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Abstract—A software architecture to rapidly develop and test
radio networks in real and physical environments is proposed.
Radio network terminals are developed in software and run
on generic hardware to maximize reconfigurability. Due to the
software nature of the radio terminals, radio networks can be
simulated in a virtual environment, where physical channels
are emulated by software entities. Without any changes to the
code base, the same waveform can also be run in a real,
physical environment. This feature is used to rapidly switch
between real and virtual networks, thus bridging the gap between
simulation and physical reality. Aspects of the proposed system
are implemented and demonstrated with the GNU Software
Radio framework.

I. INTRODUCTION

Software radio development usually follows an iterative top-

down pattern from a generic Platform Independent Model

(PIM) of a waveform to platform specific model (PSM) and

executable code. Such a model-based development approach

leads to portable waveform design and reduces the design

cycle duration of SDR applications and hence the time-to-

market [1].

Traditionally, the heterogeneous RF environment which

causes interference between systems is not explicitly included

in the design and testing process: point-to-point influences

such as noise, Doppler shift or fading are usually modeled

at base band and medium access is modeled separately and

for a single technology only. Radio front-end hardware de-

sign and operating environment are rarely modeled directly.

It is, however, advantageous to take these influences into

consideration during development of a waveform PSM and

PIM. This is especially true for the development of adaptive

or ”cognitive” waveforms, which need to coexist with other

systems in diverse RF environments, and also for portable

waveforms developed for SDR platforms with differing RF

characteristics.

Radio front-end hardware design and operating environment

can have a significant impact on signal processing algorithms.

To quantify the effects on various protocol layers, e.g., on

throughput and delay, a simulation environment which accu-

rately models the physical realities is needed. Furthermore,

the waveform should be able to run without changes to the

code base in the simulator and on SDR hardware, enabling fast

switching between loop and field testing of wireless networks.

Such a simulation architecture is proposed and demonstrated

with the GNU Radio framework.

Related work

A myriad of radio simulation tools already exist. In a recent

survey [2], three commercial and eight open source network

simulators are listed, as well as many more tools for wave

propagation simulations. So why create another one? The

wireless networks in-the-loop design discussed here differs

from most available simulators in several aspects. First of

all, it is not a simulator in the typical sense; a more precise

description is testbed for software radio terminals. The main

advantage of loop development is that the test code and the

final software radio are identical. At the end of a development

cycle, a fully functional and thoroughly tested code base has

been established. This eliminates two major disadvantages of

most network simulators: first, no time is lost on creating a

model, as the code is reused verbatim for the final product.

Next, there is no uncertainty about how well the simplifications

introduced by the model affect the performance of the final im-

plementation, since the development cycle - and, in particular,

the switch from a virtual to a real environment - introduces a

smooth transition from preliminary tests to the finished radio.

Of course, such an approach bears disadvantages as well. For

every test, the code for an entire terminal must be written. Even

if this can be accomplished fairly quickly using development

frameworks such as GNU Radio, it is an unnecessary task if

one wants to, e.g., evaluate the bit error rate of simple point-

to-point communication links in a Rayleigh channel. In simple

cases like this, RF propagation tools which are parameterized

by simpler means constitute a more suitable tool.

The remainder of this paper is structured as follows. In

Section II, the basic concepts of loop simulation of wireless

networks are introduced. In Section III, the integration of

different aspects of radio front-end modeling into a loop

simulator are explained. The wireless channel simulation based

on a channel matrix is discussed in Section IV. The loop

approach for development is then demonstrated with a simple

co-channel interference analysis application in Section V.

Section VI concludes.

II. A SOFTWARE RADIO NETWORK SIMULATOR

A. Concept

In the following, a software defined radio (SDR) is a

program capable of creating and processing (transmitting and

receiving) digital complex baseband signals. An SDR can

transmit and receive radio frequency (RF) signals by accessing

a radio front-end device via a standardized API, such as, e.g.,

the SDR Forum Transceiver Facility [3]. The API separates the
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Fig. 1. Overview of a generic software radio network simulator

RF front-end hardware from the actual waveform application

and allows to abstract both.

Figure 1 gives an overview of the proposed simulator

design. The schematic SDR block stands for a waveform

model at any design stage which accesses a virtual RF front-

end device. Access to the virtual RF front-end is controlled

through the same standardized transceiver API. The virtual

RF front-end simulates analog domain signal processing and

outputs a digital sample stream to a channel matrix H. The

channel matrix operates synchronously in a single simulation

bandwidth. Thus, several SDRs forming a software radio

network can be simulated.

