
Efficiently Processing Complex
Queries in Sensor Networks

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Mirco Stern

aus Celle

Tag der mündlichen Prüfung: 01. Februar 2010

Erster Gutachter: Prof. Dr.-Ing. Klemens Böhm

Zweiter Gutachter: Prof. Dr. rer. nat. Thomas Seidl

Acknowledgments

There is a number of people who contributed to this dissertation. To start with, I want
to acknowledge their contributions. But more importantly, I am very grateful to them
and, hopefully, the following lines accomplish to express my appreciation.

This dissertation would not exist without Prof. Dr. Klemens Böhm, my advisor.
He taught me the peculiarities of doing research and publishing papers. Whenever
there was an argument that was not totally convincing, Klemens found it. At the same
time, his pace and motivation is impressive. Whenever I sent him something to edit
or comment on, I received it back within hours - was it 8 am or pm, Monday or Sun-
day. Klemens pushed me to publish on well-established conferences, which vastly
improved the quality of this work. Finally, I very much appreciated his integrity
which made it simple to work under his supervision.

I am also especially grateful to Dr. Erik Buchmann who co-advised this work.
Whenever I wrote something up, he was the first one to read it – a tough task. His
effort really made this a better dissertation and working with him has been a pleasure.

I am much obliged to Prof. Dr. Dr. Lockemann who never hesitated to give ad-
vice whenever I was in need. Also, I would like to thank Prof. Dr. Jörg Sander for
sharing some of his insights on how to publish a sensor network paper on a database
conference.

I am greatly indebted to my students who did most of the coding as well as the
experiments. It certainly needed a lot of patience and motivation to iterate over the
code again and again, whenever I had a new idea or felt that the performance might
slightly improve by some changes here and there. In particular, Camillo Scandura
implemented SENS-Join, Lev Povalahev realized CJF, and Björn Reuber contributed
by realizing SNAP.

I have been fortunate to work in an environment where I always felt comfortable.
This is primarily the accomplishment of my fellows and colleagues from the database
group at the University of Karlsruhe. They really made this a place worth being. In
particular, I would like to thank my officemate, Frank Eichinger. I really enjoyed
our intensive discussions on just anything. In particular, whatever topic there was, I
could be absolutely sure that he would take opposition. But whenever we worked on
the same think (such as our lecture), I knew that we would be absolutely on the same
line. He is the best officemate I could have asked for. Jutta Mülle is probably the one
in our group who I bothered most often with weird questions. It’s simple. If there
is any organizational problem, ask Jutta and it is half way solved. Life at our chair
would be much harder without her. Finally, thanks goes to Markus Bestehorn, Mr.

i

SunSPOT in our lab. Whenever I had trouble in getting our algorithms to run on a
’real’ sensor network, Markus was there to help me out.

As always, the greatest debt one owes is to one’s family and friends. They provided
me with a life outside of computer science. In particular, I would like to thank my
parents for their love and support throughout the years. The final credit is dedicated
to Annemarie. I appreciate her understanding and patience, waiting for me whenever
I was busy getting some stuff done at the costs of our weekend, her thick skin when
I was nervous, waiting for a notification, and her reassurance whenever a notification
was frustrating. Annemarie, you’re wonderful.

ii

Effiziente Bearbeitung komplexer
Anfragen in Sensornetzen

Drahtlose Sensornetze stellen eine neuartige Mess- und Überwachungstechnologie
dar, die zunehmend im industriellen und im wissenschaftlichen Bereich eingesetzt
wird. Diese Technologie ermöglicht es, bei hoher räumlicher Auflösung Informatio-
nen über eine Umgebung/ein Objekt zu gewinnen. Das zugrunde liegende Beschaffen
der Daten ist allerdings komplex und hemmt den praktischen Einsatz von Sensornet-
zen. Deklarative Anfragen als Schnittstelle, wie sie für Datenbanken üblich ist, sind
ein vielversprechender Ansatz, die Komplexität der Datenbeschaffung vor der An-
wendung zu verbergen. Dabei spezifiziert die Anwendung mit Hilfe SQL-artiger
Anfragen, welche Daten sie benötigt. Im Fokus dieser Dissertation steht die an-
schließende Anfragebearbeitung, deren Ziel es ist, die angefragten Daten möglichst
effizient zu beschaffen. "Effizient" meint in diesem Kontext die Minimierung der
Kommunikationskosten.

Wesentlicher Beitrag dieser Arbeit sind einerseits die Verfahren SENS-Join und
CJF zur Bearbeitung einmalig auszuführender bzw. kontinuierlicher Verbundanfra-
gen, sowie SNAP zur approximativen Anfragebearbeitung andererseits. Diese Zwei-
teilung ist durch unterschiedliche Arten der Verwendung von Anfragen motiviert.
Es gibt Anwendungen, bei denen der relevante Ausschnitt der Daten von vornherein
bekannt ist und die gezielt diese Daten anfragen. Beispielsweise werden bei der
Überwachung im industriellen Bereich Muster in den Daten gesucht, die auf eine
Überhitzung von Anlagen hindeuten oder auf einen Druckabfall in Leitungen. Für
das gezielte Anfragen relevanter Daten sind SENS-Join und CJF einschlägig. SNAP
dagegen unterstützt Anwendungen, die auf eine Vorauswahl verzichten, um die Daten
im Nachhinein analysieren zu können. Beispielsweise bestehen in der Industrie teil-
weise Auflagen, Überwachungsdaten zur Qualitätssicherung vollständig zu protokol-
lieren. Beide Verwendungsarten werden im Folgenden näher betrachtet.

Gezielte Auswahl relevanter Daten. Im Falle der gezielten Auswahl werden
die relevanten Daten mit Hilfe der klassischen Anfrageoperatoren Selektion, Pro-
jektion und Verbund (Join) spezifiziert. Eine effiziente Bearbeitung wird dadurch
erreicht, die Operatoren innerhalb des Netzes auszuführen, um die in Folge einer
Auswahl nicht benötigten Daten gar nicht erst zu senden. Das heißt, die zugrunde
liegende Idee ist die Nutzung der Selektivität, um eine effiziente Bearbeitung zu er-

iii

reichen. Für den Verbundoperator stellt die Umsetzung dieser Idee zurzeit allerdings
ein offenes Problem dar: Der Verbundoperator kann Beziehungen zwischen beliebi-
gen Messdaten des Netzes ausdrücken. Eine Entscheidung, welche der Daten für die
Anfrage relevant sind, setzt daher im Allgemeinen einen Vergleich der Daten aller
Knoten voraus. Dies ist sehr kommunikationsaufwendig. Bisherige Ansätze umge-
hen dieses Problem durch Einschränkungen der möglichen Anfragen. Dadurch sind
diese Lösungen nur in äußerst speziellen Fällen anwendbar. Die hier vorgestellten
Verfahren SENS-Join und CJF erreichen dagegen eine effiziente Bearbeitung allge-
meiner Verbundanfragen.

Beide Methoden orientieren sich an einem idealen Vorgehen, welches eine un-
tere Schranke für die Kommunikationskosten der Bearbeitung von Verbundanfra-
gen darstellt. Dabei werden Daten, die nicht zum Ergebnis beitragen, direkt an den
Quellen gefiltert. Die verbleibenden Daten werden zur Basisstation (Senke des Net-
zes) gesendet, an der anschließend das Anfrageergebnis berechnet wird. Um dieses
Ideal in ein praktikables Verfahren zu überführen, muss jeder Knoten das Wissen
erlangen, ob seine Daten zum Ergebnis beitragen.

SENS-Join löst dieses Problem durch eine Vorberechnung, die jedem Knoten das
notwendige Wissen bereitstellt. Besondere Leistung von SENS-Join ist, den Over-
head dieser Vorberechnung gering zu halten. SENS-Join erreicht dies durch gezielte
Auswahl der zu sendenden Informationen: Durch die Vorberechnung wäre bei einer
naiven Umsetzung jeder Knoten mehrfach in eine Anfrage involviert. SENS-Join
schafft es, eine Vielzahl von Knoten nur einmalig einzubeziehen. Zum anderen
wurde eine spezielle Kompression der in der Vorberechnung benötigten Werte der
Join-Attribute entwickelt, die auf räumlichen Indexstrukturen basiert. Insgesamt er-
möglicht SENS-Join eine Reduktion der Kommunikationskosten um bis zu 80% im
Vergleich zu den vorher besten Verfahren. Bezogen auf einzelne Knoten werden
die Kosten der am meisten belasteten zum Teil um mehr als eine Größenordnung
reduziert.

Eine Vorberechnung stellt eine gute Lösung für einmalig auszuführende Anfragen
dar. Für kontinuierliche Verbundanfragen ist sie dagegen ungünstig: Da Messwerte
zeitlich korreliert sind, ändert sich die Tatsache, ob ein Knoten zum Ergebnis beiträgt,
nicht bei jeder Ausführung. Für kontinuierliche Verbundanfragen wird ein Ansatz
namens CJF vorgestellt, der Filter verwaltet, anstatt sie wiederholt neu zu verteilen.
Filter sind dabei Intervalle, für die gilt, dass ein Knoten seine Daten nicht sendet,
solange diese innerhalb seines Intervalls liegen. Wesentlicher Beitrag ist die fort-
laufend optimale Berechnung der Filter, d. h. der Intervallgrößen, die die erwarteten
Kommunikationskosten minimieren. Ein zweites Problem bei der Filterverwaltung
ist deren Aktualisierung. Hier berücksichtigt CJF die Kosten einer Aktualisierung,
um zu entscheiden, welche der aktuell verwendeten Filter aktualisiert werden, und für
welche die Kosten die Einsparungen einer besseren Filterung übersteigen. Durch den
Wegfall der konstanten Kosten einer Vorberechnung liegen die von CJF benötigten
Kommunikationskosten nahe an der unteren Schranke.

iv

Bearbeitung nicht-selektiver Anfragen. Die Nutzung der Selektivität zur ef-
fizienten Bearbeitung hat das offensichtliche Problem, dass sie nur einschlägig ist,
falls Anfragen auch selektiv sind. Dies ist beispielsweise für Anfragen, die auf eine
Vorauswahl verzichten, nicht der Fall. Zur effizienten Bearbeitung nicht-selektiver
Anfragen wird ein Verfahren namens SNAP vorgestellt, das approximative Anfrage-
ergebnisse ermöglicht. Die Idee einer approximativen Anfragebearbeitung ist, kon-
trolliert die Präzision des Ergebnisses zu senken, um eine effizientere Datenbeschaf-
fung zu ermöglichen. Dazu spezifiziert die Anwendung die erforderliche Güte der
Antwort durch einen maximalen Fehler.

Die meisten Ansätze zur approximativen Anfragebearbeitung in Sensornetzen ver-
wenden mathematische Modelle, um aktuelle Messdaten der Knoten zu schätzen,
anstatt diese zu kommunizieren. Diese Ansätze funktionieren gut, solange die Präzi-
sionsanforderungen der Anwendung gering sind. Beispielsweise lässt sich die Tem-
peratur ± 0,5◦C in vielen Umgebungen gut schätzen. Für präzisere Ergebnisse sind
modellbasierte Schätzungen jedoch ungeeignet. SNAP setzt daher Synopsen (Zusam-
menfassungen relationaler Daten) im Zuge der Datenbeschaffung ein. Insbesondere
basiert SNAP auf Waveletsynopsen, die gute Eigenschaften bezüglich Datenreduk-
tion und Genauigkeit haben. Der wesentliche Beitrag ist hier die verteilte Erstel-
lung von Waveletsynopsen unter Berücksichtigung von Fehlergarantien. Hierzu wird
aufgezeigt, wie man den Datenfluss der Wavelettransformation in das Routing des
Sensornetzes integrieren kann, ohne dabei das Datenvolumen zu erhöhen oder von
optimalen Kommunikationspfaden abzuweichen. Zum anderen wird ein Verfahren
zur Schätzung der Häufigkeiten von Waveletkoeffizienten vorgestellt, das die Grund-
lage einer verteilten Datenreduktion darstellt. Insgesamt ermöglicht SNAP Fehler-
garantien, die eine Größenordnung besser sind als die von modellbasierten Ansätzen.
Gleichzeitig wird eine Reduktion des Datenvolumens auf ein Fünftel erreicht. Dies
zieht eine entsprechende Reduktion der Kommunikationskosten nach sich.

Fazit. Diese Arbeit erweitert den Stand der Forschung um die effiziente Bear-
beitung des Verbundoperators in Sensornetzen, der zusammen mit Selektion und
Projektion das gezielte Anfragen relevanter Daten ermöglicht. Darüber hinaus wird
ein Verfahren zur approximativen Beantwortung von Anfragen vorgestellt. Grund-
sätzlich ist die approximative Anfragebearbeitung orthogonal dazu, ob eine Anfrage
eine Vorauswahl der Daten trifft und dadurch selektiv ist. So könnte man die nach
einer Auswahl verbleibenden Daten approximativ sammeln, um weitere Kosten zu
sparen. Da mit einer approximativen Methode aber eine Reduktion der Präzision ein-
hergeht, bietet sich ihr Einsatz vor allem für Anfragen an, die auf eine Vorauswahl
größtenteils verzichten und daher ein besonders hohes Datenvolumen haben.

v

vi

Contents

1 Introduction 1
1.1 Declarative Data Collection in Sensor Networks 2
1.2 Selective vs. Non-Selective Queries 3
1.3 Exploiting Selectivity for Efficiently Collecting Data 5
1.4 Consolidating Sensor Relations . 7
1.5 Contributions of this Dissertation 8
1.6 Outline of this Dissertation . 9

2 Background 11
2.1 Network Architecture . 11

2.1.1 Sensor Network Platforms 11
2.1.2 Impact of the Platform on Data Management 12

2.2 Query Processing in Sensor Networks 14
2.2.1 Declarative Queries . 15
2.2.2 A Query Processing Architecture 16

2.3 Discussion . 21

3 Join Processing in Sensor Networks 23
3.1 The Problem: "Join Processing in Sensor Networks" 23

3.1.1 The Difficulty of Processing Joins 24
3.1.2 Problem Statement . 25
3.1.3 IDEAL Join Processing . 26

3.2 Related Work on Join Processing 27
3.2.1 Distributed Join Processing 27
3.2.2 Join Processing in Sensor Networks 29

3.3 Summary . 32

4 Efficiently Processing General-Purpose Joins 35
4.1 Overview of SENS-Join . 35
4.2 The SENS-Join Approach . 37

4.2.1 Collecting Join-Attribute Tuples 39
4.2.2 Disseminating the Join Filter 41
4.2.3 Final Result Computation 42
4.2.4 Design Considerations . 43

vii

Contents

4.2.5 Design for Error Tolerance 44
4.3 Compactly Representing Join-Attribute Tuples 44

4.3.1 Key Ideas of the Compact Representation 45
4.3.2 Quantization . 45
4.3.3 Representing Points Using a Spatial Index 48
4.3.4 Computing Low-Level Primitives 51

4.4 Experimental Study . 52
4.4.1 Efficiency of SENS-Join 54
4.4.2 Costs of SENS-Join – Breakdown 57

4.5 Tradeoffs . 59
4.6 Summary . 59

5 Processing Continuous Join Queries: a Filtering Approach 61
5.1 The CJF Approach . 61
5.2 Related Work on Filtering Data Streams 64
5.3 Filtering for Join Processing . 66

5.3.1 Filters in CJF . 66
5.3.2 A Join-Filtering Framework 67
5.3.3 Maintaining Filters . 68

5.4 Computing Optimal Filters . 69
5.4.1 The Optimization Problem 69
5.4.2 Continuously Optimizing Filters 73

5.5 Efficiently Updating Filters . 82
5.6 Prototype Design . 84
5.7 Evaluation . 85

5.7.1 Experimental Setup . 86
5.7.2 Comparative Experiments 87
5.7.3 Analysis of CJF . 89

5.8 Summary . 91

6 Approximate Query Processing in Sensor Networks 93
6.1 Problem Statement: Processing Non-Selective Queries 93
6.2 Constructing Wavelet Synopses . 95
6.3 Related Work on Approximate Query Processing in Sensor Networks 97

6.3.1 Model-based Approaches 97
6.3.2 Wavelet-Based Approaches 100
6.3.3 Further Approaches . 103

6.4 Discussion . 103

7 Efficiently Approximating Sensor Relations with Quality Guaran-
tees 105
7.1 The SNAP Approach . 105

viii

Contents

7.2 Distributing Wavelet Transforms 106
7.2.1 Design Space for Distributing Wavelet Transforms 107
7.2.2 Integration Approach . 108
7.2.3 Finding the Optimal Structure Tree 109

7.3 Constructing Synopses . 111
7.3.1 Thresholding in a Distributed Setting 112
7.3.2 Foundations for Compact Synopses 113
7.3.3 Distribution by Estimating Frequencies 117

7.4 Sending Approximations . 122
7.5 Evaluation . 124

7.5.1 Experimental Setup . 124
7.5.2 Comparative Experiments 125
7.5.3 Analysis of SNAP . 127

7.6 Summary . 130

8 Conclusions and Future Directions 131
8.1 Summary . 131
8.2 Future Work . 133

Appendix 141

A Optimal Locations for Join Processing 141
A.1 Preliminaries . 141

A.1.1 Terminology . 141
A.1.2 Network Model . 143
A.1.3 Cost Model . 145

A.2 Centralized Join Processing . 147
A.2.1 Cost Model for Centralized Strategies 147
A.2.2 Method . 148
A.2.3 Monotonicity Assumptions 149
A.2.4 Gain of Centralized Strategies 151

A.3 IDEAL Join Processing . 151
A.3.1 Optimal Number of Processing Sites 153
A.3.2 Location of Optimal Site per Group 155

A.4 Conclusions . 156

B Primitives for Constructing the Quadtree Datastructure 157
B.1 Constructing Quadtrees . 157
B.2 Merging Quadtrees . 161
B.3 Summary . 162

ix

Contents

C CJF: Generalization of the Optimization Problem for Asymmetric
Join Conditions 167

x

List of Figures

2.1 SunSPOT . 12
2.2 Routing tree as an overlay over the connectivity graph of the network 18

4.1 SENS-Join, at each node . 38
4.2 ForwardJoinAttrValues . 40
4.3 ForwardJoinFilter . 42
4.4 ForwardCompleteTuples . 43
4.5 Distribution of values for 3 join attributes 45
4.6 Distribution of values for 2 join attributes 46
4.7 Z-ordering . 46
4.8 EncodeTuple . 47
4.9 Construction of the quadtree . 49
4.10 Encoding of a quadtree . 50
4.11 Overall savings of SENS-Join . 54
4.12 Per node savings of SENS-Join . 55
4.13 Influence of the ratio of 3 join attributes

x attributes overall 55
4.14 Influence of the ratio of 1 join attribute

x attributes overall 56
4.15 Influence of the network size . 56
4.16 Costs in the different steps of SENS-Join 57
4.17 Influence of quadtree representation 58

5.1 Slack between filters in dimension "temperature" 72
5.2 Continuously differentiable function slacki

jh for |A.atti − B.atti| <
dmax

i . 72
5.3 Optimization Method . 76
5.4 Neighbor Method . 77
5.5 Optimizing commCostj(sj) (= ’cCj’ in this figure) 79
5.6 Costs of join approaches for different types of queries 87
5.7 Considering dependencies among the nodes 88
5.8 Using uniform filter settings . 89
5.9 Performance of filtering of CJF . 89
5.10 Initialization of filters and convergence 90
5.11 Influence of different data sets on CJF 91

6.1 Structure graph for the Haar example 96

xi

List of Figures

7.1 Integration approach . 108
7.2 Heuristical algorithm for computing the structure tree 110
7.3 DP for computing the optimal structure tree – a benchmark for the

heuristical approach . 112
7.4 Combining two partial solutions into one 113
7.5 Format of Wavelets (Encoding) . 116
7.6 Estimating frequencies . 118
7.7 Comparison of integration approaches (real data) 126
7.8 Comparison of integration approaches (synth. data) 126
7.9 Comparison to Ken (real data) . 127
7.10 Scalability of SNAP (synthetic data) 128
7.11 Influence of the number of attributes (synth. data) 128
7.12 SNAP: heuristical vs. optimal integration (real data) 129
7.13 SNAP: performance on extreme data (synth. data) 129

A.1 Scenario . 144
A.2 (a) Influence of ∠AcRBc & distribution; (b) Influence of the result’s

size . 149
A.3 Example of two join locations . 153
A.4 (a) Gain: optimal number vs. single site; (b) Gain: optimal location

vs. root node . 155

B.1 InsertJoin_Atts . 158
B.2 Representing points with a quadtree 159
B.3 Method Split . 159
B.4 Method InsertPoint . 163
B.5 Method GetPositionOfSubtree . 164
B.6 Method Union . 165

C.1 Continuously differentiable functions slackAi
jh and slackBi

jh for the
join condition A.atti − B.atti > dmin

i 170

xii

List of Figures

xiii

1 Introduction

Wireless sensor networks are a novel measuring technology that is increasingly used
in industrial and scientific settings. Such networks consist of a large number of nodes
that are equipped with sensors, allowing for observations at a high spatial resolution.
However, the underlying data acquisition is complex and is in the way of an easy
deployment of sensor networks.

Declarative queries, as used in commercial database management systems, are a
promising approach for hiding the intricacies of data collection from the application.
In particular, applications specify the data they want to collect by means of ordinary
SQL queries. A query processor then takes care of efficiently collecting the data from
the network. In the context of wireless sensor networks, "efficiently" means using a
minimum amount of energy.

Efficient query processing is in the focus of this dissertation. Prior work has studied
processing simple queries, especially query operators such as selection, projection
and aggregation. In this work, we are concerned with processing join queries as well
as processing non-selective queries.

Join processing in wireless sensor networks is difficult: As the tuples can be ar-
bitrarily distributed within the network, matching pairs of tuples is communication-
intensive and thus costly in terms of energy. While join processing has received a lot
of attention recently, current solutions build on strict assumptions that are frequently
not met. We present two join methods that overcome this problem: SENS-Join for ef-
ficiently processing one-time queries and CJF for processing continuous join queries.

The idea of efficiently processing selection, projection, and join operators is to
avoid shipping data that is irrelevant to the result. That is, the idea is to exploit the se-
lectivity in the query. However, if most of the data is relevant to the result, i.e., if the
selectivity is low, the volume of the data cannot be significantly reduced by discarding
irrelevant portions. Thus, a simple data collection is again communication-intensive.
Most notably, non-selective queries are the rule in a number of monitoring applica-
tions. To this end, we propose SNAP, an approach for approximate query processing.
SNAP can efficiently consolidate entire sensor relations.

The following section motivates data collection in sensor networks along with the
use of a query interface. Section 1.2 introduces a conceptual separation of processing
selective and processing non-selective queries. We discuss the problems in exploiting
selectivity for an efficient join processing in Section 1.3. In Section 1.4, we introduce
the challenges of processing non-selective queries. We point out the contributions of
this dissertation in Section 1.5, before outlining the remainder of the text.

1

CHAPTER 1. INTRODUCTION

1.1 Declarative Data Collection in Sensor
Networks

Today, wireless sensor networks are commercially available [Sena] and are used in
industrial settings for purposes such as monitoring and surveillance. As a concrete ex-
ample, consider a drug manufacturer who has to comply with legal requirements for
documenting the conditions in the production process [Pha]. To do so, the manufac-
turer has installed 130 wireless sensor nodes on an existing production line. Wireless
sensor networks are ideally suited for such settings. The fact that they come without
wiring lowers installation costs by 80% and installation time by 90% and enables
simple reconfigurations [Wer].

In fact, there is a broad range of industrial applications of sensor networks. For
instance, they are used in manufacturing plants, temperature controlled storage ware-
houses, or computer server rooms to monitor the diverse pieces of equipment. Staff
needs the sensor readings to dispatch repair teams or to shutdown problematic equip-
ment in localized areas where temperature spikes or other faults occur.

Beyond industry, there are numerous deployments of wireless sensor networks for
scientific purposes. The most popular among them are probably the early ones such
as the Great Duck Island deployment [MCP+02, CEH+01] or the Berkeley Botanical
Garden deployment [Daw98]. The Great Duck Island deployment was used to mon-
itor the nesting and breeding behavior of sea-birds. The researchers placed sensor
nodes in a number of burrows during the nesting season in 2002, and recorded sen-
sor data as birds came and went. They captured information such as light readings,
ambient temperature, surface temperature, humidity and air pressure. The deploy-
ment in the Berkeley Botanical Garden was used in June and July 2003 to monitor
environmental conditions in and around coastal redwood trees. The botanists at UC
Berkeley were interested in the role the trees play in regulating and controlling their
environment, especially how they affect the humidity and temperature of the forest
floor. An example of a number of recent scientific deployments is the Sensorscope
project [Senb] which focuses on environmental monitoring. Some of the experiments
in this dissertation are actually based on traces of sensor data that stem from this latter
project.

Abstracting from these concrete deployments, wireless sensor networks (or "sensor
networks" hereafter) consist of many nodes which are equipped with sensors, have
constrained communication and computation capabilities and are battery operated.
They allow for monitoring at a high spatial resolution, and can even penetrate the
phenomena of interest. At the same time, they are non-intrusive, which is important
for applications such as wildlife monitoring. Finally, sensor networks can cover large
regions and can monitor over long periods of time.

To obtain longevity, energy-efficiency is mandatory. Poor energy consumption can
be dramatic in practice: For example, [CDHH06] reports that a software bug in the

2

1.2. SELECTIVE VS. NON-SELECTIVE QUERIES

Berkeley Botanical Garden deployment caused a third of the nodes to constantly keep
their radios active; they exhausted their batteries in only a few days.

The need to make careful use of resources, especially of energy, makes engineering
sensor network applications difficult. Making matters worse, sensor nodes usually
provide low-level programming abstractions which further complicate sensor net-
work programming.

To overcome the problems and thus to simplify data collection, query interfaces
such as SQL have proven to be attractive. Chapter 2 highlights the advantages of
using a query interface as opposed to programming the data collection from scratch.
In particular, declarative queries are high-level statements that specify the data of
interest. They do not describe the actual algorithms to collect the answer set. Thus,
the application developer is unburdened from dealing with the constraint resources
and the low-level programming abstractions.

To facilitate declarative queries, the idea is to abstract the network into a relation.
There is one tuple per node of the network. The attributes represent the sensors of
the nodes. Again, we provide the details in Chapter 2.

Then, an application can specify the data of interest by means of a SQL query.

Example 1.1: The following query is a simple example that periodically collects the
node_ID, temperature and humidity of those sensor nodes that observe a temperature
of more than 24.0◦C1:

SELECT ID, temp, humidity
FROM Sensors
WHERE temp > 24.0◦C
SAMPLE PERIOD 30s

�

A query processor takes care of collecting the requested data, using a minimum
amount of energy. In particular, on typical sensor nodes, message transmission ex-
pends orders of magnitude more energy than CPU computations over an equivalent
length of time (cf. Chapter 2). Therefore, minimizing the communication costs is the
optimization goal of query processing in sensor networks.

1.2 Selective vs. Non-Selective Queries

In this dissertation, we classify queries into (a) selective and (b) non-selective queries.
Before motivating and justifying this distinction, we briefly clarify our understanding
of ’selective queries’: Intuitively, the "selectivity factor" of an operator indicates the

1Of course, the physical units are absent in actual queries – queries correspond to ordinary SQL
queries with extensions for temporal aspects of data collection (cf. Chapter 2). However, we
sometimes include the units in our examples as it makes the reading more intuitive.

3

CHAPTER 1. INTRODUCTION

cardinality of its result related to the cardinality of the input. For instance, the selec-
tivity factor of a selection predicate p(·) over a Relation R is defined as σ = card(p(R))

card(R)
.

The selectivity factor of a join operator is defined σ = card(A⋊⋉B)
card(A)·card(B)

. We call an op-
erator "selective", if the selectivity factor is small, i.e., if the cardinality of the result
is small.

Terminology. We say that a query is selective if the cardinality of the query result
is small.

The distinction of selective and non-selective queries is a conceptual one, i.e., there
is no clear cut borderline for queries being selective or not. However, the distinction
is very useful for the following reasons.

• Development of Algorithms. With respect to query processing, different tech-
niques apply. In particular, the selectivity of queries can be exploited for ob-
taining efficiency – prior work has done so extensively. Thus, the distinction in-
dicates a way to obtain efficiency and is important for designing algorithms for
query processing. However, the resulting techniques for processing selective
and non-selective queries are actually orthogonal. Thus, while it is convenient
to think of queries in terms of being selective or not for designing algorithms,
the resulting techniques can be combined to further reduce the energy costs.
We will return to this point in Chapter 8 after presenting the solutions.

• Typical Usage of Queries. In a way, ’selective’ and ’non-selective’ queries are
the extremes in the spectrum of possible selectivity factors. As indicated, the
corresponding algorithms can be combined in a query processor if the query
execution based on only one of them is too costly. However, the extremes are
common cases in the usage of sensor networks:

(a) There are applications that have a well-separated interest, i.e., only spe-
cific parts of the measurement data are relevant. As examples, think of
monitoring technical installations or structural works. Here, the goal is
to detect certain deficiencies, such as temperature spikes or fine cracks in
the construction. Such deficiencies are usually detected based on charac-
teristic patterns that they generate in the sensor readings. Measurements
that do not correspond to these patterns are irrelevant. For such applica-
tions, queries are not only used to get the current sensor readings out of
the network. As in traditional databases, queries are also used to discard
irrelevant data from the query result. Thus, the queries issued by such
applications are usually selective.

(b) In contrast, sometimes applications simply collect the current sensor read-
ings without prior selections. Consider the scientific applications that we
introduced in the preceding section as an example. As the researchers
were interested in a later analysis of the data, the applications collected

4

1.3. EXPLOITING SELECTIVITY FOR EFFICIENTLY COLLECTING
DATA

the entire measurements and stored them outside the network. As an ex-
ample of an industrial application, consider the drug manufacturer. In
particular, law requires the manufacturer to log the entire data [Pha]. For
such applications, queries have a low selectivity.

In the following, we discuss the problems as well as the query processing for both
classes.

1.3 Exploiting Selectivity for Efficiently
Collecting Data

Given a query interface, applications specify the data of interest by means of classical
Select-Project-Join (SPJ) statements. Among these operators, efficiently processing
selections and projections is well understood (cf. Chapter 2). To reduce commu-
nication, the idea is to exploit the selectivity of queries by pushing data-reducing
operators into the network. Then, only the data that qualifies for the result is sent to
the base station (sink of the network).

In contrast, efficiently processing join queries in sensor networks is an open prob-
lem that has received considerable attention recently [ZGT09, YLOT07, AML05,
CN07, CNS07]. The join is important as it allows for combining data from different
nodes. To illustrate its application, think of monitoring (a) similar conditions at dif-
ferent locations or (b) dissimilar conditions. For instance, we might be interested in
noting exceptional conditions in an industrial setting, such as a loss of pressure within
a pipe, or a machine that radiates a (substantially) higher temperature than others.

Example 1.2: The following is a simple example of a join query which we will use
as an illustration later in the text. It acquires data from nodes that observe similar
temperature and humidity conditions.

SELECT A.*, B.*
FROM Sensors A, Sensors B
WHERE |A.hum - B.hum| < 2%
AND |A.temp - B.temp| < 0.3◦C
AND A.id != B.id
SAMPLE PERIOD 30s

�

The problem with exploiting the selectivity for an efficient join processing is that
a node does not know if its tuple qualifies for the result. Thus, a node cannot easily
discard its tuple. In general, finding out if a tuple joins requires matching it to the
tuples of the other relation in the query. However, in sensor networks tuples which

5

CHAPTER 1. INTRODUCTION

have to be joined can be arbitrarily distributed. Thus, the matching is communication-
intensive.

Prior join approaches avoid the problem of matching arbitrarily distributed tuples
by specializing to specific types of queries. For instance, [YLOT07] requires one of
the relations to contain a few (well less than ten) tuples only. As a consequence, it is
possible to distribute one of the relations within the network at little costs. However,
such specific requirements restrict applicability. For instance, in the simple query in
Example 1.2, none of the relations is restricted to containing one or two tuples only.
In fact, the requirements imposed by prior approaches are strict and are frequently
not met (cf. Chapter 3).

In contrast, we present two join methods, SENS-Join and Continuous Join Filtering
(CJF), that allow for efficiently processing join queries without imposing restrictions
on the number or kind of join conditions. Among them, SENS-Join targets one-
time queries. For continuous join queries, CJF can further reduce the communication
costs. In the remainder of this section, we briefly introduce both approaches.

As a foundation of designing join approaches, we derive the following concept
which lower bounds the communication costs of join processing: Firstly, each node
discards its tuple if it does not join, i.e., non-joining tuples are not at all sent. The
second step says how to proceed with the joining tuples: The remaining tuples after
discarding are sent to the base station where the join is computed. However, this
approach is infeasible in practice: Each node would have to know if its tuple joins.
This depends on the data of the other nodes and is actually the result of the matching
that we discussed above.

The lower-bound concept guides the design of our join algorithms. In particular,
both approaches discard non-joining tuples at the sources to avoid sending them and
compute the result at the base station. The problem in turning this concept into a
practical approach is to supply each node with the knowledge if its tuple joins. To do
so, SENS-Join introduces a precomputation step which identifies the tuples that join.
Subsequently, SENS-Join can actually implement the lower-bound approach which
sends the joining tuples to the base station. At a high-level, the main contribution of
SENS-Join is the design of the precomputation: It is highly efficient in order not to
exhaust the savings due to discarding non-joining tuples.

It is possible to use such a precomputation-based approach for answering one-time
queries as well as continuous join queries. However, for continuous queries, this
incurs unnecessary costs: The precomputation is repeated for each execution, leaving
aside temporal correlations in the data. To take advantage of temporal correlations
for efficiently processing continuous join queries, we present CJF, a filtering-based
approach. The idea of CJF is that the base station installs filters on the nodes. The
filters are used to discard non-joining tuples. In particular, we keep the filters for
subsequent executions and maintain them. This avoids the repeated precomputation.
The problems are for the base station to determine optimal filters and to decide which
filters to update. With respect to processing continuous join queries, our contribution

6

1.4. CONSOLIDATING SENSOR RELATIONS

is to solve these problems.

1.4 Consolidating Sensor Relations

In the preceding section, the idea for obtaining efficiency was to exploit the selectivity
of queries: The algorithms discard data that is irrelevant for the result as early as
possible in the processing. This cuts communication costs since we refrain from
sending unnecessary data.

However, there is an obvious problem in relying on selectivity for obtaining ef-
ficiency: Queries might not be selective. As motivated in Section 1.2, this case is
actually relevant in practice. The problem is that if selectivity is low, collecting the
data is communication-intensive due to its large volume.

A common approach for processing non-selective queries is approximate query
processing. The idea is to trade the accuracy in the result for communication costs. In
particular, applications differ in their accuracy requirements [DGM+04, CDHH06].
Such applications can take advantage of a mechanism for approximate query process-
ing, if the application is given control over the accuracy. In particular, it is critical for
any approximate query processing scheme to provide error guarantees.

Prior work on approximate query processing in sensor networks is mostly model-
based. Here, a model is a compact representation ("synopsis") of the measurements,
and queries are processed against it. Model-based query processing saves commu-
nication costs compared to a straightforward data collection, if the accuracy require-
ments are loose, e.g., if the temperature is required within ±0.5◦C. For more ac-
curacy, the models need frequent updates, and the communication costs quickly in-
crease. In addition, sophisticated models incur substantial training costs.

To overcome these problems, we propose SNAP ("SNapshot APproximation"), a
query-processing scheme based on wavelet synopses. Briefly, the wavelet transform
is a mathematical tool that transforms the data into a set of wavelet coefficients. In
particular, these coefficients are not equally important: If we apply the inverse trans-
form, some coefficients are details and can be ignored while introducing only little er-
rors in the reconstructed data. The idea for obtaining a synopsis from the transformed
data is to discard as many details as possible without violating the error bounds. This
step is called "thresholding".

To exploit the data reduction properties of wavelet transforms for an efficient data
collection, SNAP has to incrementally construct a wavelet synopsis during the col-
lection. Here, our main contributions are to show how to distribute the transform as
well as the thresholding.

7

CHAPTER 1. INTRODUCTION

1.5 Contributions of this Dissertation

This dissertation makes the following contributions:

SENS-Join. We present SENS-Join, the first join method for sensor networks that
does not rely on restrictive requirements for obtaining efficiency: SENS-Join can
efficiently handle any number of join conditions and arbitrary distributions of the
nodes involved.

As a foundation of the design of our join algorithms, we derive a concept that lower
bounds the communication costs. Its cornerstones are to discard non-joining tuples
at the sources and to send joining tuples to the base station.

SENS-Join provides the knowledge which tuples join by means of a precomputa-
tion. The main contribution of SENS-Join is the design of the precomputation: It is
highly efficient. In more detail, the contributions are:

• Information Flow. If the precomputation is realized naively, each node is in-
volved multiple times in processing a join query. SENS-Join comprises mech-
anisms that achieve to involve most of the nodes only once – this significantly
reduces the number of overall transmissions. In particular, these ideas are not
specific to join processing. They apply to designing efficient precomputations
in sensor networks.

• Data Representation. We propose a new compact representation of the pre-
computation data. Our mechanism is based on a spatial index to remove redun-
dancy. In contrast to compression algorithms, this achieves compactness even
for small amounts of input data, which are the rule for data collection in sensor
networks.

• Performance. We extensively evaluate the performance of SENS-Join. Our
results indicate that SENS-Join can reduce the overall energy consumption by
more than 80% compared to the state-of-the-art. It can reduce the per node
energy consumption of the most loaded nodes by more than an order of mag-
nitude.

Continuous Join Filtering (CJF). For continuous join queries, we propose CJF,
a filtering-based approach. At a high level, the main contribution of CJF is to maintain
filters in an optimal way. In more detail, the contributions are:

• Optimizing Filters. The base station continuously computes filters that mini-
mize communication costs. In particular, if a filter is too small, it is likely that
the measurement of a node falls outside of it and the node sends its data, which
the filter was supposed to avoid. In contrast, large filters cause costs related to

8

1.6. OUTLINE OF THIS DISSERTATION

guaranteeing a correct result, as we will explain in Chapter 5. We show how to
map join queries to a mathematical optimization problem for optimizing filters
and how to continuously solve it.

• Optimizing Updating Costs. For each execution, the base station has to decide
which of the current filters to update. This also incurs costs. However, due to
temporal correlations, filters do not change by much in between subsequent
query executions and the costs of updating might not pay off. We propose a
scheme to decide which of the filters to actually update.

• Performance. We evaluate the performance of CJF. In particular, CJF comes
close to the lower-bound concept. For continuous queries, CJF consistently
outperforms other join approaches.

SNAP. We present SNAP, the first distributed wavelet compaction in sensor net-
works that provides error guarantees. In detail, our contributions are:

• Distributing the Transform. To distribute the wavelet transform, we need to
map the data flow of the wavelet transform onto the routing structure of the
network. We show how to integrate the transform with the routing without
sacrificing optimal routes.

• Distributing the Compaction. We compactly encode coefficients, instead of
discarding them (’thresholding’). This is key to distributing the construction
of synopses. To encode them, it is necessary to know the frequencies of the
coefficients in the overall synopsis. We show how to accurately estimate these
frequencies in a way that is mathematically sound as a basis of a distributed
encoding.

• Performance. Our experimental results indicate that SNAP reduces the com-
munication costs by more than a factor of five compared to state-of-the-art
approaches. SNAP improves the limit in the error guarantees for which data
can be efficiently consolidated by more than an order of magnitude.

1.6 Outline of this Dissertation

The remainder of this dissertation presents our solutions in detail. As a foundation,
we provide some background on sensor networks and especially on query process-
ing in Chapter 2. In Chapter 3, we turn to the first integral part of this dissertation,
join processing. We introduce the intricacies and discuss prior solutions. Then, in
Chapter 4, we present SENS-Join, our solution to join processing. While SENS-Join
can be used to answer one-time as well as continuous join queries, it is especially

9

CHAPTER 1. INTRODUCTION

suited to one-time queries. For continuous join queries, we present our method CJF
in Chapter 5. All algorithms on processing particular query operators exploit their
selectivity. In a second integral part of this dissertation, we address non-selective
queries. In Chapter 6, we point out why approximate query processing approaches
make sense for dealing with non-selective queries. In addition, we review related
work on approximate query processing in sensor networks. In Chapter 7, we then
present SNAP, our approximate query processing scheme. Finally, in Chapter 8, we
summarize our results and provide an outlook on interesting problems with respect
to declarative data acquisition in sensor networks that we did not cover in this disser-
tation.

Portions of this work were originally published in shortened form in [SBB08]
(lower bound), [SBB09b] (SENS-Join), [SBB10] (CJF) and [SBB09a] (SNAP).

10

2 Background

The notion of a "sensor network" is by no means well-defined. Frequently, the appli-
cation influences the hardware deployed and the network architecture. This section
provides the context of our work. The network architecture is described in Sec-
tion 2.1. Section 2.2 then provides some background on query processing in sensor
networks.

2.1 Network Architecture

Our work is based on a network architecture consisting of hundreds to thousands
of stationary sensor nodes. Each one is equipped with several sensors, a processor,
a small RAM, a wireless radio, and it is battery operated. A powered base station
serves as an access point. Each node is aware of the nodes within its wireless range,
which form its neighborhood. It communicates with nodes other than its neighbors
using multi-hop routing.

In the following, we introduce two popular hardware platforms to illustrate the
architecture, SunSPOTs [Mic] and Mica2 motes [Tec]. We then abstract from the
concrete hardware and identify the characteristics that influence data management.
These have to be considered in the design of our solutions.

2.1.1 Sensor Network Platforms

The sensor nodes which we use in our lab are SunSPOTs as shown in Figure 2.1.
The size of a SunSPOT is about 70 x 41 x 23 mm. At a high level, the nodes have a
modular architecture, consisting of a sensor board, a processor board, and a battery.

By default, SunSPOTs are equipped with sensor boards that contain a light sen-
sor, a temperature sensor, and an accelerometer. A default board makes sense since
SunSPOTs are a development platform. In real deployments, the sensors are usually
customized to the needs of the application. For SunSPOTs, it is possible to add ex-
tension boards and custom sensors like humidity sensors, barometric pressure, sound,
magnetic field, vibration sensors, etc.

SunSPOTs incorporate a processor with a 32 bit ARM920T core which executes
at 180 MHz maximum clock speed. The nodes are equipped with 512 KB RAM.
In addition to the RAM, the nodes come with a 4 MB flash memory. The wireless
network uses an integrated radio transceiver, the TI CC2420 (formerly ChipCon)

11

CHAPTER 2. BACKGROUND

sunroof

sensor
board

processor
board

battery

Figure 2.1: SunSPOT

which is IEEE 802.15.4 compliant ("ZigBee"). It is capable of transferring up to
250 Kbps. The nodes are powered with a 3.7 V rechargeable 750 mAh lithium-ion
battery.

For battery conservation, a SunSPOT has available different states: run, idle and
deep-sleep. Run means that all processors and the radio are running. In idle mode, the
clocks and the radio are off. This mode is generally used to sleep for short periods of
time (less than 2 seconds). For longer periods, the nodes enter deep-sleep. Memory
contents are maintained as long as power is supplied, even during periods of deep-
sleep.

SunSPOTs are programmable in Java. The Java VM ("Squawk") runs directly on
the processor without any other operating system.

As a second example of sensor network platforms, we introduce Mica2 motes.
They are sold by Crossbow Corporation. Mica2 motes incorporate a 7 Mhz processor,
a 38.6 Kbps radio, 4 KB of RAM and 512 KB flash. The motes run on common AA
batteries which for the most part determine the size of a mote. Commonly available
sensors include light, temperature, humidity, vibration, acceleration, and position (via
GPS or ultrasound).

Motes run an operating system called TinyOS [HSW+00]. TinyOS consists of a set
of components for managing and accessing the mote hardware, and a programming
language called nesC. In particular, the system provides a radio stack, which sends
and receives packets and functions to read sensor values. In addition, it allows an
application to put the device into a low power sleep mode.

2.1.2 Impact of the Platform on Data Management

Our solutions are not tailored to a specific hardware platform. We now abstract from
concrete platforms and highlight those properties that affect data management. In
particular, sensor nodes have constrained communication and computation capabili-

12

2.1. NETWORK ARCHITECTURE

ties and are battery-operated.

Power Consumption. Because sensor nodes are battery powered, energy-effi-
ciency is of utmost importance to obtain longevity of the network. Power is consumed
by a number of factors such as sensing, communication, computation and accessing
RAM. Writing to flash incurs non-negligible energy costs as well. However, our
algorithms do not write to flash memory.

Typically, sensing and communication dominate the power consumption by orders
of magnitude, compared to computation and accessing RAM [YG03, MFHH03]. In
the context of query processing, sensing costs are important for evaluating selection
predicates, as discussed in the next section. For operators other than selections, each
algorithm will pay the same costs for running the sensors [AML05]. Therefore, in the
context of this dissertation, minimizing the communication is key to obtain energy-
efficiency. We will use communication as a proxy for energy consumption in the
performance metrics in this dissertation.

In [Mad03], Madden argues that the capacity of batteries is not expected to increase
by more than a small constant factor in the next ten years. Therefore, power will
remain to be the primary limitation in the near future. Moreover, the ratio between the
energy costs of communication and computation will even widen: While processors
will become more integrated, the physical costs of pushing radio waves over the air
are likely to remain constant [MFHH02]. Thus, communication will continue to
dominate power consumption in the foreseeable future.

Communication. Communication is difficult in wireless sensor networks. Radio
communication is lossy. For instance, [Mad03] mentions loss rates of 20% to 30% at
a range of about 10 meters for Mica2 motes. Similar numbers are given in [WTC03].
Thus, retransmissions are critical in order not to loose large parts of the data. Re-
transmissions in sensor networks build upon link-level acknowledgments, indicating
whether or not a message was received by the intended neighbor node.

Retransmissions allow to reliably communicate between neighboring nodes. How-
ever, common low-power radios enable communication ranges of only up to a few
hundred feet [Mad03]. Therefore, communication in sensor networks is usually
multi-hop. In particular, a node will often need to use neighboring nodes to relay
data to the base station. This leads to the problem of routing, i.e., of choosing a node
to do the forwarding. A particular problem in sensor networks is that signal strengths
between devices vary frequently. Thus, connectivities (links) are changing on a regu-
lar basis. Additionally, sometimes nodes fail. Due to these problems, routes in sensor
networks must continually be reinforced.

To accommodate the difficulties of communication in sensor networks, all of the
algorithms presented in this dissertation build upon state-of-the-art communication
protocols for sensor networks, e.g., [WTC03, KK00]. Among them, tree-based rout-

13

CHAPTER 2. BACKGROUND

ing is the most fundamental for data collection. We will introduce it in the next
section.

The networking community has made major efforts to cope with the aforemen-
tioned problems, i.e., a lot of work has gone into maintaining routes in light of chang-
ing connectivities and node failures and into providing reliability. To take advantage
of their results, we clearly separate the networking from data management and do not
tamper with the routes given by the networking layer. This is key to handling most of
the errors that can occur. We will discuss error handling throughout the dissertation
whenever mechanisms like retransmission and route maintenance do not suffice to
obtain correct query results.

