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ABSTRACT

We present a simple combining receiver for a dual-diversity

wireless relay network. The main concern of the paper is to

face the trade-off between performance and complexity. The

receiver focuses on signal-to-noise ratio (SNR) monitoring and

selects dynamically between selection combining (SC) and

equal gain combining (EGC) depending on the SNR ratio of

the two received branches. It is shown that SC suffers no SNR

degradation compared to a single branch communications sys-

tem if the two receive branches are unbalanced, wheres EGC

suffers a loss of 3 dB. Error performance with respect to branch

unbalance is considered as well and limiting values for a high

degree of branch unbalance are derived.

I INTRODUCTION

The wireless communications channel is characterized by

many scattered rays arriving at the receiver. Destructive and/or

constructive superposition of these rays leads to multipath sig-

nal fading that causes a great fluctuation of the received signal

strength. A powerful technique to mitigate these effects is the

use of diversity combining at the receiver [1]. Traditionally,

relays have only been used in form of analogue repeaters in or-

der to face path loss degradation and enlarge the coverage area

of a communications system. However, relays have recently

been introduced into cooperative communications where sev-

eral users share their resources and participate in transmitting

information from a source to a destination. It is most likely

that the different users transmit over independent branches and

thus diversity gains are achieved at the destination which im-

proves performance [2, 3, 4, 5, 6]. This kind of diversity is of-

ten referred to as user cooperation diversity [7]. Generally, the

relays perform either amplify-and-forward, which means that

they simply amplify the received signal and transmit it with-

out further processing, or decode-and-forward, where they first

refresh the received signal prior to retransmission.1

The three main techniques used for diversity combining are

selection combining (SC), equal gain combining (EGC) and

maximal ratio combining (MRC). The most valuable paper on

those three combining techniques is “Linear Diversity Com-

bining Techniques” by D. G. Brennan [9] as it gives a struc-

tured overview and quantitative analyses of the performance of

each technique. SC refers to the fact that only the strongest

branch is selected for further processing. In EGC all branches

are co-phased, equally weighted and then summed, whereas in

MRC the weighting is performed with respect to the individ-

1There is another relay strategy that is often called compress-and-forward.

See [8] for more information.
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Figure 1: Schematic description of a symmetric relay network

with source S, relay R and destination D. Channel coefficients

are denoted as hi, i = 0, 1, 2.

ual channel gains. Thus, branches with higher signal strength

have a larger weight. The principles of combining are widely

discussed in literature [1, 10, 11].

The remainder of the paper is organized as follows. In sec-

tion II the system model is described. Section III deals with the

comparison of different combining strategies with respect to

SNR gain. In section IV the new receiver structure is described

in detail and error analysis is performed. Section V faces prac-

tical implementation issues and finally section VI concludes the

paper.

II SYSTEM MODEL

Fig. 1 shows a symmetric relay network consisting of one

source S, one relay R and one destination D. Each branch

represents a slowly varying flat Rayleigh fading channel with

channel coefficients hi, i = 0, 1, 2. The channel coefficients

are circular-symmetric complex-valued Gaussian random vari-

ables. Consequently, |hi| follows a Rayleigh distribution with

the probability density function (pdf)

f|Hi|(|hi|) =
2 |hi|
Ωi

e−|hi|
2/Ωi , i = 0, 1, 2, (1)

where Ωi = E(|hi|2) represents the average power on branch i.
The values |hi|2 are generally chi-square distributed with two

degrees of freedom (corresponding to an exponential distribu-

tion). Each signal is further disturbed by additive white Gaus-

sian noise (AWGN) with one-sided power spectral density N0.

Assume noise to be statistically independent from branch to

branch and independent of the channel coefficients. Let source

and relay transmit with equal power and let Es denote the en-
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ergy of a transmitted signal, then the average signal-to-noise

ratio (SNR) of a single branch is γi = Ωi · Es/N0.

Each terminal is equipped with a single antenna and cannot

receive and transmit simultaneously. To cope this restriction,

transmission is divided into two phases. During the first phase

the source transmits its information to the relay and the desti-

nation. During the second phase the relay transmits a refreshed

version of its received signal to the destination and the source

remains quiet. Since we are interested in proper combining

at the destination, we assume that the relay is able to perform

some kind of error detection and correction so that an error-free

refreshed signal is transmitted from the relay to the destination.

All distances are equal and without loss of generality have been

normalized to one, so that no path loss considerations are nec-

essary.

