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Deutschsprachige Zusammenfassung

“Was kann wohl meiner Hand
oder meinem Ohr ähnlicher,
und in allen Stücken gleicher
sein, als ihr Bild im Spiegel?”

Immanuel Kant, 1783

Die Polarisation einer Lichtwelle ist eine ihrer grundlegendsten Eigenschaften. Dem-
entsprechend werden viele Wechselwirkungen von Licht und Materie maßgeblich vom
Verlauf des elektrischen Feldvektors bestimmt, welcher den Polarisationszustand einer
elektromagnetischen Welle festlegt. Beispielsweise entdeckte Dominique François Jean
Arago bereits 1811, dass sich die Polarisationsebene des Lichts bei der Propagation
durch bestimmte Substanzen dreht. Im Jahre 1848 folgte Louis Pasteurs bahnbre-
chender Befund, dass diese optische Aktivität eine intrinsische Charakteristik jener
Medien ist, die sich durch eine bestimmte Asymmetrie auszeichnen — Chiralität.

Das Wort Chiralität ist vom griechischen Wortstamm χειρ∼ (hand∼) abgeleitet und
beschreibt Objekte, die nicht allein durch räumliche Drehung und Translation mit
ihrem Spiegelbild (Enantiomer) zur Deckung gebracht werden können — also genau
wie unsere beiden Hände. Bemerkenswerterweise formulierte der preußische Philosoph
Immanuel Kant bereits vor über 200 Jahren diese Kernaussage über die Chiralität:
“Und dennoch kann ich eine solche Hand, als im Spiegel gesehen wird, nicht an die
Stelle ihres Urbildes setzen ...”

In unserer Natur ist die Chiralität allgegenwärtig. Die Händigkeit mancher chiraler
Aromastoffe kann man sogar durch bloßes Riechen unterscheiden. Optische Ma-
terialien zeichnen sich hingegen dadurch aus, dass zirkular polarisierte Wellen
unterschiedlich durch die links- und rechtshändige Variante der chiralen Elemente
propagieren. Dies äußert sich insbesondere in optischer Aktivität und/oder zirku-
larem Dichroismus, d.h. unterschiedlichen Ausbreitungsgeschwindigkeiten und/oder
Absorptionskoeffizienten für links- und rechtszirkulares Licht.

In der Optik und Photonik beschäftigt man sich in jüngster Zeit zunehmend mit der
Frage, ob und wie man Chiralität auch mit maßgeschneiderten, künstlichen Nano-
strukturen nachbilden kann. Besondere Beachtung wird natürlich denjenigen op-
tischen Effekten geschenkt, die aufgrund des Drehsinns dieser Materialien entstehen.
Durch gezielte Konstruktion zeigen diese Strukturen starke optische Effekte, die jene
von natürlichen chiralen Materialien um viele Größenordnungen übersteigen können.
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viii Deutschsprachige Zusammenfassung

Diese Dissertation befasst sich mit der Rolle der Chiralität in einer besonderen Klasse
optischer Materialien: Der Klasse der Photonischen Kristalle. Nanostrukturen wer-
den als chirale Photonische Kristalle bezeichnet, wenn ihre periodisch angeordneten
Bausteine eine helikale Windung in der Größenordnung der Lichtwellenlänge besitzen.
Im Gegensatz dazu wird die optische Aktivität natürlich vorkommender chiraler
Moleküle meist mit einer Wellenlänge aus dem sichtbaren Bereich des Spektrums
untersucht, d.h. die schraubenartigen Moleküle sind viel kleiner als die Wellenlänge
der interagierenden elektromagnetischen Welle.

Unsere Studien von künstlichen chiralen Kristallen erforderte (i) die Möglichkeit,
Dielektrika in alle Raumrichtungen auf einer Sub-Mikrometerskala zu strukturieren.
Weiterhin mussten (ii) die kleinen, dreidimensionalen chiralen Bausteine entworfen
und (iii) mit geeigneten Simulationsprogrammen optimiert werden. Zum Vergleich
mit den theoretischen Blaupausen benötigten wir im letzten Schritt (iv) umfassende
Charakterisierungswerkzeuge für die hergestellten Strukturen.

Zur Herstellung (i) benutzten wir das Direkte Laserschreiben (DLW, Direct Laser
Writing), welches die Fabrikation von beliebig geformten, dreidimensionalen Nano-
strukturen mit Detailgrößen kleiner als 100 nm ermöglicht. Diese Technik hat sich
mittlerweile als Standard der dreidimensionalen Mikrofabrikation für verschiedene An-
wendungen durchgesetzt — von Nanostrukturen für die Photonik bis hin zu Matrizen
für Zellwachstumsstudien. Im Großen und Ganzen kann man DLW als das dreidimen-
sionale Analogon der planaren Elektronenstrahllithographie ansehen.

Im Rahmen dieser Promotion haben wir den DLW-Aufbau technisch und konzeptio-
nell erheblich verbessert. In Kooperation mit der Carl Zeiss AG und der Nanoscribe
GmbH ist dazu ein erweitertes, modernes DLW entworfen und experimentell umge-
setzt worden. Ein kompakter frequenzverdoppelter Erbium-dotierter Faserlaser mit
Impulsen von unter 150 fs Dauer ersetzt teure Titan:Saphir-Lasersysteme als stabile
Laserquelle bei 780 nm Zentralwellenlänge. Die Laserleistung wird nun mit Hilfe eines
akusto-optischen Modulators kontrolliert und kann automatisch geregelt werden. Der
Laserstrahl wird über ein abschirmendes Rohrsystem in ein invertiertes Mikroskop
eingekoppelt und fokussiert. Ein piezoelektrischer Tisch verschiebt die Probe präzise
in alle Raumrichtungen, so dass das Beschreiben eines Photolacks mit beliebigen Tra-
jektorien in einem Volumen von 300 µm×300 µm×300 µm möglich wird. Ein weiteres
Novum ist die motorisierte Verschiebebühne, welche die Substrate lateral über eine
Fläche von 10 cm×13 cm verfahren kann. Alle wesentlichen Komponenten können per
Software adressiert werden.1

Das Schlüsselelement des neuen Systems ist der Autofokus: Die Grenzfläche zwischen
dem Substrat und dem Photolack wird automatisch und reproduzierbar gefunden, so
dass die Automatisierung und Effizienz des Aufbaus erheblich gesteigert wurde.

Als Photolack haben wir in unseren Experimenten stets den Negativlack SU-8 verwen-
det, der sich durch relativ hohe Auflösung (Linienbreiten < 150 nm) und hohe optische

1Die Kontrollsoftware wurde von Dr. Georg von Freymann programmiert.
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Transparenz im sichtbaren bis zum nahinfraroten Spektralbereich auszeichnet. Zudem
führt die Belichtung nur zu einer sehr kleinen Brechzahländerung (∆n< 10−3). Dieser
letzte Aspekt ist wichtig, damit der Laserfokus an den Kreuzungspunkten mit bereits
beschriebenen Bereichen nicht stark verzerrt wird.

Zur Untersuchung chiraler Photonischer Kristalle wurden im nächsten Schritt (ii)
zwei unterschiedliche Bausteine entworfen: Chiral gestapelte Bauelemente (aufgebaut
aus verdrehten Lagen paralleler Stäbe) und zirkular helikale Bauelemente (perio-
disch angeordnete Helices). Ein Kristall, der aus diesen Bausteinen besteht, kann
die Propagation einer der beiden zirkularen Polarisationen in einem bestimmten
Wellenlängenbereich sehr stark unterdrücken. Dieses sogenannte Polarisationsstopp-
band tritt gerade dann auf, wenn der helikale Baustein in der Größenordnung
der Materienwellenlänge des Lichts liegt. Dabei reichen schon wenige Gitterperio-
den in Propagationsrichtung um die Lichtintensität um mehrere Größenordnungen
abzuschwächen. Die zirkulare Polarisation mit einer zur Struktur identischen
Händigkeit wird stark reflektiert, obgleich die gegensinnige Polarisation nahezu un-
beeinflusst transmittiert wird. Theoretische Rechnungen haben gezeigt, dass man
exzellente optische Eigenschaften selbst mit polymeren Strukturen mit kleinem Bre-
chungsindex erhalten kann.

Die Tatsache, dass diese beiden chiralen Elemente selektiv auf eine zirkulare Po-
larisation antworten, ermöglichte es uns, diverse maßgeschneiderte chirale Photon-
ische Kristalle zu konstruieren. Jedoch wurden die optischen Eigenschaften der Blau-
pausen noch vor dem Herstellungsprozess nummerisch analysiert und optimiert. Für
diesen Schritt (iii) konnten wir auf den Streumatrix-Ansatz zur Berechnung von
Transmissions- und Reflektionsspektren von endlichen, periodischen Nanostrukturen
für die Photonik zurückgreifen.2

Mit Hilfe dieser Simulationstechnik verglichen wir die theoretischen Ergebnisse direkt
mit den Transmissionsexperimenten. Wir haben dazu zwei Aufbauten zur polarisa-
tionsaufgelösten Spektroskopie vorgestellt: Jeweils einen für die Messungen im nah-
infraroten und im mittleren infraroten Spektralbereich (Bandbreiten: 600–2200 nm
und 2700–7000 nm). Die Charakterisierung der Proben (iv) wird durch elektronen-
mikroskopische Aufnahmen der hergestellten Strukturen ergänzt.

Die chiral gestapelten Photonischen Kristalle (Abbildung 0.1(a)) zeigten starken zirku-
laren Dichroismus im Bereich des Polarisationsstoppbandes, welches zentriert um die
standardisierte Telekommunikationswellenlänge von 1,55 µm lag. Die theoretische
Beschreibung dieser polymeren Kristalle orientiert sich an analytischen Modellen,
die bereits für cholesterische Flüssigkristalle aufgestellt worden sind: Die Lagen des
Stapels reflektieren je eine Partialwelle, die sich gemeinsam zu einer zirkular polar-
isierten, reflektierten Welle zusammensetzen. Sofern nun die einfallende Welle den
gleichen Drehsinn wie die gestapelte Struktur besitzt, werden die Partialwellen phasen-
gleich und mit zur einfallenden Welle identischer Händigkeit reflektiert. Bei gegensin-

2Die Originalversion der Simulationssoftware wurde von Dr. Stefan Linden programmiert.
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niger Händigkeit von Polarisation und Struktur ist die Interferenz der reflektierten
Partialwellen destruktiv und das Licht wird transmittiert.

Der Dichroismus des zirkular helikalen Designs (Abbildung 0.1(b)) stellte bei einer
Wellenlänge von 1,8 µm ein vergleichbares Ergebnis dar. Bei diesem Photonischen
Kristall kann das Polarisationsstoppband intuitiv mit berechneten Feldverteilungen
verstanden werden. Falls die einfallende zirkulare Polarisation und der Kristall die
gleiche (ungleiche) Händigkeit besitzen, so werden die Lichtmoden stärker (schwächer)
im Dielektikum eingeschlossen. Dies führt zu einem erhöhten effektiven Brechungs-
index für den gleichsinnigen Fall und damit zu einer relativen spektralen Ver-
schiebung der Reflektionsbänder, die für beide zirkularen Polarisationen im Photon-
ischen Kristall auftreten. In beiden Fällen stimmte die Theorie bemerkenswert mit
dem Experiment überein. Insbesondere wurde die relative Händigkeit zwischen Struk-
tur und Licht, die spektrale Position des Stoppbandes und die Tiefe des Transmis-
sionsminimums sehr gut reproduziert. Obwohl beide Ansätze ausgezeichnete exper-
imentelle Ergebnisse erbracht haben, haben wir uns bei der Suche nach möglichen
Anwendungen auf das zirkular helikale Bauelement konzentriert.
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Eines der großen Ziele in der angewandten Nanophotonik ist es, funktionelle Struk-
turen für zukünftige Applikationen vorzustellen. Für chirale Photonische Kristalle
sind bereits potenzielle Anwendungen entwickelt worden. Beispielsweise können sie
als ultrakompakte Polarisationsfilter für zirkular polarisiertes Licht eingesetzt werden.
Darüber hinaus funktionieren unsere chiralen Bauelemente in einer Heterostruktur mit
zwei gekreuzten Viertelwellenplatten als Dünnfilmpolarisator für linear polarisiertes
Licht (Abbildung 0.1(c) mit grüner Viertelwellenplatte). Asymmetrische Kombinatio-
nen mit nur einer Viertelwellenplatte auf einer Seite erlauben es uns, sie als linearen
Polarisator oder auch als “Pseudo-Isolator” zu benutzen (abhängig von welcher Seite
das Licht auf die Optik-Komponente fällt). Ein “Pseudo-Isolator” basiert auf der
Umkehrung des Drehsinnes der zirkularen Polarisation bei Fresnel-Rückreflektion an
einem Spiegel. Da chirale photonische Strukturen ihre Händigkeit jedoch nicht ändern
(egal von welcher Seite man sie betrachtet), wird das Licht bei Rückreflektion geblockt.
Die Bezeichnung “Pseudo-Isolator” rührt daher, dass die Optik nur für eine zirku-
lare Polarisation funktioniert. Dies steht im Gegensatz zu nicht-reziproken optischen
Isolatoren, die z.B. auf dem Faraday-Effekt basieren. Die verwendeten Viertelwellen-
platten wurden in den Experimenten durch eine einfache Anordnung von periodischen
Lamellen realisiert, die zu Formdoppelbrechung im Limes langer Wellenlängen führt.
Entsprechende polymere Heterostrukturen wurden hergestellt und ihre Funktionalität
mit Transmissionsexperimenten untersucht.

Um ein tieferes Verständnis für den wichtigen zirkular helikalen Baustein zu er-
langen, haben wir im Folgenden photonische Übergitter aus polymeren Helices
in verschiedenen schachbrettartigen Anordnungen hergestellt (Abbildung 0.1(d)).
Überraschenderweise fanden wir verschiedene neue dichroitische Resonanzen, die
abhängig von der relativen Phasenverschiebung und Händigkeit der chiralen Elemente
auftraten oder unterdrückt wurden. Unsere Experimente bestätigten, dass die chiralen
optischen Eigenschaften stark von der lateralen Anordnung der Helices abhängen und
nicht allein von den Helixparametern. Damit eröffnen sich neue Optionen, um die op-
tischen Eigenschaften gezielt einzustellen. Darüber hinaus legen diese Beobachtungen
die unterschiedlichen Mechanismen der helikalen Photonischen Kristalle im Vergleich
mit den cholesterischen Flüssigkristallen dar.

Alle bisher vorgestellten Kristalle besitzen eine uniaxiale Symmetrie, d.h. nur
eine helikale Achse. Vor diesem Hintergrund erweiterten wir die Dimensionalität un-
serer Strukturen und stellten eine neue Klasse Photonischer Kristalle vor. Bichi-
rale Photonische Kristalle — die künstlichen, festen Äquivalente der “Blauphasen” in
cholesterischen Flüssigkristallen — besitzen zwei Arten von Chiralität, woraus sich
vier unterschiedliche Typen von bichiralen Strukturen ergeben (Abbildung 0.1(e)).
Eine Händigkeit stammt von dem Motiv (den Helices in unserem Fall), die an-
dere von dem fiktiven Skelett, auf dem das Motiv angeordnet ist. Das Konzept
bichiraler dielektrischer Photonischer Kristalle mit kubischer Symmetrie umgeht die
starke Richtungsabhändigkeit der uniaxialen Strukturen, während sie jedoch weiterhin
starken zirkularen Dichroismus zeigen. Wir haben alle vier bichiralen Kombinationen
hergestellt und mit entsprechenden Simulationen verglichen. Erwähnenswert ist hier-



xii Deutschsprachige Zusammenfassung

bei die Tatsache, dass alle natürlich vorkommenden “Blauphasen” nur in zwei der vier
möglichen Konfigurationen thermodynamisch stabil sind. In unseren Experimenten
zeigten gerade die Kombinationen, die nicht in der Natur vorkommen, die stärksten
Effekte.

Zusammenfassend haben wir eine faszinierende Klasse von photonischen Nanostruk-
turen untersucht: Chirale dreidimensionale Photonische Kristalle. Wir konnten
mehrere Entwürfe solcher Kristalle mittels DLW herstellen und theoretisch sowie
experimentell charakterisieren. Diese Materialklasse zeigt aufgrund ihrer intensiven
Wechselwirkung mit zirkular polarisiertem Licht ein großes Potenzial für zukünftige
Anwendungen.

Die Forschungsarbeit an chiralen Nanostrukturen könnte mit der Untersuchung von
neuen Materialsystemen eine entscheidende Wendung nehmen. Beispielsweise bleibt
es noch zu beweisen, ob eine vollständige Polarisationsbandlücke bei der bichiralen
Klasse von Photonischen Kristallen mit hohem Brechzahlkontrast auftreten kann.
Eine vollständige Bandlücke für nur eine zirkulare Polarisation könnte eine interes-
sante Erweiterung der ursprünglichen Vorschläge darstellen. Des Weiteren sind chirale
Metamaterialien, also künstlich hergestellte effektive Materialien, potenzielle Kandi-
daten für neuartige zirkulare optische Effekte. Es wurden auf diesem Forschungsgebiet
schon qualitativ neue Verhalten gezeigt, die aufgrund der Händigkeit entstehen (z.B.
eine negative Phasengeschwindigkeit). Magneto-optische oder auch nichtlineare Ef-
fekte in chiralen Metamaterialien werden sicherlich noch weitere Überraschungen mit
sich bringen.

Solange Forscher auf dem Gebiet der Optik und Photonik den richtigen Dreh her-
aushaben, werden künstliche chirale Materialien sicherlich ein aktives und dynamis-
ches Gebiet bleiben.



1. Introduction

“What can more resemble my
hand or my ear, and be more
equal in all points, than its im-
age in the mirror?”

Immanuel Kant, 1783

Polarization is considered as one of light’s fundamental properties. Accordingly, light-
matter interactions are often governed by the course of the electric field vector defining
the polarization state of an electromagnetic wave. One of the textbook examples is
the phenomenon of light being reflected from a surface. At one particular angle of
incidence, Brewster’s angle, light with one particular polarization cannot be reflected
[1]. Based on this effect, Brewster windows are often employed in modern laser systems
with the purpose to introduce polarization-dependent reflection losses.

In daily life, we rarely manage to determine the polarization state of a light wave
without the help of additional optics. Interestingly, when looking through polarizing
sunglasses, many people are able to observe the polarization of light in form of a
yellowish, fuzzy bar in the visual field. The perceived bar is perpendicular to the lin-
early polarized light produced by the glasses. This phenomenon is called Haidinger’s
brush and was first described by the Austrian physicist Wilhelm Karl von Haidinger
in 1844 [2]. Haidinger’s brush is mostly unknown because it is a very faint effect
rendering the human eye as weakly sensitive to the polarization state of light. Not
so with other “evolutionary optics” in animal kingdom, where a remarkable photonic
system exists: The circular vision in a species of crustaceans [3]. The eyes of this
aquatic animal detect circular polarization by using a complex vision system with an
achromatic quarter-wave plate and photoreceptors very sensitive to linearly polarized
light. Moreover, certain areas of their tissue are chiral. They consist of helical lay-
ered proteins reflecting circular polarization. These animals make use of these chiral
reflectors to send circularly polarized signals for intricate social interaction.

With quite some astonishment, researchers investigate such biological systems, which
were using nanometer-scale architectures to produce striking optical effects millions
of years before we began to manipulate the flow of light with artificial materials [4,5].
Nature’s flabbergasting solutions inspired and motivated us to mimic and improve
these optical effects by using tailored man-made media. Special devotion concerned
the role of chirality in the optical properties of the material class of photonic crystals.

1
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The word chirality is derived from the Greek stem χειρ∼ (hand∼) and refers to objects
that cannot be brought into congruence with their mirror image (enantiomers) by
mere rotation and translation in space [6] — just like our two hands. Remarkably,
the Prussian philosopher Immanuel Kant had already pinpointed the crux of chirality
more than 200 years ago [7], “And yet I cannot put such a hand as is seen in the
mirror in the place of its original ...”

Chirality has a long history in optics, beginning in 1848 with Louis Pasteur’s epoch-
making finding that optical activity is a manifestation of chiral media [8]. Generally
speaking, in chiral optical materials, circularly polarized waves propagate differently
through the left- and right-handed versions, respectively. For example, in the case
of the described aquatic animal only one of the two circular polarizations is strongly
reflected by their chiral external skeleton.

Chirality in man-made tailored materials is a highly regarded scientific topic for more
than 100 years. Acharya J. C. Bose fabricated one of the first artificial chiral materials.
In the year 1898, he wrote in the Proceedings of the Royal Society of London [9],
“In order to imitate the rotation by liquids like sugar solutions, I made elements
or “molecules” of twisted jute, of two varieties, one kind being twisted to the right
(positive) and the other twisted to the left (negative)... The twisted structure produces
an optical twist of the plane of polarization”. Bose twisted bundles of 10 cm long
parallel fibers of jute leading to a chiral response at microwave frequencies.

Recently, in the spirit of Bose’s first experiments, a dramatic increase of interest in
optical manifestations of chirality in artificial materials can be registered [10]. The
flourishing and dynamic field is driven by the opportunity to achieve optical activity
and/or circular dichroism which can be orders of magnitude larger than observed
in natural substances, such as milk or a sugar solution. Optical activity in natural
chiral molecules is typically investigated with light at visible wavelengths, i.e., the
dimensions of the screw-like molecules are by far smaller than the wavelength of the
interacting electromagnetic wave. As mentioned above, this manuscript is devoted to
chiral photonic crystals, which are periodic arrays of materials with different refractive
indices. The attribute “photonic” indicates that the structural periodicity and, hence,
the dimensions of the chiral building blocks are on the scale of the wavelength of light.

The research field of photonic crystals has been launched and stimulated by the
revolutionary theoretical concept of three-dimensional photonic-band-gap materials.
In 1987, Eli Yablonovitch and Sajeev John predicted in their pioneering publica-
tions [11,12] that three-dimensional photonic crystals, properly designed and made of
at least two materials showing a high refractive index contrast, may completely pro-
hibit the propagation of light in all crystal directions; this particular frequency region
is called complete photonic band gap. Broadly speaking, photonic crystals allow for
controlling the photonic density of states by a tailored photonic band structure — in
analogy to semiconductors, which allow for controlling electrons by their electronic
band structure. Correspondingly, photonic crystals allow for realizing unique electro-
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magnetic properties and might play an important role for one of the central goals in
the field of photonics: Achieving an all-optical circuitry in a photonic microchip [13].

Chiral three-dimensional photonic crystals are a very interesting and distinct subclass
of photonic crystals. For example, large complete photonic band gaps have been pre-
dicted for high-index-contrast silicon “square-spiral” structures with helical building
blocks [14]. Corresponding experiments using glancing-angle deposition [15], inter-
ference lithography [16], or direct laser writing [17] have been published. However,
a complete photonic band gap does not depend on light’s polarization because there
are simply no photonic states in this frequency region to couple to. Thus, the role of
chirality was initially not investigated in the publications given above.

Only recently, in addition to complete gaps, theory also predicts polarization stop
bands in “circular-spiral” photonic crystals, i.e., stop bands for just one of the two
circular polarizations [18, 19]. Along the helical axis, right-handed (left-handed) cir-
cularly polarized light is reflected from a right-handed (left-handed) photonic crystal.
The unmatching polarization is transmitted virtually unaffected. In terms of po-
larization optics, such polarization stop bands give rise to strong circular dichroism
based on reflection rather than absorption. The resulting selectivity is very interest-
ing for applications: Obviously, chiral photonic crystals serve as polarization filters for
circularly polarized electromagnetic waves. Moreover, they can potentially be used
for designing compact “thin-film” optical diodes [4] and “poor-man’s” optical isola-
tors [20]. Circular emitting laser sources have been reported [21], and the structures
might also serve as compact sensors for fluids and gases [22].

To date, the fabrication of complex three-dimensional nanostructures for the telecom-
munication wavelength of 1.55 µm is still a challenge. Creating the required helical
twist in man-made photonic crystals demands the possibility for three-dimensional
structuring with feature sizes on the order of few hundred nanometers. In this the-
sis, we meet the challenge to fabricate polymeric chiral photonic crystals inspired
by nature’s solutions to create chirality on the nanoscale. Advancements in three-
dimensional laser lithography allow for the high degree of precision and versatility
necessary to fabricate tailored man-made crystals with a selected handedness.

Chirality represents a fundamental aspect in life. Correspondingly, the role of
handedness remains a fascinating topic in several branches of science. In optics and
photonics, we can surely expect surprises by giving light yet another twist with chiral
nanostructures.

Outline of this thesis

In chapter 2, we introduce some fundamental aspects of chirality to the reader. A brief
overview of important historical events concerning chirality is given. Additionally, we
introduce basics of polarization optics that are important to classify the optical effects
of chiral nanostructures. The third part of this chapter introduces the material class
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of photonic crystals by explaining basic concepts, e.g., the occurrence of the photonic
band structure.

The biological and chemical chiral systems which provided inspiration for our work
on chiral nanostructures are discussed in chapter 3. Moreover, we review concepts of
artificial chiral materials. Possible fabrication methods and applications are discussed.

Chapter 4 is devoted to our fabrication method of direct laser writing. An advanced
and compact system has been designed and several experimental setups have been
realized. We explain the improvements helping considerably to fabricate chiral pho-
tonic crystals. Chapter 5 describes experimental setups for the linear-optical charac-
terization in the near- and mid-infrared spectral range. Furthermore, details of our
numerical calculations are given.

The experimental results are split in two chapters 6 and 7. For each blueprint, we
explain the underlying physics, present a specific design, fabricate the structures, and
compare experimental measurements with theoretical calculations.

In chapter 6, we start by describing two basic designs of chiral photonic crystals with
one helical axis: Three-dimensional layer-by-layer chiral photonic crystals (inspired
by chiral systems found in nature) and circular-spiral photonic crystals (consisting of
periodically arranged helices). Next, we present “thin-film” devices based on circular-
spiral photonic crystals. Polarizers, “poor-man’s” optical isolators, and optical diodes
are proposed and explained. The last section is focused on chiral photonic superlat-
tices, which give additional insight in the physics of circular-spiral photonic crystals.
In chapter 7, we introduce the concept of bi-chiral photonic crystals — structures with
three helical axes inspired by the so-called blue phase of liquid crystals.

Finally, we summarize the results of this thesis in chapter 8 and give a short outlook
to future experiments.



2. Fundamentals

The aim of this doctoral thesis is the design, fabrication, and characterization of
chiral photonic crystals. In the course of this manuscript, we will point out that
the handedness of these periodic dielectrics allows for optical properties distinct from
photonic crystals without a handedness.

To understand the physics of chiral materials, however, we first have to learn the fun-
damentals of chirality, polarization optics, and photonic crystals. Thus, this chapter
is divided into three parts: The first section 2.1 deals with basic properties of chirality.
Important phenomena of polarization optics are discussed in section 2.2, allowing to
classify the optical effects of chiral nanostructures. Section 2.3 is to introduce the
material class of photonic crystals. Since the field of photonic crystals has become
quite broad, the focus is on aspects relevant to the results of this thesis.

2.1. Chirality

Symmetry seems to be everywhere in nature. If one looks at plants and animals, one
observes that they often have symmetrical body shapes and patterns. Since symmetry
is all around, the absence of a symmetry is often meaningful and sometimes easy to
detect.

One distinct asymmetry is chirality. The importance of this asymmetry is tremendous
for our existence making chirality a research topic in a lot of disciplines of science —
from particle physics to life sciences.

