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Tag der mündlichen Prüfung: 29. Januar 2010

Referent: Prof. Dr. W. de Boer

Institut für Experimentelle Kernphysik

Korreferent: Prof. Dr. G. Quast

Institut für Experimentelle Kernphysik





Contents

1 Introduction 1

2 A Physicist’s Guide to the Galaxy 7

2.1 Observational Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The Composition and the Spectrum of Cosmic Rays . . . . . . . . . . . . . 8

2.1.2 Sources of Galactic Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Propagation of Cosmic Rays in the Galaxy . . . . . . . . . . . . . . . . . . 11

2.2 Detection Techniques for Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Basics of Cosmic Ray Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Energy Losses and γ-Ray Production . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Energy Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 A Toy Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Leaky Box Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 The Cosmic Ray Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 The Boltzmann Kinetic Equation . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Quasi-Linear Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3 Approximated Solution for the Slowly Varying Distribution . . . . . . . . . 32

2.4.4 Diffusion Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.5 A Note on the Terms Convection, Advection, Diffusion and Drift . . . . . . 38

2.4.6 Large-Scale Motion of the Interstellar Medium and Drift . . . . . . . . . . . 38

2.4.7 Solar Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Models for Cosmic Ray Transport 43

3.1 Isotropic Propagation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 The GALPROP Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 The Milky Way Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 The Interstellar Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Source Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.3 Injection Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.4 Interstellar Radiation Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.5 Galactic Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.6 Diffusion Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 The Isotropic GALPROP Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Limits of Isotropic Transport Models and Evidence for Anisotropic CR Transport 57

3.5.1 The ROSAT Galactic Wind Observations . . . . . . . . . . . . . . . . . . . 59

3.5.2 The COS-B and EGRET Soft γ-Ray Gradient Observations . . . . . . . . . 60

3.5.3 The Size of the Transport Box . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.4 The INTEGRAL 511 keV Line . . . . . . . . . . . . . . . . . . . . . . . . . 62

iii



iv CONTENTS

4 An Anisotropic Transport Model for Galactic Cosmic Rays 67

4.1 Minimal Modifications of the Transport Equation . . . . . . . . . . . . . . . . . . . 68

4.1.1 Convection Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.2 Diffusion Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.3 Diffusion-Convection Boundary . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Parameter Determination for the Anisotropic Propagation Model (aPM) . . . . . . 71

4.3 Performance of the aPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Halo Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Collection Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.3 The INTEGRAL Positron Annihilation Signal . . . . . . . . . . . . . . . . 80

4.4 γ-rays and Radio Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 Diffuse γ-rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.2 Soft γ-ray Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.3 Radio Emission in an aPM . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Interlude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 The Dark Chapter 95

5.1 Indirect Dark Matter Searches and Dark Matter Candidates . . . . . . . . . . . . . 96

5.2 Diffuse Galactic γ-rays: EGRET and Fermi-LAT, Dark Matter and Astrophysics . 100

5.2.1 The EGRET γ-ray Excess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.2 Fermi-LAT diffuse γ-ray model . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.3 Fermi-LAT and Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.4 Fermi-LAT and Astrophysical Explanations . . . . . . . . . . . . . . . . . . 112

5.3 On the Link between Local Charged CRs and Diffuse γ-Rays . . . . . . . . . . . . 114

5.3.1 The γ-ray contribution from the halo . . . . . . . . . . . . . . . . . . . . . . 115

5.3.2 Untraced Gas Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.3 The Local Bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.4 The Spiral Structure of the Milky Way . . . . . . . . . . . . . . . . . . . . . 121

5.3.5 Some concluding Notes on the Link between diffuse γ-rays and local charged

Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Constraints from Antiprotons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4.1 Disentangling B/C and Antiprotons from Dark Matter Annihilation . . . . 125

5.5 Contemporary Indirect Dark Matter Searches versus Transport Model Uncertainties 130

5.5.1 The WMAP- and Fermi-haze as a Signature of Dark Matter . . . . . . . . . 130

5.5.2 The ”anomalous” PAMELA, ATIC, and Fermi-LAT Results on Electrons

and Positrons as a Signature of Dark Matter . . . . . . . . . . . . . . . . . 131

5.6 A Comment on Simplicity and Complexity of Models . . . . . . . . . . . . . . . . . 135

6 Summary and Outlook 137

A Energy Losses 141

A.1 Bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.2 Compton losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.3 Synchrotron losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.4 Ionization Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.5 Coulomb Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.6 Ineleastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.7 Radioactive Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



CONTENTS v

B Crank-Nicholson coefficents 147

B.1 Crank-Nicholson coefficients for R-dependent convection . . . . . . . . . . . . . . 147

B.2 Crank-Nicholson coefficients for anisotropic diffusion . . . . . . . . . . . . . . . . . 148

C Halo Parameters 149

D Magnetic Mirrors and Trapped CRs 151

Bibliography 153





List of Figures

2.1 Cosmic ray and Solar abundances of elements . . . . . . . . . . . . . . . . . . . . . 9

2.2 HESS and Chandra image of cosmic rays sources . . . . . . . . . . . . . . . . . . . 12

2.3 B/C and 10Be/9Be in diffusive reacceleration models . . . . . . . . . . . . . . . . 13

2.4 Solar modulation of the local cosmic ray spectra; schematic view of the heliosphere 14

2.5 Heliospheric current sheets and van-Allen-belts . . . . . . . . . . . . . . . . . . . . 15

2.6 Energy loss times for nuclei and electrons in the interstellar medium . . . . . . . . 17

2.7 Fermi acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Dependence of B/C and 10Be/9Be on different transport parameters . . . . . . . 44

3.2 Gas distribution of the Milky Way . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Cosmic ray source distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Interstellar radiation field energy density . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 B/C ratio for diffusion convection models . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 zh dependence of the predicted 10Be/9Be ratio in a diffusion convection model and

B/C ratio in diffusive reacceleration models. . . . . . . . . . . . . . . . . . . . . . 56

3.7 Galactic X-ray emission as seen by ROSAT . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Diffusion convection boundary and vertical dependence of the convection velocity . 58

3.9 The soft γ-ray gradient problem in the isotropic transport models . . . . . . . . . . 61

3.10 Magnetic field line focussing in MCCs and trapping of CRs . . . . . . . . . . . . . 63

4.1 Convection in an anisotropic propagation model . . . . . . . . . . . . . . . . . . . . 69

4.2 Diffusion convection boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Proton and electron spectra in an anisotropic propagation model . . . . . . . . . . 72

4.4 The impact of convection on the steady-state solution . . . . . . . . . . . . . . . . 73

4.5 Diffusion-convection boundary and vertical proton distribution for anisotropic trans-

port models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 B/C and 10Be/9Be for anisotropic transport models . . . . . . . . . . . . . . . . . 74

4.7 Antiprotons and positrons in an anisotropic propagation model . . . . . . . . . . . 76

4.8 B/C and 10Be/9Be in an anisotropic propagation model . . . . . . . . . . . . . . . 77

4.9 Vertical proton distribution in an anisotropic propagation model . . . . . . . . . . 78

4.10 3D proton distribution in an anisotropic propagation model . . . . . . . . . . . . . 79

4.11 Collection distance in an anisotropic propagation model . . . . . . . . . . . . . . . 80

4.12 Collection distance in an isotropic propagation model . . . . . . . . . . . . . . . . 81

4.13 Vertical distribution of < 1 MeV positrons . . . . . . . . . . . . . . . . . . . . . . . 82

4.14 Diffuse γ-rays in an anisotropic propagation model . . . . . . . . . . . . . . . . . . 86

4.15 Latitude profiles for the inner Galaxy in an anisotropic propagation model . . . . . 88

4.16 Longitude profiles for the inner Galaxy in an anisotropic propagation model . . . . 89

4.17 Longitude profiles for region D in the anisotropic propagation model . . . . . . . . 89

vii



viii LIST OF FIGURES

4.18 Diffuse γ-rays for an anisotropic propagation model with increased electron density 90

4.19 Latitude profiles for the inner Galaxy in an anisotropic propagation model with

increased electron density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.20 Longitude profiles for the inner Galaxy in an anisotropic propagation model with

increased electron density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.21 Disk longitude profiles for an isotropic model and an aPM . . . . . . . . . . . . . . 92

4.22 Radial distribution of GeV protons for the aPM and an isotropic model . . . . . . 92

4.23 Synchrotron radiation in an aPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 DMA interpretation of the EGRET data and Galactic rotation curve . . . . . . . . 102

5.2 DM halo profile as derived from EGRET and half-width-half-maximum of the gas

layer of the Galactic disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Fermi all-sky view after 1 year of data taking . . . . . . . . . . . . . . . . . . . . . 103

5.4 Fermi preliminary diffuse emission model . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 The Gll iem v02 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 aPM diffuse γray emission compared to the preliminary Fermi-LAT data . . . . . . 107

5.7 Longitude profile for a fit to the preliminary Fermi-LAT data for a halo profile with

and without rings: 0 ≤b< 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.8 Longitude profile for a fit to the preliminary Fermi-LAT data for a halo profile with

and without rings: 5 ≤b< 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.9 Longitude profile for a fit to the preliminary Fermi-LAT data for a halo profile with

and without rings: 10 ≤b< 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.10 Longitude profile for a fit to the preliminary Fermi-LAT data for a halo profile with

and without rings: 20 ≤b< 90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.11 Sky map of the background scaling factor for the preliminary FERMI-LAT data in

a conventional GALPROP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.12 aPM diffuse γ-ray plus DMA signal compared to the preliminary Fermi-LAT data 111

5.13 Fermi and ATIC proton and electron spectra . . . . . . . . . . . . . . . . . . . . . 112

5.14 Diffuse γ-rays in an aPM with hard electron and proton spectra . . . . . . . . . . . 113

5.15 Variations in source strength and an extended halo as a possible explanation of the

Fermi-LAT data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.16 The aPM diffuse γ-ray prediction for a model with the Galactic gas density increased

by 50%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.17 The local B/C and 10Be/9Be ratio for a model with the Galactic gas density

increased by 50%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.18 Local Bubble and Local Fluff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.19 B/C and 10Be/9Be for different gas densities inside the Local Bubble . . . . . . . 119

5.20 B/C and 10Be/9Be for different gas densities and source strengths inside the Local

Bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.21 B/C and 10Be/9Be for a model with increased Galactic gas density and Local Bubble120