III RELATIVE COMPARISON

In this section we compare the commonly used combining

strategies SC, EGC and MRC with respect to SNR gains and

branch unbalance for a dual-diversity communications system.

We first denote the cumulative distribution function (cdf) and

pdf of SC and EGC. We will show later that the asymptotic

gain of MRC and SC are the same for a high degree of branch

unbalance. That’s why we omit the cdf and pdf of MRC here.

III.A CDF and PDF of Combiner Output SNR

For EGC the incoming signals are co-phased, equally weighted

and then summed. Thus, for a dual-diversity relay network the

output SNR of EGC is given by [1, 12]

γegc =
(|h1| + |h2|)2

2

Es

N0
(2)

The cdf of |h1| + |h2| has been derived by Halpern in [13].

It is shown in [12] that the cdf of γegc after a transformation of

random variables then becomes

Fγegc
(γ) = 1 − γ1e

−(2γ/γ1) + γ2e
−(2γ/γ2)

γ1 + γ2

− 2
√

2γ1γ2πγ

(γ1 + γ2)
3/2

e−2γ/(γ1+γ2)

×
[

1 − Q

(

2

√

γ1γ

γ2

(γ1 + γ2)

)

− Q

(

2

√

γ2γ

γ1

(γ1 + γ2)

)]

, (3)

where γi, i = 1, 2, denotes the average SNR per symbol on

branch i and Q(·) is the Gaussian Q-function defined as [11]

Q(z) =
1√
2π

∞
∫

z

e−t2/2dt. (4)

Derivation of (3) with respect to γ leads to the expression of

the pdf [12]:

fγegc
(γ) =

2
(

γ1e
−(2γ/γ1) + γ2e

−(2γ/γ2)
)

(γ1 + γ2)
2

+

√

2πγ1γ2

γ

e−2γ/(γ1+γ2)

(γ1 + γ2)
3/2

(

4γ

γ1 + γ2

− 1

)

×
[

1 − Q

(

2

√

γ1γ

γ2

(γ1 + γ2)

)

− Q

(

2

√

γ2γ

γ1

(γ1 + γ2)

)]

(5)

In contrast to EGC, SC uses only the branch with higher

SNR for further processing. This has the advantage that no

co-phasing is necessary. However, SNR monitoring is indis-

pensable. The output SNR of SC can be obtained as

γsc = max
{

|h1|2, |h2|2
} Es

N0
. (6)

The cdf of γsc for independent but not necessarily identically

distributed branches is well-known and can be looked up in,

e.g., [1, 11]. It is given by

Fγsc
(γ) =

(

1 − e−γ/γ1

)(

1 − e−γ/γ2

)

. (7)

Differentiating (7) relative to γ finally yields the pdf of γsc:

fγsc
(γ) =

1

γ1

e−γ/γ1 +
1

γ2

e−γ/γ2−
(

1

γ1

+
1

γ2

)

e
−γ
(

1
γ1

+ 1
γ2

)

(8)

III.B SNR Gain

Generally, there are two types of performance gains in diversity

systems, namely diversity gain and SNR gain2. We concentrate

on the SNR gain in this section and define it as

∆γ
△
=

γξ

max{γ1, γ2}
, (9)

where γξ represents the average SNR of the combining

schemes and ξ ∈ {mrc, egc, sc}.

It is well-known that the average SNR of MRC is the sum of

the individual mean SNRs [1, 10, 11]. Hence,

γmrc = γ1 + γ2. (10)

The average SNR of EGC can be calculated by averaging γ
over the pdf fγegc

(γ). We have

γegc =

∞
∫

0

γ fγegc
(γ) dγ (11)

and get after some algebraic manipulation

γegc =
1

2
γ1 +

1

2
γ2 +

π

4

√

γ1γ2. (12)

2In [1], p. 192, SNR gain is referred to as array gain.
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Figure 2: Comparison of the SNR gain ∆γ of selection

combining (SC), equal gain combining (EGC) and maximal

ratio combining (MRC) with respect to branch unbalance

γ1/γ2 [dB].

The term π/4 in (12) is typical for Rayleigh fading, where

(E(|hi|))2 = π/4 · E(|hi|2) = π/4 · Ωi.