2.1.1. What is chirality?

The word chiral was first introduced into science by Lord Kelvin (1824–1907), who
stated in his ”Baltimore Lectures on Molecular Dynamics and the Wave Theory of
Light” (published later in [6]),

“I call any geometrical figure, or group of points, chiral, and say that it has chirality, if
its image in a plane mirror, ideally realized, cannot be brought to coincide with itself.”

The term chiral is derived from the Greek name cheir, meaning hand [23]. Indeed,
human hands are perhaps the most universally recognized example of chirality. Just
try to shake somebody’s left hand with the right hand! It’s strange, isn’t it? The

5



6 2. Fundamentals

Figure 2.1: (a) The handedness of (enantiomorph) helical objects is quite easy to determine.
Clockwise (counterclockwise) rotation results in a right-handed (left-handed) helix.
(b) L-Butanol is a left-handed chiral molecule, whereas the D version is its right-
handed mirror image (enantiomer).

left hand is the mirror image of the right hand and, no matter how our hands are
oriented, it is not possible to coincide the two objects.

A chiral object and its mirror image are called enantiomorphs or, when referring to
molecules, enantiomers. A non-chiral object is called achiral (or amphichiral) and can
be superposed on its mirror image. A mixture of equal amounts of the two enantiomers
is said to be a racemic mixture [23].

Lord Kelvin’s simple geometric definition is accepted to be essential for chirality [24–
26]. As a consequence, the pure geometrical statement made chirality a universal
concept in very different branches of science. Notably, chirality is, per definition, only
observable in three-dimensional (3D) objects. For a two-dimensional (2D) object in
a plane, one is always able to mirror the object at this plane. However, there is a
mathematical concept of 2D chirality.1 The reduction to 2D leads to a significant
relaxation of the conditions for chirality compared to “normal” chirality. In general,
a planar object is chiral if it does not have a symmetry axis in the 2D plane [27]. We
will discuss this aspect in chapter 3.

A helical structure is another convenient example of “normal” 3D chirality. In
Fig. 2.1(a), a left-handed helix (commonly also called spiral) and its enantiomorph
right-handed mirror image are depicted. Clockwise (counterclockwise) rotation re-
sults in a right-handed (left-handed) helix. An impressive variety of helical structures
can be found in our flora and fauna. It is remarkable that natural chirality exists on
macroscopic scale but also on nanoscale. Could we apply these biological methods and

1This concept is used for, e.g., adsorbed molecules on surfaces [27] and, recently, for the description
of planar chiral metamaterials (see chapter 3.3.1).
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systems found in nature to the study and design of artificial chiral photonic crystals?
We would like to come back to this exciting aspect in the following chapters.

In (stereo-)chemistry, a lot of studies are devoted to chirality. Usually, for chemists,
chirality refers to molecules. Fig. 2.1(b) shows the right-handed and left-handed ver-
sion of the chiral molecule 2-Butanol. For non-chemists, it seems to be quite hard to
determine the handedness. Moreover, there are several naming conventions for chiral
molecules. The R(ectus)/S(inister) system and the D(extro)/L(aevo) system name
enantiomers by their atom configuration (see, e.g., [23, 28]). The +/- system takes
advantage of the intrinsic optical activity of chiral molecules, i.e., they are character-
ized by the direction in which the molecules rotate the plane of polarized light. This
experimental approach might be more appealing to physicists. We discuss optical
activity in more detail in section 2.2.2.

The importance of chirality is magnificently demonstrated in the double-helix struc-
ture of deoxyribonucleic acid (DNA). Every living bit on earth carries chiral genotype.
Surprisingly, left-handed DNA is completely missing in our nature. This asymmetry
that exists if only one enantiomer occurs is named homochirality [29]. Interestingly, the
vast majority of amino acids, the building blocks of proteins, is left-handed. To date,
the evolution of natural homochirality is not understood. However, (homo-)chirality
obviously plays a crucial part in the origins of life.

Breaking of mirrorsymmetry is also known from particle physics. For a descriptive
understanding of the handedness of a particle, one can use the own hand: The thumb
points in direction of the particle motion and the fingers follow the sense of rotation.
A particle is right-handed (left-handed) if one can follow the way of motion with
the right hand (left hand).2 A surprising fact in particle physics is that only the
left-handed particles and right-handed antiparticles participate in weak interactions.
Parity is violated in the weak force in the Standard Model (incorporated in chiral
gauge interaction). Parity is a symmetry operation, called point reflection, that is
commonly known to flip the signs of all spatial coordinates: (x,y,z)→ (−x,− y,− z).
The remarkable result of parity violation is that the laws of nature are not the same
under point reflection — they do distinguish between right and left, between image
and mirror image.

Chirality is essential for life and, therefore, turns out to be an exciting topic in science.
In the next section, we would like to give a brief overview about historical dates
concerning chirality. Structural color in nature took millions of years of evolution
and cannot be captured in this history. Nevertheless, we will come back to natural
chirality in chapter 3.

2Generally, for particles with mass, one has to distinguish between helicity and chirality of a particle
and things can get very abstract. For the interested reader, we refer to reference [30].
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2.1.2. Brief history of chirality

Our timeline of chirality starts with Archimedes
of Syracuse (287 BC–212 BC). The famous Greek
scientist Archimedes is well known for his con-
tributions to hydrostatics and mathematics but
also for the study of spiral structures. He an-
alyzed geometrical forms and arrangements in-
tensively and is also known as the inventor of
many mechanical devices. The Archimedean
water screw represents an outstanding invention
to transfer water to higher levels. However, the
chiral screw is just one prominent example of
antique age; chirality is certainly still apparent
in a lot of man-made mechanical parts.

Figure 2.2: The Archimedean wa-
ter screw [31].

Immanuel Kant (1724–1804), the famous Prussian philosopher, was the first to de-
scribe the existence of enantiomorph objects in 1783 [7, 32],

“What can more resemble my hand or my ear, and be more equal in all points, than
its image in the mirror? And yet I cannot put such a hand as is seen in the mirror
in the place of its original”

Kant’s analysis of handedness clearly fits in today’s understanding of chiral objects.
Thus, the “knowledge” of chirality has been around for more than 200 years.

With the ability to polarize light in the early 19th century, systematic studies of light-
matter interactions became possible. Natural optical rotation of the plane of linearly
polarized light was first observed by Dominique F. J. Arago (1786–1853) in 1811 [33].
In his experiments, he studied the polarization properties of quartz crystals. In 1815,
Jean-Baptiste Biot (1774–1862), a French physicist best known for the Biot-Savart
law, discovered that this optical rotation is not restricted to crystals [34]. Certain
organic liquids or solutions are also optically active — even a simple sugar solution.

With this background, Louis Pasteur (1822–1895) was able to identify optical activity
as manifestation of chiral media [8]. In the year 1848, with the age of only 26, he was
puzzling why natural tartaric acid is optical active, whereas his synthesis of nominally
the “same” acid remained inactive. Under close examination, he could distinguish
two different asymmetric molecules in his synthesis. The molecules looked like mirror
images of each other, enantiomers. The natural acid only consisted of one of these
two molecules. He concluded that one molecule turns the polarization plane to the
left; the other to the right. The racemic mixture remains optically inactive. Later, he
went even further and postulated,

“The universe is asymmetric and I am persuaded that life, as it is known to us, is a
direct result of the asymmetry of the universe or of its indirect consequences.”
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Pasteur also tried to find a link to an optical effect that Michael Faraday (1791–1867)
discovered in 1846 [35]. Faraday applied a static magnetic field parallel to a light beam
and (also) observed a rotation of linear polarization. Although the Faraday rotation
is not restricted to chiral media, Pasteur thought this to be the origin of chirality.
He decided to grow chiral crystals in an applied magnetic field but his experiments
failed because of the distinctiveness of both effects. Recent work on magneto-chiral
dichroism is inspired by Pasteur’s unsuccessful experiments [36].

In 1874, Joseph A. LeBel (1847–1930) and Jacobus H. van’t Hoff (1852–1911) indepen-
dently proposed “asymmetric carbon atoms” as basis for molecular chirality [37, 38].
This argumentation also extended the explanation of Pasteur’s former experiments
with tartaric acid.

14 years later, Friedrich Reinitzer (1857–1927) and Otto Lehmann (1855–1922) col-
laborated to understand Reinitzer’s cholesterol derivatives [39]. Reinitzer observed a
color change in cholesteryl benzoate. Moreover, the sample showed the unusual be-
havior that it melts to a “cloudy” liquid and, at higher temperature, melts again to a
clear liquid. In between these phases, the sample turned blue (this blue phase will be
discussed in chapter 3). He contacted Otto Lehmann for help with the explanation.
Later on, this meso-phase between crystals and liquids was called “liquid crystals”.
They are a prominent example of chiral materials because they can arrange in a heli-
cal manner and reflect circular polarization selectively. In the 1970s they became an
industrial product because of the possibility to tune their arrangement electrically.

In the year 1893, Lord Kelvin (1824–1907) defined chirality (published later in [6]).
Only five years later, in 1898, the first artificial chiral medium was investigated.
Acharya J. C. Bose (1858–1937) successfully tried to imitate natural optical activity
with twisted jute [9]. Bose’s experiments were performed in the microwave regime.

Since 1901, the Nobel Prize is annually awarded for achievements in chemistry,
medicine, physics, literature, and peace. In the first three disciplines, the honor-
able prize has been awarded several times for work connected with chirality. Three
examples:

� Nobel Prize 1954 in chemistry for Linus Pauling (1901–1994): “for his research
into the nature of the chemical bond and its application to the elucidation of
the structure of complex substances” (Discovery of the alpha-helix in protein).

� Nobel Prize 1957 in physics for Tsung D. Lee (*1926) and Chen N. Yang (*1922):
“for their penetrating investigation of the so-called parity laws which has led to
important discoveries regarding the elementary particles” (Discovery of parity
violation in particle physics).

� Nobel Prize 1962 in medicine for Francis Crick (1916–2004), James D. Watson
(*1928), and Maurice Wilkins (1916–2004): “for their discoveries concerning the
molecular structure of nucleic acids and its significance for information transfer
in living material” (Discovery of DNA double-helix).
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Chirality is surely a fascinating topic. Recently, it evolved to be a hot topic in optics
and photonics because it became possible to artificially create chiral structures with
nano- and microfabrication techniques. Structuring on nanoscale allows for new op-
tical technologies, and, as a consequence, a whole research field evolved with the aim
to design and fabricate functional chiral media.

2.2. Polarization optics

Devices to control the polarization state of light are some of the most important
elements in an optical system. Recently, chiral periodic nanostructures have been
introduced as thin-film candidates to mold and control the flow of polarized light
[14–21, 40–44] (see chapter 3). Characterization of the these new materials demands
the knowledge of basic interactions of polarized light with matter. Therefore, the next
sections are devoted to polarization optics.

2.2.1. Eigenstates of polarization

Polarization of light was discovered by Louis Malus (1775–1812) at the end of the
year 1808 [45]. Malus used a doubly refracting crystal to follow the path of light,
reflected from a window. In this experiment, he found different intensities for different
orientations of the crystal. At a certain angle (Brewster’s angle), the reflected light
can be completely extinguished. Ever since, polarization is considered as one of light’s
fundamental properties. First, what is light?

Vectorial nature of light

Light can be described as an electromagnetic wave or a stream of discrete photons. In
the context of this thesis, the wave character of light is the best choice to explain the
underlying physics. Therefore, we describe light as a transverse wave which fulfills the
wave equation derived from Maxwell’s equations. The vectorial nature of these light
waves defines their polarization (see, e.g., [46]).

To introduce the eigenstates of polarization to the reader, we investigate the course of
the electric field ~E traveling in a linear, non-dispersive, homogeneous, isotropic, and
source-free medium.3 In this case, the electric field ~E satisfies Maxwell’s equations if
each of the components fulfills the following wave equation:

∇2u− 1
c2
∂2u

∂t2
= 0 , (2.1)

3Here, we set the derivation of the wave equation aside because a more general version for photonic
crystals is discussed in section 2.3.
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Figure 2.3: (a) Elliptical, (b) circular, and (c) linear polarization (observed by a receiver).

where the speed of light in the medium is denoted as c= (εµ)−1/2, ε is the electric
permittivity, and µ is the magnetic permeability of the medium. One well-known
solution of the wave equation (2.1) is a monochromatic plane light wave with angular
frequency ω and the z-component k of the wave vector that can be written as

~E(z,t) = x̂E0x cos(kz − ωt) + ŷE0y cos(kz − ωt+ φ) , (2.2)

where x̂·ŷ = 0. φ corresponds to the phase retardation between both field components
and vph = ω/k to the phase velocity. The wave travels in positive z-direction. The
vectorial nature of the electric field ~E is directly related to equation (2.2). By choosing
different values of amplitudes E0x and E0y and phase retardation φ, we can introduce
common cases of polarization (shown in Fig. 2.3).

Linear and circular expansion basis

Generally, the tip of the electric field vector lies on the ellipse

E2
x

E2
0x

+
E2
y

E2
0y

− 2cosφ
ExEy
E0xE0y

= sin2φ . (2.3)

This state is called elliptical polarization. An important special case of an ellipse is
a circle. For a circle, the phase difference has to be φ = ±π/2 and, moreover, the
amplitudes need to be equal, i.e., E0x = E0y. Hence, we obtain:

~ECP(z,t) = E0[cos(kz − ωt)∓ sin(kz − ωt)] . (2.4)

Here, “CP” indicates circular polarization.

If φ = −π/2, the field vector at a fixed z-position rotates clockwise when observed by
a receiver.4 This polarization is called right circular polarization (RCP) (illustrated

4We would like to mention that, in a different convention, circular polarization is defined in the
opposite way (when observed by the source).
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Figure 2.4: (a) Right(-hand) circular polarization (RCP): Ex and Ey have the same ampli-
tude but a phase retardation of φ = −π/2. The tip of the electric-field vector
follows a right-handed helix. At a fixed z-position, one detects a clockwise circle
(when observed by a receiver). (b) Linear polarization: The waves have the same
amplitude and are in phase.

in Fig. 2.4(a)). For φ = +π/2, it rotates counterclockwise and the polarization is said
to be left circular (LCP). If one follows the tip of the electric field vector, RCP (LCP)
creates a right-handed (left-handed) helix.

The case of linear polarization is depicted in Fig. 2.4(b). Both components Ex and
Ey are superimposed to the linear polarization state of the electric field, ~ELIN, that
reads (for φ = 0)

~ELIN(z,t) = (x̂E0x + ŷE0y) cos(kz − ωt) . (2.5)

It is called linear because the resulting vector will always be on one line (when observed
by a receiver). Linear polarization also results for φ=±2nπ (in-phase) and φ=±(2n+
1)π (out-of-phase), n ∈ Z.

Linear and circular polarization are commonly used in polarization optics. First,
both are an expansion basis and can always generate arbitrary polarization states by
superposition. Secondly, in light-matter interactions, the eigenstates of polarization
are often connected with the matter structure, and it turns out that linear and circular
polarization often fit well to explain the effects. For example, for natural optical
activity, circular polarization is typically used as eigenstates because the response
can be described by a simple phase retardation of LCP and RCP. In this case, the
medium does not convert from the circular to linear basis, i.e., it “provides” circular
eigenstates.
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Table 2.1.: Examples of Jones vectors representing the polarization state of light.

Polarization Jones vector

Linear in x-direction ~J =

(
1

0

)

Linear in y-direction ~J =

(
0

1

)

Right circularly polarized ~J = 1√
2

(
1

−i

)

Left circularly polarized ~J = 1√
2

(
1

i

)

Jones formalism

Jones calculus is very convenient as mathematical representation for polarization.
Jones vectors ~J are denoted as

~J =

(
Ex

Ey

)
(2.6)

and are usually normalized such that |Ex|2 + |Ey|2 = 1 holds. Polarizations ~J1 and
~J2 are orthogonal if their inner product ( ~J1, ~J2) =Ex1E

∗
x2+Ey1E∗y2 disappears. Or-

thogonal Jones vectors are an expansion basis and can always generate arbitrary
polarization vectors by superposition. Table 2.1 contains some examples for Jones
vectors. Obviously, RCP and LCP form an expansion basis.

If light passes through a linear optical system, matrix optics allows us to determine the
Jones vector behind the system. The matrix is called Jones matrix T̂ (2×2 matrix),
and the input and output waves are connected by the relationship (2.7):

~J2 = T̂ ~J1 =

(
T11 T12

T21 T22

)
~J1 . (2.7)

As an example, we consider an optical system that has circular eigenstates. This
system should be transparent for LCP but completely opaque for RCP. Corresponding
optics might be called “circular polarizer” and are associated with Jones matrix (2.8):

T̂ =
1√
2

(
1 −i

i 1

)
. (2.8)

More polarizing systems, as well as wave retarders, can easily be described with Jones
matrices. Other approaches to represent polarization like the Poincaré sphere, Stokes
parameters, or Mueller matrices will not be discussed here (for details see, e.g., [46]).
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2.2.2. Basic interactions of polarized light with matter

The geometrical structure of an optical system can affect the polarization of light as
it passes through. These effects are named linear if the linear basis of polarization
is chosen as the eigenstate; and circular if circular polarization is the best choice for
the description. The most simple example for a system which can be described by a
linear basis of polarization is a crystal with one optical axis. For chiral media, circular
polarization is used as expansion basis.

Linear dichroism and birefringence

The term dichroism is derived from the Greek word dichroos and means two colors.
Linear dichroitic materials selectively absorb one of the two orthogonal linear eigen-
states of light. One of the best known examples is the linear dichroitic semi-precious
stone tourmaline. Some forms of tourmaline change their color when viewed in dif-
ferent crystal directions. One optical axis of the stone absorbs an incident light wave
strongly when the electric field plane is parallel. In comparison, the component per-
pendicular to this axis is absorbed very weakly. This optical asymmetry allows for
using dichroitic substances as linear polarizers.

Absorption bands in the visible spectral region obviously lead to different colors for
different crystal directions, explaining why the effect has been named dichroism.5

However, this optical property is neither restricted to the visible region nor to natural
crystals. A wire-grid polarizer is a man-made dichroitic device. Here, the relevant axis
is along the metallic wires. If the electric field is parallel to the wires, a current can be
induced and light is absorbed. Obviously, one expects less absorption for an electric
field perpendicular to the wires. Such wire-grid polarizers have been used by Heinrich
Hertz (1857–1894) for his epoch-making experiments on electromagnetic waves (in
Karlsruhe, 1887). Nowadays, commercial wire-grid polarizers cover wavelengths from
2 µm to 30 µm, have high transmission and high extinction ratios.

Dichroism is just one side of the medal. Generally, a substance which possesses two
different refractive indices is said to be birefringent.6 Birefringence and dichroism
can be described with the Lorentz oscillator model. This simplest picture of atom-
field interactions is schematically shown in Fig. 2.5(a). The Lorentz oscillator model
allows for the derivation of the refractive index, which reads in case of non-magnetic
dielectric material (e.g., tourmaline or calcspar)

n(ω) =
√
ε(ω) =

√
1 +

n0q2e
ε0me

1
ω2

0 − ω2 − iγω
. (2.9)

Here, n0 corresponds to the oscillator density, qe to the elementary charge, me to the
electron mass, γ to the factor of attenuation, and ω0 to the resonance frequency of the

5For crystals with two relevant optical axes, the effect is called trichroisms.
6Biaxial birefringence is also called trirefringence.
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Figure 2.5: (a) Lorentz oscillators serve as model to derive the refractive index of birefringent
media. (b) Schematic plots of the refractive index in different directions. The solid
lines show the real part of the refractive index, whereas the dotted lines correspond
to the imaginary part. Adapted from [46].

mass-spring system [46]. We model a birefringent system with springs which have the
same oscillator strengths and attenuations in y- and z-direction, but different values in
x-direction. Therefore, the response will dependent on the spatial direction resulting
in different refractive indices, i.e., ny =nz 6=nx. According to Fig. 2.5(b), frequency
ωa corresponds to a region where the material is purely birefringent. Whereas at
frequency ωb, the imaginary part of the refractive index for the y- and z-direction is
not negligible anymore. Since the absorption band for the other direction is at higher
frequencies, a material with this property is said to be dichroitic.

When x is the axis of anisotropy, one also names the parallel refractive index nx ex-
traordinary. ny and nz are the indices perpendicular to the axis of anisotropy and are
called ordinary. Consequently, if an unpolarized light wave impinges onto birefringent
material in an oblique angle to the axis of anisotropy, light can be separated in two
polarized waves: The ordinary and the extraordinary wave. The first experiences one
refractive index and is just transmitted. However, due to different wave velocities
perpendicular and parallel to the slanted optical axis, the light wave can also experi-
ence both refractive indices. Therefore, this extraordinary wave will be refracted in
another direction compared to the ordinary wave. This leads to a beam displacement
which can potentially be used to create polarized light.
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Circular dichroism and birefringence

When dealing with chiral media, circular eigenstates of light are usually used for
the description of the effects. Chiral materials provide different (complex) refrac-
tive indices and, therewith, different propagation speeds for LCP and RCP. This
phenomenon is called circular birefringence. In analogy to the case of linear effects,
circular dichroism and circular birefringence can occur separately or at the same time.

Figure 2.6: (a) Linear polarization (dark gray) is superimposed by RCP (light gray) and LCP
(cyan blue). (b) Circular dichroism: Half of RCP is absorbed resulting in ellipti-
cally polarized light. (c) Circular birefringence: The phases of LCP and RCP are
retarded relatively to each other because of different propagation speeds. Linear
polarization is rotated when passing through a birefringent media.

If light impinges on a chiral medium and one of the circular polarizations is more
absorbed than the other, this medium is said to be circular dichroitic. If linear polar-
ization impinges circular dichroitic media, the transmitted wave is generally elliptically
polarized. As depicted in Fig. 2.6(b), the amplitudes of RCP and LCP are different
because of different absorption (here, 100% LCP is transmitted but only 50% RCP).
The shorter (longer) semi-axis of the resulting ellipse corresponds to the amplitude of
RCP (LCP).

How do we observe circular birefringence? We expect a rotation (gyration) of the
plane of polarization of linearly polarized light due to different propagation velocities
of RCP and LCP. Fig. 2.6(c) shows the corresponding case. Here, right-handed light
(shown in light gray) propagates faster than left-handed light (cyan blue) because the
refractive index nRCP is smaller than nLCP. Accordingly, the rotation of the plane is
clockwise. In this case the absorption is completely neglected.7

7The combination of both effects, circular dichroism and birefringence, manifests in a rotation of
the semi-axis of the resulting ellipse.
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Gyration or rotation is linked with the structural arrangement of the material. There-
fore, chiral media can be characterized by the rotation of linear polarization. Optical
activity has a long history in optics as manifestation of chiral molecules and is dis-
cussed in the next section.

Optical activity

The origin of optical gyration is the (molecular) asymmetry of the optical active
materials. Parity symmetry is broken in chiral molecules. Therefore, a measurement
of optical active media can be used to characterize properties of chiral substances.
In a typical experiment, chiral media are classified by the direction one has to turn
a previously crossed analyzing polarizer to obtain minimal transmittance again. A
substance that turns left, as seen from a receiver, is called left-handed. Right-handed
media turn the plane to the right.

The theoretical description of natural optical activity is complex and has to be ex-
plained with quantum mechanics. However, we want to give some simple equations
that will be helpful for later chapters of this thesis. Incident linear polarization can
be written as superposition of the electric fields, ~ERCP and ~ELCP,8 that read

~ERCP(z,t) =
E0

2
[x̂ cos(kRCPz − ωt) + ŷ sin(kRCPz − ωt)] , (2.10)

~ELCP(z,t) =
E0

2
[x̂ cos(kLCPz − ωt)− ŷ sin(kLCPz − ωt)] . (2.11)

For a fixed frequency ω, it holds: kRCP = k0nRCP and kLCP = k0nLCP. Trigonometric
theorems allow for the following derivation:

~E(z,t) = ~ERCP(z,t) + ~ELCP(z,t)

= E0[cos((kRCP + kLCP)
z

2
− ωt)]

·
[
x̂ cos((kRCP − kLCP)

z

2
) + ŷ sin((kRCP − kLCP)

z

2
)
]
. (2.12)

Suppose a linearly polarized light wave enters the material (z= 0) and is polarized
in x-direction. By looking at the equations (2.10)–(2.12), it is clear that the time
dependence of both components is not changing along the way. The resulting wave
remains linearly polarized all the time. However, it is dependent on the spatial coordi-
nate. The oscillation plane rotates proportional to the distance d, which corresponds
to the material thickness. If the rotation angle β is positive (negative), the medium is
right-handed (left-handed). By analyzing equation (2.12), one can derive the turning
angle:

β = −(kRCP − kLCP)
z

2

= (nLCP − nRCP)
πd

λ0
. (2.13)

8Note the different normalization in section 2.2.1.
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If nLCP > nRCP, the medium is right-handed; and if nRCP > nLCP, the medium
is left-handed. An example for optical active material which does not show linear
birefringence is NaClO3. The rotation angle is typically given per mm of sample
thickness and reaches a value of β= 3.1°/mm for NaClO3. Values are usually measured
by using yellow light of a sodium lamp (e.g., D-line: λ= 589 nm) and atmospheric
pressure.

Faraday effect

The Faraday effect allows achiral structures to act as if they were chiral. More gen-
erally, this is possible under the influences of external fields (mechanical, magnetic,
electric etc.). If rotating effects take place (without absorption), the following material
equation can be derived:

1
ε0
Di = ε′ijEj + i( ~E × ~g)i . (2.14)

External fields, like an electrical field E0, a magnetic field H0, or a mechanical tension
field e0 are responsible for the gyration vector ~g, for which the components can be
written [47]:

gi = γijkj (Optical activity)
+ ζijH

0
j (Faraday effect)

+ γijkκjE
0
k (Electro-gyration) (2.15)

+ γijkmκjE
0
kH

0
m (Magneto-electro-gyration)

+ γijkmκje
0
km (Elasto-gyration) ,

where kj is jth component of ~k-vector and κj is equal to kj

|~k|
. The material parameters

are summarized with ζ and γ.

As an implication, substances without natural chirality can also turn the polarization
plane. Importantly, the magneto-optical Faraday effect breaks time-reversal symme-
try (i.e., reciprocity). In contrast, natural optical activity origins in the breaking of
parity symmetry.

The convention of the Faraday effect is that a positive constant of a diamagnetic
material rotates linear polarization in the direction of a right-handed screw if the
propagation of the light field is parallel (antiparallel) to the magnetic induction [48].

The theoretical description of the Faraday effect is again complicated. However, we
want to give a descriptive classical explanation: Suppose, electrons are bound elas-
tically, and the electric field vector moves on its helical trajectory. Because of the
magnetic field, a force affects the movement of the electrons. This force will point to
the helix axis or away from it, depending on the magnetic field and the polarization.
This will lead to different polarizabilities and, thus, to different refractive indices for
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Figure 2.7: Illustration of the Faraday effect: The plane of linear polarization is rotated while
passing the medium. A parallel magnetic field and a positive Verdet constant lead
to a rotation in the direction of a right-handed screw.

circular polarization. For an applied magnetic induction B and a travel distance d,
the rotation angle is given by

β = V(ω,T )Bd . (2.16)

The Verdet constant V(ω,T ) is a material parameter and depends on frequency and
temperature. An example: With a given magnetic induction B of 1 Tesla, water can
rotate linear polarization about an angle of 2°/cm.

