, and i, that violate the function-
ality assumption for some i1, the inclusion of the less plausible pair (i1, i2) into the set
of negative instances.

The functionality assumption is used in various systems
[Agichtein and Gravano, 2000; Ravichandran and Hovy, 2001; Tomita et al., 2006].
There is even an empirical analysis of a generalization of the functionality approach
[Alfonseca et al., 2006]. The generalization consisting in allowing arbitrary cardinality
constraints for the relation and giving partial credit for unknown instances fulfilling
the constraints. It is compared against a setup where only seeds are counted as Inst
members and seeds from other relations are used as Neglnst. The functionality
assumption is shown to be beneficial. Similarly, the added value of the functionality
assumption is shown in [Normand et al., 2009], showing that for an appropriate
relation, the so-generated negatives increase precision and recall of the extraction in
particular if few examples are given.

The second source for negative instances are seed-sets of other relations that are to
be learned and of which can be assumed that the relations are disjoint with the target
relation. In that case, Neglnst will be set to the union of those seed sets excluding
the relation which is currently worked on. This approach is taken by Etzioni et al.
[2005] and Talukdar et al. [2006]. With both approaches, which can also be combined,
SCOT€precision (P) 18 bound to overestimate the actual precision of p as it only penalizes
a subset of all possible negative instances. Finally, there are some systems which base
their induction process on an annotated training corpus [Ciravegna, 2001] or a very
large training set assuming all relation instance not in the training set to be false (e.g.
WordNet [Snow et al., 2004]).

The scores used in the WHISK [Soderlandetal., 1999] and URES
[Rosenfeld and Feldman, 2006] systems also build on error estimates using training
data. WHISK uses a simple form of the Laplacian expected error estimate 2111 when
observing e errors on n extractions. This amounts to:

Fuvallnst = Inst
c(p,i) = ceount(p,i)
D icinst\Posnst C(Ps 1) + 1
Dicmst (P, 1) +1

WHISK evolves an annotated training corpus so that all instances are considered an
error which have not been annotated. While scorejgpiace (p) is close to 1 — precision
for large set of extractions, it penalizes less productive patterns because for small Inst
sets the impact of the added 1 in the denominator plays a big role. For example, a
pattern which only extracts one correct instances will score 0.5, a pattern extracting 9
positive instances and no negatives will score 0.1.

For URES, the ratio of positive to negative instances NeglInst is used where nega-
tive instances are derived based on a variant of the functionality assumption that also

sCOT€laplace(P) =

84 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

assumes that a sentence only contains one positive instance.
Evallnst = Inst U Neglnst
C(pa Z) = Cbool (pv Z)

Zie]nst\Neglnst C(pa Z)
ZiENegInst C(p7 Z) +1

The Espresso system [Pantel and Pennacchiotti, 2006] takes an innovative ap-
proach to pattern (and instance) evaluation operating recursively. Espresso estimates
pattern quality with the help of instance quality and vice versa. At the same time, it

uses pointwise mutual information (PMI) as a measure of association between patterns
and instances.

scoreyrps(p) =

|Z'1 » Py 22|
|ila *, ZQ| |*ﬂp7 >|<|
The above count notation is extended to allow for arbitrary matches when marked

with x. By means of an instance confidence measure score(i), Espresso’s measure can
be described as:

pmi(p,i) = log

c(p,i) = score(i) - poot(p,1)
Evallnst = Inst
S () oy,)
5COTCEspresso(P) = |Inst|

Thereby max,,,; is the maximum PMI between all patterns and all instances in the
matrix.

In the LPPL system [Tomita et al., 2006] the evaluation of patterns and instances is
modelled as a maximum-likelihood parameter estimation problem that is solved using
the Expectation Maximization (EM) algorithm. The goal is to estimate a confidence
distribution of patterns which maximizes the likelihood of the observed patterns. The
instance confidence scores serve as parameters to this model. Starting out with known
values for the seed instances only, the EM algorithm approximates the other instance
confidences. The version of the EM algorithm used by Tomita et al. [2006] co-evolves
pattern confidences conf (p) and instance confidences conf(i). The modeling used
does not fit the above notation because a pattern-instance incidence matrix as evalu-
ation is done on the level of the mention and matching is not a binary decision but
each pattern p matches each mention m € M to a certain degree of match dm(p, m).
Thereby the best-matching pattern for a mention p*(¢) is distinguished. The instance
extracted from a mention m is denoted i.,.(m)

2 me Mlp=p*(m) €O (iex(m)) +1
[, p, | + B
conf(i) = 1- H (1 = conf (p*(m))dm(p*(m),m))

MEMliey (m)=i

conf(p) =

5.6. RELATED EXTRACTION SYSTEMS 85

In terms of the EM algorithm, the computation of conf (p) constitutes the expecta-
tion step and the computation of conf (i) corresponds to the maximization step. After
the algorithm terminates, the output is

scorepppr(p) = conf(p)

scorerppr(i) = conf(i)

In sum, all measures are computed on the basis of co-occurrence information of
patterns and instances while the measures vary in the choice of the set of instances
used and aggregate this information in various ways. While most measures consti-
tute relative frequencies or make otherwise use of a probabilistic measure, they are not
based on a sound probabilistic modeling of pattern quality. It is therefore understand-
able that the measures are employed in rather crude ranking and cut-off mechanisms.
In Chapter 6, the aspect of pattern quality assessment will be investigated empirically.
A selection of scoring mechanisms will be compared when applied to the same task.