5.22 The spiral arms of the Milky Way . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.23 Antiprotons from DMA - EGRET . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.24 Antiprotons from DMA - Fermi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.25 Illustration of the Galactic magnetic fields . . . . . . . . . . . . . . . . . . . . . . . 126

5.26 Antiproton flux for different anisotropies in diffusion . . . . . . . . . . . . . . . . . 128

5.27 Radial antiproton distribution and B/C for different anisotropies in diffusion . . . 128

5.28 Antiprotons and B/C for the minimum anisotropy compatible with the DMA in-

terpretation of the preliminary Fermi-LAT data . . . . . . . . . . . . . . . . . . . . 128

5.29 The WMAP-haze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



LIST OF FIGURES ix

5.30 The PAMELA positron and antiproton fraction . . . . . . . . . . . . . . . . . . . . 132

5.31 Pulsars as an explanation of the PAMELA positron fraction . . . . . . . . . . . . . 133

5.32 Spiral arms and local sources as an explanation of the PAMELA data . . . . . . . 134

D.1 The reduction in B/C and 10Be/9Be exptected in an aPM with complete exclusion

of CRs from MCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151





List of Tables

2.1 Density and escape time measurements of cosmic clocks . . . . . . . . . . . . . . . 29

3.1 Phases of the ISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Parameters of the aPM and a conventional GALPROP model. . . . . . . . . . . . 71

4.2 Positron escape fraction for different convection velocities and diffusion coefficients.

For details see text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Skyregions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Properties of various Dark Matter Candidates. Adopted from Bergström (2009). . 96

5.2 Injection spectra of electrons and protons for the Fermi and ATIC data. Two breaks

at ρ1 and ρ2 are used, α/β1 − α/β3 are the correspoonding injection indices. . . . . 113

A.1 Pure β unstable isotopes (1 kyr < t1/2 < 100 Myr) from Donato et al. (2002) . . . 145

A.2 Pure K-capture isotopes from Donato et al. (2002) . . . . . . . . . . . . . . . . . . 146

A.3 Mixed K-captire and β-decay isotopes from Donato et al. (2002) . . . . . . . . . . 146

A.4 Propagation distance for unstable nuclei. From Donato et al. (2002). . . . . . . . . 146

C.1 Fit Results for the pseudo-isothermal profile with rings . . . . . . . . . . . . . . . . 150

xi





List of Abbreviations

ADI Alternating Direction Implicit (Method)

AGN Active Galactic Nucleus

aPM Anisotropic Propagation Model

B/D Bulge-over-Disk (Ratio)

CR Cosmic Ray

CMB Cosmic Microwave Background

CO Carbonmonoxide

DM Dark Matter

DMA Dark Matter Annihilation

EAS Extensive Air Shower Array

EB Extragalactic Background

GC Galactic Center

GZK Greisen-Zatsepin-Ku’zmin (Cutoff)

H2 Molecular Hydrogen

HI Atomic Hydrogen

HII Ionized Atomic Hydrogen, i.e. Protons

IC Inverse Compton

LIS Local Interstellar Spectrum

ISM Interstellar Medium

ISRF Interstellar Radiation Field

LKP Lightest Kaluza-Klein Particle

LSP Lightest Supersymmetric Particle

MC Molecular Cloud

MCC Molecular Cloud Complex

NFW Navarro-Frenk-White

PISO Pseudo-Isothermal (Profile)

SGRG Soft-γ-Ray-Gradient (Problem)

SN Supernova

SNR Supernova Remnant

UV Ultraviolet

WIMP Weakly Interactig Massive Particle

XCO Ratio of Molecular Hydrogen to Carbonmonoxide Densities

xiii





Chapter 1

Introduction

The highest energies of single particles are currently not produced in particle accelerators on Earth,

but in interstellar space. The Earth is under constant bombardment by cosmic rays, energetic par-

ticles, which come to us from outer space. These particles are measured either through satellites,

balloons, or Earth based experiments. The origin of cosmic rays has been intriguing scientists

since 1912 when Victor Hess carried out his famous balloon flight to measure the ionization rate

in the upper atmosphere. Since then a number of important discoveries, like the muon, the pion

and the kaon, amongst others, were made in cosmic rays. Today the study of cosmic ray physics

brings together scientist from a variety of fields:

Astrophysicists are interested in the sources and acceleration mechanisms for cosmic rays. To-

gether with astronomers they use Galactic cosmic rays as a probe to constrain the properties of

the interstellar medium and the local environment of the Sun, as well as turbulent regions such as

pulsar nebulae. The energy density of relativistic particles is about 1 eV cm−3 and is comparable

to the energy density of the interstellar radiation field, magnetic field, and turbulent motions of

the interstellar gas. This makes cosmic rays one of the essential factors determining the dynamics

and processes in the interstellar medium.

Particle physicists look for possible signals of dark matter annihilation in cosmic rays. With the

increasing understanding of the history of our universe the necessity for dark matter and con-

sequently a viable candidate becomes a pressing problem. Together with cosmologists particle

physicists try to constrain the profile of the dark matter distribution in the Milky Way or dwarf

galaxies in the Milky Way’s halo through the observation of electromagnetic emission or charged

stable decay products from dark matter annihilation. In the last decades indirect dark matter

searches in Galactic cosmic rays have lead to a fruitful interplay of the above disciplines.

To extract the information which is contained in cosmic ray abundances and γ-ray fluxes one needs

a model of particle production and propagation in the Galaxy. Though the basic features of particle

diffusion in the Galaxy seem to be well-established, the continuous flow of new and more accurate

data from space, balloon and ground based experiments motivates further development of models.

Analytical and semi-analytical models are able to interpret one or only a few features and often

fail when they try to deal with the whole variety of data. Therefore more realistic and consistent

models are required which would be able to incorporate many processes and astrophysical data of

many different kinds simultaneously.

The details of the specific physical mechanism that regulates the motion of cosmic rays are not

yet known, but a decisive role is played by the galactic magnetic field. Because of the absence of

a definite theory that explains the nature of the propagation of cosmic rays based on a rigorous

picture of the interaction of charged relativistic particles with the interstellar medium, one uses

1
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approximate semi-empirical models. These models are derived from the basic properties of cosmic

rays:

The spectrum of cosmic rays can be approximately described by a single power law with index

−2.7 from ∼ 10 GeV to the highest energies ever observed ∼ 1020 eV. The only feature observed

below 1018 eV is a knee around 1015 eV, where the spectrum becomes slightly softer. Because of

this featureless spectrum, it is believed that cosmic-ray production and propagation is governed

by the same mechanism over decades of energy, the same mechanism at least works below the

knee and the same or another one works above the knee. The sources of cosmic rays and in

particular the acceleration mechanisms are not completely understood. They are believed to be

supernovae and supernova remnants, pulsars, compact objects in close binary systems, and stellar

winds, where charged particles are accelerated in shock waves. Observations of X-ray and γ-ray

emission from these objects reveal the presence of energetic particles thus testifying to efficient

acceleration processes near these objects. Particles accelerated near the sources to almost the

speed of light propagate tens of millions years in the interstellar medium, as it is known from

the relative abundances of radioactive instable isotopes the so-called “cosmic clocks”. This means

that cosmic rays have to be confined to the Galaxy by some mechanism, which is possible if

cosmic rays continuously scatter on magnetic turbulences and as a consequence perform a random

walk which can be modeled by diffusion. Possible scattering centers are the turbulent magnetic

fields generated by the dilute plasma of cosmic rays themselves. During their time in the gaseous

Galactic disk, cosmic rays can interact with the interstellar material where they lose or gain energy,

their initial spectra and composition change, they produce secondary particles and γ-rays. The

destruction of primary nuclei via fragmentation gives rise to secondary nuclei and isotopes which

are rare in nature. The variety of isotopes in cosmic rays allows one to study different aspects of

their acceleration and propagation in the interstellar medium as well as the source composition.

Stable secondary nuclei tell us about the diffusion coefficient and reacceleration in the interstellar

medium. Long-lived radioactive secondaries allow one to constrain global Galactic properties such

as the cosmic ray flux towards the boundary.

All these together allow us in principle to build a model of particle propagation in the Galaxy. In

the simplest case diffusion is assumed to be isotropic with the same diffusion coefficient in the halo

and the disk. The parameters of the diffusion equation can be obtained by taking a source dis-

tribution proportional to the supernova distribution and measuring the local density and energy

spectra of the cosmic rays, which depend on the transport parameters, gas densities and mag-

netic fields between the source and the Solar system. Such a model is however incomplete. The

whole of our knowledge is based on measurements done only at one point on the outskirts of the

Galaxy, the solar system, and the assumption that particle spectra and composition are (almost)

the same at every point of the Galaxy. γ-rays are able to deliver information directly from distant

regions thus complementing our knowledge obtained from cosmic-ray measurements. Some part

of the diffuse γ-rays is produced by energetic nucleon interactions with the gas via neutral pion

production, another is produced by electrons via inverse Compton scattering and bremsstrahlung.

These processes are dominant in different parts of the spectra of γ-rays, therefore, if deciphered

the γ-ray spectrum can provide information about the large-scale spectra of nucleonic and leptonic

components of cosmic rays.

In addition to diffusion, convective transport modes are expected to play a role for cosmic rays.

Supernovae eject hot gas into the interstellar medium which can expand into the halo, presumably

driven by the comsic ray pressure from supernova remnants. Such Galactic winds can blow cosmic

rays out of the Galaxy, most efficiently at radii with high source density. This mechanism is called

convection. It has been proposed as an explanation for the relatively small production of diffuse

γ-rays near the sources in comparison to the γ-ray production at larger radii, known as the ”soft
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γ-ray gradient problem”.

In fact, a recent analysis of the ROSAT data on X-rays implies wind speeds of up to 760 km/s in the

halo. Speeds like this are sufficient to solve the soft-gamma-ray-gradient problem. Unfortunately,

the maximum allowed convection speed in isotropic propagation models is restricted to a few tens

of km/s, because otherwise cosmic rays leave the Galaxy too fast and the constraints from the

relative abundances of cosmic rays and the cosmic clocks cannot be met. Wind velocities as small

as this are incompatible with the ROSAT observation.