It is interesting to note that multi-hop routing will likely continue to be used in
low-power networks in the foreseeable future, despite advances in communication
hardware. This is because the energy to transmit goes up by a factor between the
square and the cube of the distance between the sender and receiver, depending on
the environment. Thus, even if long range communication was possible, a multi-hop
topology is fundamentally lower power than a single hop topology.

Computation and Memory Constraints. Current generation sensor node plat-
forms feature very limited processors. This will likely change – Moore’s law suggests
that the energy cost per CPU cycle will continue to fall as transistors become smaller
and require less voltage. However, in the context of this dissertation, nodes perform
only simple computations.

Finally, the available RAM is very limited. The development of the size of the
memory is not that clear. Abadi et al. [AML05] argue that using large quantities of
RAM is problematic as it would significantly increase the power consumption. How-
ever, they also admit that future generations of devices will certainly have somewhat
more RAM than Mica2 motes. For instance, SunSPOTs substantiate this trend. The
state that is maintained by our algorithms is several orders of magnitude less than,
e.g., the 512 KB of RAM, that is provided by SunSPOTs.

2.2 Query Processing in Sensor Networks

This section introduces the fundamentals of query processing in sensor networks.
After motivating the need of a declarative interface, we establish the abstraction of a
sensor network as a relation (Section 2.2.1). It defines the semantics of queries. In
addition, we sketch the process of answering queries, before we turn to efficiently
processing the most important query operators in more detail (Section 2.2.2). Most
of the basics that are presented in this section are results from the TinyDB [Tin]
and Cougar [Cou] project. These projects were the first to build prototype query
processors for sensor networks.

14

2.2. QUERY PROCESSING IN SENSOR NETWORKS

2.2.1 Declarative Queries

Engineering applications that collect data from sensor networks is challenging. The
programming itself is difficult as the programming abstractions are low-level and
debugging is usually done via a few LEDs on the device. But even worse, if data
collection is implemented naively, the energy resources of the network are depleted
in a few days [MFHH03]. To obtain efficiency, the algorithms have to be highly
optimized and have to carefully manage energy and radio bandwidth. This requires
major engineering efforts.

Query interfaces are attractive to overcome these problems [DGM+04, YG03]. As
in traditional database systems, declarative queries describe a logical set of data that
an application is interested in, but do not describe the actual algorithms or operators
to collect this set. A query processor then takes care of efficiently collecting and
processing requested data within the sensor network.

Beyond hiding the process of how the relevant data is actually retrieved from the
application, declarative queries also have a performance advantage: The argument is
the same as in traditional databases. Since queries do not specify how data has to be
acquired, the system can choose a plan when it comes to evaluating a query. This is
an advantage as, in some cases, it depends on the current data (measurements) which
plan is the best. Thus, any hard coded algorithm to retrieve the data is suboptimal
from time to time. Chapter 4 will illustrate this situation for join queries. There, the
choice of the join algorithm depends on the current data.

To facilitate declarative queries, the network is seen as a (sensor) relation. For
homogeneous networks, i.e., networks of identical nodes, there is one relation. One
can perceive it as a relation with one attribute per sensor (e.g., temperature, humidity)
and one tuple per node. For heterogeneous networks, groups of nodes form different
relations. As the attributes reflect the sensors of a node, sensor relations typically
have less than ten attributes.

Terminology. We say that a node belongs to a sensor relation R if it contributes a
Tuple t to R.

Note that sensor relations are virtual relations. The term "virtual" means that the
relations are not actually materialized. The systems only generate the attributes and
rows referenced in active queries. The sole purpose of the relations is to settle the
semantics of queries.

Queries can be one-time or continuous: A one-time query asks for the current
snapshot, i.e., the virtual sensor relation at the particular instance of time – a snapshot
contains one tuple per node. A typical usage of one-time queries is an interactive
exploration. A continuous query reports snapshots periodically. Continuous queries
are prevalent, e.g., in monitoring and surveillance applications.

The prototypes of query processors, TinyDB and Cougar, consider queries con-
forming to the following structure1:

1The prototypes provide some further, non-SQL constructs, e.g., to store data within the network.

15

CHAPTER 2. BACKGROUND

SELECT Att_1, ..., Att_n, agg(Att_n+1), ..., agg(Att_m)
FROM Relation
{WHERE predicate(Att_i) AND ... AND predicate(Att_i’)}
{GROUP BY Att_1, ..., Att_n}
{HAVING predicate(Att_j)}
ONCE | SAMPLE PERIOD x

The semantics is the standard SQL semantics with extensions for temporal aspects
of sensor data: The SELECT-clause specifies required attributes and aggregates from
the relation which is given in the FROM-clause. Optionally, the WHERE-clauses can
narrow down the scope of the query. The GROUP BY-clause classifies tuples into
different partitions according to some attributes, and the HAVING-clause eliminates
groups by a predicate.
ONCE and SAMPLE PERIOD support one-time and continuous queries, respec-

tively: ONCE computes the result based on the current snapshot. Thus, SELECT
temp FROM Sensors ONCE returns one tuple from each node that belongs to
Sensors. SAMPLE PERIOD yields a continuous monitoring. It defines the time
interval between independent executions of the query. The query is executed every
x seconds on the most recent snapshot.

Finally, for continuous queries, it is necessary to indicate when to stop their execu-
tion. In TinyDB and Cougar, this can be done either at the time the query is issued or
at runtime [MFHH03]: Setting queries to run for a specific time period can be done
via a special clause (FOR-clause). Alternatively, when an application issues a query,
the system assigns the query an id, which is returned. Using the id, the application
can stop a query via a STOP QUERY command at any time.

2.2.2 A Query Processing Architecture

At a high level, query processing involves the following phases:

1. Dissemination of the query within the network.

2. Efficient collection of (preprocessed) data.

3. Computation of the final result at the base station.

In sensor networks, the base station cooperates with the nodes to compute the
result, i.e., parts of the processing is done inside the network (Step 2, ’preprocessed’
data). The base station computes the final result (Step 3). In particular, the sensor
nodes and the base station have different responsibilities. We now discuss query
processing in more detail.

They are very specific and knowing them is not needed to follow this dissertation. We refer the
interested reader to [Tin, Cou], in particular to [MFHH03].

16

2.2. QUERY PROCESSING IN SENSOR NETWORKS

A query is input at the base station where it is parsed just as in traditional database
systems. It is then optimized: As declarative queries include no specification of how
the required data is to be collected, the system can choose among different algo-
rithms (query plans) that have the same logical behavior. It chooses the one which is
expected to offer the best performance in terms of communication costs.

Example 2.1: Consider the following, simple query which collects the current sen-
sor readings from all nodes that observed a temperature of more than 24◦C:

SELECT *
FROM Sensors
WHERE temp > 24.0◦C
ONCE

One way to process this query is to collect the data from each node at the base
station and to evaluate the query there. Alternatively, the nodes can perform the
selection and send their data to the base station, if and only if the predicate evaluates
to true. Obviously, the latter plan results in lower communication costs and would be
chosen. �

In general, pushing selections and projections to the data sources is the best choice
in sensor networks. This is due to the optimization goal of minimizing communi-
cation. However, as mentioned above, for other operators the situation is not that
clear. Sometimes it depends on the current sensor readings how to process a query.
This is why query optimization is important in sensor networks as well. At a very
high level, query optimizers work by enumerating a set of possible plans, assigning
a cost to each plan based on estimated costs of each of the operators, and choosing
the lowest-cost plan. Note that query optimization occurs as much as possible at the
base station, as it can be computationally intensive.

After choosing a plan, the system disseminates the query within the network. Sub-
sequently, query results are propagated to the base station. In sensor networks, the
basic primitive for data dissemination and collection is a routing tree [WC01]. It is
a spanning tree rooted at the base station over the radio-connectivity graph of the
network.

Before we discuss the processing of the most important query operators within this
architecture, we describe the routing structure in more detail as it is fundamental for
this work.

Collection Trees. The query processor is responsible for maintaining the routing
tree, independent of active queries. ’Maintaining’ means to adapt the routing struc-
ture to changing connectivities and node failures. A routing tree is maintained in
a distributed fashion: Based on a periodic beaconing mechanism, each node main-
tains a parent that minimizes the distance to the base station. In a state-of-the-art

17

CHAPTER 2. BACKGROUND

Base Station

Figure 2.2: Routing tree as an overlay over the connectivity graph of the network

implementation, the distance is measured in ’number of expected transmissions’. In-
tuitively, this is the hop count weighted with the link quality2. This guarantees an
important property of routing trees: They are shortest path trees, with respect to the
distance metric. Figure 2.2 shows an example sensor network topology and a routing
tree. Dotted lines indicate nodes that can hear each other but do not use each other
for routing. Note that routing trees are highly irregular, i.e., the degree of the nodes
can vary arbitrarily (in practice, a node has about 0 to 15 children), and the tree is by
no means balanced.

The details of maintaining routing trees are as follows: The base station sends a
beacon. All child nodes that hear this beacon forward it on to their children, and so
on, until the entire network has heard it. Each beacon contains the distance from the
broadcaster to the base station. To determine their own distance to the base station,
nodes pick a parent node that minimizes the distance to the base station and add their
distance to the chosen parent. Actually implementing this protocol is complicated as
it requires to deal with routing loops, asymmetric links, and so on. For a complete
discussion of these issues, including the details of the distance metric, see [WTC03].

Routing trees have several properties that make them a good match to sensor net-

2More precisely, with the inverse of the link quality. The intuition is that the number of retrans-
missions increases with decreasing link quality. This "prolongs" a path in terms of the number of
expected transmissions.

18

2.2. QUERY PROCESSING IN SENSOR NETWORKS

works. In particular, there is only little state due to routing that has to be maintained
by each node. It is basically a list of neighbors along with their current distance to
the base station. Among these neighbors, a node chooses its parent. In addition, rout-
ing trees enable a simple mechanism to synchronize the communication. In order
to conserve energy, it is mandatory for the nodes to sleep for most of the time. The
problem then is for each node to know when to wake up to receive data and when
to forward data (that is, to know, at what time the parent is listening to its radio). If
communication is performed along a routing tree, a node can use its level within the
tree to determine when to wake up. Here, the level is simply the hop-count to the base
station. Briefly, the idea is to have "intervals" of time of a pre-defined length. Then,
a node at level l listens to the radio in the same interval in which a node at level l + 1
sends data. Nodes at levels other than l and l + 1 sleep during this interval. In the
subsequent interval, nodes at levels l − 1 and l communicate. [MFHH02] describes
the details of synchronizing nodes within a routing tree.

After having described query processing at a high level, we now turn to regarding
some operators in detail. In particular, we discuss those operators involved in the
queries presented in Section 2.2.1:

• Selection

• Aggregation

• Projection

The principle of achieving efficiency for these operators is to exploit their selec-
tivity. The idea is to push the operators into the network in order to reduce the data
volume as close to the sources as possible. For instance, in case of selections and
projections, the operators select a subset of the sensor relation to be relevant to the
query. By executing these operators on the nodes where the data originated, irrelevant
data is not at all sent.

Selection. Processing selections is straightforward and has already been described
in Example 2.1. Each node applies the selection predicates to its current tuple. It
discards the tuple if any of the predicates evaluates to false. In this case, the node
sends nothing.

Aggregation. For aggregates that can be incrementally maintained in constant
space, i.e., for so called distributive and algebraic aggregates, the idea is to compute
partial results within the routing tree. For instance, an average can be computed
incrementally by maintaining the sum and a count for the data seen so far. Each
node receives the pair (sum, count) from all of its children in the routing tree. Then,
it aggregates them, i.e., it computes the overall sum and count, including its own

19

CHAPTER 2. BACKGROUND

data. The node then forwards this aggregate, covering its entire subtree, to its parent.
Finally, the base station computes the overall average.

An idea that is related to distributing the computation of aggregates is packet merg-
ing (which some authors in the literature on sensor networks refer to as ’aggregation’
as well). Packet merging is based on the observation that sending multiple small
packets is more expensive than sending one large packet (considering the costs of
reserving the channel and the packet header overhead). Therefore, for collecting data
along a routing tree, a node receives the tuples of all of its children and merges them
into a large packet. This way, it pays the per-packet overhead only once.

Projection. The term ’projection’ is actually a misuse in sensor networks. Recall
that sensor relations are virtual relations. In particular, only those attributes are ma-
terialized, that are relevant to a query. Therefore, ’acquisition’ of the attributes (or
’sampling’/’reading’ the sensors) is more appropriate than projection3. Sampling the
sensors opens up a major potential for energy savings. In particular, reading the sen-
sors can consume a lot of energy, depending on the type of the sensor. For instance,
sampling the accelerometer is three orders of magnitude more expensive than obtain-
ing the current temperature on a Mica2 mote [MFHH03]. The following observation
is key to optimizing data acquisition on the nodes: Due to the conjunctions in the
query, if one of the predicates evaluates to false, then subsequent predicates need not
examine the tuple – and hence the expense of sampling any attributes referenced in
those subsequent predicates can be avoided. [MFHH03] discusses how to optimally
order the evaluation of predicates (and thus, the sampling of the sensors). Basically,
the idea is to weigh off the costs due to the type of the sensors involved and the selec-
tivity of the predicate. With respect to the costs of sampling, it is preferable to start
with those predicates that refer to cheap sensors. With respect to the selectivity, it
is better to first evaluate highly selective predicates, as in traditional databases. The
details of ordering the sampling of sensors are not required in the remainder of this
dissertation.

As a last mechanism which we briefly introduce in the context of query process-
ing, [MFHH03] proposes so called "semantic routing trees" (SRT). Their purpose is
to avoid distributing a query to nodes with non-satisfiable predicates over constant-
valued attributes. As an example, in our case of stationary sensor nodes, the location
attributes are constant-valued, i.e., the coordinates of a node. In principle, an SRT
is an index. It allows each node in the routing tree to decide which attribute values
occur in its subtree. Based on this knowledge, the node can refrain from forwarding
a query, if all of its descendants are known to not satisfy a predicate.

3As a remark, note that for obtaining the sensor readings that are relevant to a query, the system
needs to assure that each node reads its sensors at (approximately) the same instance of time. This
is due to the snapshot semantics of queries.

20

2.3. DISCUSSION

2.3 Discussion

In this chapter, we introduced our notion of a sensor network. In particular, we
discussed how the hardware affects data collection in sensor networks: We derived
the optimization goal of minimizing energy consumption. In addition, the subtleties
of wireless communication affect our work – choosing routes is very complex and has
received substantial attention by the networking community. Our algorithms avoid
modifying the routes that are given by the routing layer.

We also introduced the fundamentals of query processing in sensor networks. The
results are based on two projects, TinyDB and Cougar, that were the first to develop
prototypes of query processors. In particular, we presented the semantics of queries in
sensor networks, which is based on an abstraction of the network as a virtual relation.
We presented routing trees which are the basic primitive for data dissemination and
collection. Finally, we discussed the idea of pushing operators into the network in
order to reduce the data that is involved in the query as early as possible. This idea
has been illustrated for selections, projections and aggregations.

In contrast, existing systems do not support join operations well. However, the
join is important as it allows for combining data from different nodes, as we have
motivated in Chapter 1. Cougar does not feature an in-network implementation of
joins. The authors argue that an in-network join can sometimes be beneficial [YG03].
However, no details are provided. TinyDB allows to join tuples that are located on
the same node only. Each node can materialize its sensor data for a specified interval.
TinyDB provides a join operation between two materializations or a materialization
and the current data.

In addition, the idea of discarding tuples as early as possible does only result in
savings if some of the tuples actually are irrelevant to a query. However, as we have
motivated in Chapter 1 as well, there are important scenarios in which applications
simply consolidate the sensor relations without any a priory selection. For such non-
selective queries, the data volume is high and thus, query processing is expensive.

In the following, we address these issues, starting with computing joins in the next
chapter.

21

CHAPTER 2. BACKGROUND

22

3 Join Processing in Sensor
Networks

We now turn our attention to the first integral part of this dissertation: We consider
the situation that applications have a well-separated interest, i.e., only specific parts
of the measurement data are relevant. Thus, the queries issued by such applications
are usually selective. In Chapter 1, we used event detection in industrial settings as
an example. There, certain patterns in the data indicate faults that require human
intervention.

For such applications, queries are not only used to get the current sensor readings
out of the network. As in traditional databases, queries are also used to search for the
relevant data within the massive amounts of sensor readings, and to discard irrelevant
data from the query result. This yields selectivity.

To acquire relevant data, the application specifies the data of interest by means of
a classical Select-Project-Join (SPJ) statement. Among these operators, processing
selections and projections is well understood. Efficient implementations exist in data
management systems for sensor networks such as TinyDB and Cougar, as discussed
in Chapter 2. In contrast, efficiently processing join queries in sensor networks is an
open problem. As motivated in Chapter 1, the join is needed to relate sensor readings
from different nodes to each other. This chapter provides the foundations of our work
on join processing. We first state the problem and its intricacy in detail (Section 3.1).
We then review related approaches and illustrate why they are not adequate as a
solution to the join-processing problem (Section 3.2).

3.1 The Problem: "Join Processing in Sensor
Networks"

In this section, we explain why join processing is more difficult than handling pro-
jections and selections. We then formally state the join-processing problem, that our
algorithms in Chapters 4 and 5 address. Finally, we derive lower bounds on the com-
munication costs for this problem. Knowing the lower bounds will be important for
understanding a number of design decisions of our algorithms.

23

CHAPTER 3. JOIN PROCESSING IN SENSOR NETWORKS

3.1.1 The Difficulty of Processing Joins

For query operators such as selection and projection, communication can be mini-
mized based on the following key property: A node can decide locally that some data
is not required for the result and can refrain from sending it. For the join, the picture
is different: A node does not know if there exists a join partner for a tuple some-
where in the network. Most notably, tuples which have to be joined can be arbitrarily
distributed. Thus, matching tuples is communication intensive.

As an illustration, consider the following example, which is based on one of the
queries from Chapter 1 – for convenience, we have included the query in the example:

Example 3.1: The following query acquires data from nodes that observe similar
temperature and humidity conditions:

SELECT A.*, B.*
FROM Sensors A, Sensors B
WHERE |A.hum - B.hum| < 2%
AND |A.temp - B.temp| < 0.3◦C
AND A.id != B.id
SAMPLE PERIOD 30s

From the point of view of a single node, its join partners can be anywhere in the
network. Consider the alternative: If the query contained an additional join condition
such as distance(A.x, A.y, B.x, B.y) < 40m, the location of potential
join partners of a node would be restricted. Most notably, potential join partners are
known to be located on nearby nodes. This can obviously be exploited by a node
to limit the search for join partners, and thus to reduce the communication costs of
determining if its tuple joins. In contrast, computing the join in the general case
requires a global matching of tuples, i.e., it requires matching all pairs of tuples. �

Note that the global matching is inherent in the problem – it stems from the se-
mantics of the join operator. This makes efficient join processing difficult in sensor
networks. Prior join approaches avoid the costs involved in a global matching by
restrictions in the queries or in the locations of the input tuples within the network.
For instance, REED [AML05] supports the comparison of sensor data to pre-defined
patterns, given as a static, external relation. [YLOT07] presents a join method for
tracking rare events, i.e., one of the relations must contain a few tuples only. In addi-
tion, there are methods that restrict the placement of the tuples involved. For instance,
some require the tuples to be located in small regions that are close to each other, e.g.,
[BB04, CNS07, YLZ06] (cf. Section 3.2). Such specific requirements restrict appli-
cability. In particular, no join method we are aware of can efficiently process queries
in the style of Example 3.1. Our focus in turn is on efficient general-purpose join
methods, as introduced subsequently.

24

3.1. THE PROBLEM: "JOIN PROCESSING IN SENSOR NETWORKS"

3.1.2 Problem Statement

We call a join method "general-purpose" if it fulfills the following requirements:

Requirement 3.1 (Join Conditions)
A general-purpose join method must be able to handle any number and any kind of
θ-join conditions.

This is because join queries can easily have more than one join condition. Any at-
tribute can appear in a join condition. In particular, the θ join is the most general join
operator that is defined in SQL1. We consider standard θ-join conditions, involving
{≤, <,>,≥, =, 6=}, without any further restrictions. For instance, as in Example 3.1,
the conditions may contain absolute value operators to realize similarity joins.

Requirement 3.2 (Tuple Distribution)
A general-purpose join method must be able to efficiently handle queries with arbi-
trary placements of the tuples involved.

Due to Requirement 3.1, a general-purpose join method has to support a global
matching. Requirement 3.2 captures that the join method should still provide effi-
ciency, even if the query demands this global matching.

A general-purpose join method complements the existing, specialized ones which
are geared towards a certain scenario. While their performance is very good when
they are applicable, the underlying assumptions are strict and are frequently not met.

We now state the structure of general-purpose join queries formally:

SELECT A.attrs, B.attrs
FROM Relation_1 A, Relation_2 B
WHERE predicates(A) AND predicates(B)
AND join-expr(A.join-atts, B.join-atts)
AND ... AND join-expr(A.join-atts, B.join-atts)
SAMPLE PERIOD x | ONCE

We require the join conditions to be arbitrary θ-join expressions over the join at-
tributes. That is, we do not restrict the kind or number of join conditions. In the
special case of a self-join, the FROM clause contains the same relation twice. The
queries may contain WHERE-clauses to narrow down the scope of the query. As de-
scribed in Chapter 2, the corresponding selections are executed locally at the nodes
and thus prior to the join. After executing the query, the join result is available at the
base station.

Currently, the only join method that supports arbitrary join queries is the "external
join":

1SQL allows for user-defined functions to extend the set of operators [EN07]. These can be used
in join conditions as well and can thus extend the set of possible join operators. By considering
θ-joins, we focus on the set of pre-defined join operators.

25

CHAPTER 3. JOIN PROCESSING IN SENSOR NETWORKS

Definition 3.1 (External Join)
The external join sends the tuples from the entire input relations to the base station

where the result is computed. It uses packet merging to aggregate different tuples
as they move up the routing tree – this reduces the number of packets. Finally, it
performs projections and selections as early as possible.

The problem with the external join is that it requires sending many tuples that do
not contribute to the result, and efficiency is low. Example 3.1 serves as an illustra-
tion. If there are only a few tuples with similar temperature and humidity values, the
external join sends a large number of tuples that are not needed.

Intuitively, an optimal join algorithm, i.e., a join algorithm that minimizes commu-
nication costs, would refrain from sending irrelevant data. This observation motivates
the following section: We will derive lower bounds on the communication costs of
processing join queries. The corresponding discussion includes some insights which
will guide the design of our join algorithms.

3.1.3 IDEAL Join Processing

The following concept ("IDEAL") lower bounds the communication costs of a join:
Firstly, each node discards its tuple if it does not join. Then, the remaining tuples are
sent to the base station where the join is computed.

IDEAL is infeasible in practice: Each node would have to know if its tuple joins.
This depends on the data of the other nodes and is actually the result of the global
matching that we discussed earlier. Thus, IDEAL really is just a lower bound.

In the following, we formally define IDEAL and provide an intuition why IDEAL
lower bounds the communication costs of join processing. A thorough theoretical
justification is given in Appendix A. However, the intuitions are sufficient to under-
stand the design of our algorithms which we present in Chapters 4 and 5.

Definition 3.2 (IDEAL)
IDEAL refers to the following process:

1. Discard non-joining tuples at the sources.

2. Collect the remaining tuples at the base station.

3. Join the received tuples at the base station to compute the result.

Step 1 is based on the following simple observation: In theory, we can divide each
input relation into the tuples that join and those that do not. The non-joining tuples
do not influence the result in any way. Thus, it is cost-efficient to not send them.

A subsequent question is where to join the remaining input tuples. After discarding
tuples that do not join, it is optimal to perform the join at the base station. Although

26

3.2. RELATED WORK ON JOIN PROCESSING

surprising at first glance, this is actually intuitive: After discarding non-joining tuples,
the join increases the cardinality, i.e., there are more tuples in the result than in the
input, except for pathological cases. This leads to Steps 2 and 3. Note that Steps 2
and 3 correspond to the external join, except that they involve only joining tuples.

Having introduced the join-processing problem along with some insights on join
processing, we subsequently discuss related works. In particular, we justify the state-
ment that their applicability is limited by pointing out in which scenarios they are
efficient.

3.2 Related Work on Join Processing

There is extensive work on join processing in the database literature. In particular,
our problem is to process a join in a distributed environment where the relations are
horizontally fragmented. We therefore review join processing in distributed envi-
ronments in Section 3.2.1. It turns out that traditional approaches do not apply to
sensor networks. As a consequence, join processing in sensor networks has evolved
as a topic of its own. We survey approaches specific to sensor networks in detail in
Section 3.2.2.

We leave aside approaches for join processing that do not focus on the costs of
data access. These consider different problems. For instance, there is work on paral-
lel join processing, e.g., [RLM87, LST91]. The question there is how distribute the
processing to multiple processors. In particular, the problem is how to split up the
computation while guaranteeing not to miss a tuple in the join result. The solutions
usually are to hash or to sort the relations. Also, work on joins over data streams stud-
ies a different problem, e.g., [DGR03, HAE08, KNV03]. The focus is on designing
non-blocking operators that can process infinite streams.

3.2.1 Distributed Join Processing

Traditional techniques from distributed databases assume each of the relations to be
fragmented across a few site(s). In contrast, sensor relations are highly fragmented
– each node has a single tuple. Therefore, the corresponding join methods do not
apply to sensor networks. Subsequently, we will illustrate this point based on the
solution from INGRES and System R*. Other systems such as SDD-1 [BGW+81]
do not consider fragmentation at all. To use their join methods, each of the relations
would have to be consolidated at a single site. However, this is expensive in sensor
networks and is what the corresponding approaches actually try to avoid.

INGRES [ESW78] can handle fragments. For joining fragmented relations, IN-
GRES checks whether it is advantageous to use more than one processing site. In
more detail, INGRES first restricts the set of potential processing locations to those
sites that store fragments of the larger relation in the join. Among these sites, the

27

CHAPTER 3. JOIN PROCESSING IN SENSOR NETWORKS

location with the largest amount of data is the default join location. To determine if
any other site within the set should be used, INGRES applies a heuristic that is based
on the following observation: If a site is chosen as a processing site, it has to receive
the entire other (smaller) relation. Further, if the site stores a fragment of the smaller
relation itself, it also has to send this fragment to the other processing sites. In con-
trast, if the site is not chosen, it does not need to receive any data. As before, it has to
send its fragment of the smaller relation to all processing sites. Additionally, it has to
send its fragment of the larger relation to one of the processing sites. The heuristic is:
If the amount of data that the site must receive is larger than the additional amount of
data it would have to send if it were not a processing site, it is chosen.

This heuristic makes sense given that the relations are fragmented among a small
number of sites and thus, the sites have a substantial part of the relations. In contrast,
in sensor networks, each node has a single tuple. For this setting, the heuristic devises
a single processing location. Note that there is no obvious extension to our scenario:
The whole idea of comparing the data to send/receive does not apply if each node has
exactly one tuple. As a final remark, observe that the heuristic ignores the costs of
transmitting the data to the result site (base station in our case).

The implemented version of R* does not support fragmentation [OV99]. However,
the algorithm that has originally been described in [SA80] does discuss the handling
of fragments. The idea is that a query on a table T which is horizontally fragmented
into n fragments can be transformed into a union of that query on each of the frag-
ments (Q(T) → UNION(Q(T1), ..., Q(Tn))). Then, the optimizer considers each
of the subqueries separately.

This idea assumes that the costs of the subqueries are independent of each other.
We briefly illustrate why the independence assumption is violated for joins. Assume
that we apply the preceding idea in our context, which is a join on two highly frag-
mented relations. This effectively means to consider the join of each pair of nodes
separately. In particular, for a network of n nodes, we would devise on the order of
n2 (optimal) join locations. Then, each tuple is sent to up to (n − 1) sites which is
prohibitively expensive. The problem is that there is the potential of sharing tuples
for multiple subqueries, if a number of tuples is sent to the same site. This is why
we cannot consider the join locations in isolation, i.e., why the subqueries are not
independent of each other.

We remark that [SA80] did not propose to integrate this idea with processing joins.
In particular, the paper does not say how to handle joins if the relations are frag-
mented.

The preceding papers reflect early work on distributed query processing. Handling
fragmentation naturally was not the first issue to address. However, a few years later,
it was realized that communication is not the bottleneck of the processing time – in
contrast to what early work assumed. Thus, fragmentation was not an issue anymore.
Simply consolidating the relations is an option in this context.

28

3.2. RELATED WORK ON JOIN PROCESSING

3.2.2 Join Processing in Sensor Networks

We already discussed in Chapter 2 that both TinyDB and Cougar initially did not
support join operations. However, Abadi et al. extended TinyDB with the ability
to support joins between sensor data and static tables built outside the sensor net-
work [AML05]. Their system, REED (Robust and Efficient Event Detection), targets
the detection of events that are specified as tuples of a static external relation. The
basic idea of REED is to distribute the static relation within the network such that
each node can access it at little costs. As further contributions, the authors describe
a number of interesting optimizations. Most notably, if the relation is too large to fit
into the memory of a single node, REED allows to store the relation among a group
of nodes that are within communication distance to each other. While this latter re-
quirement is important for accessing the static relation at little costs, it restricts the
size of a group. If even a group cannot store the relation, REED proposes to distribute
so called ’empty range descriptions’ (ERDs). The idea is to capture parts of the join-
attribute space that do not join. This allows to discard non-joining tuples within the
network. In particular, ERDs are distributed based on a caching mechanism. This
way, the nodes can access the most useful ERDs at little costs. This design exploits
that one of the relations is static. In contrast to REED, our problem is to compute
joins over sensor relations.

The difficulty of joins over sensor relations stems from the semantics of the op-
erator. The join relates tuples from arbitrary locations to each other. This makes
the processing communication-intensive. The following approaches avoid a global
matching by specializing to specific types of queries – at the expense of applicability.

Join methods for specific types of queries. Yang et al. [YLOT07] investi-
gate the tracking of rare events. Due to the tracking aspect, the tuples to be joined
stem from different points in time, i.e., the query is a window self-join. The algo-
rithm involves two phases: In the first phase, one of the relations is materialized at
the base station. Then, similarly to REED, it is distributed to serve as a filter. As a
main contribution, the authors show how to suppress distributing the filter relation to
achieve an efficient continuous execution. This is possible if it is already contained
(in part) in an earlier filter.

An important requirement for this approach to be efficient is that one of the rela-
tions is very small. In the evaluation, it consisted of a single tuple. This is because
it is materialized at the base station as a first step. In contrast, consider the query
in Example 3.1. It does not restrict any of the relations. Thus, the first step would
consolidate the entire relation and already incurs the costs of the external join. In
contrast, [YLOT07] considers tracking rare events. Thus, one of the relations is sup-
posed to express this rare event, and the assumption that it is small is reasonable.
Beyond that, their approach is restricted to one join attribute besides the mandatory
temporal one. Our goal is not to impose such constraints.

29

CHAPTER 3. JOIN PROCESSING IN SENSOR NETWORKS

Yiu et al. [YMB07] consider spatial joins. Their approach joins tuples from neigh-
boring nodes, i.e., the join condition is distance(A,B) ≤ d where d is less than the
communication range. The idea is that each node of Relation A broadcasts its tuple.
Each node of Relation B performs the join and sends the result to the base station.
In addition, the authors propose a number of extensions. For instance, they propose
a protocol for a distributed join processing if the join condition does not restrict the
distance to one hop but to a small number of hops. However, the evaluation indicates
that their solutions can reduce the communication costs mainly in the case where the
distance is less than the communication range. In contrast, our goal is to allow for
arbitrary join conditions and tuple distributions.

Solutions that do not restrict the queries actually have to perform the global match-
ing that the preceding approaches avoid by restricting the queries. The following
approaches do so by computing the join at a central location inside the network.

Centralized Join Approaches. We first introduce the centralized approaches
before pointing out their disadvantages. Bonfils et al. [BB04] study long-running
join queries. They reduce the problem to a task-assignment problem. The approach
starts by arbitrarily mapping the operators from the query onto the nodes in the sensor
network. Then, the idea is to stepwise adapt the placement to minimize the commu-
nication costs. In more detail, the authors distinguish ’active’ nodes from ’tentative’
nodes: Active nodes are those that currently execute an operator. Tentative nodes
are their neighbors. The tentative nodes estimate the costs of executing the operator
and periodically compare their estimates to the costs incurred at the active node. The
operator is relocated if it is cheaper to perform it on one of the tentative nodes.

Chowdhary et al. [CG05] propose an approach to process sliding-window joins
inside the network. The authors restrict the set of join locations to not contain the
base station. Under these circumstances, they present an approach for executing
the join within an central region inside the network. In particular, their approaches
collect the tuples of two relations, R and S, within a region around the centroid of
the relations. Again, we need a region, i.e., more than one node, due to memory
constraints. Whenever a tuple of R arrives, it is compared to all of the tuples in S
(and vice versa). Due to the sliding-window semantics, the tuples can be expired
after some time. As a main contribution, the authors reason about the optimal shape
of the region. [PG06] optimizes the approach for range join and equi-joins. While
in [CG05], a new tuple has to be sent to all nodes in the region to compute the join
result, the idea in this follow-on work is to organize the tuples within the region by
means of a hash or index data structure. Then, a new tuple has to be sent to one or a
few nodes only as identified by the data structure.

Coman et al. [CN07] address the data flow for a centralized processing in order
to meet the memory constraints of the nodes. In detail, the authors consider com-
puting a join between two regions of the network. The algorithm first elects a coor-

30

3.2. RELATED WORK ON JOIN PROCESSING

dinator within each region and establishes a routing tree with the coordinator as the
root. Then, a join region is established. In particular, the join region also identifies
a coordinator. The coordinators are responsible for exchanging data between differ-
ent regions. First, the tuples of the larger region are stored within the join region.
Afterwards, the coordinator of the join region pulls the tuples from the other rela-
tion/region. In particular, the coordinator pulls each of the packets separately as the
processing within the join region incurs substantial communication. This is key to
assuring that a packet is processed before the next one arrives.

These centralized approaches are restricted in their applicability to very specific
distributions of the input tuples in the network. In Appendix A, we study theoretically
in which scenarios a centralized approach is more efficient than the external join.
The results are that the input relations have to stem from two small regions. This
corresponds to the setting that [CN07] considers. In addition, the regions need to be
close to each other, compared to their distance to the base station, and the selectivity
has to be very high. In particular, for queries such as Example 3.1, which do not
restrict the input relations, the external join is much more efficient than any of the
centralized variants.

Decentralized Join Approaches. The centralized approaches compute the re-
sult inside the network. We know of only one approach that computes the result
inside the network but not at a central location: Zhu et al. [ZGT09] decentralize the
processing. To do so, one of the relations is distributed along a line of nodes. Then,
the other relation is sent along a perpendicular line such that each pair of tuples meets.
This idea requires a grid structure of the network. As their main contribution, Zhu et
al. discuss how to establish such a grid structure as an overlay, if the topology is not
a grid. Finally, the authors present an optimization that restricts the distribution of
tuples and the probing, if the join condition is distance(A,B) ≤ d. The most impor-
tant motivation of this work is to balance the load of the nodes: For tree-based data
collection, the nodes close to the root are the most loaded. The distributed approach
by Zhu et al. overcomes this problem, if the selectivity is very high, i.e., if the result
is almost empty. Otherwise, the costs of sending the result to the base station domi-
nate the processing costs. Also, the overall costs are higher than those of the external
join because the routes are longer and the distributed approach cannot exploit packet
merging. This is true even if the result is empty. All in all, even if the load-balancing
is worth an increase in the overall costs, this approach achieves a load distribution
only if the cardinality of the result is extremely small. Thus, the applicability of this
approach is severely limited.

Finally, some approaches share the idea of IDEAL which is to discard tuples to
achieve efficiency. They all build upon the semi-join idea and use the join-attribute
values to find out which tuples join.

31

CHAPTER 3. JOIN PROCESSING IN SENSOR NETWORKS

Semi-Join Based Filtering. With respect to join processing, the filtering idea
has been explored originally in the context of distributed databases. The semi-join
filters one of the relations based on the join-attribute values of the other relation. This
idea has been extended to filtering all of the relations ("N-way semi-join") [RK91].
We already discussed join processing in distributed databases. The algorithms are not
applicable in sensor networks due to the fragmentation.

For sensor networks, there are two approaches that apply a filtering. In [CNS07],
Coman et al. present a semi-join approach where the join-attribute values of one
of the relations are broadcast over the nodes of the other relation to discard non-
joining tuples. Then, the join-attribute values of the remaining tuples are used to
discard non-joining tuples in the first relation. Finally, the remaining tuples of both
relations are sent to the base station where the result is computed. However, simply
collecting the tuples of one relation and broadcasting them over the entire nodes of
the other relation is communication-intensive – except if both relations correspond to
very small regions. In particular, this approach suffers from the same restrictions as
the centralized ones. As a further contribution, Coman et al. [CNS07] compare this
approach to a number of others, in particular to the external join. In addition, as none
of their methods outperforms the others in all scenarios, they present a cost-based
model to select among different approaches.

Yu et al. propose an approach that also focuses on joining two regions [YLZ06].
In both regions, a histogram synopsis is constructed. The synopses are then sent to
a central location where a semi-join is computed. In addition, for each joining tuple,
the authors propose to compute the optimal join location(s). However, as discussed
in Appendix A, this location often is the base station. The problem is that computing
optimal join locations requires collecting location information if the coordinates are
not part of the join attributes. This is a huge overhead. In addition, the optimal loca-
tions also have to be disseminated. Finally, [YLZ06] does not say how to construct
a compact histogram to compute a multi-dimensional join. All in all, the approach
only yields energy savings if two small regions are joined and if the query is highly
selective.

To conclude, there currently is no efficient general-purpose join method. All prior
approaches require restrictions with respect to the type of queries or the distribution
of the input tuples. In particular, we highlighted in this section why for a query as
given in Example 3.1, the external join outperforms all of the prior join approaches
and is state-of-the-art.

3.3 Summary

In this chapter, we illustrated the difficulty in join processing – it stems from the se-
mantics of the operator: The join relates tuples from arbitrary locations to each other.
Therefore, in contrast to projections and selections, a node cannot decide locally if

32

3.3. SUMMARY

its tuple contributes to the join result.
Current join approaches avoid a global matching by specializing to specific types

of queries or placements of the input tuples. This comes at the expense of appli-
cability and motivates our focus on general-purpose join methods. The latter avoid
such specializations. Finally, we introduced IDEAL, a concept that lower bounds the
communication costs for the join-processing problem. IDEAL will justify some of
the design decisions in the subsequent chapters.

We now focus on our solutions to the join-processing problem. In particular, in
Chapter 4, we introduce SENS-Join, a general-purpose join method. While SENS-
Join can be applied to one-time queries as well as to continuous join queries, it actu-
ally targets one-time queries. For continuous join queries, we show in Chapter 5 how
to further reduce the costs, coming close to the lower bound.

33

CHAPTER 3. JOIN PROCESSING IN SENSOR NETWORKS

34

4 Efficiently Processing
General-Purpose Joins

In this chapter, we present SENS-Join, an efficient general-purpose join method for
sensor networks. SENS-Join can process any kind of join query (e.g., equi-joins,
similarity-joins, or theta-joins) over any number of join conditions.

We start the description of SENS-Join with an overview in the following section. It
highlights the contributions of SENS-Join and outlines the structure of the remainder
of this chapter. Up front, we briefly introduce two simple join queries, which will
serve as examples throughout our presentation of SENS-Join:

Example 4.1: The first query returns the minimal distance between two nodes with
a temperature difference of more than ten degrees:

SELECT MIN(distance(A.x, A.y, B.x, B.y))
FROM Sensors A, Sensors B (Q1)
WHERE A.temp - B.temp > 10.0
ONCE

�

Example 4.2: The second query checks the similarity of the humidity and pressure
readings of two nodes that observe a similar temperature. As a further join condi-
tion, the corresponding nodes have to have a minimum distance of 100 m (e.g., the
application wants to exclude the influence of spatial correlation on the result):

SELECT |A.hum - B.hum|, |A.pres - B.pres|
FROM Sensors A, Sensors B
WHERE |A.temp - B.temp| < 0.3 (Q2)
AND distance(A.x, A.y, B.x, B.y) > 100
ONCE

�

4.1 Overview of SENS-Join

To obtain efficiency, SENS-Join incorporates the idea of IDEAL: It discards non-
joining tuples at the sources, i.e., SENS-Join avoids shipping tuples that do not join.
As discussed in Section 3.1.3, the problem in turning this concept into a practical

35

CHAPTER 4. EFFICIENTLY PROCESSING GENERAL-PURPOSE JOINS

approach is to supply each node with the knowledge if its tuple joins. SENS-Join
solves this problem by introducing a precomputation which identifies the tuples that
join. In a subsequent final-result-computation step, SENS-Join sends joining tuples
to the base station and computes the join. Most notably, this final result computation
actually corresponds to IDEAL. At a high-level, the main contribution of SENS-Join
is the design of the precomputation: It is highly efficient in order not to exhaust the
savings due to discarding non-joining tuples.

To accomplish an efficient precomputation, we base it on a well known idea from
distributed databases, the (N-way) semi-join [RK91]: A relation is filtered based on
the join-attribute values of the other relations. However, semi-join algorithms as pro-
posed earlier [OV99] are not applicable here: Relations in sensor networks are highly
distributed. Applying a conventional semi-join algorithm requires consolidating the
relations at one or a few (2, 3) site(s). In sensor networks, this is prohibitively expen-
sive. Prior attempts to deploy the semi-join idea in sensor networks [CNS07, YLZ06]
have not resulted in a general-purpose solution (cf. Section 3.2). So far, it is unclear
how to realize a semi-join approach in sensor networks.

SENS-Join addresses this problem. At a high level, the precomputation consists of
two steps: (a) The join-attribute values of both relations are sent to the base station
where they are joined in order to create a join filter. The join filter specifies which
values will be in the result. (b) The join filter is disseminated in the network. This
precomputation is followed by the final result computation in which all tuples that
match the join filter are sent to the base station where the result is computed.

Our main innovations are the following features, which are key to an efficient pre-
computation, despite the need to match each pair of join-attribute values:

• Information Flow: If the precomputation is realized naively, each node is in-
volved multiple times in processing a join query. SENS-Join comprises two
mechanisms that achieve to involve most of the nodes only once – this signifi-
cantly reduces the number of overall transmissions: "Treecut" sometimes sends
complete tuples instead of join-attribute values to avoid their transmission in a
later step. "Selective Filter Forwarding" is pruning the filter progressively dur-
ing its dissemination, depending on the data distribution.

• Quadtree Representation of Precomputation Data: We propose a new com-
pact representation of the join-attribute values. These are sent during the pre-
computation. In SENS-Join, the data used in the precomputation is indepen-
dent of the tuples used for the final result computation. We can thus reduce
their accuracy without sacrificing correctness of the final result. In addition,
our mechanism exploits spatially correlated sensor readings by encoding join-
attribute values using a spatial index. Compact representations like Bloom
Filters cannot be applied here since they do not allow for evaluating arbitrary
join conditions.

36

4.2. THE SENS-JOIN APPROACH

We extensively evaluate the performance of SENS-Join. Our results indicate that
SENS-Join can reduce the overall energy consumption by more than 80% compared
to the state-of-the-art. It can reduce the per node energy consumption of the most
loaded nodes by more than an order of magnitude.

Chapter Outline. In Section 4.2, we describe SENS-Join in a top-down man-
ner. In particular, we present the mechanisms Treecut and Selective Filter Forward-
ing, which achieve an efficient information flow. In Section 4.3, we describe the
quadtree representation which yields a compact encoding of the join-attribute values.
Finally, we present an experimental study in Section 4.4 that highlights the efficiency
of SENS-Join.

4.2 The SENS-Join Approach

To enable a precise description of SENS-Join, we start with defining "join-attribute
tuples". A join-attribute tuple is the data of a node that is involved in a semi-join:

Definition 4.1 (Join-Attribute Tuple)
Let Q be a join query. A join-attribute tuple T’ is a tuple that results from the projec-
tion of a tuple T on the join attributes of Q, i.e., T ′ = πJoinAttr(T).

Example 4.3: For Query Q2, a join-attribute tuple contains the X- and Y-coordinates
and the temperature. �

We now present SENS-Join in detail. To achieve efficiency, SENS-Join incorpo-
rates IDEAL as a second step. In the following, we first present our approach before
substantiating the design in Section 4.2.4. To separate concerns, we present SENS-
Join presuming a robust operation of the network. We address node failures and
network-related problems that cannot be solved by the routing layer in Section 4.2.5.

Suppose that the query has already been distributed. Then, at a high level, SENS-
Join comprises the following steps:

1. Precomputation:

a. Join-Attribute-Collection: Collect the join-attribute tuples of all relations at
the base station and join them.

b. Filter-Dissemination: Distribute a join filter specifying which tuples join.

2. Final-Result-Computation:
The nodes in question send their complete tuples to the base station where the final
result is computed.

37

CHAPTER 4. EFFICIENTLY PROCESSING GENERAL-PURPOSE JOINS

Finding out which nodes contribute to the result requires the join-attribute tuple of
each node. The base station collects them and joins them (Step 1a). The join-attribute
tuples that have a partner form the "join filter", i.e., the filter is a set of join-attribute
tuples. It lets a node decide if it contributes to the result by checking whether the
filter contains its join-attribute tuple. Therefore, we need to disseminate the filter in
the network (Step 1b). Finally, the base station collects those tuples that actually join
and computes the result.

As our main contribution, SENS-Join features several mechanisms that reduce the
communication costs of the precomputation significantly: Treecut (cf. Section 4.2.1),
Selective Filter Forwarding (cf. Section 4.2.2) and a compact representation of the
join-attribute tuples (cf. Section 4.3) used in Steps 1a and b.

We now provide a top-down description of SENS-Join. SENS-Join is a distributed
process. Its implementation is event-driven, as explained below. Figure 4.1 presents
SENS-Join from the point of view of a single node.

1 SENS-Join
2

3 //At the end of the query’s dissemination:
4 sleepUntilNextStep(); //wait for beginning of SENS−Join
5

6 Join-Attribute-Collection:
7 ReceivedData = collectMessagesFromChildren();
8 T = constructTupleFromLocalSensorData();
9 //returns T = NULL if (T /∈ A) and (T /∈ B)

10 ForwardJoinAttrValues(ReceivedData, T); //cf. 4.2.1
11 sleepUntilNextStep();
12

13 Filter-Dissemination:
14 JoinFilter = receiveFromParent();
15 ForwardJoinFilter(JoinFilter); //cf. 4.2.2
16 sleepUntilNextStep();
17

18 Final-Result-Computation:
19 ReceivedData = collectMessagesFromChildren();
20 ForwardCompleteTuples(ReceivedData, T); //cf. 4.2.3

Figure 4.1: SENS-Join, at each node

The node wakes up three times altogether, at the beginning of each step. As de-
scribed in Chapter 2, a node knows when its children will send their data for the
Join-Attribute-Collection – this is due to the synchronization in tree-based data col-
lection. The node sets the wakeup-time accordingly and goes to sleep (Lines 3, 4).
When waking up the first time (Line 6), a node receives the join-attribute tuples of

38

4.2. THE SENS-JOIN APPROACH

its children (Line 7). It then uses its own sensor readings to generate the Tuple T
(Line 8). The procedure returns NULL if the node does not belong to either of the
Relations A and B, or if T does not meet the selection predicates in the WHERE-
clauses. Finally, the node forwards the join-attribute tuples received along with its
own join-attribute tuple to its parent (Line 10, cf. Section 4.2.1). This requires pro-
jecting its tuple T onto the join attributes. The projection is part of the forwarding
procedure and is not shown in Figure 4.1. A node then sleeps until the beginning
of the Filter-Dissemination step (Line 13). Now the join filter is disseminated in the
network along the routing tree. A node simply receives (Line 14) and forwards the
filter (Line 15, cf. Section 4.2.2). As a final step (Line 18), the complete tuples are
forwarded along the routing tree (Line 20, cf. Section 4.2.3) to the base station. There
the query result is computed.