Nevertheless, the induced circular birefringence in the Faraday effect is clearly gov-
erned by the direction of the magnetic field. Double-passing through Faraday material
results in the doubled rotation angle, whereas in natural circular birefringent media,
the rotation is effectively canceled. The non-reciprocal character of the Faraday effect
originates from the static magnetic field that points always in a tagged direction, i.e.,
parallel or antiparallel to the propagation of light. This aspect is distinct to natural
optical active substances that are reciprocal. The reason for the reciprocal response
is that the handedness of a helix is fixed if observed by a receiver or by the source.

There is a set of applications for magneto-optical effects. One important example is
the Faraday optical isolator. Typically, commercial Faraday isolators will suppress
light on the way back by 4 orders of magnitude and are employed to reduced feedback
in a laser cavity. Its first component, a linear polarizer, is followed by a Faraday
element and an analyzer. If light is horizontally polarized, it is rotated by 45°. The
analyzer should be adjusted so that transmission is maximum (i.e., 45° with respect to
the polarizer). Since on the way back, the plane of polarization is turned by another
45°, the polarizer will block the light and reduce feedback.
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2.3. Photonic crystals

Light-matter interaction is of fundamental importance in physics. Accordingly, pos-
sible manipulation of light with matter and matter with light has been investigated
by many research groups all over the world [49]. This effort has lead to numerous
scientific advances. Lasers, fiber optics, DVDs, and the entire field of photonics are
just some of the everyday uses based on these principles.

Many scientists have contributed to the research on the control and manipulation of
these interaction processes. More than 20 years ago, an intellectual milestone has
been reached: The proposal of photonic crystals to mold the flow of light. The vision
is to design and modify the density of states of the radiation field to control, e.g., the
spontaneous emission of materials embedded within the photonic crystal.

Ever since the pioneering work of Eli Yablonovitch and Sajeev John has been published
[11, 12], extensive theoretical investigations have revealed unique optical properties
of photonic crystals. Modern micro- and nanofabrication methods meet the high
demands on quality and uniformity. The field of photonic crystals is mature but still
evolving rapidly. The status is reviewed in more comprehensive articles [50].

In the next section, a basic theoretical description of photonic crystals is presented. In
order to understand the fascination of this class of materials, basic optical properties
are discussed in section 2.3.2. Methods used for fabrication are presented later in
chapter 3.

2.3.1. Theoretical description

Periodic arrays of materials with different refractive indices are called photonic crys-
tals. The attribute “photonic” indicates that the structural periodicity is on the scale
of the wavelength of the radiation field. For visible light, for example, the lattice
constant does not exceed a few hundred nanometers explaining the high demands on
fabrication techniques.

As depicted in Fig. 2.8, photonic crystals can be classified in three groups: One-
dimensional (1D), two-dimensional (2D), and three-dimensional (3D); depending on
how many spatial coordinates are structured in a periodic manner. In analogy to
ordinary crystals, we characterize them with their lattice constant a. Note that or-
dinary crystals have lattice constants on the order of Ångströms. Photonic crystals
need to consist of at least two materials with different refractive indices (A and B in
Fig. 2.8). A simple example for a 1D photonic crystal is a dielectric mirror consisting
of multiple layers of different materials.

In order to gain more understanding on how the radiation field in a photonic crystal
can be controlled, we have to derive the eigenvalue problem.9

9There are already several textbooks on photonic crystals. For theoretical details, we refer to [51,52].
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Figure 2.8: The dimensionality of the structural periodicity plays a crucial role for the optical
properties. Therefore, photonic crystals are classified in 1D, 2D, and 3D specimens.

Eigenmodes of photonic crystals

The starting point for theoretical considerations are the macroscopic Maxwell equa-
tions in SI units:

∇ · ~D = % (2.17)
∇ · ~B = 0 (2.18)

∇× ~E = −∂
~B

∂t
(2.19)

∇× ~H = ~j +
∂ ~D

∂t
. (2.20)

The free electric charge density % and the free electric current density ~j are associated
with the charge conservation law (2.21):

∇ ·~j +
∂%

∂t
= 0 . (2.21)

However, we can assume that free charges and electric current are absent in dielectric
photonic crystals, hence: ~j= 0 and %= 0. Furthermore, it is reasonable (in our case)
to restrict the discussion on isotropic, non-dispersive, and transparent materials; and
on linear optics. Accordingly, the dielectric tensor ε(~r,ω) is a real scalar and reads

ε(~r,ω) = ε(~r) . (2.22)

As a result, the electric field ~E and the dielectric displacement ~D fulfill the relationship
(2.23):

~D(~r) = ε0ε(~r) ~E(~r) . (2.23)

Because we assume non-magnetic materials, the magnetic induction ~B and the mag-
netic field ~H are related like in free space resulting in equation (2.24):

~B(~r) = µ0
~H(~r) . (2.24)
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The time dependency of the fields is given by:

~H(~r,t) = ~Hω(~r)e−iωt (2.25)
~E(~r,t) = ~Eω(~r)e−iωt . (2.26)

With the relationships (2.23)–(2.26), the set of equations (2.17)–(2.20) changes to:

∇ · ~Dω(~r) = 0 (2.27)
∇× ~Eω(~r) = iωµ0

~Hω(~r) (2.28)
∇ · ~Bω(~r) = 0 (2.29)
∇× ~Hω(~r) = −iωε0ε(~r) ~Eω(~r) . (2.30)

The constants µ0 and ε0 are related to the vacuum velocity of light c0 = (µ0ε0)−1/2.
w corresponds to the eigenangular frequency.

To derive the eigenvalue problem, equation (2.30) has to be divided by ε(~r) and the
rotation ∇× has to be multiplied on both sides. Finally, equation (2.28) needs to be
inserted to find the master equations of the magnetic field:

LH ~Hω(~r) = ∇×
(

1
ε(~r)
∇× ~Hω(~r)

)
=
(
ω

c0

)2
~Hω(~r) . (2.31)

Along these lines, we can also derive the master equation of the electric field:

LE ~Eω(~r) =
1
ε(~r)
∇×

(
∇× ~Eω(~r)

)
=
(
ω

c0

)2
~Eω(~r) . (2.32)

(2.31) and (2.32) are the essential equations for the theoretical description of photonic
crystals.

Solutions of the electromagnetic wave in a photonic crystal can be derived and un-
derstood if we compare known results from solid state physics. Electronic waves in a
periodic potential of ordinary crystals are expanded in Bloch waves. Electronic waves
are scalar, however, the Bloch-Floquet theorem also holds true when dealing with
photonic crystals [51,52], i.e.:

~Eω(~r) = ~E~kn(~r) = ~u~kn(~r)ei~k·~r (2.33)

~Hω(~r) = ~H~kn(~r) = ~v~kn(~r)ei~k·~r . (2.34)

~u~kn and ~v~kn are periodic vectorial functions which are characterized by the wave vector
~k and the band index n and satisfy the equations

~u~kn(~r + ~ai) = ~u~kn(~r) (2.35)
~v~kn(~r + ~ai) = ~v~kn(~r) ; i = 1,2,3 . (2.36)

The periodic “potential” in photonic crystals originates from the periodic dielectric
function ε(~r),

ε(~r) = ε(~r + ~ai) , (2.37)
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where ~ai are the elementary lattice vectors of the photonic crystal. Next, we adopt
the concept of reciprocal lattice vectors ~G:

~G = l1~b1 + l2~b2 + l3~b3 (2.38)
~ai ·~bj = 2πδij . (2.39)

li correspond to arbitrary integers and δij to the Kronecker delta.

Because of the spatial periodicity of the functions, they can be expanded in Fourier
series:

~E~kn(~r) =
∑
~G

~E~kn(~G) · exp(i(~k + ~G) · ~r) (2.40)

~H~kn(~r) =
∑
~G

~H~kn(~G) · exp(i(~k + ~G) · ~r) (2.41)

1
ε(~r)

=
∑
~G

κ(~G) · exp(i~G · ~r) . (2.42)

These expansions (2.40)–(2.42) are inserted in the master equations (2.31) and (2.32)
which results in

−
∑
~G′

κ(~G− ~G′)(~k + ~G)×
{

(~k + ~G′)× ~H~kn(~G′)
}

=
(
ω~kn
c0

)2
~H~kn(~G) (2.43)

−
∑
~G′

κ(~G− ~G′)(~k + ~G′)×
{

(~k + ~G′)× ~E~kn(~G′)
}

=
(
ω~kn
c0

)2
~E~kn(~G) , (2.44)

where ω~kn denotes the eigenangular frequency of the fields.

These are the sets of equations that are solved numerically to derive the dispersion
relation of the eigenmodes — the photonic band structure. These band structures
can been viewed as an analogue to the electronic band structure, i.e., a lot of known
properties can be transfered from solid state physics to photonics.

In the early days, the field of photonic crystals was mainly driven by excellent theoret-
ical work. Experimentalists had to deal with the high demands on the fabrication side
— for the communication market, the properties of the fabricated structures should
be at the near-infrared spectral range (1.55 µm) leading to lattice constants well below
1 µm. Fabrications methods are discussed in the context of artificial chiral materials
in chapter 3.

2.3.2. Basic properties of photonic crystals

Photonic crystals allow to design the electromagnetic vacuum. The density of states
of the radiation field D(w) is the parameter which is accessible by tailoring the di-
electric structure in man-made crystals. As derived in the previous section, photonic
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Figure 2.9: The first bands of the dispersion relation ω(k) of a 1D Bragg stack. The gray region
corresponds to the reflection band (or stop band). At the edge of the Brillouin
zone, the group velocity is zero and standing waves occur leading to higher or
lower energy of the modes.

crystals provide a dispersion relation ω~kn for photons, in strong analogy to semicon-
ductors. This band structure depends on the periodic dielectric constant ε(~r), hence,
will change for different designs. Certainly, the dimensionality of the photonic struc-
tures also plays a crucial role. Photonic crystals can be considered as “semiconductors
for light” and possess a variety of fascinating properties presented in the next sections.

Photonic band gap

Lord Rayleigh (1842–1919) was the first who theoretically studied dielectric multilayer
systems in 1887 [53]. These 1D photonic crystals are often called distributed Bragg
reflectors, having a reflection band at

2na = mλ , m ∈ Z (2.45)

where a the lattice constant, n the effective refractive index of the 1D system, and λ
the wavelength of the electromagnetic radiation.

The dispersion relation can be easily derived for the 1D case [51]. In Fig. 2.9, a
sketch of the first two bands of ω(k) is shown. Reflection occurs at the gray spectral
region, which is also called stop band. Light waves in this region will exponentially
decay when entering the photonic crystal. In an easy-to-understand description, the
standing waves at the edge of the Brillouin zone peak in the high-index material ε1
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Figure 2.10: The square-spiral architecture is depicted as an example for photonic-band-
gap materials. A complete gap with gap-to-midgap ratio of 15.2% (23.6%) for
the direct (inverted) structure has been predicted (assumed dielectric contrast
∆ε= 11.9). Reproduced with permission from reference [54].

or in the low-index material ε2, leading to a lower or higher energy. The width of the
stop band is obviously a function of the dielectric contrast (∆ε= ε2 − ε1).

However, full control over the dispersion relation can only be achieved by tailored
3D photonic crystals. 3D architectures can possess a complete photonic band gap —
a frequency region without photonic states for all crystal directions. Its bandwidth
correlates with the dielectric contrast that has to be relatively high. Light in this
spectral band is not able to enter the crystal, as there are no photonic states available.

Over the years, several photonic-band-gap materials have been proposed. The fa-
mous layer-by-layer woodpile structure [55] (necessary index contrast ∆n ≥ 1.9) or
the circular-spiral structure are just two examples of several architectures [56]. In
Fig. 2.10, Sajeev John’s proposal of square spirals is illustrated [54]. This design con-
sists of helices with a square cross section arranged on a tetragonal lattice. The band
structure has been calculated with the plane wave expansion method (just explained
in the previous section) and is depicted in Fig. 2.10. The dispersion ω(k) is given in
units of the lattice constant a and plotted over the relevant Bloch vectors. The gap-
to-midgap ratio is 15.2% (23.6%) for the direct (inverted) structure made of silicon.
We have picked that example because of the chirality of the square-spiral structure.
Importantly, the complete photonic band gap is not depending on the polarization.
The handedness of the crystals has so far no influence on the photonic gap.
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Band structure calculations

Today, commercial or free simulation software is often used to compare experiments
and theory. A prominent example is the MIT Photonic-Bands (MPB) package. In
2001, these block-iterative algorithms for computing eigenstates for periodic dielectric
systems using a plane-wave basis was published by Johnson and Joannopoulos [57].
The authors provide a free program code on the web and many groups use it to
describe and design their structures. Photonic band gaps can be predicted with band
structure calculations and the mode profile can give a good hint for the functionality
of the investigated structure. However, there is still a huge demand for new theoretical
work. High-index structures or dispersive materials like metals are very hard to handle
numerically and the convergence of results has to be approved.

Interfaces of photonic crystals

If one is interested in a real transmittance experiment with finite photonic crystals,
interfaces must always be taken into account. Interfaces give rise to refraction, diffrac-
tion, and to surface waves. The symmetry of the Bloch modes is determining if a wave
can couple into the crystal or not.

Therefore, calculating the band structure alone is not sufficient for the comparison
with experiments. Fortunately, there is a variety of approaches allowing for calcu-
lation of transmittance and reflectance spectra of finite structures. In this thesis, a
scattering-matrix approach has been used (explained later in section 5.2).

Scaling law

The band structure is usually given in units of the lattice constant a. This is because
Maxwell’s equations are scalable. The proof can be performed via a relatively simple
scale transformation [51].

The scaling law tells us that the properties of a photonic crystal with a lattice constant
of 1 mm are essentially the same compared to the structure with lattice constant of
1 µm but on a different frequency scale. Experimentally, the scaling is very helpful.
Proof-of-principle experiments can clearly be easier realized on larger scales.

Note that materials are always dispersive and, strictly speaking, the scaling law might
not be applicable. However, there are methods to calculate band structures with
frequency-dependent dielectric constants [51].
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Slow light

As in the case of semiconductors, the group velocity of the eigenmodes can be derived
from the dispersion relation. The group velocity is given by the slope

~vg =
∂ω

∂~k
. (2.46)

A small group velocity can lead to large interaction times between the radiation modes
and the matter system. Optical processes can be enhanced, e.g., stimulated emission
or nonlinear interactions.

Time reversal symmetry

The wave equations are invariant if one changes the sign of the time variable. This
leads to time reversal symmetry of the dispersion relation:

ω−~kn = ω~kn . (2.47)

This fact even holds true if the photonic crystal lacks inversion symmetry. This is an
important statement for chiral photonic crystals, properties of which are distinct from
non-reciprocal effects (e.g., the Faraday effect). Optical isolation in Faraday isolators
is only possible because of the applied magnetic field.10

Defects

Semiconductors are doped to tailor their properties. To achieve functionality in a
photonic-band-gap material, defects can be introduced. Defects may permit localized
modes to exist if they are properly designed to have frequencies inside the photonic
band gap.

For example, point defects can generate a cavity with high Q-factors. The quality
factor Q of the defect mode is defined as:

Q =
central frequency

full width half maximum
=

ω0

∆ω
. (2.48)

Higher Q indicates a lower rate of energy loss relative to the stored energy of the
oscillator, i.e., light is trapped in the gap. However, well-chosen (line-)defects can
guide the light through the crystal. 90° bends in (2D) photonic crystal waveguides
are possible with remarkable 98% transmittance [58].

Defects have to be properly designed, and the input and output to photonic-band-
gap materials (especially in 3D) are still very challenging tasks. Nevertheless, from a
theoretical point of view, 3D photonic crystals are a nice playground for new optical
technologies. Hopefully, progresses in fabrication techniques will soon allow to realize
the most promising theoretical proposals.
10Reciprocity is discussed again in chapter 3.
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Examples of 1D, 2D, and 3D photonic crystals

Figure 2.11: Experimental realizations of 1D, 2D, and 3D photonic crystals (corresponding to
Fig. 2.8). The 1D example is a coupled micropillar Bragg cavity system which
has been realized experimentally by means of focused-ion-beam cutting [59]. The
2D case is exemplified by a high-Q nanocavity structure fabricated by using
electron-beam lithography and subsequent etching [60]. The woodpile structure
is a prominent example of 3D photonic crystals [61]. Replicated in high-index
dielectrics, the woodpile structure can possess a complete photonic band gap.
Reproduced with permission from given references.

In recent years, fabrication methods have become more and more advanced. In chap-
ter 3, we want to give an overview of fabrication methods capable to realize chiral
nanostructures. However, in Fig. 2.11, we show one fabricated sample of each crystal
class.

The group of Prof. Kalt in Karlsruhe made use of 1D photonic crystals, also known as
distributed Bragg reflectors [59]. The alternating layers of AlAs (81.6 nm, dark layer)
and GaAs (68.4 nm, bright layer) are disturbed by a λ-cavity (273 nm) with quantum
dots. Molecular beam epitaxy techniques allow for this precision in layer thickness.
In combination with FIB cutting, the group could fabricate successfully coupled pillar
structures and study spectroscopically the coupling behavior in these systems.

In Kyoto, the group of Prof. Noda has fabricated 2D photonic crystals employing a
silicon-on-insulator (SiO2) material system [60]. The photonic-crystal slab is produced
by a combination of electron-beam lithography and plasma etching. With a lattice
constant of around 400 nm, the group was able to achieve a cavity quality factor of
600,000 at around 1.55 µm wavelength. The proposal of this ultra-high-Q photonic
double-heterostructure nanocavity is widely used ever since.

Our group in Karlsruhe has fabricated 3D photonic crystals using direct laser writing
(DLW). This versatile fabrication technique allows for arbitrary 3D structuring and is
described in detail in chapter 4. The structure in Fig. 2.11 shows the well-known wood-
pile structure. These polymeric templates can be replicated in silicon by employing
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an atomic-layer-depostion and a subsequent chemical-vapor-deposition process [62].
Woodpile structures made of silicon can possess a complete photonic band gap.

Conclusions

The field of photonic crystals has grown and an impressive progress in the fabrication
methods has been achieved. Theoretical understanding and computations have led
to remarkable advances. Moreover, concepts and methods are transfered and widely
used in different departments. Recent review articles give more insight in this exciting
field of photonic nanostructures [50]. In the next chapter, we discuss a very interesting
subgroup of photonic materials, namely chiral photonic nanostructures.
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3. Photonic nanostructures with a twist

Biological systems are using nanometer-scale architectures to produce striking optical
effects since millions of years [63]. In comparison, the history of man-made structures
is short. A. J. C. Bose fabricated one of the first artificial or synthetic chiral materials
by twisting parallel fibers of jute. In 1898, he reported on the “rotation of plane of
polarization of electric waves by a twisted structure” [9].

Today, modern micro- and nanofabrication methods, advanced chemistry of chiral
molecules, and theoretical understanding contribute to a rapidly evolving research
topic — photonic nanostructures with a twist. The field is driven by observations
of strong optical activity and circular dichroism [10]. Moreover, the possibility to
achieve negative refraction [64,65] or other unusual properties has led to a flourishing
and dynamic field in photonics.

In this chapter, we introduce concepts and methods for architectures with a handed-
ness on sub-micron scale. Structural color in biological systems is a very appealing
starting point. Later in this thesis, we will give a new twist to “nature’s solutions” and
fabricate artificial chiral nanostructures mimicking and improving these “evolutionary
optics” (compare chapter 6).

In section 3.2, a specific chemical system is presented; the blue phase of cholesteric
liquid crystals that has been the inspiration for our results in chapter 7.

Last but not least, a short overview of artificial chiral structures is given in order to
draw comparisons later on. Furthermore, possible fabrication methods and applica-
tions are discussed.

3.1. Structural color in nature

Nature is very colorful. Pigments and bioluminescence have long received scientific
attention. However, structural coloration in biological systems can also be origin of
iridescence in nature. The evolution of structural color escalated contemporaneously
with the evolution of animal eyes in cambrian age (more than 500 million years ago).

Scientific studies of structural color have been around since Robert Hooke’s famous
book “Micrographia” (1665) [66]. Recently, modern imaging techniques have led to
amazing insights in nature’s way to either camouflage or to irradiate, reviewed in
references [63,66–69].

31
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Figure 3.1: (a) Photographs of the beetle Plusiotis gloriosa. Left-hand side: Observed with
unpolarized or left-handed light, the beetle shines in a brilliant green. Right-hand
side: Right-handed light is not reflected. (b) Scanning electron micrograph of the
left-handed chiral nanostructure responsible for the reflection. Reproduced with
permission from reference [5] and [71].

Natural photonic structures are providing inspiration for technological applications:
One can either use the biological system themselves as templates [70] or apply en-
gineering methods to make direct analogues [5]. The variety of natural functional
nanostructures is rather impressive — 1D multilayer reflectors, 2D diffraction grat-
ings, or even 3D photonic-crystal structures have been evolved naturally.

In this thesis, we are devoted to chirality in optics and photonics. It is flabbergasting
that flora and fauna provide chiral building blocks as blueprints. Especially animal
structures show potential as functional chiral optics. In flora, however, there are fruits
that shine blue because of a 1D multilayer photonic crystals [72]. Moreover, cell walls
in plants are made of cellulose (50% of their mass). Cellulose is an optical active
molecule and is able to form parallel microfibrils. In a lot of cell walls a helicoidal
arrangement of these fibrils on sub-micron scale (comparable to liquid crystals) is
mechanically supporting tissues [67].

A very similar helical structure is depicted in Fig. 3.1, where the scarab Plusiotis glo-
riosa is shown [71]. The same beetle has been photographed with different polarization
filters. A green beetle can be observed when using unpolarized or left-circularly polar-
ized light. The green color is lost if right-handed light is impinging. Thus, this scarab
is a chiral reflector. A scanning electron micrograph reveals the substructure, which
is responsible for the reflection [5, 71] — a twisted helical nanostructure. The sense
of rotation of the structure is left-handed leading to reflection of left-handed light.
There are even beetles which incorporate a birefringent layer in between two different
chiral reflectors [73]. This layer acts as half-wave plate and converts left-handed to
right-handed light (and vice versa).

Our designs of chiral photonic crystals presented later in chapter 6 can be viewed as
engineered complements of these biological systems. “Biomimetics” offers fascinating
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Figure 3.2: Microscopic view on liquid crystals in blue phase II. Due to a 3D arrangement of
the chiral molecules, Bragg reflections occur and nearly create an artistic impres-
sion. The ability to alter the optical properties of blue-phase liquid crystals by an
electric field give rise to industrial applications. Reproduced with permission from
reference [75].

possibilities to transfer nature’s solution into man-made functional nanostructures. In
the next section, the chemical system of the liquid crystal blue phase is introduced
that are relevant for our results in chapter 7.

3.2. Blue phase of liquid crystals

Liquid crystals are a mesophase between liquids and crystals and have been discovered
by Friedrich Reinitzer (1857–1927) and Otto Lehmann (1855–1922) in 1888 [39]. They
consist of highly anisotropic molecules, which arrange to minimize their free energy.
This mesophase carries crystal characteristics like birefringence but still flows like
a liquid. A vast variety of thermodynamical stable phases are distinguishable, e.g.,
nematic, cholesteric, or smectic.1

Liquid crystal displays, for example in TV sets and laptops, are known from everyday
life. The cigar-shaped molecules can be aligned by an electric field explaining the
industrial success story of the display technique. In the most simple liquid crystal
display, the nematic phase is twisted by 90° in a helical manner, enclosed in between
two pre-structured glass slides. Herewith, linear polarization can be rotated by 90°.
By applying a voltage, the helix unfolds and, with the help of polarization filters, any
gray level can be adjusted.

Here, we want to focus on the liquid crystal blue phase (BP). The blue phase is indeed
the phase which caught Reinitzer’s attention back in 1888. In Fig. 3.2(a), there is a
microscopic view on the so-called BPII.

1For a comprehensive story about liquid crystals, we refer to textbook [74].
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Figure 3.3: The simple cubic BPII. (a) In a narrow temperature range, the anisotropic
molecules arrange in double-twist tubes. (b) The tubes align according to ther-
modynamics, i.e., the three nearest tubes form the corner (here right-handed). As
a result, the BPII exhibits a simple cubic symmetry. Reproduced with permission
from reference [75].

Over a narrow temperature range (≤2°), highly chiral liquid crystals can arrange in
3D cubic lattices [75–78]. With characteristic lattice constants on the order of the
wavelength of visible light, they give rise to vivid specular reflections (obviously not
only blue light is reflected). The BPII, in particular, is a simple cubic arrangement to
be seen schematically in Fig. 3.3. Thermodynamically, it is favorable for the chemical
system to built up double-twist tubes. Besides the intrinsic chirality of the double-
twisted molecules, a certain handedness results along the tube axis. In Fig. 3.3(a), the
double-twist of the molecules is right-handed, however, the resulting helix along the
tube axis is left-handed. Just try to screw all green molecules into the plane — a left
turn is necessary.

The tubes are stacked to a simple cubic unit cell. Three double-twist tubes can, in
principle, form a left- or right-handed coordinate system, also called corner [75, 76].
It can be calculated that the free energy is minimized if the corner and the helix
along the tube have opposite handedness [76].2 The lattice constants of these cubic
(photonic) crystals are on the order of several hundred nanometers and tunable by an
electric field.

Recently, blue-phase liquid crystals have been stabilized to extend the temperature
range [77,78] making them interesting for the industrial market.3

2Please note that the intrinsic handedness of the molecules is the same compared to the corner.
3Samsung started developing blue-phase displays with an advanced rate of 240 Hz, and they will

presumably be released in 2011.



3.3. Artificial chiral materials 35

3.3. Artificial chiral materials

With the ability to structure materials on a sub-micron scale, fabricated periodic
nanostructures in photonics enable far-reaching control of light propagation and light-
matter interaction [50]. Chiral nanostructures enabled research groups to achieve giant
optical activity and/or circular dichroism [14–21, 40–44]. The observed chiral-optical
effects can be orders of magnitude larger than observed in natural substances, like
sugar solutions.

In what follows, we want to give an overview about concepts and methods in the field
of artificial chiral materials.

3.3.1. Periodic nanostructures for photonics

Nanostructures with lattice constants a on approximately the scale of the wavelength
of the interacting light (λ/a ≈ 1) have already been introduced as photonic crystals
[50]. The examples previously given in this chapter, the beetle and blue-phase liquid
crystals, belong to this class of photonic materials.

Periodic materials with periods of λ/a� 1 are called metamaterials [50]. They allow
to tune the effective optical material parameters such that qualitative new effects
occur. For example, negative refractive index cannot be found in nature but in this
rather new material class of metamaterials [64,65].

Metamaterials turned out to have a huge impact on the optics community, with rev-
olutionary concepts like perfect lenses or invisibility cloaks [79]. However, the term
“metamaterial” is already used in a rather broad context and, sometimes, it is hard
to draw a borderline between them and photonic crystals. Here, chiral periodic nano-
structures are characterized straightforward by their dimensionality.

The role of dimensionality

As a reminder: A 3D object is chiral if its image in a plane mirror cannot be brought
to coincide with the original. If we extent Kelvin’s definition of chirality to 1D and
2D, a comparison with truly 3D chirality would look like Fig. 3.4.

First, in 1D space, two antiparallel vectors are chiral because it is not possible to
superimpose them by translation [80]. Note that angles and rotations are not defined
in 1D, but directions are. Nevertheless, we confess that 1D chiral systems are somehow
“uncommon”.

In 2D, the original and its mirror image are called chiral if they are not superimposable
unless they are lifted from the plane. In a 2D world, this is impossible. Consequently,
when applying the 2D parity operator only one spatial coordinate changes (x,y) →
(x,− y). L-shaped objects are typical examples for 2D chirality.
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Figure 3.4: 1D, 2D, and 3D chirality. (a) An anti-parallel vector is a chiral object in 1D
space. (b) L-shape structures are common examples for 2D chirality. (c) Left-
handed helical structures are not superimposable on right-handed helices. Adapted
from [80].