An additional problem for isotropic diffusion models, is the large bulge-over-disk ratio of the

511 MeV positron annihilation line, as observed by the INTEGRAL satellite. These low energy

positrons are thought to originate predominantly from the decay of radioactive nuclei such as 56Co,

produced in SNIa explosions in the bulge and in the disk. Predictions of the bulge-over-disk ratio

from the expected number of SN explosions are well below one, because of the high rate of SNIa

explosions in the disk. However, INTEGRAL found a bulge-over-disk ratio of a few. In a diffusion

model without convection MeV positrons hardly propagate, because diffusion is proportional to

the velocity and energy of the particle. In this case positrons annihilate close to their sources

leading to a small bulge-over-disk ratio. Convective transport in Galactic winds is independent of

energy, so low energy positrons in the disk can be convected to the halo, where there are hardly

electrons at rest to annihilate with. In this case the escape fraction of positrons from the disk can

be sufficient to explain the observed large bulge-over-disk ratio.

About this thesis

In this thesis an anisotropic transport model, which allows for ROSAT compatible convection

and still meets all the constraints from primary and secondary cosmic rays, cosmic clocks, γ-rays

and the INTEGRAL bulge-over-disk ratio, is introduced. The model features different diffusion

coefficients in the halo and in the disk. By increasing the diffusion coefficient towards the halo

boundary a smooth transition to free escape is obtained, so the model becomes insensitive to

the precise position of the boundary. This is in strong contrast to isotropic propagation models,

which require a precise size of the halo for a given diffusion constant. The model has been

implemented in the public GALPROP code, the up to now most advanced program for Galactic

cosmic ray transport, which solves the cosmic ray transport equation numerically, taking into

account the effects of diffusion, Galactic winds, diffusive reacceleration and momentum losses.

The code incorporates a realistic large scale model of the interstellar medium and the radiation

fields.

In the framework of this study an extended GALPROP version, which allows for an arbitrary grid

spacing and an arbitrary spatial dependence of all transport parameters, has been developed. The

launch of the PAMELA and Fermi satellites has significantly increased the amount of accurate

data on Galactic cosmic rays in the past year. A further improvement is expected from the

AMS-02 instrument onboard the International Space Station, which is scheduled to be launched

on a shuttle flight in 2010. With the increasing level of data accuracy, small-scale variations in

transport parameters and gas densities can no longer be neglected. The extended GALPROP

version developed here allows for the first time to examine the impact of small-scale structures

such as the spiral structure of the Milky Way and the so-called Local Bubble, a low density region

surrounding the Sun, upon the local cosmic ray fluxes and diffuse γ-rays. In addition the stable

products of dark matter annihilation were implemented as a source term in the code. This allows

us to examine the impact of a possible contribution from dark matter annihilation upon the fluxes

of charged cosmic rays and diffuse γ-rays.
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Chapter 2

This chapter reviews the basic observational knowledge about cosmic rays and the implications

about the elementary processes of cosmic ray transport and cosmic ray sources that can be derived

from there. Starting with a phenomenological diffusion model, the simplest model for cosmic ray

transport, the so-called leaky-box model, is introduced and its predictions and limits are discussed.

Leaky-box models neglect important processes, such as diffusive reacceleration (2nd order Fermi

acceleration) and convection (Galactic winds), which are expected to be relevant for cosmic ray

transport. To establish a complete description of all relevant processes the full transport equation

is derived from the Boltzmann equation. We explicitly include convection in this equation as a

general movement of the background medium.

Chapter 3

The GALPROP code, which solves the full transport equation for cosmic rays numerically, is

introduced in Chapter 3 and the Galactic features, such as gas content, supernova distribution,

interstellar radiation fields and magnetic field, used in this program are discussed. The GALPROP

models feature isotropic and spatially constant diffusion. Such models are able to describe a large

number of observations and the GALPROP code has proven to be a useful tool for estimates of

the Galactic cosmic ray density. However, these models fail when significant wind velocities as

expected from ROSAT are invoked. In addition these models do not allow for spatial variations

and possible anisotropies in the diffusion coefficient. The size of the halo, i.e. the region in which

cosmic rays are assumed to be bound to the Galaxy via diffusion, is an important parameter of

these models and greatly influences the transport parameters required to get a good description

of the locally measured cosmic ray fluxes and their relative abundances. Above the halo boundary

free escape of comsic rays is assumed. This is an unrealistic scenario, since the scattering rate,

which is assumed to be constant throughout the Galaxy, abruptly drops to zero at this boundary.

Moreover, in reality high energy cosmic rays are expected to fill a larger volume than low energy

cosmic rays, which would mean that the halo size is energy dependent. As a result of the spatial

homogeneity of the transport parameters and the gas distribution, the INTEGRAL observation of

the large bulge-over-disk ratio in positron annihilation cannot be explained in isotropic transport

models.

Chapter 4

We show that the strict constraints on the maximum wind velocity in isotropic models can be

loosened if one takes into account that the velocity in the Galactic plane, at the base of the

wind, may be non-zero. This way the halo region where convection dominates over diffusion starts

closer to the Galactic disk. Convective transport is energy independent, while diffusion increases

with energy. In order to explain the exact energy dependence of cosmic ray escape one has to

rely on diffusion. Here we show that in the case of non negligible convection in the halo, the

diffusion coefficient in the halo has to be larger than the diffusion coefficient in the disk. This

way high-energy cosmic rays can diffuse further into the halo by virtue of the increased diffusion

coefficient above the Galactic plane and this way the energy dependence of cosmic ray escape is

incorporated naturally in the transport parameters. Since the mathematical boundary condition

is in a region where convection dominates and the probability for a cosmic ray to return to the disk

is small, the model predictions are virtually independent of the size of the transport box. Such

anisotropic propagation models (aPM, where the term ”anisotropic” refers to the fact that cosmic

ray transport perpendicular to the disk is driven by diffusion and convection, while transport in

radial direction is only due to diffusion) lead to a significant reduction of the amount of MeV
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positrons in the disk. This way the absence of positron annihilation from positrons from 56Co

decays in the disk can be explained in a natural way.

Chapter 5

In this chapter we examine the uncertainties in the density and spectra of charged cosmic rays

in an anisotropic transport model. Such uncertainties arise from variations in the Galactic gas

density or the transport parameters. In addition there might be a significant contribution of stable

decay products from dark matter annihilation in the local fluxes of cosmic rays and in the diffuse

γ-rays.

Variations in the Galactic gas density and the transport parameters are associated to known

structures like the Milky Way’s spiral arms or the Local Bubble, a low density region of space

surrounding the Sun which was created by the explosion of around 14 supernovae more than 10

Myrs ago. The locally measured secondaries are predominantly produced in the local interstellar

medium, while the diffuse γ-rays are collected from the entire Galaxy. This means that variations

in the local gas density can be probed by comparing, e.g. the local ratio of secondary cosmic

rays to primary cosmic rays to the diffuse γ-rays. The anisotropic transport model developed in

Chapter 4 offers the possibility to implement such structures at a reasonable level of detail. It is

shown that variations in the local gas density have a significant impact on the relative abundances

of charged cosmic rays. We discuss how this can be used in order to explain the preliminary

Fermi-LAT data on diffuse γ-rays, which show a slightly different normalization than the local

cosmic ray fluxes, in a self-consistent way.

Furthermore, we discuss the dark matter interpretation of the EGRET data on diffuse γ-rays in an

anisotropic propagation model and compare the dark matter profile derived from the EGRET data

to the preliminary Fermi-LAT data on diffuse γ-rays. This dark matter profile consists of a triaxial

halo and two concentric rings, with the Sun located in between these rings. We show that an

additional contribution from dark matter annihilation improves the predicted flux of diffuse γ-rays,

but the additional antiproton component from dark matter annihilation overshoots the data due to

the strong contribution from the inner ring of dark matter. With the help of the code developed

in the framework of this thesis we can go to a further level of detail and examine the impact

of anisotropies of the diffusion coefficient. It is shown that if the diffusion coefficient in vertical

direction (for transport away from the Galactic disk) is slightly larger than the diffusion coefficient

in radial direction (for transport parallel to the Galactic disk) the antiproton contribution from the

inner ring can be greatly reduced. Chapter 5 is closed with a discussion of contemporary indirect

dark matter searches from the viewpoint of cosmic ray transport uncertainties in the anisotropic

transport model.

Chapter 6

The thesis is concluded with a summary of the results and an outlook to future studies.





Chapter 2

A Physicist’s Guide to the Galaxy

On the morning of August 7, 1912, the Austrian physicist Victor Hess and two companions, Cap-

tain W. Hoffory and the meteorological observer W. Wolf, climbed into a balloon gondola for the

last of a series of seven flights over Austria, Bohemia and Prussia. During the following six hours

Hess carefully recorded the readings of three electroscopes which he used to measure the intensity

of radiation. The flight started at Aussig on the river Elbe and as the balloon gained altitude Hess

noted a rise in radiation. By noon the group landed at Peiskow, some 50 km from Berlin. In the

Physikalische Zeitschrift of November 1st that year, Hess wrote “The results of these observations

seem best explained by a radiation of great penetrating power entering our atmosphere from above

...” (Hess, 1912). This event was the beginning of cosmic ray astronomy. Twenty four years later

Hess shared the Nobel price in physics for his discovery with Carl Anderson for the discovery of

the positron. Notably, Anderson discovered the positron by observing cosmic ray tracks in a cloud

chamber (Anderson, 1933) and in the following years a number of important discoveries in particle

physics have been made in cosmic rays. For example, the muon (Neddermeyer & Anderson, 1937;

Street & Stevenson, 1937), the pion (Perkins, 1947) and the kaon (Rochester & Butler, 1947),

among others, were first observed in experiments studying cosmic rays. The interplay between the

study of cosmic ray physics and conventional particle physics has created the field of astroparticle

physics. On the other hand, particle physics plays a vital role in the understanding of cosmic-ray

production and propagation mechanisms. Even today the highest energies of single particles are

not produced in particle accelerators on Earth but in Galactic and intergalactic space. The com-

ponents of cosmic rays can be divided into charged and neutral particles. Charged particles are

influenced by magnetic and radiation fields so they do not point back to their sources as neutral

particles do. Neutral particles, such as high energetic photons or neutrinos, are partially produced

directly in the cosmic ray source regions, which are then visible to us e.g. in γ-rays and partially

produced by the subsequent interactions of charged cosmic-rays in the interstellar medium. While

there is agreement on the Galactic production sites and acceleration mechanisms, for the highest

energies the sources of cosmic rays and in particular the acceleration mechanisms are not com-

pletely understood. A review on cosmic rays and their propagation and acceleration can be found

in standard textbooks, e.g. Gaisser (1990); Ginzburg et al. (1990); Longair (1992); Schlickeiser

(2002).