5.6.4 Matching Patterns

The matching of patterns is typically a straight-forward process the implementation
details of which depend on the nature of the patterns and the size and representation of
the text corpus. As soon as the pattern structure strongly differs from the text, the text
has to be preprocessed prior to matching (e.g. providing required linguistic markup
or transforming text to a bag-of-words representation). In general, the cost of such
preprocessing is at least linear with the corpus size which makes it expensive for very
large corpora (which otherwise may be accessed much faster than linear-time with the
help of Information Retrieval techniques, cf. Section 2.4).

This issue can be improved in two ways. Firstly, the Snowball system matches
inexpensive markup first (the entity tags) and does further preprocessing (conversion
to bag-of-words, distance calculation to patterns) only when appropriate markup com-
binations have been found. Secondly, the KnowItNow system [Cafarella et al., 2005]
incorporates linguistic information into the search index by extending the index struc-
ture accordingly.

5.6.5 Evaluating Instances

Various approaches exist to assessing the quality of instances. They build on a score
that is assigned to each instance which is subsequently filtered based on a threshold.
In most cases, the score is based on the matches of the existing patterns while some
take co-occurrence counts with other contexts into account. Most scores estimate the
probability of an extraction being correct while some are based on proximity in the
space of possible co-occurrences. The focus here lies on evaluation scores for global
Information Extraction tasks with automatically induced patterns.

The evaluation scores for instances can be described by means of the same inci-
dence matrix notation as above. Yet, the set of instances in question Evallnst remains
the set of derived instances Inst in all cases.

86 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

The most straight-forward way of computing instance score is that of simply count-
ing the matching patterns (support). This has been proposed (although not systemati-
cally evaluated) by Brin [1999].

C(p, i) Cbool (I% Z)
Scoresupport (Z> = Z C(p, Z)
pePpool

Assuming that pattern scores have an interpretation as a precision estimate, i.e.
reflecting the probability that a given instance extracted by the scored pattern is cor-
rect, the probability of an instance being correct can be estimated as the inverse of
the joint probability that all patterns mistakenly extract the instance. This model
has been proposed in Snowball [Agichtein and Gravano, 2000] and adopted in DARE
[Xu et al., 2007].

Chool (D5 1) - SCOT€precision (D)

1- H 170(]7,1)

PE Ppool

c(p,)

SCOT Eprecision (Z) ==

Agichtein and Gravano [2000] additionally proposes to weight patterns from earlier
iterations higher to adopt the “learning rate” over iterations.

While this probabilistic interpretation is appealing, one needs to keep in mind that
the precision scores proposed in these systems are crude upper estimates and that this
model makes an independence assumption among the pattern matches which disregards
that the patterns have been derived using the same mining process and are therefore
likely not to be independent.

Like for the patterns, Espresso [Pantel and Pennacchiotti, 2006] uses a correlation-
based approach for instance assessment. In fact, in line with the pattern-relation duality,
the measure is symmetric with the pattern score (with the same definitions of pmi(p, i)
and maz py;):

c(p,i) = score(p) * chool (P, i)
FEvallnst = Inst
. Zp € Ppool (%) : C(p,l)
SCOT€Espresso (Z) ==

|Ppool|

Another recursive approach is that by Tomita et al. [2006] as presented in Sec-
tion 5.6.3. Similarly, URES [Rosenfeld and Feldman, 2006] uses pattern scores and a
notion of degree of match to score instances, the details of which are not published.
The above-mentioned systems (as far as they describe the actual filtering step) use a
threshold to filter instances although it is not mentioned how this threshold has been
actually computed.

An alternative approach to instance evaluation is to assess their appearances in other
contexts than the present pattern sets. We will call these approaches distributional.

5.6. RELATED EXTRACTION SYSTEMS 87

Etzioni et al. [2005] propose the use of so-called “discriminators”. Discriminators
are generic patterns that are indicative for whether or not two terms stand in a specific
relation. Extracted instances are combined with the discriminator patterns and matched
in the corpus. The match counts are used as a feature to compare instances. This
principle is a way of assessing distributional similarity (compare [Pasca et al., 2006]).
Examples for discriminators are “city ANY¢;,,” for the unary relation of being a city
or “ANYceo CEO of ANY ompany” for the relation between a company and its CEO.
The distribution of counts of instances co-occurring with these discriminators is used
to assess instance quality. More specifically, given a set of discriminator patterns Disc
for each instance ¢ € Inst a vector is generated

(i) = (...,pmi'(d,7),...)

Where pmi’(d, 1) is according to Etzioni et al. [2005] a (strongly simplified) version of
Pointwise Mutual Information.
pmi’(d, Z) _ |Z:1a da Z2|
|217 *, ’LQ|

The decision whether a given 7 is in fact an instance of the target relation is then
made by a Naive Bayes classifier which is trained on a set of previously accepted in-
stances as positive examples and instances of known disjoint classes (seeds of other
target relations) as negative examples. The set of discriminators which has to be pro-
duced for each target relation separately constitutes additional supervision. A heuristic
and a bootstrapping-based method are presented to come up with discriminator patterns
automatically.