Such a software radio network consists of several SDRs

interacting in some way. The network can consist of sub-

networks, which can be identical or different, and which

can interfere or cooperate. While theoretical analysis of such

systems is necessary for an initial parameterization, the high

complexity makes detailed theoretical analysis impossible.

Loop-testing and verification on physical hardware are nec-

essary during design. With a standardized transceiver API,

appropriate abstraction of the RF front-end and channel sim-

ulation, switching between testing in real and virtual mode is

seamless. Figure 2 shows this development loop.

SR prototype
development

Network testing
- virtual mode
- real mode

Fig. 2. SR development loop

B. Implementation

The implementation of a loop development platform pre-

sented here uses standard hardware and free and open source

software (FOSS). SR development is done using the GNU

Radio framework [4], which allows for rapid development by
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Fig. 3. Schematic overview of a virtual RF front-end

combining the advantages of the Python and C++ program-

ming languages. All software is designed to run on standard

PCs. The authors’ choice of RF hardware for real mode

are the Universal Software Radio Peripheral (USRP) I and

II by Ettus Research LLC [5]. The virtual IF connection

between the GNU Radio SDR and channel matrix processes

is implemented using named pipes, a type of FIFO buffer

provided by the operating system.

III. VIRTUAL RF HARDWARE

For any given RF hardware, the RF front-end has to be

abstracted to a level that allows seamless transition from

virtual to real mode. The modeling process is similar for all

RF hardware and demonstrated here for the USRP front-end.

A virtual RF front-end has to emulate all signal processing

needed to transform the time discrete I/Q baseband signal to

an analog pass band signal and vice versa. The analog pass

band is simulated digitally in a common simulation bandwidth

for all nodes.

In the transmit path, a virtual RF front-end has to implement

the following functionalities:

1) interpolation to digital/analog converter sampling rate,

2) digital to analog conversion (DAC) and interpolation to

simulation bandwidth,

3) mixing to pass band,

4) amplification,

5) and analog RF filtering.

The receive path is implemented analogously. For a usable ab-

straction, the virtual front-end has to take into account the most

significant non-idealities. In most cases, at least the digital up

and down conversion (DUC/DDC) chain, RF filtering and the

RF noise figure (NF) will have to be simulated. In other cases,

non-idealities such as non-linear amplification, frequency drift,

phase noise or even I/Q imbalance dominate the performance

and have to be included during modeling.

The abstraction follows the principal structure shown in

Figure 3. In the following, the main non-idealities affecting

the USRP are described. In the implemented USRP front-end

abstraction, analog RF filtering and noise figure are included

in the model.

A. Interpolation and decimation

The I/Q signal coming from the SDR waveform application

is interpolated in RF front-ends to the sampling rate of the

DA converter. In case of the USRP the DAC frequency is

128 MHz. This frequency is chosen to be the simulation

bandwidth. Applications using the USRP have to provide a
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Fig. 4. Schematic overview of the simulation bandwidth with three different
SDRs operating in it. The guard zone is inserted to avoid end-to-end spectral
leakage.

fixed sampling rate, which is then internally interpolated to

DAC rate. The interpolation factor of the USRP is limited

to multiples of 4 between 4 and 512. This yields application

sampling rates between 250 kHz to 32 MHz. The actual RF

bandwidth and filter characteristics depend on the USRP RF

daughterboard; RF bandwidths of 20 MHz are common.

The interpolation mechanism implemented in ithe virtual

RF front-end mimics the USRP CIC/FIR-based interpolation

stage. The USRP has a fixed FIR interpolation filter in the

Analog Devices AD9862 mixed signal front-end processor,

which interpolates with a fixed factor of 4. Furthermore, a

tunable CIC filter is found on the FPGA which interpolates

to the desired rate over 4 stages. The interpolation factor R
in the CIC is tunable, multiples of 4 between 1 and 128 are

possible. The filter response of the CIC filter in the FPGA is

[6]:

HCIC(z) =

[

R−1
∑

k=0

z−k

]4

(1)

After interpolating with these filters to simulation bandwidth,

a virtual RF IIR filter is applied and the signal is shifted to

its final frequency in simulation bandwidth.

