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Abstract— Cognitive Radios observe the spectral environment
through spectrum estimation. In particular, reconfigurable Soft-
ware Defined Radio architectures generate large amounts of
sample data, which can be computationally expensive to analyse.
Compression by time-shifted random preintegration prior to
spectrum estimation reduces the amount of data to be processed.
It is simple to implement and scalable. This paper shows that
linear compression with time-shifted random preintegration is
equivalent to compressed sensing with Toeplitz-structured ran-
dom matrices and preserves autocorrelation properties, which
allows for efficient joint compressed spectrum estimation and
compressed signal detection in Cognitive Radio terminals.

I. INTRODUCTION

Digital spectrum estimation is traditionally based on

equidistant sampling of a time-continuous signal at Nyquist

frequency. In certain applications sampling frequency or com-

putational resources are limited, but one would still like to

detect signals or to estimate the frequency content of a signal

in very wide frequency band. Such an application is real-time

spectrum estimation in Cognitive Radios.

Compressed Sensing (CS) is a recently popularized method-

ology to aquire signals at sub-Nyquist rate [1]. For Cognitive

Radio applications, CS holds the promise to allow new trade-

offs between sampling rate and signal to noise ratio for

estimation and detection [2]. Compression is implemented

by a linear projection. If this projection approximately pre-

serves the euclidean distances between any two vectors of

the original signal space, the projection matrix is said to

have the restricted isometry property (RIP). Under certain

preconditions, the original signal can then be reconstructed

with high probability through linear programming [1]. For

practical applications, random Toeplitz-structured matrices,

which can be implemented efficiently and have the RIP for

time sparse signals and other bases of interest, have been

proposed by Haupt et al. [3], [4]. In this paper the use of

Toeplitz-structured CS matrices or, equivalently, time-shifted

(random) preintegration is proposed for spectrum estimation

as the projection preserves autocorrelation properties. This

allows to apply fast linear spectrum estimation techniques to

the compressed vector.

The paper is structured as follows. After showing the

connection between compression matrices and random time-

shifted preintegration in Section II, deterministic linear com-

pression with matrices constructed from sequences with per-

fect periodic autocorrelation is introduced in Section III.

Simulation results are presented in Section IV. Section V

concludes.
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Fig. 1. Proposed time-continuous implementation of time-shifted random
preintegration. Integration is reset after N samples.

II. TOEPLITZ-STRUCTURED COMPRESSED SENSING

MATRICES AND TIME-SHIFTED RANDOM

PREINTEGRATION

A. Preservation of Autocorrelation

A Toeplitz-structured compression matrix A ∈ CM×N with

entries hi can be written as

A =















h0 h1 h2 · · · hN−1

h−1 h0 h1 · · · hN−2

h−2 h−1 h0 · · · hN−3

...
...

. . .
. . .

...

h−M+1 · · · · · · hN−M−1 hN−M















, (1)

such that Ai,j = hj−i. The linear compression of a signal

vector y ∈ R
N into the vector ỹ ∈ R

M can then be written

as

ỹ = Ay . (2)

This matrix multiplication can be implemented in a time-

continuous block-processing fashion as a series of M time-

shifted preintegrators shown in Figure 1, yielding the following

system model:

ỹ(lM + k) =
N−1
∑

i=0

hi−(k mod M) y(lN + i) . (3)

where l = ⌊ k
M
⌋ denotes the current block.

Assume zero mean and stationarity for y within a block

length (short time stationarity assumption). Linear projections,
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Fig. 2. Proposed time-discrete implementation of time-shifted random
preintegration for data reduction. Integration is reset after N samples.

such as the mapping by A, preserve stationarity. The autocor-

relation function φỹỹ(n) of ỹ is hence defined as

φỹỹ(n) = E [ỹ(k)ỹ(k + n)] . (4)

Inserting (3) with l = 0, this yields, assuming zero mean

and uncorrelated hi,

φỹỹ(n) =
∑

i

∑

j

E [hi−ky(i)hj−k−ny(j)]

=
∑

i

∑

j

E [hi−khj−k−n] E [y(i)y(j)]

=
∑

i

E [hi−khi−k] E [y(i)y(i + n)]

=
∑

i

αhi
φyy(n) .

(5)

Hence, with, e.g., hi ∈ {−1/
√

N, 1/
√

N} autocorrelation is

preserved.

B. Efficient Hardware Implementations

Precompression can be implemented efficiently in hardware

as time shifted preintegration.