A different way of distributional instance evaluation is presented by McIntosh and
Curran [2009] and Pasca et al. [2006]. They use vector space similarities between
bag-of-words vectors of words occurring around the instances. Distributionally more
similar instances are considered better. McIntosh and Curran use this distance to quan-
tify the “semantic drift” for a given instance. This is done by relating the distributional
similarity of the seeds to newly extracted instance to the distributional similarity among
the newly extracted instances. If an instance is closer to the newly extracted instances
than to the seeds, it is considered likely that the new extraction does not capture the
original semantics of the target relation as described by the seed set.

The hyponymy extraction system presented by Snow et al. [2004] uses a Naive
Bayes classifier © directly on the pattern-instance incidence matrix O, where ¢ is cho-
sen to represent co-occurrence counts:

Evallnst = Inst
C(pv Z) = Ccount (pv Z)
scor€classifier (1) = O((c(1,4), ..., c(|Ppoot], 1)))
where (c(1,7), ..., ¢(|Ppoot|, 7)) is the projection of O.(7) on its ith column. © is

trained on a set of positive and negative seeds. Aiming at extending WordNet, Snow
et al. make a good approximation of negative examples by allowing all noun pairs not
standing in a hyponymy relation in WordNet as negatives.

88 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

A thorough probabilistic model which estimates the correctness of instances in a
probabilistic manner is enabled by the URNS model [Downey et al., 2005] which esti-
mates the probability that a given mention is an instance of a given class C' (which may
be a relation) based on the frequency of observed extractions. In particular, it produces
a probability estimate P(i € C|i matches k times in n draws). URNS models the
extraction process as repeated draws from an urn. Each draw corresponds to one match
of a pattern (or set of patterns) and can either produce an error ball or a correct ball.
In both cases, the ball has a label ¢ belonging to the instance that is being extracted.
Apart from a precision estimate of the pattern(s) that caused the given count of extrac-
tions it only takes as input counts (or estimates) for the frequency of the target class
and of errors. The URNS model was applied in several systems [Cafarella et al., 2005;
McDowell and Cafarella, 2008]

5.7 Evaluation Paradigms

In the following chapters technical work with implementations of the framework in-
troduced in this chapter will be presented. While the exact experimental setup is de-
pendant on the study, common datasets and common evaluation measures have been
used.

5.7.1 Datasets

Training and test data of global relation extraction consists of relation instances. While
for training, a small set of seed examples is sufficient, the full extension of the target
relation needs to be known for evaluation purposes.

We obtained large relation sets using (i) a DAML version of the CIA World Fact-
book (for currency), (ii) lineup data from 50 years of FIFA soccer games provided by
the SmartWeb project? and (iii) exploiting Wikipedia categories in a semi-automatic
manner using the CatScan tool by Daniel Kinzler.® The latter allowed us to retrieve
all members of a category. CatScan was applied recursively to also obtain members of
sub-categories.

The data sets have been chosen to differ according to various dimensions, most
notably in size. The currencyOf dataset, for example, is relatively small and constitutes
a relation with clear boundaries with almost no changes over time. The other relations
are likely not be reflected fully in the data sets.

* albumBy: 19852 titles of music albums and their artists generated from the
Wikipedia category “Albums by Artist.”

* bornInYear: 172696 persons and their year of birth generated from the Wikipedia
category “Births by Year.”

* currencyOf: 221 countries and their official currency according to DAML ex-
port of the CIA World Fact Book. nhttp://www.daml.org/2001/12/factbook/

2http://www.smartweb-project.de
Shttp://tools.wikimedia.de/~daniel/WikiSense

http://www.daml.org/2001/12/factbook/
http://www.smartweb-project.de
http://tools.wikimedia.de/~daniel/WikiSense

5.7. EVALUATION PARADIGMS 89

Manual modifications were done to reflect the introduction of the Euro as official
currency in many European countries.

* headquarteredIn: 14762 names of companies and the country they are
based in generated from the Wikipedia category “Companies by Country.”
http://en.wikipedia.org/wiki/Category:Companies_by_country

locatedIn: 34047 names of cities and the state and federal states they are
located in generated from the Wikipedia category “Cities by Countries.”
http://en.wikipedia.org/wiki/Category:Cities_by_country Note that a
considerable number of cities are contained in this data set with both their state
and their federal state.

productOf: 2650 vehicle product names and the brand names of their
makers generated from the Wikipedia category “Vehicles by Brand.”
http://en.wikipedia.org/wiki/Category:Vehicles_by_brand

teamOf: 8307 soccer players and the national teams they were playing for be-
tween 1950 and 2006.*

It is important to note that also the Wikipedia collections have been compiled man-
ually by authors who assigned the documents to the respective categories and have
been checked by further community members. Thus, the datasets can be regarded to
be of high quality. Further, due to the vast coverage of Wikipedia, the extensions of the
relations can be assumed to be relatively complete.

In the experiments, small samples (size 10, 50 and 100) of the datasets were taken
as input seeds. Initial tests showed that taking prominent instances as seeds strongly
increases the system’s output quality over random seeds. It can be expected that in
most real scenarios prominent seeds are available as they should be those best known
to the users. With two exceptions,’ we took the number of in-links to the Wikipedia
articles mentioned in each instance as an indicator for their significance in the corpus
and selected the top n samples with respect to the harmonic mean of these counts.

5.7.2 Evaluation measures

In our experiments, we relied on the widely used precision and recall measures to eval-
uate extraction output. These measures compute the ratio of correctly found instances
to overall instances extracted (precision) or all instances to be found (recall). They are
appropriate to evaluate any binary statistical classifier and have the benefit of having a
probabilistic interpretation.