4.2.1 Collecting Join-Attribute Tuples

Which data does a node send in this step? The tuple of a node might belong to either
Relation A, B, or none of the relations. Thus, a node contributes a join-attribute tuple
or nothing. For self-joins it is also possible that the node belongs to both relations.
However, it still sends one join-attribute tuple only, consisting of the join-attribute
values from both relations. The reason is that the join attributes usually overlap (e.g.,
they are identical in Q1 and Q2). So we avoid sending attribute values redundantly.
In summary, each node contributes at most one tuple.

To assess the design of the Join-Attribute-Collection step, suppose that join-at-
tribute tuples are collected in a straightforward way. Each node, starting at the leaves
of the routing tree, collects these tuples from its children and forwards them to its
parent along with its own tuple. A leaf node solely sends its join-attribute tuple
T’. However, the difference to sending the complete tuple is only a few bytes. For
instance, the difference of T - T’ in Q2 is two attributes. Assuming that each attribute
requires two bytes, this corresponds to sending only four bytes less. The important
observation is that the energy savings due to sending T’ instead of T are negligible1.
Depending on the number of children, this remains true at the next level of the tree.
The problem with these minor savings near the leaves is that at the same time we risk
the costs of sending an additional packet in the Final-Result-Computation phase if a
tuple actually contributes to the result.

Treecut. We avoid this inefficiency as follows: Starting at the leaves of the tree,
we send complete tuples for the precomputation as long as the volume of data that
has to be sent is less than a predefined threshold Dmax. This applies near the leaves

1For instance, removing about 10 bytes from a packet incurs a saving on the order of 5% for
SunSPOTs or MicaZ. The reason is the huge overhead due to networking-related issues like chan-
nel acquisition, synchronization ([DGM+04]).

39

CHAPTER 4. EFFICIENTLY PROCESSING GENERAL-PURPOSE JOINS

of the tree where the forwarding load is small. We use Dmax = 30 bytes (cf. discus-
sion in Section 4.2.4). If the sum of the data that needs to be sent exceeds Dmax at
some node, this node stores the complete tuples of its subtree and switches to send-
ing join-attribute tuples. In the subsequent steps, the node serves as a proxy for its
children, i.e., it handles the Final-Result-Computation without requesting data from
the children. Intuitively, Treecut reduces the depth of the tree for the following steps.
This improves the efficiency of SENS-Join: We do not have to forward the join filter
to those parts of the tree that were "cut off". In addition, if there are tuples that join,
we have already forwarded them one or two levels up in the tree. Figure 4.2 presents
the forwarding procedure.

1 ForwardJoinAttrValues(Set {S1, ..., Sn}, Tuple T)
2 //Si: data received from child i
3

4 Set_Of_Full_Tuples FullTuples = ∅;
5 Join_Attr_Structure JoinAttTuples = ∅;
6 for all Si ∈ {S1, ..., Sn}
7 if (Si is Set_Of_Full_Tuples)
8 FullTuples = UnionFull_Tuples(FullTuples, Si);
9 else

10 JoinAttTuples = UnionJoin_Atts(JoinAttTuples, Si);
11

12 if (Size({S1, ..., Sn}) + Size(T) ≤ Dmax)
13 && (∀Si ∈ {S1, ..., Sn}: Si is Set_Of_Full_Tuples)
14 //use Treecut: hand over data to parent and go to sleep
15 FullTuples = InsertFull_Tuples(FullTuples, T);
16 send(FullTuples, parent);
17 //query execution is complete:
18 exitQuery();
19 else
20 store FullTuples; //act as proxy for received complete tuples
21 store JoinAttTuples as "SubtreeJoinAtts";
22 ProxyJoinAttTuples = πJoinAttr(FullTuples);
23 JoinAttTuples = UnionJoin_Atts(JoinAttTuples, ProxyJoinAttTuples);
24 T ′ = πJoinAttr(T);
25 JoinAttTuples = InsertJoin_Atts(JoinAttTuples, T ′);
26 send(JoinAttTuples, parent);
27 //sleep until next step - cf. Figure 4.1

Figure 4.2: ForwardJoinAttrValues

40

4.2. THE SENS-JOIN APPROACH

Due to Treecut, a node either sends complete tuples or join-attribute tuples. Thus,
we have to distinguish between two different data structures for transmission. Com-
plete tuples are forwarded as a multiset (Set_Of_Full_Tuples). In contrast,
we insert the join-attribute tuples into a more elaborate data structure, discussed in
Section 4.3 (Join_Attr_Structure).
ForwardJoinAttrValues starts by merging the data from the children into a

single data structure for complete tuples (Line 8) and join-attribute tuples (Line 10),
respectively. Then it is determined whether Treecut applies, depending on the amount
of data to send (Lines 12, 13). If so, the node adds its tuple to the data received, sends
it to its parent, and is done executing the query (Lines 15 - 18). Otherwise, the node
stores the complete tuples from its children to act on behalf of them in the Final-
Result-Computation step (Line 20). In addition, it stores the join-attribute tuples of
its subtree (Line 21). This is used in the Filter-Dissemination step, and Section 4.2.2
will deal with it. Then the node generates the join-attribute tuples of the complete
tuples received as well as its own join-attribute tuple T ′, adds it to the data received,
sends it to its parent, and waits for the Filter-Dissemination (Lines 22 - 27).

Memory Capacities. Treecut introduces proxies that store the data of their de-
scendants. The amount of memory needed is limited by Dmax (30 bytes) multiplied
by the number of children of a node. The children are a subset of its communication
neighbors. Thus, the number of these neighbors can serve as an upper bound, usu-
ally around 6 to 15 [MFHH03, CNS07]. In summary, Treecut requires only a small
fraction of the capacities of the node (hundreds of KBs, cf. Section 2.1).

4.2.2 Disseminating the Join Filter

After the base station has received the join-attribute tuples of both relations, it joins
them and creates the join filter. SENS-Join now has to disseminate the filter in the
network. A simple way to do so would be to forward it along the routing tree. How-
ever, based on the following observation, we can significantly reduce the number
of packets: In the Join-Attribute-Collection step, each node gets to know the join-
attribute tuples of its descendants. If a node keeps this knowledge until the Filter
Dissemination, it can decide

1. which part of the join filter is relevant for its subtree (which join-attribute tuples
appear in it), and

2. whether it is necessary to forward the join filter at all.

Selective Filter Forwarding. The first item means reducing the size of the join
filter while being forwarded to the leaves, i.e., the filter is pruned progressively.
The second item refers to the situation where none of the tuples from the filter

41

CHAPTER 4. EFFICIENTLY PROCESSING GENERAL-PURPOSE JOINS

appears in the subtree of a node. In this case there is no need to forward the fil-
ter, i.e., the filter is forwarded exclusively into those regions that contain result tu-
ples. Figure 4.3 shows the forwarding procedure. Since the filter also is a set of
join-attribute tuples, the same data structure is used as for the prior collection step
(Join_Attr_Structure).

1 ForwardJoinFilter(Join_Attr_Structure Filter)
2

3 SubtreeFilter = IntersectJoin_Atts(Filter, SubtreeJoinAtts);
4 if (SubtreeFilter 6= ∅)
5 //send join-attribute tuples of subtree to children
6 broadcast(SubtreeFilter);
7 else
8 //do nothing - the subtree won’t be involved in final step
9 //sleep until next step - cf. Figure 4.1

Figure 4.3: ForwardJoinFilter

Recall that nodes have stored the necessary knowledge (SubtreeJoinAtts) during
the Join-Attribute-Collection step. ForwardJoinFilter simply intersects the
set of join-attribute tuples that appear in the subtree with the join filter (Line 3). This
yields the set of join-attribute tuples that contribute to the result and are located in the
subtree. The node forwards the result of the intersection if it is not empty. Note that
especially if the sensor readings are spatially correlated, complete regions of the tree
might not have to forward the join filter.

Memory Capacities. Selective Filter Forwarding trades memory for transmis-
sion costs. The memory requirements for Selective Filter Forwarding are determined
by the specifics of the data structure (which we have not yet discussed). Even without
knowing the details, observe that it is possible to bound the memory used: A node
keeps the join-attribute tuples of its subtree if their size is less than a predefined limit.
We use a limit of 500 bytes. To illustrate, this is only a small fraction of the 512 KB
of a SunSPOT. Introducing a limit only has a minor influence on the performance of
Selective Filter Forwarding since the amount of data exceeds a few hundred bytes
close to the root only. However, the mechanism has its main benefit towards the
leaves.

4.2.3 Final Result Computation

After the filter has been disseminated, this step collects the complete tuples. Concep-
tually, this is the simplest step: All it does is forwarding the tuples along the routing
tree to the base station. Figure 4.4 shows pseudocode for this final step.

42

4.2. THE SENS-JOIN APPROACH

1 ForwardCompleteTuples(Set {S1, ..., Sn}, Tuple T)
2 //Si: multiset of full tuples received from child i
3

4 Set_Of_Full_Tuples FullTuples = ∅;
5 for all Si ∈ {S1, ..., Sn}
6 FullTuples = UnionFull_Tuples(FullTuples, Si);
7 if (T ′ ∈ Filter) // T ′ = πJoinAttr(T);
8 FullTuples = InsertFull_Tuples(FullTuples, T);
9 send(FullTuples, parent);

10 //query execution is complete:
11 exitQuery();

Figure 4.4: ForwardCompleteTuples

In particular, ForwardCompleteTuples is similar to the Join-Attribute-Col-
lection except that it concerns only some of the nodes. Thus, depending on how
many tuples actually join, the data volume can be very small. The tuples are simply
forwarded along the routing tree to the base station. Finally, the base station computes
the result.

Note that the complete tuple needs to be stored in the first step (cf. Figure 4.1,
Line 8). It is not possible to re-acquire it from the sensors as the sensor readings
could have changed since the Join-Attribute-Collection. As any other join algorithm,
SENS-Join reads the sensors exactly once.

4.2.4 Design Considerations

Parameter Dmax. We have argued that, if the absolute amount of data (Dmax) is
already small, it can hardly be reduced. Thus the energy savings would be small.
This argument holds if the number of packets is not affected, leading to an important
constraint: Dmax < MAX_PACKET_SIZE. Beyond that, our choice of Dmax = 30
bytes is justified by our experiments: For instance, if the set of tuples exceeds 50
bytes, SENS-Join already achieves a data reduction of about 25 to 30 bytes. This
is due to switching to join-attribute tuples as well as to our compact data structure
(Join_Attr_Structure).

Join Locations. An important design decision is where the join-attribute tuples
are joined and where to compute the final result. We perform both computations at
the base station. For the final result, the choice is motivated by IDEAL. In fact, the
base station is the optimal join location (cf. Section 3.1.3). For the precomputation,
in-network approaches are superior to using the base station in specific scenarios
only. More precisely, these are exactly those cases that are covered by the specialized

43

CHAPTER 4. EFFICIENTLY PROCESSING GENERAL-PURPOSE JOINS

join methods presented in Section 3.2. Thus, performing the semi-join at the base
station is superior to other choices in those cases that SENS-Join actually targets.

Discussion. [MFHH03] proposes using an index ("semantic routing tree") on
static attributes to reduce the costs of forwarding queries inside the network. Se-
lective Filter Forwarding is different. Our mechanism prunes the join filter which is
forwarded progressively. In addition, we do not build a dedicated index tree. We
exploit the knowledge available at a node anyhow. Thus, we employ a temporary
structure which comes at no additional costs. Our mechanism is also applicable for
attributes whose value changes frequently, in contrast to [MFHH03].

4.2.5 Design for Error Tolerance

One of the most critical issues for algorithms in sensor networks is coping with
changes in the network topology, due to links going down and node failures. SENS-
Join builds upon tree-based routing. In particular, the collection tree is capable of
adapting to changes in the topology. However, an execution of SENS-Join requires
the routing tree to be stable for the duration of a single execution. This is on the order
of a few seconds. Beyond a single execution, SENS-Join does not maintain any state.
If a link goes down during the execution of a query, we rely upon the tree protocol
to re-establish the routing structure. Afterwards, we simply re-execute the query. If
data loss needs to be avoided, a more elaborate technique for handling link failures
would be required that stores the data during the outage. However, while network
disconnection is a problem, it is infrequent given the short execution time of queries.

4.3 Compactly Representing Join-Attribute
Tuples

We now describe the data structure used to represent join-attribute tuples in the first
two steps. Our mechanism more than halves the costs of the precomputation.

Mechanisms like Bloom Filters [Blo70] cannot serve as a compact representa-
tion in our context since they only allow for evaluating equi-joins. Compression
algorithms would also be unsuitable: Firstly, they are not targeted towards small
data volumes. This results in bad compression ratios for our problem, see Sec-
tion 4.4.2. Next, a compression algorithm would introduce a huge overhead [SM06]:
A node must decompress the data received before adding its own tuple. The data then
needs to be re-compressed before forwarding it. Our compact representation avoids
this problem by computing the primitives InsertJoin_Atts, UnionJoin_Atts, and
IntersectJoin_Atts directly on it.

44

4.3. COMPACTLY REPRESENTING JOIN-ATTRIBUTE TUPLES

0
10

20
30

40

12

15

18

21

temperature

x
y

temperature

10 20 30x
y

Figure 4.5: Distribution of values for 3 join attributes

4.3.1 Key Ideas of the Compact Representation

Our mechanism pursues two goals:

1. We minimize the number of bits required to represent a single join-attribute
tuple.

2. We compactly encode a set of tuples.

The key idea towards representing single join-attribute tuples is to perform a quan-
tization of the range of each sensor type. This lets us influence the number of bits.
Clearly, a quantization reduces the accuracy of the join-attribute tuples. This is not
a problem: As the join-attribute tuples are only used for the precomputation, we can
reduce their accuracy without sacrificing correctness of the final result.

To compactly encode a set of join-attribute tuples we exploit spatial (auto-) corre-
lation of sensor readings. We briefly provide the intuition: Figure 4.5 shows temper-
ature measurements and their locations, taken from a real-world deployment [Int]. In
the presence of spatial correlation, sensor readings from nearby nodes are likely to
be similar. As a consequence, a set of join-attribute tuples is highly redundant. Our
representation eliminates this redundancy by means of a spatial index.

4.3.2 Quantization

Conceptually, join-attribute tuples are points in an unbounded, continuous, n-di-
mensional space. Figure 4.6 illustrates this perception: Given a query with two
join attributes, humidity and temperature, join-attribute tuples are points in a two-
dimensional space. The idea of a quantization is to approximate a continuous range
of values by a relatively small set of discrete values. Quantization requires us to spec-
ify bounds on the ranges ([min, max]) and a resolution (step size) for each dimension.
The outcome is a restricted, discrete, n-dimensional space. To complete the quantiza-
tion we need to assign a symbol to each multidimensional cell. This symbol encodes

45

CHAPTER 4. EFFICIENTLY PROCESSING GENERAL-PURPOSE JOINS

42

45

48

51

14 15 16 17 18 19 20
h
u
m

id
it
y

temperature

Figure 4.6: Distribution of values for 2 join attributes

0 1

2 3

0 1

2

4 5

3 6 7

8

10

9 12 13

11 14 15

00 01 10 11

00

01

10

11 1 11 0

(c) bit interleaving
of binary coordinates

(a) basic Z-order
curve (2D)

(b) Z-ordering,
first iteration

Figure 4.7: Z-ordering

a join-attribute tuple that falls into the cell. In other words, we need a numbering
which maps a multidimensional point to one dimension, i.e., a space-filling curve.

For the numbering it is important that numbers corresponding to nearby join-
attribute tuples are similar in order to keep the spatial correlations. Z-ordering accom-
plishes this, as illustrated in Figure 4.7a and b. Besides its good locality-preserving
behavior, Z-ordering is easy to compute. This is important in sensor networks. We
compute the Z-number of a point by bit interleaving of the coordinates of each di-
mension, see Figure 4.7c.

We now turn to two important details: Firstly, we need to determine an appropriate
range of values ([min, max]) and a resolution of each dimension. This is done at the
base station and is disseminated independent of a query. The second aspect refers to
computing Z-numbers. The problem is that a sensor measurement might fall outside
of the specified range. To ease presentation, we discuss the second aspect first.

Computing Z-Numbers. Each node has to encode its join-attribute tuple which
is computing the Z-number. This is presented in Figure 4.8.

As a prerequisite for the bit interleaving, we need to know the length of the co-
ordinates. This is implied by the number of cells in each dimension (Lines 2 - 5).
For instance, in Figure 4.7c, we need two bits for each dimension. We compute the
number of bits for each dimension separately as, in general, the dimensions are not

46

4.3. COMPACTLY REPRESENTING JOIN-ATTRIBUTE TUPLES

1 //compute size of each dimension
2 for all dimensions i
3 SizeOfDim[i] = {(MaxVal[i] − MinVal[i]) · 1

Resolution[i]} + 1;
4 SizeOfDim[i] = roundUpToPowOf2(SizeOfDim[i]);
5 BitPerDim[i] = log(SizeOfDim[i])
6

7 EncodeTuple(Tuple T ′)
8

9 //compute coordinates (P[i]) of T ′ in each dimension
10 for all dimensions i
11 P[i] = {(T ′[i] − MinVal[i]) · 1

Resolution[i]};
12 if (P[i] < 0)
13 P[i] = 0;
14 if (P[i] ≥ SizeOfDim[i])
15 P[i] = SizeOfDim[i] − 1;
16 //apply bit interleaving to encode P (T ′)
17 Z = InterleaveBits(P, BitsPerDim);
18 return Z;

Figure 4.8: EncodeTuple

of equal size. In this case, each dimension contributes to the bit interleaving until its
bits are exhausted. EncodeTuple starts by computing the coordinates of T ′ (Lines
10 - 15). By doing so, we ensure that they are within the specified range ([MinVal,
MaxVal]) (Lines 12 - 15). This is necessary since the estimated range might be too
narrow. In this case we map the value to the boundary of the corresponding dimen-
sion. We discuss this solution subsequently. Finally, InterleaveBits computes
the encoding (Line 17).

Specifying Ranges and Resolution. The following parameters need to be
specified: MinVal[i] and MaxVal[i] to bound each dimension as well as their res-
olution (Resolution[i]). These ranges are specific to the environment of the sensor
network. It is therefore possible to fix them while setting up the network. While
elaborate techniques exist for estimating the values, e.g., [DGM+04], for our pur-
pose, reasonably good estimates are sufficient. If our estimated range is too large, we
might need more bits to encode a point. But since our domain grows in steps of pow-
ers of two (Line 4), a moderate overestimation is not critical. For instance, there is
no difference whether we specify a range containing 600 values or 900 values: They
both are in the interval [512, 1024] and require 10 bits. In contrast, if the range is
too narrow, a value might be outside of it. EncodeTuple maps such a point to the
boundary of the range. In the worst case this wrongly yields join-attribute tuples that

47

CHAPTER 4. EFFICIENTLY PROCESSING GENERAL-PURPOSE JOINS

match, and we unnecessarily send their complete tuples. But this affects only a few
tuples unless the range is much too narrow. It does not affect the correctness of the
result.

The idea behind a quantization is to have a coarser resolution to reduce the number
of different values per dimension. Again, the resolution has no impact on the correct-
ness of the result. If it is too fine, we need more bits to encode each point. If it is too
coarse, the following problem arises which also leads to an increase in the commu-
nication costs: Due to the quantization, each point represents a set of join-attribute
tuples. In particular, for the precomputation, a point joins, if any of the join-attribute
tuples joins, that is represented by the point. This is required in order not to miss a
joining tuple in the final result. The problem is that the set of tuples that is represented
by a point increases with a coarser granularity of the resolution. Thus, we might erro-
neously assume that a join-attribute tuple joins, since the corresponding point joins.
As a result, SENS-Join unnecessarily sends the corresponding complete tuple in the
Final-Result-Computation step. We found out experimentally that the performance
of SENS-Join is insensitive to the resolution used for the precomputation as long as it
is not too coarse. Thus, we simply use a fixed resolution for a particular environment.
In our experiments we used steps of, e.g., 0.1◦C for the temperature, or of 1m for the
X- and Y-coordinates.

4.3.3 Representing Points Using a Spatial Index

To encode a set of points our idea is to use a spatial index. A region quadtree
[Sam84] is a good choice: Firstly, our goal is to achieve a compact encoding. A
region quadtree is based on a regular decomposition of an n-dimensional universe.
The 2n subspaces resulting from a partition are of equal size. This is advantageous
for our compact representation since it is not necessary to encode how to divide the
space. Secondly, a quadtree is closely related to Z-ordering. The Z-number of a point
corresponds to the sequence of quadrants that results from a traversal of a quadtree
down to the point. The following example illustrates this idea:

Example 4.4: Consider the point in Figure 4.7c. Its Z-number is 1110. Further,
consider a quadtree index on such a two-dimensional domain – such an index is
illustrated in Figure 4.9. For the example in Figure 4.7c, the index has two levels until
the quadrant of the point is identified at full resolution (there are only 16 different
points in our example). To find the point using the index, the beginning of the Z-
number (11) indicates that the point is in Quadrant 3 at the upper-level index node.
At the next level, the point in in Quadrant 2 (10), which is where the point actually is
according to Figure 4.7c. �

To facilitate establishing an understanding of our quadtree encoding, we removed
the pseudocode from the following description. We refer the interested reader to

48

4.3. COMPACTLY REPRESENTING JOIN-ATTRIBUTE TUPLES

h
u
m

id
it
y

temp

points corresponding to
join-attribute tuples

Figure 4.9: Construction of the quadtree

Appendix B.

Encoding Sets of Points With a Quadtree. To illustrate the intuition, as-
sume a query with a single join attribute and the two (discretized) values 23.2◦C and
23.4◦C. To eliminate redundancy, we could represent them as 23◦C plus the rela-
tive remainders 2 and 4, respectively. As an abstract illustration, Figure 4.9 shows a
quadtree for five join-attribute tuples from a two-dimensional example. Each tuple
corresponds to a point in a two-dimensional, quantized space. Each index node of the
quadtree corresponds to a region. At each level of the tree, all dimensions are parti-
tioned into halves. Redundancy within the set of points is eliminated as follows: The
index indicates the region which is common to all of the points. If we encode each
point relative to the region, then the index node represents what the points have in
common. A relative remainder contains information that is unique to a point. Thus,
we represent a set of points by the index nodes plus the remainders.

Note that the Z-number already includes this separation into index information and
remainder, as illustrated in Example 4.4: We use the Z-number to traverse the tree by
reading the Z-number from the beginning – at each level, the part of the Z-number
that we have not yet used is the location of the point within the current quadrant, i.e.,
its relative position (remainder).

Since quadtrees are well-known, we restrict the discussion of the details to two
aspects: Firstly, we need a pointerless representation of the tree. This is because
we use it as a wire format. In addition, the use of pointers negatively affects the
space requirements of the data structure. The second aspect refers to a general de-
sign decision with respect to quadtrees: The decomposition into subspaces is usually

49

CHAPTER 4. EFFICIENTLY PROCESSING GENERAL-PURPOSE JOINS

Encoding:

i = index-node p = point eol = end of list

10 0 00

10 0 10

001 101 0001 101 111 0

Index nodes:

List of points:

(content)

(content)(i)

(p) (eol)

Figure 4.10: Encoding of a quadtree

continued until the number of points is below a given threshold t [GG98]. Thus, we
need a criterion to decide when to stop the decomposition.

Pointerless Representation. There has been a lot of interest in pointerless
quadtree representations [Sam84]. We represent the tree as a bitstring consisting
of index nodes and the points which are given relative to the path. Figure 4.10 shows
these elements. The pointerless representation is obtained by storing them in the
order of a depth-first traversal of the quadtree. This allows us to easily implement
UnionJoin_Atts and IntersectJoin_Atts. We elaborate on this in Section 4.3.4.

The details of our encoding are as follows: An index node starts with a ’0’ bit
specifying that it is an index node. The remaining bits of an index node encode
which of the quadrants at the subsequent level is present in the tree. If the number of
points in a quadrant is below the threshold, the points are given as a list. A leading
’1’ indicates a point. Their encoding is relative to the path and contains only the
position within the current quadrant (remainder of the Z-number). Thus, as the size
of the quadrant becomes smaller with every level, so does the relative encoding of a
point. As shown in Figure 4.10, we also need to mark the end of a list of points. This
is done by appending a ’0’.

Decomposition Threshold. In general, the threshold t for stopping the recur-
sive decomposition of a quadtree depends on its use. In Figure 4.9, t equals 3, so a
set of three points is listed explicitly. As our goal is a compact representation, t de-
pends on the number of bits required for a further subdivision vs. the number of bits
required for explicitly listing the points. Recursively subdividing a quadrant costs in-
serting an index node into the tree (the encoding is shown in Figure 4.10). In contrast,

50

4.3. COMPACTLY REPRESENTING JOIN-ATTRIBUTE TUPLES

since the points are specified relative to the current path, this subdivision reduces the
number of bits of each point. In general, the idea is to compare both solutions and to
stop the decomposition if a list of points is shorter.

Encoding of Relation Membership. To ease presentation, we have omitted so
far how to encode which relation a join-attribute tuple belongs to. This is important
for the base station to do the join. We prefix each point with two bits ("relation
flags") indicating that the point belongs to Relation A (’10’), B (’01’), or to both
relations (’11’). As a consequence of prefixing the points, when inserting them into
the quadtree, the topmost index node represents the relation flags.

As a remark, the relation flags constitute the only mechanism in SENS-Join that
is specific to computing joins over two input relations. In particular, SENS-Join can
seamlessly process joins over an arbitrary number of input relations. The extension
to joining more than two relations is straightforward: The number of relation flags
has to correspond to the number of relations in the query, i.e., SENS-Join has to use
more bits for the relation flags.

4.3.4 Computing Low-Level Primitives

Recall that compression algorithms are not helpful in our context, due to repeated
compression/decompression [SM06]. A strength of our quadtree representation is
that UnionJoin_Atts and IntersectJoin_Atts (cf. Figure 4.2) can be computed
directly on it. There is no need to recover the original tuples.

Section 4.2 described the semantics of the primitives in detail: Both operate on
sets (sets of join-attribute tuples encoded as quadtrees). Most notably, semanti-
cally, UnionJoin_Atts and IntersectJoin_Atts are simple set operations that obey
the usual semantics of sets. The nodes use UnionJoin_Atts in the Join-Attribute-
Collection step to merge the sets of join-attribute tuples received from their children
into a single set (a single quadtree). IntersectJoin_Atts is used in the Filter-
Dissemination step: After the base station computed the semi-join, the join filter (set
of join-attribute tuples that join) is disseminated in the network. To reduce the com-
munication costs, the nodes intersect the join filter with the set of join-attribute tuples
that appear in their subtree. Then, the nodes forward only that subset of the join filter
that is required by their descendants (Selective Filter Forwarding).

We use UnionJoin_Atts to illustrate the idea of realizing the primitives directly
on quadtrees without recovering the join-attribute tuples. Again, the corresponding
pseudocode is in Appendix B. UnionJoin_Atts is similar to the merge step in Merge-
sort and can be done in one pass over the data: It merely requires a traversal of the
two trees in parallel. Performing these operations directly on the quadtrees is simple
due to the depth-first order. Since quadtrees follow a regular decomposition scheme,
the shape of the tree is independent of the order of the points being added. Note that

51

CHAPTER 4. EFFICIENTLY PROCESSING GENERAL-PURPOSE JOINS

the ability to perform set operations quickly is one of the reasons for the popularity
of quadtrees [Sam84].

4.4 Experimental Study

To demonstrate the efficiency of SENS-Join we have implemented a prototype in the
ns-2 network simulator [BEF+00]. It is a widely used simulator that allows for a
controlled environment of our experiments and ensures repeatability. We compare its
performance to the external join. It is state-of-the-art for our problem. In particular,
we justified this choice in Section 3.2. There, we pointed out that the specialized join
methods require very specific scenarios and discussed why the external join outper-
forms them in each of the following experiments.

Metric. Our intention is to capture the communication costs. As explained in Sec-
tion 2.1, sensing and communication dominate the power consumption [AML05,
YG03, MFHH03]. However, sensing is the same for every join method.

We use the number of transmissions (networking packets) as a proxy of the com-
munication costs. This is the most common metric in the sensor network literature,
e.g., [CDHH06, AML05, YLOT07]. While the number of bytes transferred is used
as well, e.g., [MFHH02], we prefer the packets metric for these experiments as it
accounts for the per packet overhead. For this metric, we set the maximum packet
size to 127 bytes as used by SunSPOTs. We also did experiments with smaller packet
sizes which were used in early systems such as TinyDB. This has yielded even better
results for SENS-Join. However, we subsequently present the results for 127 bytes as
this is the size that current standards such as ZigBee use.

We compare the communication costs along two lines: overall communication
costs and per node communication costs. The latter is important due to the routing
tree. Nodes close to the root are more loaded than leaf nodes. Thus, the per node
metric is more critical: When the energy of the nodes near the root is depleted, the
network ceases operation.

General Setting. For our experiments, we simulate a random distribution of the
nodes. We set the communication range of each node to 50m and assume links to be
bi-directional. This is a common setting in the networking community [YG03].

For the scope of this presentation we use a fixed distribution of the physical quanti-
ties, emulating real sensor data. Varying the data distribution has two effects: (a) The
size of the result may change, and (b) the positions of the nodes contributing to the
result may change as well. However, we found that changing the positions of nodes
only has a minor influence. Further, to vary the fraction of tuples that join, we can
also adapt the join conditions. This is what we do subsequently.

52

4.4. EXPERIMENTAL STUDY

Parameters. There is a large number of parameters that influence the efficiency
of SENS-Join. As discussed below, they can be reduced to the following parameters:

1. Fraction of nodes in the result

2. Ratio of join attributes
attributes overall

3. Number of nodes (size of the network)

The idea behind our approach is to send only the tuples that contribute to the re-
sult. Thus, the savings depend on the size of this fraction. A second parameter is
the ratio of join attributes over the number of attributes in the query. While the ex-
ternal join sends complete tuples, we only send the join-attribute values during the
Join-Attribute-Collection step. Thus, the smaller this ratio, the higher the expected
savings. Finally, we are interested in the influence of the network size. Clearly, it
influences the total number of transmissions. We are interested in its influence on the
relative performance of the join methods.

The first two parameters in particular determine the form of the queries used in the
experiments:

SELECT A.att_1,..., A.att_n, B.att_1,..., B.att_n
FROM Sensors A, Sensors B
WHERE join-expr(A.join-atts, B.join-atts)
AND ... AND join-expr(A.join-atts, B.join-atts)
ONCE

The join conditions are range conditions in the style of Q1 and Q2, used to vary the
fraction of tuples in the result. The queries do not contain selection predicates. These
would be handled locally and affect the number of nodes concerned. However, our
third parameter already controls this number. Beyond that, we found the influence to
be negligible. Finally, we query the same number of attributes from both relations.
Otherwise, the tuples sent in the Final-Result-Computation step would be of different
size, and the number of transmissions would depend on the fraction of the tuples that
are large/small. We avoid this parameter since it does not provide any further insight:
Its variation has the same effect as varying the number of attributes overall.

Default Setting. In each experiment we vary one of the parameters. If a parameter
is not varied we use the following default value: The size of the network is 1500
nodes in a 1050m · 1050m area. The fraction of the nodes in the result is 5%. For
the ratio of join attributes to attributes overall we will consider two default settings
settled towards different ends of the spectrum. The first one is 33% based on one join
attribute. The second one is 60% based on three join attributes.

53

CHAPTER 4. EFFICIENTLY PROCESSING GENERAL-PURPOSE JOINS

(a) 33% join attributes

(b) 60% join attributes

External Join
SENS-Join

Figure 4.11: Overall savings of SENS-Join

4.4.1 Efficiency of SENS-Join

Overall Communication Costs. A first set of experiments determines the over-
all savings of SENS-Join as compared to the external join. The parameter is the
fraction of nodes that contribute to the result. The higher this fraction, the more tu-
ples finally need to be transmitted. Thus, we expect SENS-Join to perform better than
the external join unless a high fraction of the tuples joins. There is a break-even point
due to the precomputation of SENS-Join. Figure 4.11 graphs the results for 33% and
60% join attributes. For the latter, we save up to two-thirds of the overall energy
consumption of the external join. For 33% join attributes, the energy savings are up
to 80%. They are higher for a smaller ratio of join attributes to attributes overall,
as discussed below. Next, SENS-Join is superior until more than 70% (80%) of the
nodes join.

Per Node Communication Costs. In the following we investigate the relation-
ship between the number of descendants in the routing tree and the load of the nodes.
Due to the forwarding load, nodes with many descendants take up more resources
and thus determine the lifetime of the network. It is critical to reduce the load on
these nodes. Figure 4.12(b) shows that for 60% join attributes the most loaded nodes
are unburdened by more than 80%. For 33% join attributes, Figure 4.12(a) shows a
reduction of more than an order of magnitude. This difference increases as the ra-
tio of join attributes to attributes overall decreases. The next paragraph explores this
influence in detail.

54

4.4. EXPERIMENTAL STUDY

(a) 33% join attributes

(b) 60% join attributes

External Join
SENS-Join

Figure 4.12: Per node savings of SENS-Join

External Join
SENS-Join

Figure 4.13: Influence of the ratio of 3 join attributes
x attributes overall

Ratio join attributes
attributes overall . We want to verify that a smaller ratio of join attributes to

attributes overall increases the savings, and we want to find out if and how these
savings are bounded. This also is supposed to justify that our 33% and 60% default
settings represent different ends of the spectrum.

The difficulty with the ratio is that the number of combinations is daunting. But
many combinations lead to similar ratios (2:4, 4:7, 4:8, etc.) and are close to one
of the defaults. Thus, they represent a large number of queries. In contrast, it is
possible to increase the ratio to 100%, at least in theory. Though it is difficult to find
meaningful queries with very high ratios, the analysis provides a lower bound on the
savings.

We now fix the join attributes (join conditions) to have a constant rate of nodes that
join (5%). In a first experiment we consider queries with three join attributes. We

55

CHAPTER 4. EFFICIENTLY PROCESSING GENERAL-PURPOSE JOINS

External Join
SENS-Join

Figure 4.14: Influence of the ratio of 1 join attribute
x attributes overall

External Join
SENS-Join

Figure 4.15: Influence of the network size

vary the number of attributes overall from five to three. Clearly, this is the minimum
for three join attributes. Figure 4.13 graphs the results. As expected, the savings
increase as the ratio of join attributes to attributes overall decreases. We also see
that even for the worst case of 100% join attributes we save transmissions, compared
to the external join. This is because of the quadtree representation. In the second
experiment we take one join attribute and vary the number of attributes overall from
one to five. The results in Figure 4.14 confirm our expectations.

Network Size. To determine the influence of the network size we vary the num-
ber of nodes from 1000 to 2500. At the same time we vary the area of the network
to keep the node density constant. We expect the size of the network to have only
a small influence on the relative results. If we assume a fixed fraction of tuples that
join, the savings are proportional to the size of the network in each step. There is one
exception: At the beginning of the Join-Attribute-Collection step when Treecut is ap-
plied our method is identical to the external join, and there are no savings. Intuitively,
the influence of this initial phase becomes less as the size of the network increases.
Figure 4.15 shows that this expectation holds. The savings are slightly superlinear
with the size of the network.

56

4.4. EXPERIMENTAL STUDY

SENS-Join
(3%)

SENS-Join
(5%)

SENS-Join
(9%)

SENS-Join
(25%)

External
Join

Figure 4.16: Costs in the different steps of SENS-Join

4.4.2 Costs of SENS-Join – Breakdown

We are now interested in an explanation of the savings with SENS-Join. We start by
breaking down the number of transmissions to the different steps. In addition, we
consider the performance of our compact representation in isolation, and we analyze
its influence on the SENS-Join performance.

Costs of the Different Steps. We now assign the costs of SENS-Join to the
different steps. As before, we consider the overall costs if different shares of the
tuples join. The costs of the first step (Join-Attribute-Collection) solely depend on
the number of join attributes and not on the fraction of tuples in the result. Figure 4.16
confirms that they are fix. If there were no result tuples (0% tuples that join), there
would be no packets in the Filter-Dissemination and Final-Result-Computation steps.
Thus, the costs of the first step provide a lower bound on the costs of SENS-Join
for a fixed number of join attributes. Let us now look at the costs of the Filter-
Dissemination: The number of nodes which need to receive the join filter depends on
the fraction of tuples in the result. Thus, the smaller this fraction, the more subtrees
are pruned. Finally, the costs of the Final-Result-Computation step are proportional
to the fraction of nodes in the result.

Performance of Quadtree Representation. One of the reasons that compres-
sion algorithms are unsuitable for our problem is a bad compression ratio for small
data volumes. We now compare our compact representation to some well-known
compression algorithms of different kinds (cf. [Say00]): zlib [GA] (library form of
gzip), which combines LZ77 and Huffman coding, and bzip2, [Sew], which is based
on the Burrows Wheeler Transform. These algorithms do not run on current sensor
nodes due to their use of memory and code size. However, by using highly optimized

57

CHAPTER 4. EFFICIENTLY PROCESSING GENERAL-PURPOSE JOINS

External
Join

SENS_No-Quad
(4%)

SENS-Join
(4%)

Figure 4.17: Influence of quadtree representation

algorithms we provide an upper bound on what can be achieved. We focus on lossless
algorithms. Lossy compression leads to incorrect join results.

For this experiment we modified the Join-Attribute-Collection step to either send
the raw join-attribute tuples (no compact representation), to use one of the compres-
sion algorithms, or to use our quadtree representation. In particular, for the compres-
sion algorithms, we decompress the join-attribute tuples received at each node. The
node than adds its own tuple and re-compresses the data before forwarding. While
this is computationally demanding, it gives the best performance with the respect to
the compression ratio. It is thus appropriate for our upper bound on the performance
of compression algorithms.

We collect three join attributes: temperature and the location coordinates. This
is difficult for our approach: Two of the join attributes are uncorrelated (X- and Y-
coordinates). As expected, using a standard compression is inferior our quadtree
representation: For 1500 nodes, collecting the join attributes using no compression
requires 6215 packets. Bzip2 requires 3230 packets and zlib requires 3097 packets.
In contrast, the quadtree representation saves two-thirds of the costs (2158 packets).
The difference stems from bad compression ratios of the standard algorithms near
the leaves of the tree where the data volume is small. Finally, note that compression
algorithms proposed for sensor networks are much less complex than bzip2 or zlib
and cannot achieve their performance.

Influence of Quadtree Representation. Finally, we distinguish between the
savings due to only sending join attributes and the ones due to the quadtree repre-
sentation. For this discussion we use the queries from the introduction. Without the
quadtree mechanism we save sending two out of five attributes for Q2. Thus, the
volume of data is reduced by 40% (66% for Q1). However, the actual savings of the
Join-Attribute-Collection step will be slightly smaller. This is because a reduction

58

4.5. TRADEOFFS

in the volume of data does not reduce the number of packets if this already is the
minimum of a single packet. The numbers in Figure 4.17 confirm this simple back-
of-the-envelope calculation. The Join-Attribute-Collection step needs about 39% less
transmissions than the external join. As discussed above, the compact representation
more than halves the volume of data sent. Again, due to the lower bound of a single
transmission, some nodes cannot profit from this reduction (Figure 4.17).

4.5 Tradeoffs

SENS-Join can significantly reduce the energy consumption of join processing. How-
ever, these benefits are not for free.

Response Time. SENS-Join introduces a precomputation and is thus inferior to
the external join regarding response time. In a way, SENS-Join trades response time
for energy consumption, as the latter arguably is the most critical resource in sensor
networks. However, the response time of SENS-Join is upper bounded by at most
twice the duration of the external join.

Vulnerability to Disconnection. If a link happens to go down during the exe-
cution of a query, our current error handling does not deliver results for the time of
the outage. This problem has been discussed in Section 4.2.5 – it is an infrequent
problem and could be mitigated by a more elaborate error handling.

Memory Requirements. Treecut and Selective Filter Forwarding trade memory
for transmission costs. As discussed in Section 4.2, our design accounts for memory
restrictions.

4.6 Summary

In this chapter, we presented SENS-Join, a general-purpose join method that can effi-
ciently handle any number of join conditions and arbitrary distributions of the nodes
involved. To obtain efficiency, SENS-Join builds upon the idea of IDEAL: It discards
non-joining tuples at the sources. To provide the knowledge which of the tuples join,
SENS-Join introduces a precomputation. The main contribution of SENS-Join is the
design of the precomputation. By thoroughly designing the information flow and by
means of a compact representation specific to the precomputation data, this precom-
putation becomes efficient. SENS-Join is more efficient than the state-of-the-art ap-
proach unless a high fraction of the input relations (ca. 60% - 80%) joins. We achieve
a reduction of the overall energy consumption by more than 80%. The savings of the
most loaded nodes is more than an order of magnitude in some situations.

59

CHAPTER 4. EFFICIENTLY PROCESSING GENERAL-PURPOSE JOINS

SENS-Join can be used to answer one-time queries as well as continuous join
queries. However, for continuous queries, using a precomputation to find out which
of the tuples join is not optimal: This is because the precomputation is repeated
for each execution, leaving aside temporal correlations in the data. In the following
chapter, we present an approach that improves upon SENS-Join for the processing of
continuous join queries. We propose to keep the knowledge, which of the tuples join,
and to maintain it, instead of re-computing it for each execution.

60

5 Processing Continuous Join
Queries: a Filtering Approach

In this chapter, our concern is processing continuous join queries. Continuous queries
are important - they prevail in monitoring and surveillance. In particular, we present
CJF ("Continuous Join Filtering"), a filtering-based approach. The filters are used
to discard non-joining tuples. CJF exploits temporal correlation in sensor readings
as well as the continuous nature of queries: The idea is to keep the filters for subse-
quent executions and to maintain them. The problems are determining the sizes of
the filters and deciding which filters to update. Simplistic approaches result in bad
performance. We show how to compute solutions that are optimal.

The following section features an overview of the problems and the contributions
of CJF. We then outline the structure of this chapter. To illustrate our ideas, we will
use the simple join query from Example 1.2, which acquires data from nodes that
observe similar temperature and humidity conditions:

Example 5.1:

SELECT A.*, B.*
FROM Sensors A, Sensors B
WHERE |A.hum - B.hum| < 2%
AND |A.temp - B.temp| < 0.3◦C
AND A.id != B.id
SAMPLE PERIOD 30s

�

5.1 The CJF Approach

As with SENS-Join, our goal is to avoid shipping non-joining tuples. SENS-Join1

uses a precomputation to compute a join filter, i.e., to compute the set SJ of tuples
that join. A precomputation is good for one-time queries. However, for continuous

1There are further approaches that have studied the idea of not sending non-joining tuples, most
notably [YLZ06, CNS07]. All of them use a semi-join based precomputation to find the set of
joining tuples. A detailed discussion of related approaches is provided in Section 3.2.

61

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

queries, it is not optimal: Due to temporal correlations, changes in subsequent sensor
readings are usually small. Thus, for most tuples, the property if they join remains
unchanged. Repeating the computation of SJ prior to each execution is a substantial
overhead. In contrast, maintaining SJ is difficult: If the Tuple t of a node is not in
SJ , the node discards t. Thus, the data is unknown for maintaining SJ . The problem
is to notice that, at some point in time, t enters SJ , and the node should now send its
data. Otherwise, the join result is incomplete, i.e., incorrect.

To avoid such incorrect results while taking advantage of temporal correlations,
CJF is based on filtering. As with IDEAL, the base station computes the final result.
We propose to install filters on the nodes as they enable discarding tuples and, at the
same time, can prevent incorrect results. The main contribution of CJF is to "maintain
filters" in an optimal way, as overviewed after introducing filters.

In line with the literature, e.g., [OLW01], a filter is an interval: If the attribute
value of a Node j is within its filter, then j does not send its data. We refer to the filter
used by Node j as filterj . The filter size is the width of the interval. For queries with
multiple join attributes, filters are multidimensional. Section 5.3 formally specifies
filters and filter sizes.

As a remark, this notion of a filter is different from a ’join filter’ as used by SENS-
Join. Conceptually, the join filter is a list of those join-attribute tuples that contribute
to the result – a node sends its complete tuple in the final result computation step,
if its join-attribute tuple is within the join filter. In contrast, CJF uses the classical
notion of a filter which is an interval. A node sends its tuple if its join-attribute values
are not contained in the interval.

Maintaining Filters. To avoid incorrect results though the input relations are in-
complete due to the filtering, the base station does the following: If Node j has filtered
its Tuple tj , the base station uses the filter to check if the missing Tuple tj still does
not join (cf. Section 5.3). If the filter does not allow to rule out that tj joins, the base
station retrieves tj . This mechanism separates computing the result from filtering –
the result is correct for any setting of the filters.

Our central concern is efficiency. The key for minimizing communication is to
optimize the size of the filter: If filterj is too small, its filtering capability decreases.
In contrast, increasing the filter size increases the probability that the tuple of another
node joins with some values inside filterj . To guarantee correctness, the base station
would retrieve tj . A smaller filter could have avoided these costs. Most notably, an
optimal filterj not only depends on the data of Node j but also on the data of other
nodes. This makes optimizing filters for join queries different from filtering problems
in the literature, such as [OLW01]. We will show that ignoring these dependencies
results in bad performance. In addition, to obtain efficiency, it turns out to be essential
to optimize the filters individually for each node and to continuously adapt them to
changing conditions (sensor readings), as shown in Section 5.7 as well.

62

5.1. THE CJF APPROACH

CJF accommodates these requirements. Optimizing filters requires knowing the
sensor readings of all nodes. Thus, we base our approach on models of future read-
ings. Further, the base station has to perform the optimization (cf. Section 5.3). Then,
the problem of "maintaining filters" is as follows: (1) The base station needs to con-
tinuously compute filters that minimize communication costs. (2) For each execution,
the base station has to decide which of the current filters to update. This is because
updating filters means to send them to the nodes and incurs costs. However, due to
temporal correlations in sensor readings, the changes of the filters are usually small,
and updating might not pay off.

With respect to (1), we show how to map continuous join queries to an optimiza-
tion problem under constraints. We then show how the base station continuously
solves the optimization problem. This is difficult as standard optimization methods
like Newton’s method cannot handle constraints. In addition, the cost function of
our problem is not convex. The challenge here is to avoid local minima. For the con-
straints, we present a solution based on the barrier method. With respect to optimizing
non-convex cost functions, there is no general mathematical approach. However, we
can exploit the continuous nature of the queries to relax the optimization problem.
We allow CJF to sometimes work with local optima as long as they yield good per-
formance. At the same time, we guarantee that this relaxation is transient: CJF will
eventually find a global optimum. In particular, we propose a stochastic optimization
approach for which we prove this property. In addition, we show how to avoid local
optima that yield bad performance.