The average SNR of SC is calculated the same way as the

average SNR of EGC. Accordingly,

γsc = γ1 + γ2 −
γ1γ2

γ1 + γ2

. (13)

Fig. 2 illustrates the SNR gain ∆γ [dB] for SC, EGC and

MRC over the branch unbalance γ1/γ2 [dB]. For branch bal-

ance, i.e., γ1/γ2 = 0 dB, we see the well-known results

for dual-diversity and independent and identically distributed

(i.i.d.) branches. SNR gain for SC then is 1.8 dB, for EGC it

is 2.5 dB and for MRC SNR gain becomes 3 dB. The maximal

SNR gain of a dual-diversity communications system without

fading is 3 dB. Hence, it can be seen that MRC performs opti-

mal if the system suffers no branch unbalance. However, MRC

requires the knowledge of channel state information which is

a challenging task, especially for time-variant channels. Fur-

thermore, MRC outperforms all other combining strategies,

whereas EGC only performs better than SC for low SNR un-

balances. This issue is further discussed in the following sub-

section which is concerned with the asymptotic behavior of the

different SNR gains.

The interception point between the SNR gain of SC and

EGC can be calculated by simply equating (12) and (13). This

leads to a fourth-order equation with respect to branch unbal-

ance γ1/γ2 and can be solved by applying Ferrari’s method

which is implemented in most mathematical tools. There, the

biquadratic equation is divided into two quadratic equations,

where the first one possesses two complex-conjugate solutions

(they can be skipped since our solution has to be real) and the

second one has two real solutions. In our case, we get

γ1/γ2 = 3.488 → 5.42 dB

γ1/γ2 = 0.287 → −5.42 dB

which corresponds to the results illustrated in Fig. 2.

III.C Asymptotic Behavior

A short glance at Fig. 2 reveals that the SNR gain possesses an

asymptotic behavior for high branch unbalances. The asymp-

totic values can easily be derived by letting γ1/γ2 → ∞. Since

all transmitted signals are power constrained, this is achieved

by letting γ2 → 0 and holding γ1 fixed. Afterwards, the di-

vision by max{γ1, γ2} makes the asymptotes independent of

single average SNR values.

SC and MRC tend to 0 dB which means that the SNR gain of

these combining strategies can never get worse than if only one

branch has been taken into consideration. For SC this is due

to the fact that only the branch with higher SNR is selected for

further processing. For MRC the reason is that each branch is

weighted with its individual channel gain, therefore, bad chan-

nels are ‘filtered out.’ However, EGC shows a different behav-

ior since both branches are weighted equally. This means that

if one branch is very good and the other one is very bad, the

latter merely increases the noise level with respect to the first

branch. Worst case is doubling the noise power, which leads

to an asymptotic value of −3 dB. In this case the SNR at the

output of the combiner is the same as if only one branch with

half the SNR has been considered.

IV RECEIVER STRUCTURE

In this section we describe a new combining receiver that se-

lects dynamically between EGC and SC on the basis of an SNR

criterion. We present closed-form expressions on error proba-

bility in section IV.B.

IV.A Description

In practice, EGC is often preferred to MRC due to reduced

complexity as no estimation of the channel state information

is required. Moreover, EGC is typically used for modulation

schemes with constant envelopes [12]. However, as we can

see in Fig. 2, EGC suffers a great SNR gain degradation for

a high degree of branch unbalance. That is why we propose

a receiver structure that combines EGC and SC. The basis is

that the receiver selects dynamically between EGC and SC.

For low branch unbalances, EGC is the preferred combining

strategy, whereas SC is preferable for high branch unbalances.

The great advantage of that scheme is that the receiver will al-

ways perform better than if only one branch could have been

received.

Fig. 3 shows the structure of the combining receiver. The

destination receives two signals in orthogonal time frames as

discussed in section II. The first signal comes directly from

the source, the second one comes from the relay and is a re-

freshed version of the original source signal. After SNR mon-

itoring the receiver calculates the ratio θ = γ1/γ2. Thereafter,

the absolute value of this linear ratio is expressed in dB by
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Figure 3: Structure of a dual-diversity combining receiver that selects between selection combining (SC) and equal gain combin-

ing (EGC) on the basis of an SNR criterion.

Θ = |10 log10(θ)|, which represents the input to a comparator.

Here, Θ is compared to a threshold value β and the better com-

bining strategy, i.e., SC or EGC, is selected. The crucial point

of this structure is the determination of the threshold value β.

This issue is further discussed in the following section.