In this chapter the basics of cosmic ray physics are introduced. We will begin by briefly reviewing

the current observational knowledge about cosmic rays, their sources and their propagation in the

Milky Way. In this thesis we are only interested in Galactic cosmic rays, which brings us into the

fortunate position of dealing with a topic on which basic agreement has been reached, although

the details are still subject to discussion. Having established the observational constraints we then

7
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discuss the basics of cosmic ray propagation which are required to derive the transport equation

for cosmic rays. We will briefly discuss the limits of the isotropic diffusion approximation and

then turn to the more general anisotropic diffusion-convection equation. This equation will form

the basis for all subsequent discussion of cosmic ray transport.

2.1 Observational Constraints

In many fields of physics data can be retrieved under controlled conditions in laboratory exper-

iments. The system of interest can be embedded in an experimental setup, which allows us to

control the processes that we examine. For the field of astrophysics this is not possible. Compared

to other fields of physics the observational knowledge in astrophysics and astronomy is limited in

the sense that a significant amount of interpretation of the raw data is required. Unavoidably, this

leads to observational artifacts, which have to be considered whenever dealing with astronomical

data. This is mainly due to the fact that astronomical measurements, such as gas densities or field

strengths suffer from large model uncertainties due to the fact that only column densities can be

observed. For cosmic ray physics the situation is similar. Being limited to a single point in the

Galaxy the density and the energy spectrum of cosmic rays is only known for the position of the

Sun. Any information about the cosmic rays spectra in other parts of the Galaxy has to be derived

indirectly from diffuse γ-rays or synchrotron radiation which are produced by the interaction of

cosmic rays with the interstellar medium (ISM), the Galactic magnetic field or the interstellar

radiation field (ISRF).

In this section we review observational constraints for cosmic ray (CR) transport models. Starting

with the basic knowledge about the CR spectra observed at Earth we will turn to promising

sources of Galactic cosmic rays and then discuss the immediate consequences for CR transport.

2.1.1 The Composition and the Spectrum of Cosmic Rays

While at low energies the CR spectrum mainly consists of protons and light elements, the fraction

of heavier elements increases with increasing energy significantly. At around 100GeV/nucleon

protons make up about 56% of the cosmic rays, helium 24% and heavier elements 20%. At

1PeV/nucleon the spectrum consists of about 15% protons, 33% helium and 52% heavier elements

(Nilsen, 1998).

The left side of figure 2.1 shows the CR energy spectrum. The primary cosmic-ray particles extend

over at least 13 decades in energy with a corresponding decline in intensity of over 32 decades.

Below 1016 eV the spectrum is remarkably featureless with little deviations from a power law with

spectral index -2.7, above this value the energy dependence becomes E−3. The turning point,

known as the knee, has a flux of about 1 1
m2·yr . A second change in the gradient of the spectrum

occurs at 1019 eV, known as the ankle, where the spectrum becomes less steep once again.

The origin of the knee is still subject to discussion. It could be caused by different effects, such

as different source populations (Galactic supernovae (SNs) for low energies and active galactic

nuclei (AGNs) for high energies), different energy loss mechanisms below and above the knee or a

change in the elemental composition (Asakimori et al., 1998). As an alternative new interaction

characteristics owing to new particle physics at energies above 1TeV/nucleon (Asakimori et al.,

1998) or an observational bias related to the change in the experimental technique from direct

particle-by-particle balloon and spacecraft experiments below ∼ 1014 eV to indirect ground based

air shower measurements above 1015 eV (Asakimori et al., 1998) have been suggested. Below

1019 eV it is not possible to track particles back to their sources, even if the arrival direction at

Earth is known. The trajectories of these particles are completely randomized by the galactic
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Figure 2.1: Left: Compilation of measurements of the energy spectrum of charged cosmic rays. The

observations can be described by a power-law with spectral breaks at 4 PeV, referred to

as the knee, a second knee at 400 PeV and the ankle at 1 EeV (Gaisser, 2007). Right:

Comparison of CR (here labelled GCR for Galactic cosmic rays) abundances (filled circles)

to the Solar system abundances (open circles) from George et al. (2009). The CRIS Solar

minimum results reported in George et al. (2009) are used for the z ≥ 5 GCR abundances.

For Z < 5, the GCR data come from Wang et al. (2002) and de Nolfo et al. (2006). The

Solar system abundances are taken from Lodders (2003) and represent the abundances of

elements in the proto-Solar nebula.

magnetic field, since, even at these energies, the gyro-radius in the galactic magnetic field is

smaller than the size of the Galaxy. Assuming a magnetic field of 1µG and a Galactic radius

of 50.000Ly the gyro-radius of a proton becomes comparable to the radius of the Milky Way at

energies above 1019 eV. For particles with energies larger than 1019 eV the gyro-radius exceeds the

size of the Galaxy and these particles are believed to be of extragalactic origin. No phenomenon

in the neighborhood of our Galaxy can account for CRs with energies up to 1019 eV, yet their

sources may not lie much further away, because otherwise the Greisen-Zatsepin-Ku’zmin (GZK)-

cutoff needs to be taken into account. This cutoff is due to CRs interacting with photons from

the intergalactic radiation field: Space is filled with the cosmic microwave background (CMB)

radiation, a relic of the epoch of recombination when the first hydrogen atoms were formed and

the universe became transparent to photons. There are about 109 of these photons in a cubic meter

of space, yet normally a CR will be oblivious to their presence. This changes, however, when a

CR has so much energy that the CMB photon’s energy is sufficient to cause the ∆-excitation:

p+ γCMB −→ ∆+ +X −→
{

n+ π+

p+ π0
for Ep − pp · cosθ ≥

mpmπ

q
, (2.1)

where Ep is the energy of the proton in the center-of-mass system, pp is the absolute value of

the proton’s momentum in the center-of-mass system, θ is the angle under which the proton hits

the photon, q the absolute value of the photons momentum in the center-of-mass system, mp
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the proton mass and mπ the pion mass. The universe becomes opaque for CR protons when the

∆-excitation becomes energetically allowed at energies larger than 5 · 1019 eV. The excited state

then decays by the two shown channels. The resulting proton will be of lower energy, the resulting

cutoff in the proton spectrum is called GZK cutoff. A 5 · 1019 eV proton is expected to be reduced

to an energy below the cutoff over a distance of 50 Mpc1 . Particles with energies above the cutoff

have been detected nonetheless, despite the lack of known sources within range.

Recently, the Pierre Auger collaboration has reported a tentative correlation between the ar-

rival directions of cosmic rays above 6 · 1019 eV and the position of active galactic nuclei within

∼75Mpc (Pierre Auger Collaboration, 2007), but the small number of events above 1020 eV, cor-

responding to macroscopic energies of a few Joules, confirms the GZK cutoff.

In this work the energy range of interest lies below 1015 eV. In this energy range CRs are mainly

of Galactic origin, with only a negligible fraction of extragalactic CRs. Below 1 GeV the flux drops

dramatically below the extended power law as can be seen from the left side of Fig. 2.1. This is

an artifact, because at low enough energy the Solar wind and its associated magnetic field is able

to prevent the propagation of charged particles into the heliopause.

At the position of the Earth the relative abundances of the more common elements (including C,

O, Ne, Mg, Si, Fe, Ni) are remarkably similar to the relative abundances of these elements in

the Solar system. The right side of figure 2.1 shows the CR and local abundances for the elements

from H to Zn as seen by CRIS (George et al., 2009). Nuclei heavier than 7Li have to be produced

by fusion of lighter nuclei in stars, because there are no stable elements with A = 5 or A = 8

which could serve as intermediate steps during primordial nucleosynthesis. On the other hand,

many elements that are rare in the Solar system (such as Li, Be, B, F , Sc, Ti, V ) occur with

much higher abundances in the arriving CRs. Notably, these are elements which are essentially

absent in stellar nucleosynthesis.

This discrepancy between the local elemental composition and the elemental composition of CRs

has been well known for many years and is an important key to understanding CR transport. On

the one hand the similarity between the CR and Solar system abundances of the more common

elements implies that the composition of the CR source material, which was accelerated on the

order of 107 years ago, is very similar to that of the nebula that formed the Solar system 4.6 x 109

years ago. On the other hand the fact that the less common elements, which are not produced in

suns, are much more abundant in the arriving CRs than in the Solar system, can be understood

quantitatively as the result of nuclear interactions of abundant cosmic ray elements with interstellar

gas. As an example, interactions of C, N , O result in fragments of lighter elements, 3Li, 4Be and
5B.

Another noteworthy difference is that protons are much more abundant in the Solar system than

in CRs. The likely cause of this discrepancy is that hydrogen is comparably hard to ionize and

thus only small amounts enter into the acceleration process for CRs.

2.1.2 Sources of Galactic Cosmic Rays

In this work we are interested in an energy range far below the knee, i.e. in energies of 10−1 −
102 GeV. Sources of CRs at these energies are almost exclusively Galactic. Particle acceleration

up to GeV energies has been observed in solar flares, for acceleration up to TeV energies a different

mechanism is required.

As a rough approximation the local CR energy density, which is roughly ρE ≈ 1 eV/cm3, can be

11 pc≈ 3.086 · 1016 m. For comparison: The diameter of the Milky Way is about 30 kpc; the nearest spiral

galaxy, the Andromeda Galaxy (M31) is 770 kpc away from us; clusters of galaxies, which contain 500-1000 galaxies

have typical diameters of 2-10 Mpc; superclusters (i.e. clusters of galaxy clusters), which are among the largest

structures in the universe, have been observed with diameters between 10 and 100 Mpc; the particle horizon (the

boundary of the observable universe) has a radius of about 14 Gpc.
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assumed to be representative for the whole Galaxy. Taking the timescale for diffusion out of the

Galaxy to be τ ∼ 2 · 107 yrs and assuming a Galactic radius of 15 kpc and a disk height of 800 pc

we can estimate the power required to keep up the CR energy density to be

PCR =
V ρE
τ

∼ 4 · 1033 J/s. (2.2)

Among the known Galactic objects, supernovae are the best candidate for this power. With a

mean rate of one supernova per 30 years and a typical energy release of 1044 J per supernova, the

total power released by supernovae is of the order 1035 J/s. The efficiency with which the energy

is transported to CRs is unknown, but from Eq. 2.2 it is clear that only a few percent would

suffice. The left side of Fig. 2.2 shows Tycho’s SNR as seen by CHANDRA in order to give an

impression of these objects.