Both measures are computed based on the observed output Inst, the intended posi-
tive instances (the extension Ext of the relation) and the set (hypothetical) of all items

4This data set is a courtesy of the SmartWeb consortium (see
http://www.smartweb-project.de/).

SFor cities we took the average living costs as an indicator to ensure that Athens Greece was ranked higher
than Athens, New York. Population would have skewed the sample towards Asian cities not prominently
mentioned in the English Wikipedia. For Albums we required titles to be at least 10 characters in length to
discourage highly ambiguous titles like “Heart” or “Friends”

http://en.wikipedia.org/wiki/Category:Companies_by_country
http://en.wikipedia.org/wiki/Category:Cities_by_country
http://en.wikipedia.org/wiki/Category:Vehicles_by_brand
http://www.smartweb-project.de/

90 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

to be classified All. By that two types of correct judgements and two types of errors
can be distinguished:

 True Positives(I' P): Correct positive classifications. Inst N Ext.

* True Negatives(T N): Correct negative classifications. All\ (Inst U Ext).
* Fulse Positives(F' P): Erroneous positive classification. Inst \ Ext.

e Fulse Negatives(F N): Erroneous negative classification. Ext \ Inst.

Precision is defined as the relative frequency of correct positive classification
among all classifications:

|Instn Ext| |T'P|
|[Inst| - |[TPUFP]

precision =

Recall is the relative frequency of correct positive classifications among all in-
stances that should have been classified positively:

|[Inst N Ext| |TP|
|Ext| |TPUFN]|

recall =

Precision and recall are convenient quality measures for Information Extraction as
they have an intuitive probabilistic interpretation: Given an instance extracted by an
Information Extraction system with precision p, we know that this instance is correct
with the probability p. Given a relation instance of which we know that it can be
extracted from a corpus, we know that it will be extracted with probability r by a
system that has recall on that corpus.

Sometimes it is convenient to compare extraction results on one dimension of qual-
ity. To this end, the F-measure is widely used in the literature. It consists in the combi-
nation of precision and recall by the weighted harmonic mean.

2 precision recall
Fg=(1+4%)-

(52 - precision + recall

The intuition behind this measure is that the overall quality lies in the balance
between precision and recall and that if one of the measures is much lower than the
other, this is to be penalized over-proportionally. Thereby, 3 weights precision vs.
recall. The most commonly used 3 value is 1. The choice of this measure is somewhat
arbitrary. How much false positives and false negative should be accepted strongly
depends on the application and it is unlikely that both affect the effective quality of the
system in the same manner.

As the fixed number of iterations in our experiments poses a technical limit on the
number of possible extractions (e.g. Google only returns 1000 results for a query even
if there are more) we use a notion of (r)elative (r)ecall assuming maximally extracted
number of instances by any configuration in any iteration with the given relation. With
yr(i,m) being the yield, i.e. number of extractions (correct and incorrect) at iteration ¢

5.8. PERFORMANCE OF SYSTEMS IN THE LITERATURE 91
System | corpus seeds | relations | precision |
Culotta et al.[2006] 1127 Wikipedia p. | annotated text 60 65% - 712%
Espresso[Pantel and Pennacchiotti, 2006] | 5SM words “few” 5 49%-85%
SOFIE[Suchanek et al., 2009] 3400 Web pages Yago ontology | 13 >90%
KnowItNow|[Cafarella et al., 2005] 60M Web pages seed patterns 5 >70%
Pasca et al.[2006] 100 M Web pages | 10 seeds 1 >90%
Pronto (Ch. 6) Web 10 seeds 7 10 - 80%
URES|Rosenfeld and Feldman, 2006] some Web pages 10-15 seeds 5 70-90%
Snowball[Agichtein and Gravano, 2000] | 180k news posts 5 seeds 1 85%

Table 5.1: Performance results reported in the literature and experimental conditions.

for relation r with method m and p,.(7, m) the precision respectively, we can formalize
relative recall as
) (2, m) * p.(i,m
iy — Bl) %)
max; m Yr (i, m)

5.7.3 Automatic Evaluation

The extraction output has been evaluated automatically based on the data sets described
above. Approximate matches are admitted by allowing the omission of words and re-
specting WordNet synonyms. Both automatic and manual evaluation lead to inexact
assessment. The automatic assessment is inexact because an automatic evaluation sys-
tem is likely to miss the intended meaning of the output (e.g. by not knowing all syn-
onyms of a target instance). The manual evaluation is usually done only on a sample
of the data and is furthermore prone to human errors. In order to investigate, the ef-
fects of manual vs. automatic evaluation, both types of evaluation were compared on
the basis of the experiments presented in the following chapter. The results show that
automatic evaluation underestimates precision because it misses correct instance that
the system is not aware of. Refer to Section 6.3 for the comparison and a discussion on
the possible causes.

5.8 Performance of Systems in the Literature

Information Extraction is a sub-field of NLP that is clearly driven by the goal of
obtaining the desired information rather than modelling or analyzing linguistic
properties. The evaluation of extraction output with respect to precision and recall is
hence at the center of scientific arguments. Most studies focusing on large-scale and
or Web-oriented IE, consider special scenarios, so that systems in the literature differ
with respect to many degrees of freedom. In this section, we present results reported
in key studies that are discussed in this thesis. In Table 5.1, we show precision, type
and size of the text collection as well as the supervision provided.