Two implementations are proposed. Figure 1 shows a

proposed implementation for a time-continuous input with

compressed sensing. Since the signal processing algorithms

operate on the compressed signal ỹ, a new data acquisition

sub-system must be introduced. In order not to unnecessarily

increase the complexity, the structure of the compression

matrix can be used to optimize the acquisition.

The input signal is passed onto M multipliers. These

multiply the input signal each with one of the elements

hk, . . . , hk+M of the compression matrix, which come from

a shift register. The limited alphabet from which the elements

of the compression sequence are chosen makes an analog

multiplication feasible.

The multiplier outputs are passed on to integrators. Once

the shift register has been advanced M times, the integrator

output is digitized and the integrator is reset. This results in M
digital values, which form one compressed vector ỹ. The shift

register clock is determined by the Nyquist frequency of the

input signal, i.e., the shift frequency must be chosen such that

it could be used a valid sampling frequency for regular A/D

conversion of y(t). Such a time-continuous implementation

has the advantage that instead of using one fast A/D converter,

M converters with a rate of 1/N th of the original rate can be

used.

In some cases, the original signal might also be of interest,

and y(t) is digitized before the compression. Here, the im-

plementation shown in Figure 2 has a structure which can be

implemented onto a field-programmable gate array (FPGA).

The algorithmic advantage lies in precompression without

multiplications prior to more sophisticated signal analysis.

C. Random vs. Deterministic Compression

If the power spectrum density (PSD) is estimated based on

the compressed vector the spectral estimate is biased for small

N and random Toeplitz A due to residual autocorrelation

terms of h. To achieve betters results with regard to spectrum

estimation, deterministic compression matrices with perfect

periodic autocorrelation properties can be constructed. In

compressed sensing terms, a circulant compression matrix A

formed from sequences with perfect periodic autocorrelation,

such as Zadoff-Chu or Ipatov sequences [5], is maximally

incoherent with the Fourier basis and preserves the PSD. In

contrast to random Toeplitz matrices, which have been shown

to be a good choice for CS applications (cf. [3], [4] and

references therein), the isometry properties of these matrices

are subject to research. They offer, however, best performance

for compressed spectrum estimation.

III. DETERMINISTIC COMPRESSION MATRICES FROM

SEQUENCES WITH PERFECT PERIODIC AUTOCORRELATION

A. Sequences with perfect periodic autocorrelation

A sequence {an} with perfect periodic autocorrelation and

period N , normalized to unit energy, satisfies [5]

Ra(τ) =

N−1
∑

n=0

ana∗
n+τ =

{

1 : τ = kN
0 : τ 6= kN

(6)

where the index is to be interpreted modulo N . Such a

perfect sequence has a constant discrete periodic spectrum,

which follows directly from the Wiener-Khinchin relationship

between the periodic autocorrelation and its Fourier transform

[5] and (6):

DFT(Ra(τ)) = |DFT(an)|2 = 1 . (7)

The construction of perfect sequences is non-trivial. Two

constructions of sequences suited for implementation of pre-

compression, ternary and polyphase sequences1, are cited in

the following. For further constructions, refer to, e.g., surveys

by Fan and Darnell [5] or Lüke et al. [6] and references therein.

1Unfortunately perfect sequences with small phase alphabet are rare. The
longest known perfect binary sequence is {an} = {1, 1, 1,−1}, which means
N = 4 [6]. The longest known quaternary perfect sequence yields N = 16
[6].



Perfect Ternary Sequences: Perfect ternary sequences are

perfect sequences with a ternary alphabet. Of special interest

are sequences with an ∈ {−1, 0, 1}. Ipatov constructs such

perfect ternary sequences from a maximum length sequence

(m-sequence) {bn} with bn ∈ Fq [5]. The period of such an

m-sequence is qm − 1. Any nonzero element of Fq can be

expressed as a power of a primitive element α. Let m be odd.

Furthermore, let q = ps, where p is an odd prime and s is an

integer. Then

an =

{

0 : bn = 0
1√
E

(−1)u+n : bn = αu (8)

is a perfect ternary sequence with period N = qm−1
q−1 , normal-

ized to its resulting energy E.

Perfect Polyphase Sequences: Perfect polyphase sequences

are perfect sequences with an = ejβn . The following con-

struction is due to Zadoff and Chu [5]. Let M be an integer

coprime to N . Then, with 0 ≤ n < N ,

an =

{

1√
N

e
jπM

N
n2

: N even
1√
N

e
jπM

N
(n+1)n : N odd

(9)

is a normalized perfect sequence of length N .

B. Construction of Deterministic Compression Matrices

Let an be a normalized perfect sequence. Construct A as

follows:

A =















a0 a1 a2 · · · aN−1

aN−1 a0 a1 · · · aN−2

aN−2 aN−1 a0 · · · aN−3

...
...