With respect to (2), CJF updates filters only if the expected improvement at least
amortizes the costs of updating. This problem is more complex than those in the liter-
ature on updating filters (e.g.,[JKM+07]), as we again need to consider dependencies
among filters. In summary, our contributions regarding the processing of continuous
join queries in sensor networks are as follows:

• To guarantee correctness while exploiting temporal correlations, we propose a
filtering approach. CJF allows to separate computing the result from filtering
such that the result is correct independent of the filters.

• We show how to map join queries to an optimization problem under constraints
for optimizing filters.

• CJF continuously computes optimal filters. We present an algorithm that han-
dles the constraints of the problem as well as the non-convexity of the cost
function.

• We propose a scheme to decide which of the filters to actually update for each
execution.

63

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

• We evaluate the performance of CJF based on real-world sensor data. In par-
ticular, CJF comes close to the lower bound provided by IDEAL, except for a
small overhead due to maintaining the models.

Chapter Outline. In the following section, we briefly review related work on fil-
tering. We then start the description of CJF by presenting a framework that integrates
filtering with join processing (Section 5.3). In particular, we describe how to guar-
antee a correct join result, irrespective of the setting of the filters. In Section 5.4,
we show how to compute optimal filters, i.e., we address problem (1). Updating
filters, i.e., problem (2), is subject to Section 5.5. We provide some details on the
implementation of our prototype in Section 5.6, before we present our experiments
in Section 5.7.

5.2 Related Work on Filtering Data Streams

There is prior work on filtering in the literature on processing streaming data that
is related to CJF. We review the relevant approaches in this section. We already
discussed related work with respect to join processing in Section 3.2.

To briefly illustrate the context of querying streaming data, consider network mon-
itoring as a typical application. Here, the status of network elements (e.g., routers) is
monitored. That is, the elements are the data sources that continually report their sta-
tus to the monitoring site, such as a network control center. Applications use queries
over the data stream to specify the data that is relevant to them – this idea is similar
to querying sensor networks.

The goal of the filtering is to reduce the amount of communication, as in sen-
sor networks. The idea is to exploit temporal correlations by answering queries on
cached versions of the data. This is possible as, e.g., network monitoring applications
typically do not require absolute precision [OJW03]. Filters are used to discard data
items at the sources, as long as the precision of the cached version is fine for the
queries. The approaches share with CJF the problem of computing optimal filters.

Olston et al. [OLW01] presented one of the first solutions. In detail, the stream
processor caches the most recently received data value of each source. In addition, the
stream processor installs a filter on the data source. The filter is a (one-dimensional)
interval which is centered around the most recent value. The data source sends its
current data if it is outside of the filter.

The stream processor uses the cached data item to answer queries. In particular,
the queries indicate the required quality of the answer by means of a maximum error.
The stream processor can then decide whether the cached version of the data fulfills
this requirement, based on the size of the current interval. If so, the cached data
is used to answer the query. If not, the stream processor has to acquire the current
reading from the data source.

64

5.2. RELATED WORK ON FILTERING DATA STREAMS

Given this setting, Olston et al. face an optimization problem which is choosing
optimal filter sizes: If a filter is too small, the current data of the corresponding
source might fall outside of it and is sent. In contrast, if the filter is too large, it might
not suffice to answer a query, given its quality requirements. The data must then be
acquired. An optimal filter size minimizes the sum of both costs.

The solution proposed in [OLW01] is to continuously adapt the filters of each data
source. The idea is to increase the filter size (with some probability) if the data is
not filtered and to decrease the size if the data is acquired. As a main contribution,
Olston et al. prove that this simple approach actually finds the optimum.

Our problem is different from theirs. In our context, the filters are not independent
of each other and cannot be optimized in isolation. The dependencies in our case
are that the filters themselves may not join. We will formalize this notion in the next
section. Intuitively, if a pair of filters contains values that join, the base station has to
acquire the current data from both nodes in order not to miss a result tuple. Olston
et al. do not face such dependencies and thus do not account for the corresponding
costs. Therefore, their solution is mathematically not optimal for our problem. Even
worse, ignoring these dependencies actually results in bad performance in our case
as we will show in Section 5.7.

While there exist filtering approaches that optimize filters at a central site and con-
sider dependencies among filters, to our knowledge they target specific queries.

To give an example, Olston et al. [OJW03] showed how to optimize filters for
aggregate queries. In detail, the maximum error refers to an aggregate over the values
such as AVG. To allow for filtering data values at the sources, the idea is to assign a
share of the maximum error to each node. Then, the shares depend upon each other
as, overall, the maximum error might not be violated. In particular, Olston et al.
show that it is suboptimal to give each node an equal share. Intuitively, the size of
the share should correspond to the rate of change of the data at each node. Therefore,
computing a share of the maximum error for each node is an optimization problem.

The proposed approach is as follows: Initially, each node gets some filter interval
such that the maximum error is not violated. The idea then is that each node periodi-
cally shrinks the size of its filter. This frees a part of the error budget which can then
be assigned to the nodes by the stream processor. As their main contribution, Olston
et al. show how to find the node that benefits the most from an increase in the filter
size. The authors set up a linear program to find this node. This solution is specific
to the problem of computing aggregates and cannot be transferred to our problem.

Jain et al. [JKM+07] recently also considered computing optimal filters for aggre-
gate queries. While their solution differs from the one presented in [OJW03], it is
also specific to aggregate queries. In particular, Jain et al. do not build upon a pe-
riodic shrinking. Instead, the stream processor continuously computes optimal filter
sizes. This incurs the problem of deciding on the filters to update, as in our case.
We present their approach in detail in Section 5.5, along with the shortcomings of
applying it in our context. Most notably, Jain et al. update the filters independent of

65

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

each other. This causes problems in our case where filters are not independent.

5.3 Filtering for Join Processing

This section presents the foundations of CJF. We introduce filters in Section 5.3.1.
We then present a framework which integrates filtering with join processing (Sec-
tion 5.3.2). Finally, we define the "filter maintenance problem" (Section 5.3.3).

5.3.1 Filters in CJF

A filter is a (hyper-)rectangle in the join-attribute space. A tuple is filtered if it is
within the rectangle.

Definition 5.1 (Filter)
A filter is a multidimensional interval [ai, bi]. The dimensions correspond to different
attributes. The semantics is: If the attribute values of a Node j are within its filter in
all dimensions, then j does not send its data. filterj denotes the filter used by Node j.

We distinguish between static and dynamic attributes: Static attributes have fixed
values. An attribute is dynamic if its value changes over time. As explained in
Section 5.4, filters for discarding non-joining tuples cover dynamic (join) attributes.

Example 5.2: The join attributes in Example 5.1 are temperature, humidity, and
node_id. Node_id is static as it is fix for each node. Thus, CJF uses two-dimensional
filters. The dimensions of the join-attribute space are temperature and humidity. �

Location within Join-Attribute Space. For now, assume that we know future
sensor readings. In CJF, a filter is centered around the (expected) values of the join
attributes at the time of filtering. If we accurately predict the sensor readings, these
are the optimal locations of the filters.

Filter Size. The size of a filter is the widths of the intervals [ai, bi]. Thus, for an
n-dimensional filter, there are n different sizes per filter. To allow for a compact
representation and thus a small overhead of sending filter sizes, we use a single pa-
rameter "size factor" s to specify the sizes. The size factor s is a scaling factor. The
size of a filter interval [ai, bi] in dimension i is computed by multiplying the variance
σi of the physical quantity with s. For simplicity, we use the same σi for all nodes,
which is a network-wide average and is fix for the duration of the query.

The expected sensor readings determine the location of the filters. Therefore, the
size factor s is sufficient to specify a filter.

66

5.3. FILTERING FOR JOIN PROCESSING

5.3.2 A Join-Filtering Framework

In the following, we describe our join-filtering framework, where the sensor nodes
and the base station have different tasks.

Our goal is to perform close to IDEAL by discarding non-joining tuples. At the
same time, we want to avoid re-computing the set SJ of joining tuples for each exe-
cution. This leads to the problem of correctness: If a Node j with tj /∈ SJ does not
send its data, this data is unknown. The problem then is to notice that, at some point
in time, tj enters SJ and should be sent. If we fail to realize such situations, the join
result will be incomplete.

To overcome this problem, CJF is based on filtering. As in IDEAL, the base station
computes the result. To discard tuples, the base station installs filters on the nodes. In
particular, filters can also be used to guarantee correctness. The following mechanism
accomplishes this: If a Node j has filtered its tuple tj , the base station can use filterj

to check if tj still does not join. To do so, it exploits that tj has to be inside filterj .
If none of the values in filterj joins with data from other nodes, then tj cannot join.
If filterj does not suffice to rule out that tj joins, the base station retrieves tj from
Node j to compute a correct result.

Example 5.3: Consider the following join condition from Example 5.1: |A.temp
- B.temp| < 0.3◦C. If Node j has the filter [22◦C, 23◦C], and a Node h sends
its tuple th with a temperature value of 24◦C, then tj and th cannot join. However, if
h sent 23,1◦C, filterj is insufficient to guarantee correctness. �

This situation is important as it incurs costs:

Definition 5.2 (th collides with filterj)
A tuple th collides with filterj , if there exists a value in the filter that joins with the
tuple.

Theoretically, it might also happen that two filters collide: For instance, think of
filters, [22◦C, 23◦C] and [22.8◦C, 23.5◦C]. In the interest of correctness, the base
station must retrieve two tuples. CJF avoids these extra costs when setting the filters
(cf. Section 5.4).

The mechanism to guarantee correctness is embedded in the following overall pro-
cess. It is used in each execution to compute the result. For now, suppose that each
node knows its filter. The base station knows each node and the corresponding filter:

1. Each node reads the sensors that are relevant to the query.

2. Each node applies its filter: If the join-attribute values are outside of the filter
interval, the node sends a tuple to the base station with all relevant attributes.
Otherwise, it sends nothing. The tuple is kept in RAM until the next execution.

67

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

3. The base station receives the tuples that are not filtered and constructs the re-
lations to be joined. For each node that has filtered its tuple, the base station
adds a tuple consisting of the filter intervals [ai, bi] as value for attribute i.

4. The base station joins the relations and retrieves missing tuples in case of col-
lisions.

The framework achieves correctness independent of the setting of the filters. Fil-
tering ’only’ affects efficiency.

5.3.3 Maintaining Filters

We now introduce the central problem, namely "maintaining filters". To do so, we
first illustrate how filter sizes influence efficiency: If the tuple tj of a Node j joins, we
should not install a filter on j. Otherwise, the filter would cause a collision, and the
base station must retrieve tj . In contrast, if tj does not join, and we install a filter on
j, we need to choose its size. If the filter is too small, tj might fall outside of it and
will be sent though it is not needed. If the filter is too large, we risk a collision. This
is even more costly, since now tj is queried and sent unnecessarily.

We optimize filter sizes individually for each node. Intuitively, to avoid collisions,
filters should be smaller in regions of the join-attribute space where there are more po-
tential join partners. Uniformly sized filters are suboptimal, as shown in Section 5.7.

As the costs corresponding to a specific filter size depend on the sensor readings of
all nodes, it is necessary to know these readings to minimize costs. We approximate
this knowledge by means of models of future readings. CJF computes filters at a
central site as then, the nodes have to send model updates to only one location. In
particular, the base station computes the filters. It needs to know them anyway to
guarantee correctness.

Updating filters affects efficiency as well: The base station needs to send filter sizes
to the nodes. This incurs costs. However, redistributing filter sizes in each execution
in pursuit of a perfect filtering will cost too much if the current settings are good
enough.

’Optimal filter maintenance’ consists of the following problems:

1. The base station needs to determine filter sizes that minimize communication
costs. This is subject to Section 5.4. Note that the problem is not choosing the
locations of the filters – these are given by the expected sensor readings.

2. For each execution, the base station has to decide which filters to update (cf.
Section 5.5).

68

5.4. COMPUTING OPTIMAL FILTERS

Models. We need to choose a model to predict sensor readings. We used a linear
model in our implementation, which we describe in Section 5.6. However, CJF is
orthogonal to the choice of the model as long as it fulfills the following requirements:

• Provides an estimate (expected value) of the sensor readings of a node at the
time of the next query execution.

• Provides a probability that the sensor readings of a node are in a specified
interval.

• The probability function must be continuously differentiable.

• Provides the notion of variance of the measurements.

• Is simple enough such that nodes can compute it.

5.4 Computing Optimal Filters

To optimize filter sizes, the base station maps a join query to a mathematical opti-
mization problem as shown in Section 5.4.1. We then present the algorithm used to
solve it continuously (Section 5.4.2).

5.4.1 The Optimization Problem

We now specify our goal more precisely. So far, we do not consider time: We can
compute filter sizes that minimize the expected communication costs for each query
execution. Alternatively, we can optimize filters for a number of upcoming execu-
tions. We decided for the first alternative and always optimize filters for the next
execution. The reason is that the model-based predictions of sensor readings are best
for the near future. They degenerate with time. In addition, to consider multiple ex-
ecutions, we would have to decide on how many. This is difficult. Most notably, we
do not know for how many executions the filters will actually be used. This depends
on the optimal filters which we are about to compute.

We now say how to map a join query to a mathematical optimization problem
which yields the optimal filter sizes. Our mapping works for general θ-joins as spec-
ified in our problem statement (cf. Section 3.1), subject to the following restriction:
Each condition has to cover one attribute per relation. (We do not require identical
attributes: For instance, ’A.temperature > B.humidity’ is fine, though not meaning-
ful.) In particular, we require both attributes to be dynamic or static, e.g., unlike
’A.node_id > B.temperature’.

CJF starts by dividing the join conditions into those over static and over dynamic
attributes. Conditions over static attributes are easy to deal with and are processed

69

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

separately: Since the base station knows the attribute values for each node, the idea is
to simply evaluate the conditions and then evict them from the query. This is possible
due to the conjunctions in the query: Pairs of nodes that do not fulfill one of the join
conditions cannot join. As a result, we obtain for each node a set of potential join
partners, which we will use in the optimization problem.

In detail, for each Node j that is involved in the query (i.e., for which tj ∈ (A∪B)),
the base station computes a set N static

j . N static
j is that subset of nodes that joins with

tj based on the conditions over static attributes. Further, the base station obtains a set
N =

⋃

j N static
j . The purpose of N is as follows: Nodes not in N are guaranteed not

to join (j /∈ N ⇔ N static
j = ∅). We set their filter sizes to ∞. In contrast, nodes in N

are considered in the optimization. We have to compute their filter size.

Example 5.4: In Example 5.1, there is one join condition over static attributes: A.id
!= B.id. For each Node j, N static

j is the set of nodes in the network except j itself,
as no tuple joins with itself. If the network contains at least two nodes, there are no
non-joining tuples based on this condition: N contains all nodes. �

The Optimization Problem. We will use the following variables: Let Mji be a
random variable modeling the measurement of Node j for Attribute i for the next
query execution. mji is the expected measurement, i.e., mji = E(Mji). ~s =
(s1, ..., s|N |)

T is a vector containing the filter sizes sj of each Node j, as defined
in Section 5.3. Let costj denote the costs for j to send its tuple to the base station.
We assume that sending to the base station incurs the same costs as in the inverse
direction, to avoid a further parameter.

The Objective Function. The objective function specifies the communication
costs given a specific setting of the filters ~s. To formalize the communication costs,
we first specify the costs due to a Node j, commCostj(sj). According to our frame-
work, a Node j sends its tuple in two cases: First, if it is outside of its filter. This incurs
outF ilterCostj(sj). Second, if it is retrieved due to a collision (collisionCostj(sj)).
Then,

commCostj(sj) = outF ilterCostj(sj) + collisionCostj(sj)

outF ilterCostj(sj) is the probability that tj is not filtered multiplied with the costs
of sending:

outF ilterCostj(sj) = (1 − P (tj is filtered)) · costj

According to Definition 5.1, for an n-dimensional filter of size sj , tj is filtered if it is
within the interval [ai, bi] = [mji − sj · σi,mji + sj · σi] in each dimension i:

70

5.4. COMPUTING OPTIMAL FILTERS

P (tj is filtered) = P (
n

⋂

i=1

Mji ∈ [mji − sj · σi,mji + sj · σi])

collisionCostj(sj) is the probability of a collision, multiplied with the costs. The
costs in this case are 2 · costj as we query and send. However, tj is only retrieved if
it was filtered:

collisionCostj(sj) = P (tj is filtered
⋂

∃h ∈ N static
j : th collides with filterj) · 2 · costj

(5.1)
where the existence resolves to

P (∃h ∈ N static
j : th collides with filterj) = P (

⋃

h∈Nstatic
j

th collides with filterj)

The idea of computing P (th collides with filterj) is to identify the subspace of the
join-attribute space that collides with filterj . We then only need to compute the prob-
ability of th being in it: P (th collides with filterj) = P (

⋂n

i=1 Mhi ∈ subspacei).
Due to the conjunctions in the query, each join condition further narrows the sub-

space of tuples that collide with filterj . Thus, CJF computes the subspace by iterating
over the join conditions. For each join condition in the query, CJF takes the current
subspace and restricts it. The restrictions themselves are specific to the join condi-
tion. However, the principle is always the same: The subspace is restricted to those
tuples that join with one of the tuples in filterj , based on the current condition.

Example 5.5: In Example 5.1, the join conditions are: |A.atti−B.atti| θ dmax
i where

θ ∈ {<,≤}. Such a condition restricts dimension i of the subspace to all values that
are at most dmax

i away from filterj ([mji − sj · σi,mji + sj · σi]); to have a collision,
Mhi ∈ [mji − sj · σi − dmax

i ,mji + sj · σi + dmax
i]. �

Example 5.6: For |A.atti −B.atti| > dmin
i , a tuple th that collides with filterj has to

be more than dmin
i away from it. This simply is: Mhi /∈ [mji + sj · σi − dmin

i ,mji −
sj · σi + dmin

i]. �

CJF restricts the subspace of tuples that collide with filterj for all conditions in-
volving {≤, <,>,≥} according to this principle.2 Conditions involving equality and
inequality conditions are handled as follows: Equality conditions can be expressed in
terms of their absolute difference, e.g., A.x = B.x is the same as |A.x − B.x| ≤ 0.
This has already been discussed. For inequality conditions, the model expects them

2Conditions without absolute value operators are are not symmetric. They require to distinguish
between tj ∈ A and tj ∈ B for computing the probability of a collision. The details are discussed
in Appendix C.

71

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

slack > 0:

Temperature

dfilter1

filter2

slack = 0:

Temperature

dfilter1

filter2

Figure 5.1: Slack between filters in dimension "temperature"

slacki
jh(sj , sh) =































[(mhi − sh · σi) − (mji + sj · σi) − dmax
i − ǫi]

2,

if (mhi − sh · σi) − (mji + sj · σi) − dmax
i − ǫi > 0

[(mji − sj · σi) − (mhi + sh · σi) − dmax
i − ǫi]

2,

if (mji − sj · σi) − (mhi + sh · σi) − dmax
i − ǫi > 0

0, else

Figure 5.2: Continuously differentiable function slacki
jh for |A.atti−B.atti| < dmax

i

to be fulfilled: The probability of two measurements being unequal is 1. Thus, ac-
cording to an inequality condition, we expect tuples to join. In general, we must
ignore inequality conditions when computing filter sizes.

Given commCostj(sj), the overall communication costs is the sum of the costs
due to each node, i.e., our objective function is:

commCost(~s) =
∑

j∈N

commCostj(sj) (5.2)

Constraints. Filter sizes must be non-negative. Thus, a first set of constraints
is: sj ≥ 0,∀j ∈ N . In addition, we need constraints to avoid colliding filters, as
motivated in Section 5.3: A pair of filters may not contain a pair of tuples tj ∈ filterj

and th ∈ filterh that join. To formalize this constraint, we first define the function
slackjh(sj, sh) such that slackjh(sj, sh) > 0 if there is room to increase filterj or
filterh without a collision. slackjh(sj, sh) = 0 iff filterj and filterh collide. In detail,
we define slackjh(sj, sh) =

∑p

i=1 slacki
jh(sj, sh). There is one slacki

jh for each
of the p join conditions in the query. The form of slacki

jh is specific to the join
condition, but the principle is always the same: slacki

jh becomes zero if any pair of
tuples tj ∈ filterj and th ∈ filterh fulfills the join condition, and it is greater zero
otherwise. Then, slackjh(sj, sh) = 0 if the filters collide and greater zero otherwise,
as intended.

Example 5.7: There are tuples that fulfill |A.atti − B.atti| < dmax
i if the filters are

closer than dmax
i , see Figure 5.1. Figure 5.2 shows how to formalize this. There is

one case for mji ≥ mhi and one for mji < mhi, as the join condition is symmetric.

72

5.4. COMPUTING OPTIMAL FILTERS

slacki
jh is well defined, as for any sj, sh, only one of the cases applies. �

There are similar functions slacki
jh for other join conditions. – Two remarks con-

clude the discussion of slackjh. Firstly, in Figure 5.2, instead of the distance in
Dimension i we actually use the square of it. This is to ensure continuous differen-
tiability of slackjh, to solve the optimization problem. Secondly, slacki

jh turns zero
if the filters become closer than (dmax

i + ǫi) instead of dmax
i . We will discuss the

rationale behind ǫi at the end of Section 5.4. For now, suppose that ǫi = 0.

Observation 5.1: Sometimes there are no filter sizes sj, sh that avoid colliding filters,
i.e., slackjh(sj, sh) > 0 cannot be fulfilled. �

If the predicted measurements of j and h join, then filterj and filterh collide, irre-
spective of sj, sh. This is because the expected measurements are always contained
in a filter.

Given slackjh, we define a constraint to avoid colliding filters:

(slackjh(sj, sh) > 0) ∨ (sj = sh = 0) (5.3)

The disjunction guarantees that the optimization problem always has a solution,
i.e., even if slackjh(sj, sh) > 0 cannot be fulfilled. In this case, the only way to avoid
a collision is not to filter tj and th, i.e., sj = sh = 0. Summing up, our optimization
problem is:

minimize commCost(~s)

subject to (slackjh(sj, sh) > 0) ∨ (sj = sh = 0),∀j ∈ N∀h ∈ N static
j

sj ≥ 0,∀j ∈ N

(5.4)

5.4.2 Continuously Optimizing Filters

Definition 5.3 (Optimal Filter-Size Factor ~s∗)
~s∗ solves (5.4), i.e., the filter-size factors ~s∗ = (s∗1, ..., s

∗
|N |) minimize the expected

costs under constraints.

We now turn to computing ~s∗. The first obstacle in applying a standard technique
such as Newton’s method are the constraints. To handle them, we have developed a
solution based on the barrier method. We give some background on this method in
Section 5.4.2.1 and present our approach in Section 5.4.2.2. The second challenge
in computing optimal filters is to avoid local optima. The underlying problem is that
our objective function is not convex. The experiments in Section 5.7 demonstrate
that this is indeed the case: There, the optimizer finds different optima for different
starting points. This cannot happen for convex functions. It also shows that ending up

73

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

in a local minimum is an issue in practice. In Section 5.4.2.3, we present our solution
for finding the global optimum ~s∗.

To start with, we derive filter sizes that yield a lower bound for the cost function,
commCost(~s∗) (recall that the location of the filters is given by the expected sensor
readings):

Definition 5.4 (Isolated Minimum siso
j)

siso
j is the filter-size factor that minimizes commCostj(sj).

In contrast to s∗j , the isolated optimum siso
j ignores the constraints (optimizes

commCostj "in isolation"), i.e., the siso
j are not a solution for (5.4) in general. Note

that siso
j exists as, due to the definition of commCostj(sj), commCostj(0) = costj

and sj → ∞ ⇒ commCostj(sj) → 2 · costj . Finally, commCost(~siso) is a
lower bound for commCost(~s∗): In the objective function (5.2), sj affects only
commCostj(sj). Thus, the siso

j minimize commCost(~s).
The following proposition relates siso

j to s∗j – the optimal filter under constraints
s∗j is smaller than the isolated optimum siso

j :

Proposition 5.1: s∗j is in [0, siso
j].

The proof uses the following insight, which is important in itself:
Lemma 5.1: If filterj of size sbig

j is feasible, i.e., causes no collisions, then every

size ssmall
j < sbig

j is feasible as well.

Proof : sbig
j causes no collisions. That means, according to the definition, there

exists no value inside filterj that joins. However, if we decrease the size of filterj ,
every smaller filter is contained in the larger one (the filters have the same center).
Thus, the smaller filter as well cannot collide. �

Proof of Proposition 5.1: Assume that s∗j > siso
j . Then, according to Lemma 5.1,

siso
j is feasible as well. However, per definition, siso

j minimizes commCostj , in con-
tradiction to s∗j > siso

j . �

5.4.2.1 Background on Barrier Methods

To cope with the constraints, our solution is based on the barrier method. It solves
large problems reliably and efficiently [Hin06]. Subsequently, we provide some ba-
sics of this method. See [BV04] for more details. It addresses problems of the fol-
lowing form:

minimize f(~x)

subject to ci(~x) ≥ 0, i = 1, ...,m
(5.5)

It does so by transforming the problem to an unconstrained one to which a standard
optimization technique like Newton’s method can be applied. The idea is to use

74

5.4. COMPUTING OPTIMAL FILTERS

the constraints as a penalty in the cost function: If ~x approaches the bounds of the
feasible region, the penalty increases significantly. Within the feasible region, it is
(approximately) 0. This idea is realized as follows:

minimize f(~x) + (
1

t
)

m
∑

i=1

− log(ci(~x)) (5.6)

for a constant t ∈ R
+. The function φ(~x) = −

∑m

i=1 log(ci(~x)) is called the loga-
rithmic barrier. Irrespective of the value of t in (5.6), the logarithmic barrier grows to
infinity if ~x approaches the bounds of the feasible region: ∃i : ci(~x) → 0 ⇒ φ(~x) →
∞.

Of course, (5.6) is only an approximation of the original problem. However, it can
be shown that the solution of (5.6) converges to the solution of (5.5) as t grows to
infinity [BV04].

In principle, we need to solve (5.6) for a large t such that the error of the approx-
imation is smaller than some ǫ. However, if the parameter t is large, f(~x) + 1

t
φ(~x)

is difficult to minimize with Newton’s method [BV04]. The solution is to solve a
sequence of problems of the form (5.6), increasing the parameter t and therefore the
accuracy of the approximation in each step, and starting each minimization at the
solution for the previous value of t.

5.4.2.2 Coping with the Constraints

We now say how the base station computes optimal filter sizes for each node. To deal
with the constraints in (5.4), the base station applies the following procedure in each
query execution:

1. Transform the problem (5.4) to (5.6).

2. Solve the optimization problem (5.6).

Step 1: Transformation. To use the barrier method, we have to transform our
optimization problem (5.4) to comply with the required form (5.5), leading to (5.6).
The objective function commCost(~s) already does so. For the constraints sj ≥
0,∀j ∈ N we can define cj(~s) = sj,∀j ∈ N to meet the form in (5.5). The challenge
is to express the constraints (5.3) in the required form: Firstly, to avoid colliding
filters, we need to guarantee slackjh > 0, instead of ’≥’ in ci(~x) ≥ 0. However,
since we stop the iterative optimization for some t < ∞, we end up fulfilling the
strict constraint slackjh > 0. The more difficult problem is that (5.3) contains a
disjunction. Recall that this is necessary as for some pairs of filters, slackjh > 0
cannot be fulfilled (Observation 5.1). In that case, we must not install filters on j and
h (sj = sh = 0).

75

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

1 ~s0 := init(~s∗l); //~s∗l : optimal assignment from last execution
2 ~s0 := neighbor(~s0);
3 t0 := m

f(~s0)−p∗
; //m is taken from (5.6)

4 µ := 20; ǫ := 10−2; k := 0;
5

6 repeat{
7 ~sk+1 := minimize f + 1

tk
φ starting at ~sk;

8 tk+1 := µtk;
9 k++;

10 }until(m
tk

> ǫ);
11

12 //~scur: current filter assignment
13 if (f(~scur) > f(~sk)) return true; //better filters ⇒ update ~scur

14 return false;

Figure 5.3: Optimization Method

This suggests the following approach: Prior to the optimization, the base station
finds those pairs of filters having slackjh(ξ, ξ) = 0 for a very small filter ξ. It sets
their filter size to 0. This reduces the set of nodes N that have to obtain a filter to a
smaller set N ′. However, the nodes in N ′ can fulfill slackjh > 0. Thus, CJF can now
drop the disjunctive part of constraint (5.3) and obtains: ci(~s) = slackjh(sj, sh).

Step 2: Solving the Problem. Figure 5.3 shows the algorithm for computing
optimal filter sizes. For now, think of Lines 1 to 4 as initialization. In Lines 6 to 10,
the barrier method is implemented as described in Section 5.4.2.1. In Line 7, the
optimization problem is solved for a specific choice of t. Then t is incremented, and
the procedure is repeated until a stopping condition holds (Line 10). The stopping
condition guarantees that the error in the solution is ≤ ǫ [BV04]. As the optimization
problem in Line 7 is an unconstrained problem, we can use a standard (state-of-the-
art) optimizer to solve it. In our implementation, we use the Quasi-Newton method
BFGS [NW06]. Briefly, Quasi-Newton methods estimate second derivatives, in con-
trast to computing them, as Newton’s method does. This is more robust and has lower
costs per iteration. For details, see [NW06]. The code in Lines 1 to 4 and 12 to 14 is
important for handling non-convexity.

5.4.2.3 Coping with Non-Convexity

The problem with Lines 6 to 10 (Figure 5.3) is that they might not find the global
optimum as the objective function is not convex. There is no general approach for
solving non-convex optimization problems. However, in our case, we can exploit the

76

5.4. COMPUTING OPTIMAL FILTERS

1 neighbor(~s0)
2 for each j ∈ N ′:
3 siso

j := min commCostj;
4 sj := random() ·siso

j ;
5

6 if (feasible(~s)) //∀j ∈ N ′∀h ∈ N static
j : slackjh(sj, sh) > 0

7 if (commCost(~s)−commCost(~s0)
commCost(~s0)

< 0.1)

8 return ~s

9

10 return ~s0

Figure 5.4: Neighbor Method

continuous nature of the queries to relax the optimization problem. We allow CJF to
(i) sometimes work with local optima as long as they yield good performance. (ii) At
the same time, we guarantee that this relaxation is transient: CJF will eventually find
a global optimum.

With respect to (i), we avoid bad local minima when choosing starting points for
the iterative optimization (Line 1). See Paragraph 5.4.2.3.1. With respect to (ii), we
present a stochastic optimization with the following property: We will prove that, for
static environments, CJF converges to globally optimal filters. ’static’ means that the
sensor readings do not change. We use this requirement to capture our assumption
of temporal correlation – if the sensor readings vary arbitrarily between subsequent
executions, the stochastic approach does not necessarily converge.

The stochastic approach is based on the following idea: For each execution, we
pick a random setting of the filter sizes ~s (Line 2). If and only if it is not too bad
(as specified below), we substitute the starting point with this random choice. The
important insight is: If, at some point in time, we choose a starting point close to the
global optimum, then the optimization in Lines 6 to 10 will find the global optimum.
In any case, we accept an optimum if it improves the costs of the best setting known
so far (Lines 12 to 14).

Figure 5.4 shows how CJF chooses random filter sizes. In particular, this algorithm
implements simple random sampling. For each node, neighbor() chooses a size
in [0, siso

j] where siso
j minimizes commCostj (Lines 2 to 4). According to Proposi-

tion 5.1, the optimal setting is in this interval. Paragraph 5.4.2.3.2 will say how to
compute siso

j . We substitute our starting point with this random choice if it is feasible
for (5.4) and is at most 10% worse regarding the objective function (Lines 6 to 8).

The main result of this subsection is: The probability that CJF never finds the
global optimum is 0. This holds for the following reason: We do not need to sample
exactly the optimum. Due to the optimization, we only need to find a point in a
neighborhood where the optimization function descends to the global optimum.

77

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

Proposition 5.2: The probability of never generating a starting point ~s0 in a neigh-
borhood [s∗j −

∆j

2
, s∗j +

∆j

2
] of s∗j is 0.

Proof : The important insight is that the probability of uniformly sampling a point
in an arbitrary neighborhood of size ~∆ > 0 is constant (g(~∆) > 0):

g(~∆) =

∫ 0

∆1

...

∫ 0

∆|U|

1dα1...dα|U | ·
1

∆1 · ... · ∆|U |

=

|U |
∑

j=1

∆j(
1

∏|U |
j=1 ∆j

) = const.

Thus, the probability of not generating a point in [s∗j−
∆j

2
, s∗j+

∆j

2
] is upper bounded

by 1 − g(~∆), where (1 − g(~∆)) ∈ [0, 1). Finally,
∏∞

t=t0
(1 − g) = 0 (which is the

claim, starting at t = t0 in time) ⇔
∑∞

t=t0
log(1 − g) = −∞. This is because

log(1 − g) ∈ (−∞, 0). �

5.4.2.3.1 Initialization. In Line 1 (Figure 5.3), init() chooses a starting point
for the optimization. This must be done with care: The starting point must be feasible
in our original optimization problem (5.4). This is because the constraints are used
as an argument of a logarithmic function, which is undefined if the constraints of
(5.4) are not met. In addition, the starting point should be as good as possible: If the
optimizer only finds a local optimum, the corresponding costs are upper bounded by
those of the starting point.

When choosing an initial value for sj , we distinguish two cases: There is an opti-
mal filter size slast

j from the preceding execution. There is no slast
j . The latter is the

case if either Node j was not in N ′ in the last execution, or if we have the very first
query execution.

In the first case, we initialize sj with slast
j , the optimum from the preceding execu-

tion. Given that the measurements do not change by much in between two executions,
the optimal filter sizes do not change by much as well. As a detail, due to changes
in the expected sensor readings, the sizes slast can violate the constraints (5.3), i.e.,
two filters could collide. In this case, CJF decrements both filters by multiplying both
slast with the same factor ∈ (0, 1). This way, we avoid penalizing one of the nodes
more than the other. Note that we have to decrement: A filter collides if one of its
values joins. Clearly, any larger filter collides as well.

If there is no slast
j , our idea is to initialize sj with a point close to siso

j . The moti-
vation is that commCostj(s

iso
j) lower bounds commCostj , i.e., siso

j is optimal with
respect to the communication costs. However, simply taking the siso

j will likely vio-
late the constraints. To obtain a feasible setting, CJF decrements siso

j until the con-
straints are met. Specifically, if filterj of size siso

j collides with a filterh having a

78

5.4. COMPUTING OPTIMAL FILTERS

1 SI := {[0, smax]};
2 ǫ := 10−1;
3 //initialize the current minimum smin;
4 if (cCj(0) < cCj(smax)){smin := 0;}else{smin := smax;}
5

6 while(true){
7 pick I ∈ SI : [cCj(smin) − lBound(I) > ǫ]∧

8 [(cC ′
j(smin) > 0 ∧ smin == b(I))∨

9 (cC ′
j(smin) < 0 ∧ smin == a(I))];

10

11 if (I == null){ //no such I ∈ SI

12 pick I ∈ SI : ([lBound(I) < cCj(smin)] ∧ [smin > b(I)])∨

13 ([cCj(smin) − lBound(I) > ǫ] ∧ [smin ≤ b(I)]);
14 if (I == null) break; //all intervals fulfill the conditions
15 }
16

17 //split I
18 SI := SI\{I};
19 s := a(I)+b(I)

2
;

20 if ([cCj(s) < cCj(smin)]∨[(cCj(s) == cCj(smin))∧(s < smin)]){ smin := s};
21 SI := SI ∪ {[a(I), s], [s, b(I)]}

22 }
23 return smin;

Figure 5.5: Optimizing commCostj(sj) (= ’cCj’ in this figure)

previously optimal size slast
h , then CJF decrements only siso

j . If both sizes are new,
CJF decrements both with the same factor as discussed above.

Finally, for the initialization in Figure 5.3, p∗ deserves explanation. It is used to
initialize the parameter t of the barrier method. p∗ is an estimation of commCost(~s∗).
We estimate p∗ as: p∗ =

∑

j∈N ′ commCostj(sj), where sj is the optimum from the
last execution slast

j , if it exists. Otherwise, we use sj = siso
j .

5.4.2.3.2 Optimizing commCostj(sj). Finding the isolated minima siso
j is diffi-

cult due to the non-convexity of commCostj(sj) – again, using a standard technique
probably ends up in a local minimum.

To start with, we specify our goal more precisely. We are interested in siso
j , the

filter size that minimizes commCostj . If there are multiple minima, our goal is to
find the smallest filter size that minimizes the costs. This is because it has the smallest
potential of causing collisions.

79

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

Our optimization algorithm is based on the following insight: commCostj(sj) =
outF ilterCostj(sj)+collisionCostj(sj), where outF ilterCostj(sj) monotonically
decreases with increasing sj and collisionCostj(sj) monotonically increases. We
can thus lower bound commCostj on an interval I = [a, b]:

lBound(I) = outF ilterCostj(b(I)) + collisionCostj(a(I)) (5.7)

In (5.7), interval I is a part of the domain of sj , namely R
+
0 , and a(I) and b(I) are

the endpoints of I .
Subsequently, we will establish three properties of lBound(I) (Observation 5.2 -

5.4) which we use for finding siso
j . In particular, the observations serve as a mathe-

matical foundation of our solution.
Suppose that we have split the domain of sj into disjunct intervals. In addition, let

smin be a filter size from the domain. Intuitively, smin will serve as an approximation
of the result siso

j . Then, the following observation holds because lBound(I) lower
bounds the costs for sizes s ∈ I:

Observation 5.2: If commCostj(smin) < lBound(I), then I cannot contain the
minimum siso

j . �

Observation 5.2 indicates the main idea of our approach: Suppose that we have a
candidate smin which we suspect to minimize commCostj(sj). Given a decomposi-
tion of the domain of sj into intervals, we can use the lower bound to assure for each
interval that it does not contain a filter size that results in lower communication costs.

We now identify situations in which the condition from Observation 5.2 cannot be
fulfilled. As in case of Observation 5.2, Observation 5.3 holds because lBound(I)
lower bounds the costs for sizes s ∈ I:

Observation 5.3: ∀s ∈ I : commCostj(s) ≥ lBound(I). �

Our idea is to discard intervals from the search based on Observation 5.2. How-
ever, due to Observation 5.3, we can only discard intervals I : smin /∈ I . Therefore,
we refine our approach as follows: If smin /∈ I , we seek to discard I based on Ob-
servation 5.2. If smin ∈ I , we require commCostj(smin) − lBound(I) < ǫ. This
condition bounds the error of our approximation smin by ǫ: commCost(smin) −
commCost(siso

j) < ǫ.
The final observation constitutes a problem if commCostj has multiple minima:

Observation 5.4: For any interval I that contains an s′ ∈ I with commCostj(s
′) =

commCostj(smin): commCostj(smin) ≥ lBound(I). �

Observation 5.4 immediately follows from Observation 5.3. As a consequence
of Observation 5.4, the condition from Observation 5.2 cannot be fulfilled for any
interval I that contains a minimum.

80

5.4. COMPUTING OPTIMAL FILTERS

This leads to the final refinement of our approach which seeks to fulfill one of the
following conditions for each interval: (A) Given a candidate smin for siso

j , the algo-
rithm uses Observation 5.2 to discard all intervals I for which b(I) < smin. Thus, if
(A) is fulfilled, we know that there is no filter which is smaller than smin and leads
to lower costs. (B1) For an interval I that contains smin (smin ∈ I), we require
commCostj(smin) − lBound(I) < ǫ, since Observation 5.2 cannot be fulfilled if
smin ∈ I . (B2) If smin > a(I), we also require commCostj(smin)−lBound(I) < ǫ.
This is because I might contain a further minimum and thus cannot fulfill Observa-
tion 5.2. (B1) and (B2) can be summarized as follows: (B) If smin ≤ b(I), we require
commCostj(smin) − lBound(I) < ǫ.

Our algorithm assures conditions (A) and (B) as follows: It splits the domain of
sj into intervals. For each split, it computes commCostj at the point of splitting.
Thus, we evaluate the cost function at endpoints of intervals. We maintain the current
minimum, smin, as an approximation of the result siso

j . In addition, we use the current
smin to fulfill (A) and (B). If an interval I does not fulfill the corresponding condition,
we split it into I1 and I2. This might result in a new minimum. In any case, the lower
bounds of I1 and I2 will be larger than lBound(I). The algorithm keeps splitting
intervals until for each interval either condition (A) (in case b(I) < smin) or (B)
(b(I) ≥ smin) holds.

Figure 5.5 shows the pseudocode of the algorithm. It implements the preceding
idea along with an ordering of choosing intervals to split. The idea is to give priority
to finding a good smin as it allows for a better pruning. Therefore, we greedily search
the minimum: We split that interval that contains the current smin (as an endpoint)
and into which commCostj descends, as indicated by the derivative – if it does not
already satisfy Condition (B) (Lines 7 - 9). If there is no such interval, we arbitrarily
choose one to split, until all fulfill Conditions (A) or (B).

Minimum Distances of Filters. Finally, we address the following problem:
Suppose that two filters only marginally fulfill the constraints, i.e., slackjh = ǫ for
some small ǫ. Then, it might happen that in the next execution the expected values
of Nodes j and h slightly change (by more than ǫ), and the filters collide. To avoid
this, CJF has to update the filters. However, it is likely that the situation immediately
repeats due to the trend in the sensor readings, and CJF again updates the filters.

To avoid this situation, we introduce minimum distances ǫi between filters, which
are already included in the constraint slackjh in Figure 5.2. We set ǫi to the average
rate of change of the corresponding physical quantity multiplied by the time t during
which we want to avoid collisions. Note that for a static environment, ~ǫ → 0. Thus,
this extension maintains the property of convergence to the globally optimal filter
sizes.

81

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

5.5 Efficiently Updating Filters

The base station computes optimal filter sizes for each execution. However, due to
temporal correlations in the sensor readings, the changes are usually small. Thus,
redistributing filter sizes for each execution will costs more than it saves. To ob-
tain efficiency, [JKM+07] has proposed to update filters only if the expected savings
outweigh the updating costs. This idea is applicable in our case as well. However,
deciding which filters to update is more complex for join filters than for individual
filters as in [JKM+07]. In the following, we discuss their solution before presenting
ours.

Goal. To reduce the overall communication costs, our goal is to update a filter
if and only if the improvement in terms of expected communication costs at least
amortizes the updating costs (during the time we expect the filter to be used).

Approach from [JKM+07]. To decide if Node j should be updated, the authors
compare the "charge" of continuing with sj (costs due to a suboptimal filter) to up-
dating (costj).

chargej(s
∗
j , sj) = (commCostj(sj) − commCostj(s

∗
j)) · (tcurr − tadjust)

The first factor is the expected difference in the communication costs if we use sj

instead of s∗j . The second factor is the time for which we expect the filter size to be
used. As an estimate, the authors use the time that the current filter has been valid if
we update now: (current time − time of last adjustment).

chargej(s
∗
j , sj) is large if the current filter sj is more costly than the optimal one,

or if it has been a long time since the last update. Thus, in the static case, the latter
factor will eventually force an update, yielding convergence to the optimum.

Problem. Our optimizer ensures that filters do not collide in the optimal setting
~s∗. However, if we only update a subset of the filters, an old filter of, say, Node j
might collide with an optimal (new) filter of Node h (slackjh(sj, s

∗
h) = 0). Thus, in

contrast to [JKM+07], we cannot update the nodes in isolation.
More precisely, the problem arises if a Node j has to shrink its filter (the cur-

rent filter sj is larger that the optimum s∗j) and is not updated. This might prevent
another Node h from enlarging its filter to s∗h: If s∗h > sh, s∗h can collide with sj

(slackjh(sj, s
∗
h) = 0). If we do not update sj , we cannot update sh to s∗h. Either we

do not update sh as well, or we use a size smaller than s∗h. In both cases, not shrinking
sj leads to a suboptimal filter on h and thus incurs costs. chargej(s

∗
j , sj) does not

reflect these costs.

82

5.5. EFFICIENTLY UPDATING FILTERS

Example 5.8: Assume that the filter of Node j is [22◦C, 23◦C], and j is supposed to
shrink it to [22,3◦C, 22,7◦C]. Node h currently uses [23,4◦C, 23,6◦C] and is supposed
to grow it to [23,1◦C, 23,9◦C]. For the join condition |A.temp - B.temp| <
0.3◦C, h cannot use its new filter if j is not updated as well: [22◦C, 23◦C] and
[23,1◦C, 23,9◦C] can contain joining tuples. �

Our solution requires the following definitions: Dj is the set of nodes that "depend"
on j to be shrunk, i.e., the nodes in Dj cannot use their optimum if j is not updated
(h ∈ Dj in Example 5.8):

Definition 5.5 (Dependent Nodes Dj)
Dj := {h|slackjh(sj, s

∗
h) = 0}

In contrast, we say that j "blocks" h, i.e., j prevents h from growing to s∗h if it is not
updated:

Definition 5.6 (Blocking Nodes Bh)
Bh := {j|h ∈ Dj}

Finally, if h depends on j and we do not shrink sj , then smax
h,j is the maximum filter

size that can be assigned to h:

Definition 5.7 (Maximum Possible Filter Size smax
h,j)

smax
h,j := supsh

{slackjh(sj, sh) > 0}

Updating Filters in CJF. In CJF, deciding which nodes to update involves the
following three tasks: (1) Resolving collisions of filters. (2) Shrinking filters. (3)
Enlarging filters.

The decisions must take place in this order since the ability of enlarging filters
depends on which of the filters were shrunk.

(1) Resolving collisions of filters. As filters are centered around expected sensor
readings, their position in the join-attribute space changes due to trends in the read-
ings. This can result in filters that collide based on their current filter sizes, i.e.,
without updating (slackjh(sj, sh) = 0). In this case, the base station would retrieve
the tuples of both nodes. This is twice as costly as updating them. Thus, as a first
step, CJF finds pairs of nodes that collide based on their current filter sizes sj, sh and
updates them.

(2) Shrinking filters. In the second step, CJF considers nodes for which the current
filter size sj is larger than the optimal one s∗j . We have to decide if it is more costly
to continue with sj or to update. As in [JKM+07], using a suboptimal filter incurs
chargej(s

∗
j , sj). In addition, not shrinking sj might block a Node h, which can only

use smax
h,j instead of its optimal size s∗h:

83

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

blockingCostj :=
∑

h∈Dj

1

|Bh|
(commCosth(s

max
h,j)−commCosth(s

∗
h))·(tcurr−tadjust)

The factor 1
|Bh|

reflects that j is not the only node that blocks h and accounts j a
share of the costs of blocking.

CJF updates sj iff chargej(s
∗
j , sj) + blockingCostj > costj .

(3) Enlarging filters. Enlarging filters is simpler as it affects only the node in
question. Let smax

j be the maximum possible filter size (≤ s∗j) given the decisions on
shrinking (= s∗j , if all nodes in Bj are updated). We update sj iff chargej(s

max
j , sj) >

costj .