92 CHAPTER 5. THE ITERATIVE PATTERN INDUCTION FRAMEWORK

Due to the many different degrees of freedom, a conclusive statement on the su-
periority of one approach over another cannot be made. One can observe as a general
tendency that results in the range of above 80% are not obtained by systems operating
at the scale of milions of pages. Several authors observe strong variations of output
quality depending on the target relations. This is in line with our observations reported
in the following chapters.

No comparable way of reporting recall has been established. Several stud-
ies report absolute result counts [Brin, 1999; Rosenfeld and Feldman, 2006;
Cafarella et al., 2005]. Others report results relative to other systems
[Pantel and Pennacchiotti, 2006] or the full extension of the relation [Pasca et al., 2006;
Agichtein and Gravano, 2000]. Our approach to take the full extension of the relation
as a reference for precision and recall assessment and perform automated quality
assessment is a novelty.

Chapter 6

Controlling the Quality of
Induced Patterns

As indicated in Section 5.4, minimizing supervision of Information Extraction systems
is an important goal (referred to as Challenge 1 in Section 5.4). One essential subtask
to achieve is to control the quality of the set of patterns so that they have the appro-
priate levels of precision and recall. Obviously this has to be done without knowing
precision and recall of the patterns because these measures require knowledge about
the intended output (the Pattern Quality Prediction Dilemma, Challenge 3). Pattern-
based Information Extraction systems in the literature therefore use a large variety of
pattern evaluation mechanisms usually computing scores that approximate precision
and/or recall.

Good pattern quality measures enable the system to estimate output quality and
thus to adjust other parameters of the system as required. They hence play an important
role with regard to the autonomy of an extraction system. In order to investigate these
aspects, we present here an empirical comparison of various evaluation strategies. We
use a completely uninformed baseline and a fully informed “gold standard” evaluation
strategy as natural upper and lower bounds on precision, recall and F-measure with
regard to the choice of strategy. The approaches compared differ in the way they assign
a utility score to each pattern which is then used to filter out inappropriate patterns.
These scoring functions are called filtering functions throughout this chapter.

This study has been done in the Pronto system on several non-taxonomic relations.
In the following, the different filtering functions that are the subject of analysis are
introduced and discussed. Then, in Section 6.2 the experimental setup is described be-
fore results are presented and discussed in Section 6.3 and put into relation with related
work in Section 6.1.1. A brief summary is given in Section 6.4. We have published
most of the empirical results of this study at the AAAI conference 2007 together with
Philipp Cimiano and Egon Stemle [Blohm et al., 2007]. Some further results were pre-
sented at the 3rd Web as Corpus Workshop 2007 [Blohm and Cimiano, 2007]. To the
best of our knowledge, this is the first systematic comparison of different evaluation
techniques.

93

94 CHAPTER 6. CONTROLLING THE QUALITY OF INDUCED PATTERNS

6.1 Filtering Functions

As outlined in Section 5.3, the key idea of the iterative pattern induction framework
is to evolve a set of patterns P,,,; which constitutes the learned model. Before being
applied, patterns are evaluated in each iteration and then filtered based on this evalua-
tion. In the following, we discuss prominent pattern evaluation strategies from various
pattern-based Information Extraction systems. They can all be described in terms of
a two-step process: First, a score score : P — R is assigned and then, potentially
weakly performing patterns are filtered out by imposing a threshold or cut-off per-
centile on these scores.

From the literature we can identify five general types of pattern quality assessment.

* Syntactic assessment. Filtering purely based on syntactic criteria like for exam-
ple a pattern’s length.

o Inter-pattern comparison. If there is a set of patterns that is known to be good, it
may be beneficial to rate a new pattern based on how similar its output is to the
output of those patterns.

* Support-based assessment. The iterative nature of the extraction allows the sys-
tem to estimate quality of patterns based on the number of mentions that con-
tributed to the generation of this pattern. We call this number support like in
association rule mining (cf. Section 2.3). An analogous filtering step was sug-
gested in by Brin [1999].

* Performance-based assessment. The most straightforward way to assess a pat-
tern’s quality is to judge the rate of correctly produced output. Because an ex-
haustive assessment would require full knowledge of the target relation, heuristic
performance-based assessment is typically by comparing the output of new pat-
terns to output of previous iterations.

o Instance-Pattern correlation. A further indicator for the quality of a pattern is
whether its presence correlates strongly with the presence of instances of the
target relation. Estimating this by counting mentions of patterns, seed instances
and patterns instantiated with seed instances allows controlling both precision
and potential recall of a pattern within one value.