The energy transport in supernova remnants is believed to be dominated by the so-called first

order Fermi acceleration. In this acceleration mechanism nuclei and electrons ejected from the

dying star scatter on magnetic turbulences carried along with the expanding supernova shell. For

each passage through the shock front the energy gains are proportional to v/c, where v is the

velocity of the shock front. Since for each cycle there is a certain probability for the particle to

be lost from the acceleration region, this process naturally leads to the observed power law in the

CR spectrum. We will discuss the Fermi acceleration mechanism in Section 2.3.2 in more detail.

Recently, the idea that CRs are accelerated to the TeV rage has been supported by observational

evidence. The right side of Fig. 2.2 shows the supernova remnant RX 1713.7-3946 as seen by the

HESS telescope in γ rays. The observed γ-ray spectrum follows a power law with spectral index

of about 2 and extends up to roughly 10TeV. This implies the presence of protons accelerated to

even higher energies than that, producing the observed γ-rays in collisions with matter present in

the vicinity of the supernova remnant.

The solar nuclear fusion chain stops with 56Ni, which is unable to release energy by fusion, but

does produce 56Fe through radioactive decay. Heavier elements are produced through endoterm

reactions in SNs, but their abundances in CRs are negligible. In this work we only consider nuclei

up to Ni.

2.1.3 Propagation of Cosmic Rays in the Galaxy

The local CR density, the energy spectrum and the relative abundances of CRs are the only direct

information about CRs we can obtain. Together with the estimates of the CR column density

which we can deduce from the diffuse γ-rays this observation forms the basis for any model for CR

transport. The featureless spectrum below the knee is believed to indicate that CR production

and propagation is governed by the same mechanism in this energy range.

The initial spectra of CRs are modified by a variety of physical processes on their way through

the Galaxy. Likewise, their initial composition is changed by hadronic interactions of protons and

nuclei with the interstellar matter. Purely secondary CRs, such as boron (B), beryllium (Be),

antiprotons and positrons, which do not originate from SNRs, are produced. A fraction of the

radioactive isotopes, like 10Be, decays in flight before reaching the detector. Hadronic interaction

also produce γ-rays by π0-production and consequent decay, electrons and positrons lose energy

very efficiently by synchrotron radiation in the Galactic magnetic field, bremsstrahlung in the

interstellar material and inverse Compton scattering on photons of the interstellar radiation field

(emission from stars, dust and CMB). Since the Galaxy is basically transparent for γ-rays, the

photons produced in CR interactions will follow straight lines and provide information about the

line of sight integral of the CR and the gas or field density required for their production.

For CRs the situation is more complicated, because their paths are bend by the Galactic magnetic
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Figure 2.2: Left: 2005 CHANDRA image of Tycho’s SNR, from Chandra.nasa.gov. The outer thin

surface is synchrotron radiation from highly relativistic electrons accelerated at the outer

shock. Behind this is a highly turbulent region, presumably formed by Rayleigh-Taylor

instability at the contact discontinuity. Acknowledgement to NASA/CXC/SAO. Right:

Acceptance corrected γ-ray excess image from supernova remnant RX 1713.7-3946 as mea-

sured by HESS (Aharonian et al., 2007). Shown is a combined image from the 2004 and

2005 data. The contour lines trace the x-ray emission.

field. Since the production and fragmentation cross sections are known from fixed target experi-

ments at Earth one can estimate the amount of matter CRs traversed on their way to the detector

from the relative abundance of secondary CRs. More specifically, one can deduce the grammage

from the ratio of secondary to primary CRs. The grammage χ is defined as the gas column density

along a CRs path

χ =

∫

nHcτesc, (2.3)

with nH the averaged gas density and τesc the time CRs spend in the Galaxy. The boron-to-

carbon (B/C) ratio shown on the left side of Fig. 2.3 is an example for such a measurement, since

B is predominantly produced from C, N, O. Figure 2.3 also shows the prediction of different

diffusive reacceleration models, which will be discussed later in this work. At this point it is only

important for us to note that an increase in halo height increases the secondary to primary ratios,

because CR spend longer times in the Galaxy. Similarly, the relative abundances of radioactive

instable isotopes can be used as ”cosmic clocks” in the sense that the local age of CRs can be

estimated from the ratio of radioactive instable to radioactive stable isotopes. An example for such

a ”cosmic clock” is the ratio of 10Be over 9Be. This is shown on the right side of Fig.2.3. Again,

the prediction of different diffusive reacceleration model is shown together with the data. With

increasing halo height the time CRs spend in the Galaxy increases and the fraction of ”surviving”
10Be decreases.

A comparison of these two measurements to the average gas density in our Galaxy leads to the

conclusion that CRs have to spend most of their time in regions with low density, such as the halo.

Thus there has to be a process which efficiently confines CRs to the Galaxy and allows them to

return from the halo to the Galactic disk. A pure propagation of the CRs guiding center along

magnetic field lines therefore can be excluded, because this process does not offer the possibility to

return from the halo. CRs therefore are assumed to scatter on turbulences in the magnetic field.
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Figure 2.3: B/C and 10Be/9Be ratios for diffusive reacceleration models from Strong & Moskalenko

(1998). Left B/C ratio for diffusive reacceleration models with a halo height of zh = 5

kpc, vα=0 (dotted), 15 (dashed), 20 (thin solid), 30 kms−1 (thick solid). In each case the

interstellar ratio and the ratio modulated to 500 MV is shown. Data: vertical bars: HEAO-3,

Voyager Webber et al. (1996), filled circles: Ulysses DuVernois et al. (1996): Φ= 600, 840,

1080 MV). Right 10Be/9Be ratio for diffusive reacceleration models as function of energy

for (from top to bottom) zh =1,2,3,4,5,10,15 and 20 kpc, the data points are from Lukasiak

(1994) (Voyager-1,2: square, IMP-7/8: open circle, ISEE-3: triangle) and Connell et al.

(1998) (Ulysses): filled circle.

If this scattering is resonant, it can be modelled by a diffusion equation with a diffusion coefficient

depending on the particle’s rigidity. The origin of the magnetic turbulences is unknown. For small

energies CRs can scatter on turbulences that the CRs themselves create (Cesarsky, 1980). These

are the so-called Alfvén waves. Alfvén waves grow in amplitude as the result of the scattering of

high energy particles by the magnetic field in the waves, until the streaming velocity of the high

energy particles is reduced to the Alfvén velocity vα ≈ B0/
√
µ0ρ, where ρ is the mass density of

the fully ionized plasma. However, this is only effective if the waves are not damped before they

have time to grow to significant amplitude. The presence of neutral particles in the interstellar

plasma can readily abstract energy from the Alfvén waves by neutral-ion collisions in a time that

is short compared to the growth time. The significance of the neutral particles is that they can

remove kinetic energy from the waves, whereas ionized particles are simply constrained to oscillate

with the waves. Consequently, in regions with a large density of neutral material, wave damping is

expected. The typical timescale for the growth of the waves is a strong function of particle energy.

For low energies (∼ 3 GeV), the high energy particles are sufficiently numerous, so that the growth

rate exceeds the damping rate. For energies above 102 − 103GeV, the damping rates become too

large and this is no longer possible (Cesarsky, 1980). At least for these energies an external source

of magnetic turbulence, such as rotating stellar winds, rotating white dwarfs, magnetic stars or

molecular clouds have to be considered. It should be noted that the magnetic turbulences are not

a directly observed quantity, but one that is inferred from the large confinement volume and large

confinement time of CRs.

Locally, CR diffusion is highly anisotropic and occurs along the magnetic field lines. However, if

the magnetic field has no preferred direction, i.e. if the turbulent small scale component (∼ 100 pc)
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Figure 2.4: Left: Summary of direct measurements proton spectra made with detectors on balloons and

in space. The line labelled ”interstellar” indicates the possible local interstellar proton flux.

From Gaisser (2001). Right: Schematic view of the heliosphere. Source: Wikipedia.

is larger than the unperturbed component, CR diffusion is assumed to be isotropized by pitch an-

gle scattering on the magnetic turbulences.

Solar and geomagnetic modulation

The left side of Fig. 2.4 shows the proton spectrum for energies between 1 and 103 GeV. In this

energy range a simple power law approximation does not suffice to describe the data. For energies

below 10 GeV the spectrum of locally measured CRs differs significantly from the local interstellar

spectrum (LIS). This is due to the interaction of CRs with the Solar wind (Longair, 1992). As the

wind begins to collide with the interstellar medium, it slows down before finally ceasing altogether.

The point where the Solar wind slows down is is called the termination shock; the point where

the interstellar medium and Solar wind pressures balance is called the heliopause; the point where

the interstellar medium, travelling in the opposite direction, slows down as it collides with the

heliosphere is the bow shock. The right side of Fig. 2.4 shows a diagram of the features of the

heliosphere. The strength of the Solar wind varies depending on the Sun’s activity. The first hints

at this effect came from observations of an anticorrelation between neutron monitor counts and

the sunspot number, the latter being an indicator of the level of Solar activity (Stanev, 2004). The

wind originates from the corona of the Sun and consists mainly of protons with a typical flux of

1.5 · 1012m−2s−1 at a typical kinetic energy of 500 eV. This corresponds to a velocity of 350 km/s

and a temperature of 106 K. The Sun’s magnetic field is frozen into the Solar wind plasma, leading

to the creation of the so-called Archimedes spiral due to the Sun’s rotation. This is shown on the

left side of Fig. 2.5. CRs scatter on the magnetic turbulences in this plasma. Due to the limited

size of the system under consideration, Solar modulation can only be efficient for smaller energies

typically below 10 GeV/nucleon. Solar modulation can be modelled by CR diffusion in a turbulent

magnetic field, convection by the outward motion of the Solar wind, and adiabatic energy losses

in this flow (Gleeson & Axford, 1968). We will discuss this in some detail in Section 2.4.7.

A second modulation occurs in the so-called van-Allen belts of the Earth’s magnetic field. Close

to the Earth the magnetic field can be approximated by a dipole field. The high field densities

at the poles form magnetic mirrors and low energetic CRs can be reflected between the mirror

points multiple times and eventually lose their energy. The right side of Fig. 2.5 shows an artist’s

impression of this process. The minimal rigidity that a particle must have in order to reach Earth is
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Figure 2.5: Left: The heliospheric current sheet out to the orbit of Jupiter. Source: Wikipedia. Right:

An artist’s impression of the Van-Allen-belts. Source: Wikipedia.

called the cutoff rigidity RS . For the case of a dipole, the cutoff rigidity for vertically approaching

particles is given by (Longair, 1992):

RS ≥ 14.9GV · cos4 λ. (2.4)

Here λ is the latitude of the observer with respect to the equatorial plane of the dipole. Near the

magnetic poles the cutoff becomes minimal. Equation 2.4 only holds for vertically approaching

particles. In reality the flux of CRs at the position of the Earth is almost isotropic. The cutoff

also depends on the azimuthal angle, leading to the east-west-effect: For the same zenith angle

the cutoff for particles with positive charge approaching from the east is higher than for positive

particles approaching from the west (and vice versa for particles with negative charge) (Stanev,

2004).