5.6 Prototype Design

We conclude the description of CJF with an important design decision concerning our
prototype. Recall that CJF is not tied to a specific model for predicting measurements.
In this section, we say which model we use for our prototype.

The most important considerations when choosing a model are (1) the accuracy
of the predictions and (2) the costs of maintenance. If the predictions are bad, the
locations of the filters in the join-attribute space are suboptimal. Bad predictions also
lead to a high variance and thus to small probabilities of the readings being in a filter.
Maintaining the model is important as the quality of the predictions degrades in time.
This is due to changes in the trend of the readings. Then, the nodes need to update the
model to re-enable good predictions. Finally, some models involve extensive learning
phases which are very costly.

For CJF, we decided on a simple linear regression model. From the literature it is
known that linear models work well for a wide range of sensor data sets (see, e.g.,
[DGM+04, JCW04]). Our experiments substantiate this observation (cf. Section 5.7).
In addition, our choice is very general: There is no need for fitting the model to our
data/ application, and it avoids any extensive learning. Finally, the costs of main-
taining the model is low. We will briefly give some details on the model before we
discuss its maintenance.

The data is modeled as y = αx + β + e where the parameters α and β are esti-
mated using ordinary least squares regression (OLS) on the n most recent data values
received at the base station (in our implementation, n = 6). In our case, x is the time.
e is an error term which is normally distributed for OLS, leading to simple computa-
tions of probabilities. There are standard formulas for estimating α and β as well as
the variance of e. See, e.g., [JW02] for details.

[JW02] describes univariate as well as multivariate regression models. For ease
of implementation, we assume independence of the attributes in our prototype: We

84

5.7. EVALUATION

model each attribute in isolation using a univariate model. Although this is a simpli-
fication, we found it to work well for our purpose. In particular, the independence
assumption simplifies computing the probabilities, for instance:

P (tj is filtered) =
n

∏

i=1

P (Mji ∈ [mji − sj · σi,mji + sj · σi])

With respect to maintaining the model, a model update is just a tuple, i.e., the
current sensor readings of the join attributes. Therefore, we do not need a mechanism
to decide when to update the model – this is implicit: A node sends its tuple to the
base station whenever it is not filtered. Finally, as the model is based on the n most
recent sensor readings for a small n, it quickly adapts to changes in the data.

Handling Selections. Our prototype handles predicates other than join predi-
cates by a simple subscribe/unsubscribe mechanism: We use the common approach
that each node checks these predicates locally. A node notifies the base station when
it does not belong to any input relation due to the selection predicates. If, due to
changes in the data, the node belongs to one of the relations in a later query execu-
tion, it simply re-starts sending tuples. Finally, the base station determines whether a
node belongs to Relation A, B or both, simply by evaluating the selection predicates
with the expected sensor readings. The nodes continuously check correctness of this
membership.

Parameter costj. As a final remark on our prototype, we used a very simple cost
model for costj . Not only did we use the same costs for sending from Node j to the
base station and for the inverse direction. We also used the same costs for all nodes.
This effectively eliminates costj from our considerations. While we obviously could
have used a more sophisticated cost model, this is not in the focus of our work. This
simple constant cost model worked well for our experiments.

5.7 Evaluation

This section features an experimental evaluation. We show that maintaining filters
is much more efficient than re-computing the set of joining tuples. We also show
that CJF filters almost all tuples that do not join. Finally, we justify optimizing the
size of the filters per node, in contrast to using uniform filter sizes. We also examine
different influences on the performance of CJF, most notably of temporal correlation.

85

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

5.7.1 Experimental Setup

As with SENS-Join, we implemented CJF in the ns-2 network simulator to have a
controlled environment of our experiments and repeatability. For our implementation,
the runtime of optimizing filters was on the order of 2 seconds.

Data sets and Setting. Our goal is to evaluate CJF on real-world data, i.e., traces
from sensor networks. In contrast to SENS-Join, CJF is sensitive to the data as it
relies on temporal correlation – we wanted to avoid any bias in the results due to
synthetic data. We used the publicly available LUCE data set [Senc] which has a
large number of attributes. This allows for variations in the queries. To vary the
characteristics of the data, i.e., the temporal correlations, we used different sections
of the data set. The network consisted of 70 nodes when the data was acquired. For
the experiments, we set the size of the network and the positions of the nodes to
reflect the setting during the original data collection.

Alternative Approaches. We compare CJF to:
(1) External Join. The external join consolidates the entire input relations at the

base station and joins them outside of the network. For details, refer to Definition 3.1.
(2) SENS-Join. SENS-Join is state-of-the-art for our problem.
(3) IDEAL. IDEAL is the lower bound from Section 3.1.3. Recall that IDEAL is

infeasible in practice. However, as this is a simulation, we can provide the knowledge
which of the tuples join at no costs.

(4) Adaptive Precision Setting (APS) [OLW01]. This approach continuously op-
timizes the filters of each node. However, in contrast to CJF, it does not directly
account for the dependencies of the filters on the data of other nodes (Section 5.2
discussed APS in detail; we will repeat the important aspects below).

(5) UNIFORM. UNIFORM sets all of the filters to the same size. We present the
details along with the experiment.

Queries. We adopt the approach taken in the evaluation of SENS-Join (cf. Sec-
tion 4.4) for varying the queries. There, the queries correspond to the following
pattern where the selected attributes and the join conditions are varied:

SELECT A.att_1,..., A.att_n, B.att_1,..., B.att_n
FROM Sensors A, Sensors B
WHERE join-expr(A.join-atts, B.join-atts)
AND ... AND join-expr(A.join-atts, B.join-atts)
SAMPLE PERIOD 30

As an illustration, consider the query from Example 5.1.

86

5.7. EVALUATION

0

50

100

150

200

250

0 50 100

External Join

SENS-Join

CJF

IDEAL

0

50

100

150

200

0 50 100

External Join

CJF

SENS-Join

IDEAL
(a)

P
a

c
k
e

ts

(b)

P
a

c
k
e

ts

Fraction of Joining Nodes

Fraction of Joining Nodes

Figure 5.6: Costs of join approaches for different types of queries

Metric. We use the same metric as in Section 4.4: Number of transmissions (net-
working packets).

5.7.2 Comparative Experiments

Maintenance vs. Re-Computation. To demonstrate the efficiency of maintain-
ing filters instead of re-computing them, we compare CJF to the alternative join ap-
proaches, SENS-Join, the external join, and IDEAL. For this purpose, we repeated
the main experiments from Section 4.4. The parameter is the fraction of nodes that
join, which is the most important influence on the communication costs. The results
are based on a query with three join attributes and five attributes overall in the query
(we vary the queries in turn). This ratio is important for SENS-Join. Note that CJF is
not aware or tuned to these queries.

We varied the fraction of nodes in the result by adapting the join conditions, i.e., for
|A.att - B.att| < δ, we varied the thresholds δ. The external join collects
the entire relations. Thus, its costs are constant. We expect the efficiency of the other
approaches to increase for less nodes in the result. In particular, CJF should be more
efficient than SENS-Join as it does not involve a precomputation. The following
results are based on 50 executions of the query after an initial warm up phase (CJF
needs six time steps to establish the models). The results are shown in Figure 5.6(a).
As expected, CJF consistently outperforms SENS-Join. CJF can reduce the overhead

87

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

0

50

100

150

200

250

0 10 20 30 40 50

APS

CJF

Time (in 30s)

P
a
c
k
e
ts

Figure 5.7: Considering dependencies among the nodes

over IDEAL by more than a factor of four. In contrast to SENS-Join, there is no
break-even point with the external join as CJF does not involve any fix overhead.
CJF is the best for all queries and imposes only little overhead over IDEAL. While it
filters almost perfectly, this overhead is mostly due to updating the models at the base
station (cf. Section 5.7.3 for details). This also explains why, for a small fraction of
joining nodes, the overhead over IDEAL is larger than for a higher fraction: There
are more models to update if less nodes join/ have filters.

The relative performance of SENS-Join compared to the external join is slightly
better for a higher ratio of join attributes to attributes overall, as explained in Sec-
tion 4.4. We therefore varied the queries in our experiments to have higher ratios of
join attributes to attributes overall. For instance, Figure 5.6(b) shows the costs of a
query with seven attributes overall and three join attributes. The relative performance
of CJF compared to the external join is unaffected. The savings are proportional to
the overall data volume in the query.

Considering Dependencies. A basis of CJF is that join filtering is different
from other filtering problems. The size of a filter not only depends on the data of
the node but also on the data of other nodes. We will now show that ignoring these
dependencies results in bad performance. To this end, we compared CJF to APS.
APS adapts the filters of each node in isolation. The idea is to increase the filter (with
some probability) if the tuple is not filtered and to decrease the size if the tuple is
queried [OLW01]. For this experiment, we fix the fraction of joining nodes to 32%
such that a number of nodes can be filtered. Relative to the number of nodes that do
not join, we obtained the same results for other queries. Figure 5.7 shows the number
of transmissions in each time step. A further analysis has revealed that the reason for
the bad performance of APS is a large number of collisions among the filters. Thus,
it is important to consider dependencies when setting filters.

88

5.7. EVALUATION

0

30

60

90

120

150

180

0 0,025 0,05 0,075 0,1

UNIFORM

CJFP
a
c
k
e
ts

Filter Size

Figure 5.8: Using uniform filter settings

0

10

20

30

40

0 10 20 30 40 50

External Join

CJF

N
o

d
e

s
 S

e
n

d
in

g

Time (in 30s)

Figure 5.9: Performance of filtering of CJF

Individual Optimization. Another claim of ours has been that it is essential to
optimize the filters individually and to continuously adapt them. To validate this
claim, we compare CJF to UNIFORM. UNIFORM assigns the same filter to each
node. However, it differentiates between tuples that join and those that do not. Only
nodes that did not join in the last execution are filtered. We fix the fraction of nodes
that join to 5% and use the size of the uniform filters as a parameter. This parameter
does not influence CJF. Figure 5.8 graphs the results. Even if we knew which size to
choose for UNIFORM, it is still significantly worse than using individually optimal
sizes.

5.7.3 Analysis of CJF

Optimality of Filtering. We are interested in the filtering performance of CJF:
Among the nodes that do not join, how many do not send? CJF might miss some due
to filters being too small. Further, the model at the base station could be outdated. In
this case, as the filters are centered around the expected sensor readings, the position
of the filter is wrong, and a tuple goes unfiltered. The tuple then serves as an update
of the model. We show results for a query that allows to filter 50% of the nodes

89

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

0

1000

2000

3000

4000

5000

1 21 41 61

Simpler
Initialization

CJFP
a
c
k
e
ts

Time (in 30s)

Figure 5.10: Initialization of filters and convergence

on average – again, the relative performance (nodes filtered
non-joining nodes) was independent of this

setting. In Figure 5.9, we graph the number of unfiltered nodes. As the external join
does no filtering, it indicates how many nodes can be filtered. On average, CJF suc-
cessfully filters about 90% of the non-joining nodes. In a further analysis, we found
that almost all of the unfiltered nodes are model updates. Thus, the difference of CJF
and IDEAL stems from the need to maintain models at the base station. Beyond the
updates, we found that the overhead of CJF is negligible: CJF updates less than one
filter on average per time step. In addition, we observed less than two collisions on
average. These figures apply to a broad range of queries that we have tried.

Initial Assignment and Convergence. To cope with the non-convexity of the
cost function, CJF sometimes allows for local optima. The goal of the following ex-
periment is twofold. Firstly, we want to illustrate the non-convexity of the cost func-
tion. But even more importantly, we want to show the effectiveness of our stochastic
optimization approach. For these purposes, we compared CJF to an approach that
uses a simpler initialization: It simply sets the initial sizes such that they filter the
next reading with a probability of 99%. It then shrinks them until they fulfill the
constraints. We used a query with only a few joining nodes, as a higher number of
filters better highlights the difference. Figure 5.10 shows the cumulative costs of both
approaches over time. Firstly, note that the optimizer indeed does not find the same
setting with the different initializations. However, the difference between the two
approaches becomes constant towards the end of the run: At some point both filter
settings converge.

Varying Data Sets. CJF uses a model-based approach to know future sensor
readings. Thus, the performance of CJF depends on the dynamics in the data. In
the following, we analyze this influence. Therefore, we run CJF over four different
sections of the LUCE data set. We have chosen them manually such that they have
very different rates of change. For instance, during night time the data tends to be

90

5.8. SUMMARY

P
a

c
k
e

ts

Time (in 30s)

60

90

120

150

0 10 20 30 40 50

D1

D2

D3

D4

Static
Data

Figure 5.11: Influence of different data sets on CJF

quite stable, while, e.g., the temperatures show a sharp increase towards noon. We
added a synthetic data set representing the best case for CJF: It is static. The queries
were chosen to yield 50% ± 5% of joining tuples. Figure 5.11 shows the results. As
expected, the performance of CJF is better for more stable data. For the static data,
CJF actually matches IDEAL (not shown in the figure). The data sets in the preced-
ing experiments performed similar to D2 and D3, i.e., they were neither particularly
good nor bad.

5.8 Summary

This chapter studies continuous join queries. Our goal was to perform close to
IDEAL by discarding tuples that do not join. In particular, we showed how to exploit
temporal correlation in sensor readings as well as the continuous nature of queries to
avoid a re-computation of the set of joining tuples for each execution. To this end, we
have presented an approach that maintains join filters, CJF. What is special about join
filtering is that the size of a filter depends on the data of other nodes. CJF builds upon
models to consider such dependencies. It guarantees correctness in the presence of
filtering. One contribution of ours is computing filters that minimize the communica-
tion costs. We have shown how to map join queries to an optimization problem under
constraints and how to continuously solve it. To cope with the non-convex objective
function, we have devised a stochastic algorithm that converges to the optimal solu-
tion and an approach for finding good initial filters. This assures good performance
right away. Finally, CJF updates filters only if the improvement at least amortizes its
costs. Our experiments indicate that the filtering is close to optimal.

The presentation of CJF concludes the first part of this dissertation in which we
looked into processing queries with a well-separated interest, i.e., selective queries.
In particular, query processing as discussed so far has exploited this selectivity: Ef-

91

CHAPTER 5. PROCESSING CONTINUOUS JOIN QUERIES: A
FILTERING APPROACH

ficiently processing selection, projection, and join operators builds upon not sending
data that is irrelevant to the result. However, this idea only results in savings if queries
actually are selective. In the second part of this dissertation, we address the problem
of answering non-selective queries.

92

6 Approximate Query Processing
in Sensor Networks

We now turn our attention to the second integral part of this dissertation: We consider
situations in which applications simply collect the current sensor readings without
prior selections. Examples of such applications are numerous. Firstly, in scientific
environments, researchers often collect the entire set of measurements periodically
for later analysis. The idea of discarding portions of the data is unattractive to them
in their exploratory research, so they favor transmitting more data, even at the expense
of a lowered sampling period or a shorter lifetime of the network [CDHH06]. As an
example of an industrial application, consider quality management, i.e., monitoring
the conditions in the production. To be concrete, think of a drug manufacturer who
has to comply with legal requirements for documenting the production process. In
particular, law requires the manufacturer to log the entire data [Pha]. Finally, making
the sensor readings available at a central location periodically is a common data-
acquisition task in monitoring production lines. Staff can then take corrective action
immediately.

The common characteristic of all of these applications is that the data acquisition
covers the readings from all of the sensors in the network. Thus, from the point of
view of query processing, the queries simply consolidate the entire readings at the
base station. In particular, such queries have a low selectivity.

In the following, we illustrate the problem of answering non-selective queries and
motivate approximate query processing as a means of addressing this problem. We
then review related work on approximate query processing. This motivates our own
approach, which we present in Chapter 7. In addition, it justifies our choice of com-
parison schemes for the corresponding experiments.

6.1 Problem Statement: Processing
Non-Selective Queries

Subsequently, our concern is efficient consolidation of the state of the network, i.e.,
of the current snapshot. An application can request a snapshot once or periodically.

So far in this dissertation, the basic method that we have discussed for processing
queries is tree-based data collection. To reduce communication, tree-based data col-

93

CHAPTER 6. APPROXIMATE QUERY PROCESSING IN SENSOR
NETWORKS

lection exploits the selectivity of queries by pushing data-reducing operators into the
network. Then, only the data that qualifies for the result is sent along a routing tree
to the base station.

However, the problem with tree-based data collection is that, if selectivity is low,
most of the data is in the result. Thus, plain tree-based data collection is commu-
nication intensive. Making matters worse, observe that the costs do not stem from
the query processing approach – they are inherent in the problem itself. It is the size
of the query result that causes the costs. Further, the size of the result is not due to
some computation as in case of the join – the join increases the size of the data. In
this case, the increase can be avoided by delaying the processing, i.e., processing the
join operator at the base station. In contrast, for non-selective queries, the result is
simply the sensor data.

A widespread approach for reducing the data volume is approximate query pro-
cessing. As the problem is the large query result, the idea is to actually (slightly)
modify the semantics of the query/the result itself: We allow for some inaccuracy in
the result. In return, we obtain some leeway for an efficient query processing.

Approximate query processing in sensor networks is motivated as follows: In a
lot of applications, queries cannot dismiss any sensor readings. In contrast, accuracy
tends to be less critical: An approximation of the current snapshot is usually suffi-
cient [DGM+04, CDHH06]. For instance, for drug manufacturer, it might be fine to
know that the temperature in the production is 9.03◦C or even 9.0◦C, instead of seeing
the exact output of a sensor (9.0273...◦C). At the same time, it is important to bound
the error of approximations. For instance, the drug manufacturer has to document that
the temperature in the production process did not exceed certain thresholds. This is
not possible without error guarantees. Subsequently, our goal will be to approximate
snapshots of sensor readings under user-controlled error guarantees.

Formal Problem Statement. Our goal is to efficiently approximate snapshots
under user-controlled error guarantees. As the guarantees in our targeted applications
refer to individual values, we need a maximum error metric. This is because for SSE
(sum squared error), the error for individual values could be arbitrarily high [GG02].

Formally, we target queries that conform to the following structure:

SELECT Att1 ± e1, ..., Attn ± en

FROM Sensors
{WHERE predicates(Att1, ..., Attn)}
SAMPLE PERIOD x | ONCE

Example 6.1: The following query acquires the current temperature readings with a
maximum error of 0.1◦C:

SELECT temp ±.1◦C

94

6.2. CONSTRUCTING WAVELET SYNOPSES

FROM Sensors
ONCE �

Terminology. In the following, we will sometimes refer to the maximum error e
as specified in the query by "(maximum) error bound".

Before discussing related work on approximate query processing in sensor net-
works, we provide some background on wavelet transforms. We do so at this point
because it is the foundation of some of the related approaches. Thus, the follow-
ing section simplifies an understanding of related works. However, it is much more
important than just being background for related approaches. Our own approximate
query processing scheme, which we will present in Chapter 7, is based on the wavelet
transform. Thus, the subsequent discussion is also required to follow the discussion
in the next chapter.

6.2 Constructing Wavelet Synopses

This section provides a brief recap of wavelets. Computing a wavelet synopsis con-
sists of two subsequent tasks, wavelet transform and thresholding.

Wavelet Transform. We illustrate the principle by means of an example. Further
information can be found in the standard literature, e.g., [SDS96]. Our description
is based on the Haar transform which is the basis of SNAP. We justify this choice in
Section 7.2.

Consider the following dataset which might be a column of a database table:
D = [2, 6, 7, 4]. The transform pairs neighboring values vx and vy and computes an
approximation coefficient for each pair. In case of the Haar transform, the approxima-
tion coefficients are simply the averages (vx+vy

2
): [4, 11

2
]. This is a "lower-resolution"

representation of D. In addition, a set of detail coefficients is computed as pair-wise
differences divided by 2 (vx−vy

2
): [−2, 3

2
]. These coefficients contain the informa-

tion lost by averaging: Given both the approximation and the detail coefficients, the
original data can be reconstructed. Recursive application of this pairwise averaging
and differencing process on the lower-resolution data (the approximation) yields the
following full transform:

Resolution Level Approximations Detail Coefficients
0 [19

4
] [−3

4
]

1 [4, 11
2
] [−2, 3

2
]

2 [2, 6, 7, 4]

The result of a Haar transform is the single overall approximation coefficient fol-
lowed by the detail coefficients in the order of increasing resolution. Thus, the trans-
form of our example data is given by WD = [19

4
,−3

4
,−2, 3

2
].

95

CHAPTER 6. APPROXIMATE QUERY PROCESSING IN SENSOR
NETWORKS

2 6 4

4
-2

5.5
1.5

4.75
-1.25

7

Figure 6.1: Structure graph for the Haar example

Each coefficient of the data transformed can be associated with a coordinate which
identifies the coefficient by its resolution level, along with its position within this
level. Intuitively, the coordinate simply corresponds to the position of the coefficient
in WD.

Thresholding. No information has been lost during the transform. Most notably,
the original dataset D has four values, and so does WD. The task of creating a com-
pact representation of the dataset (synopsis) from WD is called thresholding. In a
nutshell, thresholding is discarding a subset of the detail coefficients. During recon-
struction, the coefficients omitted are assumed to be zero. Thus, the resulting wavelet
synopsis is an approximation of D.

Why is it advantageous to transform the data prior to thresholding? Wavelet trans-
forms decorrelate the data. Most notably, if D contains similar values, the detail
coefficients tend to be small. Thresholding then introduces only small errors. Thus,
in the context of constructing synopses, the goal of the transformation step is to obtain
small detail coefficients. The subsequent thresholding problem then is an optimiza-
tion problem, e.g., find a minimum number of detail coefficients to retain, given a
maximum error in the reconstructed data.

Structure Graph. To exploit the data reduction capabilities of wavelet transforms
for an efficient data collection in sensor networks, the synopsis has to be constructed
incrementally during the forwarding. That is, approximation schemes that build upon
wavelet synopses have to distribute the transform. One of the major challenges in
doing so is to map the logical data flow of the transform onto the routing structure
of the network. Thus, in this context, the logical data flow of wavelet transforms is
important [HW04].

In the following, we capture the logical data flow by means of a "structure graph".
Figure 6.1 shows the structure graph for our example. A node represents a computa-
tion, i.e., nodes compute a function on the data obtained from their children. Edges
represent data dependencies. For the Haar transform, the structure graph is a bal-

96

6.3. RELATED WORK ON APPROXIMATE QUERY PROCESSING IN
SENSOR NETWORKS

anced binary tree. In general, structure graphs are not necessarily trees but directed
acyclic graphs (e.g., Daubechies-4, etc.). Graph structures arise for transforms that
use the same approximation coefficient in more than one higher-level computation.
Otherwise, we speak of a "structure tree". The term "computation node" stands for
nodes of the structure graph, in contrast to sensor nodes.

6.3 Related Work on Approximate Query
Processing in Sensor Networks

Data-reduction mechanisms studied by the database community include sampling,
histograms, and wavelets. Among them, only wavelet-based approaches have been
explored for approximate query processing in sensor networks. A reason might be
that wavelets are known to achieve a higher degree of accuracy of query results com-
pared to histograms and random sampling [CGRS00, MVW98, VW99]. Beyond
these techniques from the database community, there are data reduction schemes
based on modeling sensor measurements. We focus on model-based and wavelet-
based synopses in what follows. We leave aside approaches that are restricted to ap-
proximating aggregates, such as [CLKB04, DKR04b, NGSA08], or [OJW03], which
we described in Section 5.2.

6.3.1 Model-based Approaches

The idea behind model-based approaches is to answer queries based on a model of the
current measurements, instead of querying the data from the sources. The approaches
differ in the complexity of the model and their error guarantees. However, all model-
based approaches estimate the measurements. If they provide error guarantees, their
performance critically depends on the deviation from the actual sensor readings that
an application can tolerate. For instance, estimating the temperature within ±0.5◦C
works well. For more accurate estimations in turn, frequent updates of the model are
required, and the communication costs quickly increase. In Section 7.5, we compare
our approximate query processing scheme to model-based approaches and show that
it can efficiently answer queries for error guarantees that are tighter by orders of
magnitude. Subsequently, we briefly introduce these approaches. This also justifies
our choice of reference points for the experiments.

The simplest model is a constant. The base station caches the most recently re-
ceived readings of each node. A node sends an update whenever a reading deviates
by more than a certain threshold from the cached value. [OLW01] builds upon this
idea – we already discussed this approach in the context of filtering in Chapter 5: The
scenario considered by Olston et al. is to have a number of queries that differ in the
quality requirements of the answer. The problem then is to choose a threshold that

97

CHAPTER 6. APPROXIMATE QUERY PROCESSING IN SENSOR
NETWORKS

minimizes the number of transmissions: For small thresholds, it is more likely that
a new sensor reading deviates from the cached item by more than the threshold and
is sent. In contrast, for large thresholds, it is likely that the maximum error require-
ments in the query are violated and the current reading has to be acquired. [OLW01]
constantly adapt the threshold if either of the two cases occurs.

Jain et al. [JCW04] proposes to use Kalman Filters as a model. The underlying
assumption for using a more complex model is that it allows for better predictions
and thus results in less updates. The focus of this work is actually on the evalua-
tion in which the authors validate this assumption. In detail, the scenario is slightly
different from that in [OLW01]: Jain et al. consider a single query that indicates its
quality requirements by means of a maximum error. The base station maintains a
model of each of the current sensor readings which is a Kalman Filter. Based on
this model, the base station estimates the current sensor readings and returns them as
a query result. The nodes are responsible for guaranteeing correctness of the query
result. To do so, the nodes maintain the same model synchronously. They compare
the current estimate to the actual sensor reading and send a model update if the max-
imum error bound is violated (before the base station returns the query result). These
approaches ([OLW01, JCW04]) strictly obey the quality requirements of the query.
This corresponds to the guarantees in our problem statement.

In contrast, SAF (Similarity-Based Adaptive Framework) [TM06a] uses time se-
ries forecasting models with much weaker error guarantees. The setting is the same
as in [JCW04]. However, the authors use probabilistic error guarantees. The idea
is that the application knows that the current sensor readings are within a specified
interval with a certain probability. Note that such a probabilistic guarantee naturally
allows for less communication than a strict maximum error, as a violation of the error
bound can sometimes be ignored. However, the approach suffers from the following
restriction: The application can either influence the maximum error or the probability
that the readings are within the corresponding confidence interval. That is, if the ap-
plication provides a maximum error that it needs to be guaranteed, then the approach
figures out with which probability it can guarantee this error (or vice versa). The
application cannot set both parameters. This is in contrast to other approaches that
provide probabilistic error guarantees and which we will discuss below.

The approaches mentioned exploit temporal correlations. (Additionally) capturing
spatial correlations requires modeling several nodes, as [CDHH06, DGM+04] do.
Both use time-varying multivariate Gaussians.

As with the previous approaches, Ken [CDHH06] follows the idea that the nodes
check the validity of the current estimate. To capture spatial correlation, Chu et al.
propose to organize nodes in clusters and to maintain a model for each of them. Each
cluster simulates the estimates of the base station and sends updates whenever er-
ror requirements are violated. This approach gives way to strict error guarantees.
The main contributions are (a) to show how to optimally build clusters and (b) for
each cluster to determine the minimal set of sensor readings to update the model. In

98

6.3. RELATED WORK ON APPROXIMATE QUERY PROCESSING IN
SENSOR NETWORKS

more detail, cluster formation is an optimization problem. Larger clusters can bet-
ter accommodate spatial correlation. Thus, larger clusters lead to better predictions,
thereby reducing the number of updates. In contrast, checking whether the current
readings violate the error bounds requires to consolidate all of the current readings
of a cluster at one node that maintains the model for the cluster. Thus, larger clusters
increase the costs of guaranteeing the maximum error. Chu et al. propose an optimal
and a heuristical approach to form clusters.

In contrast, BBQ [DGM+04] primarily executes at the base station, which main-
tains one probabilistic model of the entire network. The query result is estimated
based on the model. If the confidence of an estimate is insufficient for a query, BBQ
queries the network to fulfill the quality requirements. In more detail, the nodes do
not need to synchronously maintain a model. This is in contrast to the preceding
approaches. The query result as well as the confidence of the result is computed at
the base station. As their main contributions, Deshpande et al. show how to do so for
different kinds of queries (range queries, value queries, average queries). In addition,
for querying the network if the confidence of an estimate is insufficient, the authors
show how to identify the optimal set of attributes to observe. Note that this proba-
bilistic approach does not allow for detecting sudden changes in the sensor readings
or outliers, which might be interesting for an application.

While such sophisticated models enable better predictions than simple models, a
downside is that they entail a very expensive learning phase. According to [TM06a],
the initial training phase requires each node to transmit its readings to the base station
every 30 - 60 seconds for a couple of days.

PAQ [TM06b] is similar in spirit to Ken, except that it is much less sophisticated: In
principle, Tulone et al. also divide the nodes into clusters. The base station maintains
a model for each cluster. This allows to capture spatial correlation. In addition, each
cluster is responsible for checking the validity of the current estimates, as in Ken.
However, the clustering of PAQ is much simpler. The requirements are that all nodes
in a cluster must be within communication distance to each other. In addition, their
sensor readings must be similar. Also, the authors use a much simpler model, i.e., a
time series model. The design comes at the expense of much higher communication
costs, compared to Ken.

Finally, there are two approaches that provide no error guarantees. Guestrin et al.
propose to use a regression function as a model [GBT+04]. Their main contribution
is to show how to distribute the regression. In particular, to reduce the complexity of
the computation, the authors use so called kernel functions, that separate the network
into slightly overlapping regions. Then, the regression within each region can be per-
formed independently of the rest of the network. However, the distributed regression
is quite expensive and has to be repeated every once in a while when the data distri-
bution changes (in their experiments, the authors recomputed the regression model
every 20 minutes).

Kotidis introduces snapshot queries [Kot05]. The idea is to select a set of repre-

99

CHAPTER 6. APPROXIMATE QUERY PROCESSING IN SENSOR
NETWORKS

sentative nodes. Queries are then answered exclusively based on the sensor readings
of these nodes. In a way, queries are answered based on sample of the current sen-
sor readings. As a main contribution, Kotidis presents a distributed algorithm which
selects representative nodes. The choice considers the sensor data, i.e., ’represen-
tative’ means representing the sensor readings in its neighborhood. While Kotidis
does not use a model to answer queries, he proposes to use models for selecting rep-
resentatives. The models capture the trend in the sensor readings. The intention is
to ensure that the selected node will remain representative within a foreseeable time
frame. Besides not providing any error guarantees, there is a further restriction of this
approach: While a sample can be used to approximate aggregates, it is not appropri-
ate to reconstruct the measurements themselves. In particular, for a missing value
(non-representative value), the base station does not know by which of the received
measurements it is represented.

6.3.2 Wavelet-Based Approaches

From a database perspective, there are many successful applications of wavelets as
a data reduction tool. This is due to their good data reduction capabilities. The fol-
lowing paragraph gives an overview of successful applications of the wavelet trans-
form in the database domain. However, the algorithms are inherently centralized.
For instance, many of them use dynamic programming to establish the synopsis. In
contrast, to use wavelets as a data reduction tool during data collection, we need to
distribute the construction of the synopsis. The focus of this section is on reviewing
distributed approaches to establishing wavelet synopses.

Overview: Centralized Wavelet-Based Approaches. Wavelets have been
used in selectivity estimation [MVW98], for answering range-sum aggregate queries
over data cubes in [VW99] and for general-purpose queries in [CGRS00]. [MVW00]
studies dynamic maintenance of synopses. [DGR07] introduced extended wavelets
for data sets with multiple measures. Recently, [SDS09] also addressed the overhead
due to wavelet coordinates. While most of the early work focused on the SSE (sum
squared error), [GG02, GK04] considered maximum error metrics. [GH05, GH06]
showed that for metrics other than SSE, keeping the original wavelet coefficients
is suboptimal and proposed approximation algorithms for optimal synopses. For
streaming data, [GKMS01] proposes algorithms for building approximate synopses,
and [KM05] introduces a greedy algorithm for constructing synopses with maximum
error guarantees.

Distributed Wavelet-Based Approaches. The problem that has received the
most attention when deploying wavelet transforms in sensor networks is mapping
their regular refinement scheme/their structure tree onto the irregular network topol-

100

6.3. RELATED WORK ON APPROXIMATE QUERY PROCESSING IN
SENSOR NETWORKS

ogy. As a simple example, the classical Haar wavelet is computed on a perfectly
balanced binary tree. Thus, a number of approaches studies the problem of map-
ping such a balanced binary tree onto a routing tree. To compute approximate query
answers, a further problem has to be solved: One needs a distributed thresholding
approach with error guarantees. None of the following approaches has addressed this
second problem.

Acimovic et al. [ACBL05] propose a solution to distributing the computation of
a Haar wavelet if the sensor network is a one-dimensional chain. In addition, the
number of nodes has to be a power of two. Then, the nodes can be numbered 0
through 2n−1. To compute the transform at the first level (level 0), the nodes with odd
indices send their data to their lower-index neighbor. There, the data is transformed.
Then, the nodes with odd indices are done with the transform, while the others take
part in the next level. In general, at level m, the nodes with index l div 2m send their
data to the nodes l div 2m+1 where div is the usual integer division. While this scheme
achieves a mapping of the transform onto the network, it is highly inefficient. This
is because even if a node is not involved in the transform at level m anymore, most
of the nodes are still needed for forwarding data – at every level (only neighboring
nodes communicate). In addition, Acimovic et al. do not address the thresholding
problem. For their experiments, they simply use a data distribution that is constant
in space (i.e., within the network) except for a few discontinuities. Then, almost
all neighboring nodes observe the same sensor readings, leading to zero coefficients.
These can be discarded. However, zero coefficients usually do not appear in practice
as it is unlikely that two nodes observe the same temperature readings. For a practical
solution, we need a distributed thresholding approach.

Ciancio et al. [CO05] propose an approach that is similar to [ACBL05]. In par-
ticular, the authors assume the same network architecture, i.e., a one-dimensional
chain of nodes. The main difference is that Ciancio et al. use a more sophisticated
transform (5/3-wavelets). This results in the problem that a node sometimes can-
not transform the received data: 5/3-wavelets require more than two coefficients as
input at each level. Ciancio et al. show how to partially compute the transform on
an incomplete set of input coefficients and to forward partial wavelet coefficients in
this case. As in [ACBL05], the thresholding problem is not addressed. The most
important shortcoming of both approaches is that they are confined to very specific
topologies, i.e., one-dimensional chains. In particular, this property is exploited for
the solution. There is no generalization of these approaches to arbitrary topologies.

Zhou et al. [ZLW+06] distribute the computation by means of an overlay, which
is a one-dimensional chain. In principle, the transform can then be computed as
described for [ACBL05]. However, the details of their approach remain unclear. In
particular, it is not obvious how to construct such an overlay. Also, it is unclear
where the data reduction comes from as the authors do not address the thresholding
problem. We remark that Zhou et al. actually consider a slightly different problem.
They do not collect a snapshot of data but each node assembles its data over a period

101

CHAPTER 6. APPROXIMATE QUERY PROCESSING IN SENSOR
NETWORKS

of time. Thus, the input to the transform is different: Each node contributes a set of
sensor readings instead of a single reading per type of sensor. As a contribution, Zhou
et al. present the maths of computing the Haar transform in this case. However, if the
overlay idea is used for our problem, i.e., to collect a snapshot of data, the problem
described for [ACBL05] applies: The forwarding significantly increases the length
of the paths compared to a straightforward tree-based data collection.

Wagner et al. actually propose a transform that works on an irregular network
topology [WBD+06]. In principle, the idea is to approximate a measurement by
regressing a plane through the measurements of nearby nodes. The detail coefficient
is then the deviation of the actual measurement from the approximation. To turn
this idea into a practical approach, a hierarchical refinement scheme on the nodes
is required, i.e., at each level of the transform, we have to decide on (a) the nodes
that we want to approximate and (b), for each of them, nearby nodes that are used in
the regression. As their main contribution, Wagner et al. show how to precompute
such a hierarchical refinement scheme at the base station. However, it turns out that
the resulting transform is communication-intensive. To compute a detail coefficient,
the node that is approximated has to send its data to the nodes that are used in the
regression. After some computation, each of these nodes returns a value from which
the detail coefficient can be computed. In particular, as the transform is hierarchical,
this happens at each level of the transform (at different scales) and involves many of
the nodes multiple times. In their experiments, Wagner at al. show that transforming
the data and subsequently collecting the coefficients is less efficient than a simple
collection of the original data.

Hellerstein et al. [HHMS03, HW04] propose to integrate the wavelet transform
into the routing tree. Recall that the routing tree guarantees shortest paths for each
node to the base station. Thus, performing the transform along the routing tree is
a good idea. We will discuss this approach in detail in Section 7.2.1. In addition,
it will serve as one of the comparison schemes for evaluating our own approach in
Section 7.5.

Finally, Dang et al. [DBcF07] compute wavelet synopses by assigning the nodes to
clusters and transforming the data of each cluster. Thus, this approach does not per-
form a distributed wavelet transform but consists of multiple centralized transforms
that are independent of each other. This is nice since then, all of the results from
computing wavelet synopses in traditional database settings apply. In particular, it
is clear how to transform the data and how to perform the thresholding under error
guarantees. The problem is that only data within a cluster is decorrelated, redundan-
cies between clusters are not removed. Thus, the performance of the data reduction
is suboptimal, as we will show in Section 7.5.

102

6.4. DISCUSSION

6.3.3 Further Approaches

The goal of our work is to approximate current snapshots either for one-time queries
or for a periodical data collection. Targeted applications are monitoring and surveil-
lance applications that require query results in real-time. In contrast, there is some
work regarding the acquisition of long-term historical records of measurements from
each node. That is, the idea is for each node to assemble its data for a certain period
of time and then to compress this data on the node before sending it to the base sta-
tion. To give some examples, [DKR04a] proposes to exploit self-similarity, [LM03]
constructs a piecewise approximation, and DIMENSIONS [GGP+03] uses a wavelet
transform for local compression of sensor readings at each node. Note that DIMEN-
SIONS does not perform any distributed wavelet computation.

6.4 Discussion

In this chapter, we turned our focus to approximate query processing. In sensor net-
works, the motivation for approximate query processing is answering non-selective
queries. The problem is that in the case of low selectivities, the data volume in the
query is large, making the processing communication intensive. To obtain efficiency,
the idea is to trade accuracy for communication costs in a controlled manner.

Prior work has addressed non-selective queries by approximating results based on
models which serve as a synopsis of the data. The solutions suffer from the following
problem: Predicting measurements is only possible with large error bounds such as
±0.5◦C for temperature readings. Higher accuracy requires frequent updates. Ac-
cording to [DGM+04], "as epsilon gets small (less than .1 degrees), it is necessary to
observe all nodes on every query...". Most notably, this problem is inherent in using
predictions.

To overcome this problem, we propose a query-processing scheme based on wave-
let synopses in the following chapter. The use of wavelet synopses is motivated by
their effectiveness in compressing data and providing accurate answers [DGR07].
However, exploiting these capabilities in our context requires a distributed construc-
tion of synopses. Although being an area of active research, we pointed out in the
preceding section that no prior work has presented a distributed transform that is
more efficient than a simple tree-based data collection, let alone error guarantees in
this context.

103

CHAPTER 6. APPROXIMATE QUERY PROCESSING IN SENSOR
NETWORKS

104

7 Efficiently Approximating
Sensor Relations with Quality
Guarantees

In this chapter, we present our approach, SNAP ("SNapshot APproximation"), for
answering queries with a low selectivity. SNAP efficiently consolidates an approxi-
mation of sensor data based on wavelet synopses as motivated in the preceding chap-
ter. The difficulty is that the synopsis has to be constructed incrementally during data
collection to ensure efficiency. Our core contribution is to show how to distribute the
construction of wavelet synopses in sensor networks. In addition, SNAP provides
strict error guarantees.

The following section outlines the contributions of our approach and sketches the
subsequent structure of this chapter.

7.1 The SNAP Approach

In the following, we give an overview of how to distribute the transform as well as
the thresholding to achieve an efficient consolidation of sensor readings. Regard-
ing the distributed wavelet transform, we see two design alternatives. We could use
some standard transform and map it onto the network, i.e., assign the computations
to sensor nodes and set up a network overlay. The overlay has to reflect data de-
pendencies between computations. This approach has been considered before (e.g.,
[ZLW+06, WBD+06]). The problem is that it sacrifices shortest paths: The routes
in the overlay will exceed those of a simple tree-based data collection by much (cf.
Section 7.2). With SNAP, we explore an alternative design and integrate a wavelet
transform into an optimal routing structure. We show that optimizing the integration
is NP-hard and propose a polynomial algorithm that comes close to the optimal so-
lution. Most notably, our solution is an online algorithm, i.e., the integration is not
precomputed and can adapt to changes in the routing structure.

Regarding the thresholding process, discarding a subset of the detail coefficients
yields a compact synopsis. However, doing so in a distributed environment leads
to suboptimal synopses and to a huge communication overhead (see Section 7.3).
Hence, we propose a distributed solution that is different and is inspired by work on
image compression: Instead of discarding coefficients, we find a compact represen-

105

CHAPTER 7. EFFICIENTLY APPROXIMATING SENSOR RELATIONS
WITH QUALITY GUARANTEES

tation for them. The fundamental problem in distributing this alternative mechanism
is as follows: To assign compact codes to the coefficients, we must know their fre-
quencies in the overall synopsis. However, the synopsis is created incrementally.
The frequencies cannot be known at the time of encoding. We show how to estimate
the frequencies in a way that is mathematically sound. Our approach is also appli-
cable to tuples with multiple attributes. This is an optimization problem in its own
right if coefficients are discarded [DGR07]. In summary, our contributions regarding
efficiently consolidating sensor relations are:

• We present SNAP, a distributed approach to compute wavelet synopses incre-
mentally. To our knowledge, SNAP is the first distributed wavelet compaction
providing error guarantees.

• To distribute the wavelet transform, we propose to integrate it into the routing
structure. SNAP is first to explore this idea.

• Finding an optimal integration is NP-hard. We provide a heuristical solution
and show that it performs well by means of an optimal algorithm based on
dynamic programming.

• To distribute the construction of synopses, SNAP compactly encodes coeffi-
cients, instead of discarding them.

• Compacting the coefficients requires to know their frequencies in the overall
synopsis. We show how to accurately estimate these frequencies.

• We evaluate the performance of SNAP based on real-world and synthetic sen-
sor data. Our results are that SNAP reduces the communication costs by more
than a factor of five compared to state-of-the-art approaches. SNAP improves
the limit in the error guarantees for which data can be efficiently consolidated
by more than an order of magnitude.

Chapter Outline. In the following section, we present our approach for distribut-
ing wavelet transforms. We then address the problem of distributing the construction
of the synopsis, i.e., the data reduction, in Section 7.3. The following Section 7.4
concludes the description of SNAP with a further optimization. Finally, we present
our experiments in Section 7.5.

7.2 Distributing Wavelet Transforms

This section presents our approach for distributing wavelet transforms. We extract
design alternatives and justify our choice of integrating a transform into an unmodi-
fied routing tree (Section 7.2.1). Our integration approach builds on flexible structure
trees (Section 7.2.2). We say how to optimize the integration in Section 7.2.3.

106

7.2. DISTRIBUTING WAVELET TRANSFORMS

7.2.1 Design Space for Distributing Wavelet Transforms

To reduce communication compared to tree-based data collection, we have to con-
struct the synopsis during forwarding incrementally. This requires a distributed wa-
velet transform. The problem is integrating a structure graph with the network topol-
ogy: Here, ’finding an integration’ means finding a wavelet transform and a mapping
of its computation nodes to sensor nodes. Then the edges of the structure graph imply
a communication overlay.

At a high level, we see two alternatives to address the problem: (1) One could
adapt the routing structure to the transform, i.e., take a fixed structure graph and
impose it as an overlay onto the network. However, network topologies are highly
irregular. Mapping a fixed structure onto the network thus has an undesirable effect
on the communication costs: It leads to nodes that merely forward data without prior
wavelet compaction. The routes might not even be on the shortest paths to the base
station [HW04]. (2) One could integrate the transform into the routing structure, i.e,
the routing structure is fix. Each node would receive approximation coefficients from
its children in the routing structure, transform them to obtain a synopsis and forward
it to its parent. This approach requires specifying a structure tree that can be mapped
onto the routing tree.

Related work has mostly explored the first approach (cf. Section 6.3). However,
there are strong arguments for the alternative design. Firstly, communication is dif-
ficult in sensor networks, i.e., links are often fragile, and packet-loss rates are high.
A lot of work has gone into maintaining routing trees that address these problems.
It is desirable to build upon this mature technology. Second, recall that the routing
tree is a shortest path tree. Deviating from it means doing suboptimal routes. SNAP
therefore explores this second alternative.

There is one approach for building wavelet histograms [HHMS03] that operates on
a routing tree, i.e., each node transforms the data received. To cope with the irregu-
larity of the routing tree, the input data of the transform is adjusted ("zero padding"):
Whenever a node has less than 2n children, the input is filled up with zeros. The
problem is that this results in large detail coefficients whenever an approximation
coefficient is combined with a zero.

Example 7.1: Assume that a node has received the approximation coefficients 22.4◦C
and 22.6◦C from its children in the routing tree. Its own sensor reading is 22.8◦C. As
the size of the input data to the transform has to be a power of 2, the node padds the
data and obtains D = [22.4, 22.6, 22.8, 0.0]. This results in the following two detail
coefficients: [0.1, 11.4]. In particular, for being able to reconstruct the 22.8◦C, the
node has to keep the 11.4. The problem repeats at the next iteration of the transform,
when the two approximation coefficients [22.5, 11.4] are averaged. Thus, each zero
padding introduces a number of large detail coefficients, which is in the way of a
compact representation. �

107

CHAPTER 7. EFFICIENTLY APPROXIMATING SENSOR RELATIONS
WITH QUALITY GUARANTEES

Root

A

D
F

B

C
E

H G

C E

B H G

Figure 7.1: Integration approach

For our problem, zero padding turns out to be worse than a simple tree-based data
collection (cf. Section 7.5). In contrast, our goal is to adjust the transform itself, not
the input data.

7.2.2 Integration Approach

This section says how a structure graph can be integrated into a routing tree. The
key idea for coping with the irregularity of the routing tree is to abandon the rigid
structure of classical transforms.

As a first step in developing an integration approach, we need to select a wavelet
transform which will be integrated (e.g., Haar, Daubechies-4, Mexican Hat, etc.). To
do so, the question is which properties its structure graph must have to enable an
integration. Foremost, the structure graph must be a tree. Otherwise, it would be
impossible to map it onto a routing tree. It would be optimal if the structure graph
complied with the routing tree. Unfortunately, no classical wavelet transform ful-
fills this requirement. This is because classical transforms have a regular refinement
scheme. Their structure trees are balanced, and the node degree is fixed.

However, there are mathematical foundations on Haar wavelet transforms that have
arbitrary (binary) structure trees [Mur07]. These transforms are more general than
classical Haar transforms since the structure tree is not balanced any more. The
problem remaining when integrating such a structure tree into a routing tree is that
routing trees are not binary but have varying node degrees. The key observation to
address this issue is that if a Node ni has to transform mi approximation coefficients,
it is possible to arrange them in a binary tree and to apply the transform.