6.1.1 Pattern Filtering in Related Work

Given the focus of the study, all the systems introduced in Section 5.6 constitute re-
lated work. In particular the varying approaches to pattern evaluation as presented in
Section 5.6.3 are of interest. For the present study, the focus is on filtering functions of
systems which operate on Web scale or are designed with scalability in mind.
Syntactic assessment has been proposed and applied by Brin [1999], where the
length of a pattern is used to predict its specificity. Inter-pattern comparison is par-
ticularly useful when patterns are induced as abstractions over individual mentions
or over more specific patterns. This is done in [Ruiz-Casado et al., 2005] where all

6.1. FILTERING FUNCTIONS 95

pairwise abstractions below a given edit-distance threshold are used and as a pre-
evaluation filter in (LP)? [Ciravegna, 2001] which uses inductive logic program-
ming (ILP) for abstraction. While support-based assessment is quite common for
instances [Agichtein and Gravano, 2000; Etzioni et al., 2005] it has not been applied
to pattern evaluation. Performance-based assessment for patterns is performed by
Agichtein and Gravano [2000] and Ciravegna [2001] with a precision estimate that
is also contestant in this study. A similar score is used by the URES and URIES sys-
tems [Rosenfeld and Feldman, 2006; Rozenfeld and Feldman, 2006]. Another variant
called Laplacian expected error is applied by Soderland [1999]. A comparision of
two rather task-specific performance-based measures in a question-answering environ-
ment is presented by Alfonseca et al. [2006]. Instance-pattern correlation is used in
the Espresso [Pantel and Pennacchiotti, 2006] and the KnowItAll [Etzioni et al., 2005]
systems. Both correlation scores are reproduced in this study. An innovation of
Espresso is that pattern scores are used as weights in instance scores and vice-versa
which captures the recursive notion of the induction process during scoring. Such a re-
cursive evaluation can be also found in ExDisco [Yangarber, 2003]) with the difference
that documents are assigned a confidence value instead of instances. The assumption
is that a good set of patterns defines a good set of relevant documents which in turn
contain these patterns more freuently.

In the following, we present here the filtering functions compared in the experi-
ments, which are partly taken from the literature of state-of-the-art pattern induction
systems. Note that for comparing the approaches which stem from very heterogeneous
systems in the literature, only the scoring of the patterns is varied between the experi-
mental conditions. The cut-off criterion is kept constant by working with a pre-defined
number of patterns that are kept for matching whereby | Py0;| remains constant. An
individual pattern can be kept over several iterations but is re-evaluated against all pat-
terns in each iteration. Thus, while the set of extracted instances Inst is grown incre-
mentally, the evolution of P,,,,; is non-monotonic. Discarding patterns in each iteration
is common practice in most pattern induction systems from the literature and in line
with the idea of mutual bootstrapping [Riloff and Jones, 1999]. Intuitively, it prevents
the double induction of noise both in the set of patterns and in the set of instances.

6.1.2 Performance-Based Filtering

Agichtein and Gravano [2000] use the output of previous iterations to approximate a
performance-based precision measure for each pattern. Recall from Section 5.7.2 that
precision can be defined as:

TP

p?"ecision = m

with T'P and F'P being the set of correctly and erroneously extracted instances,
respectively. Agichtein and Gravano define F'P as the set of instances violating the
assumption that the target relation is many-to-one. For this study, we slightly general-
ize this notion of precision no longer distinguishing incorrect and unclassified extrac-
tions to overcome Snowball’s restriction of only operating on many-to-one relations by

96 CHAPTER 6. CONTROLLING THE QUALITY OF INDUCED PATTERNS

defining F'P as the set of all instances not previously extracted. Following Agichtein
and Gravano we use the output of previous iterations to approximate a performance-
based precision.

Definition 1 scorep,c.(p): Let m(p) be the instances matched by pattern p, and Inst
to be the seeds of the current iteration. Approximating the precision amounts to relat-
ing the number of instances a pattern extracts that have been accepted as correct in
previous iteration to all instances it extracts:

|m(p) N Inst|
[m(p)|

This measure may heavily underestimate the actual output quality of a pattern if that
pattern is able to generate many previously unseen — but correct — relation instances.
The following strategies have been adopted to overcome this limitation.

scoreprec(p) =

6.1.3 Instance-Pattern Correlation for Filtering

Several systems from the literature use a measure called Pointwise Mutual Information
(PMI) as an instance-pattern correlation measure. Mutual Information is a correlation
measure with information theoretic interpretation that measures the mutual dependence
of two random variables. Pointwise mutual information focuses on a specific pair of
outcomes. We evaluate here two different approaches of pattern assessment via mutual
information which use relative corpus frequencies of instances and patterns to measure
correlation.

Definition 2 scorep,;(p): PMI measures the strength of association between two dis-
crete random variables A and B and is defined as:

P(A,B)
P(A)P(B)
In the PMI-based correlation, the events of a pattern occurring in a given fragment of
text and that of an instance occurring in a given fragment are correlated (pmi(p,1)).

Pattern confidence values can be computed by averaging over a random subset of the
currently accepted instances Inst (whereby sampling is done for efficiency reasons).

pmi(A, B) = log

1
scorepmi(p) = Tns] Z pmi(p, i)
i€lnst
The pmi(p, i) is defined in different ways two of which are given below.

The notation for pattern and instance match counts is adopted from Pantel and
Pennachiotti [2006]. We write |args, p, args| to denote the number of corpus matches
of a query generated by filling the arguments of instance ¢ = (arg;, args) into the
argument slots of pattern p. At any position * means allowing arbitrary values for the
pattern or the argument replaced. If for example the passage “...flights to London,
England” appears 12 times in the text, it would hold that

|London, flightsto..., England| = 12

6.1. FILTERING FUNCTIONS 97

Definition 3 pmixnowrtan(p,i): The KnowltAll [Etzioni et al., 2005] Information
Extraction system uses PMI in the following way to assess coherence of a pattern-
instance pair (p, i) in:

o |Z'17pai2|

P KnowrtAn(p, i) = iy, *,]
b) bl

Note that the logarithm of the fraction is not used in the computations in KnowItAll
which however does not affect the ranking of the results for which the score is used.
The same is true for the fact that both PMI-based formulae operate on absolute counts
instead of probabilities.