Since the Earth’s magnetic field is far from being a perfect dipole and in addition suffers time

dependent deformations due to distortions caused by the Solar wind an accurate determination

of the geomagnetic cutoff requires a detailed model of the geomagnetic field. This can be done

by backtracing individual particles with a given position, time, and rigidity through the magnetic

field by integrating the equation of motion, to see if the particle reaches outer space.

The geomagnetic cutoff leads to an additional modulation of the CR spectrum Φ(R). It can be

described as (Mizuno, 2001)

Φmod,geo(R) = Φ(R) · 1

1 +
(

R
Rc

)−γc
, (2.5)

where Rc is a cutoff rigidity. γc describes the steepness of the modulation and is typically of the

order of unity. Since in this study we use data which have been taken during different phases of

the Solar cycle, we treat the Solar modulation strength as a free parameter. Consequently, the

additional geomagnetic modulation vanishes in the uncertainties of the Solar modulation strength,

so that in the following we can neglect this modulation.

2.2 Detection Techniques for Cosmic Rays

Depending on the energy of interest CR experiments are either indirect ground based detectors,

which can be both, pointed instruments (with a small field of view) for γ-rays and instruments

with a wide field of view for both charged CRs and γ-rays, or high altitude direct detectors.
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At sea level the thickness of Earth’s atmosphere amounts to twenty radiation lengths or eight

hadronic interaction lengths. CRs below 1014 eV are absorbed before reaching the surface of the

Earth, but for these energies the CR flux is sufficient for a direct measurement. In this case ,

calorimeters, emulsion chambers, scintillators, tracking devices, Cerenkov counters or transition

radiation detectors, are combined in a suitable way to measure mass, momentum, energy or charge

sign of a particle. Such detectors are usually flown on long balloon flights or placed on satellites.

This limits the weight of the detector and thus the maximum CR energy to be detected. The

PAMELA and AMS-02 detectors are examples of this category. It should be noted that even in

the case of high altitude experiments an additional modification of the CR spectra in the thin

layer of atmosphere above the detector has to be taken into account.

For energies larger than 1014 eV the low CR flux requires large detectors for acceptable counting

rates. For these energies the Earth’s atmosphere is used as a calorimeter. A CR will interact with

a nucleus in the atmosphere (primarily oxygen and nitrogen). The energy of the primary can be

derived from the size and shape of the resulting shower at observation level. Extensive air shower

arrays (EAS) use e.g. scintillators or water Cerenkov detectors spread over a large area to detect

the shower particles. The observation altitude determines the energy threshold for primary CR

detection. The quality of shower reconstruction depends on the declination of the primary CR,

but generally this type of detector has a very wide field of view. EAS are capable of continuously

monitoring the complete overhead sky, thus leading to very large statistics. Detectors of this

type can also be used to reconstruct electromagnetic showers as initiated by gamma rays. With

sufficient angular resolution EAS can be operated as wide field of view gamma ray telescopes and

used for the detection of transient phenomena such as gamma ray bursts or the observation of

point sources such as pulsar nebulae. Apart from that, Cerenkov radiation emitted by the shower

particles or the fluorescence light can be observed. The latter is emitted after the excitation

of nitrogen molecules in the air by passing shower particles, and with wavelengths in the range

from 300 to 400 nm. The Pierre Auger observatory in Argentina employs a hybrid detection

technique (Abraham et al., 2004) combining both Cherenkov and fluorescence detectors at the

same site thus allowing cross-calibration and reduction of systematic effects that may be peculiar

to each technique.

In this work we are interested in energies below 106 GeV. Most of the results used in this work

originate from balloon borne or space probes.

2.3 Basics of Cosmic Ray Propagation

Using the observational knowledge about Galactic CRs as discussed in the last section, we can

now examine the detailed processes that CRs undergo in the ISM and ultimately build a model

for CR transport.

We have already established in Section 2.1.3 that the escape time of CRs, as measured by ra-

dioactive isotopes, is too large to allow for free propagation along the large scale magnetic field.

In addition, the grammage, as inferred from the secondary to primary ratio, is too small to allow

for CRs to spend all their time in the Galactic disk. Consequently CRs have to be confined to

the Galaxy for a considerable amount of time and in addition they have to spend most of their

time in the Galaxy in regions with low gas density, like the Galactic halo. This is possible if

CRs efficiently scatter on magnetic turbulences, possibly generated by the CR plasma itself. Once

CRs leave the source regions they will begin to scatter on these magnetic turbulences, they will

start to loose energy by virtue of interactions with the ISM, the Galactic magnetic field or the

interstellar radiation field. In many cases these energy losses lead to the production of γ-rays or

synchrotron radiation, which can be used as a tracer of the Galactic CR distribution, since the
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Figure 2.6: Estimate of the time in which CRs loose their kinetic energy. The energy loss times for

electrons (left) and protons (right) are calculated in the Thomson limit, i.e. energy density

of photons and magnetic field are identical (=1eV/cm3) and thus IC and synchrotron losses

are identical. The loss times refer to equal gas densities of the neutral and ionized component

of the ISM (nH = nHII = 0.01/cm3)) and a He to H ratio of 0 (no He). These gas and

energy densities are the approximately average values seen by CRs on their way to Earth.

Galaxy is essentially transparent for γ-rays and synchrotron radiation above a few hundred MHz.

On the other hand diffusive reacceleration, i.e. scattering on moving magnetic turbulences, can

increase the energy of CRs.

In this section we will review the main mechanisms for energy losses and gains and finally invoke

some of these processes in simple diffusion models for CR transport.

2.3.1 Energy Losses and γ-Ray Production

Electrons and Positrons Depending on the energy of interest energy losses for electrons and

positrons are dominated by bremsstrahlung, Compton and synchrotron losses or ionization and

Coulomb losses. From these five processes the following can be detected at Earth by virtue of the

γ emission:

• bremsstrahlung, i.e. interaction of high energetic electrons with interstellar gas

e+ p −→ e′ + p′ + γ (2.6)

• inverse Compton scattering, i.e scattering of high energetic electrons and low energetic

photons of the interstellar radiation field (emission from stars and dust and the CMB)

e+ γ −→ e′ + γ′ (2.7)

• and synchrotron radiation.

Given that the magnetic field, the interstellar radiation field and the gas densities are sufficiently

well known the photons produced in these processes can be used as a tracer of the average Galactic

electron and positron distribution. The left side of Fig. 2.6 shows the energy loss times for electrons

and positrons. For low energies Coulomb and ionization losses dominate, leading to total energy

loss times between 4·106 yrs and 3·108 years between 10−3 and 10−1 GeV. For energies larger than

a few hundred GeV synchrotron and IC losses become the dominant loss mode and the total energy

loss time drops rapidly to 106 yrs at 2 · 102 GeV. For energies larger than 10 GeV the electron
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loss times become comparable to the CR escape time of 107 yrs, but even for lower energies

the local electron and positron spectra can be significantly modulated by these losses. Details

on bremsstrahlung, Compton and synchrotron, ionization and Coulomb losses can be found in

Appendices A.1 through A.5.

Protons and Nuclei For protons and nuclei ionization and Coulomb losses are the dominant

energy loss mode. The right side of Fig.2.6 shows the energy loss times for different nuclei due to

these processes. For all nuclei under consideration the energy loss times exceed the time CRs spend

in the Galaxy, which implies that the spectral shapes of protons and nuclei will be practically the

same everywhere in the Galaxy. A detailed discussion of proton energy losses due to ionization

and Coulomb scattering can be found in Appendices A.4 and A.5.

In addition to ionization and Coulomb losses collisions of heavy nuclei with the hydrogen or helium

of the ISM can lead to inelastic scattering with the result that the parent nucleus is destroyed and

new CR secondaries are created:

n1 + (p, He) → n2 +X, (2.8)

here n1 and n2 denote the primary and secondary nucleus, respectively. The destruction of primary

CRs, given by the total cross section, is called fragmentation, while the production of secondary

CRs, given by the branching ratio of each channel, is called spallation. Spallation and fragmenta-

tion are discussed in Appendix A.6 in detail.

One important case to note is the production of neutral π mesons via proton-proton interactions.

The consecutive decay of the π0 mesons leads to the production of 2 photons which again are

detectable at Earth:

p+ p −→ π0 +X −→ γγ +X. (2.9)

Photons produced in this process constitute the main contribution to the diffuse γ-ray flux from

the Milky Way in the intermediate GeV range and even dominate the diffuse emission at large

latitudes. The spectral shape of these γ-rays is essentially determined by the spectral shape of the

proton spectrum along a line of sight.

In addition to fragmentation CRs undergo radioactive decays. Radioactive instable isotopes are

created both by fragmentation of heavier nuclei (e.g. 10Be is created from B, C, N, O) and

directly in CR sources (e.g. 26Al). As we have seen the importance of radioactive unstable

elements lies in the possibility of measuring the local average age of CRs. For this purpose

isotopes with lifetimes close to the CR escape time, like 10Be are of special interest. In Appendix

A.7 we discuss radioactive decays in the framework of CR transport in more detail.

2.3.2 Energy Gains

The initial cosmic ray acceleration in the source regions and the consecutive reacceleration in the

ISM is still a subject of intensive studies. At present the scientific community is mostly focused

on ultra high energy cosmic rays with energies around 1019eV. The acceleration mechanisms in

this energy range are still subject to debate, since the theory is not completely established. For

Galactic CRs the energies of interest will never exceed the TeV range. For these energies there is

good agreement on the mechanisms of CR acceleration and reacceleration.

Although a wide variety of detailed models exists there are two basic acceleration mechanisms, the

so-called first order Fermi acceleration and the so-called second order Fermi acceleration, which

will be introduced in this section. First order Fermi acceleration is a very efficient process, but it

requires the presence of strong shocks. This process is responsible for the initial acceleration of

CRs in the source region and may also play a role in the Galactic halo where the expanding SN
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Figure 2.7: Left: Acceleration by a moving, partially ionized gas cloud. Right: Acceleration at a plane

shock.

shells constitute a shock front. Second order Fermi acceleration is less efficient, but it can occur

almost everywhere in the ISM, since it only requires randomly moving magnetized clouds.