The preceding observation is the basis of our work, i.e., SNAP uses this flexible
Haar transform. The flexibility of an arbitrary binary structure tree suffices to solve
our integration problem. This is illustrated in Figure 7.1: Node B has set up a bi-

108

7.2. DISTRIBUTING WAVELET TRANSFORMS

nary structure tree on the coefficients received from its children. This approach is
pleasantly simple. At the same time, the flexibility in the structure tree leads to an
optimization problem: find an optimal integration. This will be in the focus of the
subsequent discussion.

7.2.3 Finding the Optimal Structure Tree

In the following, we present an online algorithm to integrate a binary structure tree
into the routing tree. By performing the integration on-the-fly in contrast to precom-
puting it, the structure tree can react to changes in the network topology. Further, we
avoid the communication overhead of an isolated precomputation.

We start by stating the optimization problem and establish its NP-hardness. As
we cannot expect to find any exact polynomial algorithm, we devise a polynomial
heuristic. We present an algorithm that finds an optimal integration based on dynamic
programming (DP), to evaluate the heuristic.

The Optimization Problem. If a Node ni receives mi approximation coeffi-
cients, one per child in the routing tree, it adds its own sensor reading as a further
coefficient. Then ni transforms the data to obtain one overall approximation and mi

detail coefficients. This process reveals that the routing tree already determines the
rough shape of the structure tree. Only for the mi + 1 approximation coefficients at
Node ni, the structure tree is still unclear. The node needs to arrange the approxi-
mation coefficients received in a binary tree. For instance, if Node n0 receives two
approximation coefficients a1 and a2, there are three possible binary structure trees.
n0 can either combine a1 and a2 and subsequently combine the result a1,2 with its
own coefficient a0. Alternatively, it can start combining a0 and a1 or a0 and a2.
These combinations yield different detail coefficients.

Example 7.2: For the data from Example 7.1, one alternative is to first average 22.4
and 22.6. This results in an approximation of 22.5 and a detail coefficient of 0.1.
Then, 22.5 and 22.8 are transformed. This results in the following set of detail co-
efficients: {0.1, 0.15}. In contrast, first processing 22.4, 22.8 and then averaging the
result with 22.6 yields {0.2, 0.0}. �

Recall from Section 6.2 that the sizes of the detail coefficients determine the size
of the synopsis, which is created from the data transformed. Thus, by specifying
the structure tree, we determine the size of the resulting synopsis. The optimization
problem then is to find the best alternative for n0.

What is an appropriate optimization function? We want to minimize the data that
ni forwards. This implies the optimization function Ω: Ω simply is the size of the
synopsis (number of bits) built from the transformed data. We defer constructing the
synopsis to Section 7.3. Note that Ω also works for data with multiple attributes.

109

CHAPTER 7. EFFICIENTLY APPROXIMATING SENSOR RELATIONS
WITH QUALITY GUARANTEES

1 HeuristicalStructureTree(Set {~a1, ...,~am})
2 //~ai: approximation coefficients (from children + own measurement)
3

4 //initialization − current partial structure trees:
5 Set curTrees = ∅;
6

7 for j = 1 .. m
8 appC = ~aj;
9 NestedSet strTree = {~aj};

10 curTrees = curTrees ∪ {(appC, strTree)};
11

12

13 until (|curTrees| == 1) do{
14

15 (cTi, cTj) = min{(cTi,cTj)∈curTrees}{Ω(detCoeff(cTi.appC, cTj.appC))})
16

17 curTrees = curTrees \ {cTi};
18 curTrees = curTrees \ {cTj};
19 curTrees = curTrees ∪
20 {(appCoeff(cTi.appC, cTj.appC), {cTi.strTree, cTj .strTree})};
21 }
22

23 return cT .strTree where cT ∈ curTrees;

Figure 7.2: Heuristical algorithm for computing the structure tree

Theorem 7.1: (Complexity of the problem) The problem of finding the optimal
structure tree is NP-hard.

Proof: The problem of ordering joins can be reduced to our problem. Ordering
joins in its most general form has recently been shown to be NP-hard [SM97]. The
general problem includes considering bushy trees, i.e., there are no restrictions with
respect to the ordering. It also involves cross products, i.e., every pair of relations
from the query can be combined. The reduction works as follows: Every relation of
the join query is mapped to an approximation coefficient. The cost function corre-
sponds to the costs of executing the join of a particular ordering. Then, an optimal
structure tree corresponds to an optimal join ordering. �

Heuristic Approach. Due to the hardness of the problem, any algorithm that
computes a structure tree on resource-constrained sensor nodes should not try to en-
force optimality. We use a heuristical algorithm instead, which greedily minimizes

110

7.3. CONSTRUCTING SYNOPSES

the optimization function: In every step, the heuristic combines those approximation
coefficients yielding the smallest detail coefficient (with respect to Ω). Figure 7.2
shows the pseudocode. Initially, each approximation coefficient constitutes a sepa-
rate tree (Lines 7 to 10). Then, the algorithm finds that pair of trees that yields the
smallest detail coefficient (Line 15). The corresponding trees are removed from the
set of current trees (Lines 17, 18). For this pair, the algorithm computes the new ap-
proximation coefficient (Line 20). Finally, the algorithm keeps track of the sequence
of combining approximation coefficients based on a nested set structure where the
brackets indicate the formation of the structure tree (Line 20).

We now say why this heuristic is appropriate. To do so, we present a DP-based
algorithm that computes an optimal solution, and in Section 7.5 we will compare the
heuristic to it.

Finding an Optimal Structure Tree. The idea of DP is that whenever two par-
tial solutions are equivalent (can be substituted in the overall solution), one only needs
to consider the better one with respect to the optimization function. In our case, two
partial structure trees are equivalent if they cover the same set of approximation coef-
ficients and yield the same overall approximation coefficient. The second condition
is required since the overall approximation is computed based on binary averages.
Thus, the overall approximation coefficient varies slightly with the order of the av-
erage computations, i.e., with the structure tree. Figure 7.3 shows the corresponding
DP algorithm.

The algorithm incrementally constructs all partial solutions of size i. In Line 6, the
partial solutions of size 1 are initialized. A partial solution consists of five fields: (1)
set of input coefficients covered, (2) overall approximation coefficient, (3) the detail
coefficients of the partial solution, (4) the corresponding structure tree, represented as
a nested set, and (5) the costs of the partial solution (size). The actual algorithm starts
in Line 8. It iterates over the size of the solutions and builds partial solutions of size i
by combining pairs of partial solutions (Lines 10 - 15). Only combinations of partial
solutions that do not overlap in the covered input coefficients are valid (Lines 2 - 4,
Figure 7.4). In Lines 6 to 11 (Figure 7.4), the new partial solution is constructed.
Lines 17 to 23 (Figure 7.3) implement the DP truncation.

7.3 Constructing Synopses

The thresholding problem is fundamentally different in a distributed setting. In Sec-
tion 7.3.1, we demonstrate the shortcomings of a distributed discarding of coeffi-
cients. To avoid these problems, we use a different mechanism as starting point:
Instead of discarding coefficients, we compactly encode them (Section 7.3.2). To
achieve a distribution of this alternative mechanism, SNAP estimates the frequencies
of the detail coefficients (Section 7.3.3).

111

CHAPTER 7. EFFICIENTLY APPROXIMATING SENSOR RELATIONS
WITH QUALITY GUARANTEES

1 OptimalStructureTree(Set {~a1, ...,~am})
2 //~ai: approximation coefficients (from children + own measurement)
3

4 //initialization − partial solutions of size 1:
5 for j = 1 .. m
6 PartSolutions[1] = PartSolutions[1] ∪ ({~aj},~aj, ∅, {~aj}, 0);
7

8 for i = 2 .. m //i == size of solution
9 for l = 1 .. (i − 1) //l == length of left subtree

10 for k = 1 .. |PartSolutions[l]|
11 PartSol lSubtree = PartSolutions[l].nextElement();
12 for o = 1 .. |PartSolutions[i - l]|
13 PartSol rSubtree = PartSolutions[i − l]. nextElement();
14

15 PartSol newSol = CombineStructureTrees(lSubtree, rSubtree);
16

17 if (∃ x ∈ PartSolutions[i]):
18 x.covAPPs == newSol.covAPPs && x.app == newSol.app)
19 //truncation: retain only the better one
20 if (x.costs > newSol.costs)
21 PartSolutions[i] = (PartSolutions[i] − {x}) ∪ {newSol}
22 else //no equivalet solution available
23 PartSolutions[i] = PartSolutions[i] ∪ {newSol}
24 return minx∈PartSolutions[m]{x.costs}

Figure 7.3: DP for computing the optimal structure tree – a benchmark for the heuris-
tical approach

7.3.1 Thresholding in a Distributed Setting

In the following, we discuss two problems that arise if we distribute centralized so-
lutions. (1) Discarding coefficients leads to suboptimal synopses. (2) There is a
substantial communication overhead, because discarding coefficients and providing
error guarantees requires the algorithm to maintain some state. This state would have
to be forwarded along the tree in addition to the data.

In centralized settings, thresholding is an optimization problem under constraints.
The goal either is to minimize an error given a maximum size of the synopsis or, to
minimize the size given a maximum error bound. In a distributed context, the opti-
mization problem is different. This is because we need to forward partial synopses,
which incurs communication costs. Thus, we also need to consider the size of inter-

112

7.3. CONSTRUCTING SYNOPSES

1 CombineStructureTrees(PartSol lSubttree, PartSol rSubttree)
2 //disregard pairs that overlap
3 if (lSubtree.covAPPs ∩ rSubtree.covAPPs 6= ∅)
4 return null;
5

6 Set covAPPs = lSubtree.covAPPs ∪ rSubtree.covAPPs;
7 Integer appCoeff = appCoeff(lSubtree.app, rSubtree.app);
8 Set detCoeffs = {detCoeff(lSubtree.app, rSubtree.app)}
9 ∪ lSubtree.detCoeffs ∪ rSubtree.detCoeffs;

10 NestedSet strucTree = {lSubtree.strucTree, rSubtree.strucTree};
11 return (covAPPs, appCoeff, detCoeffs, strucTree, costs(detCoeffs));

Figure 7.4: Combining two partial solutions into one

mediate results, not only the size of the final synopsis. Formally, the problem now is
minimizing the data volume of all the synopses.

We illustrate the intricacy of this requirement from the point of view of a single
node. The problem is that the knowledge of a node does not suffice to decide which
coefficients to discard: If the node discards a detail coefficient, the synopsis comes
closer to the maximum error. However, there might be smaller detail coefficients to
come and thus, it would have been better to save the error budget.

The second problem of discarding coefficients is metadata overhead, in two ways.
First, guaranteeing a maximum error requires each node to know the error budget.
Assigning fixed error budgets per node would result in very small budgets, making it
difficult to discard any coefficients. [KM05] proposes a solution for the centralized
case: One needs to keep track of the error that has already been introduced. They
show that this can be done effectively by maintaining a range [min, max] for the
error. If we transfer this approach to our scenario, this enlarges each intermediate
wavelet that is forwarded by two additional numbers per attribute.

There is an even worse overhead: We need to know the coordinates of the remain-
ing coefficients to reconstruct the data. This is done by storing the coefficients as
<coordinate, coefficient>-tuples. Thus, for a synopsis of a single attribute the coordi-
nates double the data volume. Reducing this overhead has been addressed in different
ways, e.g., [DGR07, SDS09]. A distributed approach to reduce the overhead due to
the coordinates is an open problem.

7.3.2 Foundations for Compact Synopses

To avoid these problems, we base SNAP on a different mechanism for obtaining
synopses. It is inspired by work on image compression and consists of three steps:

1. Quantization

113

CHAPTER 7. EFFICIENTLY APPROXIMATING SENSOR RELATIONS
WITH QUALITY GUARANTEES

2. Integer Wavelet Transform

3. Entropy Coding (Huffman Coding)

This alternative mechanism does not solve our problem of distributing the con-
struction of synopses – this is discussed in Section 7.3.3 – but it is key to overcome
the difficulties of discarding coefficients: Our mechanism does not do any such dis-
carding. The error bound is exploited for the quantization which affects only a single
tuple. This eliminates the need to forward error budgets. Finally, we can avoid send-
ing coordinates along with the coefficients.

Intuition. The important step to obtain a synopsis is Step (3), the entropy coding.
The idea is to use short codes for frequent symbols and longer ones for less frequent
symbols. In our case, the symbols to encode are the detail coefficients. The per-
formance of the entropy coding depends on (a) the distribution of the symbols (the
more skewed the distribution is, the higher the effectiveness) and (b) the number of
different symbols that appear (the more symbols there are, the more bits are required).

We can regard Steps (1) and (2) as creating the optimal conditions for an entropy
coding. Step (1) gives way to a small number of different symbols. Each node quan-
tizes its sensor readings based on the error bounds of the attributes. As a result, the
infinite set of possible readings is turned into a small set. Most notably, an increase
in the maximum error in the query reduces the number of different symbols. The
wavelet transform (Step 2) achieves a skewed distribution. Recall that the wavelet
transform is used to generate small detail coefficients. Most notably, this usually re-
sults in a distribution of the detail coefficients that is bell shaped around zero [CV00].
Finally, we use an integer version of the transform: While the quantization reduces
the set of possible values, the regular Haar transform involves divisions by two and
thus would re-enlarge this set. An integer transform avoids this problem as it yields
coefficients within the input set. We will provide the details right away.

Quantization. Step (1) combines a quantization with a scaling such that each
quantized value is a (positive) integer. This is required for the integer wavelet trans-
form. Let xi be the sensor reading of node i of an attribute, and let e be the error
bound for this attribute. Finally, let minVal be an arbitrary lower bound for the sensor
readings. Each node quantizes its measurements to obtain the approximation coeffi-
cient to start the transform with (level 1):

a1,i = Int(
xi − minVal

2 · e
). (7.1)

Here, Int(·) denotes the usual integer rounding. The base station can easily recon-
struct the values as x′

i = minVal + a1,i · 2 · e. Given a1,i, x′
i is within [xi − e, xi + e].

114

7.3. CONSTRUCTING SYNOPSES

Integer Wavelet Transform. The integer version of the Haar transform is the
S-transform [CDSY98], where l is the level in the structure tree and p the index of
the coefficient at level l:

al,p = ⌊
al−1,2p + al−1,2p+1

2
⌋

dl,p = al−1,2p+1 − al−1,2p

We use it with a minor modification. The S-transform either does no rounding or
rounds down. Thus, the approximation coefficients systematically become smaller
with the levels in the structure tree. It turns out that estimating the frequencies of
the detail coefficients is much easier if we avoid this systematic deviation, see Theo-
rem 7.2. As can be seen from the corresponding proof, this systematic deviation can
be avoided by equally rounding up and down:

al,p =

{

⌊
al′,p′+al′′,p′′

2
⌋ if al′,p′ ≥ al′′,p′′

⌈
al′,p′+al′′,p′′

2
⌉ otherwise

(7.2)

dl,p = al′′,p′′ − al′,p′ (7.3)

As the structure tree is not balanced in our case, it is not obvious how the level l is
defined: We define it as the number of sensor readings that a coefficient covers. This
implies that l = l′ + l′′. p still denotes the index. The inverse is given by:

al′,p′ =

{

al,p − ⌊
dl,p

2
⌋ if dl,p ≤ 0

al,p − ⌈
dl,p

2
⌉ otherwise

al′′,p′′ = dl,p − al′,p′

Entropy Coding. While arithmetic coding [MNW98] usually is state-of-the-art
for entropy coding, it is suboptimal in our case: It requires adding a few bits to each
sequence of symbols to obtain unique encodings. Since our sequences consist of only
a few symbols (usually clearly less than ten, depending on the number of attributes
in the query) this is a substantial overhead. We use Huffman coding [Huf52] which
is well-known to yield better results for such short sequences and is standard in this
case. In addition, the low storage requirements and its simplicity make it a good
choice for resource-constrained sensor nodes. Irrespective of the coder used, there
is a problem when it comes to distributing the approach. Assigning codes requires
knowledge on the frequency of the symbols by the time of encoding. This is the main
challenge when distributing the approach and is addressed in Section 7.3.3.

115

CHAPTER 7. EFFICIENTLY APPROXIMATING SENSOR RELATIONS
WITH QUALITY GUARANTEES

Wavelet: App DCoeff_1 DCoeff_m...

Padding
of

padded bits

App:
1_

,

Att

pla nAtt

pla
_

,
...

STS

DCoeff_x: 1_
Grp

Att nAtt _
Grp 1_

I
Att nAtt _

I... ...

:I
_ xAtt

Index orig. detail coeff.empty or or or

SignSign

Figure 7.5: Format of Wavelets (Encoding)

Implementation Issues. We conclude the description of the framework with two
details. First, we introduce the concept of "groups". It is standard in entropy coding
to cope with large numbers of symbols. Second, we describe the format of wavelets
sent.

"Groups" of symbols are used to reduce the number of symbols in entropy coding.
The idea is to form groups of detail coefficients with similar frequencies. As a result,
the number of groups is much smaller than the number of symbols, and each group is
much more frequent. Each group is then assigned a Huffman code, i.e., only the group
number is entropy-encoded. An index is used to discriminate between the members
of each group. For instance, the detail coefficient 0 results in a single group. {−1, 1}
might be the second group. In particular, if a group contains x, it also contains −x, as
our distribution is symmetric. {−3,−2, 2, 3} might be the third group, etc. The final
group contains the tail of the distribution. It contains all coefficients that are unlikely
to appear.

The format used to send wavelets is shown in Figure 7.5. Basically, a wavelet is
a bit stream which is padded at the end to align it with byte boundaries. At a high
level, the wavelet starts with the approximation coefficients, one per attribute that is
queried. A node then inserts three bits ("padding size") representing the size of the
padding, followed by the detail coefficients. Their ordering corresponds to a depth
first traversal of the structure tree. This allows to construct wavelets with ease: A
node takes two wavelets as received from its children. Based on their approximation
coefficients, it computes a new approximation and a detail coefficient. The latter is
first in depth-first ordering. The node then simply appends the detail coefficients from
the left child in the structure tree as received, followed by those from the right child.

116

7.3. CONSTRUCTING SYNOPSES

Also, it removes the padding from its children in this append step. Given the padding
size, this can be done without decoding the detail coefficients.

Figure 7.5 further shows the encoding of the detail coefficients: Each one starts
with two bits called Subsequent Tree Structure (STS). As our structure tree is irreg-
ular, this is required to reconstruct the tree at the base station. STS encodes whether
a node has two children, one left child, one right child, or no children. Thus, the
purpose is similar to the coordinates of coefficients. Following the STS bits, the
Huffman code of the group numbers are listed, one for each attribute. Finally, the
indices follow. In case of the zero coefficient, no index is required. Otherwise, the
indices start with a single bit which encodes the sign of the coefficient. For groups
of size greater than 2, an index number follows that identifies the unsigned member.
This number cannot be compressed since the group members are equally frequent.
However, it makes sense to have groups whose size is a power of 2 to fully exploit
this index number. The group that encodes the tail of the distribution is special: Here,
the original detail coefficient is used.

7.3.3 Distribution by Estimating Frequencies

The mechanism described so far requires to know the frequencies of the symbols in
the overall synopsis. This is the main challenge when distributing this approach. As
the synopsis is now created incrementally, the frequencies are unknown by the time
of encoding. Also, they strongly depend on the error bound e.

A common approach in entropy coding is to initially assume that each symbol is
equally frequent and to adjust the frequencies continuously with each symbol. This
approach is not applicable in our case. Each leaf node would start with a frequency
distribution that is far from the actual one. This results in a bad compression. This
distribution would only become better close to the root. Additionally, a node at a
higher level of the tree receives encoded coefficients. To get to a count of the coeffi-
cients seen so far, the node would have to decode them. In the following, we propose
an approach that lets each node estimate the frequency of a coefficient in the (un-
known) final synopsis. Given this estimation approach, the previous framework can
be executed in a distributed environment.

7.3.3.1 Estimating Frequencies

Our approach is based on two ideas. In the style of selectivity estimation, the base sta-
tion continuously keeps track of the frequency distribution of the detail coefficients.
That is, the first idea is to estimate the frequencies based on experience from previous
queries. The main problem is that the frequencies strongly depend on the maximum
error e. The second idea addresses this issue: The distribution is maintained for an
error e = 0. As illustrated in the following, this corresponds to a continuous distri-
bution of detail coefficients. Given that the nodes know this distribution, it is now

117

CHAPTER 7. EFFICIENTLY APPROXIMATING SENSOR RELATIONS
WITH QUALITY GUARANTEES

-e e 3e-3e

(b)

(2i-1)e (2i+1)e

(a)

Figure 7.6: Estimating frequencies

possible for each node to estimate the frequency of a detail coefficient for e 6= 0 by
discretizing the continuous distribution according to e.

We start by illustrating the idea of discretizing a continuous distribution. Sup-
pose that we know the distribution pdf(x) of a physical quantity, e.g., temperature.
Figure 7.6(a) serves as an illustration. Formally, pdf(x) is a probability distribution
function. Discretizing the quantity corresponds to mapping all measurements of an
interval [(2i−1)·e, (2i+1)·e] to 2i·e (or i after scaling). Thus, the relative frequency
of i is the probability that a sensor reading is in this interval. Formally, let n be the
number of sensor readings. The absolute frequency of i is:

freq(i) = n ·

(2i+1)·e
∫

(2i−1)·e

pdf(x)dx (7.4)

To apply this idea of quantizing a continuous distribution, we need to define a
"continuous distribution of the detail coefficients pdf0(x)". pdf0(x) is the distribution
of the detail coefficients of a slightly modified transform (e = 0): It omits the quan-
tization as there is no error budget. In addition, as it is exact, there is no rounding in
the wavelet transform:

â1,i = xi − minVal

âl,p =
âl′,p′ + âl′′,p′′

2

d̂l,p = âl′′,p′′ − âl′,p′

Given the distribution pdf0(x) of d̂l,p, we estimate the frequency of dl,p by integra-
tion as in Equation 7.4 (cf. Figure 7.6b).

7.3.3.2 Requirements

The previous approach is a valid estimation if the following Assumption 7.1 and
Proposition 7.1 hold. We justify them in Section 7.3.3.4.

As the estimation is based on experience from previous executions, we assume
that:

118

7.3. CONSTRUCTING SYNOPSES

Assumption 7.1: pdf0(x) is largely unchanged since its last update.

As we base the estimation on a slightly modified transform, we have to prove the
following proposition:

Proposition 7.1: The distribution of the unscaled detail coefficients dl,p · 2e of our
actual transform corresponds to the one of the continuous detail coefficients d̂l,p.

dl,p · 2e are the quantized detail coefficients except for scaling to an integer. The
scaling depends on e and therefore is not captured in the distribution pdf0(x), but in
the integration – we integrate over [(2dl,p − 1) · e, (2dl,p + 1) · e] (cf. Equation 7.4).

7.3.3.3 Maintaining Frequency Distributions

We have already described how the nodes estimate the frequency of dl,p from pdf0(x).
We now discuss how to maintain pdf0(x). As a starting point for the maintenance,
suppose that we have collected the continuous detail coefficients empirically. The
idea is to obtain pdf0(x) by fitting a curve to their distribution.

Fitting a curve to a set of detail coefficients requires to specify a family of functions
(polynomial, Gaussian, etc.) to be used. Bell curves often are well suited to describe
the detail coefficients of a wavelet transform, in particular generalized Gaussian dis-
tributions, e.g., [CV00]. However, they are not a good choice in our case: They
are computationally complex, and there is no antiderivative. The nodes would have
to use numerical integration over a computationally complex function to arrive at an
estimate. We found that the following simple bell curve describes the distribution
well: pdf0(x) = 1

π
a0

1+(a0x)2
. The parameter a0 describes the spread of the coefficients

around 0 and has to be determined by curve fitting.
Note that, while pdf0(x) = 1

π
a0

1+(a0x)2
is well-suited for our data, our technique is

orthogonal to the curve function used.
Fitting pdf0(x) to the empirically determined detail coefficients is difficult due to

outliers, i.e., isolated large coefficients. They yield a spread parameter a0 which
is too large. Thus, the tail of the distribution is too heavy, and the estimate of the
number of frequent coefficients is too low. A simple extension would be to estimate
the distribution on an α-quantile, i.e., to discard the outliers. But in this case the
distribution is highly sensitive to the choice of α.

Instead of using pdf0(x), we estimate its cumulative distribution cdf0(x) = 1
2

+
1
Π
arctan(a0x). This has the following advantages over using pdf0(x):

(a) The nodes do not have to solve an integral. Given cdf0(x), the frequency of a1,i

is simply freq(a1,i) = n[cdf0([2a1,i + 1] · e) − cdf0([2a1,i − 1] · e)].

(b) Estimating cdf0(x) can be done robust to outliers by using an α-quantile. This
is now insensitive to the choice of α: By first accumulating the frequencies

119

CHAPTER 7. EFFICIENTLY APPROXIMATING SENSOR RELATIONS
WITH QUALITY GUARANTEES

and then discarding the tails, we keep the information that there were further
coefficients. In a way, we only discard their "wrong" position.

(c) cdf0(x) can also be estimated from the quantized detail coefficients. This is
key to react to changes in the distribution: We update cdf0(x) every time the
attribute has been queried.

In summary, our approach works as follows:

1. Initialization. Prior to executing any query, the base station once collects the
continuous detail coefficients for each attribute, determines the cumulative fre-
quencies, and calculates a0. In our implementation, we use a standard curve
fitting algorithm (Levenberg-Marquardt, [Mar63]).

2. Usage. Given a query, for each of the attributes the corresponding a0 and e are
distributed in the network along with the query. Thus, every node arrives at the
same estimates of the frequencies and thus at the same encoding.

3. Update. After execution, the base station re-estimates a0. A moving average
continuously adapts the distribution.

7.3.3.4 Justification

We now justify Assumption 7.1 and prove Proposition 7.1.
Assumption 7.1 states that the distribution of the detail coefficients pdf0() is largely

unchanged since its last update. If it does not hold, the effectiveness of the coding
degrades, the more the current distribution of the detail coefficients deviates from
pdf0(). That distribution may change due to changes in the data being transformed.
More precisely, (major) changes in the relative differences of the data might affect
pdf0(). In contrast, spatial and temporal correlation of the sensor readings lead to
stable differences. Changes in pdf0() can also stem from changes in the structure
tree. But this is even less critical. First, recall that the underlying routing tree dictates
its coarse structure. While routing trees change from time to time due to links going
down, etc., such changes affect the tree only locally. Given that the differences of the
approximations that a node receives are similar, the resulting structure tree is roughly
the same as well.

Proposition 7.1 is that the distribution of the unscaled detail coefficients dl,p · 2e

corresponds to the one of the continuous coefficients d̂l,p. This will be shown as
follows: Starting with a continuous distribution we examine the influence of (a) the
quantization and (b) the rounding on the continuous coefficients. We show that:

1. The expected value of the coefficients remains unchanged.

2. The variance of the detail coefficients is small (usually much smaller than e).

120

7.3. CONSTRUCTING SYNOPSES

(2) implies that the expected value represents the detail coefficients well. Given (1),
Proposition 7.1 follows.

What is difficult in proving the statements is to model the influence of the quan-
tization and the rounding appropriately. We will present this in detail. Given the
idea, some proofs are obvious and will only be sketched. In order to calculate the
expected value and variance of the detail coefficients we will introduce the random
variables Al,p, Dl,p, R1,i, Tl,p. We start by defining a random variable R1,i modeling
the quantization (cf. Equation 7.1). Without the scaling the coefficients are quan-
tized to a multiple of 2e. As each value in [−e, e] is equally likely, R1,i is uniformly
distributed:

Definition 7.1 (R1,i)
R1,i is a random variable that is uniformly distributed in [−e, e].

It follows that R1,i has mean µ = 0 and variance σ2 = e2

3
.

Definition 7.2 (A1,i)
Let A1,i := â1,i + R1,i be the random variable that models the quantized â1,i.

Lemma 7.1: E(A1,i) = â1,i and V (A1,i) = e2

3
where E(·) is the expected value and

V (·) is the variance.

Proof: (Sketch) This can be seen by simply substituting the definition of A1,i and
regarding Definition 7.1. �

Definition 7.3 (Al,p, Tl,p, Rl,p)

For l′ + l′′ = l, l > 1, let Al,p :=
Al′,p′+Al′′,p′′

2
+Tl,p ·e. Here, Tl,p is a random variable

∈ {−1, 0, 1}. Further, let Rl,p := âl,p − Al,p for l > 1.

Tl,p · e models the effect of rounding in the integer transform on the unscaled coef-
ficients.

Lemma 7.2: E(Tl,p) = 0 and V (Tl,p) = 1
2
.

Proof: (Sketch) For the rounding, we distinguish between four cases (cf. Equa-
tion 7.2): If al′,p′ and al′′,p′′ are both even or uneven, there is no rounding. That
is, in two out of four cases, Tl,p = 0. Otherwise, we either round up (Tl,p = 1) if
al′,p′ > al′′,p′′ or down (Tl,p = −1) if al′,p′ < al′′,p′′ . Both cases are equally likely.
The lemma then follows from the definition of E(·) and V (·). �

Definition 7.4 (Dl,p)
Let Dl,p := Al′′,p′′ − Al′,p′ .

Theorem 7.2: E(Al,p) = âl,p. E(Dl,p) = d̂l,p.

121

CHAPTER 7. EFFICIENTLY APPROXIMATING SENSOR RELATIONS
WITH QUALITY GUARANTEES

Remark: As Dl,p incorporates the quantization and the rounding, the second state-
ment in the theorem is actually our first claim (1) for justifying Proposition 7.1.

Proof: The first statement can be proven by induction on l. For l = 1, the statement
is true due to Lemma 7.1. Assuming E(Al′,p′) = âl′,p′ and E(Al′′,p′′) = âl′′,p′′ we

get: E(Al,p) = E(
Al′,p′+Al′′,p′′

2
+ Tl,p · e) = 1

2
E(Al′,p′) + 1

2
E(Al′′,p′′) + E(Tl,p) · e

= 1
2
âl′,p′ + 1

2
âl′′,p′′ + 0e = âl,p. The second statement can be obtained directly:

E(Dl,p) = E(Al′′,p′′ − Al′,p′) = E(Al′′,p′′) − E(Al′,p′) = âl′′,p′′ − âl′,p′ = d̂l,p. �

Lemma 7.3: V (Al,p) < e2.

Proof: (Induction) Note that V (Al,p) = V (Rl,p) by definition. If l = 1, Lemma 7.3
is true due to Lemma 7.1.
If V (Al′,p′) = V (Rl′,p′) < e2, V (Al′′,p′′) = V (Rl′′,p′′) < e2 we get: V (Al,p) =

V (
Al′,p′+Al′′,p′′

2
+ Tl,p · e)

= V (
âl′,p′+Rl′,p′+âl′′,p′′+Rl′′,p′′

2
+ Tl,p · e)

= 1
4
V (Rl′,p′) + 1

4
V (Rl′′,p′′) + e2 · V (Tl,p) < 1

4
e2 + 1

4
e2 + e2 · 1

2
= e2. �

The equality in the second to last line holds as R and T model roundings and can
be assumed to be stochastically independent.

Remark: In this general case, e2 is the smallest upper bound that can be proven
for the variance. It is possible to show via induction that for a perfectly balanced
structure tree that covers l readings, V (Al,p) = e2 − 1

l
2
3
e2 which quickly converges

to e2.

Theorem 7.3: V (Dl,p) < 2e2.

Proof: V (Dl,p) = V (Al′′,p′′ − Al′,p′) = V (âl′′,p′′ + Rl′′,p′′ − âl′,p′ − Rl′,p′) =
V (Rl′′,p′′) + V (Rl′,p′) < e2 + e2 = 2e2. �

Theorem 7.3 is the second statement (2) for justifying Proposition 7.1 and thus
completes our discussion.

7.4 Sending Approximations

We conclude the description of SNAP with an optimization regarding sending of
approximation coefficients. It is based on the observation that the quantization not
only leads to a small set of detail coefficients – this is exploited by the entropy coding.
It also restricts the set of approximation coefficients to a small number. The following
example motivates our optimization:

Example 7.3: Consider a system that collects temperature values with e = 0.1◦C.
Suppose that the measurements within the network range between 18.5274◦C and
23.3883◦C. Then the approximation coefficients must also be within this range. Most
notably, there are only

⌈

23.3883−18.5274
2·0.1

⌉

= 25 possible values. In this case, sending an

122

7.4. SENDING APPROXIMATIONS

approximation should not require more than ⌈log2(25)⌉ = 5 bits. �

Underlying Idea. Intuitively, the approximation coefficients will mostly vary in
a small range around the overall average avgnet. Assume for now that avgnet is
known. If Node ni computes an approximation coefficient al,p and then computes
its difference from the quantized overall average āl,p = Int(avgnet−minVal

2e
) − al,p, this

difference āl,p will be a small number. Thus its binary representation will be of one of
the following forms: 0...01X0...Xr, 1...10X0...Xr, or 0...0 for al,p <,> or = avgnet
(where Xi = {0|1}). If we know the remainder (01X0...Xr, 10X0...Xr, or 0...0),
we can restore āl,p by prefixing 0’s or 1’s depending on the first bit. That is, there
is no information in the beginning of āl,p. The idea is to only send this remainder.
Technically, this requires knowing the length of the remainder, which depends on the
quantization.

Approach. In general, our optimization works as follows: Assume that each node
knows avgnet and the range r. The latter is defined as the difference of the max and
the min value measured. To send the information contained in al,p, ni computes āl,p.
It then truncates āl,p to the last

⌈

log2(
⌈

r
2e

⌉

)
⌉

bits. The parent of ni reconstructs al,p

by filling up the remainder and adding it to avgnet.
Note that

⌈

log2(
⌈

r
2e

⌉

)
⌉

bits are only sufficient if both values avgnet and r are ac-
curate. Therefore, the encoding actually used by SNAP is as follows: If

⌈

log2(
⌈

r
2e

⌉

)
⌉

bits are sufficient, a node starts the encoding with a ’0’-bit followed by the remainder.
’sufficient’ means that at least 01X0...Xr or 10X0...Xr can be captured to achieve
uniqueness. If this condition is not fulfilled, the node starts the encoding with ’10’
followed by

⌈

log2(
⌈

r
2e

⌉

)
⌉

+ 1 bits. Note that this effectively doubles the range. In
case of any errors, the encoding can start with ’11’ followed by the original al,p.

Finally, we say how the nodes get to know avgnet and r. We do not require each
node to know the max and min value but only the range which is much more stable
in time. The base station simply maintains these parameters as part of its catalog.
In detail, the base station keeps moving averages for avgnet as well as for the min
and max value per attribute. avgnet or r are distributed along with the query when-
ever its deviation from the value currently used exceeds a threshold. Determining
these thresholds is straightforward. The question is when the length of the remainder
changes. If avgnet is correct, the length changes if the range doubles or halves. If r
is valid, we need to update avgnet if it deviates by more than r. Overall, the combi-
nation of both parameters must not deviate by more than r from the values currently
used. This budget should not be fully exploited since the encoding gets worse if the
deviations come close to these upper bounds. In our implementation, we update r if
the range halves or becomes larger by 1

3
. We update avgnet whenever it changes by

more than half of the range currently used.

123

CHAPTER 7. EFFICIENTLY APPROXIMATING SENSOR RELATIONS
WITH QUALITY GUARANTEES

7.5 Evaluation

In this section, we demonstrate the performance of SNAP based on real-world and
synthetic sensor data. As in Sections 4.4 and 5.7, we use the ns-2 simulator for our
study. We will show that SNAP efficiently consolidates sensor relations even for tight
error bounds.

7.5.1 Experimental Setup

Query Workload. Our evaluation is based on queries that match the pattern from
our problem specification (cf. Section 6.1). There are two degrees of freedom in this
pattern: (1) the number of attributes in the SELECT-clause and (2) the error budget
for each of them. Both will serve as parameters in our experiments.

Comparison Schemes. In line with the discussion in Section 6.3, we compare
SNAP to the following schemes:

(1) Wavelet-based approaches. We want to highlight the benefit of our integration
approach of building upon an unmodified routing tree and using an irregular trans-
form. Two alternatives have been proposed: Using zero padding to account for the
irregular routing tree [HHMS03] and subdividing the network into clusters, each of
which applies a wavelet transform [DBcF07]. However, these approaches provide no
error guarantees and are not designed to cope with multiple attributes. We extended
them based on state-of-the-art approaches for dealing with tuples [DGR07] and for
thresholding with error guarantees [KM05]. In our experiments, we do not account
for any overheads due to these extensions like sending coordinates of the coefficients
or forwarding the remaining error budgets. Thus, we heavily underestimate the costs
of the related approaches.

(2) Model-based approaches. We compare SNAP to approaches based on multi-
variate Gaussians. While these sophisticated models have high training costs, they
are best when it comes to normal operation. (We do not account for training costs in
our experiments.) [CDHH06] has shown that Ken is superior to Caching and Kalman
Filters. Among Ken and BBQ [DGM+04], we decided to compare SNAP to Ken
since Ken provides the same error guarantees as SNAP. Note that the problem of
model-based approaches are false predictions for tight error bounds, which is the
same for BBQ and Ken.

(3) Tree-based Data Collection (TDC). We compare SNAP to simple tree-based
data collection. As we will show, for the related approaches, tree-based data collec-
tion is among the best for tight error bounds.

Data Sets and Setting. As with CJF, our goal is to evaluate SNAP on real-world
data sets. Again, we used the LUCE data [Senc] which is attractive for its large

124

7.5. EVALUATION

number of attributes. The data is from a network consisting of 81 nodes when the
data was acquired (January 2007). For the experiments based on real data, we set the
size of the network and the relative positions of the nodes to reflect the setting during
the original data collection.

We also use some synthetically generated data sets. This is to evaluate SNAP on
large networks and to study extreme data sets. In particular, the latter usage lets us
assess the influence of the data set on the performance of SNAP. For the experiments
based on synthetic data, we distribute the nodes randomly.

Metrics. In contrast to the experiments in Sections 4.4 and 5.7, we use the number-
of-transmissions (networking packets) and the number-of-bytes metric for this study
(see Section 4.4 for a discussion). Most of the graphs in this section are based on the
number-of-bytes metric: We have conducted our experiments on real data where the
size of the network is 81 nodes. For such sizes, SNAP builds synopses that fit into a
single networking packet. While this is nice, the problem is that varying parameters
has no effect on the number of packets sent and is pointless. In contrast, the number-
of-bytes metric is well suited to show the data reduction that SNAP achieves. This
carries over to the number-of-transmissions metric, as we will show as well.

Default Setting. In each experiment we vary one parameter. If a parameter is not
varied we use the following default value: Among the attributes of the data set, we
query the node ID (no error), ambient temperature (e = 0.1◦C), surface temperature
(e = 0.1◦C) and relative humidity (e = 0.5%). These attributes were available at all
nodes in the data set. Note that querying for multiple attributes without involving the
IDs is rare in practice.

Varying Error Bounds. As our queries cover multiple attributes, if we want to
vary the maximum errors, we have to consider all of the attributes. We simply mul-
tiply their default settings with a factor, ranging from 0.1 to 5. For instance, for the
ambient temperature (default setting e = 0.1◦C), the errors range from 0.01◦C to
0.5◦C.

7.5.2 Comparative Experiments

Wavelet-Based Approaches. In a first set of experiments we examine building
upon an irregular transform. We compare SNAP to zero padding and cluster-based
local transforms. The objective is to give evidence for the following claims: (1) Zero
padding results in many, large detail coefficients. (2) A cluster-based local transform
also suffers from inherent problems and thus cannot result in small synopses: Only
the data within each cluster is decorrelated – redundancies between clusters are not
removed. In addition, as the number of nodes within a cluster is rarely a power of

125

CHAPTER 7. EFFICIENTLY APPROXIMATING SENSOR RELATIONS
WITH QUALITY GUARANTEES

0

5000

10000

0.1 0.5 1 2 5

Zero Padding

TDC

Local Transform

SNAP

Factor for max. Error

N
u
m

b
e
r

o
f
B

y
te

s

Figure 7.7: Comparison of integration approaches (real data)

0

4000

8000

0.1 0.5 1 2 5

Zero Padding

TDC

Local Transform

SNAP

Factor for max. Error

N
u

m
b

e
r

o
f

B
y
te

s

Figure 7.8: Comparison of integration approaches (synth. data)

two, we again need zero padding to perform local wavelet transforms, though less
than in the tree-based approach.

We compare the approaches for different maximum errors. We expect all of them
to perform better for larger error bounds. Next to the two wavelet-based approaches
and SNAP, we also measure the performance of tree-based data collection (TDC),
which is independent of the error. The results are shown in Figure 7.7. They confirm
our expectation. The related approaches perform worse than a simple tree-based data
collection. Recall that the costs of the wavelet-based approaches are underestimated
substantially. In contrast, SNAP outperforms tree-based data collection by a factor of
about five.

We repeated these experiments on our synthetic data, see Figure 7.8. They are in
line with those on real data. All approaches including tree-based data collection are
slightly better due to differences in the routing tree. For the synthetic data we placed
the nodes randomly.

Model-Based Approaches. [DGM+04] has pointed out that model-based ap-
proaches degrade with tighter error bounds. We want to show that the performance
of SNAP does not degrade as much. Note that model-based approaches need updates
of the model from time to time, as otherwise all estimations would be out of bounds
after a while. Thus, they only make sense if the network is queried continuously.

126

7.5. EVALUATION

0

2500

5000

0.1 0.5 1 2 5

TDC

KEN

SNAP

Factor for max. Error

N
u
m

b
e
r

o
f
B

y
te

s

Figure 7.9: Comparison to Ken (real data)

We measure the performance of Ken by using a continuous query and averaging the
costs. We query 40 consecutive snapshots from the real world data set after an exten-
sive training phase. SNAP is executed on the same 40 snapshots, and we also average
the costs. The results are shown in Figure 7.9. Note that our results for Ken are in line
with those presented in [CDHH06]. Most notably, if the error bounds become less
than our default setting, Ken performs similar to tree-based data collection. In con-
trast, even for bounds an order of magnitude tighter (factor 1

10
), SNAP still achieves

a reduction of the communication costs by factor three.

7.5.3 Analysis of SNAP

We now study the performance of SNAP. As the performance of tree-based data col-
lection is close to Ken for our default setting, and tree-based data collection is rela-
tively easy to handle, we use tree-based data collection as a point of comparison.

Scalability. We are interested in the performance of SNAP for larger networks. To
determine the influence of the network size we vary the number of nodes from 500
to 2000. At the same time we vary the area of the network to keep the node density
constant. The experiments are conducted on synthetic data as we do not have data
sets for larger networks. Intuitively, the relative savings of SNAP over tree-based
data collection should be independent of the network size. This is because our syn-
opsis achieves a constant compaction factor of the data. The results in Figure 7.10(a)
confirm this expectation. To confirm that the data reduction carries over to the num-
ber of transmissions, Figure 7.10(b) graphs the results for this metric. Interestingly,
even for 2000 nodes, SNAP sends only about 2500 packets. That is, SNAP reduces
the data such that most of the nodes send one packet. This is the optimum for the
number-of-transmissions metric, indicated by the black line.

Number of Attributes. In this set of experiments we determine the influence of
the number of attributes in the query on SNAP. If the query exceeds three attributes

127

CHAPTER 7. EFFICIENTLY APPROXIMATING SENSOR RELATIONS
WITH QUALITY GUARANTEES

0

3500

7000

500 1000 1500 2000

TDC

SNAP

Optimum

0

300000

600000

500 1000 1500 2000

TDC

SNAP

Number of Nodes

Number of Nodes

N
u

m
b

e
r

o
f

B
y
te

s

N
u

m
b

e
r

o
f

P
a

c
k
e

ts

Figure 7.10: Scalability of SNAP (synthetic data)

0

4000

8000

1 2 3 4 5

TDC

SNAP

Number of Attributes (x Attributes + ID)

N
u

m
b

e
r

o
f

B
y
te

s

Figure 7.11: Influence of the number of attributes (synth. data)

128

7.5. EVALUATION
N

u
m

b
e
r

o
f
B

y
te

s

0

800

1600

0.1 0.5 1 2 5

heuristical

optimal

Factor for max. Error

Figure 7.12: SNAP: heuristical vs. optimal integration (real data)

0

2500

5000

0.1 0.5 1 2 5

TDC

worst case

normal case

best case

Factor for max. Error

N
u

m
b

e
r

o
f

B
y
te

s

Figure 7.13: SNAP: performance on extreme data (synth. data)

(plus ID), we additionally query for solar radiation (e = 0.5 W
m2) and wind speed

(e = 0.1m
s

). We conduct the corresponding measurements on synthetic data because
not all of the nodes in our data set have available the complete set of sensors. Intu-
itively, the number of attributes should not have a major influence on the relative per-
formance of SNAP over tree-based data collection. On the one hand, more attributes
better amortize the overhead in the detail coefficients for coding the tree structure
(two STS bits). On the other hand, this might require tradeoffs in building the struc-
ture tree – different attributes might prefer different tree structures. Figure 7.11 con-
firms that both influences are minor. The data reduction becomes slightly better with
the number of attributes as the ID, which is included in all queries, is difficult to
compress.

Heuristical vs. Optimal Structure Tree. The following experiment highlights
the appropriateness of our heuristic to devise a structure tree. We compare SNAP
(which incorporates the heuristic) to a modified version of SNAP that uses the optimal
algorithm. Both approaches integrate the structure tree into the routing tree. Thus, the
rough structure is the same. Figure 7.12 graphs the results. In all of our experiments,
the heuristic performed within 5% of the optimum.

129

CHAPTER 7. EFFICIENTLY APPROXIMATING SENSOR RELATIONS
WITH QUALITY GUARANTEES

Extreme Data Sets. Finally, we are interested in how much the performance of
SNAP depends on spatial correlation in the data. Therefore, we evaluate SNAP on
two extreme data sets. The first one simulates perfect correlation, i.e., each node
measures the same value on corresponding attributes. This is supposed to be the best
case for SNAP. The second data set simulates uncorrelated data as a worst case. We
set the ranges of the attributes as observed in our real data and let each node observe
a random value from the ranges for each of the attributes. The results are shown in
Figure 7.13. As expected, the performance of SNAP degrades with less correlation.
However, the sensitivity is limited. SNAP performs well even on the uncorrelated
data.

7.6 Summary

In this chapter, we have presented SNAP, our solution to evaluating queries with a
low selectivity. To achieve efficiency even for tight error bounds, we based SNAP on
wavelet synopses. SNAP constructs a synopsis during data collection incrementally.
As a core contribution, we have shown how to distribute the wavelet transform and the
thresholding step. We have done so by integrating the transform into an unmodified
routing tree. To obtain a synopsis we have explored a design that encodes coeffi-
cients compactly instead of discarding them. To distribute this mechanism, we have
proposed an approach to estimate the frequencies of coefficients. SNAP is the first
distributed solution to the thresholding problem with error guarantees. It achieves a
data reduction by more than a factor of five and improves the accuracy for which data
can be efficiently consolidated by more than an order of magnitude.

130

8 Conclusions and Future
Directions

This dissertation extends the state-of-the-art in query processing in sensor networks.
We presented two methods for processing the join operator. Along with selections
and projections, the join is fundamental for focusing on relevant portions of the sen-
sor readings. To obtain efficiency, the idea is to exploit selectivity. Moreover, we
presented an approximate query processing scheme which allows to efficiently con-
solidate entire sensor relations at the base station. In particular, this allows for an
efficient processing of non-selective queries.