However, 1D chiral objects are achiral in a 2D and 3D world. 2D chiral objects are
achiral in a 3D world because one can simply turn them around by 180° and match
the original. The same holds true for 3D chiral objects in 4D space.4

Why is the dimensionality important anyhow?

In recent years, a considerable amount of work has been devoted to planar chirality.
Since the vast majority of plano-chiral materials have been fabricated on a glass
substrate, they are often called quasi-planar (see also fabrication methods 3.3.2). In
contrast to the case of 3D chirality, the “handedness” of a plano-chiral object (without
a substrate) changes when viewed from opposite directions with respect to the axis of
chirality. In the 2D case, this direction is normal to the plane of the chiral building
blocks. Since a helix does not change its handedness, optical phenomena like optical
activity do not depend on the direction of the impinging light. In this case, Maxwell’s
equations are invariant concerning the reversal of time, even though chiral structures
lack inversion symmetry (compare to section 2.3).

The change of the “handedness” in plano-chiral objects suggests that electromagnetic
phenomena analogous to the Faraday effect would be possible. It has been reported
that quasi-planar materials break time-reversal symmetry [81]. Ever since the group
of Prof. Zheludev has been published this work, the possibility of non-reciprocity in
these structures has been controversially discussed.

4For a study of chirality in multi-dimensional space, we refer the reader to the article [80].
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(Non-)reciprocity of artificial chiral materials

In optics, polarization elements are often classified as reciprocal or non-reciprocal.
Reciprocity depends on whether their effect on the polarization state of the transmit-
ted light is the same or different for light propagating in the opposite direction. The
vast majority of optics is reciprocal.

Absence of reciprocity in photonics is rare. Inelastic light scattering and nonlinear fre-
quency changing in spatially asymmetric media can lead to non-reciprocal optics [82].
Furthermore, magneto-optical rotation of the plane of polarization is depending on
the propagation direction. Faraday isolators might be the best known non-reciprocal
optical devices. The magnetic field is applied parallel to the propagation direction
of light leading to different traveling speeds of circular polarization for forward and
backward direction (see section 2.2.2).

This behavior manifests in an asymmetric dielectric tensor with off-diagonal elements
proportional to the magnetic field (applied in z-direction) [83]:

ε =


εa +iε2 0

−iε2 εb 0

0 0 εc

+ anisotropic terms . (3.1)

Importantly, ε2 is an odd function of the magnetic field ~H (or the magnetization
~M). If the field is applied parallel to the forward direction, the dielectric tensor

certainly leads to different propagation speed of light when compared to the backward
direction (antiparallel orientation of the field). This results in non-reciprocal behavior
from Faraday media. As a consequence, magneto-optical rotation is distinct from
natural optical activity in (Pasteur) media that belongs to the wide range of reciprocal
effects [82,83]. Magneto-optical rotation breaks time-reversal symmetry. In contrast,
natural optical active substances only break parity symmetry (without an applied
magnetic field).

Controversy arose whether plano-chiral material were non-reciprocal (without an ex-
ternal magnetic field) because they change their sense of rotation when seen from the
one side of the substrate or the other. In 2009, Tretyakov et al. convincingly showed
in reference [84] that any 2D system with metal or dielectric inclusions of any shape
is reciprocal. In 2D, the cross-coupling term due to the chirality parameter between
the electric and magnetic field vanishes. Hence, there is no optical activity for normal
incident plane waves in plano-chiral objects. By using a scattering-matrix approach,
Tretyakov could further show that the optical activity reported by several different
groups was due to coupling with the substrate. The influence of the substrate has
been discussed by other groups as well [85, 86]. Essentially, the substrate turns the
chirality of the system from 2D (planar) to 3D.
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Asymmetric transmission

An asymmetric transmission measurement is not a sufficient proof for an optical de-
vice to be non-reciprocal. Take a simple counter example: A quarter-wave plate
followed by a linear polarizer. Everybody will agree that both elements are reciprocal
optics. However, linear polarization can be measured to have different transmittances
impinging from one direction or the other.

Asymmetric transmission is still a rather mind-boggling optical effect and can also be
observed in quasi-planar chiral materials [87]. However, at the moment, the route to
chirality in nanophotonics is mainly driven by the design and fabrication of real 3D
architectures with high potential for applications.

3.3.2. Fabrication methods

Chirality in nanophotonics relies on the possibility to fabricate optics with a
nanoscaled twist. Fortunately, the field of optics and photonics has seen tremendous
progress of modern fabrication methods throughout the last decades (e.g., thin-film
technologies borrowed from electronics). Several techniques that are able to produce
the necessary twist will be presented next.

Self-assembly of the liquid crystal blue phase

Blue-phase liquid crystals are self-assembled systems. As a mesophase between crys-
tals and liquids, their configuration is strongly dependent on temperature. Cooling
down from the isotropic phase to the chiral nematic phase can lead to three thermody-
namically stable blue phases (BPI, BPII, and BPIII). Liquid crystals are commercially
available for a long time. Recently, special mixtures of liquid crystals [78] have proven
to be stable over a wide temperature range (16°C–60°C) making blue-phase LC dis-
plays interesting for applications.5

Chiral fiber gratings

In 2004, Kopp et al. published a report on chiral fiber gratings [89]. The authors twist
usual glass optical fibers while heating them up in a miniature oven. Their optical
properties depend strongly on the pitch of the fibers, which have recently become
commercially available with sub-micron accuracy of the feature sizes.

5We note that self-assembly mechanisms can produce various chiral systems (e.g., chiral block copoly-
mers [88] or ZnO helices).
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Glancing-angle deposition

Glancing-angle deposition (GLAD) is a combination of oblique thin-film vacuum de-
position and computer controlled motion of a pre-structured substrate [90,91]. With-
out substrate rotation, shadow evaporation leads to growth of columns, which point
to the material flux (birefringent materials result). In combination with a rotating
substrate, separated nanoscaled helical structures can be deposited. The lattice con-
stants are a function of the deposition angle, the spacing of growth seeds, and rotation
speed. Materials that can be deposited with physical vapor deposition are also suit-
able for GLAD, and the complete substrate is structured at a time. Nevertheless,
pre-patterning of the entire substrate is necessary and the shadow evaporation tech-
nique clearly leads to constrictions in possible structural designs.

Holography

Holographic laser lithography allows for a greater variety of structures. Here, the
idea is to create 3D interference patterns to expose a photosensitive material, which
is developed afterward. Intensity profiles with a chiral basis and even spirals (helices)
have been calculated. Corresponding fabricated polymeric templates were suffering of
large distortions due to experimental complexity and photoresist shrinkage [16,92]. In
principle, holography enables fast large-area fabrication but with the same intensity
pattern on the entire substrate. Since the experimental adjustment of laser intensity
and phase is a complicated task, holography lacks of flexibility.

Electron-beam lithography

Compared to laser holography, electron-beam lithography is a flexible method for rapid
prototyping. Feature sizes well below 50 nm are achievable by using an electron beam
to expose a thin polymeric resist on a substrate (e.g., 20 nm of PMMA). Evaporation
of dielectrics or metals and subsequent lift-off of the polymer is a common process.
2D chiral structures like L-shapes are easily accessible with electron-beam lithography.
To enhance chiral effects, a planarization process with a spin-on dielectric has recently
been employed for nanostructures [93,94]. Multiple different layers can be stacked on
top of each other leading to 3D chirality. This serial process is very time consuming,
however, it has been demonstrated with high alignment accuracy. Very large optical
activity has been measured, e.g., for twisted crosses [94].

Direct writing techniques

Direct laser writing is a versatile and flexible method for true 3D lithography [95].
We will explain pros and cons of this technique in the following chapter 4 since it has
been employed as fabrication method in this thesis.



40 3. Photonic nanostructures with a twist

3.3.3. Applications

Research in applied physics is intended for a particular technological or practical use.
Hence, possible applications are often the motivation for physicists working in the
field. With their sensibility to the polarization state of light, chiral nanostructures
are potential candidates for several future uses.

Photonic-band-gap materials

Photonic crystal research is motivated by the revolutionary concept to design the
density of photonic states in 3D photonic-band-gap materials. To gain full control
of the flow of light, several architectures with a complete band gap have been pro-
posed. In this context, circular-spiral and square-spiral photonic crystals [14,41] have
been introduced as chiral designs with a full band gap if the refractive index con-
trast is sufficiently high. Square spirals made of silicon, which come close to the
original proposal, have been fabricated by using GLAD [15]. However, functionality
comes with incorporated defects. For example, Sajeev John theoretically proposed
a (chiral) 3D-2D-3D photonic crystal heterostructure as single-mode, lossless, optical
micro-circuitry for integrated optics [43]. All optical micro-circuitry based on light
localization in a photonic-band-gap microchip is definitely one of the central goals in
the field of photonics [50].6

Circular polarizers

Theoretically proposed by Prof. Chan, a polarization stop band along the helical axis
of circular-spiral photonic crystals can occur — a frequency region without photonic
states for one of the orthogonal circular polarizations [18]. The authors have calcu-
lated the band structure and transmittance/reflectance spectra for high-index-contrast
spirals. The calculations have characterized the new design as chiral reflector. Left-
handed (right-handed) spirals reflect left circular (right circular) polarization. The
analysis of the eigenmodes in the gap yields them being predominantly left-handed
(right-handed) for a right-handed (left-handed) spiral, leading to high transmittance
for left circular (right circular) polarization and rendering the architecture as cir-
cular polarization filter. Importantly, circular stop bands also appear in polymeric
structures [19].7

6Prof. Misawa’s group has fabricated defective spiral templates in low-index contrast polymers using
DLW [17]. Yet, the incorporated waveguides were non-functional.

7We note that other chiral structures leading to some form of polarization stop band have also been
realized experimentally using cholesteric liquid crystal structures [74], vacuum deposition [90,91],
and chiral optical fibers [89].
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“Poor-man’s” optical isolators

An optical isolator is an optical component allowing for the transmission of light
in only one direction. It is typically used to prevent unwanted feedback into an
optical oscillator, such as a laser cavity. One can consult chiral nanostructures with
asymmetric transmittance to serve as “poor-man’s” optical isolators for one circular
polarization. A back-reflecting mirror (e.g., the output coupler of a laser cavity)
changes the sign of the polarization and cannot pass the isolator on the way back. As
we have fabricated a “poor-man’s” optical isolator, we discuss results in chapter 6.

Sensors

The porosity of chiral photonic crystals makes them attractive for optical sensing.
Detecting and quantifying various chemical and biological fluids or gases is made
possible by exploring the shift of the polarization stop band. By introducing a planar
defect or a phase defect, one could also detect the shift of the defect mode [42].

A very interesting application could be the sensing of chiral molecules. If the hand-
edness of the chiral nanostructures interfered with the chiral molecules, such a device
would serve as chromatograph.

Chiral negative-index metamaterials

Sir John Pendry proposed a chiral route to negative refraction [44]. The theoretical
concept demands an isotropic chiral metamaterial combined with an electric reso-
nance. Pendry has shown that the introduction of an additional chiral resonance leads
to negative refraction of one polarization. To date, microwave experiments [64,65] have
been demonstrated but the concept waits for realization with nanoscaled metamate-
rials.

Luminescent and lasing devices

Band-edge lasing and defect-mode lasing have been observed in chiral liquid crystals
[42]. At the edges of the stop band, standing waves occur and the interaction with,
e.g., lasing dyes is increased. For defect modes, the suppression of the density of states
is the beneficial factor for lasing action. Corresponding experiments with solid state
GLAD samples have been carried out [21]. Because of the chiral eigenmodes of these
devices, they emit left circular (right circular) if they are left-handed (right-handed).
Clearly, electric pumped lasing with a defined circular polarization can be considered
as major future goal for chiral photonic crystals.
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Inverse Faraday effect and magneto-optical effects

The inverse Faraday effect is the magnetization of matter by circularly polarized light.
The strength of this magnetization is proportional to the intensity explaining the com-
mon use of ultra-fast lasers in literature (e.g., [96]). Chiral photonic crystals and/or
metamaterials (e.g., a metal nanohelix) could also lead to very strong magnetization,
which might depend on light’s handedness.

Recently, magneto-chiral dichroism has been observed [36]. Magneto-chiral dichroism
is a link between the broken parity symmetry of chiral objects and the broken time
reversal symmetry of the Faraday effect: Absorption of an enantiomorph pair of chiral
molecules is different if a magnetic field is applied. Although the effects are supposed
to be weak, a ferromagnetic nickel helix might be a candidate to investigate magneto-
optical effects.

Displays

Driven by the display industry, an enormous research effort has been put in the
development of new types of liquid crystals [97]. The chiral types are role models
for the research on chiral nanostructures since their application as displays has such
an immense impact on everyday life.



4. Direct laser writing

In this chapter, we introduce direct laser writing (DLW), which can be considered
as 3D analogue of planar electron-beam lithography. DLW is based on two-photon
absorption in photosensitive materials allowing for the fabrication of arbitrary 3D
nanostructures with feature sizes smaller than 100 nm [95, 98, 99]. Computer-aided
exposure of a multitude of available photoresists turns DLW to a powerful microfab-
rication technique for a variety of applications — from photonic nanostructures to
scaffolds for biological systems.

In section 4.1, we start by explaining the basic principles of DLW. In the course of
this thesis, we have considerably improved the 3D laser lithography system technically
and conceptionally. In cooperation with Carl Zeiss AG and Nanoscribe GmbH, an
advanced and compact DLW setup has been designed, and several experimental setups
have been realized. The features of these advanced lithography systems are discussed
in section 4.2.

DLW was successfully employed as fabrication method for 3D chiral photonic crystals
(see chapters 6 and 7). Furthermore, we have also collaborated with other students
of our group on several other topics, e.g., on photonic metamaterials. Therefore, we
show some results from different photoresists and present some possible applications in
section 4.3. Finally, we draw conclusions concerning the fabrication of chiral photonic
crystals.

4.1. Concept of direct laser writing

Simultaneous absorption of two (or more) photons provides 3D resolution in mi-
croscopy and lithography. While the concept of two-photon absorption has already
been described theoretically by Göppert-Mayer in 1931 [100], the first experimental
observation of two-photon excitation in CaF2:Eu2+ crystals has been made by Kaiser
in 1961 [101], shortly after the invention of the ruby laser. In the early nineties, pio-
neering experiments on two-photon fluorescence microscopy [102] and 3D optical data
storage [103, 104] paved the way to modern 3D lithography systems. It was in 1997,
when Maruo et al. took the step forward and experimentally demonstrated 3D mi-
crofabrication using photopolymers [95] — now known as DLW based on two-photon
polymerization.

43
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Figure 4.1: A pulsed near-infrared (near-IR) laser is tightly focused into a photoresist sensitive
to near-ultraviolet (near-UV) radiation. The resist shows high optical transparency
at the laser wavelength, which is usually around 800 nm. Precisely in the focal
volume, the photoresist is exposed by two-photon absorption when exceeding the
polymerization threshold of the material. Scanning the sample relative to the focus
enables the polymerization of arbitrary trajectories.

The general idea is to tightly focus a pulsed near-IR laser into a photoresist, which
is sensitive to near-UV radiation while showing very high optical transparency at the
laser wavelength, i.e., one-photon absorption is very improbable. However, in the very
focal volume, the intensity is high enough to induce the simultaneous absorption of
two (or more) photons. By exceeding the exposure threshold of the photosensitive
material, a volume pixel (voxel) is exposed and used as writing tip for arbitrary
trajectories (illustrated in Fig. 4.1).

The shape of the voxel clearly depends on the intensity distribution in the laser fo-
cus, which is determined by several parameters, e.g., the laser mode, the numerical
aperture (NA) of the objective, or the refractive-index mismatch between the resist
and the immersion system. In our case, we typically focus with a high-NA objective
(NA = 1.4) into nearly index-matched photoresists. The focus (voxel) has ellipsoidal
shape with an axial aspect ratio of about 2.7 [61], and the size of the exposed volume
depends on the laser intensity distribution, i.e., the size does change with the applied
laser power.
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The number of absorbed photons na per molecule per pulse is given by:

na ≈
p2
0δ

τpf2
p

(
NA2

2~cλ

)2

, (4.1)

where p0 corresponds to the time-averaged laser power, δ to the two-photon-absorption
cross section, τp to the laser pulse duration, fp to the pulse repetition rate, λ to the
excitation wavelength, c to the speed of light, and ~ is the Planck quantum [102].

150 fs pulses of a laser source with 100 MHz repetition rate and a central wavelength
of about 800 nm are typically focused with a high-NA objective (NA = 1.4) to expose
the resist. The laser power is set to few milliwatts. The cross section δ depends on
the wavelength and is on the order of 20 Göppert-Mayer (GM) at 800 nm wavelength
for commercial photoinitiator molecules (1 GM = 10−58 m4 s).

Notably, a one-photon absorption process of a UV laser could also expose a voxel.
In comparison to one-photon absorption, the great advantage of two-photon micro-
fabrication lies in the strongly reduced proximity effect, i.e., out-of-focus regions are
less likely to exceed the threshold of the resist for two-photon absorption. This is of
utter importance when complex 3D architectures with intersections or small lattice
constants are written.

The voxel is used as writing tip, i.e., by moving the resist relative to the focus, ar-
bitrary trajectories can be exposed. Later on, the polymerization process due to
exposure to the laser light leads to a chemical selectivity between unexposed and ex-
posed volumes inside a developer bath (sometimes a post-exposure thermal treatment
is necessary). Depending on the photoresist, either exposed (positive-tone resist) or
unexposed regions (negative-tone resist) are removed.

Since the introduction of two-photon microfabrication, a flourishing field of research
has evolved. The flexibility and resolution makes DLW attractive for fabricating,
e.g., 3D photonic structures, scaffolds for biology, or micro- and nanofluidic circuitry.
Review articles have recently discussed the materials used for multiphoton fabrication
and their applications [98, 99]. The progress has been immense over the last decade
turning DLW into a standard of 3D microfabrication.

4.2. Advanced setup for three-dimensional laser lithography

In 2007, a cooperation of Carl Zeiss AG and our group was formed in order to improve
the laboratory DLW setups that have successfully been developed in our group [61].
Fortunately, this work has led to the foundation of Nanoscribe GmbH, a young spin-off
of the Karlsruhe Institute of Technology.

Still better, this cooperation was also a scientific success. In the course of this thesis,
we have built up several prototype systems and have extensively used them for a
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Figure 4.2: Scheme of the advanced setup for 3D laser lithography. This blueprint has been
implemented in a compact table-top DLW system (see the photograph 4.3 on the
next page).

multitude of scientific projects [40, 105–113]. Here, we present the advanced system
that took the reproducibility and automatization to the next level.

Experimental realization of direct laser writing

The scheme of our DLW setup is shown in Fig. 4.2. A compact frequency-doubled
erbium-doped fiber laser at fixed 100 MHz repetition rate and sub-150 fs pulses is
used as robust laser source at a central wavelength of 780 nm. The laser power of
around 60 mW is attenuated with help of an acousto-optical modulator (AOM). In
order to take advantage of the high NA of the objective, the beam has to be expanded
before it enters the backport of an inverted microscope. Next, the beam is reflected by
a beamsplitter and focused into the resist (NA = 1.4). The beamsplitter is necessary
for the use of the CCD camera port enabling observation of the writing process.

The key feature of the system is the autofocus. The interface between the substrate
and photoresist can be determined exactly and automatically (accuracy ± 40 nm).
This is very important to ensure that structures are anchored properly to the sub-
strate. Moreover, a tilt correction is possible being essential for 2D structures and
large area structuring. Usually, extensive energy series of the desired structures are
programmed. Therefore, the autofocus is also used to account for tilt or drift. Further-
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Figure 4.3: Photograph of the DLW setup showing the optics box (hiding all optical compo-
nents inclusive of the laser) and the inverted microscope. The entire setup fits on
a 90 cm×90 cm breadboard. Such a system has been employed for the fabrication
of 3D chiral photonic crystals (see results in chapter 6 and 7).

more, the laser power is recalibrated and/or adjusted automatically. All important
features and electric components are addressed by a control software.1

A photograph of the realized advanced DLW setup is depicted in Fig. 4.3. In the back-
ground, there is the optics box which includes the laser and all the optic components
necessary to guide the laser light to the inverted microscope (in the foreground). The
microscope is modified to ensure laser security class 1, and the stages for positioning
are mounted on top of the microscope.

A piezoelectric scanning stage provides the accuracy for patterning the resist with
arbitrary 3D trajectories in a volume of 300 µm×300 µm×300 µm. Additionally, a
different motorized scanning stage can be moved laterally in an area of 10 cm×13 cm.
Using both stages in combination enables fine-structuring with the piezo stage and
subsequent stitching of these volumes with the large-area stage.

In order to pattern larger areas without stitching, the motorized scanning stage can
also be used for the structuring. In this mode, the third dimension can be addressed
by the z-drive of the microscope and/or the piezo allowing for 3D patterning with a
precision within the specifications of the large-area stage.

1The control software has been programmed by Dr. Georg von Freymann.
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Figure 4.4: (a) An area of 4 mm×4 mm has been exposed on a 170 µm thick glass substrate
by stitching with the motorized stage. Finer features have been patterned by the
piezo (oil immersion, NA = 1.4, photoresist: SU-8). (b) Both positioning stages
can be addressed independently. The piezo is mounted on top of a motorized stage
and swung open to reveal the interior of the “writing head” with the objective.

Typical writing process/Computer-aided manufacturing

The choice of a substrate is the next step. To achieve highest resolution, the usual
route is to employ 170 µm thick glass substrates because NA = 1.4 objectives are
immersion systems and corrected to 170 µm cover slips. The glass slides and the
immersion oil have a refractive index of n= 1.518.

The interface between the substrate and the piezo stage is a special designed substrate
holder on which up to 16 glass slides (22 mm×22 mm) are reversibly fixed. The piezo
system moves the substrates relative to the focus as explained earlier. In this serial
process, a volume of 300 µm×300 µm×300 µm can be stitched together.2 Fig. 4.4(a)
shows a test structure which has been written in this manner. The area of 4 mm×4 mm
has been structured with a grating, i.e., with parallel lines with a pitch of 10 µm from
one center of the voxel to the other. The writing speed of the piezo can be 2 mm/s or
even faster. However, for complex 3D structures, it is usually set to about 150 µm/s.

To extend the volume and to increase the writing speed, air objectives with NA≤1
are used. Fig. 4.4(b) reveals the interior of the “writing head” with the objective.
By moving the motorized stage, we have patterned a 20 µm-pitch phase grating with
2 mm/s in an area of 1 cm×1 cm (not shown). Notably, opaque substrates (like, e.g.,
a silicon wafer) have to be flipped, i.e., the resist has to point to the objective.

The programming of the trajectories is usually done with Labview or Matlab. The
software of the system works with the script language “GWL” (General Writing Lan-
guage), in which the trajectories can intuitively been programmed in xyz coordinates,
i.e., data sets like (x1,y1,z1),(x2,y2,z2),...,(xj,yj,zj) are delivered to the piezo stage.

2The maximum axial working distance of the oil objective is 160 µm.



4.2. Advanced setup for three-dimensional laser lithography 49

Figure 4.5: Computer-aided design (CAD) versus scanning electron micrograph (SEM) of a
fabricated miniaturized Eiffel tower (scale of 1:3,400,000).

Computer-aided design (CAD) formats, like “STL” (Standard Triangulation Lan-
guage) and “DXF” (Drawing Exchange Format), can also be imported directly into
the software.

In Fig. 4.5, a miniaturized Eiffel tower at a scale of 1:3,400,000 is shown as example.
The original CAD file has been converted from DXF to GWL and has been written
without any corrections. Nearly all of the fine features of this rather complex ar-
chitecture have been reproduced. The DLW photoresist IP-G has been used for this
example. Details of photoresists and their applications are discussed in section 4.3.

Limits to feature sizes

DLW offers both real 3D control in the fabrication process and sub-100 nm feature
sizes right below the diffraction limit. How is it possible to achieve such a “resolution”
with a DLW system?

The resolution of a conventional imaging system is defined by the diffraction limit [48].
Abbe stated that the minimum distance between two distinguishable point-spread
functions is given by

∆r‖ = 0.6098
λ

NA
. (4.2)

As a consequence, the resolution ∆r is laterally limited to 340 nm when assuming a
wavelength of 780 nm and NA = 1.4.
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Figure 4.6: 2D resolution tests (oil immersion, NA = 1.4, photoresist: IP-G). (a) 300 nm-pitch
grating with a linewidth of about 95 nm. (b) 200 nm-pitch grating with a linewidth
of about 51 nm.

The axial limit can be estimated by

∆r⊥ = 2
nλ

NA2
, (4.3)

to be 1208 nm (for a refractive index n= 1.518). These criteria serve as a rule of
thumb to determine the resolution limit.3

For DLW, the intensity distribution obviously plays a crucial role and high-NA ob-
jectives are employed to achieve highest resolution. However, the “resolution” of the
system is determined by the fabricated structures, i.e., the photoresist itself is of vivid
importance. The material is exposed when the polymerization threshold is exceeded.
To find the smallest features possible, the laser power has to be reduced to the point
where it exceeds the exposure threshold only slightly. The sensitivity of the developer
might also play a role. Moreover, DLW is a serial process and the question arises if
the resist “stores” the dose when two voxels are exposed side by side but with a time
delay. Therefore, besides the diffraction limit, there are also other factors determining
the “resolution” of our DLW system:

� The laser stability at the edge of the exposure threshold might lead to inhomo-
geneities. The use of fiber laser technology is a step towards better stability of
the light source.

� The proximity effect can play a crucial role at crossing points and depends on
the “memory” of the photoresist in our serial process.

� Photoresists usually undergo stress and shrinkage during writing and/or devel-
opment. Therefore, mechanical stability of ultra-fine features is necessary in
complex 3D nanostructures.

3The focal intensity distribution for very similar parameters has been calculated with vector diffrac-
tion theory in reference [61]. The lateral and axial minimum of this distribution is comparable to
∆r‖ and ∆r⊥, respectively.
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Figure 4.7: 3D resolution tests. (a) Woodpile structure with lateral lattice constant of
a= 600 nm. For each 200 nm rod, three trajectories have been written with 65 nm
distance (oil immersion, NA = 1.4, photoresist: IP-L). (b) 80 nm rod in a 3D chiral
photonic crystal (oil immersion, NA = 1.4, photoresist: SU-8).

To check the resolution of the system, we investigate both 2D gratings and 3D wood-
piles. Results are shown in Figs. 4.6 and 4.7, respectively.4 In any case, we have to
connect the structure to the glass surface. For a 2D grating, the focus has to be close to
the interface of glass and resist. The exposed volume and, hence, the actual linewidth
clearly depends on how much of the focus intensity is lost in the non-exposable glass
substrate. The autofocus system of our DLW setup provides the accuracy (± 40 nm)
for reproducible 2D patterning near the glass interface. A special designed photoresist
IP-G is employed to write a 300 nm-pitch grating with lines of around 95 nm width
(compare Fig. 4.6(a)). IP-G has been developed as side project of this thesis (see also
section 4.3). So far, the smallest 2D features in IP-G are found to be 51 nm in a
200 nm-pitch grating. We note that most of the intensity was focused into the glass
in this second 2D example. The lines of the 200 nm grating are also pretty wavy after
development.