. . .
. . .

...

aN−(M−1) · · · · · · aN−M−1 aN−M















.

(10)

A projection with such a compression matrix A preserves

power spectral density. This can be understood by computing

eigenvalues and eigenvectors of the projection: any circulant

matrix is diagonalized by the Fourier matrix F, and, more

specifically [7]

A = F diag(Fa)F−1 (11)

holds. The eigenvectors of the projection are hence given by

the columns of the Fourier matrix and the eigenvalues are

given by the DFT of the first row of A. They have, due to

(7), constant amplitude. Therefore, the projection introduces

only a phase shift and the PSD is preserved.

Another way to look at this property is incoherence of bases.

For N = M , A is a basis in CN . The sensing basis A is then

maximally incoherent with the discrete Fourier basis F [1]:

µ(A,F) =
√

N max
1≤k,j≤N

| 〈ak, fj〉 | = 1 (12)

where ak and fj are the column vectors of A and F, re-

spectively. With (7) in mind, this is easily verified noting

Parseval’s identity that the inner product is invariant under a

change of basis. Incoherence is a similarity measure of bases.

Qualitatively, if the sensing basis A is maximally incoherent

with the representation bases, here the Fourier basis, a co-

efficient an contains an equal amount of information about

all frequencies. Hence, if M < N , frequency information is

discarded democratically.

With respect to implementation, perfect ternary sequences

are a good choice due to the small number of phases. Com-

pression using ternary perfect sequences can be done without

multiplications, which is a major advantage for implementa-

tion in analog hardware or on FPGAs. Using digital signal

processing, other sequences can also easily be implemented -

perfect polyphase sequences are an obvious choice as they are

available for arbitrary N .

IV. SIMULATION RESULTS

Monte-Carlo Simulation results for compressed spectrum

estimation with random and deterministic compression are

shown in Figures 3 and 4.

Figure 3 shows a compressed estimate of a smooth spectrum

generated from an autoregressive process with random Toeplitz

compression. The compression matrix is fixed with N = 2000
and hi ∈ {−1/

√
N, 1/

√
N}. In Figure 3(b) the compression

factor C = M/N is varied from 0.05 to 0.5, which corre-

sponds to 100 and 1000 samples, respectively. As can be seen

from the figures, even very low compression factors of 0.05
suffice to approximate the smooth spectrum fairly well.

Figure 4 shows compressed estimates based on a sum of

sinusoids. The estimator bias of a random Toeplitz matrix is

clearly visible when comparing 4(a) it to Figure 4(b), which

shows a spectrum estimate based on the same spectrum with

deterministic Zadoff-Chu precompression. Here too, very low

compression factors suffice to approximate the spectrum.

For all simulations, spectrum estimation after compression

is based on the Thomson multitaper method with a constant

FFT size of 2000. The Thomson multitaper method is close

to optimal in the sense that it can be shown to be close to

a maximum-likelihood estimate for spectra stemming from

correlated Gaussian processes [8].

V. CONCLUSION

Time-shifted random preintegration can be implemented

efficiently both time-continuously in analog hardware with

M parallel A/D converters for compressive sensing (Figure

1) and time-discrete and without multiplications on FPGAs.

It allows for linear spectrum estimation at a lower data rate,

while leaving the possibility to apply the CS methodology for

signal detection and reconstruction. The same computational

structures needed for time-shifted random preintegration can

also be used directly to implement direct sequence spread

spectrum demodulation or smashed filtering [2]. This makes

preintegration an effective tool to reduce processing bandwidth

for signal detection and spectrum estimation in Software

Defined Radios.
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(a) Comparison of true spectrum with compressed estimates for a
random Toeplitz compression matrix. The estimated spectrum stems
from an autoregressive process with system function H(q−1) = 1 −
2.2137q−1 + 2.9403q−2 − 2.1697q−3 + 0.9606q−4 , which exhibits
two prominent peaks.
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(b) Compression factor versus spectrum estimate. The estimated spec-
trum is identical to the spectrum in Figure 3(a).

Fig. 3. Compressed estimation of smooth IIR spectra.
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(a) Compression factor versus spectrum estimate for a sum of complex
harmonics of equal amplitude and additive white Gaussian noise resulting
in a signal-to-noise ratio of 20 dB. Compression is based on a random
Toeplitz matrix.
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(b) Compression based on a deterministic Zadoff-Chu matrix, N =
2000. The estimated spectrum is identical to the spectrum in Figure
4(a).

Fig. 4. Compressed estimation of narrow band spectra.
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