In principle, approximate query processing can be applied to selective as well as
non-selective queries, i.e., it is orthogonal to the selectivity of the query: It is possible
to approximately collect sensor data after discarding irrelevant portions, to further
reduce the data volume. However, we motivated approximate query processing with
non-selective queries for the following reason: For selective queries, the data volume
is already small, leaving only little room for an additional data reduction. Given that
an approximation sacrifices precision of the query result, the additional savings in
case of selective queries is small and might not weigh off the loss of accuracy.

In the following, we review the contributions of this dissertation in more detail
before discussing some interesting opportunities of future work.

8.1 Summary

To simplify data acquisition from sensor networks, query interfaces have proven to
be attractive. They hide technical details from the application. With respect to an
efficient query processing, early prototypes of sensor network query processors have
introduced the idea of pushing operators into the network to reduce the data that is
involved in the query. That is, the idea is to exploit the selectivity in the query for an
efficient processing. The prototypes explored this idea for selection and projection
operators as well as for aggregations. In particular, for selections and projections, a
node can decide locally if its tuple contributes to the result.

In contrast, processing join queries has been an open problem. The join relates
tuples from arbitrary nodes to each other. A node cannot decide locally if its tuple
joins. In particular, the tuples are distributed throughout the network, and matching
tuples is costly in terms of communication.

131

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

Prior join approaches avoid an extensive matching by specializing to specific types
of queries or placements of the input tuples. This comes at the expense of applicabil-
ity. Our goal was the design of join methods that avoid such specializations.

To start addressing this problem, we introduced IDEAL, a concept that lower
bounds the communication costs of join processing. According to IDEAL, it is opti-
mal to discard non-joining tuples at the sources and to send the joining tuples to the
base station. These insights guided the design of our join methods: They obey this
framework.

We presented SENS-Join, the first general-purpose join method that does not rely
on restrictive requirements: It can efficiently handle any number of join conditions
and arbitrary distributions of the nodes involved. SENS-Join solves the problem of
providing the knowledge, which of the tuples join, by means of a semi-join based
precomputation. In particular, we showed how to design a precomputation that is
efficient – this is critical since the costs due to a precomputation could easily exhaust
the potential savings of discarding non-joining tuples.

A precomputation is well-suited for one-time queries. In contrast, re-computing
the set of joining tuples for a continuous execution incurs unnecessary costs, given
that sensor data tends to be temporally correlated. This is a particular problem as
continuous queries prevail in many monitoring and surveillance applications. To this
end, we have presented an approach that maintains join filters, CJF. Most notably,
CJF performs close to IDEAL by avoiding the constant costs of the precomputation.

Finally, we studied the evaluation of queries with a low selectivity. Obviously,
the idea of obtaining efficiency by discarding irrelevant data early in the processing
does not apply to these. However, there are a number of sensor network deployments
that simply collect data without prior selection. For instance, recall the scientific de-
ployments introduced in Chapter 1. Thus, a mechanism for efficiently consolidating
entire sensor relations is highly desirable.

Prior work has addressed non-selective queries by approximating results based on
models. The solutions work well if the accuracy requirements are loose. For more
accuracy, communication costs increase quickly.

Our solution, SNAP, is based on wavelet synopses. They are known for their good
data reduction capabilities at the costs of introducing only small errors. To allow
for an efficient data collection, SNAP constructs the synopsis during the collection
incrementally. SNAP is the first distributed wavelet compaction in sensor networks
that provides error guarantees.

At a technical level, the following aspects of this work constitute our main innova-
tions:

• SENS-Join exemplifies that a precomputation can be done at little costs, even
if it covers the entire sensor network. As a key to obtaining efficiency, we
showed how to include most of the nodes only once in the processing. This is
in contrast to a naive implementation of a precomputation.

132

8.2. FUTURE WORK

• We designed a quadtree-based data representation which eliminates the redun-
dancy in a set of join-attribute tuples. This mechanism outperforms compres-
sion algorithms in our scenario: The latter do not allow for good compression
ratios if the data volume is small. However, this is the rule for a tree-based data
collection except for nodes near the root of the collection tree.

• CJF continuously computes optimal filters. To do so, we showed how to map
join queries to an optimization problem under constraints. We also presented
an algorithm that solves this problem. It handles the constraints as well as
the non-convexity of the cost function. Our solutions aggressively exploit the
continuous nature of queries – on the hand by using previous filter settings
as a starting point of the optimization and on the other hand by introducing a
stochastic algorithm that converges to the optimal solution in time.

• We update filters only if the improvement at least amortizes the costs of updat-
ing. In particular, we showed how to do so in the face of dependencies among
filters.

• SNAP integrates the data flow of a wavelet transform into the routing structure
of the network. SNAP is first to explore this idea. The integration allows for a
distributed transform that neither sacrifices shortest paths nor adds to the data.

• To obtain a synopsis we have explored a design that encodes coefficients com-
pactly instead of discarding them. In particular, we showed how to accurately
estimate the frequencies of detail coefficients, which are required for a dis-
tributed compaction. This design resulted in the first distributed solution to the
thresholding problem with error guarantees.

Finally, we extensively evaluated all of our algorithms. SENS-Join reduces the
communication of the most loaded nodes by more than an order of magnitude in
some situations. The costs of CJF are close to the lower bound of join processing.
SNAP achieves a data reduction by more than a factor of five while improving the
accuracy for which data can be efficiently consolidated by more than an order of
magnitude. Such improvements prolong the lifetime of the network significantly.

8.2 Future Work

There is a number of problems with respect to query processing in sensor networks
that we did not address to limit the scope of this dissertation. We conclude this
dissertation with a section that highlights the most interesting of them.

133

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

Selectivity Estimation. In our work, we explicitly distinguish between ’selec-
tive’ and ’non-selective’ queries. In particular, it seems to be common sense in the
literature that for the latter, approximate processing schemes are appropriate. As we
also pointed out, if queries are selective, conventional, i.e., exact query processing
seems sufficient.

The important point about this is that in order to decide which kind of processing
to use, we need to know the selectivity. As a further example, recall that the savings
of SENS-Join over the external join depend on the selectivity of the operator. That is,
if more than 90% of the tuples join, the external join is preferable.

For continuous queries, one might argue that selectivity estimation is less impor-
tant. For a long running query, it seems appropriate to execute it once and to simply
observe the selectivity. This is different for one-time queries.

It is difficult to use traditional selectivity estimation techniques (such as [BCG01,
RD08]) in our context. On the one hand, sensor readings constantly change. Prior
work proposes to use query feedback to constantly adapt to changes in the data. On
the other hand, traditional techniques can be inaccurate for join selectivities, in par-
ticular for similarity-joins over multiple join attributes.

As an idea to address this problem, it might be possible to use a model-based ap-
proach: Since the size of sensor relations is several orders of magnitude smaller than
relations in commercial applications, it should be possible to set up an approximation
of the current sensor relation and simply execute the query on it to obtain the selectiv-
ity. Modeling sensor readings has been used in [DGM+04] to approximately answer
queries. While this approach is much too costly to estimate selectivities, the accuracy
requirements are much weaker in this case. It is an open problem whether this allows
to use a model-based approach. Beyond that, this requires to figure out how to update
the models, especially if there are areas in the data that are rarely queried.

Thus, selectivity estimation in sensor networks is different from traditional selec-
tivity estimation. We need to solve this problem to integrate different processing
schemes (ours as well as schemes from the literature) into a single query processor.

Nested Queries. In our problem statements, queries are not nested. To our
knowledge, nested queries have not yet been considered in the literature on query
processing in sensor networks. However, there are very intuitive examples of inter-
ests that an application can have and which require a nested query. For instance,
assume that the application is interested in measurements that are very different from
the average. Here, computing the average is an inner query.

The problem with considering nested queries is that the number of possibilities of
formulating queries is daunting. For instance, the depth of the nesting can be arbi-
trary. However, for our example query, a precomputation-based approach similar to
SENS-Join could be promising. In particular, mechanisms such as Treecut imme-
diately apply. Beyond that, it seems possible to approximate the result of the inner

134

8.2. FUTURE WORK

query to obtain an efficient precomputation as with SENS-Join. Finally, for contin-
uous queries, the idea of avoiding to re-execute the evaluation of the inner query by
exploiting temporal correlations in the data seems possible. At the same time, if the
result of the inner query is not only used to select data, as in our example, but is part
of the result, things get a lot more involved. In summary, evaluating nested queries
seems to be an interesting direction for future research.

Multiple Queries. The algorithms presented in this dissertation address an iso-
lated execution of queries. If there are multiple queries in parallel that acquire data
from the network, they might overlap in the data they collect. This allows for further
savings, if the shared data is collected only once.

There already exists work on multi-query optimization in sensor networks. Most
notably, [TYD+05] studies sharing for region based aggregation queries. [XLTZ07]
supports other types of aggregation queries, e.g., value-based aggregation queries,
and data acquisition queries. It might be interesting to extend this work to join
queries. In particular, recall that for an efficient join processing, we have to find out
which tuples join. We proposed to do so by means of a precomputation (SENS-Join)
or based on models of sensor readings (CJF). With respect to the precomputation, an
obvious idea is to collect the join-attribute values of all queries with a single collec-
tion. Even if the join attributes are not identical but only partly overlap, the costs
should be close to only collecting the attributes of a single query due to the compres-
sion. With respect to maintaining models, it is possible to share the models for all
queries.

Note that it is unclear whether having a large number of parallel queries is realistic.
All sensor networks we are aware of are dedicated to a specific task and the number
of parallel queries tends to be limited. However, even for just two queries, the ideas
that we just sketched should allow for substantial savings in the communication. In
contrast, a real problem is for continuous queries that they need to be synchronized
with respect to their execution periodicity to enable sharing, at least if the sharing
concerns the data collection. This problem would not affect a sharing in the models.

Hierarchical Network Architectures. We based our work on a flat network
architecture. It is an interesting research question how a different architecture affects
the algorithms. For instance, [GJP+06] points out the advantages of a hierarchical
network architecture which includes more powerful nodes. In a way, such a network
contains our architecture as a subnet and consists of multiple of our networks at the
same time. This is advantageous when it comes to scaling to very large networks
(on the order of 10000 nodes) as then, the load of a simple data collection becomes
prohibitive towards the base station.

What is different with respect to query processing is that queries span multiple of
the networks considered in this dissertation. In particular, having a number of pow-

135

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

erful nodes in the network opens up new possibilities with respect to the processing
locations of operators. This might also enable to optimize for response time besides
energy costs by distributing the processing among powerful nodes.

Finally, a hierarchical architecture can be applied to reduce the number of wireless
hops for each node to reach a base station. If the number of wireless hops is small,
the benefit of a filtering scheme like CJF is probably much higher than in our current
architecture. This is because currently, most of the communication costs are due to
forwarding. Also, maintaining models is much cheaper if each node can reach the
base station within a few hops.

In summary, the network architecture affects the performance of algorithms. Con-
sidering hierarchical networks thus opens up new and interesting problems. In partic-
ular, if the goal is to scale the network beyond several thousand nodes, a hierarchical
architecture is probably the most realistic one.

Finding Temporal Patterns. In line with the literature, we introduced the se-
mantics of queries as ’snapshot’-queries (Chapter 2), i.e., the result is a subset of
the current sensor readings. While we support monitoring applications by means of
continuous queries, these queries also obey the snapshot semantics. They are exe-
cuted periodically on the most recent snapshot. In particular, this semantics excludes
searches for interesting patterns in time. For instance, we might be interested in sen-
sor readings that behave contrary to the common trend. Such interests require the
ability to relate measurements from different points in time to each other.

Given that the sensor relation contains an attribute ’time stamp’ that records when
the measurements have been taken, it is possible to compare readings from different
points in time by means of join queries. [YLOT07] studies the processing in this
case. However, they imposed severe restrictions on the queries to enable an efficient
processing. In particular, one of the relations is required to consist of a few tuples
only. A generalization is an open problem.

In addition, it is unclear whether using such join queries to express interests that
span multiple points in time is appropriate. For instance, the interest that we formu-
lated informally cannot easily be expressed by a join query.

What makes the search for patterns in time a worthwhile research question is that
an interesting pattern is almost by definition selective, i.e., it is rare in the data and
might allow for an efficient processing.

Small Sampling Periods. Finally, there is an interesting problem which is due
to bandwidth limitations. For any continuous query, there is a maximum rate at which
the query can be executed before the capacity of the wireless channel becomes ex-
hausted. For tree-based data collection schemes, the nodes close to the root are the
first that run into problems. In particular, these nodes have to drop packets in case of
on overload. However, these packets might already have been forwarded a couple of

136

8.2. FUTURE WORK

hops. The corresponding energy is wasted. Madden et al. [MFHH03] addressed this
problem by automatically throttling the rate at which a query is executed. Consider
the following event detection scenario in which such a mechanism is appropriate:
For instance, the query might search for temperature spikes at certain nodes. Despite
very high sampling rates, the result is almost always empty. And if the event occurs,
it might be fine to raise an alarm, i.e., only the first result is actually relevant.

In contrast, for join queries, this throttling might not be appropriate anymore.
Again, for event detection applications, the result is almost always empty. However,
the detection cannot be done by a single node but requires the nodes to interact. In
this case, the throttling actually reduces the rate at which the query is executed. This
might significantly prolong the time until we detect the event and is unacceptable
in many industrial scenarios. There, relatively high monitoring rates (e.g., 100’s of
Hertz) are required [AML05]. It is an open problem how to support a quick detection
of events that require observations at multiple nodes. A possible approach might be
to decouple the observation of a time series at a single node from the frequency of
interaction of nodes to join their time series. It is an interesting question to see what
kind of quality guarantees such an approach can provide.

With these interesting open problems in mind, we feel that declarative querying of
sensor networks remains an exciting area for doing database-related research in the
future.

137

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

138

Appendix

139

A Optimal Locations for Join
Processing

This chapter provides theoretical insights in how to efficiently process the join in sen-
sor networks. In particular, we study at which node(s) the join should be processed.

One alternative for processing the join is centralized, i.e., at a single location. The
basic variant of a centralized join is the external join (cf. Definition 3.1) which per-
forms all the computations at the base station. In Section A.2, we analyze in which
cases a centralized processing inside the network is more efficient that the exter-
nal join. In particular, we substantiate our claim from Section 3.2: Centralized in-
network approaches cannot serve as a general-purpose join method. They are inferior
to the external join except for very specific settings.

In Section A.3, we then establish the following result: IDEAL, as defined in Sec-
tion 3.1.3, lower bounds the communication costs of join processing.

Up front, we present some background on our analysis.

A.1 Preliminaries

We start with introducing the terminology that we will use in our study in Sec-
tion A.1.1. We then specify the models that underlie our analysis. In particular, we
present our network model in Section A.1.2 and our model for the communication
costs in Section A.1.3.

A.1.1 Terminology

In our study, we compare the costs of different join approaches – a fundamental
notion that we will use to distinguish different approaches is a "join strategy":

Definition A.1 (Strategy)
A strategy is

(a) a set of locations where tuples are joined and

(b) the routes along which tuples are sent.

141

APPENDIX A. OPTIMAL LOCATIONS FOR JOIN PROCESSING

Before discussing alternatives for join strategies, we introduce two basic require-
ments that have to hold for any efficient strategy:

Requirement A.3 (Correctness of the Result)
The join result has to be correct.

Correctness is a particular concern when it comes to distributing the computation
of the join. We have to ensure that every pair of tuples that join meets at (at least) one
location.

Requirement A.4 (Minimal routes)
An optimal strategy has to minimize the routes along which the tuples are sent.

This requirement helps to restrict the set of candidates for optimal strategies. A
strategy that sends tuples on an unnecessarily long route has a superior strategy that
sends on a shorter route.

Having described the basic requirements, we now introduce two dimensions along
which we classify strategies: (1) number of processing sites and (2) locations of
processing.

Dimension 1: Number of Processing Sites. Along the number of sites di-
mension, we distinguish "centralized" from "distributed" strategies:

Definition A.2 (Centralized Strategy)
A centralized strategy is a strategy that performs the join at a single node.

Our discussion in Section A.2 focuses on centralized strategies. As a generaliza-
tion, we define the notion of a distributed strategy:

Definition A.3 (Distributed Strategy)
A distributed strategy may consist of multiple (≥ 1) join locations.

Most notably, according to the preceding definition, each centralized strategy is a
distributed one. The rationale behind this definition is that a distributed strategy is
the most general strategy that is possible: It imposes no restrictions on the number of
processing sites. Thus, to show in Section A.3 that IDEAL lower bounds the costs of
join processing, we will have to compare it to distributed join strategies.

The following remark concludes the discussion of the number of sites dimension:
According to our definition, centralized strategies perform the join at one location.
In practice, resource limitations might require several neighboring nodes to compute
a join [CN07]. However, we want to provide bounds on the communication costs of
different strategies. Using a single node will serve as a lower bound for the commu-
nication costs of centralized strategies, as we will discuss in Section A.2.

142

A.1. PRELIMINARIES

Dimension 2: Processing Locations. We distinguish between the processing
locations root and in-network. ’root’ restricts the location(s) of the processing sites
to the base station. As with the number of sites dimension, the generalization (’in-
network’) imposes no restrictions. That is, an in-network strategy can perform the
processing on any node(s), including the base station.

Given this nomenclature, a ’(centralized) root strategy’ is the external join. This
strategy is important in our analysis as it will serve as a reference point in Section A.2.
We therefore define:

Definition A.4 (Root Strategy)
The root strategy is the external join.

Measure. As a final notion, we introduce the measure that we use in our study.
Our goal is to compare strategies and to find out which one is the most efficient. In
order to quantify efficiency, we define the relative measure gain. It compares the
costs of a strategy (coststrat) to the costs of a reference strategy (costref). We use a
relative measure in order to abstract from communication hardware.

Definition A.5 (Gain)

gainref = 1 −
coststrat

costref

Modeling the costs of the strategies is different for the centralized and the dis-
tributed case and will be discussed in the corresponding sections. In our analysis, we
will use two strategies as reference points: In Section A.2, we seek to improve upon
the external join. Thus, we will use the root strategy as a reference point. There, gain
refers to gainroot. In Section A.3, we investigate if we can improve upon IDEAL.
There, gain refers to gainIDEAL. To simplify notation, we will drop the subscript if it
is clear from the context.

According to the preceding definitions, the root strategy is an instance of a central-
ized as well as a decentralized strategy. Thus, the following holds:

Corollary A.1: For optimal centralized and decentralized strategies, coststrat ≤
costroot. Therefore, gainroot ∈ [0, 1]. �

A.1.2 Network Model

In the following, we present and justify our network model. We refer to the two
relations to be joined as A and B. The relations contain those nodes that result from
applying the selection predicates (WHERE-clause) to a sensor relation. Figure A.1

143

APPENDIX A. OPTIMAL LOCATIONS FOR JOIN PROCESSING

RAC
l RBC

l

CA
CB

R

iB

iA

Ad
Bd

Figure A.1: Scenario

nA, nB Number of tuples of Relation A, B involved in the join
lACR, lBCR Distance from center of mass, AC , BC to the root R

ω Angle ∠ACRBC

d̄A, d̄B Distribution (mean distance) of nodes with respect to their center of mass
ca, cb Relative costs of sending tA, tB for one hop with respect to tAB

σ Join selectivity

Table A.1: Overview of the parameterization
tA, tB , tAB Tuples of Relation A, B and a result
AC , BC Center of mass of Relation A, B
Ai, Bi Node of Relation A, B
R Root node

Table A.2: Further notation

represents the nodes of Relation A as filled squares. They are denoted as Ai ∈
{A1, ...,Am}. Nodes of Relation B are depicted as filled circles. Non-filled shapes
stand for nodes whose tuples are excluded by the WHERE-clause of the query. Note
that in the case of a self-join, nodes could also belong to both relations, depending
on the selection predicates. The root node R is depicted as a star. We refer to a tuple
of Relation A or B as tA or tB, respectively. tAB represents a tuple that results from
joining tA with tB .

In our analysis we distinguish between different states of the network according to
the following parameterization: Relation A can be described by its center of mass Ac,
the mean distance d̄A = 1

nA
·
∑

i d(Ac,Ai) of each node to the center and the number
of nodes nA. Relation B can be described in the same way. The relative location of
the nodes of A and B to each other and to the root node are described by the angle
ω = ∠AcRBc and the distances lACR, lBCR.

Given these parameters, we can abstract from single nodes by describing the rela-
tion as (Ac, d̄A, nA). On the other hand, our numerical methods require concrete sets
of nodes based on the parameters (Ac, d̄A, nA). We therefore assume:

144

A.1. PRELIMINARIES

Assumption A.1: The nodes of a relation are uniformly distributed within (Ac, d̄A).

Finally, we will refer to the join selectivity as σ, which is defined as the ratio of
the cardinality of the join result to the input, i.e., σ = card(A⋊⋉B)

card(A)·card(B)
. Table A.1

summarizes these parameters. Table A.2 contains some further notation.

Appropriateness of our Network Model. Note that our set of parameters de-
scribes each relation as a whole. There is an infinite number of concrete placements
of nodes, which corresponds to each parameter setting.

Proposition A.1: The results obtained for a parameter setting according to Table A.1
apply to every instance of node placements that obeys the setting.

This is true as we found that, given a specific parameter setting, the gain of sets of
nodes {R,A1, ...,AnA

,B1, ...,BnB
} that obey this setting has a very small variance

(V ar(gain) < 1%; cf. Section A.2). Thus, every instantiation of our network model
results in approximately the same gain. This makes our compact model very well
suited for the analysis.

A.1.3 Cost Model

Our optimization goal is to minimize the energy consumed for communication. To
this end, we need to model the communication costs.

Costs of Sending a Packet Via Multiple Hops. The costs of sending a packet
are computed by multiplying the one-hop costs with the number of hops. We model
the one-hop costs as a parameter which is discussed at the end of this section (ca, cb).
The number of hops is approximated by the Euclidean distance d(·, ·) between the
sending and receiving node. Thus, the costs of sending a packet containing Tuple tA
from node A1 to A2 are modeled as d(A1,A2) · ca.

Since we are interested in the relative performance of different strategies (gain),
a model that provides costs proportional to the communication costs suffices. The
Euclidean distance is proportional to the number of hops given the following as-
sumption:

Assumption A.2: The sensor network is sufficiently dense such that the Euclidean
distance between two nodes is (approximately) proportional to the number of hops.

Nodes at Optimal Locations. In our analysis we will come up with strategies
that perform computations at the mathematically optimal locations. Thus, our model
assumes that there exists a node at the derived location. In practice, the node closest
to this location has to be chosen. If the network is sufficiently dense, this node should

145

APPENDIX A. OPTIMAL LOCATIONS FOR JOIN PROCESSING

be within communication distance of the optimal location. As a result, the number of
hops will be the same or will differ by at most one hop (more or less). Therefore, we
expect the influence on the results to be small.

Assumption A.3: The sensor network is sufficiently dense such that there exists a
node within communication distance of each point.

Communication Costs Per Hop. In the remainder of this section we discuss
the communication costs per hop (ca, cb). In addition to defining them, we discuss the
range of these parameters for realistic communication hardware. This is important to
derive meaningful conclusions.

The costs of sending one packet over one hop can be decomposed to fixed costs
per packet and variable costs depending on the size of the payload: cost(size(t)) =
costfix + costvar(size(t)). We consider the costs of sending tA, tB as well as of
sending a result tuple tAB. In order to reduce the number of parameters, we normalize
the costs with respect to the costs of sending one result tuple: ca = cost(size(tA))

cost(size(tAB))
.

Variable costs depend on the size of the tuple. To interpret our results we assume:

Assumption A.4: The maximum size of a tuple is 15 attributes of two bytes.

Note that 15 attributes is a lot given that current sensor nodes like Mica motes are
equipped with up to 8 sensors. Thus, tAB can be up to 30 bytes larger than tA if tB is
at maximum size, and no join attributes are projected out. In order to understand the
lower bound on the size of tAB, consider the number of join attributes. It is always
possible to construct examples consisting of an arbitrary number of join attributes.
However, in order to arrive at meaningful conclusions we focus on realistic scenarios:

Assumption A.5: The number of join attributes in sensor networks is at most 8.

Thus, tAB can be up to 16 bytes smaller than tA if all 8 join attributes from tA and
tB are projected out.

Fixed costs for sending one packet mainly depend on the MAC and PHY layer
overhead. It results from the wakeup of the transmitter, carrier sensing, RTS and CTS,
preamble, etc. In order to quantify these costs we looked at a sample of prominent
MAC protocols: S-MAC [YHE04], B-MAC [PHC04], and SCP-MAC [YSH06]. The
minimum PHY/MAC layer overhead we observed is equivalent to the transmission
of 127 bytes. This leads to the following assumption:

Assumption A.6: The difference in the energy consumption between sending an
empty frame and a frame with 16 bytes payload is less than 15%. The difference
for sending 30 bytes is less than 30%.

This percentage is further reduced by overhearing, contention, errors and colli-
sions. Most of the measurements we are aware of refer to the 802.11 protocol (e.g.

146

A.2. CENTRALIZED JOIN PROCESSING

[Fee01]). There, increasing the payload by 30 bytes results in a difference of less
than 10%. Consequently, the relative costs ca (cb) are in the range from 0.75 (for a
maximum of 30 bytes less than tAB) up to 1.15 for 16 bytes more. This range should
include any realistic communication hardware.

A.2 Centralized Join Processing

We now justify that centralized join approaches (e.g., [CG05, CN07]) cannot serve
as a general-purpose join method. They are superior to the external join in specific
scenarios only: The nodes involved need to be close to each other compared to their
distance to the base station. In addition, a high selectivity is required.

[CNS07] has arrived at similar findings by means of simulation. Given Proposi-
tion A.1, our analytical approach rules out that there exist placements of nodes that
are not in line with this result. In addition, the discussion in this section is important
to follow Section A.3. There, we will reduce parts of the analysis to the centralized
case.

A.2.1 Cost Model for Centralized Strategies

Our goal is to identify scenarios where using a centralized processing at a single site
J results in energy savings compared to the root strategy, i.e., where there is a gain
(1 − costJ

costroot
> 0). In the following, we provide a model of the costs of centralized

strategies based on our model of communication costs (cf. Section A.1).
The cost of computing the join at (any) point J is the sum of the costs of sending the

tuples of Relations A and B to J and sending the result to the root node subsequently:

costJ =

nA
∑

i=1

ca · d(Ai, J) +

nB
∑

i=1

cb · d(Bi, J) + nA · nB · σ · d(J,R) (A.1)

d(P1, P2) denotes the Euclidean distance. Recall that a root strategy is a centralized
strategy, i.e.,

costroot =

nA
∑

i=1

ca · d(Ai,R) +

nB
∑

i=1

cb · d(Bi,R)

What remains to be specified for the model is the join location J . The optimal join
location is not a parameter but depends on the placement of the nodes.

Proposition A.2: It is impossible to derive a closed formula for the gain, irrespective
of the parameterization of the network.

147

APPENDIX A. OPTIMAL LOCATIONS FOR JOIN PROCESSING

Proof: The join location that minimizes costJ is optimal. This corresponds to the
Fermat problem [CNS07]: For a given set of points {P1, ..., Pn} and their correspond-
ing weights {w1, ..., wn}, find a point J that minimizes

∑

i wi · d(Pi, J). It has been
shown that there is no closed expression for computing the Fermat point [Baj88]. �

The Fermat problem can only be solved numerically.

A.2.2 Method

Proposition A.2 results in two problems: (1) We need a method to compute the gain
numerically. (2) We must be able to analyze the gain-function in order to identify
global and local optima.

(1) Computation of the Gain Function. Our approach for numerically com-
puting the Fermat point F of a set of points ({R,A1, ...,Am,B1, ...,Bn}) is based
on Weiszfeld’s algorithm [Kuh74]. In order to provide strict confidence bounds,
we compute the function gain(lACR, d̄A, nA, ca, lBCR, d̄B, nB, cb, ω, σ) based on the
Monte Carlo method as follows:

For a setting (lACR, d̄A, nA, ca, lBCR, d̄B, nB, cb, ω, σ) do:

1. Generate a random set of points {R,A1, ...,Am,B1, ...,Bn} that follows the
parameter setting.

2. Compute the Fermat point F

3. Compute the expected gain based on costJ with J = F

Aggregate the expected gain with the results from former trials and repeat until the
confidence for the expected gain over all trials is within 0.01% with 98% probability.

According to our analysis, the variance of the gain is small (V ar(gain)<1%) for
different sets of points that obey the same parameter setting. Thus, the expected gain
is a reasonable measure to compare join strategies.

(2) Analyzing the Gain Function. We want to identify the optima of the gain
function. Analytically finding optima requires differentiating the function. However,
this is impossible for the gain due to Proposition A.2. It is also problematic to find
optima based on numerical methods: Such methods inspect a discrete number of val-
ues and make assumptions about the values in between. Thus, making reasonable
assumptions is essential for ensuring not to miss local optima. For our analysis, we
approach the problem twofold: In Section A.2.3 we observe that the parameters are
monotonic within the range defined in Section A.1.3. In Section A.2.4 we prove that
our numerical approach finds the single global optimum for the gain. This proof is

148

A.2. CENTRALIZED JOIN PROCESSING

nA, nB Number of tuples of A, B 200, 300
lACR, lBCR Distance AC , BC to R 1.0, 1.0

ω Angle ∠ACRBC 0.5 (30◦)
d̄A, d̄B Mean distance to AC , BC 0.5, 0.5
ca, cb Relative costs of sending tA, tB 1.0, 1.0

σ Selectivity 0.002

Table A.3: Standard setting for the analysis

0

0.5

1

1.5

2

2.5

omega0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6d_A, d_B

0

10

20

30

40

50

60

70

gain [%]

0

30

60

gain [%]

0

1

2
0

0.4
0.8

1.2
1.6

(a)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

sigma0
100

200
300

400
500

600m

0

10

20

30

40

50

60

gain [%]

An

gain [%]

0

30

60

0
200

400
600

0

0.002

0.006

0.01

(b)

Figure A.2: (a) Influence of ∠AcRBc & distribution; (b) Influence of the result’s size

independent of our monotonicity assumptions. In addition, the proof further substan-
tiates the monotonicity assumptions as they are in line with the global optimum.

A.2.3 Monotonicity Assumptions

This section deals with deriving the assumptions required for ruling out local optima
of the gain-function. In particular, we derive monotonicity assumptions based on rea-
soning about the underlying problem. Note that the gain function is not differentiable
and therefore it is impossible to prove its monotonicity. Thus, we first discuss the
rationale behind our assumptions, and then complement our discussion by comput-
ing the values of the gain function at discrete points. Since the gain depends on 10
parameters, it is impossible to provide an exhaustive numerical scan over the full pa-
rameter space. We use a systematic approach similar to partial differentiation, i.e. we
consider the parameters in isolation. In particular, we compute the gain numerically
by systematically varying one of the parameters and set the other ones to a standard
setting (Table A.3). This setting is chosen such that it yields a medium gain (30%),
i.e., it enables us to observe increases as well as decreases in the gain.

We now establish the monotonicity for the parameters related to the locations of
the nodes, followed by the other parameters.

149

APPENDIX A. OPTIMAL LOCATIONS FOR JOIN PROCESSING

Influence of the Tuple Locations. We start discussing location-related param-
eters (lACR, d̄A, lBCR, d̄B, ω) by providing an explanation based on characteristics of
the Fermat point. Figure A.1 serves as an illustration. The Fermat point is located "in
between" the relations. If the angle or the mean distance of the nodes to their center
becomes larger, the root node comes closer to also being "in between" the relations.
In this case the root strategy is similar to the centralized strategy that performs the
join a the optimal location, and the relative gain of the centralized in-network strategy
becomes small.

Assumption A.7: The gain increases monotonically as the angle ω between the
centers of the relations or the mean distance of the nodes to their centers (d̄A, d̄B)
decreases. It decreases monotonically as the difference between lACR and lBCR in-
creases.

Figure A.2(a) illustrates the monotonicity for the mean distances of the nodes to
their centers of mass (d̄A, d̄B) and the angle ω. The discussion for lACR and lBCR

is analogous. Besides the monotonicity, Figure A.2(a) shows that the in-network
strategy yields the maximum energy savings if all nodes except the root node are
located close to each other (d̄A = d̄B = 0 and ω = 0). This minimizes the routes
along which the input tuples are sent.

Influence of the Result Size. Again, we start the discussion of the parameters
related to the size of the result (nA, nB, σ, ca, cb) by providing an explanation based
on the Fermat point. It is known that as soon as the weight of one of the points is
more than half of the total weight, it is the Fermat point [TL03]. Furthermore, if the
weight of one of the points is close to half of the total weight, the Fermat point will
be near that point. In our context, the weight of a node is the number of tuples that
it sends multiplied with the transmission costs. More specifically, the weight of the
result is nA · nB · σ, and the weights of the input tuples are nA · ca and nB · cb. If
nA · nB · σ ≥ m · ca + n · cb, the Fermat point will coincide with the root node. In
this case, costJ and costroot are identical, and the gain will become 0. In addition,
the larger the size of the result, the closer will the Fermat point be to the root node.

Assumption A.8: Computing the result inside the network is only beneficial if the
cardinality of the result is smaller than the input. In particular, this requires a high
selectivity. Thus, the gain is monotonic in the parameters that determine the size of
the result: ca, cb, nA, nB, σ.

We complement the explanation by computing the gain function. Figure A.2(b)
shows the gain depending on nA (the number of nodes of Relation A) and the selec-
tivity σ. The remaining parameters correspond to the standard setting. The figure
confirms our assumption: As soon as the size of the result outweighs the input tuples,
the gain becomes small, and performing the join inside the network does not pay off.

150

A.3. IDEAL JOIN PROCESSING

Furthermore, the gain is monotonic in the parameters that determine the size of the
result.

A.2.4 Gain of Centralized Strategies

In the following, we present the single global optimum of the gain function:

Proposition A.3: The gain of centralized in-network strategies has its maximum if
the nodes are co-located (lACR = lACR, d̄B = d̄B = 0, ω = 0) and the size of the
result is minimal (0).

Proof. We have to show that the scenario in Proposition A.3 is the global op-
timum. This can be seen by considering the range of the gain-function [0, 1] (cf.
Corollary A.1). In the situation that we identified as a candidate for an optimum,
costJ = 0, while costroot takes on some fixed amount. In this case, the gain becomes
1 and thus is indeed a global optimum. Finally, this is the only global optimum. We
conclude this from the formula (gain = 1− costJ

costroot
) since costJ > 0 (cf. Equation A.1)

for any other setting. �

Due to its monotonicity (cf. Assumptions A.7 and A.8) the gain-function has no
local optima.

In summary, centralized approaches can be more efficient than computing the join
at the base station in rather specific scenarios only. The nodes involved need to be
close to each other compared to their distance to the base station. In addition, a high
selectivity is required.

A.3 IDEAL Join Processing

In this section, we establish IDEAL, a lower bound on the costs of join processing
in sensor networks. IDEAL requires each node to know if its tuple joins and is thus
not a practical approach. However, identifying parts of the problem for which we
can derive optimal solutions has helped us in the design of our join algorithms in
Chapters 4 and 5. In addition, we have used IDEAL as a comparison scheme for CJF,
as our goal there has been to come close to the optimum for continuous join queries.

IDEAL involves the following steps: Firstly, each node discards its tuple if it does
not join. Then, the remaining tuples are sent to the base station where the join is
computed.

The justification of the first step is straightforward: Tuples that do not join have no
influence on the result. Thus, for minimizing the communication costs, it is optimal
not to send them at all.

The actual problem that we address in this section is where to join the remaining
input tuples. Most notably, discarding non-joining tuples is orthogonal to distributing
the result computation: While IDEAL computes the result at the base station, it would

151

APPENDIX A. OPTIMAL LOCATIONS FOR JOIN PROCESSING

also be possible to choose processing sites inside the network. Thus, the question that
we will answer is: Can we improve upon IDEAL by choosing other processing sites?
If not, IDEAL actually lower bounds the costs of join processing.

The subsequent discussion is restricted to joining tuples. This is because, in
theory, any strategy that sends non-joining tuples can be improved by not sending
them – the only degree of freedom that we can exploit for finding a better strategy
compared to IDEAL is the join location. Subsequently, we analyze if there is a gain
if we allow for distributed strategies. This corresponds to dropping the restriction
of processing the result at the base station. The major difficulty in finding a good
distributed strategy is that optimal locations and optimal routes mutually depend on
each other. We start the discussion with a concept that identifies subsets of tuples that
can be regarded in isolation:

Definition A.6 (Group)
A group of tuples G is a subset of the union of Relations A and B such that if tuple
t ∈ G then every tuple t′ that joins with t is in G as well.

Example A.1: For an equi-join a group is a subset of Relations A and B that yields
a cross product. In this case, if we restrict the join to a single group its selectivity
σ = 1. �

The following corollary is a consequence of Definition A.6:

Corollary A.2: The processing locations of different groups are independent of each
other. �

The reason is that tuples from different groups do not have to be brought together
at one location1. This property lets us restrict our analysis to a single group in order
to find the optimal distribution. We start with a simple example of a distributed
processing that we will use in subsequent discussions:

Example A.2: Figure A.3 shows two nodes A1,A2 belonging to Relation A and one
node B of Relation B. Assume that their tuples form a group and all tuples have the
same size. The figure shows a strategy where tB is first joined with the tuple from
A2. The result is sent to the root node. tB is also sent to a second location where it is
joined with the tuple from A1. �

Our analysis how to distribute the result computation is structured as follows:

1. For a group of tuples: identify the optimal number of processing sites

2. For a group of tuples: analyze where these sites are located

1Recall Requirement A.3: To compute a correct result, we have to ensure that every pair of tuples
that join meets at (at least) one location.

152

A.3. IDEAL JOIN PROCESSING

2

1

tA
tB

tAB

2
F

1
F

Figure A.3: Example of two join locations

A.3.1 Optimal Number of Processing Sites

The difficulty in identifying the optimal number of sites is that our problem cannot
be reduced to a solved mathematical one. However, we can upper bound the gain by
identifying the scenario with the highest gain when distributing the computation of
the join result:

Definition A.7 (nA:1 Scenario)
An nA:1 scenario is a group consisting of nA tuples of Relation A that pair up with
one tuple of Relation B.

Proposition A.4: The nA:1 scenario is the optimal case for multiple join locations,
compared to all other groups (nA : nB), for a fixed set of nodes from Relation A.

Proof. If nA, nB ≥ 2 (otherwise we have an nA:1 scenario), the optimal centralized
join location is the root, as the cardinality of the result is larger than the cardinality
of the input (property of the Fermat point [TL03]). Consider increasing nB by 1. If
the computation is centralized, this means that we have to send tB to the root. In the
distributed case, we have to send tB to each of the processing locations. Afterwards,
nA result tuples have to be sent from the processing sites to the base station. Thus,
the cost increase for the centralized setting is less in relative terms. Therefore, the
nA:1 scenario yields the largest gain for a distributed computation, compared to a
centralized one. �

In the nA:1 scenario, the tuples can be joined at many locations and in different
orders, resulting in a combinatorial problem. We devise a method for upper bounding
the gain that consists of:

• an algorithm for computing optimal strategies for two or three tuples in Rela-
tion A (nA ∈ {2, 3}), and

• an estimator for lower bounding the costs for nA > 3.

153

APPENDIX A. OPTIMAL LOCATIONS FOR JOIN PROCESSING

Computing Optimal Strategies. We can compute optimal strategies based on
the following proposition:

Proposition A.5: Any join location J in a distributed strategy is a Fermat point. It
minimizes the routes of the nodes from which a tuple is sent to J and to which a tuple
is sent from J .

Proof. The proof is the same as the proof of the corresponding property of Steiner
trees [Mel61]. The idea is that the routes could be further optimized if the join loca-
tion was not the Fermat point. �

For the case nA = 2, Proposition A.5 restricts the number of possible strategies to
three:

1. Join A2 with B at Fermat Point F2 and send tB on to F1 and join it with the
tuple from A1 (cf. Figure A.3).

2. Join A1 with B, then join A2 with B.

3. Use one Fermat point for all nodes A1, A2, B and R.

By computing the join locations in all three cases and comparing the overall costs
we find the optimal strategy. For m = 3 we can follow the same procedure except
that there are 13 possible constellations.

Lower Bound Estimation. For nA > 3 we lower bound the costs (upper bound
the gain) of processing the join by reducing the problem to nA = 3. We accomplish
this reduction by choosing two distinguished nodes from Relation A and assume that
the rest was located at one third point. We choose the two distinguished nodes by
taking the node closest to the root as the first point and the node N that maximizes
d(N,R)+d(N,B) as the second. The intuition is to take the distribution of the nodes
into account in order to arrive at a meaningful estimation of the communication costs.
The remaining nodes of Relation A are assumed to be located at a single point on the
line RAC . In this way, we keep the mean distance from the root node unchanged.
Assuming the remaining nodes to be co-located leads to an underestimation of the
costs as it reduces the routing lengths to pair the tuples. Figure A.1 serves as an
illustration of the third point.

Gain of Several Join Locations. In the following we compute a lower bound
on the costs of strategies that are allowed to use multiple join locations and compare
it to IDEAL. Again, the following discussion is based on monotonicity assumptions
of the gain. This is analogous to Section A.2.

Proposition A.6: Using multiple join locations per group of pairing tuples results
in energy savings of at most 12% as compared to choosing a single site (IDEAL).

154

A.3. IDEAL JOIN PROCESSING

0
0.5

1
1.5

2
2.5

w
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15

a

-2

0

2

4

6

8

10

12

gain [%]gain [%]

0

4

8

12

1.15

1.0

1.1

0.9

0.8

0.7 0.5
1.5

2.5

(a)

0
2

4
6

8
10

12
14

16
18

n

0
2

4
6

8
10

12
14

16
18

m

0

5

10

15

20

25

30

35

40

gain [%]

m n
Bn

An

gain [%]

0

20

40

0
2

10
6

14
18

0
2

6

10

14

18

(b)

Figure A.4: (a) Gain: optimal number vs. single site; (b) Gain: optimal location vs.
root node

This is an upper bound on the savings for the optimal scenario (nA:1) and holds if the
tuples of Relation A are larger than the result tuples.

We found the costs ca of sending a tuple of Relation A to be the most influential
parameter. Figure A.4(a) shows its influence along with the angle ω between Rela-
tion A and B. Intuitively, if the result tuples are larger than the ones of Relation A
(ca < 1), sending the input tuples directly to the root node is a good choice. Thus, the
optimal centralized as well as the optimal decentralized strategy are alike. Only if the
result tuples are much smaller than the ones of Relation A, multiple join locations can
reduce the energy consumption. Our analysis confirms this intuition. If ca < 1 using
a single join location is optimal. In addition, Figure A.4(a) already shows the maxi-
mum gain: In analogy to Section A.2, the gain computed confirms the monotonicity
assumptions. Therefore, we have identified the globally optimal gain.

Our analysis of the scenario with the maximum gain reveals that the upper bound
for the energy savings of multiple locations per group of joining tuples is small. Thus,
the number of join locations should be one per group.

A.3.2 Location of Optimal Site per Group

In order to identify the single optimal join location per group, we compare computing
the result for a group at its Fermat point to computing it at the root (IDEAL).

Proposition A.7: After discarding non-joining tuples, the optimal location per group
is the root node if nA, nB ≥ 2; the location is the same for every group.

The analysis for one group is the same as the one in Section A.2. The only dif-
ference is that the selectivity factor is high (selectivity is low), at least nA

nA+1
for the

nA:1 scenario, and the number of tuples per group might be small. Thus, the results

155

APPENDIX A. OPTIMAL LOCATIONS FOR JOIN PROCESSING

directly apply. The most important influence is the size of the result, which is larger
than the input if nA, nB ≥ 2. Figure A.4(b) visualizes this influence, depicting the
percental gain of the optimal location. As soon as the group consists of more than
one tuple per relation (nA, nB ≥ 2) the root node is the optimal location. Only if
nA = nB = 1 a distributed join strategy can save up to 50% energy if two input
tuples lead to one result tuple. Note that nA = nB = 1 means that none of the two
joining tuples has a further join partner.

As a final remark, the preceding analysis that justifies Proposition A.7 corresponds
to the intuition that we provided in Section 3.1.3: After discarding non-joining tuples,
the join increases the cardinality, i.e., there are more tuples in the result than in the
input, except for pathological cases.

Summary. Our most important insight is that the result computation is optimally
performed at the root node, if tuples that do not join are discarded in advance. Joining
tuples at multiple locations does not increase the energy-efficiency. Thus, IDEAL
lower bounds the costs of join processing.

A.4 Conclusions

In this chapter, we theoretically substantiated two claims related to join processing.
Firstly, processing the join at a central site inside the network is inferior to the ex-
ternal join except for very specific scenarios. In particular, the input relations have
to stem from two small regions. In addition, the regions need to be close to each
other, compared to their distance to the base station, and the selectivity needs to be
very high. Secondly, we showed that IDEAL lower bounds the costs of join process-
ing. This implies the following approach for efficiently processing joins in sensor
networks: We can turn IDEAL into a practical approach by providing the knowledge
if its tuple joins to each node. Doing so in an efficient manner is the underlying idea
of SENS-Join (cf. Chapter 4) and CJF (cf. Chapter 5).

156

B Primitives for Constructing the
Quadtree Datastructure

This appendix features a formal description of our quadtree encoding based on pseu-
docode. It complements the presentation in Section 4.3.

In Section B.1, we discuss the method InsertJoin_Atts. SENS-Join uses it to
insert a join-attribute tuple into a quadtree during the Join-Attribute-Collection step
(cf. Figure 4.2). We then show how to union two quadtrees in Section B.2. This
is to underline our argument that UnionJoin_Atts and IntersectJoin_Atts (cf.
Figure 4.2) can be computed directly on the quadtrees. There is no need to recover
the original tuples as with compression algorithms.

Scope of the Following Discussion. In the following, we discuss quadtrees
that store Z-numbers of join-attribute tuples, as discussed in Section 4.3.2. For an
actual implementation, the Z-numbers have to be prefixed with the relation flags (cf.
Section 4.3.3). We eliminated their treatment from the figures as it clutters the pseu-
docode. However, recall from Section 4.3.3 that the relation flags simply constitute
a further index level in the quadtree – their treatment will be clear at the end of this
discussion. The purpose of this appendix is to clarify the quadtree encoding.

B.1 Constructing Quadtrees

According to Section 4.2, the quadtree is constructed incrementally while SENS-
Join collects join-attribute tuples. In this section, we illustrate the structure of our
quadtree representation in detail by discussing the insertion of a join-attribute tuple.
Figure B.1 provides pseudocode of the method InsertJoin_Atts which is called
during the Join-Attribute-Collection (cf. Figure 4.2). At a high level, inserting a join-
attribute tuple into a quadtree requires two steps: Firstly, the join-attribute tuple is
quantized, i.e., SENS-Join computes its Z-number in the quadtree domain (Line 11).
This step has been discussed in Section 4.3.2 in detail. Then, the point is actually
inserted into the quadtree (Line 14).