To determine the 3D resolution, we consult the woodpile structure [55, 114]. The
lateral lattice constant is set to a= 600 nm. One axial lattice constant consists of 4
layers: The second layer is perpendicular to the first layer, the third is parallel to the
first layer but laterally shifted by a/2, and the forth layer is again perpendicular to
the first layer but laterally shifted by a/2 compared to second layer.

These four layers are stacked with a layer distance of only 212 nm resulting in an axial
period c=

√
2a for a face-centered-cubic (fcc) woodpile. To achieve roundish rods,

three trajectories (with a distance of 65 nm) have been written for each 200 nm rod.
The resulting structure is cut with a focused ion beam (FIB) (shown in Fig. 4.6(a)).
The FIB cut reveals all 24 layers and good overall homogeneity. Photoresist shrinkage
is dominantly axial and measured to be 12.5%. The structure also showed optical
spectra which agreed well with the expectations (compare appendix D).

4Results of other groups can be found in recent reviews [98,99].
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The smallest features in a 3D geometry have been found in a chiral woodpile (the
design is discussed in chapter 6). Here, the used photoresist is SU-8 and rods with
features on the order of 80 nm have been exposed. We note that this structure was
not optically characterized because we have designed its optical properties assuming
a larger filling fraction. It is also doubtful if one could simply scale down the lattice
constants to achieve a proper filling fraction with 80 nm lines because the proximity
effect for very small lattice constants is rather large in SU-8.

In summary, the resolution of DLW is dependent on several factors and can only be
determined by characterization of the resulting structures. To date, for 2D structures,
we consider 90 nm lines with 300 nm spacing as a convincing result. In 3D, the story
is even more complicated because very small features do not necessarily mean that we
can build a structure with very small spacings. In our tests, 600 nm woodpiles have
been fabricated in good quality by building up each 200 nm rod with 3 closely spaced
rods. The right choice of the photoresist is necessary for best results. Therefore,
photoresists and their possible application are presented next.

4.3. Photoresists and applications

The freedom of flexible structuring in all three dimensions on a sub-micrometer scale
is valuable for a variety of research fields:

� In photonics, periodic nanostructures like photonic crystals and metamaterials
mold and control the flow of light. For photonic crystals, the importance of the
third dimension was clear from the beginning [11,12]. The fabricated polymeric
photonic crystals often serve as template for infiltration processes with high-
index materials [62]. The younger field of metamaterials has just started to
explore the new possibilities of 3D architectures. For metallic metamaterials,
the 3D templates have to be metalized [40, 107]. Other applications in optics
and photonics are, e.g., distributed feedback lasers, photonic ring resonators,
optical interconnects, diffractive optics, or mask manufacturing.

� In life sciences, cell studies have long been restricted to 2D templates. Two-
photon absorption allows for fabricating extra-cellular matrices for stem-cell
differentiation or cell-growth studies [115]. Moreover, examination of the Gecko
or Lotus effect need the ability to structure the third dimension.

� Microfluidic devices control confined fluids on sub-millimeter scale and enable
flow control (pumps and valves) or sensors. Recently, lab-on-a-chip devices
for microfluidics received considerable interest integrating several functions on a
chip of some square centimeters. DLW can provide patterning of the gratings for
distributed feedback lasers [116] or a tailored 3D environment with sub-micron
resolution for functional devices on commercial glass chips.
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Table 4.1.: Important parameters of commercially available resists have been evaluated. “Res-
olution” denotes the lateral linewidth we found to be necessary that fabricated
structure and 3D-CAD match. Nevertheless, this linewidth only holds approxi-
mately for arbitrary 2D/3D architectures as discussed in subsection 4.2.

Resist Type Tone “Resolution” Typical thickness Remark

SU-8 Cationic Neg 150 nm 5-100 µm Allrounder

IP Radical Neg 120 nm drop cast Low proximity

As2S3 VAP Neg 200 nm 10 µm High n= 2.45

Ormocere Radical Neg 250 nm drop cast Biocompatible

AZ 5214E Cationic Neg 300 nm 1 µm 2D resist

AZ MiR 701 DNQ Pos 300 nm 1 µm 2D resist

AZ 9260 DNQ Pos 350 nm 10 µm Galvanization

Having a certain application in mind, the right choice of the photoresist is of vital
importance. Basic properties like, e.g., thermal and chemical resistance, etch rates,
mechanical stability, and, importantly, optical transparency must be taken into ac-
count. For chiral photonic crystals, the demands on resolution are intense. Therefore,
we have tested several commercial and self-made photoresists during this thesis to re-
duce feature sizes while maintaining structural quality. In the case of metallic meta-
materials, we have fabricated polymeric templates for metalization with advanced
deposition techniques [40, 107]. Results from these metalized templates are discussed
in the theses of my colleagues.

Here, we present an overview of some of the tested photopolymers and of the photo-
sensitive semiconductor As2S3 (compare tabular 4.1 and Fig. 4.8).5 The basic idea is
to change the resist locally in a way that a developer solves the exposed material at
a very different rate compared to unexposed material. Clearly, two types of resist are
possible: Negative-tone resists having a smaller development rate for exposed mate-
rial, and positive-tone resists having a higher development rate for exposed material.

Basic mechanisms of polymerization

Even though we have tested numerous resists, there are only three underlying ex-
posure mechanisms.6 The negative-tone photopolymers are based on chain-growth
polymerization (radical or cationic), the negative-tone chalcogenide glass As2S3 un-
dergoes a photo-induced bond rearrangement [117, 118], and the positive-tone resists

5All processing steps can be found in the corresponding data sheets of the distributors.
6Notably, other groups have used different resists and/or different photoinitiators [98,99].
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Figure 4.8: Gallery of electron micrographs of some of the tested photoresists (negative- and
positive-tone). Part (f) is reproduced with kind permission of J. K. Gansel.

work with diazonaphthoquinone-(DNQ-)sulfonate inhibitors [40]. We want to give a
small description for each of these mechanisms:

� Chain-growth polymerization is the exposure mechanism of the majority of DLW
resists. Breaking of internal bonds (such as rings) in unsaturated monomers
leads to a chain reaction and subsequent cross-linking of the final polymer. The
chain initiation is the first step, followed by the chain propagation and termina-
tion. This reaction can be started by either radical or cationic photoinitiators
(PI), which are excited by the nonlinear two-photon-absorption process. For rad-
ical polymerization, the excitation leads to radicals beginning the chain-reaction
by breaking the bonds of the monomer. The process is terminated when the rad-
icals react with themselves to a single molecule. Oxygen can also quench the
polymerization process. An alternative mechanism to radical polymerization is
cationic polymerization. Upon excitation, a cationic PI generates a strong acid.
This photoacid breaks the bonds of the monomers and leads to a catalytic chain
reaction. To accelerate the slow chain propagation, baking of the cationic resists
is common. Cationic PIs are often used for polymerizing of epoxides and vinyl
ethers. The unpolymerized parts are dissolved by developers, e.g., isopropanol.

� Photo-induced bond rearrangement in chalcogenide glass As2S3 is explained by
valence-alteration pair (VAP) theory [118]. Two-photon absorption leads to the
generation of a localized exciton. Coupling effects of the exciton and the lattice
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phonons allow for a meta-stable charged defect called VAP. Rearrangement of
the bonds between the atoms during the exciton lifetime leads to the insolubility
of exposed As2S3 in a selective wet etch [105].

� The tested positive resists are based on DNQ-sulfonate inhibitors solved in a
resin matrix (Novolak). DNQ lowers the solubility of the unexposed resist by
one or two orders of magnitude compared to the pure resin. Upon exposure, a
carboxylic acid is generated converting exposed regions into products soluble in
aqueous alkaline. Since Novolak is also soluble, a positive-tone resist results.

It is in fact not surprising that so many resists can be employed for DLW because
the exposure lines of standard UV-lithography resists are around the half of our laser
wavelength (e.g, “i-line” (365 nm) or “g-line” (436 nm)). In the next years, more
reports on DLW resists with superior resolution can surely be expected.

Considerations concerning the fabrication of chiral photonic crystals

Producing a twist on nanoscale requires ultra-high structuring precision for all spatial
coordinates while structural footprints must be large enough for optical transmittance
spectroscopy. To date, these requirements still represent enormous challenges for
nanotechnology. Helical pitches of 1.3 µm and below must be achieved to tune the
chiral resonances in the technological interesting region of about 1.55 µm. Fortunately,
we meet these challenges with DLW as flexible method concerning the fabrication of
chiral photonic crystals.

In order to achieve the necessary precision and rapid production speed, the system
with immersion oil objective and 170 µm glass substrates has been chosen for the
experiments. Next, the cationic negative-tone resist SU-8 is spun onto a glass slide
reaching a thickness of about 100 µm. This photoresist has been found to be a right
choice7 because of good resolution (lateral: 150 nm, axial: 400 nm) and high trans-
parency from the visible to the near-infrared spectral range. Furthermore, a great
advantage of SU-8 is the low change of the refractive index upon exposure, i.e., the
perturbation of the laser focus at crossing points is very small (important for the
results in chapter 7). The refractive index of the polymer is nearly index-matched to
the glass slide (nSU8 = 1.57, nGlass = 1.518). The photonic crystals are programmed to
have typical footprints of about 60 µm×60 µm. In energy series, the deposited energy
and the position on the substrate is changed automatically by using the AOM and
the motorized stage, respectively.

In summary, the degree of automatization and the good resolution of the photoresist
allows for reproducible rapid prototyping of chiral photonic crystals. The next logical
step is the optical characterization of the fabricated crystals explained in the next
chapter.

7The IP-series showed superior resolution due to a small proximity effect. So far, we have not written
chiral crystals into IP resist but smaller features shall be possible in the future.
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5. Optical characterization and numerical
calculations

In the last chapter, DLW has been rendered as an ideal fabrication method for chiral
nanostructures. Electron micrographs have confirmed this statement. Furthermore,
focused-ion-beam cutting has given information about the interior of the 3D samples.
Nevertheless, as this thesis deals with photonic crystals, the characterization is only
complete with the evaluation of their optical properties.

In the first section of this chapter, we therefore present two setups for linear-optical
transmittance spectroscopy to further investigate the quality and functionality of the
fabricated structures. Analyzing the chiral-optical properties demands the control
of the impinging polarized light. Hence, both setups are modified to be ready for
broadband polarization-resolved spectroscopy. Moreover, the comparison of measured
optical transmittance spectra and calculated data of ideal photonic crystals is valuable.
We have chosen the well-established scattering-matrix approach as computational
method for the theoretical characterization and design of the crystals. Principles of
the scattering matrix are explained in section 5.2.

5.1. Polarization-resolved spectroscopy tools

The optical characterization tools have to meet several requirements. First of all, our
photonic crystals have typical footprints of 60 µm×60 µm demanding for appropriate
imaging optics in the setups. Secondly, the detectors of the setups need to be sensitive
to near- and/or mid-infrared radiation because the fabricated chiral photonic crystals
have lattice constants between 1 µm and 4 µm (see chapters 6 and 7). Last, we want
to probe the fabricated crystals with circular polarization, i.e., super-achromatic po-
larizing optics are necessary in order to record the entire frequency region of interest
at once.

In the following two sections, we explain spectroscopy tools which meet these require-
ments. The first is a home-built setup for the near-infrared spectral range and the
second a commercial Fourier-transform (FT) microscope-spectrometer for the mid-
infrared spectral range.

57
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Figure 5.1: Scheme of the home-built setup for linear-optical transmittance measurements.
The heart of this setup is a pair of super-achromatic quarter-wave plates,
which convert linear to circular polarization (and vice versa) enabling broad-
band polarization-resolved spectroscopy of 3D chiral photonic crystals. Adapted
from [61].

5.1.1. Setup for measurements in the near-infrared spectral range

For measurements in the near infrared, we used a home-built white-light setup in
combination with a home-built Michelson interferometer sketched in Fig. 5.1. The
setup allows for calibrated transmittance spectroscopy on small-area samples in a
spectral range from 500 to 2200 nm.

The white-light source is a standard 100 W halogen lamp, which is coupled into an
optical multi-mode fiber (OF, 200 µm core diameter). The output is collimated and
sent through a Glan-Thompson (GT) polarizer. To control the polarization state
of the incident light completely, we introduce a super-achromatic quarter-wave plate
(λ/4, Bernhard Halle Nachfolger GmbH) which converts linear polarization to circular
polarization in a spectral range from 600 to 2700 nm. This retarder consists of three
pairs of quartz and MgF2 plates cemented to each other and has a calculated path
difference of λ/4± 0.25%. The orientation of the optical axis only changes by ± 0.1°
in the entire working range. The polarized light is imaged onto the sample and
an aperture ensures an estimated effective half-opening angle of 5°. The sample is
mounted on goniometers being themselves mounted on a rotation stage for angle-
resolved measurements. The transmitted light is collected, filtered in the intermediate
image plane, and a kinematic mirror reflects the light onto a CCD camera in order
to select the correct cut-out of the structure. Afterwards, the mirror is taken out
and light is imaged onto a second multi-mode OF connected to a home-built FT
spectrometer. The nitrogen-cooled InSb detector is sensitive in the spectral range
of 600–2200 nm. Alternatively, the fiber can be connected to a commercial optical
spectrum analyzer (Ando AQ-6315B) reducing the range of the setup to 500–1750 nm
wavelength.
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Figure 5.2: (a) Scheme of the Cassegrain lens, which allows for mid-infrared spectroscopy but
conceptionally demands oblique incidence of light. (b) Nominally normal incidence
with a full-opening angle of about 5° can be achieved by using a pinhole and a
special substrate holder.

An additional pair of super-achromatic quarter-wave plate and polarizer may serve as
analyzing optics to determine the polarization state of the transmitted light. Normal-
ization of all spectra was carried out with respect to the transmittance of the bare
glass substrate. This setup was used for the linear-optical measurements in chapters
6.1, 6.2, and 6.3.

5.1.2. Setup for measurements in the mid-infrared spectral range

The second setup for linear-optical spectroscopy in the mid-infrared spectral range
is a commercial FT microscope-spectrometer (Bruker Tensor 27 with Hyperion 1000
microscope). The nitrogen-cooled Mercury-cadmium-telluride (MCT) detector is sen-
sitive in a range of 1–12.8 µm. The imaging optics of the microscope provide enough
signal to measure footprints on the order of 10 µm over this rather huge spectral band-
width. However, the used Cassegrain objectives (NA = 0.5, 36x) come with a major
drawback: A cone of light with an opening angle between 15°–30° is focused onto the
sample (compare Fig. 5.2 where a slice through the cone is shown). To overcome this
drawback, we modified the reflective Cassegrain optics by introducing a diaphragm
(diameter of 1.5 mm) to reduce the full-opening angle of the incident light. By tilting
the sample by 22.5°, the opening angle was reduced to about 5° with nominal normal
incidence (shown in Fig. 5.2(b)). The reduced signal is still strong enough for fast and
reliable measurements.

Importantly, we custom modified this commercial instrument by constructing polar-
ization optics that could be inserted and that allow broadband transmittance spec-
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troscopy to be carried out with incident circular polarization of light. The heart of
this add-on is a high-extinction wire-grid polarizer (Bruker) and a super-achromatic
quarter-wave plate consisting of 7 single MgF2 plates (cement-free custom optic from
Bernhard Halle Nachfolger GmbH) granting the broadband retardation of λ/4± 14%
in the spectral regime of 2.5–7.0 µm wavelength (orientation of the optical axis ± 6°).
Normalization of all spectra was again carried out with respect to the transmittance
of the bare glass substrate. This setup was used for the linear-optical measurements
in chapters 6.4 and 7.

5.2. Numerical methods

Polarization-resolved spectroscopy allows for the experimental characterization of chi-
ral photonic crystals in the visible to near-infrared spectral region (600–2200 nm) and
mid-infrared spectral region (2700–7000 nm). To further investigate the optical prop-
erties and to rule out experimental artifacts, one performs numerical calculations.

A typical question in the context of photonic crystals is whether the structure has
a complete photonic bandgap. To answer this question, we usually employ the MIT
Photonic-Bands (MPB) package [57] already explained in section 2.3.1. When it comes
to a transmittance experiment with finite photonic crystals, interfaces are always
present. Interfaces give rise to refraction, diffraction, and to surface waves. The
symmetry of the Bloch modes determines if a wave can couple into the crystal or not.
Therefore, calculating the band structure alone is not sufficient for the comparison
with experiments, and we have to find another method.

In this thesis, the well-established scattering-matrix approach has been used, capable
of calculating transmittance spectra of finite-size structures and allowing for direct
comparison with measured spectra [119, 120]. Moreover, the method has been em-
ployed to design new photonic-crystal architectures. This theoretical tool is the last
piece for a complete characterization of our chiral nanostructures. Basic principles
of the scattering-matrix approach are discussed next (for a more comprehensive in-
troduction of this approach and of our program code,1 we refer the reader to refer-
ences [119,120] and [61], respectively).

5.2.1. Scattering-matrix approach

By using this numerical simulation software, we can calculate the transmittance and
reflectance spectra of finite-size photonic-crystal structures taking into account the
angle of incidence and the polarization state of light.

Let us first discuss the typical experimental situation (shown in Figs. 5.2 and 5.3):
The photonic-crystal structure is written on a glass substrate, has a finite number of

1The program code was originally implemented in Matlab by Dr. Stefan Linden.
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Figure 5.3: Scheme of a typical experimental configuration which is simulated by the
scattering-matrix approach. A light wave impinges on the periodic crystal from
the left (vacuum-)side leading to a transmitted and reflected wave. The wave AS

o

which hits the crystal from the substrate-side is set to zero (corresponding to the
experiment).

axial and lateral periods, and is mounted on the rotation stage of the experimental
setup. The electromagnetic light wave with frequency ω and amplitude AV

i impinges
on the interface between vacuum half-space (refractive index nV) and photonic-crystal
structure. Then, we define the reflected wave amplitude AV

o , the transmitted wave
amplitude AS

i propagating into the substrate half-space (refractive index nS), and the
wave amplitude impinging on the photonic crystal from the substrate half-space AS

o

(usually equals zero in our experiments). Such a configuration of a periodic optical
system is usually written mathematically using a matrix formalism. For example,
the waves of vacuum and substrate half-space can be connected with the well-known
transfer-matrix formalism [121]:(

AS
i

AS
o

)
= T̂V,S

(
AV

i

AV
o

)
=

(
T11 T12
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)(
AV

i

AV
o

)
. (5.1)

To reduce the complexity of the problem, we decompose the photonic crystal into
layers, which are periodic in xy-direction and homogeneous in z-direction (shown in
Fig. 5.3). Effectively, we can now solve the lateral problem (2D eigenmodes) and the
resulting fields can be coupled with the fields of the next cell in z-direction via a
interlayer matrix T̂Zn,Zn−1 . Multiplication of all matrices of the optical system leads
to the transfer matrix T̂V,S with the matrix elements Tij . Indeed, the reflected and
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transmitted fields of the finite photonic crystal can be calculated according to equation
(5.1).

However, Ko et al. showed that the transfer-matrix formalism is unstable in their
simulations of resonant tunneling in semiconductor multilayer heterostructures [122].
The reason for the instabilities is the existence of evanescent waves occurring at the
interface between two semiconductor materials. Since the T̂-matrix deals with expo-
nentially decaying and growing waves, numerical instabilities are inescapable at first
sight. Nevertheless, Ko et al. found a solution to the problem by introducing the
scattering-matrix approach leading to converging results [122]. In the publications of
Whittaker [119] and Tikhodeev [120] this approach has been applied to simulate finite
periodic structures for photonics.2

The scattering-matrix formalism (5.2) resembles the transfer matrix (5.1) with an
important difference: While the T̂-matrix connects the amplitudes of the substrate
and the amplitudes of vacuum, the Ŝ-matrix connects the waves, which are incident
(on the photonic crystal) and the outgoing waves:(

AS
i

AV
o

)
= ŜV,S

(
AV

i

AS
o

)
=

(
S11 S12

S21 S22

)(
AV

i

AS
o

)
. (5.2)

Similar to the transfer matrix (mind the change of indices), we deal with layers which
are periodic in xy-direction and homogeneous in z-direction (as shown in Fig. 5.3).
Before actual calculating the scattering matrix, we first employ transfer matrices
again. The transfer matrix within the continuous nth of N cells is denoted as T̂Zn .
Adjacent layers are coupled via an interlayer transfer matrix denoted as T̂Zn,Zn−1 . The
last missing transfer matrices are the ones which couple the substrate to the Nth layer,
T̂S,N , and the first layer to the vacuum half-space ,T̂1,V, respectively. Consequently,
the complete transfer matrix T̂V,S reads

T̂V,S = T̂S,N T̂ZN
T̂ZN ,ZN−1

...T̂Z1T̂1,V . (5.3)

The scattering matrix for M layers ŜM can be calculated with the scattering matrix
for M -1 layers and one inverse transfer matrix for the missing layer. Since an inverse
transfer matrix does not lead to numerical problems, we have found a stable possibility
to iterate the scattering matrix ŜM beginning with the initial condition, that is, ŜV,V =
Î. The scattering matrix finally reads

ŜM =

(
DS11 DB

S2 1 + S22T21DS11 S22T22 + S22T21DB

)
, (5.4)

where B = S12T22−T12, D = (T11 − S12T21)−1, and Sij and Tij are the matrix elements
of ŜM−1 and T̂, respectively.

2Our program code is based on these publications. Notably, other theory groups have also published
on the scattering-matrix approach, e.g. [123].



5.2. Numerical methods 63

Figure 5.4: Decomposition of the photonic crystal in xy-periodic layers. Bragg orders of the
transmitted and reflected waves are observed (only the first orders are shown here).

The discussion of all necessary equations [61, 119, 120] is beyond the scope of this
chapter, however, we want to discuss the influences of the periodicity of the photonic
crystals. From Fig. 5.4, one can easily imagine the periodic surface to be a highly
diffractive interface and one observes different Bragg orders.3 As a consequence, the
electromagnetic field can be expressed as superposition of partial waves with wave
vectors parallel to the surface, ~k‖,m, and wave vectors perpendicular to the surface,
qz,m. An integer number of reciprocal lattice vectors can always be added to the
parallel wave vector ~k‖,m leading to equation (5.5):

~k‖,m = ~k‖,0 + ~G , (5.5)

where ~G = 2π (mx/ax,my/ay) is the reciprocal lattice vector depending on mi ∈ Z.
The absolute value of the z-component of ~k (perpendicular to the surface) can be
expressed as

qz,m = ±
√(w

c

)2
− (~k‖,0 + ~G)2 . (5.6)

These solutions are the wave vectors for the mth Bragg order. In Fig. 5.4, we show the
transmitted and reflected waves of the first Bragg orders as illustration. Real solutions
for qz,m are propagating waves, imaginary solutions are evanescent waves. Latter
solutions are hard to handle because they lead to growing fields in the numerics and,
hence, are the reason for using the scattering-matrix approach. Notably, we cannot
account for an infinite number of reciprocal lattice vectors due to limited computer

3Please compare the theoretical description of photonic crystals given in section 2.3.1.
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resources. Therefore, a cut-off for the maximal Bragg order gmax is defined. Hence,
the numerics only deal with a total number of Ng = (2gmax + 1)2 reciprocal lattice
vectors.

The implementation of the matrices in equation (5.4) allows for the calculation of
the complex fields via (5.2). In particular, we are interested in the transmittance and
reflectance spectra of our photonic crystals which can be expressed by the z-component
of the Poynting vector Sz (for the (0,0) Bragg order, i.e., ~G = 0):

R =
−Sref

z

Sin
z

=
Re
{
Ẽo
y,0,VH

o
x,0,V − Ẽo

x,0,VH
o
y,0,V

}
Re
{
Ẽi
x,0,VH

i
y,0,V − Ẽi

y,0,VH
i
x,0,V

} , (5.7)

T =
Strans
z

Sin
z

=
Re
{
Ẽi
x,0,SH

i
y,0,S − Ẽi

y,0,SH
i
x,0,S

}
Re
{
Ẽi
x,0,VH

i
y,0,V − Ẽi

y,0,VH
i
x,0,V

} . (5.8)

A tilde indicates the complex conjugated field. The input amplitudes are often linearly
polarized. While for s-polarization the electric field vector is perpendicular to the
plane of incidence, the electric field vector is parallel in case of p-polarization. The
corresponding equations are given by

AV,s−pol.
i = (cos(φ) cos(θ),0, . . . , sin(φ) cos(θ),0, . . .)T , (5.9)

AV,p−pol.
i = (− sin(φ),0, . . . , cos(φ),0, . . .)T , (5.10)

where φ corresponds to the azimuth and θ to the elevation angle.

For chiral photonic crystals, a circular expansion basis is necessary. By superimpos-
ing the linear combinations, circular polarization can easily be implemented in the
program code:

AV,RCP
i = AV,s−pol.

i − i · AV,p−pol.
i , (5.11)

AV,LCP
i = AV,s−pol.

i + i · AV,p−pol.
i . (5.12)

The imaginary unit i is distinct from the index i of the amplitudes. There is no need
for normalization at this point because these factors cancel out anyhow in equation
(5.8).

Importantly, we can also analyze the phase differences between the components, i.e.,
the polarization state of the transmitted and reflected amplitudes. The phase differ-
ence between the x- and y-component of the electric field can be calculated via

φ = arctan
(

Im(Ex)
Re(Ex)

)
− arctan

(
Im(Ey)
Re(Ey)

)
(5.13)

For example, in the case of circular polarization propagating in vacuum, the initial
phase difference is conserved, i.e., we calculate φ= 90° or φ= -90°.
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Calculation of the field distribution

Interpretation of the interaction of light and matter highly benefits from the calcula-
tion of the field distribution. For example, the graphical presentation of the electric
energy density has been of great importance to understand the underlying physics of
the structures presented in chapter 6.2.

To calculate the field distribution of a finite photonic-crystal structure, we have to
know the field distribution of each layer. As a result of the iterative calculation
of the scattering matrix, this task is not straightforward. Fig. 5.5 illustrates this
configuration:

Figure 5.5: Calculation of the field distribution demands the knowledge of two scattering ma-
trices for each layer m of the photonic crystal.

Again, we decompose the crystal into N layers and choose as 0th layer the vacuum
half-space, layers 1 to N is the crystal, and the (N + 1)th layer corresponds to the
substrate. To calculate the field of the mth layer, we use the matrices Ŝ(0,m) and
Ŝ(m,N + 1) that connect the amplitudes in the usual manner:

(
Ami
A0

o

)
= Ŝ(0,m)

(
A0

i

Amo

)
=

(
S11 S12

S21 S22

)(
A0

i

Amo

)
, (5.14)

(
A(N+1)

i

Amo

)
= Ŝ(m,N + 1)

(
Ami
A(N+1)

o

)
=

(
Ŝ11 Ŝ12

Ŝ21 Ŝ22

)(
Ami
A(N+1)

o

)
. (5.15)
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We solve these equations for the amplitudes Amo and Ami with the initial conditions,
that is, A0

i is known and A(N+1)
o = 0:

Ami =
(

1− S12Ŝ21

)−1
S11A0

i (5.16)

Amo =
(

1− Ŝ21S12

)−1
Ŝ21S11A0

i . (5.17)

These calculations are repeated for each layer. Moreover, we also have to use the
interface matrices which have already been calculated for the transmittance and re-
flectance spectra. Nevertheless, the calculation of two scattering matrices per layer is
time-consuming. Hence, the calculations of field distributions are usually restricted
to selected wavelengths.

Achieving convergence

In the following chapters, we will always compare our experimental data with
scattering-matrix simulations. All designs of chiral photonic crystals are first eval-
uated and optimized with numerics rather than with an experiment. Therefore, one
needs to be sure that results have converged, i.e., the numerics approach a definite
value.