The converse is true for the receive path. The signal is RF

filtered, mixed and decimated from the simulation bandwidth

to the application sample time.

B. Digital to analog and analog to digital conversion

The upsampled signal is fed into a DAC simulator block

which quantizes the signal according to a given characteristic,

corresponding to the 12 bit per sample resolution offered

by the USRP. To simulate analog to digital conversion, the

incoming signal is quantized and then forwarded to the down-

sampling block. The simulation of the DAC and ADC is based

on fixed point/floating point conversion to correctly model CIC

interpolation stages, as the bit resolution needed to represent

a filtered result increases with the number of interpolation

stages. The final result is then truncated to DAC resolution

and converted to floating point.

C. Noise figure

The noise figure describes the relation of the incoming to the

outgoing signal-to-noise ratio (SNR) and is hence an important

qualitative parameter of the receiver front-end characterization:

NF =
SNRin

SNRout
. (2)

The noise figure quantifies Johnson thermal noise. It is simu-

lated by adding white Gaussian noise n(k) to the signal after

RF filtering and before quantization. Johnson thermal noise at

temperature T has the probability density [7]

p(x) =
1√
2πσ

e−
x
2

2σ
2 (3)

with variance of the noise process given by

σ2 = Tkb

(

10
NF

10 − 1
)

(4)

where kb is Boltzmann’s constant and NF is specified in dB.

D. Phase and frequency drift

As the RF front-end is not able to reproduce the exact

carrier frequency of the wanted signal, there is a phase offset

ρo and time dependent frequency drift ∆f(k) in the received

signal. The signal processing of the SR has to synchronize

frequency and phase to correct these offsets. If x(k) denotes

input signal y(k) the output signal, the drift and phase offset

can be described as:

y(k) = x(k)ej(2π∆f(k)k/fs+ρo) (5)

where fS is the sampling rate of the signal. Frequency drift

and phase offset are introduced during modulation from virtual

IF to base band.

E. Phase noise

Phase noise is a serious RF impairment in communication

technology due to the fact that it appears in any oscillator

and any RF front-end is equipped with oscillators. High phase

stability is important for long correlators found in, e.g., spread

spectrum applications. Phase noise is quantified by calculating

the ratio between the carrier power PC and the noise power PN

in a unit bandwidth at a frequency offset ∆f from the carrier

frequency fC [8], [9]. It is measured in dBc/Hz and provided

for any oscillator on the RF part of the chosen platform. Phase

noise can be simulated by filtering white Gaussian noise in a

manner that the resulting power spectral density is proportional

to 1/f . Kasdin proposes to implement this filter with the

frequency response [10]

HPN(z) =
1√

1 − z−1
. (6)

The transformation of (6) to the time domain can be calculated

with help of the power series expansion which leads to the

following recursive pulse response:

hPN(k) = 1 k = 0 (7)

hPN(k) =

(

k − 1

2

)

hPN(k − 1)

k
k > 0 (8)

The coefficients of the IIR filter providing that impulse

response can be found by taking again the iterative algorithm

with the denominator taps:

a0 = 1 (9)

ak =

(

k − 3

2

)

ak−1

k
(10)



and just one single numerator tap which provides a scaling

factor of the phase noise power PPN given in dBc:

b0 =
√

2π∆f10PPN/10 (11)

After designing the filter, the output of the phase noise block

y(k) is given by

y(k) = x(k)ej(n(k)∗hPN(k)) , (12)

where n(k) are discrete samples from a white Gaussian noise

process. Phase noise needs to be modeled in the transmit and

receive path. It is introduced during modulation to and from

virtual IF.

IV. SIMULATING AN RF ENVIRONMENT: THE CHANNEL

MATRIX

A radio propagation channel between nodes k and l is

completely described by its time-variant impulse response

(CIR) hk,l(t, τ). Any propagation path effect such as multipath

propagation, Doppler spread, free space path loss etc. are

modeled by such a time-variant CIR [11]. Consequently, such

channels can also be modeled in a discrete-time fashion.

This is a well-understood topic of radio engineering; in [11],

mathematical foundations and examples of channel modeling

are described. For simplicity, the CIR will be abbreviated as

hk,l for the following section.

The entirety of channels between N SDR nodes can be

summarized in the N × N channel matrix HChan:

HChan =













h1,1(t, τ) · · · h1,N (t, τ)

h2,1(t, τ)
...