In KnowlItAll, this measure is used to generate a feature vector for classification of
patterns. In the present work, we use an average of pm« values over a subset of Inst of
size 15 to quantify the patterns output quality.

Definition 4 pmigspresso(p,i): In the Espresso system
[Pantel and Pennacchiotti, 2006], PMI is used in a different way aiming at re-
lating the event of the pattern occurring in the corpus and the event of the instance
occurring in the corpus: The intuition behind this is that a pattern is good if it occurs
preferably in association with instances from Inst and conversely instances from Inst
have a strong association with the pattern.

|7;17pa7;2|

PMEBspresso (P, 1) = lOgm
)) b)

For the experimental comparison of the PMI-based filtering functions, Google’s
result count estimates were used to estimate probabilities. A discussion on how these
are created can be found in Section 2.4.

The multitude of different probabilistic modelings for pattern filtering available
suggests that arguments from probability theory can merely serve as a motivation for
a certain measure but not guarantee success. It is likely that there is no universally
appropriate modeling due to the unpredictable underlying distributions.

6.1.4 Support-Based Filtering

In addition to the above filtering functions, we further present a simple filtering function
based on the count of distinct instances from which a pattern was generated:

Definition 5 scoregsypport(p): Given the number of distinct instances present in the
mentions from which a pattern was generated, i.e. distinct_generators(p), we define

scoresupport () = |distinct_generators(p)|

Thus, scoregypport €valuates patterns by the number of different seed instances from
which they have been produced, hence favoring more general patterns and penalizing
patterns which just hold for a few examples.

98 CHAPTER 6. CONTROLLING THE QUALITY OF INDUCED PATTERNS

6.1.5 Base Line and Gold Standard

Definition 6 score,andom (p): As a baseline condition, a pattern evaluator has been
implemented that assigns random confidence values $core,qndom(p) to all patterns.
The choice of patterns for the instance generation hence does not depend on their
output quality nor on further syntactic criteria.

Note that the Pronto system applies some syntactic heuristics to filter out pattern can-
didates that are far too general or too specific (cf. Section 6.2.1). Hence, all patterns
that are put into the filtering are of some minimum quality. This explains why even
the baseline system with random selection performs relatively well (see the results in
Section 6.3).

Definition 7 scoregoia(p): In order to estimate the upper limit of the potential of
performance-based pattern evaluation, we introduce a scoring function that is based
on the full knowledge of the extension G of the target relation. This extension is made
available externally from large datasets we produced for that purpose (compare Sec-
tion Experiments):

score = 7|m(p) A G|
oot?) =)

We use the term gold standard for this measure even though the measure may still be
out-performed for two reasons. Firstly, the extensions of the relations used are not
necessarily complete in the dataset. Secondly, the measure regards only precision not
coverage or syntactic properties. Yet, this measure can provide a good indicator of how
well a perfectly informed filtering function would perform and thus serves to study
limitations of the approach.

6.2 Experimental Setup

In order to assess the potential of various filtering functions, we have performed ex-
periments with various target relations and filtering functions. The goal of our exper-
iments is to explore the strengths and weaknesses of different filtering functions from
the literature, comparing these results to the baseline score,qndom (p) as well as an ap-
proximation of an informed upper bound scoregoq(p). In the following, the setup of
the Pronto system is described in detail before the remaining experimental details are
presented.

6.2.1 Configuration of the Pronto system

This section gives implementation details of the Pronto system for the experiments
on pattern quality. The system configuration was kept constant over the experiments
varying only the filtering functions for the patterns and operating with several target
relations. The World Wide Web was accessed through the Google API as described in
Section 5.5.2.

6.2. EXPERIMENTAL SETUP 99

To ensure the generality of the results, we have refrained from integrating
specific additional knowledge in our implementation. Common forms of back-
ground knowledge applied in the literature are thesauri, filters for part-of-speech
or syntactic criteria and knowledge about the type of relation in question (e.g.
part-of-speech tags [Pantel and Pennacchiotti, 2006] or named entity classification
[Agichtein and Gravano, 2000]).

Note that all parameters chosen for the experiments have been determined exper-
imentally to ensure stable extraction quality across typical configurations and target
relations.

Matching Instances

In order to identify mentions of the current seed set on the Web, the search index
is accessed via Google’s Java API querying for pages on which all words present in
both arguments of the instance can be found. A fixed number num qtchinstances Of
results is retrieved. From those, only the result headers and text snippets are kept which
contain all arguments within a distance of at most max4,gpist. For the experiments
presented in this chapter we set maxargpist = 4 and decrease NuUMmatchInstances
from 200 to 20 in steps of 45 over 5 iterations.

Learning Patterns

Learning patterns aims at finding representative abstractions of as many valid mentions
of relation instances as possible. Patterns are expressed as a set of constraints on the
tokens. There are two types of constraints: the surface string of individual words and
their corresponding capitalization.

The learning algorithm essentially merges groups of mentions on a token by token
basis. Constraints that are shared by all mentions within a group are kept while the
others are eliminated. An unoptimized version of the algorithm for merging is given in
Figure 6.1 for illustration purposes. Basically, it ensures that all subsets of the set of
found mentions M are merged, if they share a certain minimum number of constraints.
The pattern

“flights to ANYArG, s ANY4Rrg, from ANY airport” (1)
may have been generated by the following example mentions:

“... flights to Athens , Greece from Heathrow airport...”
... flights to Paris , France from JFK airport...”