Here, we exemplary show the convergence tests for a helical structure later discussed in
chapter 6.4. The geometry is shown in Fig. 5.6(a). We choose normally incident circu-
lar polarization of light, a polymer refractive index of n= 1.57, and a refractive index
of the semi-infinite glass substrate of n= 1.518. The lateral and axial discretization
of each unit cell is set to a/128 = 25.4 nm.

Normal-incidence intensity transmittance refers to the (0,0) diffraction order. The
differences of the calculated transmittance spectra with a certain Bragg order gi and
the reference g= 10 is shown in Fig. 5.6(b) (for selected wavelengths). Obviously, these
differences become smaller with higher Bragg order gi indicating converging results.

To further investigate the convergence, one wavelength is selected and the transmit-
tance differences are plotted versus the Bragg order. The data points can be fitted
by an exponential decay showing that results converge fast (Fig. 5.6(c)). When using
g= 7 orders corresponding to (2g + 1)2 = 225 reciprocal lattice vectors, the transmit-
tance differences between g= 7 and g= 8 are within the linewidth of the curves later
shown in the results chapters. For experimentalists, this is a convincing result render-
ing the scattering-matrix code as a robust and powerful tool to characterize low-index
photonic crystals.4

4Notably, high-index materials and dispersive metal structures are known to be more complicated in
numerical calculations. Nevertheless, theory groups (e.g., Prof. Busch’s group in Karlsruhe) have
scattering-matrix implementations with algorithms capable of handling high-index materials or
even metals [123].
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Figure 5.6: (a) The investigated structure is a uniaxial helical crystal with slightly overlapping
spirals (a= 3.25 µm). The lateral and axial discretization of each unit cell is set
to a/128 = 25.4 nm. (b) Calculation of normal-incidence intensity transmittance
which refers to the (0,0) diffraction order. The differences of the transmittance
spectra with a certain Bragg order gi and the reference g= 10 are plotted at
selected wavelengths. (c) The differences in transmittance are plotted versus the
number of Bragg orders for one selected wavelength. An exponential decay can
be fitted to the data indicating converging results (fit values: A1 = 0.13664, y0 = -
0.00624, and t1 = 3.01568).

Conclusions

In summary, the scattering matrix approach is a stable and convergent numerical
method for calculating optical spectra and field distributions for low-index chiral pho-
tonic structures. The easy implementation of different polymeric photonic-crystal
designs allows for the characterization of their optical properties and direct compar-
ison with the experimental results. In the following chapters, we make use of this
approach for each fabricated photonic-crystal design.
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6. Uniaxial three-dimensional chiral
photonic crystals

Recently, an increasing number of researchers has designed, fabricated, and studied
dielectric and metallic artificial chiral materials [14–21, 40–44]. This flourishing and
dynamic field is driven by the opportunity to achieve giant chiral-optical effects by
giving light yet another twist with man-made nanostructures.

The next chapters are devoted to our contributions to the emerging field of artificial
chiral materials [19,20,110–112,124,125]. In the following sections, we present system-
atic investigations of several chiral photonic crystals, i.e, we explain the underlying
physics, present a specific design, fabricate the structures by using direct laser writ-
ing (DLW), and compare experimental measurements with calculations. By giving
summarizing remarks at the end of each section, we connect the related topics and
explain why we decided to investigate the next particular design.

In the first sections, two basic blueprints of chiral photonic crystals with one helical
axis are described: Layer-by-layer and circular-spiral chiral three-dimensional (3D)
photonic crystals. In section 6.3, we present “thin-film” devices based on circular-
spiral photonic crystals. Polarizers, “poor-man’s” optical isolators, and optical diodes
are proposed and explained. The last section is focused on chiral photonic super-
lattices, which give additional insight in the physics of the circular-spiral building
block.

6.1. Layer-by-layer chiral photonic crystals

The first investigated chiral building block is a log pile of anisotropic layers, which are
twisted along the stacking direction. Layer-by-layer approaches such as the well-known
woodpile structure [55] have proven to be accessible by a large variety of different tech-
niques (e.g., see [61]). In our experiments on chiral log piles, we obtain very strong
circular dichroism from so-called polarization stop bands. Moreover, telecommunica-
tion wavelengths are easily accessible with the layer-by-layer approach using DLW as
fabrication method. We start by presenting a simple analytical approach in order to
understand the underlying physics of these systems.

69
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Figure 6.1: (a) Model system of a left-twisted log-pile photonic crystal. Each layer is linearly
birefringent, i.e., the refractive index is different parallel to the rods compared to
the perpendicular direction. In this illustration, we assume that N = 6 layers are
stacked to a chiral lattice constant, the so-called pitch p (indicated by the yellow
helix with left-handedness). (b) The coordinate system ξ−η and the angles α and
β are used for the derivation of the optical properties of the system. (c) The tip of
the electric field of the reflected wave twists by an angle of βr for each successive
layer.

Physics of twisted log piles

The optical properties of log-pile photonic crystals composed of twisted anisotropic
layers can be discussed analytically. A log pile with uniaxial left-handedness is de-
picted in Fig. 6.1 and resembles models for cholesteric liquid crystals [126]. As an
example, if adjacent layers are twisted by an angle of 60°, N = 360°/60°= 6 layers will
be necessary for a complete helical lattice constant called pitch. After N layers, this
left-handed structure obviously repeats itself.

Each layer is anisotropic because the distribution of dielectric material leads to bire-
fringence depending on the orientation of the dielectric rods.1 For the first layer,
we denote a refractive index n1 in x-direction and n2 in y-direction. For the second
layer, we introduce the coordinate system ξ− η twisted by an angle of φ (as shown in
Fig. 6.1(b)). The angle β describes the in-plane orientation of the electric field vector
~E. Neither the angle φ nor β in Fig. 6.1(b) are yet set to a value.

What will happen if linearly polarized light impinges onto the chiral layer-by-layer
photonic crystal?

1Please also compare section 2.2.2.
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To answer this question, we examine a linearly polarized wave, which is propagating
strictly in z-direction and impinges onto the interface between layer 1 and 2. The
incident wave is written as

~E =

(
ex exp(2πi(t/T − n1z/λ))

ey exp(2πi(t/T − n2z/λ))

)
, (6.1)

where ex and ey are the x- and y-components of the complex electric field amplitude
~e, and it holds ex = |~e| cos(β) (compare Fig. 6.1(b)). i denotes the imaginary unit, and
λ is the wavelength of light in vacuum.

The electric field of the reflected wave reads

~Er =

(
erx exp(2πi(t/T + n1z/λ))

ery exp(2πi(t/T + n2z/λ))

)
, (6.2)

and the field of the transmitted wave reads

~Et =

(
etx exp(2πi(t/T − n1z/λ))

ety exp(2πi(t/T − n2z/λ))

)
. (6.3)

Here, etx = (eξ cos(φ)− eη sin(φ)) and ety = (eξ sin(φ) + eη cos(φ)) are the equations of
the transmitted amplitudes taking the twist of adjacent layers into account by a
rotation matrix. Then, we express the magnetic field ~H by the electric field:

∂Hy

∂t
∼ −∂Ex

∂z
,

∂Hx

∂t
∼ +

∂Ey
∂z

. (6.4)

As usual, we employ the boundary conditions that the tangential component of the
electric field and the magnetic field are continuous, and we can derive the system of
equations (6.5):

ForEx :

ForEy :

ForHx :

ForHy :

ex + erx = eξ cos(φ)− eη sin(φ) ,

ey + ery = eξ sin(φ) + eη cos(φ) ,

n2ey − n2e
r
y = n1eξ sin(φ) + n2eη cos(φ) ,

n1ex − n1e
r
x = n1eξ cos(φ)− n2eη sin(φ) .

(6.5)

Solving this system allows for calculating a simplified relation for the amplitude of
the reflected wave:

~e r =

(
erx

ery

)
=

(
e sin(β − φ)n1−n2

n1+n2
sin(φ)

e cos(β − φ)n1−n2
n1+n2

sin(φ)

)
, (6.6)

Here, e= (e2x + e2y)
1/2 and the vector ~e r has the length |~e r|= e[(n1 − n2)/(n1 +

n2)] sin(φ).
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Importantly, the reflected wave is obviously twisted by the angle βr = 90−β+φ with
respect to the x-axis. Since the coordinate system is rotated by φ at each layer, the
angle β discretely decreases by φ for the successive layer. Accordingly, the angle of the
reflected wave βr = 90− (−φ)+φ grows by 2φ at each subsequent boundary (depicted
in Fig. 6.1(c) for φ= 30°). Furthermore, the phase difference of two sequenced partial
waves is 2nd, where n is the effective index of refraction n= (n1 + n2)/2 and d the
layer thickness.

The entire layer-by-layer log-pile structure (as shown in Fig. 6.1(a)) reflects at each
interface one partial wave (multiple reflections are neglected). From Fig. 6.1(c), it
becomes immediately clear that the reflection will be maximal if the partial wave
E1 is in phase with E7, E2 with E8 etc.; hence, the relationship 2π/(2φ) =λ/(2nd)
holds.2 Since the thickness of a pitch is p= (2π/φ) d, we can formulate the condition
of maximal reflection:

p = λmedium , (6.7)

where λmedium =λ/n is the wavelength of light in the medium.

In a gedankenexperiment, we can follow the partial waves to determine the polarization
state of the reflected light. Imagine that we could detect the tip of the electric field
vector of the reflected partial waves. It is rather obvious that we would detect the
wave reflected from layer 1 first, the one from layer 2 second etc. Hence, the tip of the
electric field vector will always move on a circle if φ 6= 90° holds. If linear polarization
impinges on a left-handed twisted structure, one expects the detector to measure a
signal on a counterclockwise circle, i.e., the reflected light is left-circularly polarized
(compare section 2.2.1). For a right-handed structure, one detects right-circularly
reflected light.3 Notably, Fresnel reflection from a mirror changes the handedness of
circular polarization.

Before we deal with the transmitted light, we first want to generalize the result for a
continuous rotation of the layers (or the coordinate system ξ−η). Note that the chiral
resonance is determined by the pitch p and the layer thickness cancels out. Therefore,
it is interesting to discuss the same situation as described above but for a continuous
rotation [126]. The electric field can be written into the form

~E =

(
eξ cos(2πz/p))− eη sin(2πz/p))

eξ sin(2πz/p)) + eη cos(2πz/p))

)
, (6.8)

and the following ansatz(
eξ

eη

)
=

(
A exp(2πi(t/T −mz/λ))

iB exp(2πi(t/T −mz/λ))

)
(6.9)

2In the case of a pitch with 6 layers, the next possible resonance is clearly 7λ.
3For an achiral woodpile structure (as introduced in chapter 4.2), it holds φ= 90°. Therefore, this

crystal does reflect linear polarization.
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fulfills the wave equation (2.1), which has been discussed in chapter 2.2.

Finally, the dispersion relation of a screw-like layer-by-layer structure [126] reads

m4 −m2(ε1 + ε2 + 2λ2/p2) + (ε1 − λ2/p2)(ε2 − λ2/p2) = 0 . (6.10)

Here, m is a unitless number taking over the role of the refractive index, and ε1,2
are the dielectric constants for the directions perpendicular and parallel to the rods,
respectively. In the following, ε denotes the effective dielectric contrast. As an impli-
cation of equation (6.10), the inequation (6.11) defines the frequency region

1−
(
ε2 − ε1
ε1 + ε2

)
<

λ2

p2ε
< 1 +

(
ε2 − ε1
ε1 + ε2

)
, (6.11)

where there is one real and one imaginary solution for m. The imaginary solution
corresponds to the reflected circular polarization. The real solution propagates.

To determine the polarization state of this transmitted wave, we remind ourselves that
circular polarization can be superimposed by two orthogonal linear polarizations. As
discussed above, linearly polarized light is reflected circularly by the chiral layer-by-
layer structure. If the structure is left-handed (right-handed), the reflection will be
left-handed (right-handed). As a result, if the impinging circular polarization has
the same handedness as the structure, the two circular waves (originating from the
linear components of the incoming wave) are reflected in phase and with the same
handedness as the incoming wave. If the impinging circular polarization has the
opposite handedness as the structure, the two reflected circular waves just cancel out
and the light will be transmitted.

This frequency region in which circular polarization is reflected is called polariza-
tion stop band . The unmatching (matching) circular polarization is completely
transmitted (reflected) in the ideal case.

An alternative explanation of the above discussion can be given by the argument
that our chiral systems lack parity but not time-reversal symmetry. Importantly,
left-handed (right-handed) light and left-handed (right-handed) structures keep their
handedness in the time-reversed process, i.e.: If a left-handed (right-handed) structure
reflects linearly polarized light with the result of left-handed (right-handed) light, this
will automatically mean that left-handed (right-handed) light is reflected selectively.
Alas, this argumentation leads to identical results.

In chapter 3, we have discussed structural color in nature showing very similar heli-
cal structures, e.g., in beetles which shine in a brilliant green. We have also pointed
out that chiral reflectors have a high potential for applications. Therefore, our spe-
cific design for the layer-by-layer chiral photonic crystal, which can be viewed as an
engineered complement of these biological systems, is presented next.
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Figure 6.2: (a) Scheme of the chiral layer-by-layer photonic-crystal structure for N = 3. Ad-
jacent layers are twisted by 120°, i.e., 3 layers are a helical pitch. (b) Side view of
the complete structure. The geometrical parameters are: a= 1.2 µm, c= 1.32 µm,
2rx = 300 nm, and 15 layers (5 lattice constants).

Design

The optimized design of polymeric 3D layer-by-layer chiral photonic crystals is de-
picted in Fig. 6.2(a). A first layer (in air) consists of a periodic arrangement of par-
allel dielectric rods or bars with refractive index n separated by the spacing a. A
second identical layer is rotated by an angle of 360°/N and placed on top of the first
layer. After an integer N number of layers, the structure repeats itself, leading to
the lattice constant c. The integers N = 1,2, and 4 do not lead to chiral structures,
whereas the choices like N = 3,5,6,7 do. Depending on whether the stacking process is
performed clockwise or counter-clockwise with respect to the substrate, one can either
obtain left-handed or right-handed chiral structures. Simply speaking, the resulting
3D photonic crystal can be viewed as a “twisted woodpile” [124,127].

The underlying physics of such chiral structures has been discussed in the previous
section. We have introduced the intuitive reasoning that a polarization stop band can
occur if the pitch of the dielectric chiral structure matches the pitch of the circularly
polarized light, i.e., if the lattice constant c matches the material wavelength of light.
This means that, for a fixed operation wavelength, the fabrication requires finer fea-
tures with increasing N . Thus, small values of N are highly desirable. Furthermore, it
is important to determine what refractive index n is necessary for good performance.
Reference [127] discussed theoretically a high-index-contrast material with refractive
index n= 2.98. In our design, we deal with a low polymeric refractive index n= 1.57
in order to directly fabricate the photonic crystals without the need of conversion
into high-index dielectrics. Also, the present “twisted woodpile” is mechanically very
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Figure 6.3: Electron micrographs of fabricated structures with the parameters given in Fig. 6.2,
but with 24 layers. (a) shows top-view magnifications of left-handed (LH) and
right-handed (RH) structures, respectively. (b) Oblique-view of a complete struc-
ture with an open aperture of 60 µm diameter.

robust. Therefore, for the given resolution of the DLW process, short wavelength
polarization stop bands can be achieved in “twisted woodpiles”; telecommunication
wavelengths are easily accessible with the layer-by-layer approach.

Fabrication

We have fabricated our specific design (with the parameters given in Fig. 6.2, but
with 24 layers) by means of DLW in the commercially available photoresist SU-8
(details are given in chapter 4.3). Electron micrographs are depicted in Fig. 6.3. The
top-view magnifications of left-handed (LH) and right-handed (RH) structures reveal
the handedness and the high quality. Fig. 6.3(b) is an oblique-view of a complete
structure with an open aperture of 60 µm diameter showing the high homogeneity
of the overall structure.4 The structures are stabilized by a surrounding thick wall,
which is intentionally written higher than the top of the photonic crystal.

Characterization

Our numerical calculations show that excellent performance can be achieved with low
refractive indices of photopolymers like SU-8 and optimized structural parameters.

4We emphasize, however, that this demonstration should be interpreted as a proof-of-principle. Much
larger-area structures could be fabricated by repeated micro-contact printing, by hot embossing,
or by other inexpensive mass-fabrication approaches.
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For the calculation of transmittance spectra of finite-size structures, we employ the
established scattering-matrix approach (compare chapter 5.2), and choose n= 1.57
and N = 3. Next, we search for optimum performance regarding circular dichroism
by varying the c/a ratio and the volume filling fraction, f , of the dielectric. We find
that rods with circular cross section (rather than elliptical) are best. The choice is
illustrated in Fig. 6.2 and corresponds to a very small ellipticity (about 1.7 aspect
ratio) so that we were able to realize the structure experimentally by using two tra-
jectories side by side for each rod. Further parameters are the ratio c/a= 1.1 and
filling fraction f = 23.1 %.

Fig. 6.4 reveals calculated transmittance spectra for circularly polarized incident light
impinging under normal incidence for the parameters of Fig. 6.2 and for 24 layers (i.e.,
8 lattice constants). Pronounced polarization stop bands, centered around 1.55 µm
wavelength, are clearly visible: The transmittance is about 91 % for right-handed
circular incident polarization (RCP) impinging on a left-handed (LH) structure and
about 2 % for left-handed circular incident polarization (LCP) and the same structure.
As expected for ideal structures without unintentional linear birefringence, LCP and
RCP interchange for a right-handed (RH) structure.5

Corresponding optical characterization6 for N = 3 is shown in the right column of
Fig. 6.4 which is represented as the left column to allow for a direct comparison with
the theory of a perfect structure. Obviously, the overall qualitative agreement between
theory and experiment is good. Specifically, the agreement in the region of the po-
larization stop band (gray area) is almost quantitative. On the short-wavelength side
(i.e., for the higher-order bands), deviations arise which are likely due to two aspects:
First, the incident light in the experiment has a finite opening angle of 5°, whereas
the calculations are for strictly normal incidence affecting the spectral shape. Second,
the imperfections of the fabricated samples are expected to influence the higher-order
bands more strongly.

Summary/Next steps

We have presented low-index-contrast 3D layer-by-layer chiral photonic crystals that
show giant circular dichroism at telecommunication wavelengths. The underlying
physics resembles models for natural occurring systems and have been discussed ana-
lytically. The proposed “twisted woodpile” can be viewed as a man-made solid mim-
icking biological systems acting as highly selective polarization filters. The excellent
performance of the polymeric structures with only 8 pitches can directly be attributed
to the high-quality fabrication via DLW. In appendix A, we (theoretically) investigate

5Notably, the next chiral resonance occurs at about twice the wavelength, i.e., for λ= 2c. That is
because the pitch of the structure can also be interpreted as a log pile with N = 6 rather than
N = 3 layers. For N = 6, the handedness of the structure also flips.

6The measurement setup for the near-infrared spectral range has been explained in chapter 5.1.
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Figure 6.4: (a) Calculated normal-incidence linear-optical transmittance spectra for circular
incident polarization of left-handed (LH) and right-handed (RH) structures with
the parameters given in Fig. 6.2, but with 24 layers (i.e., 8 lattice constants),
for left-handed circularly polarized (LCP) incident light (blue) and right-handed
circularly polarized (RCP) incident light (red). (b) Measured normal-incidence
transmittance spectra for circular incident polarization, represented as the corre-
sponding calculated spectra shown in the left column.

chiral twist defects in layer-by-layer photonic crystals which may potentially serve as
low threshold lasers, low loss waveguides, and narrow band filters [42].

Layer-by-layer approaches are often favorable because of a large variety of possible
fabrication methods. However, we want to go further and to take advantage of the
possibilities given by DLW allowing for the fabrication of arbitrary 3D nanostructures.
The second blueprint discussed in the next section is only accessible with a genuine
3D microfabrication method.
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6.2. Circular-spiral chiral photonic crystals

Chiral three-dimensional photonic crystals composed of spirals (strictly helices) are
an interesting subclass of 3D photonic crystals. For example, Prof. Noda’s group
has predicted that large complete photonic band gaps exist for high-index-contrast
silicon circular-spiral structures [41]. Corresponding 3D low-index polymeric chiral
nanostructures have been fabricated by interference lithography [16] or direct laser
writing [17].

However, there’s another twist on these chiral structures of considerable complex-
ity: Their handedness. Recently, in addition to complete gaps, theory also predicts
polarization stop bands in circular-spiral photonic crystals [18].

In this section, we review our work on the role of chirality in circular-spiral chiral
photonic crystals arranged in cubic unit cells [19, 128] because they serve as second
building block for following chiral architectures. Again, we start with the explanation
of the underlying physics.

Physics of circular-spiral photonic crystals

For what conditions do we expect strong circular dichroism? For circular polariza-
tion of light, the tip of the electric-field vector simply follows a spiral. The pitch
of this spiral is just the material wavelength λ. Thus, intuitively, we expect a chi-
ral resonance from spiral photonic crystals if the pitch of circularly polarized light
matches the pitch of the dielectric spirals, i.e., the lattice constant az. This condition,
λ/az = 1, corresponds to the edge of the second Brillouin zone, i.e., to a wave number
kz = 2π/λ= 2π/az. Recall that the edge of the first Brillouin zone is at kz =π/az.
Thus, one does not anticipate a strong chiral response around and below the funda-
mental stop band (or band gap) but rather at higher frequencies. Theory for high-
index silicon-based structures confirms this intuitive reasoning [18].7 We have repeated
similar calculations for low-index contrast polymeric structures, revealing essentially
the same trends. The parameters of the 3D spiral photonic crystals to be discussed
below are the result of an optimization with respect to circular dichroism.

To further investigate if this intuitive expectation is correct, we try to answer the
question where the light propagates inside the structure. Fig. 6.5 shows the under-
lying dielectric structure together with calculated iso-intensity8 surfaces for several
relevant characteristic spectral positions (1–4, also indicated in Fig. 6.5) for both, left-
handed circular polarization and right-handed circular polarization of the incident
light (impinging under normal incidence with respect to the substrate). If the pitch
of the light spiral inside the structure (= material wavelength) roughly matches the
pitch of the dielectric spiral (= lattice constant az), the light field peaks inside the

7Deviations from this simple model are discussed in a following section 6.4.
8Details of this calculation are given in section 5.2.1.
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Figure 6.5: Illustration of the underlying physics. In each case, a right-handed dielectric spiral
is depicted in gray. The colors used for the iso-intensity surfaces (all for 1.3 times
the incident intensity of light) mark the sense of rotation of the light, i.e., red
corresponds to RCP and blue to LCP. The numbers in the red and blue dots mark
the spectral positions indicated in the calculated transmittance spectra of right-
handed (RH) 3D chiral photonic crystals shown below. The percentages quoted
on the top are the fractions of the corresponding electric energy density inside the
dielectric.
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Figure 6.6: (a) Scheme of chiral circular-spiral photonic-crystal structure. The cubic unit cell
is illustrated and all characteristic parameters are denoted. (b) Side view of the
complete structure. The geometrical parameters are: axy = 1.3 µm, az = 1.3 µm,
2rx = 300 nm, d= 0.6az, and 8 axial lattice constants.

dielectric spiral for both senses of rotation, and no immediately obvious qualitative
difference arises (compare, e.g., Fig. 6.5 case 1, blue with case 2, red; case 2, blue
with case 3, red etc.). Quantitatively, however, for the matching sense of rotation
(red cases in Fig. 6.5), the light field is stronger confined to the dielectric as apparent
from the fractions of the corresponding electric energy density inside the dielectric,
indicated above the spirals in Fig. 6.5. This effect increases the corresponding effec-
tive refractive index, hence increasing the corresponding vacuum wavelength of the
polarization stop band. Clearly, within the polarization stop band, the light intensity
decays exponentially along the propagation direction (case 1, blue and case 2, red).
Consequently, one gets a polarization stop band for each of the two circular polar-
izations. The short-wavelength polarization stop band is obviously not attractive for
applications because the transmittance in the opposite circular polarization does not
come close to unity (only a narrow peak is observed that is strongly depend on the
angle of incidence). The results for left-handed dielectric spirals are analogous with
the role of LCP exchanged by RCP and vice versa (not shown).

Design

The scheme of our design of polymeric circular-spiral chiral photonic crystals is shown
in Fig. 6.6. The spirals are arranged in cubic unit cells, i.e., axy = az. Sample pa-
rameters are: in-plane lattice constant axy = 1.3 µm, pitch az = 1.3 µm, spiral diam-
eter d= 0.78 µm, 34.7 % volume filling fraction, lateral diameter of the spiral arms
2rx = 380 nm, ratio between axial and lateral diameter = 2.7, and N = 8 lattice con-
stants along the z-direction (see Fig. 6.6(a) for the denotation). These parameters are
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Figure 6.7: Gallery of fabricated 3D spiral photonic crystals. (a) Close-up of the inside of a left-
handed structure with axy = az = 1.5 µm, d= 0.6az, and N = 4, made accessible by
focused-ion-beam cutting. Below, zoom-in onto one of the left-handed spirals and
onto a similar, but right-handed spiral (with equal parameters), respectively. (b)
Oblique-incidence overview of a sample with N = 8 lattice constants in z-direction
used for the measurements in Fig. 6.8. All the sample parameters are given in
Fig. 6.6.

optimized for strong circular dichroism taking into account the resolution of DLW.
Depicted in Fig. 6.6(b) is a side view of the complete structure we want to fabricate.

Fabrication

After optimization of the design, we have fabricated the structures by means of DLW
in the commercially available photoresist SU-8. A small gallery of selected electron
micrographs is depicted in Fig. 6.7, which gives first evidence that the sample quality
is very good. To demonstrate the versatility of our approach, Fig. 6.7(a) exhibits a
cut of a structure with axy = 1.5 µm, az = 1.5 µm, and N = 4. As the focused-ion-beam
cut was stopped in between two rows of spirals, a stabilizing network is revealed. Our
structures are mechanically supported by this two-dimensional network of bars at or
close to the top of the 3D crystal. As the spirals are not mechanically connected to
their neighbors, very unstable low-quality structures result without this grid. Fur-
thermore, Fig. 6.7(a) also shows close-ups of a single left-handed spiral and a single
right-handed spiral from a sample fabricated with identical parameters but opposite
handedness. All structures for optical experiments have the parameters given in the
caption of Fig. 6.6 and are surrounded by a thick massive wall, which aims at re-
ducing the effects of strain on the two-dimensional grid due to photoresist shrinkage
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during development. Again, we use a round wall in order to evenly distribute strain
inside the wall. We have confirmed by numerical calculations (see below) that the
two-dimensional network marginally distorts the optical properties. In particular, it
does not introduce any chirality. Fig. 6.7(b) gives an overview of one of the samples
to be optically characterized next.

Characterization

The left column of Fig. 6.8 shows measured transmittance spectra of 3D circular-spiral
photonic crystals with identical parameters as the one shown in Fig. 6.6(b), for both
left-handed and right-handed dielectric circular spirals and for both left-handed and
right-handed incident circular polarization of light. As expected from the symmetry,
the transmittance spectra are nearly the same if both the sense of rotation of the di-
electric spirals and that of the incident light field are changed simultaneously. Around
1.8 µm wavelength, the transmittance in the “low state” is around 5 % compared to
about 95 % in the “high state”, corresponding to a ratio approaching twenty.