...
. . .

...

hN,1(t, τ) · · · hN,N (t, τ)













(13)

To calculate the received signal rk(t) at node k, the sum of

the channel responses of the transmitted signals sl(t) must be

computed:

rk(t) =

N
∑

l=1

sl(t) ∗ hl,k(t, τ) (14)

For N SR nodes, a total of N2 radio channels exist. For

the implementation, it is useful to decrease this complexity,

which can be achieved by analyzing the logical setup of the

radio network. First of all, some nodes might only receive

or transmit. In this case, it is not necessary to calculate

the propagation of the radio waves to or from these nodes,

meaning the CIR can be set to zero. The backscatter channel

hk,k(t, τ) is also rarely of interest, since radio systems often

cannot receive and transmit at the same time. Finally, radio

propagation channels are usually symmetric, meaning that if

hk,l and hl,k both exist, they are equal.

Assume a radio network with three nodes: node 1 can only

transmit, node 2 can both transmit and receive, but not at the

same time, and node 3 can only receive. In this case, a suitable

channel matrix is of the form

Tx

h (t, )1,1 t

h (t, )1,3 t

h (t, )2,3 t

Rx

3 3

2 2

1 1

S

S

Dp1,2 Dp1,3 Dp2,3

Dv1,2 Dv1,3 Dv2,3

fc,1 fc,1 fc,2

Fig. 5. The signal flow graph for the channel matrix (15)

HChan =





0 h1,2 h1,3

0 0 h2,3

0 0 0



 . (15)

By removing all redundant channels, the computational

complexity can be reduced significantly. This feature of de-

activating channels can be used for special types of testing

which are difficult in real world scenarios, such as the test

case in Section V: here, two nodes are only transmitting and

the other two nodes are only receiving.

A. Geometrical channel matrix setup

For implementation, the channel matrix itself and the in-

dividual point-to-point channels are separate entities. During

process initialization, the channel matrix loads a list of user-

defined channels, parameterizes them according to a world

model and connects them into a complete flow graph. The

world model includes, e.g., a list of geometrical node positions

and trajectories, and is used to adaptively change the individual

point-to-point channels.

Figure 5 shows how the signal flow graph looks like for

the channel matrix (15). At startup, the process reads the

node and channel configuration, and creates three channel

processing blocks. These blocks are then connected to the

nodes’ transmit ports accordingly, and summed up before

sending the processed signals back to the receive ports. How

the channel processing blocks are implemented is up to the

end-user. Random or deterministic fading channels, multipath,

Doppler etc. can all be easily implemented in GNU Radio.

B. Interfacing channel and SR processes

The channel matrix and the SR processes communicate by

the means of named pipes, which are a typical method for

inter-process communication. This allow for simple means to

connect any kind of SR process - not necessarily written in

GNU Radio. The SR nodes must transmit a continuous stream

of complex baseband samples at a sampling rate equivalent

to simulation bandwidth - even when not transmitting - to

ensure synchronicity. The processed post-channel signals are

then continuously streamed back to the SR processes through

different pipes.
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V. DEMONSTRATION OF RAPID SOFTWARE RADIO

NETWORK DEVELOPMENT: ANALYSIS OF CO-CHANNEL

INTERFERENCE

To illustrate the concept of loop development for wireless

networks, a very simple co-channel interference analysis appli-

cation is considered. The following section will demonstrate

how the loop concept can be applied to aid the developers

create fully tested code for the individual SDR terminals.

The goal is to experimentally determine a suitable frequency

spacing ∆f = f2 − f1 for a number of point-to-point digital

voice transmissions, such as depicted in Figure 6. In total,

there are four SR nodes. The transmitting nodes (Tx nodes)

transmit a frame-based digital voice signal on frequency f1

and f2. The receiving nodes (Rx nodes) decode the signal on

either channel f1 or f2. The goal is to quantify the co-channel

interference influence.

All SDR terminals shall be developed in GNU Radio. The

figure of merit which will be used for evaluation is the frame

error rate at the Rx nodes.

A. Initial Prototyping

In a first step, prototypes of the nodes are created using the

GNU Radio software framework. GNU Radio offers a signal

processing framework, where signal processing blocks are

connected to form a GNU Radio flow graph. Blocks implement

atomic signal processing operations or, in the case of a

hierarchical block such as the channel matrix, contain another

flow graph. Blocks without input are called source blocks,

blocks without output are sink blocks. Signal processing blocks

are written in C++. The waveform application, which sets the

flow graph up and processes user input, is written in Python.