Thus, the generalization effectively corresponds to computing the least general gen-
eralization (LGG) of two patterns as typically done in bottom-up ILP approaches (com-
pare [Muggleton and Feng, 1990]).

The procedure MERGE(p, p’) takes the patterns p and p’, aligns them by their ar-
guments and generates a pattern containing only the constraints that p and p’ share
for any of their token positions. The function CONSTRAINTS(p) counts the number of

100 CHAPTER 6. CONTROLLING THE QUALITY OF INDUCED PATTERNS

LEARN-PATTERNS(M)
1 Queue < M

2 Prew + 0

3 while NON-EMPTY(Queue)

4 do

5 0 = FIRST(Queue)

6 for o’ € M U Pyew

7 do

8 p < MERGE(o, o)

9 if CONSTRAINTS(p) > mincommon
10 then

11 Prcw < Prew Up
12 ADD(Queue, p)

13 oUTPUT(Prew)

Figure 6.1: The algorithm that learns patterns from a set M of mentions.

non-empty constraints in p. Thereby it is ensured that at least M7 common CONstraints
are shared. To reduce the algorithm’s time complexity, an index data structure is used
to avoid the | M|? comparisons required otherwise. In particular, for the surface string
constraint, a separate index is generated for each token position allowing to query for
the set of mentions with a given surface string at a given position. Generating all groups
of mentions that share a given set of surface strings in the same positions thus becomes
a matter of intersecting sets returned from the index.

Prior to merging, the mentions are stripped off the text more than ¢,,.4, words be-
fore the first and #,5, words after the last argument. When comparing the mentions in
which the arguments stand at different distances, only the first ¢ tokens are considered,
where t is the minimum distance encountered between arguments. For the present
experiments we chose ¢y = toagiv = 2 and Mincommon = 2. This relatively small
context is due to the fact that initial experiments revealed that the two preceding and
following words are most indicative. Taking more words into account significantly
increases the pattern induction time required. For example, the phrase

“cheap flights to Athens , Greece from Heathrow airport.”
Would be trimmed to

“flights to Athens , Greece from Heathrow”

And due to maxqrgpist = 4 phrases like

“Athens is my favorite city in Greece.”

would not be considered at all.

In its pure form, the algorithm generates much more candidate patterns than could
reasonably be processed further. Therefore heuristic filters are applied to exclude po-

6.2. EXPERIMENTAL SETUP 101

tentially worthless patterns. In particular, the following steps are undertaken:

* For each pattern, the number of mentions from which it was generated is con-
sidered, and all patterns originating from less that ,,cgc distinct instances are
discarded.

e Patterns with less than mincommon constraints other than punctuation or stop
words! are eliminated.

Initial experiments have shown (in line with results by Agichtein and Gravano
[2000]) that punctuation contains important information for extraction patterns. There-
fore, punctuation characters are treated as individual tokens. As punctuation is disre-
garded by Google, the presence of punctuation characters is established in an additional
matching step as described in Section 5.5.

Filtering Patterns

In each experimental setup, one of the filtering function described in Section 6.1 is
applied to all patterns. PATTERN-FILTER-CONDITION(p) is defined to always retain
the top 100 best-scoring patterns according to filtering functions, i.e. |Ppooi| = 100.
Thus, newly learned patterns compete against those kept from previous iterations and
may replace them. Filtering is important to exclude too specific (e.g. “ the Acropolis in
ANYAra, s ANYarea,” which would only extract the instance (Athens, Greece)) or
too general patterns (e.g. “... ANYagrg, isin ANYaRrg,...” which would also match
“My birthday is in March.”). The number of 100 has shown to be an appropriate pattern
pool size in preliminary experiments.

Matching Patterns

MATCH-PATTERNS(P) matches each pattern in P by running a set of queries to
the Google API. For this purpose, patterns are translated to queries as described in
Section 5.5.2 and then matched. The resulting set of pattern matches is then fed
to EXTRACT-INSTANCES(M,,) which identifies the argument slot fillers and thereby
generates new instances. The number of results considered for each pattern is
NUMmatchPatterns = 00. Note that for multiple mentions of the same instance, only
one instance is generated. However, the set of patterns generators(i) which extracted
the instance ¢ is kept for confidence computation.

Filtering Instances

The overall goal of evaluating instances it to estimate the confidence that they belong
to the target relation. For the purpose of the experiments we compute the confidence
of an instance by averaging over the confidence that Pronto assigns to the patterns that
extracted the instance.

ZpEgene'r'ators(i) score (p)

|generators(i)]

score(i) =

las available at http://meta.wikimedia.org/wiki/Stop_word_list

http://meta.wikimedia.org/wiki/Stop_word_list

102 CHAPTER 6. CONTROLLING THE QUALITY OF INDUCED PATTERNS

Size of the seed set |Inst’| 10

Size of pattern set |P| 100
Results retrieved for each instance NUMmatchInstances | 200 =20
Maximum tokens between arguments MAZL qrgDist 4
Windows around arguments torefic = lsuffiz 2
Minimum support for pattern tmerge 2
Minimum number of constraints per pattern MmiNcommon 2
Results retrieved for each pattern NUMmatchPatterns | 00

Ratio of instanc