In the presence of moving magnetic traps a third acceleration mechanism is possible, which is

somewhat more efficient than second order Fermi acceleration. Although it is not clear whether

or not trap acceleration is present in the ISM we will discuss this mechanism briefly.

Since all acceleration processes in the ISM are magnetic in nature, only charged particles can be

accelerated.

Second Order Fermi Acceleration

The explanation of an effective mechanism for particle acceleration suggested by Enrico Fermi in

1949 (Fermi, 1949) was one of the milestones in understanding CR transport. The original idea was

that slowly moving magnetic clouds, about 10-100 times more dense than the interstellar medium

and endowed with an enhanced “frozen-in” magnetic field, are responsible for the reacceleration

of cosmic rays. These many light years wide clouds are believed to occupy several percent of the

ISM. When a charged particle enters such a cloud, it scatters on the random irregularities of the

magnetic field that change its momentum with a resulting gain or loss of energy, depending on

whether particle and cloud are moving in the opposite or the same direction, respectively.

There are two types of elastic scatterings that end with a reflection of the particle :

• reflection on a “magnetic mirror”, i.e the particle is confined in a field flux tube with the

field lines focussed towards a single point;

• reflection on a magnetic turbulence, i.e. the particle follows a field line that is bent.

The magnetic irregularities of the field are random in nature. Consequently the scattering inside

the cloud can be considered as a random walk. Consider a relativistic particle with energy E1 in

the laboratory frame that enters a slowly moving magnetic cloud as shown in Fig. 2.7. A Lorentz

transformation to the rest frame of the moving cloud gives

E′
1 = γE1(1 − β cos θ1), (2.10)

where here and in the following, prime stands for the rest frame of the cloud. θ1 is the angle

between the momentum of the particle and the cloud and β and γ refer to the velocity of the

cloud. Since we only consider elastic scatterings due to the motion of the magnetic field, the
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energy of the particle in the clouds rest frame just before it escapes is E′
2 = E′

1. Transforming

back to the laboratory frame, we get the energy of the particle after its encounter with the cloud,

E2 = γE′
2(1 + β cos θ′2). (2.11)

Notice, that the sign of β is opposite to 2.10. With 2.10 and 2.11 we get

E2 = γ2E1(1 − β cos θ1)(1 + β cos θ′2), (2.12)

and the energy change for the particular encounter characterized by θ1 and θ2 is

∆E

E
:=

E2 − E1

E1
=

1 − β cos θ1 + β cos θ′2 − β2 cos θ1 cos θ′2
1 − β2

− 1. (2.13)

To exploit the random nature of the process, we average equation 2.13 over angles to end with

∆E

E
=

1 + β2/3

1 − β2
− 1 ≈ 4

3
β2, (2.14)

where we used < cos θ′2 >= 0, giving

dn

d cos θ′2
= const,−1 ≤ cos θ′2 ≤ 1, (2.15)

and the fact that the angular probability of a particle to enter the cloud with an angle θ1 is

proportional to the relative velocity between particle and cloud

dn

d cos θ1
=

1

2
(1 − β cos θ1),−1 ≤ cos θ1 ≤ 1, (2.16)

so that

< cos θ1 >= −β
3
. (2.17)

From Eq. 2.14 we get the net energy gain per collision

dE ∝ β2E. (2.18)

Because of the β2 dependence this effect is called second order Fermi acceleration. Depending

on the angles for a single encounter this process can result in a loss of energy, but after many

encounters there is a net energy gain. This is sometimes incorrectly expressed by saying that

there are more approaching encounters (cos θ1 < 0) than overtaking encounters (cos θ1 > 0), but

Eq. 2.14 tells us, that an approaching encounter with the cloud in which the particle goes out the

back side of the cloud (cos θ′2 < 0) can result in a loss of energy. Similarly, an overtaking collision

can sometimes result in an energy gain. After n encounters the particle has reached the energy

E = Ei · eβ
2n, (2.19)

as can be seen from integrating Eq. 2.18. Here Ei stands for the initial energy with which the

particle enters the cloud. To manifest the time dependence in 2.19 we introduce the average time

between two collisions τc. The number of collision in the interval of time t is then n = t/τc.

Substituting this last expression in 2.19, we get

E(t) = Ei · eβ
2t/τc = Ei · et/tc , (2.20)

where tc = τc/β
2. After an average confinement time tl a CR will be scattered out of the cloud.

With α = tc/tl the probability that a particle survives until time t is given by

P (t) = e−t/tl = E
tc/tl
i · (Ei · e−t/tc)−tc/tl = k · E−α, (2.21)
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where we used Equation 2.20. Therefore the total number of particles with energy greater than E

is

J(E) ∝ E−α. (2.22)

J(E) shows a typical power law behavior. The differential energy spectrum is proportional to

dJ

dE
∝ E−(α+1) =: E−γ , (2.23)

where γ is the spectral index (the spectral index γ is not universal, but depends on the properties

of the clouds). Thus, second order Fermi acceleration provides us with a mechanism to explain

the observed power law in the local CR fluxes.

However, during their time in the dense clouds particles of course also suffer energy losses by

ionization. Consequently, there exists a minimum energy for second order Fermi acceleration,

given by the balance of energy losses and energy gains. The mininun energy Eth increases with

the charge of the particle, because of the increasing ionization losses. For protons this energy is

Eth = 200 MeV, for oxygen Eth = 20 GeV and for iron Eth = 300 GeV.

First Order Fermi Acceleration

Another acceleration mechanism was proposed by Bell (1978) and independently by Blandford

& Ostriker (1978). Here, a supernova remnant shock front is considered, which generates a non

random boost. The basic framework is similar to second order Fermi acceleration, just in this case

the cloud is represented by accelerated gas following a shock front (downstream). The shock front

moves with velocity −u1. The shocked gas flows away from the shock with a velocity u2 relative

to the shock front, and |u2| < |u1|. Thus in the laboratory frame the gas behind the shock moves

with V = −u1 + u2. Equation 2.13 also applies to this situation with β = V/c now interpreted

as the velocity of the shocked gas (“downstream”) relative to the unshocked gas (“upstream”).

The crucial difference between the two cases comes when we take the angular averages to obtain

the average energy gain per encounter. This time the angular distribution 2.15 is replaced by the

projection of an isotropic distribution on the shock plane, namely

dn

d cos θ′2
= 2 cos θ′2,−1 ≤ cos θ′2 ≤ 0, (2.24)

that gives

< cos θ′2 >=
2

3
. (2.25)

The distribution of cos θ1 in 2.16 is again the projection of an isotropic flux onto a plane, but this

time with −1 ≤ cos θ1 ≤ 0, so that

< cos θ1 >= −2

3
. (2.26)

Averaging Equation 2.13, we get

∆E

E
=

1 + 4
3β + 4

9β
2

1 − β2
− 1 ≈ 4

3
β, (2.27)

where we assumed that β << 1, i.e. non relativistic motion of the shock front. The first order

dependence on the velocity of the cloud gives the name to this kind of Fermi acceleration. Obvi-

ously this type of acceleration mechanism is more efficient than second order Fermi acceleration,

because β is always smaller than one. Moreover, for a single encounter the energy gain in the case

of first order Fermi acceleration is always positive, because for the infinite plane shock cosθ′2 is

always positive and cosθ1 is always negative.
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The first order Fermi acceleration process predominantly takes place in SN shock fronts (although

in the presence of non random Galactic winds in the halo a first order Fermi acceleration is also

expected), thus this mechanism defines the source spectrum of CRs. In general the injection

spectrum can be parameterized as follows

qj(E) = qj0Q
j(E), (2.28)

where the j index specifies the nucleus, qj0 take into account the composition and Qj(E) encloses

the energy dependence. For the last term different forms have been considered. For the HEAO

dataEngelmann (1985) it was realized that the best parameterization in the leaky box framework

with the proper modulation strength, is

Qj(E)

dE
∝ p−γ . (2.29)

This is in agreement with the law directly derived from the shock acceleration theory (Blandford

& Ostriker, 1978). In the case of first order Fermi acceleration the spectral index γ is universal, i.e.

it only depends on the Mach number M of the flow. For a mono-atomic gas one gets γ = 2+4/M2,

which for a strong shock with M >> 1 is very close to the required value of γ ∼ 2.1 for protons.

The above derivation implicitly assumes that the CR plasma does not affect the acceleration

regions. This is called the test particle approach. In reality the CRs being accelerated can

cause streaming instabilities and generate hydromagnetic waves, which themselves can the source

of diffusion in the upstream, unshocked region. With this coupling the acceleration process is

nonlinear and spectra with other indices than the ideal γ ≈ 2 can occur. In particular it is

possible to get harder spectra with the energy of the accelerated particles concentrated near the

maximum energy of the accelerator.

Maximum energy

The finite lifetime of the supernova blast wave as a strong shock limits the maximum energy per

particle that can be achieved with this mechanism. A simple estimate of the maximum possible

acceleration rate for nuclei (Drury, 1983; Lagage & Cesarsky, 1983a,b) leads to a maximum energy

of

Emax ≤ Z · 3 · 104 GeV, (2.30)

where we assumed 10M⊙ ejected at 5 · 108 cm/s into the nominal ISM with one proton per cubic

centimeter and a magnetic field of BISM ∼ 3 µG. There are large uncertainties and oversimplifica-

tions in the parameters and derivation used to reach Eq. 2.30. By assuming that the SN exploded

into the low density, hot ISM, Lagage & Cesarsky (1983b) obtained a somewhat higher maximum

energy than in 2.30, but given the uncertainties Emax ∼ 100 TeV is a good round number to use

for CR acceleration by SN blast waves.

For electrons it is necessary to check whether synchrotron losses give a more restrictive limit

for the maximum energy. Comparing the acceleration rate from the derivation of 2.30 with the

synchrotron loss rate A.9 gives

Esynchmax ∼ 23 TeV
u1

c

1√
B
. (2.31)

For the same SN parameters used to obtain 2.30 (B ∼ 3 µG and u1 ∼ 5 · 108 cm/s) this gives

an upper limit of ∼ 220 TeV, nearly a factor ten higher than the limit from SN age in 2.30.