A flow graph consists of a non-recurrent chain of signal

processing blocks, connected into a signal processing chain.

The top-level flow graphs for the transmitting and receiving

nodes are shown in the block diagram in Figure 8. Signal

processing is split into the following blocks: audio I/O, Speex

source encoding/decoding, transmit/receive path. The code

in development is not written specifically for testing or any

special case; it is created to be directly taken to the air. The

only difference is that the code implements a way to feed back

testing information, in this case the frame error rate.

The following GNU Radio blocks are used in the featured

example:

Audio sink/source: The audio I/O blocks are used at the

transmitter and receiver to send/receive voice data or audio

files. They implement audio resampling.

USRP
Source

USRP
Sink

Deframe

Frame

Speex
Decode

Audio
Sink

Demod

Mod

Receive

Transmit

Speex
Encode

Audio
Source

Fig. 7. Top-level GNU Radio flow graphs for digital voice transmission and
reception.

Speex encoding/decoding: Speex [12] speech encod-

ing/decoding is used to encode and compress the audio signal.

Speex is an open-source/free software, patent-free audio com-

pression format designed for speech based on code excited

linear prediction [13]. Speex offers low data rate digital

audio encoding with packet-loss concealment, making it an

appropriate choice for a digital voice transmission.

Transmit/receive path: The transmit/receive path is a hi-

erarchical block, which includes the three main components of

the transmission/reception line. It includes the necessary func-

tions for setting up the (virtual) USRP as source/sink, mod-

ulation/demodulation, packetization/packet deframing. Packets

are made up of the preamble for synchronization and detection,

the modulated symbols, and a cyclic redundancy checksum

(CRC).

USRP drivers: The drivers for the USRP include function

calls to choose the daughter board, select the transmit/receive

centre frequency, setting gain and desired sampling rate.

Unlike usual GNU Radio code, the library import directives

are designed to be able to switch between virtual and real RF

front-ends. This does not affect the waveform code itself.

Modulation/demodulation: The GNU Radio framework

provides a number of modulation/demodulation techniques for

use in applications. The modulation type is user configurable.

Packet framing/deframing: GNU Radio provides func-

tions to build and deframe packets. The packetization function

builds a packet given an access code and payload. The packet

consists of a preamble for synchronization in the beginning,

followed by a length indicator and a payload. It ends with

a CRC-32 checksum. The deframer removes preamble and

checksum, and if received without errors, converts the received

packets back into stream of data.

B. Applying the development loop

Once the prototypes have reached a state where they can be

run, the testing stage begins. The channel matrix is initialized

with a very simple setup, where the nodes are connected

through simple flat fading channels. On startup, two separate

waveform processes with a virtual RF front-end and the

channel matrix process are initialized.

HChan =









0 0 h1,3 h1,4

0 0 h2,3 h2,4

0 0 0 0
0 0 0 0









. (16)
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Fig. 8. Simulated and measured co-channel interference results. RF filter
bandwidth is 2 MHz. The signals are GMSK modulated with f3dB T = 0.35.
The signal-to-interference ratio (SIR) at the receiver is specified, the signal-
to-noise ratio (SNR) is fixed at approximately 22 dB (high SNR regime).

The channel matrix is shown in (16).

For testing, frame error rates are noted for a certain ∆f .
In the next step, the test is re-initialized with a different

channel spacing and re-run. Finally, when the entire system

works well in virtual mode, the switch to real mode can be

performed for validation. If the RF front-end and channel

conditions are modeled with adequate detail, the frame error

rates for a certain channel spacing will be similar. Figure 8

shows frame error rate results. For the co-channel interference

setup described here, the experiment shows good consistency

between real and virtual mode.

VI. CONCLUSION

For software radio networks, direct simulation of the com-

plex interactions between nodes in wireless networks is fea-

sible, and a software solution to do so is presented. Without

code changes, the simulation results can be directly verified in

real environments. Especially during the development stage of

complex wireless networks - be it in the context of mobile ad

hoc networks or spectrum overlay - the possibility to seam-

lessly move from simulation to real networks is a significant

advantage.

The conceptual solution presented here based on GNU

Radio is currently under development and will be released

under the GNU General Public License.
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