The right column of Fig. 6.8 exhibits the calculated transmittance spectra correspond-
ing to the experiment. The geometrical parameters are the same as in the experiment.
In particular, we account for the ellipsoidal shape of the voxels in the DLW fabrica-
tion. The refractive indices used for SU-8 and the glass substrate are nSU−8 = 1.57
and nglass = 1.52, respectively. To mimic the finite opening angle of the focused inci-
dent light in the experiments, the calculated transmittance spectra are averaged over
an angle of 7° with respect to the normal. Notably, the overall agreement between
experiment and theory is good. In particular, the relative handedness of light and
structure, the spectral position of the polarization stop band, and the depth of the
transmittance minima are reproduced very well. Quantitative deviations between ex-
periment and theory arise at wavelengths below the polarization stop band, where
many different photonic bands contribute. Moreover, one should be aware that the
angle-averaging also influences the detailed shape of the spectra. For example, for
the strict normal-incidence case (i.e., without any angle-averaging at all) the calcu-
lated transmittance minimum in the polarization stop band is as low as 0.1 % for the
identical N = 8 structure (see Fig. 6.5).

Summary/Next steps

In conclusion, we have reviewed our work on the second chiral building block: cir-
cular spirals [19, 128]. The obtained giant circular dichroism from polarization stop
bands is comparable to that of polymeric 3D layer-by-layer chiral photonic crystals
demonstrated in section 6.1. Additional information and characterization of chiral
circular-spiral photonic crystals are given in appendix B and reference [128], includ-
ing measurements of the angle dependence of the polarization stop band.
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Figure 6.8: (a) Measured transmittance spectra of 3D chiral photonic crystals with right-
handed (RH) and left-handed (LH) dielectric spirals. Transmittance spectrum for
right-handed RCP (left-handed LCP) circular polarization of the incident light
is shown in red (blue). The dashed horizontal lines correspond to a level of 5 %
transmittance. (b) Calculated transmittance spectra of 3D spiral photonic crystals.
Parameters and representation correspond to the experiment. The dashed colored
curves are calculations without the stabilizing grid near the top.

Although both approaches have shown excellent experimental results, we focus on
the circular-spiral building block in our further studies. Our next aim is to find po-
tential future applications of chiral photonic crystals. While striking experimental
demonstrations based on cholesteric liquid crystals have been published recently [4],
corresponding experimental work on artificial dielectric solid structures could offer
much more freedom in tailoring the optical properties. Therefore, we present some
interesting optical devices based on tailored man-made solid crystals in the next sec-
tion.
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6.3. Thin-film optical devices based on chiral
photonic-crystal heterostructures

The above experimental demonstration of polarization stop bands in three-
dimensional dielectric circular-spiral photonic crystals is extended in two ways [20].
First, the combination with a one-dimensional set of lamellae on one side allows for
“poor-man’s” optical isolators or for thin-film polarizers — depending on from which
side light impinges onto the device. Secondly, a chiral three-dimensional photonic
crystal sandwiched between two one-dimensional sets of lamellae acts as a thin-film
polarizer from both sides.

Underlying idea

Polarization stop bands can be used as “poor-man’s” optical isolators for circularly
polarized incident light: If, for example, right-handed polarized light from a laser
impinges onto the structure, it is transmitted for a spiral photonic crystal composed
of left-handed dielectric spirals. Upon back-reflection from a mirror behind the spiral
photonic crystal, the backward propagating light has left-handed circular polarization.
As the spirals keep their handedness when looked at from the other side, the light is not
transmitted, hence, blocked from propagating back into the laser source. This device
is only a “poor man’s” isolator because it will fail to isolate if the polarization state
of light is changed behind the device — which is in sharp contrast to non-reciprocal
optical isolators based on the Faraday effect.

Furthermore, the combination of a chiral photonic crystal and a quarter-wave plate
clearly acts as a polarizer. In contrast to commercially available thin-film polariz-
ers based on one-dimensional dielectric stacks and Brewster’s angle [129], such het-
erostructure can work for normal incidence of light. If the device is used in the
opposite direction, i.e., if linearly polarized incident light (oriented 45° with respect
to the principal axes of the quarter-wave plate) first hits the quarter-waveplate and
subsequently the chiral photonic crystal, the overall structure acts as a poor man’s
optical isolator for linear incident polarization of light. Furthermore, a chiral pho-
tonic crystal sandwiched between two crossed quarter-wave plates can act as a linear
polarizer from both sides.

Design

To obtain compact and monolithic devices, it is desirable to integrate the chiral pho-
tonic crystal with one (or two) quarter-wave plates. The physics of the chiral building
block — circular-spiral photonic crystals — have been described in section 6.2. The
quarter-wave plates are one-dimensional (1D) periodic sets of lamellae, leading to form
birefringence in the long-wavelength limit. A plot of the calculated phase retardation
versus lamellae height h and wavelength is depicted in Fig. 6.9(c). The lattice con-
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Figure 6.9: (a) Top: Definition of parameters of the structure on the right-hand side. Bottom:
The phase retardation is plotted as a function of wavelength and lamellae height.
(b) Proposed 1D-3D (blue) and 1D-3D-1D (blue and green) photonic-crystal het-
erostructure composed of a three-dimensional right-handed (RH) spiral photonic
crystal with N = 6 pitches and one or two one-dimensional sets of lamellae, respec-
tively.

stants of the 3D and the 1D structures, respectively, do not need to be identical but
choosing the same lattice constant is possible and eases the theoretical calculations,
hence the detailed design. Fig. 6.9 shows the two types of heterostructures discussed
above. In what follows, we emphasize the 1D-3D-1D heterostructure, the 1D-3D het-
erostructure yields very similar spectra. Parameters are: a= 1.3 µm, d= 0.78 µm,
h= 3.7 µm, 2rx = 0.44 µm, and N = 6. The volume filling fraction of the spirals in
the cubic unit cell is 32.1 %. Again, these parameters result from an optimization
acknowledging the fabrication restrictions of DLW. The thickness of each of the two
plates (introduced for mechanical stability) between the spiral crystal and the sets
of lamellae is 0.93 µm. The complete 1D-3D-1D heterostructure has a height of only
17 µm.

Fabrication

To validate our discussion, we have fabricated the 1D-3D as well as the 1D-3D-1D
structure again using our DLW setup and the thick-film photoresist SU-8. The design
and geometrical parameters are denoted in Fig. 6.9. The following discussion of the
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Figure 6.10: Electron micrographs of the fabricated heterostructure. (a) Top: Normal-
incidence close-up view onto the top set of lamellae. Bottom: Close-up revealing
parts of the 3D spiral crystal (RH), one of the stabilizing plates, the bottom
lamellae, and the surrounding wall with one of the drains (left bottom) allow-
ing for developer circulation. (b) Glancing-angle incidence view of the entire
structure.

optical properties focuses on the more complex 1D-3D-1D case, electron micrographs
of which are shown in Fig. 6.10. Note the high quality of the set of lamellae and the
spirals, respectively.

Characterization

The calculated optical response of a 1D-3D-1D heterostructure is depicted in
Fig. 6.11(a). This calculation refers to normal incidence onto the structure illustrated
in Fig. 6.9(b) and assumes a refractive index n= 1.57 for the polymer. The structure is
located on a glass substrate with refractive index n= 1.518. Linear optical (intensity)
transmittance spectra are shown for the two incident linear polarizations including
+45° and -45° with respect to the lamellae, respectively. Here, +45° leads to left-
handed circular polarization (blue), -45° to right-handed circular polarization (red).
Obviously, the transmittances are different by about a factor of 50. The polarization
state emerging from the device is very close to linear and parallel to the incident linear
polarization. This becomes evident from the top part of Fig. 6.11(a) where we analyze
the emerging polarization state at the operation wavelength of 1.72 µm indicated by
the blue dot. The performance of the 1D-3D heterostructure is quite similar, except
that circular polarization is emerging from the device (not shown).

Optical characterization for incident linearly polarized light is also shown in Fig. 6.11
For linear incident polarization oriented +45° with respect to the lamellae, a trans-
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Figure 6.11: (a) Calculated normal-incidence transmittance spectra (logarithmic scale) of the
1D-3D-1D heterostructure (shown in Fig. 6.9(b)). The linear incident polariza-
tion is oriented α= +45° (blue) and α= -45° (red) with respect to the lamellae,
respectively (see inset). Pronounced differences occur in the region of the polar-
ization stop band (gray area). The corresponding transmittance ratio at 1.72 µm
wavelength is about 50. The emerging polarization of light at this wavelength
is analyzed in the upper part. (b) Measured transmittance spectra. Experimen-
tal data obtained from the structure shown in Fig. 6.10, represented in the same
format as the theory.

mittance close to 78 % is observed at 1.72 µm wavelength, whereas the transmittance
is around 1.5 % for -45° polarization. Thus, the suppression factor is 52 (17.2 dB).
Furthermore, the polarization state of the light emerging from our thin-film optical
isolator is very close to linear as determined by rotating a Glan-Thomson polarizer
behind the sample (see top of Fig. 6.11(b)). The fit (solid) to the data reveals a de-
pendence of the transmittance T according to T = 0.044 + 0.683 · cos2(ϕ), where ϕ
is the analyzer angle. The overall measured behavior is in good agreement with the
numerically calculated response. In particular, the spectral position as well as the
depth of the polarization stop bands (gray areas) agree well. Regarding deviations
with respect to the spectral shape, one should be aware again that the experiment
introduces a certain angle averaging. In contrast, the theory refers to strictly normal
incidence. Deviations from perfect linear polarization of the emerging light are likely
due to sample imperfections. Nevertheless, we can conclude that the quality of the
fabricated structure is very high and that the concept is valid.
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Asymmetric transmission in chiral thin films versus Faraday isolators

As pointed out, the 1D-3D-1D heterostructure acts as a polarizer. Furthermore, it
also acts as an optical diode in the following sense: Light impinging with a linear
polarization oriented α= +45° with respect to the lamellae is transmitted for the
geometry discussed above. If we now turn around the device by 180° such that the
new incident linear polarization corresponds to α= -45° with respect to the lamellae
on the new front side, the light is not transmitted.

The system described by the Jones formalism9 reads

~J2 =

(
T11 T12

T21 T22

)
~J1 . (6.12)

For the 1D-3D-1D heterostructure, the corresponding T -matrix is T =T1 ·T2 ·T3, i.e.,
we obtain for the case where linear incident polarization is oriented α= +45° with
respect to the lamellae (blue curve of the spectra shown in Fig. 6.11):
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where T3 corresponds to a quarter-wave plate with the fast axis in x-direction, T2 to
the right-handed circular-spiral photonic crystal, and T1 to a quarter-wave plate in
y-direction, and c is a constant securing normalization of the resulting Jones vector.
As suspected, the emerging polarization is linear again (compare upper part of the
calculated and measured transmittance spectra in Fig. 6.11).

In the corresponding calculation for the device turned by 180° such that the new
incident linear polarization corresponds to α= -45° with respect to the lamellae on
the new front side (red curve of the spectra shown in Fig. 6.11) the sequence of Jones
matrices is changed to:
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Obviously, light is not transmitted anymore and the heterostructure acts as an optical
diode. Note that the Jones matrix of the helix does not change because the handedness
does not change either. Moreover, the devices does not act as an optical diode for
all orientations of the optical axis of the quarter-wave plates relative to the optical
table, on which the optic is mounted. However, the concept of an optical diode for
circular polarization based on cholesteric liquid crystals is presented in reference [4].
These devices are based on chiral reflectors and half-wave plates. They do not depend
on the optical axis of the device and can also be fabricated along the lines presented
above.

9Compare chapter 2.2.1.
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Unfortunately, this behavior of “asymmetric transmission” of an optical diode is not
equivalent to that of an optical isolator (compare section 3.3.1). This would require
that light transmitted by the device and back-reflected from a mirror behind the device
does not propagate back into the laser source. To the best of our knowledge, neither
dielectric nor metallic chiral nanostructures act as “bulletproof” optical isolators in
linear optics and without the help of an external magnetic field.

Summary/Next steps

In conclusion, we have proposed, fabricated, and characterized photonic heterostruc-
tures composed of chiral circular-spiral photonic crystals and 1D sets of lamellae act-
ing as quarter-wave plates. These heterostructures can serve as thin-film polarizers,
“poor-man’s” optical isolators, and as optical diodes in the sense defined above. More
applications based on similar ideas have been theoretically proposed in literature, e.g.,
a color-separating system for optical projectors [130].

The circular-spiral building block has turned out to be a very interesting candidate for
applications. Therefore, we decided to have a closer look at this important building
block. In particular, we want to study the importance of the arrangements of the
spirals in the photonic-crystal lattice.

6.4. Three-dimensional chiral photonic superlattices

To obtain deeper insight in the physics of our second building block, we investigate
three-dimensional photonic superlattices composed of polymeric helices in various spa-
tial checkerboard-like arrangements. Depending on the relative phase shift and hand-
edness of the chiral building blocks, different circular-dichroism resonances appear or
are suppressed. Samples corresponding to four different configurations are fabricated
and characterized.

Underlying idea

The resonances in chiral dielectric structures have been interpreted following the lines
of cholesteric liquid crystals: A resonance occurs if the helical pitch equals the effective
material wavelength. In this simple intuitive picture, which is essentially based on
individual spirals, the interaction between adjacent spirals is completely neglected.
Therefore, we aim at investigating these lateral interactions in photonic superlattices.
To allow for an unambiguous interpretation, we only change the relative phase of
neighboring spirals or their handedness.
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Figure 6.12: (a) Four configurations of chiral photonic crystals: Spirals with same handedness
are in phase (I), 90° out of phase (II), and 180° out of phase (III). Configuration
IV is a racemic mixture of helices. Each spiral is situated in a cubic unit cell
with lattice constant a. (b) Oblique view on a chiral photonic superlattice of
configuration II with N = 7 axial periods.

Design

The geometry of our model system is illustrated in Fig. 6.12. All extended unit cells
are composed of four spirals with the same structural parameters but varying phase
or handedness in a checkerboard-like manner. While four spirals with the same hand-
edness are laterally arranged in case I, they are phase-shifted by 90° in case II, and by
180° in case III. These cases are enantiopure configurations. In case IV, the handed-
ness alternates, resulting in a racemic mixture of chiral helices. The distance between
adjacent spirals a and the spiral diameter L= 0.9a are fixed. 2a is the in-plane lattice
constant. These extended unit cells are stacked to a 3D photonic crystal with N = 7
axial lattice constants. As an example, the resulting structure of case II is shown in
Fig. 6.12(b).

Fabrication

To fabricate such complex photonic superlattices, we again expose the negative-tone
photoresist SU-8. The parameters are a= 3.25 µm, L= 2.925 µm, and a volume filling
fraction of 36.5 %. All fabricated structures have a footprint of 65 µm× 65 µm and
have been fabricated under identical conditions on the same glass slide. Top-view
electron micrographs of each superlattice are depicted in 6.13(a). The four different
configurations correspond to those shown in 6.12. To demonstrate the high quality
and homogeneity, an oblique view of a circular-spiral photonic crystal of case II is
shown in Fig. 6.13(b).
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Figure 6.13: (a) Top-view electron micrographs of fabricated circular-spiral photonic crystals
in the same order as shown in Fig. 1. (b) Oblique-view electron micrograph of
a polymer structure of configuration II fabricated by DLW. The cubic lattice
constant of all structures is a= 3.25 µm, their footprint is 65 µm× 65 µm, and
they contain seven lattice constants normal to the glass substrate plane. Each
spiral diameter is L= 0.9a.

Characterization

The optical properties of the chiral photonic crystals of case I have been discussed
in detail in section 6.2. The resulting polarization stop bands have been interpreted
intuitively following the above simple picture. In this picture, the optical properties of
cases I-III should be identical. In contrast, the chiral effects are expected to disappear
in case IV.

Measured optical transmittance spectra of the sample shown in Fig. 6.13 are shown in
Fig. 6.14 (left column). All spectra are taken by using a Fourier-transform microscope-
spectrometer (compare chapter 5.1).

Case I reveals the previously discussed polarization stop band for circular polarization
centered around 4.3 µm. The details are different because the adjacent spirals slightly
overlap in this section, whereas they have been well separated previously. Here, we
have chosen overlapping spirals in order to ensure mechanical stability without the
need for additional stabilization (grids and wall, see section 6.2). In contrast to case I,
the optical properties of cases II and III considerably differ from the expectations from
the simple picture. In particular, in both cases, a second additional set of longer wave-
length resonances appears. Again, the stop band depends on the circular polarization
leading to circular dichroism. Furthermore, in case III, the original polarization stop
band has been strongly suppressed, whereas it is still visible in case II. Alas, the
above simple picture taken from cholesteric liquid crystals is not sufficient to describe
the observed behavior, especially the additional longer-wavelength resonance. Inter-
estingly, this additional stop band occurs at a wavelength that is about a factor

√
2
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larger than that of the original polarization stop band. This factor correlates with
the in-plane distance between adjacent equivalent spirals which is a in case I and

√
2a

in cases II and III. Finally, the racemic mixture (case IV) hardly shows any chiral
response. Nevertheless, the longer-wavelength stop band also seen in cases II and III
is still present.

To further investigate the optical properties and to rule out experimental artifacts,
we perform numerical calculations. We choose normally incident circular polarization
of light (blue for left-circular and red for right-circular), a polymer refractive index of
n= 1.57, a refractive index of the semi-infinite glass substrate of n= 1.518, and the
geometrical structure parameters of the fabricated structures shown in Fig. 6.13. In
particular, we also account for the elongated point-spread function of DLW (aspect
ratio of 2.7).

Since the extended unit cells might potentially lead to a slow convergence rate in
the numerics, we investigate this aspect here in more detail. The lateral and axial
discretization of each unit cell is set to a/128 = 25.4 nm. We use g= 7 orders cor-
responding to (2g + 1)2 = 225 reciprocal lattice vectors. Normal-incidence intensity
transmittance refers to the (0,0) diffraction order. The transmittance differences be-
tween g= 7 and g= 8 are within the linewidth of the shown curves (smaller than
0.015), indicating that the numerical results converge.10 The results are shown in
the right column of Fig. 6.14, allowing for a direct comparison with experiment in the
other column.

The overall agreement between theory and experiment is good. Specifically, the spec-
tral positions of the stop bands and the depth of the transmittance minima are re-
produced quite well. Remaining deviations likely arise from slight imperfections of
the fabricated structures and/or from the finite opening angle of the measurement
apparatus.

Summary/Next steps

In conclusion, we have presented 3D chiral photonic superlattices composed of differ-
ent checkerboard-like arrangements of polymer spirals. The chiral-optical properties
strongly depend on the in-plane arrangement of the spirals rather than solely on
the spiral parameters. This observation highlights the differences in the physics of
cholesteric liquid crystals and helical photonic crystals.

Furthermore, this opens new design options for tailoring the optical properties of these
artificial chiral structures. In our case, the question arose if one could arrange the
circular spirals even more complicated to achieve chirality along each spatial direction.
This novel concept of triaxial 3D chiral photonic crystals is investigated in the next
chapter.

10As we find the evaluation of the numerical convergence important, this aspect has also been dis-
cussed in section 5.2.1.
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Figure 6.14: Transmittance spectra of the samples shown in Fig. 6.13 taken/calculated un-
der normal incidence for circular polarization of the incident light. Left-handed
circular polarization (blue) and right-handed circular polarization (red) of the in-
cident light are shown for all four different configurations (I-IV). The gray areas
highlight stop bands for circular polarization or polarization-independent stop
band.
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7. Triaxial three-dimensional chiral
photonic crystals

Up to now, all investigated chiral photonic crystals were uniaxial, i.e., they possessed
one helical axis. Likewise, the vast majority of publications have only discussed
uniaxial artificial chiral structures.1 This low symmetry introduces a pronounced
directional dependence of the chiral-optical properties which can be undesired for
certain applications.

In this chapter, we combine the achievements of the last chapters and introduce triaxial
chiral photonic crystals. We aim at boosting chiral effects in these tailored man-made
crystalline materials, while avoiding uniaxial structures and maintaining isotropy as
far as possible.

7.1. Three-dimensional bi-chiral photonic crystals

The architectures that we propose and realize are inspired by so-called blue phase
of cholesteric liquid crystals [75–78], which come fairly close to our aim (compare
section 3.2). Our structures consist of left- or right-handed circular dielectric spirals
that are arranged along the three orthogonal spatial axes of a cubic lattice with left- or
right-handed so-called corners. Because of the two types of chirality, we refer to these
structures as being “bi-chiral”. Out of altogether four possible bi-chiral structures,
nature only provides those with opposite handedness, that is, left-handed motifs on
right-handed corners and vice versa.

Our structures, unlike blue-phase liquid crystals, can in principle be tuned to any
desired operation wavelength. More importantly, our approach to fabricate artifi-
cial chiral photonic crystals by using DLW give access to all four possible bi-chiral
combinations.

1A notable exception is a 3D arrangement of pieces of metal spirals with random orientation in three
dimensions that has been demonstrated at microwave frequencies [131]. The random orientation,
however, leads to some degree of inherent scattering which can be avoided in periodic structures
(“crystals”).

95



96 7. Triaxial three-dimensional chiral photonic crystals

Figure 7.1: Our “bi-chiral” structures simultaneously exhibit two distinct types of chirality.
The first type stems from the handedness of the circular spirals that are arranged
on a simple cubic 3D lattice. (a) Displacing the central spiral axes by half the
spiral diameter enforces a mechanical connection point of the three spirals in the
center of the unit cell. The orientation of these three fictitious spiral axes (the
“corner”) introduces a second type of chirality. (b) Combined with the chirality of
the spirals, four distinct types of bi-chiral photonic crystals result, namely, left/left,
right/right, left/right, and right/left-handed structures. (c) Complete structure.
The color coding is the same as in (a) and (b) and serves as a guide to the eye.

Design

The construction principle of our blueprint is illustrated in Fig. 7.1. We have started
from a 2D square array of left- or right-handed circular dielectric spirals, the optical
properties of which have been discussed in the previous chapter. A very large reso-
nant enhancement of the chiral properties occurs if the dielectric spiral pitch matches
the pitch of the light spiral, i.e., the effective wavelength. As a result, light with
the same handedness as the dielectric spirals is reflected for frequencies around the
resonance, whereas light with the opposite handedness is transmitted. An obvious
first extension of such a uniaxial structure is to arrange three sets of spirals along the
three orthogonal directions in space (Fig. 7.1(a)). In general, however, this will not
lead to mechanically connected structures, rendering the result essentially useless. By
displacing the axes of the spirals by their radius as shown on the right-hand side of
Fig. 7.1(a), a connection point of the three spirals in the center of each cubic cell can
be enforced. After displacing two of the three axes, one is left with two non-equivalent
options for positioning the third axis. This choice introduces a second type of chirality
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Figure 7.2: Electron microscopy images of fabricated bi-chiral photonic crystals. (a) Top views
on left/left, right/left, left/right, and right/right-handed photonic crystals. (b)
Oblique view on a right/left-handed polymer structure made by DLW. The cubic
lattice constant of all structures is a= 4 µm, their footprint is 60 µm× 60 µm, and
they contain seven lattice constants normal to the glass substrate plane. The
diameter of every spiral is L= 0.9a.

to the overall structure that is distinct from the chirality of the spirals. It is clear from
this construction that the chiral-optical properties will be identical for propagation of
light along the three cubic axes — in sharp contrast to uniaxial structures.

Fabrication

To test our concept of bi-chiral photonic crystals, we have fabricated corresponding
structures by means of DLW. A selection of electron microscopy images of fabricated
structures is shown in Fig. 7.2 (further images are shown in the appendix D to demon-
strate the reproducibility). Fig. 7.2(a) depicts top-view images of all four bi-chiral
combinations; Fig. 7.2 shows an oblique view of a structure with right-handed corner
and left-handed spirals (“right/left”). The mechanical stability and structural quality
turned out to be very good which is clearly due to the fact that all three spirals of a
unit cells are connected.

Characterization

We have characterized these structures by normal-incidence optical transmittance
spectroscopy using the Fourier-transform microscope-spectrometer. The experimental
results are shown in the left-hand column of Fig. 7.3. For an ideal structure, we
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expect that, for instance, the transmittance of a right/right-handed structure for
left-handed circularly polarized incident light (LCP) is identical to that of a left/left-
handed structure and right-handed circularly polarized light (RCP). Our experimental
results closely follow that expectation, indicating excellent reproducibility as well as
sample quality. More importantly, it becomes evident that the differences between
LCP and RCP are much more pronounced for the right/right and the left/left-handed
photonic-crystal structures as compared to the mixed cases, i.e., the right/left and
the left/right-handed structures. The gray areas in Fig. 7.3 highlight this aspect. As
pointed out in the introduction, only the mixed cases are thermodynamically stable
for the blue phase of cholesteric liquid crystals found in nature. Thus, our work on
artificial materials allows us to access interesting and relevant structures that are
simply not available in nature.

To further support our claims, we calculate the optical properties, assuming a plane
wave impinging under normal incidence. The refractive index of the polymer is taken
as n= 1.57, that of the glass substrate as 1.52. The structure follows our above
blueprint and the ellipticity of the voxels in DLW is explicitly accounted for (aspect
ratio of 2.7). The volume-filling fraction is 27.6%. The theoretical results shown in
the right-hand column of Fig. 7.3 agree well with the experimental values (Fig. 7.3,
left-hand side). In particular, much more pronounced effects are found for the two
cases where motif and corner have the same handedness as compared to the two mixed
cases. The remaining small quantitative discrepancies between experiment and theory
are likely due to the finite opening angle of light in the optical measurements and/or
due to small structural imperfections.

Summary

In conclusion, we have introduced, fabricated, and characterized bi-chiral dielectric
photonic crystals. In these structures, one type of handedness stems from the motif
(the spirals in our case) and the other one from the corner, i.e., from the fictitious
skeleton onto which the motif is arranged. We have found much more pronounced
chiral effects if motif and corner have the same handedness as compared to the mixed
cases. In nature, only the mixed cases are realized due to thermodynamical restric-
tions.

Our concept of bi-chiral dielectric photonic crystals with cubic symmetry avoids
the strong directional dependence2 of previous uniaxial structures while maintaining
strong circular dichroism via pronounced polarization stop bands.

2Our first studies on the angle dependency of finite bi-chiral photonic crystals can be found in
appendix C.
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Figure 7.3: Transmittance spectra of the samples shown in Fig. 7.2 taken/calculated under nor-
mal incidence for circular polarization of the incident light. Left-handed circular
polarization (blue) and right-handed circular polarization of the incident light (red)
are shown for all four different bi-chiral structures. (a) Right-handed corner/right-
handed spirals (right/ right), (b) left/left, (c) left/right, and (d) right/left. Note
that much larger circular dichroism is observed (see highlighted gray areas) for
the right/right and the left/left-handed structures compared to the mixed cases
left/right and right/left.



100 7. Triaxial three-dimensional chiral photonic crystals



8. Conclusions and outlook

Artificial photonic nanostructures enable far-reaching control of light propagation and
light-matter interaction. They are classified as chiral photonic crystals if their peri-
odically arranged building blocks possess a helical twist — either right-handed or
left-handed — on approximately the scale of the wavelength of the interacting light.
These two versions are mirror images of each other, so-called enantiomers. Geometri-
cally, they cannot be brought into congruence by mere spatial rotation and translation,
and optically, they promise to have a selective response to circularly polarized waves.

In this thesis, we have investigated the linear-optical properties of polymeric three-
dimensional chiral photonic crystals in theory and experiment. The study of such
artificial optical materials demands the ability (i) to structure dielectrics in all spa-
tial directions on a sub-micron scale, (ii) to design blueprints for three-dimensional
chiral building blocks, (iii) to numerically calculate the optical spectra, and (iv) to
characterize the fabricated structures comprehensively.