IV.B Error Performance

Error performance of EGC and SC for several fading charac-

teristics has been widely investigated in literature. We state re-

sults that are necessary for our further analysis of the receiver

structure. The interested reader is referred to the publications

[12, 14, 15, 16, 17] and the references therein.

Bit error probability (BER) of EGC for BPSK/QPSK and

two independent but not identically distributed branches is

given by [15, 17]

Pegc =
1

2

(

1 −
√

γ1(γ1 + 2) +
√

γ2(γ2 + 2)

γ1 + γ2 + 2

)

. (14)

For SC probability of decoding error for BPSK/QPSK can

be expressed as [14]

Psc =
1

2

(

1 −
√

γ1

γ1 + 1
−
√

γ2

γ2 + 1
+

√

γ1γ2

γ1γ2 + γ1 + γ2

)

.

(15)

Error probabilities versus branch unbalance are illustrated

in Fig. 4 for γ1 = 10 dB and Fig. 5 for γ1 = 5 dB. As ex-

pected, BER increases as branch unbalance increases. This

corresponds to the decrease in SNR gain, that can be seen in

Fig. 2. The intersection point between EGC and SC denotes

the threshold value β.

We further see that both BER curves tend to an asymptotic

value for a high degree of branch unbalance. For SC this

asymptote corresponds to a single-branch system with an av-

erage SNR of γ = γ1. This can be made intuitively clear with

a look at the SNR gain that tends to zero for SC. The asymp-

tote for EGC is determined by a single-branch system with an

average SNR of γ = γ1/2. Again, this becomes clear if we

consider the SNR gain. SNR gain for EGC tends to −3 dB for

high branch unbalances. This is exactly the factor 1/2 that con-

stitutes in the average SNR expression. BER then equals that

of a non-diversity receiver, which is

P =
1

2

(

1 −
√

γ

γ + 1

)

(16)

with the values for γ given above. The two values for P can

also be derived from (14) and (15) by letting γ2 → 0.

V PRACTICAL IMPLEMENTATION ISSUES

In our proposal MRC has been skipped due to complexity is-

sues. The advantage of EGC and SC over MRC is that no

estimation of channel state information is necessary. Though

EGC does not require SNR monitoring as both received sig-

nals are simply summed, so does SC. In practice, measuring

true SNR of a branch, |hi| · Es/N0, is a complex task. It is

therefore better to measure the total power of the received sig-

nal, |hi| ·Es + N0 [1, 11], which is also equivalent if the noise

power on each channel can be considered as equal. Another

issue is the derivation of the threshold value β as a function of

γ1 and γ2. We can see in Fig. 4 and Fig. 5 that β is strongly

varying depending on the branch unbalance. That makes the

declaration of a simple and probably fixed threshold value in-

volved. Indeed, the value for β can be found by equating (14)

and (15), but there exists no closed-form solution to this prob-

lem. A suitable way would be to find proper approximations of

error probabilities that simplify the calculation of the intersec-

tion point. Research concerning this issue is still ongoing.

VI CONCLUSION

In this paper we presented a new and simple combining re-

ceiver for a dual-diversity wireless relay network. The receiver

at the destination dynamically selects between equal gain com-

bining (EGC) and selection combining (SC) based on a signal-

to-noise ratio (SNR) criterion. The main purpose was to meet

the trade-off between performance and complexity of the re-

ceiver structure. Therefore, maximal ratio combining (MRC),

where an estimation of channel state information becomes nec-

essary, has not been taken into consideration. We demonstrated

that the SNR gain of SC suffers no degradation with respect to

branch unbalance in contrast to the SNR gain of EGC where a

degradation of −3 dB can be recognized as worst case. This is
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Figure 4: Bit error rate (BER) of selection combining (SC) and

equal gain combining (EGC) for BPSK/QPSK with respect to

branch unbalance γ1/γ2 [dB]. Parameter γ1 has been set to 10
dB.

due to the fact that SC only takes the best of the two branches

into consideration. For EGC both branches are summed and

for a high degree of branch unbalance, one branch merely con-

sists of noise and thus noise power is doubled. The bit er-

ror rate (BER) of each combining scheme has been presented

as well. Evidentially, BER increases as branch unbalance in-

creases. Both curves for SC and EGC intersect. This intersec-

tion point β serves as decision threshold in the receiver. It has

been shown that SC tends to a single-branch system with an

average SNR of γ = γ1 for a high branch unbalance, and that

EGC tends to a single-branch system with an average SNR of

γ = γ1/2.
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