We will use Figure B.2 to illustrate our explanation of the insertion. It summarizes
the idea of the quadtree (Figure 4.9) and its encoding (Figure 4.10). Recall from
Section 4.3.3 that the Z-number of a join-attribute tuple corresponds to a sequence
of quadrants that result from traversing the index top-down until we reach the full

157

APPENDIX B. PRIMITIVES FOR CONSTRUCTING THE QUADTREE
DATASTRUCTURE

1

2 T ′ = πJoinAttr(T);
3

4 InsertJoin_Atts(Quadtree Q, Tuple T ′)
5

6 //compute the quadtree domain (size of each dimension)
7 for all dimensions i
8 SizeOfDim[i] = {(MaxVal[i] − MinVal[i]) · 1

Resolution[i]} + 1;
9 SizeOfDim[i] = roundUpToPowOf2(SizeOfDim[i]);

10

11 Pindex = EncodeTuple(P, SizeOfDim); //cf. Figure 4.8
12

13 //insert P (T ′) into quadtree
14 Q = InsertPoint(Pindex, Q, SizeOfDim);
15 return Q;

Figure B.1: InsertJoin_Atts

resolution (as specified by the quantization). For instance, for the two-dimensional
case that is illustrated in Figure B.2, the Z-number is composed as a sequence of
numbers ∈ {0, 1, 2, 3} (cf. Figure 4.7). Each number indexes the quadrant at an
increasing level of detail. Thus, by reading the Z-number from the beginning, we
can use the numbers of the quadrants to traverse the tree. Example 4.4 illustrates this
traversal.

Further, recall some details of the encoding from Section 4.3.3 (cf. Figure B.2):
A quadtree is a bitstring that captures the tree in depth-first order. We use a ’0’ for
indicating an index node and a leading ’1’ for specifying that the following is a point.
We also need to mark the end of a list of points. This is done by appending a ’0’ to
the list.
InsertPoint actually accomplishes this encoding of a quadtree. Before pre-

senting the method, we briefly discuss some information that it builds upon. As a
quadtree is a bitstring, all of the methods for modifying quadtrees need to navigate
within bitstrings. In particular, we need to extract index nodes, points, lists of points,
or entire subtrees from the bitstring. Navigating in the bitstring requires to know the
size (number of bits) of index nodes and points. Most notably, the sizes of index
nodes and points are not fix, but vary with their level in the tree: Points are stored
relative to the region, i.e., relative to the index nodes – we discussed in Section 4.3
that the encoding of the relative position becomes shorter with an increasing level in
the tree. In fact, this is what our compact encoding exploits.

For index nodes, it might be less obvious that their size can shrink with the level
in the tree. The reason is that the dimensions of the join-attribute space are not
necessarily of equal size. Thus, some dimensions might reach their full resolution

158

B.1. CONSTRUCTING QUADTREES

i 0 0 0 1

i 0 0 1 1

p 1 1

p 0 0

p 0 1

p 0 0

p 0 1

h
u

m
id

it
y

temp

Encoding:

eol

eol

i = index-node p = point eol = end of list

Figure B.2: Representing points with a quadtree

1 Split(Int[] SizeOfDim)
2

3 for all dimensions i
4 SizeOfDim[i] = SizeOfDim[i]

2
;

5 for all dimensions i
6 if (SizeOfDim[i] == 1)
7 remove dimension i from SizeOfDim;
8 return SizeOfDim;

Figure B.3: Method Split

before others do. At each level in the tree, we can only split dimensions that did
not already reach their full resolution – in a way, the dimensionality of the quadtree
can decrease as we traverse the tree top-down and thus the index nodes can become
smaller.

We used the array ’SizeOfDim’ (cf. Figures 4.8 and B.1) to keep track of the num-
ber of different points in each dimension. It has one entry per dimension of the
join-attribute space. In particular, we will subsequently use the method Split (cf.
Figure B.3) to compute the size of the dimensions at the next lower level of the tree.
Split simply divides the size of each dimension by two (Lines 3, 4). In addition, it
finds those dimensions that reached their full resolution and eliminates them from the
array. Most notably, as a consequence, the number of dimensions always corresponds

159

APPENDIX B. PRIMITIVES FOR CONSTRUCTING THE QUADTREE
DATASTRUCTURE

to the size of the array ’SizeOfDim’.
The pseudocode for inserting a point into a quadtree is presented in Figure B.4.

InsertPoint first checks if the quadtree is empty. If so, the tree that results from
inserting P is just a list of a single point, which is encoded as described (Lines 3,
4). In Line 5, the algorithms finds out how many dimensions the join-attribute space
has. The number of dimensions dictates the size (number of bits) of index nodes, as
illustrated in Figure B.2.

If the quadtree is not empty, InsertPoint checks whether the tree begins with
an index node (Line 8) or is a list of points (line 24). The insertion is different in
these cases. If it is an index node, the quadrant of the Point P at the current level
is determined by reading the beginning of P (Lines 10, 11). Afterwards, the corre-
sponding entry in the index-node is marked since the quadtree will contain points in
that subtree after inserting P (Line 13). Intuitively, the insertion is now done recur-
sively: We need to insert the remainder of the point P into the subtree that we just
identified (which is quadtree as well). Therefore, InsertPoint extracts the cor-
responding subtree Q′ in the bitstring (Lines 14 - 17) as well as the remainder Prest

of P (Line 19) and calls itself (Line 20). Finally, the subtree Q′ is substituted by the
quadtree that results from inserting Prest (Line 22).

In the case that the current quadtree is a list of points (Line 23), we first check
whether P is already contained (Lines 25 - 29). Only if P is not contained it is
inserted (duplicate elimination). The insertion is handled subsequently: Lines 30
to 35 take the current list of points and convert it into a quadtree with an index-
node. In Line 31, an empty index node Q′ is established. Then, in Lines 32 to 34,
InsertPoint iterates over the points in the list and inserts each of them into Q′.
As Q′ is a quadtree, this can be done by a recursive call (Line 34). P is inserted as
well (Line 35). Afterwards, InsertPoint checks whether the resulting quadtree
is shorter than a corresponding list of points. This implements the ’decomposition
threshold’ which has been discussed in Section 4.3.3. InsertPoint returns the
shorter alternative1.

In Lines 14 to 17, InsertPoint extracts a subtree that corresponds to one of the
quadrants. To do so, it uses the subroutine GetPositionOfSubtree for finding
the beginning of the subtree. It is a simple walk through a depth-first tree until the be-
ginning of the subtree is reached. The corresponding method is shown in Figure B.5.
Among the input parameters, ’PointLength’ indicates the number of bits that are re-
quired to encode a point. This will be used by GetPositionOfSubtree to step
over a subtree if it is a list of points.

At a high level, GetPositionOfSubtree maintains a pointer ("offset") into
the quadtree bitstring which it received as input. The idea is to forward this pointer
until the quadrant ’Quadrant’, which is searched for, is reached. The method starts

1It is possible to decide on the shorter alternative without actually constructing both. For clarity of
presentation we stick to the underlying idea at this point.

160

B.2. MERGING QUADTREES

by determining the size of the dimensions as well as the length of points at the next
lower level of the subtree (Lines 4 to 8). As with InsertPoint, this is needed for
recursive calls.
InsertPoint calls GetPositionOfSubtree only if the quadtree at hand

starts with an index node. Therefore, GetPositionOfSubtree first forwards
the pointer by the size of an index node (Line 11). GetPositionOfSubtree
then iterates over entire subtrees until the subtree corresponding to ’Quadrant’ is
reached (Lines 14 to 26). In Line 14, the algorithm checks if this is the case. If not,
GetPositionOfSubtree has to forward the pointer over the next subtree. To do
so, the algorithm reads the index node to see if there is a subtree corresponding to the
next quadrant. If the next quadrant is empty, there is no need to forward the pointer –
there is no subtree. If the quadrant is not empty, GetPositionOfSubtree checks
whether the subtree starts with an index node (Line 17) or is a list of points (Line 22).
Forwarding the pointer if the subtree starts with an index node is done recursively
(Lines 19, 20). If the subtree is a list of points, GetPositionOfSubtree exploits
that it knows the length of the points. It forwards the pointer, point by point, until
it reaches the end of the list (Lines 23 - 25). This completes the forwarding as the
following bit is the beginning of the next subtree.

B.2 Merging Quadtrees

In this section, we discuss merging two quadtrees. As the details of handling the
bitstring are the same as for InsertPoint, we present the pseudocode at a more
abstract level.

Intuitively, UnionJoin_Atts is similar to the merge step in a Mergesort procedure
and can be done in one pass over the data. In particular, quadtrees are bitstrings that
store the tree in depth-first order. We can therefore traverse two quadtrees in parallel
for merging them. Note that quadtrees are based on a regular decomposition of the
space. The shape of the tree is independent of the order of the points being added.
UnionJoin_Atts first handles the simplest case: Merging two quadtrees if (at least)

one of them is empty. Then, the other one can be output as a result (Lines 4 to 7). In
Lines 9 to 14, UnionJoin_Atts considers the case that (at least) one of the trees is a set
of points. Then, the trees can be merged by iterating over the set and inserting it into
the other tree, point by point. The details have been illustrated for InsertPoint
in Lines 32 to 34. Note that due to the use of InsertPoint, UnionJoin_Atts
eliminates duplicates, as intended. Finally, Lines 16 to 31 handle the case that both
trees start with an index node. Again, this can be done recursively as, intuitively,
we only need to extract the subtrees and union them. In detail, UnionJoin_Atts
iterates over the quadrants of the index node. If a quadrant is empty in both trees, the
subtree that results from merging them is empty as well (Lines 18, 19). Otherwise,
the entry in the index node of the result must be set to 1 (Line 21) as the subtree

161

APPENDIX B. PRIMITIVES FOR CONSTRUCTING THE QUADTREE
DATASTRUCTURE

exists in the result. If one of the subtrees is empty, the result from merging is the
other subtree – it is simply written into the result (Lines 22 to 27). If both subtrees
exist, UnionJoin_Atts extracts the corresponding subtrees and calls itself recursively.
Again, we already discussed the details of extracting a subtree in Figure B.4, Lines 15
to 17.

B.3 Summary

In this appendix, we presented the details of our compact representation which uses
a spatial index to eliminate redundancy when storing a set of join-attribute tuples. In
particular, we provided pseudocode for inserting join-attribute tuples into a quadtree.
The code illustrates the structure of our encoding at a fine level. Finally, we substan-
tiated our claim that set operations are easy on this structure. In particular, they can
be performed in one pass over the data, without recovering the original tuples. This
is a major strength of our quadtree representation.

162

B.3. SUMMARY

1 InsertPoint(BitString P , Quadtree Q, Int[] SizeOfDim)
2

3 if (Q == ∅)
4 return ’1’ + P + ’0’;
5 NoOfDims = SizeOfDim.size();
6 //compute size of dimensions for recursive calls (split into halves)
7 SizeOfDim′ = Split(SizeOfDim);
8 if (Q[0] == 0)
9 //this is an index−node; read P’s quadrant at this level

10 P ′ = P [0, NoOfDims − 1];
11 Quadrant = P ′.toInteger();
12 //set entry for P’s quadrant in the index−node
13 Q[Quadrant + 1] = 1;
14 //get subtree (Q′) of that quadrant
15 beg = GetPositionOfSubtree(Quadrant, Q);
16 end = GetPositionOfSubtree(Quadrant + 1, Q) − 1;
17 Q′ = Q[beg, end];
18 //insert the remainder of P into subtree
19 Prest = P [NoOfDims, P.size() − 1];
20 Q′ = InsertPoint(Prest, Q

′, SizeOfDim′);
21 //substitute the modified subtree (compose result)
22 Q = Q[0, beg − 1] + Q′ + Q[end + 1, Q.size() − 1];
23 return Q;
24 else //this is a leaf node (points)
25 //check if P is already contained (duplicate elimination)
26 for (i = 0; i < Q.size()−1

P.size()+1
; i++)

27 P ′ = Q[i · (P.size() + 1) + 1, (i + 1) · (P.size() + 1) − 1];
28 if (P ′ == P)
29 return Q;
30 //form an empty index node and insert all current points (P ′) and P
31 Q′[0, 2NoOfDims] = 0;
32 for (i = 0; i < Q.size()−1

P.size()+1
; i++)

33 P ′ = Q[i · (P.size() + 1) + 1, (i + 1) · (P.size() + 1) − 1];
34 Q′ = InsertPoint(P ′, Q′, SizeOfDim′);
35 InsertPoint(P,Q′, SizeOfDim′);
36 //is this shorter than simply inserting P into the list?
37 if (Q′.size() ≤ 1 + P.size() + Q.size())
38 return Q′;
39 //else: insert P as a further point into the list
40 return ’1’ + P + Q;

Figure B.4: Method InsertPoint

163

APPENDIX B. PRIMITIVES FOR CONSTRUCTING THE QUADTREE
DATASTRUCTURE

1 GetPositionOfSubtree
2 (Int Quadrant, Quadtree Q, Int[] SizeOfDim, Int PointLength)
3

4 NoOfDims = SizeOfDim.size();
5 //compute size of dimensions for recursive calls (split into halves)
6 SizeOfDim′ = Split(SizeOfDim);
7 NoOfDims = SizeOfDim′.size();
8 PointLength′ = PointLength − NoOfDims;
9 //Precondition of GetPositionOfSubtree: Q starts with an index−node

10 //set initial offset (= result) behind index node
11 offset = 1 + 2NoOfDims;
12 //forward offset to subtree of ’Quadrant’
13 currentQuad = 0;
14 while (currentQuad < Quadrant)
15 if (Q[currentQuad + 1] == 1)
16 //walk over subtree
17 if (Q[offset] == 0)
18 //subtree starts with an index−node
19 Q′ = Q[offset, Q.size() − 1];
20 offset += GetPositionOfSubtree(2NoOfDims,
21 Q′, SizeOfDim′, PointLength′);
22 else //walk over leaf nodes
23 while (Q[offset] == 1)
24 offset += PointLength + 1;
25 offset ++; //end of list−flag
26 currentQuad++;
27 return offset;

Figure B.5: Method GetPositionOfSubtree

164

B.3. SUMMARY

1 Union(Quadtree Q1, Quadtree Q2)
2

3 //case: one of the trees is empty
4 if (Q1 == ∅)
5 return Q2;
6 if (Q2 == ∅)
7 return Q1;
8 //case: one of the trees consists only of points
9 if (Q1[0] == 1)

10 insert all points into Q2;
11 return Q2;
12 if (Q2[0] == 1)
13 insert all points into Q1;
14 return Q1;
15 //general case: both trees start with an index−node
16 create empty index−node Q;
17 for all quadrants q
18 if (Q1[1 + q] == 0) && (Q2[1 + q] == 0)
19 continue;
20 //one of the subtrees exists:
21 Q[1 + q] = 1;
22 if (Q1[1 + q] == 0)
23 Q = Q + subtree of quadrant q of Q2;
24 continue;
25 if (Q2[1 + q] == 0)
26 Q = Q + subtree of quadrant q of Q1;
27 continue;
28 //else ((Q1[1 + q] == 1) && (Q2[1 + q] == 1))
29 Q′

1 = subtree of quadrant q of Q1;
30 Q′

2 = subtree of quadrant q of Q2;
31 Q = Q + Union(Q′

1, Q′
2);

32 return Q;

Figure B.6: Method Union

165

APPENDIX B. PRIMITIVES FOR CONSTRUCTING THE QUADTREE
DATASTRUCTURE

166

C CJF: Generalization of the
Optimization Problem for
Asymmetric Join Conditions

In the following, we provide the details of mapping join queries to an optimization
problem, if the conditions are not symmetric. In particular, the following description
generalizes the one in Section 5.4.1 to handling asymmetric as well as symmetric
join conditions. As an example of a query with an asymmetric join condition, recall
Query Q1 from Chapter 4. There, the join condition indicates a search for pairs of
nodes with a temperature difference of more than ten degrees:

Example C.1:

SELECT MIN(distance(A.x, A.y, B.x, B.y))
FROM Sensors A, Sensors B
WHERE A.temp - B.temp > 10.0
SAMPLE PERIOD 30s �

We already stated in Chapter 5 that if the join conditions are not symmetric, we
need to know to which relation(s) a node belongs to for the mapping. To capture this
knowledge, we define the sets NA and NB:

Definition C.1 (Set of Nodes NA, NB)
Let NA be the set of nodes having a tuple t ∈ A. Analogously, let NB be the set of

nodes having a tuple t ∈ B.

Note that the sets NA and NB are not necessarily disjunct. For instance, for the
query in Example C.1, NA = NB .

The process of mapping a query to an optimization problem is very similar to the
one described in Section 5.4.1. In the following, we review the mapping and highlight
the modifications that are required for the more general case.

As before, the first step is to compute N static
j for each node in the query (NA∪NB),

i.e., the set of nodes that join with Node j based on the static join conditions.

The Objective Function. Recall from Section 5.4.1 that for the objective func-
tion, the join conditions affect only the collision costs. The structure of the overall
cost function is unaffected – it is the sum of the costs due to each node:

167

APPENDIX C. CJF: GENERALIZATION OF THE OPTIMIZATION
PROBLEM FOR ASYMMETRIC JOIN CONDITIONS

commCost(~s) =
∑

j∈N

commCostj(sj)

where the costs due to a Node j, commCostj(sj), comprises the costs for sending, if
the join-attribute values are outside of filterj and the costs of retrieving tj in case of
a collision:

commCostj(sj) = outF ilterCostj(sj) + collisionCostj(sj)

outF ilterCostj(sj) does not depend on the join conditions and remains unmodified.
It is the probability that tj is not filtered multiplied with the costs of sending:

outF ilterCostj(sj) = (1 − P (tj is filtered)) · costj

According to Definition 5.1, for an n-dimensional filter of size sj , tj is filtered if it is
within the interval [ai, bi] = [mji − sj · σi,mji + sj · σi] in each dimension i:

P (tj is filtered) = P (
n

⋂

i=1

Mji ∈ [mji − sj · σi,mji + sj · σi])

As in Section 5.4.1, collisionCostj(sj) is the probability of a collision, multiplied
with the costs. The costs in this case are 2 · costj as we query and send. tj is only
retrieved if it was filtered:

collisionCostj(sj) = P (tj is filtered
⋂

∃h ∈ N static
j : th collides with filterj) · 2 · costj

where the existence resolves to

P (∃h ∈ N static
j : th collides with filterj) = P (

⋃

h∈Nstatic
j

th collides with filterj)

Computing P (th collides with filterj) is slightly different in the general case: The
idea of computing P (th collides with filterj) is still to identify the subspace of the
join-attribute space that collides with filterj and to compute the probability of th
being in it. However, as indicated in Section 5.4.1, we now distinguish two cases:
j ∈ NA and j ∈ NB. For each case, we compute the subspace separately. We
compute the subspaceA of tuples that join with any value in filterj , if j is in NA (and
thus, th ∈ B). subspaceB is that subspace of the join-attribute space that collides
with filterj if j ∈ NB (th ∈ A). If j /∈ NA or j /∈ NB, the corresponding subspace is
empty – this case cannot cause collisions. A collision of filterj with th occurs if th is
either in subspaceA

i or in subspaceB
i . As a consequence, P (th collides with filterj)

is computed as the probability of th being in either of those subspaces:

168

P (th collides with filterj) = P ((
n

⋂

i=1

Mhi ∈ subspaceA
i)

⋃

(
n

⋂

i=1

Mhi ∈ subspaceB
i))

The subspaces are computed as described in Section 5.4.1: Due to the conjunctions
in the query, each join condition further narrows the subspace of tuples that collide
with filterj . Thus, CJF computes the subspace by iterating over the join conditions.
For each join condition in the query, CJF takes the current subspace and restricts it.

Example C.2: In Example C.1, the join condition is A.temp−B.temp > 10.0. This
condition restricts dimension i (’temperature’) of subspaceA (i.e., j ∈ A, h ∈ B) to
all values that are at least 10 smaller than any value in filterj ([mji − sj ·σi,mji + sj ·
σi]); to have a collision, Mhi ∈ (−∞,mji + sj · σi − 10.0].

For subspaceB (i.e., j ∈ B, h ∈ A), th collides with filterj if its temperature
is at least 10 degree higher than any value in filterj ; to have a collision, Mhi ∈
[mji − sj · σi + 10.0,∞). �

Constraints. Again, filter sizes must be non-negative and we need constraints to
avoid colliding filters. In Section 5.4.1, we formalized the latter constraint by means
of the slackjh(sj, sh) functions. slackjh(sj, sh) = 0 iff filterj and filterh collide.

To cope with asymmetric join conditions, the solution for the constraints is concep-
tually the same as the solution for the objective function: We distinguish two cases:
j ∈ NA and j ∈ NB. For each case, we set up a separate slack function. The resulting
optimization problem is then:

minimize commCost(~s)

subject to (slackA
jh(sj, sh) > 0) ∨ (sj = sh = 0),∀j ∈ NA∀h ∈ (N static

j ∩ NB)

(slackB
jh(sj, sh) > 0) ∨ (sj = sh = 0),∀j ∈ NB∀h ∈ (N static

j ∩ NA)

sj ≥ 0,∀j ∈ N
(C.1)

The structure of the slack functions is the same as in Section 5.4.1: For X ∈
{A,B}, slackX

jh(sj, sh) =
∑p

i=1 slackXi
jh (sj, sh). There is one slackXi

jh for each of the
p join conditions in the query. The form of slackXi

jh is specific to the join condition,
but the principle is always the same: slackXi

jh becomes zero if any pair of tuples
tj ∈ filterj and th ∈ filterh fulfills the join condition, and it is greater zero otherwise.

Example C.3: For the join condition of Example C.1, A.temp − B.temp > 10.0,
Figure C.1 shows the slack function. slackAi

jh covers the case that j ∈ NA and h ∈
NB as indicated in Equation (C.1). Intuitively, the function takes the largest value
in filterj (mji + sj · σi) and computes its distance to the smallest value in filterh

169

APPENDIX C. CJF: GENERALIZATION OF THE OPTIMIZATION
PROBLEM FOR ASYMMETRIC JOIN CONDITIONS

slackAi
jh (sj , sh) =











[(mji + sj · σi) − (mhi − sh · σi) − dmin
i + ǫi]

2,

if (mji + sj · σi) − (mhi − sh · σi) − dmin
i + ǫi > 0

0, else

slackBi
jh (sj , sh) =











[(mhi + sh · σi) − (mji − sj · σi) − dmin
i + ǫi]

2,

if (mhi + sh · σi) − (mji − sj · σi) − dmin
i + ǫi > 0

0, else

Figure C.1: Continuously differentiable functions slackAi
jh and slackBi

jh for the join
condition A.atti − B.atti > dmin

i

(mhi−sh ·σi). If the distance is more than dmin
i , i.e., 10.0◦C in our example, then the

filters collide. For slackBi
jh (j ∈ NA and h ∈ NB), the filters collide if the smallest

value in filterj (mji − sj · σi) is more than dmin
i away from the largest value in filterh

(mhi + sh · σi). As in Section 5.4.1, we included the ǫi in the function which slightly
sharpen the join condition, as motivated at the end of Section 5.4. �

Finally, for symmetric join conditions, the slack functions are as described in Sec-
tion 5.4.1. In particular, in this case, slackAi

jh = slackBi
jh .

Conclusion. We illustrated the idea of "distinguishing between tj ∈ A and tj ∈
B" in the optimization problem for asymmetric join conditions, which we mentioned
in Section 5.4.1. In particular, the mapping presented here is the most general and
can handle any join query subject to our problem statement. It subsumes the one
presented in Section 5.4.1, i.e., it can handle symmetric as well as asymmetric join
conditions.

170

Bibliography

[ACBL05] Jugoslava Acimovic, Razvan Cristescu, and Baltasar Beferull-Lozano.
Efficient Distributed Multiresolution Processing for Data Gathering in
Sensor Networks. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP ’05), pages 837–
840, March 2005.

[AML05] Daniel J. Abadi, Samuel Madden, and Wolfgang Lindner. REED: Ro-
bust, Efficient Filtering and Event Detection in Sensor Networks. In
Proceedings of the 31st International Conference on Very Large Data
Bases (VLDB ’05), pages 769–780, August 2005.

[Baj88] Chanderjit Bajaj. The Algebraic Degree of Geometric Optimization
Problems. Discrete and Computational Geometry, 3(2):177–191, 1988.

[BB04] Boris Jan Bonfils and Philippe Bonnet. Adaptive and Decentralized Op-
erator Placement for In-Network Query Processing. Telecommunication
Systems, 26:389–409, June 2004.

[BCG01] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. STHoles: A Multi-
dimensional Workload-Aware Histogram. SIGMOD Record, 30(2):211–
222, 2001.

[BEF+00] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heide-
mann, Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varad-
han, Ya Xu, and Haobo Yu. Advances in Network Simulation. Com-
puter, 33(5):59–67, 2000.

[BGW+81] Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christopher L.
Reeve, and James B. Rothnie, Jr. Query Processing in a System for Dis-
tributed Databases (SDD-1). ACM Transactions on Database Systems,
6(4):602–625, 1981.

[Blo70] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allow-
able Errors. Communications of the ACM, 13(7):422–426, 1970.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, New York, NY, USA, 2004.

171

Bibliography

[CDHH06] David Chu, Amol Deshpande, Joseph M. Hellerstein, and Wei Hong.
Approximate Data Collection in Sensor Networks Using Probabilistic
Models. In Proceedings of the 22nd International Conference on Data
Engineering (ICDE ’06), page 48, April 2006.

[CDSY98] A. R. Calderbank, Ingrid Daubechies, Wim Sweldens, and Boon-Lock
Yeo. Wavelet Transforms that Map Integers to Integers. Applied and
Computational Harmonic Analysis, 5:332–369, 1998.

[CEH+01] Alberto Cerpa, Jeremy Elson, Michael Hamilton, Jerry Zhao, Deborah
Estrin, and Lewis Girod. Habitat Monitoring: Application Driver for
Wireless Communications Technology. In Workshop on Data Communi-
cation in Latin America and the Caribbean (SIGCOMM LA ’01), pages
20–41, 2001.

[CG05] Vishal Chowdhary and Himanshu Gupta. Communication-Efficient Im-
plementation of Join in Sensor Networks. In Proceedings of the 10th
International Conference on Database Systems for Advanced Applica-
tions (DASFAA ’05), pages 447–460, April 2005.

[CGRS00] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok
Shim. Approximate Query Processing Using Wavelets. In Proceed-
ings of 26th International Conference on Very Large Data Bases (VLDB
2000), pages 111–122, September 2000.

[CLKB04] Jeffrey Considine, Feifei Li, George Kollios, and John Byers. Approx-
imate Aggregation Techniques for Sensor Databases. In Proceedings
of the 20th International Conference on Data Engineering (ICDE ’04),
pages 449–460, April 2004.

[CN07] Alexandru Coman and Mario A. Nascimento. A Distributed Algorithm
for Joins in Sensor Networks. In Proceedings of the 19th International
Conference on Scientific and Statistical Database Management (SSDBM
’07), page 27, July 2007.

[CNS07] Alexandru Coman, Mario A. Nascimento, and Jörg Sander. On Join
Location in Sensor Networks. In Proceedings of the 2007 International
Conference on Mobile Data Management (MDM ’07), pages 190–197,
May 2007.

[CO05] Alexandre Ciancio and Antonio Ortega. A Distributed Wavelet Com-
pression Algorithm for Wireless Multihop Sensor Networks Using Lift-
ing. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’05), pages 825–828, March
2005.

172

Bibliography

[Cou] http://cougar.cs.cornell.edu.

[CV00] S. Grace Chang and Martin Vetterli. Adaptive Wavelet Thresholding
for Image Denoising and Compression. IEEE Transactions on Image
Processing, 9(9):1532–1546, 2000.

[Daw98] Todd E. Dawson. Fog in the California Redwood Forest: Ecosystem
Inputs and Use by Plants. Oecologia, 117(4):476–485, 1998.

[DBcF07] Xuan Thanh Dang, Nirupama Bulusu, and Wu chi Feng. RIDA: A Ro-
bust Information-Driven Data Compression Architecture for Irregular
Wireless Sensor Networks. In Proceedings of the 4th European Confer-
ence on Wireless Sensor Networks (EWSN ’07), pages 133–149, January
2007.

[DGM+04] Amol Deshpande, Carlos Guestrin, Samuel R. Madden, Joseph M.
Hellerstein, and Wei Hong. Model-Driven Data Acquisition in Sensor
Networks. In Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB ’04), pages 588–599, September 2004.

[DGR03] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. Approximate
Join Processing Over Data Streams. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data (SIGMOD
’03), pages 40–51, 2003.

[DGR07] Antonios Deligiannakis, Minos Garofalakis, and Nick Roussopoulos.
Extended Wavelets for Multiple Measures. ACM Transactions on
Database Systems (TODS), 32(2):10, 2007.

[DKR04a] Antonios Deligiannakis, Yannis Kotidis, and Nick Roussopoulos. Com-
pressing Historical Information in Sensor Networks. In Proceedings of
the 2004 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’04), pages 527–538, June 2004.

[DKR04b] Antonios Deligiannakis, Yannis Kotidis, and Nick Roussopoulos. Hi-
erarchical In-Network Data Aggregation with Quality Guarantees. In
Proceedings of the 9th International Conference on Extending Database
Technology (EDBT ’04), pages 658–675, March 2004.

[EN07] Ramez A. Elmasri and Shankrant B. Navathe. Fundamentals of
Database Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, fifth edition, 2007.

[ESW78] Robert Epstein, Michael Stonebraker, and Eugene Wong. Distributed
Query Processing in a Relational Data Base System. In Proceedings of

173

Bibliography

the 1978 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’78), pages 169–180, May 1978.

[Fee01] Laura Marie Feeney. An Energy Consumption Model for Performance
Analysis of Routing Protocols for Mobile Ad Hoc Networks. Mobile
Networks and Applications, 6(3):239–249, 2001.

[GA] Jean Gailly and Mark Adler. zlib. http://www.zlib.net.

[GBT+04] Carlos Guestrin, Peter Bodik, Romain Thibaux, Mark Paskin, and
Samuel Madden. Distributed Regression: an Efficient Framework for
Modeling Sensor Network Data. In Proceedings of the 3rd International
Symposium on Information Processing in Sensor Networks (IPSN ’04),
pages 1–10, April 2004.

[GG98] Volker Gaede and Oliver Günther. Multidimensional Access Methods.
ACM Computing Surveys, 30(2):170–231, 1998.

[GG02] Minos Garofalakis and Phillip B. Gibbons. Wavelet Synopses With Error
Guarantees. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’02), pages 476–487,
June 2002.

[GGP+03] Deepak Ganesan, Ben Greenstein, Denis Perelyubskiy, Deborah Estrin,
and John Heidemann. An Evaluation of Multi-Resolution Storage for
Sensor Networks. In Proceedings of the 1st International Conference
on Embedded Networked Sensor Systems (SenSys ’03), pages 89–102,
November 2003.

[GH05] Sudipto Guha and Boulos Harb. Wavelet Synopsis for Data Streams:
Minimizing Non-Euclidean Error. In Proceedings of the 11th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’05), pages 88–97, August 2005.

[GH06] Sudipto Guha and Boulos Harb. Approximation Algorithms for Wavelet
Transform Coding of Data Streams. In Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithm (SODA ’06),
pages 698–707, January 2006.

[GJP+06] Omprakash Gnawali, Ki-Young Jang, Jeongyeup Paek, Marcos Vieira,
Ramesh Govindan, Ben Greenstein, August Joki, Deborah Estrin, and
Eddie Kohler. The Tenet Architecture for Tiered Sensor Networks.
In Proceedings of the 4th International Conference on Embedded Net-
worked Sensor Systems (SenSys ’06), pages 153–166, October 2006.

174

Bibliography

[GK04] Minos Garofalakis and Amit Kumar. Deterministic Wavelet Threshold-
ing for Maximum-Error Metrics. In Proceedings of the Twenty-Third
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS ’04), pages 166–176, June 2004.

[GKMS01] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss.
Surfing Wavelets on Streams: One-Pass Summaries for Approximate
Aggregate Queries. In Proceedings of the 27th International Conference
on Very Large Data Bases (VLDB ’01), pages 79–88, September 2001.

[HAE08] Moustafa A. Hammad, Walid G. Aref, and Ahmed K. Elmagarmid.
Query Processing of Multi-Way Stream Window Joins. The VLDB Jour-
nal, 17(3):469–488, 2008.

[HHMS03] Joseph M. Hellerstein, Wei Hong, Samuel Madden, and Kyle Stanek.
Beyond Average: Toward Sophisticated Sensing with Queries. In Pro-
ceedings of the 2nd International Workshop on Information Processing
in Sensor Networks (IPSN ’03), pages 63–79, April 2003.

[Hin06] Haitham Hindi. A Tutorial on Convex Optimization II: Duality and Inte-
rior Point Methods. In Proceedings of the American Control Conference
(ACC ’06), June 2006.

[HSW+00] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System Architecture Directions for Networked Sensors.
SIGPLAN Notices, 35(11):93–104, 2000.

[Huf52] David A. Huffman. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[HW04] Joseph M. Hellerstein and Wei Wang. Optimization of In-Network Data
Reduction. In Proceedings of the 1st International Workshop on Data
Management for Sensor Networks (DMSN ’04), pages 40–47, August
2004.

[Int] http://db.csail.mit.edu/labdata/labdata.html.

[JCW04] Ankur Jain, Edward Y. Chang, and Yuan-Fang Wang. Adaptive Stream
Resource Management Using Kalman Filters. In Proceedings of the
2004 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’04), pages 11–22, June 2004.

[JKM+07] Navendu Jain, Dmitry Kit, Prince Mahajan, Praveen Yalagandula, Mike
Dahlin, and Yin Zhang. STAR: Self-Tuning Aggregation for Scalable
Monitoring. In Proceedings of the 33rd International Conference on
Very Large Data Bases (VLDB ’07), pages 962–973, September 2007.

175

Bibliography

[JW02] Richard A. Johnson and Dean W. Wichern. Applied Multivariate Statis-
tical Analysis. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, fifth
edition, 2002.

[KK00] Brad Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Rout-
ing for Wireless Networks. In Proceedings of the 6th Annual Inter-
national Conference on Mobile Computing and Networking (MobiCom
’00), pages 243–254, 2000.

[KM05] Panagiotis Karras and Nikos Mamoulis. One-Pass Wavelet Synopses for
Maximum-Error Metrics. In Proceedings of the 31st International Con-
ference on Very Large Data Bases (VLDB ’05), pages 421–432, Septem-
ber 2005.

[KNV03] Jaewoo Kang, Jeffrey F. Naughton, and Stratis D. Viglas. Evaluating
Window Joins over Unbounded Streams. In Proceedings of the 19th
International Conference on Data Engineering (ICDE ’03), pages 341–
352, March 2003.

[Kot05] Yannis Kotidis. Snapshot Queries: Towards Data-Centric Sensor Net-
works. In Proceedings of the 21st International Conference on Data
Engineering (ICDE ’05), pages 131–142, April 2005.

[Kuh74] Harold W. Kuhn. Steiner’s Problem Revisited. In G. B. Dantzig and B.
C. Eaves, editors, Studies in Optimization. Studies in Mathematics, 10,
The Mathematical Association of America, pages 52–70, Washington,
DC, 1974.

[LM03] Iosif Lazaridis and Sharad Mehrotra. Capturing Sensor-Generated Time
Series with Quality Guarantees. In Proceedings of the 19th International
Conference on Data Engineering (ICDE ’03), page 429, March 2003.

[LST91] Hongjun Lu, Ming-Chien Shan, and Kian-Lee Tan. Optimization of
Multi-Way Join Queries for Parallel Execution. In Proceedings of the
17th International Conference on Very Large Data Bases (VLDB ’91),
pages 549–560, 1991.

[Mad03] Samuel Ross Madden. The Design and Evaluation of a Query Process-
ing Architecture for Sensor Networks. PhD thesis, University of Califor-
nia at Berkeley, Berkeley, CA, USA, 2003.

[Mar63] Donald W. Marquardt. An Algorithm for Least-Squares Estimation
of Nonlinear Parameters. SIAM Journal on Applied Mathematics,
11(2):431–441, June 1963.

176

Bibliography

[MCP+02] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and
John Anderson. Wireless Sensor Networks for Habitat Monitoring. In
Proceedings of the 1st ACM International Workshop on Wireless Sensor
Networks and Applications (WSNA ’02), pages 88–97, 2002.

[Mel61] Z. A. Melzak. On the Problem of Steiner. Canadian Mathematical
Bulletin, 4(2):143–148, 1961.

[MFHH02] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. TAG: A Tiny AGgregation Service for Ad-Hoc Sensor Networks.
In Proceedings of the 5th Symposium on Operating System Design and
Implementation (OSDI 2002), December 2002.

[MFHH03] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. The Design of an Acquisitional Query Processor for Sensor Net-
works. In Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’03), pages 491–502, June
2003.

[Mic] Sun Microsystems. Sun SPOT World. http://www.sunspotworld.com/.

[MNW98] Alistair Moffat, Radford M. Neal, and Ian H. Witten. Arithmetic
Coding Revisited. ACM Transactions on Information Systems (TOIS),
16(3):256–294, 1998.

[Mur07] Fionn Murtagh. The Haar Wavelet Transform of a Dendrogram. Journal
of Classification, 24(1):3–32, 2007.

[MVW98] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Wavelet-Based His-
tograms for Selectivity Estimation. In Proceedings of the 1998 ACM
SIGMOD International Conference on Management of Data (SIGMOD
’98), pages 448–459, June 1998.

[MVW00] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Dynamic Mainte-
nance of Wavelet-Based Histograms. In Proceedings of the 26th In-
ternational Conference on Very Large Data Bases (VLDB ’00), pages
101–110, September 2000.

[NGSA08] Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. An-
derson. Synopsis Diffusion for Robust Aggregation in Sensor Networks.
ACM Transactions on Sensor Networks (TOSN), 4(2):1–40, 2008.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer
Verlag, second edition, 2006.

177

Bibliography

[OJW03] Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive Filters for Con-
tinuous Queries Over Distributed Data Streams. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’03), pages 563–574, June 2003.

[OLW01] Chris Olston, Boon Thau Loo, and Jennifer Widom. Adaptive Precision
Setting for Cached Approximate Values. In Proceedings of the 2001
ACM SIGMOD International Conference on Management of Data (SIG-
MOD ’01), pages 355–366, May 2001.

[OV99] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed
Database Systems. Prentice Hall, second edition, 1999.

[PG06] Aditi Pandit and Himanshu Gupta. Communication-Efficient Implemen-
tation of Range-Joins in Sensor Networks. In Proceedings of the 11th
International Conference on Database Systems for Advanced Applica-
tions (DASFAA ’06), pages 859–869, April 2006.

[Pha] SensiNet Enables FDA-Compliant Temperature Monitoring and Data
Collection. http://www.sensicast.com/uploadedFiles/CS-Pharma.10.06
_casestudy.pdf.

[PHC04] Joseph Polastre, Jason Hill, and David E. Culler. Versatile Low Power
Media Access for Wireless Sensor Networks. In Proceedings of the
2nd International Conference on Embedded Networked Sensor Systems
(SenSys ’04), pages 95–107, November 2004.

[RD08] Florin Rusu and Alin Dobra. Sketches for Size of Join Estimation. ACM
Transactions on Database Systems, 33(3):1–46, 2008.

[RK91] N. Roussopoulos and H. Kang. A Pipeline N-Way Join Algorithm Based
on the 2-Way Semijoin Program. IEEE Transactions on Knowledge and
Data Engineering, 3(4):486–495, 1991.

[RLM87] James P. Richardson, Hongjun Lu, and Krishna Mikkilineni. Design
and Evaluation of Parallel Pipelined Join Algorithms. SIGMOD Record,
16(3):399–409, 1987.

[SA80] Patricia G. Selinger and Michel E. Adiba. Access Path Selection in
Distributed Database Management Systems. In Proceedings of the In-
ternational Conference on Data Bases (ICOD ’80), pages 204–215, July
1980.

[Sam84] Hanan Samet. The Quadtree and Related Hierarchical Data Structures.
ACM Computing Surveys, 16(2):187–260, 1984.

178

Bibliography

[Say00] Khalid Sayood. Introduction to Data Compression. Morgan Kaufmann
Publishers, second edition, 2000.

[SBB08] Mirco Stern, Erik Buchmann, and Klemens Böhm. Where in the Sen-
sor Network Should the Join Be Computed, After All? In Proceed-
ings of the International Workshop on Ubiquitous Knowledge Discovery
(UKD), September 2008.

[SBB09a] Mirco Stern, Erik Buchmann, and Klemens Böhm. A Wavelet Transform
for Efficient Consolidation of Sensor Relations with Quality Guarantees.
In Proceedings of the 35th International Conference on Very Large Data
Bases (VLDB ’09), August 2009.

[SBB09b] Mirco Stern, Erik Buchmann, and Klemens Böhm. Towards Efficient
Processing of General-Purpose Joins in Sensor Networks. In Proceed-
ings of the 2009 IEEE International Conference on Data Engineering
(ICDE ’09), pages 126–137, March 2009.

[SBB10] Mirco Stern, Erik Buchmann, and Klemens Böhm. Processing Con-
tinuous Join Queries in Sensor Networks: a Filtering Approach. In
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’10), June 2010.

[SDS96] Eric J. Stollnitz, Tony D. Derose, and David H. Salesin. Wavelets for
Computer Graphics: Theory and Applications. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[SDS09] Dimitris Sacharidis, Antonios Deligiannakis, and Timos K. Sellis. Hier-
archically Compressed Wavelet Synopses. VLDB Journal, 18:203–231,
2009.

[Sena] http://www.sensicast.com/.

[Senb] Sensorscope. http://sensorscope.epfl.ch/.

[Senc] http://sensorscope.epfl.ch/index.php/Environmental_Data.

[Sew] Julian Seward. bzip2. http://www.bzip.org.

[SM97] Wolfgang Scheufele and Guido Moerkotte. On the Complexity of Gen-
erating Optimal Plans With Cross Products (Extended Abstract). In Pro-
ceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS ’97), pages 238–248, May
1997.

179

Bibliography

[SM06] Christopher M. Sadler and Margaret Martonosi. Data Compression Al-
gorithms for Energy-Constrained Devices in Delay Tolerant Networks.
In Proceedings of the 4th International Conference on Embedded Net-
worked Sensor Systems (SenSys ’06), pages 265–278, October 2006.

[Tec] Crossbow Technology. Mica2 Wireless Measurement System. http://
www.xbow.com/ products/ Product_pdf_files/ Wireless_pdf/ MICA2
_Datasheet.pdf.

[Tin] http://telegraph.cs.berkeley.edu/tinydb.

[TL03] Gregory P. Tollisen and Tamas Lengyel. On Minimizing Distance by the
Road Less Travelled. Elemente der Mathematik, 58(3):89–107, 2003.

[TM06a] Daniela Tulone and Samuel Madden. An Energy-Efficient Querying
Framework in Sensor Networks for Detecting Node Similarities. In Pro-
ceedings of the 9th ACM International Symposium on Modeling Analy-
sis and Simulation of Wireless and Mobile Systems (MSWiM ’06), pages
191–300, October 2006.

[TM06b] Daniela Tulone and Samuel Madden. PAQ: Time Series Forecasting for
Approximate Query Answering in Sensor Networks. In Proceedings of
the 3rd European Workshop on Wireless Sensor Networks (EWSN ’06),
pages 21–37, February 2006.

[TYD+05] Niki Trigoni, Yong Yao, Alan J. Demers, Johannes Gehrke, and Raj-
mohan Rajaraman. Multi-query Optimization for Sensor Networks. In
Proceedings of the 1st IEEE International Conference on Distributed
Computing in Sensor Systems (DCOSS ’05), pages 307–321, July 2005.

[VW99] Jeffrey Scott Vitter and Min Wang. Approximate Computation of Multi-
dimensional Aggregates of Sparse Data Using Wavelets. In Proceedings
of the 1999 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’99), pages 193–204, June 1999.

[WBD+06] Raymond S. Wagner, Richard G. Baraniuk, Shu Du, David B. Johnson,
and Albert Cohen. An Architecture for Distributed Wavelet Analysis and
Processing in Sensor Networks. In Proceedings of the 5th International
Conference on Information Processing in Sensor Networks (IPSN ’06),
pages 243–250, April 2006.

[WC01] Alec Woo and David E. Culler. A Transmission Control Scheme for
Media Access in Sensor Networks. In Proceedings of the 7th Annual
International Conference on Mobile Computing and Networking (Mobi-
Com ’01), pages 221–235, 2001.

180

Bibliography

[Wer] Jay Werb. Making Sense of the Sensor Network Value Chain. http://
www.sensicast.com/ uploadedFiles/ Resource_Center/ Making _Sense
_of _the _Sensor _Network _Value _Chain.pdf.

[WTC03] Alec Woo, Terence Tong, and David Culler. Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor Networks. In Pro-
ceedings of the 1st International Conference on Embedded Networked
Sensor Systems (SenSys ’03), pages 14–27, November 2003.

[XLTZ07] Shili Xiang, Hock Beng Lim, Kian-Lee Tan, and Yongluan Zhou. Two-
Tier Multiple Query Optimization for Sensor Networks. In Proceedings
of the 27th International Conference on Distributed Computing Systems
(ICDCS ’07), page 39, June 2007.

[YG03] Yong Yao and Johannes Gehrke. Query Processing for Sensor Networks.
In Proceedings of the First Biennial Conference on Innovative Data Sys-
tems Research (CIDR ’03), January 2003.

[YHE04] Wei Ye, John Heidemann, and Deborah Estrin. Medium Access Con-
trol With Coordinated Adaptive Sleeping for Wireless Sensor Networks.
IEEE/ACM Transactions on Networking, 12(3):493–506, 2004.

[YLOT07] Xiaoyan Yang, Hock Beng Lim, Tamer M. Özsu, and Kian Lee Tan.
In-Network Execution of Monitoring Queries in Sensor Networks. In
Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’07), pages 521–532, June 2007.

[YLZ06] Hai Yu, Ee-Peng Lim, and Jun Zhang. On In-network Synopsis Join
Processing for Sensor Networks. In Proceedings of the 7th International
Conference on Mobile Data Management (MDM ’06), page 32, May
2006.

[YMB07] Man Lung Yiu, Nikos Mamoulis, and Spiridon Bakiras. Retrieval of
Spatial Join Pattern Instances from Sensor Networks. In Proceedings of
the 19th International Conference on Scientific and Statistical Database
Management (SSDBM ’07), page 25, July 2007.

[YSH06] Wei Ye, Fabio Silva, and John Heidemann. Ultra-Low Duty Cycle
MAC With Scheduled Channel Polling. In Proceedings of the 4th Inter-
national Conference on Embedded Networked Sensor Systems (SenSys
’06), pages 321–334, Boulder, Colorado, USA, October 2006.

[ZGT09] Xianjin Zhu, Himanshu Gupta, and Bin Tang. Join of Multiple Data
Streams in Sensor Networks. IEEE Transactions on Knowledge and
Data Engineering, 99(1), January 2009.

181

Bibliography

[ZLW+06] Siwang Zhou, Yaping Lin, Jiliang Wang, Jianming Zhang, and Jing
cheng Ouyang. Compressing Spatial and Temporal Correlated Data in
Wireless Sensor Networks Based on Ring Topology. In Proceedings of
the 7th International Conference on Advances in Web-Age Information
Management (WAIM ’06), pages 337–348, June 2006.

182