To accomplish task (i), we have employed direct laser writing (DLW) allowing for the
fabrication of arbitrary three-dimensional nanostructures with feature sizes smaller
than 100 nm. This technique turned from a scientific curiosity into a standard for
microfabrication for a variety of applications — from photonic nanostructures to scaf-
folds for biological systems. Broadly speaking, DLW can be considered as the 3D
analogue of planar electron-beam lithography.

In the course of this thesis, we have considerably improved the DLW system techni-
cally and conceptionally. In cooperation with Carl Zeiss AG and Nanoscribe GmbH,
an advanced and compact DLW system has been designed, and several experimental
setups have been realized. A compact frequency-doubled erbium-doped fiber laser
with sub-150 fs pulse duration is used as a robust laser source at 780 nm central wave-
length replacing the more expensive Ti:sapphire laser system. The laser power is now
controlled by an acousto-optical modulator and can be adjusted automatically. The
laser beam is aligned to pass light-shielding cage systems and to couple into an in-
verted microscope, where the beam is focused tightly. A piezoelectric scanning stage
provides the accuracy for the patterning of photosensitive resists with arbitrary tra-
jectories in a volume of 300 µm×300 µm×300 µm. Another novelty is the motorized
scanning stage allowing to move the sample laterally in an area of 10 cm×13 cm. All
essential components are addressed by a control software.1

1The control software has been programmed by Dr. Georg von Freymann.
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The key feature of the table-top system is the autofocus. The interface between the
cover slip and the photoresist is found automatically and reproducibly leading to an
unprecedented level of automatization of the DLW system.

For the experiments on chiral photonic crystals, the commercially available negative-
tone photoresist SU-8 has been found to be a good choice because of good resolution
(linewidths < 150 nm) and high transparency from the visible to the near-infrared
spectral range. Furthermore, the exposure leads to a very small change of the refrac-
tive index (∆n< 10−3). Accordingly, the perturbation of the laser focus at intersection
points with exposed areas is negligible.

The next step (ii) was to investigate two different blueprints composed of chiral build-
ing blocks: Chiral layer-by-layer systems (composed of parallel rods twisted along the
stacking direction) and circular-spiral photonic crystals (composed of periodically ar-
ranged helices). These chiral materials may totally inhibit the propagation of one of
the two circular polarizations in a certain frequency regime leading to a polarization
filter. This polarization stop band can occur if the pitch of the dielectric chiral struc-
ture matches the material wavelength of light. The circular polarization with the same
handedness as the structure is strongly reflected, whereas the non-matching circular
polarization is transmitted. Astonishingly, in the matching case, only a few lattice
constants along the propagation direction are needed to suppress the light intensity
by several orders of magnitude. Moreover, excellent optical performance can even be
obtained with the low refractive index of polymers.

Having these chiral blueprints at hand, we were able to design several tailored chiral
photonic crystals. However, before actually fabricating these structures, we have al-
ways predicted their optical properties with numerical calculations. The established
scattering-matrix approach (iii) allows for calculating transmittance and reflectance
spectra of finite-size periodic nanostructures for photonics. Hence, all presented ar-
chitectures have first been optimized using a scattering-matrix-approach computer
program.2

Simulation techniques are employed for efficiency but also for comparison with the
actual transmittance experiment. For that reason, we have presented the setups for
spectroscopy in the near- and mid-infrared spectral range (covering wavelengths of
600–2200 nm and 2700–7000 nm, respectively). Analyzing the chiral-optical properties
demands the control of the polarization of impinging light. Consequently, both se-
tups are modified to be ready for broadband polarization-resolved spectroscopy. The
characterization of the fabricated samples (iv) is completed with scanning electron
micrographs of the fabricated structures.

Along these lines, we have investigated low-index-contrast three-dimensional layer-by-
layer chiral photonic crystals showing giant circular dichroism from polarization stop
bands centered around the telecom wavelength of 1.55 µm. The underlying physics
of these polymeric crystals has been explained by an analytical model for chiral layer

2The original version of this software has been programmed by Dr. Stefan Linden.
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systems. Each layer reflects a partial wave leading to a circularly polarized reflection
with the same handedness as the crystal. As a result, if the impinging circular po-
larization has the same handedness as the structure, the waves will be reflected in
phase and with the same handedness as the incoming wave. If the impinging circular
polarization has the opposite handedness as the structure, the reflected waves will just
cancel out and the light will be transmitted.

The obtained giant circular dichroism at 1.8 µm wavelength for the circular-spiral de-
sign is comparable to that of the layer-by-layer approach. The polarization stop bands
observed in this second blueprint can be understood very intuitively by calculated field
distributions. If the impinging circular polarization has the same handedness as the
spiral structure, light is stronger confined within the dielectric structure compared
to the non-matching case. This leads to a higher effective refractive index for the
matching case and to a relative shift of the reflection bands occurring for both cir-
cular polarizations in the photonic crystal. Notably, the overall agreement between
experiment and theory is good in both cases. In particular, the relative handedness
of light and structure, the spectral position of the polarization stop band, and the
depth of the transmittance minima are reproduced very well. However, although
both approaches have shown excellent experimental results, we have focused on the
circular-spiral building block in our search for possible applications.

One aim of the work in applied nanophotonics is to present functional devices. Our
chiral photonic crystals show a high potential for future uses because they act as
ultra-compact filters for circular polarization. Moreover, a chiral three-dimensional
photonic crystal sandwiched between two crossed quarter-wave plates functions as a
thin-film linear polarizer. Asymmetric combinations with only one quarter-wave plate
on one side allow for thin-film linear polarizers or for “poor-man’s” optical isolators
(depending on from which side light impinges onto the device). A poor-man’s chi-
ral optical isolator is based on the change of the circular polarization upon Fresnel
back-reflection from a mirror. Since the chiral photonic crystals keep their handedness
(independent on from which side light impinges onto the device), the light is blocked
from propagating back into, e.g., a laser source. This device is only a “poor man’s” op-
tical isolator because it will only isolate one particular circular polarization — which is
in sharp contrast to isolators based on the non-reciprocal Faraday effect. The quarter-
wave plates used for these experiments are one-dimensional periodic sets of lamellae,
leading to form birefringence in the long-wavelength limit. Corresponding polymeric
heterostructures have been fabricated by means of DLW and their functionality has
been investigated with transmittance experiments.

In order to obtain deeper insight in the physics of the important circular-spiral build-
ing block, we have investigated three-dimensional photonic superlattices composed
of polymeric spirals in various spatial checkerboard-like arrangements. Surprisingly,
depending on the relative phase shift and handedness of the chiral building blocks,
different dichroitic resonances appear or are suppressed. We have carried out cor-
responding experiments and have found that the chiral-optical properties strongly
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depend on the in-plane arrangement of the spirals rather than solely on the spiral
parameters. This discloses new design options for tailoring the optical properties of
artificial chiral structures. Furthermore, this observation highlights the differences in
the physics of cholesteric liquid crystals and helical photonic crystals. Moreover, the
question arose whether we could find further interesting arrangements of the spirals.

So far, all discussed designs of chiral photonic crystals have uniaxial symmetry, i.e., one
helical axis. To overcome this drawback we have proposed a new class of crystals: Bi-
chiral photonic crystals. They are tailored man-made solids inspired by “blue-phase”
cholesteric liquid crystals and possess two types of chirality leading to four different
types of bi-chiral structures. One type of handedness stems from the motif (the spi-
rals in our case) and the other one from the corner, i.e., from the fictitious skeleton
onto which the motif is arranged. Our concept of bi-chiral dielectric photonic crystals
with cubic symmetry avoids the strong directional dependence of previous uniaxial
structures while maintaining strong circular dichroism via pronounced polarization
stop bands. We have experimentally realized all four bi-chiral combinations. Notably,
in naturally occurring blue-phase liquid crystals, only two of these are thermodynam-
ically stable. Interestingly, we have found that the combinations not occurring in
nature show the stronger circular dichroism.

In conclusion, we have investigated an exciting subclass of photonic nanostructures:
Chiral three-dimensional photonic crystals. We have fabricated several high-quality
structures by using DLW and have characterized them by transmission experiments
and numerical calculations. This material class shows a high potential for applications
because of their intense response to circularly polarized light.

The route for future research might lead to high-index-contrast chiral nanostructures.
For example, we still have to answer the question if bi-chiral photonic crystals repli-
cated in silicon can possess a complete photonic band gap for one of the circular
polarizations. A complete polarization band gap could be an amazing extension to
the original proposals [11, 12, 50]. Furthermore, artificial chiral metamaterials com-
posed of subwavelength metallic building blocks are investigated by many research
groups [44, 79] and show qualitative new effects due to their chirality, e.g., negative
phase velocities at microwave frequencies [64,65]. Observing these novel effects in the
optical regime is one major task, but magneto- or nonlinear-optical effects of chiral
materials might also bring surprises in the future.

The above notions assure that artificial chiral materials will continue to be an active
and exciting research field of optics and photonics. We are looking forward to find
even stronger effects in future chiral optical materials, new physics in chiral photonic
crystals or metamaterials, and, possibly, innovative real-world applications for chiral
nanostructures.



A. Chiral twist defect in layer-by-layer
photonic crystals

In this appendix, we study defective layer-by-layer chiral photonic crystals. Introduc-
ing a planar chiral twist defect creates a single circularly polarized localized mode.
The narrow defect mode results in a peak in transmission for a circularly polarized
wave with the same handedness as the structure. Our design is simple and robust
leading to a quality factor Q as high as 700 for low-index-contrast twisted woodpiles.
We note that such defects have also been proposed and studied in cholesteric liquid
crystals and chiral sculptured thin-films [42,132].

Design

Figure A.1: Design of defective layer-by-layer chiral photonic crystal. The geometrical pa-
rameters of the twisted woodpile are the same as in chapter 6.1, but we stack 16
pitches and introduce a defective “AC” layer between pitch 8 and 10.

The defective chiral photonic crystal to be characterized is shown in Fig. A.1. We
picked out one example of several possible designs to introduce defects based on stack-
ing errors in layer-by-layer structures. Here, we study a twisted woodpile with N = 3,
i.e., subsequent layers are twisted by 120° leading to a “ABC” sequence. The idea is
to sandwich an “AC” defect layer in the middle of 16 unperturbed pitches. In the next
section, we study how strong the influences on the intense circular reflection from the
polarization stop band are.
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Figure A.2: Calculated transmittance spectra corresponding to the structure depicted in
Fig. A.1. The geometrical parameters are the same as in chapter 6.1, but with 16
pitches.

Characterization

Corresponding scattering-matrix calculations of the structure shown in Fig. A.1 and a
reference structure without defect are depicted in Fig. A.2. Pronounced polarization
stop bands centered around 1.55 µm wavelength are observed for both structures (geo-
metrical parameters as in chapter 6.1, but with 16 pitches). However, for the defective
layer-by-layer structure, a chiral defect mode pops up at about 1.6 µm wavelength.
We calculate the quality factor of this resonance to be Q= 1600.53 nm / 2.17 nm = 738
for an assumed polymeric refractive index of n= 1.57. The transmittance of right cir-
cular polarization at the center-frequency of the defect reaches a value of more than
80%. The transmittance of left-circularly polarized light is hardly affected.

For this configuration, we also perform calculations for oblique incidence (0°–15°) on
the structures (shown in Fig. A.3). The gray-scale plots of the calculated transmission
versus angle of incidence and wavelength are shown for the twisted-woodpile structure
with and without defect, respectively. The dotted ellipse on the right-hand-side graph
mark the spectral features associated with the planar “AC” defect. As expected for
layer-by-layer structures with planar defects, the position of the defect mode depends
on the angle of incidence. The defect mode disappears for an angle of about 10°.

With a different choice of the phase defect, the optical properties of defective layer-by-
layer chiral photonic crystals change dramatically — up to a point where RCP does
not couple to the defect anymore; instead, LCP is suppressed within the polarization
stop band.
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Figure A.3: Gray-scale plots of the calculated transmission versus angle of incidence and wave-
length shown for the twisted-woodpile structure with and without defect, respec-
tively. The black regions centered about 1.55 µm correspond to the polarization
stop bands. The dotted ellipse on the right-hand-side graph mark the spectral
feature associated with the planar “AC” defect.

Summary

In summary, we have performed scattering-matrix calculations for a specific design
of defective layer-by-layer chiral photonic crystals. Introducing a planar chiral twist
defect creates a single circularly polarized localized mode. For polymeric twisted
woodpile, we have calculated a Q factor of 738 for only 16 pitches. Theory even
predicts Q factors of more than 30,000 for other cases with low anisotropy [132]. The
influence of the angle of incidence on the spectral position of the defect mode has also
been investigated.1 These localized modes may serve as low threshold lasers, low loss
waveguides, and narrow band filters [42].

1A more comprehensive study of twist defects can be found in reference [42].
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B. Supplementary data of chiral
circular-spiral photonic crystals

In this section, additional information about chiral circular-spiral photonic crystals is
given (see also reference [128]).

At first, we calculate the minimum transmittance of right circular light within the
polarization stop band under strict normal incidence on a right-handed spiral with N
pitches. In Fig. B.1, this value is plotted over the number of pitches N . As expected,
right circular light decreases exponentially within the polarization stop band.

Figure B.1: Logarithmic plot of the calculated minimum transmittance of right circular light in
the polarization-stop-band region for a right-handed spiral structure under strict
normal incidence and in dependency of the number of axial lattice constants. As
expected, right circular light decreases exponential within the polarization stop
band.

Next, we want to present some control measurements that served as sanity tests.
Fig. B.1 depicts measured transmittance spectra of the sample characterized in chap-
ter 6.2. To check the reciprocal behavior, the influence of the substrate, and of the
stabilizing grid, we perform two measurements: In the first take, light impinges on
the surface of the photonic crystal. In the second take, we turn the sample by 180°
while leaving the measurement setup as is (compare Figs. B.1(a) and (b)). Obviously,
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Figure B.2: (a) Measured transmittance spectra of the sample characterized in chapter 6.2,
but taken on a different day. (b) We checked the reciprocal behavior, the influence
of the substrate, and of the stabilizing grid by turning the sample by 180° while
leaving the measurement setup as is.

these influences are very small since the measurements reveal nearly identical spec-
tra. Moreover, the transmission is reciprocal (i.e., the colors do not interchange; as
expected).

Furthermore, we measure transmittance spectra of the same sample as in Fig. B.2(a),
but with an additional quarter-wave plate and analyzer (shown in Fig. B.3(a)). This
allows for measuring the polarization conversion of the sample that has been found
to be very low in the polarization-stop-band region — even in the experiment with
a finite opening angle. Note that we have referenced the cross terms on the glass
substrate and with non-crossed polarizer and analyzer. The small conversion at the
lower-wavelength side of the polarization stop band is not yet understood.

Finally, we show angle-resolved transmittance difference measurements of the same
sample in Fig. B.3(b). We plot TRCP-TLCP which is the difference of the transmittance
measured by using circular polarization. We choose an angle of incidence of 0°, 5°,
10°, and 15° and reference on the glass substrate. Surprisingly, for an angle of 15°, we
still have a transmittance difference of 60%. However, we observe a shift of the center
wavelength of the polarization to higher wavelengths.

Summary/Next steps

We have performed additional calculations/experiments on circular-spiral photonic
crystals. The exponential decay within the polarization stop band is affirmed theoret-
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Figure B.3: (a) Measured transmittance spectra of the same sample as in Fig. B.2(a), but
with an additional quarter-wave plate and analyzer. TRCP−RCP corresponds to
the transmittance of RCP when RCP is incident, TLCP−LCP to the transmittance
of LCP when LCP is incident, TRCP−LCP to the transmittance of RCP when LCP
is incident, and TLCP−RCP to the transmittance of LCP when RCP is incident. (b)
Angle-resolved transmittance difference measurements of the same sample as in
Fig. B.2(a). Accordingly, TRCP-TLCP denotes the difference of the transmittance
measured with circular polarization.

ically. Sanity measurements on spirals have proven the reciprocal behavior and ruled
out a strong influence of the stabilization grid and the substrate.

Angle-resolved transmittance measurements give insight in the optical properties of
the spirals that are not axial excited. This last experiment has been the motivation
to achieve more isotropy of the optical properties by using bi-chiral photonic crystals
(see chapter 7 and also the next appendix C).
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C. First studies of angle dependence of
bi-chiral photonic crystals

From our discussion in chapter 6, it is clear that a single spiral will show strong
circular dichroism for light propagating along the spiral’s axis. Nevertheless, a true
chiral object shows chirality regardless from which direction it is looked at. Hence, a
right-handed spiral should interact differently with left- or right-circularly polarized
light even under propagation perpendicular to its obvious axis. This behavior is
demonstrated in the numerical calculations shown in Fig. C.1.

Figure C.1: Numerical calculations: “LCP-RCP” transmittance of structures, which are eight
unit cells high and infinitely extended in the xy-plane. The corresponding unit
cell is shown as an inset in (a)–(d). Geometrical parameters are the same as in
chapter 7.

Here, we plot the difference in transmittance between left- and right-circular polarized
light (LCP and RCP, respectively). A difference “LCP-RCP” of +1 in this plot means
that only LCP light is transmitted, zero corresponds to equal transmittance of LCP
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and RCP light and -1 difference indicates 100% transmittance of the RCP light and
0% for LCP. The insets in all parts of the Figs. display the configuration under study;
the light is impinging along the z-axis. In Fig. C.1(a), the usual case of axial excited
circular spirals is shown. We find a polarization stop band around 4.75 µm wavelength
— RCP light is reflected back from the right-handed spiral and LCP light is mainly
transmitted. The parameters of each spiral are as follows: Elliptical cross-section as
in the experiment, a lattice constant and pitch of 4 µm, a spiral diameter of L= 0.9a
and the index of refraction of SU-8 (n= 1.57).

If we now calculate the response for the same spiral under perpendicular incidence
towards its axis, we will still keep strong circular dichroism, although slightly shifted
to shorter wavelengths (see Fig. C.1(b)). Here, neither the “matching” nor the “non-
matching” circular polarization can actually follow the spiral, nevertheless, the electric
field of RCP light is still more confined to the dielectric structure, resulting in the
observed circular dichroism. Combining two spirals as shown in Fig. C.1(c) increases
the overall filling fraction of the structure and, hence, the effective refractive index.
As a result, the polarization stop band shifts towards longer wavelengths. The fi-
nal combination of all three spirals finally results into a very pronounced stop band
around 5.1 µm wavelength (see Fig. C.1(d)). This computed behavior is also found
experimentally in chapter 7. So far, the behavior under perpendicular incidence does
not look too different from that of the uniaxial structures. However, the bi-chiral
photonic crystal should provide a certain isotropy regarding its chiral properties as
this structure shows essentially the same optical properties along each of the three
principal axes.

To test this hypothesis, we have calculated angle-resolved transmittance spectra for
a bi-chiral photonic crystal made from silicon. LCP (RCP) light is impinging under
an oblique angle θ with respect to the z-axis and the azimuthal angle is rotated from
0° to 360°. The resulting LCP-RCP transmittance for θ= 0°, θ= 35.7°, and θ= 45°
is shown in Fig. C.2. White (cyan) areas correspond to high transmittance of LCP
(RCP) light. At around 2.5 µm wavelength an almost flat polarization stop band can
be observed, hinting that we might have achieved a complete polarization gap — a
frequency region without photonic states for all crystal directions and only for one
of the two circular polarizations. However, the results seem to be not as isotropic as
expected, due to the inherent difficulty to keep the conditions for the impinging light
exactly equal for all angle of incidence. We calculate the optical response for a finite
structure with real surfaces. Light impinging under an angle will be refracted at the
photonic crystal interface. At this point, its polarization state generally changes.

Summary

We cannot necessarily conclude that the dispersion observed in the numerical cal-
culation is connected with real anisotropy or isotropy. It might also stem from the
different coupling of the incoming light to the modes of the photonic crystals. There-
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Figure C.2: Angular-resolved calculated LCP-RCP transmittance spectra of a silicon
right/right bi-chiral photonic crystal. White (cyan) areas correspond to high
transmittance of LCP (RCP) light. Light is impinging under 0°, 35.7°, and 45°

of incidence with respect to the surface normal. Geometrical parameters: Lat-
tice constant a= 1 µm, linewidth w= 0.14a, line aspect ratio χ=1, spiral diameter
L= 0.9a, 8 periods in z-direction, and index of refraction n= 3.5.

fore, results are preliminary studies and have to be taken with a grain of salt. In the
future, band structure calculations accounting for the polarization state might answer
our hypothesis.
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D. Reproducibility of the fabricated
samples

In chapters 6 and 7, we have shown selected spectra and scanning electron micrographs
for all the results. In this appendix, evidence is given that our fabricated samples are
indeed reproducible.

Figure D.1: (a) Measured transmittance spectra of five woodpiles (a= 600 nm) written with
the same nominal parameters but on different substrates.

Firstly, we present five measured spectra of woodpiles in a face-centered-cubic (fcc)
geometry and a lateral lattice constant a= 600 nm depicted in Fig. D.1. A woodpile
is a structure of considerable complexity and demands highest accuracy of the fabri-
cation process. The presented spectra provide insight in the reproducibility because
they are written with the same settings and in the same resist but on different sub-
strates. The different substrates have been addressed automatically and have been
developed instantaneously. The measured stop bands at about 920 nm match very
well for all templates taking highest demands on the fabrication process into account.
In particular, the shapes and spectral positions are well reproduced.

Secondly, measured spectra of woodpiles in an fcc geometry and a lateral lattice
constant a= 600 nm are shown, written on the same substrate with an energy dose
variation. As presented in Fig. D.2, the stop band of the woodpile moves spectrally to
smaller wavelengths with decreasing deposited energy. This is because of the smaller
effective refractive index resulting from smaller filling fractions, i.e., we are able to
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Figure D.2: (a) Measured transmittance/reflectance spectra of 600 nm woodpiles written with
the same geometrical parameters on the same substrates. The power decreases
from #1 (highest power to #9(lowest power). (b) Light microscope graph of
the measured woodpiles. The numbers correspond to the legend of (a). Higher
numbers mean lower energy.

smoothly vary the filling fraction of the woodpile — even for structures with these
small dimensions and feature sizes.

Finally, scanning electron micrographs of the most complex structures of this thesis
are presented: Bi-chiral photonic crystals. In Fig. D.3, we give an overview of the
fabricated sample characterized in chapter 7. Of course, all possible combinations of
bi-chiral photonic crystals have been written on one substrate. Moreover, we have
written several of these sets in a row of several millimeters. Obviously, the quality
of all structures is equally good. The interface finder worked well securing the same
height for each structure.

Summary

In summary, we want to stress the fact that results have been reproduced for each
presented chiral design. In this appendix, we have given exemplary experimental data
of (i) woodpiles with very small lattice constants and (ii) the most complicated chiral
structures of this thesis, both of which are extremely demanding in terms of accuracy
and stability of the fabrication process and could be reproduced very well.
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Figure D.3: Overview of the fabricated sample characterized in chapter 7.
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[8] L. Pasteur, “Mémoire sur la relation qui peut exister entre la forme cristalline
et la composition chimique, et sur la cause de la polarisation rotatoire,” Comp.
Rend. Paris 26, 535 (1848).

[9] J. C. Bose, “On the Rotation of Plane of Polarisation of Electric Waves by a
Twisted Structure,” Proc. Phys. Soc. London 63, 146 (1898).

[10] M. Wegener and N. I. Zheludev, “Artificial chiral materials,” J. Opt. A 11,
070201 (2009).

[11] E. Yablonovitch, “Inhibited Spontaneous Emission In Solid-state Physics and
Electronics,” Phys. Rev. Lett. 58, 2059 (1987).

[12] S. John, “Strong Localization of Photons In Certain Disordered Dielectric Su-
perlattices,” Phys. Rev. Lett. 58, 2486 (1987).

[13] A. Chutinan and S. John, “3+1 dimensional integrated optics with localized light
in a photonic band gap,” Opt. Express 14, 1266 (2006).

121



122 Bibliography

[14] O. Toader and S. John, “Proposed square spiral microfabrication architecture for
large three-dimensional photonic band gap crystals,” Science 292, 1133 (2001).

[15] S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal
square spiral photonic crystals,” Nano Lett. 2, 59 (2002).

[16] Y. K. Pang, J. C. W. Lee, H. F. Lee, W. Y. Tam, C. T. Chan, and P. Sheng,
“Chiral microstructures (spirals) fabrication by holographic lithography,” Opt.
Express 13, 7615 (2005).

[17] K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-
dimensional spiral-architecture photonic crystals obtained by direct laser writ-
ing,” Adv. Mater. 17, 541 (2005).

[18] J. C. W. Lee and C. T. Chan, “Polarization gaps in spiral photonic crystals,”
Opt. Express 13, 8083 (2005).

[19] M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Frey-
mann, “Polarization stop bands in chiral polymeric three-dimensional photonic
crystals,” Adv. Mater. 19, 207 (2007).

[20] M. Thiel, M. Hermatschweiler, M. Wegener, and G. von Freymann, “Thin-film
polarizer based on a one-dimensional-three-dimensional-one-dimensional pho-
tonic crystal heterostructure,” Appl. Phys. Lett. 91, 123515 (2007).

[21] F. Zhang, J. Xu, A. Lakhtakia, T. Zhu, S. M. Pursel, and M. W. Horn, “Circular
polarization emission from an external cavity diode laser,” Appl. Phys. Lett. 92,
111109 (2008).

[22] A. Lakhtakia, “Sculptured thin films: accomplishments and emerging uses,”
Mater. Sci. Eng. C 19, 427 (2002).

[23] Wikipedia, http://en.wikipedia.org/wiki/Chirality (2009).

[24] L. D. Barron, “On the definition of chirality,” Chem. Eur. J. 2, 743 (1996).

[25] D. Avnir, O. Katzenelson, and H. Z. Hel-Or, “On the definition of chirality -
Reply,” Chem. Eur. J. 2, 744 (1996).

[26] L. D. Barron, “Compliments from Lord Kelvin,” Nature 446, 505 (2007).

[27] Y. Helor, S. Peleg, and D. Avnir, “Two-Dimensional Rotational Dynamic Chi-
rality and a Chirality Scale,” Langmuir 6, 1691 (1990).

[28] C. Z. Liang and K. Mislow, “Classification of Topologically Chiral Molecules,”
J. Math. Chem. 15, 245 (1994).

[29] S. F. Mason, “Origins of Biomolecular Handedness,” Nature 311, 19 (1984).

[30] G. Ecker, “Chiral perturbation theory,” Prog. Part. Nucl. Phys. 35, 1 (1995).

[31] A. Findlater, “Chambers’s Encyclopedia,” Lippincott Company (1875).



Bibliography 123

[32] P. Cintas, “Tracing the origins and evolution of chirality and handedness in
chemical language,” Angew. Chem. Int. Ed. 46, 4016 (2007).

[33] D. F. Arago, “Sur une modification remarquable qu’étprouvent les rayons lu-
mineux dans leur passage a travers certains corps diaphanes, et sur quelques
autres nouveaux phenomenes d’optique,” Mém. Inst. France 1, 93 (1811).
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Nouveau Bulletin des Sciences par la Société Philomatique 1, 266 (1809).
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[59] M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized
and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15,
8191 (2007).

[60] B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-
heterostructure nanocavity,” Nature Mater. 4, 207 (2005).

[61] M. Deubel, “Three-Dimensional Photonic Crystals via Direct Laser Writ-
ing: Fabrication and Characterization,” Doctoral thesis (Universität Karlsruhe)
(2006).
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