Therefore, because of the low magnetic field used in this example, the acceleration is not limited

by synchrotron losses. On the other hand it is clear that whenever shock acceleration occurs in

a region of high magnetic field, synchrotron losses are likely to limit the acceleration of electrons.

Examples for this are neutron stars interacting with nearby matter.
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Trap reacceleration in the presence of moving traps

Second order Fermi acceleration as discussed above considers the case of randomly moving mag-

netic mirrors, such as H2 clouds which are accompanied by large magnetic fields due to flux

freezing. H2 clouds usually occur in the form of molecular cloud complexes, in which the weak

magnetic field in the cloud complexes is focussed into the dense molecular clouds. Two such

clouds then constitute a magnetic bottle with the clouds themselves as the focus points. If the

distance of the clouds is comparable to or smaller than the mean diffuse scattering length, CRs

can be efficiently trapped for a long time (Chandran, 2000, 2001). Zirakashvili (1999) showed

that CRs can gain energy due to trap deformation. With δB the value of the random magnetic

field, trap reacceleration is a factor (δB/B)1/2 more efficient than the resonant reacceleration of

untrapped particles and might significantly contribute to the total CR reacceleration especially at

larger energies (Zirakashvili, 1999).

2.3.3 A Toy Diffusion Model

As discussed in Section 2.1.3 diffusion is the most important effect that characterizes the propaga-

tion of CRs. Here we use the diffusion equation in the form of Fick’s law to discuss the diffusion

of CRs generated by the magnetic turbulences. Note, that one could also use the more general

Fokker-Planck equation. Both, Fick’s law and the Fokker-Planck equation, are purely phenomeno-

logical equations in the sense that they constitute different choices of the flux Γ in the fundamental

continuity equation
∂N

∂t
= −∂Γ

∂x
, (2.32)

where N is a probability density or number density and Γ = −D(x)∂xN for Fick’s law and

Γ = −∂x(U(x)N) + ∂2
x(D(x)N) for the Fokker-Planck equation. For a homogeneous system the

coefficients U and D are independent of coordinates and different choices for Γ collapse to the same

identical form when D and U are constant. For inhomogeneous systems there is no general form

of Γ, but Γ has to be chosen according to the microscopic dynamics of the system (e.g. Bian &

Garcia (2005) and van Milligen et al. (2005) demonstrate that the straightforward generalization

of Fick’s law Γ = −D(x)∂xN(x) cannot hold in all systems). For the cases under consideration

(smooth variations on scales much larger than the mean scattering length) the Fokker-Planck

equation reduces to Fick’s law as discussed in Sattin (2008), to which the reader is referred for

further discussion.

CR diffusion is significantly complicated by the fact that the magnetic turbulences CRs scatter on

are partially generated by the CRs themselves. Here and in the following we use the test particle

approach meaning that the CRs are assumed to move in a static spectrum of turbulences.

A spatial gradient in the density of particlesN(r, t) will generate a current that transports particles

from regions of high density to regions of low density

∇N 6= 0 → J(r, t) = −D∇N, (2.33)

where D is the diffusion coefficient. Note, that no flux is generated for the case of a constant

particle distribution, even if the diffusion coefficient depends on spatial coordinates. Naively one

might think that regions with decreased diffusion coefficient (i.e. higher density of scattering

centers) would lead to an increased CR density, because they confine CRs longer. However, at the

same time, regions with increased density of scattering centers act as reflecting surfaces. This can

be understood in the following way: for an inhomogeneous density of scattering centers nsc, say,

dnsc/dx < 0, a test particle at x has a larger probability of striking against a scattering center

that is on its left (x− δx) rather than on its right (x+ δx), and therefore of being backscattered in

the opposite direction. Hence, there is a larger probability of bouncing back rightwards than the
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converse. In so far regions with decreased diffusion coefficient will confine CRs for a longer time,

but simultaneously CRs are efficiently kept from entering these regions. For systems in which

the generalization of Fick’s law Γ = −D(x)∂xN holds, there is no resulting particle flux due to

gradients in the diffusion coefficient.

Remind, that diffusion occurs even in the case of a homogeneous particle distribution N(r, t) =

const. and a homogeneous distribution of scattering centers. In this case however, the generated

drifts due to diffusion cancel.

In general we can write the continuity equation with a source term Q(r, t)

∂N

∂t
= −∇ · J +Q(r, t), (2.34)

and we immediately get the diffusion equation

∂N

∂t
= ∇ · (D∇N) +Q, (2.35)

where we used 2.33 to identify the diffusion coefficient. The Green’s function associated with 2.35

G(r, t) =
1

8(πDt)3/2
e−r

2/(4Dt), (2.36)

gives us the probability for finding a particle that is injected at r = 0 at a position r after the

time t. For a spatially constant diffusion coefficient the mean distance from the Galactic plane at

z = 0 can be calculated from 2.36

< |z| >=
1

8(πDt)3/2

∫

ze−r
2/(4Dt)dV = 2

√

Dt/π. (2.37)

The characteristic time to reach a height H can then be defined as

tH ≡ π

4D
H2 ∼ H2

D
. (2.38)

With tH we are able to define the characteristic averaged velocity with which CRs escape from

the galaxy with half-halo height H

vD ∼ H/tH ∼ D/H. (2.39)

It should be underlined that to obtain the mean distance from the galactic plane, we assumed the

diffusion coefficient to be spatially constant all over the halo and the disk. Given the different gas

densities and the different magnetic field strengths in these two regions this is not necessarily true.

Building a Toy Transport Equation Starting with the phenomenological assumption of dif-

fusion as the main transport process we can build the CR transport equation, by simply choosing

the physics we want to include and adding up the relevant terms:

• Diffusion, as derived in the previous paragraph

∂Ni
∂t

= ∇ · (Di∇Ni), (2.40)

where Nidǫ = Ni(t, r, ǫ)dǫ is the number density of i-particles at time t and position r and

ǫ the energy per nucleon;

• In the presence of systematic large-scale motion of the medium such as Galactic convection,

we have to consider the term
∂Ni
∂t

= −Ni~∇ · u, (2.41)

but for now we assume this effect to be absent;
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• Continuous energy losses can be introduced collectively by defining the energy loss per unit

time bi = dǫ/dt for each particle

∂Ni
∂t

= − ∂

∂ǫk
(biNi); (2.42)

• Inelastic scattering with the interstellar medium

∂Ni
∂t

= −nvσiNi, (2.43)

where n is the gas density of the ISM, v is the velocity of the particle and σi is the inelastic

scattering cross section of a nucleus of type i with the interstellar gas;

• Production from inelastic scattering of heavier nuclei can be included by

∂Ni
∂t

=
∑

i<j

nvσijNj , (2.44)

where σij is the production cross section of nucleus i from the heavier nucleus j;

• Radioactive decay is described by
∂Ni
∂t

= −Ni
τi
, (2.45)

where τi is the lifetime of the i-nucleus;

• Production from heavier nuclei by radioactive decays is given by

∂Ni
∂t

=
∑

i<j

Nj
τij

, (2.46)

with τij representing the probability that a nucleus of type j decays into a nucleus of type i.

Adding up the above processes we end up with a very simple but comprehensible propagation

equation describing a diffusion model

∂Ni
∂t

= qi + ∇ · (Di∇Ni) −
∂

∂t
(biNi) − (nvσi +

1

τi
)Ni +

∑

i<j

(nvσij +
1

τij
)Nj , (2.47)

where qi = qi(t, r, ǫk) is the source function that describes the power and space-time distribution

of point like sources producing the nuclei of type i.

Equation 2.47 can be solved analytically for a variety of simplificating assumptions. In order to

decouple the diffusion of particles from the fragmentation we introduce an integral form for the

solution

Ni(t, r) =

∞
∫

0

Ni(x)G(t, r, x)dx, (2.48)

where G(t, r, x) is the path-length distribution function describing the fraction of particles at time

t and point r which have traversed a layer of matter of thickness x. In addition we assume that

• ionization losses are absent;

• the sources are the same for all kind of nuclei but the production of each nucleus is weighted

by the constant coefficient qi
qi(r, t) = giχ(t, r) (2.49)
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• the diffusion tensor does not depend on the kind of nuclei.

By plugging 2.48 into Equation 2.47 we get the system of equations

∂G

∂x
+
∂G

∂t
−∇ · (D∇G) = χδ(x),

∂Ni
∂x

= −(nvσi +
1

τi
)Ni +

∑

i<j

(nvσij +
1

τij
)Nk + giδ(x), (2.50)

provided that the following initial conditions are satisfied

[G(t, r, 0) + χ(t, r, 0)][Ni(0) + gi] = 0, G(t, r,∞)Ni(∞) = 0. (2.51)

The first equation in 2.50 describes diffusion while the second equation describes fragmentation

and decay and is sometimes considered alone in the so-called slab model. This last equation is a

first order differential equation and we can write the solution as a sum of exponentials

Ni(x) =
i
∑

j=1

aije
−(nvσi+

1
τ )x, (2.52)

where the coefficient aij can be determined by solving recurrence relations obtained by substituting

2.52 into the starting equation 2.50. Substituting back 2.52 in 2.48 we get the final solution which

is

Ni(t, r) =
i
∑

j=1

aijFj(t, r), (2.53)

where we introduced the Laplace transformation in the variable nvσi + 1
τ

Fi(t, r) =

∞
∫

0

G(t, r, x)e
−(nvσi+

1
τi

)x
dx. (2.54)

Thus the particle density is determined by Fi(t, r), which is a solution of the equation obtained

by multiplying each term in 2.50 by exp−(nvσi + 1/τi) and integrating over dx, namely

∂Fi
∂t

−∇ · (D∇Fi) + (nvσi +
1

τi
)Fi = 0, (2.55)

where we used
∞
∫

0

∂G

∂x
e
−(nvσi+

1
τi

)x
= −G(t, r, 0) + nvσi +

1

τi
Fi, G(t, r, 0) = −χ(t, r, 0). (2.56)

F (t, r) is a momentum generating function for the mean path-length traversed by the particles

< x >=

∞
∫

0

xGdx

∞
∫

0

Gdx

= −
(

d

d(nvσi + 1/τi)
lnFi

)

|σi=0, (2.57)

Equation 2.47 offers the possibility to find analytical solutions under a number of simplifying

assumptions. This equation forms the basis for a variety of contemporary models such as the

DarkSUSY (Gondolo et al., 2004) code or the model employed by Donato et al. (2002). However,

remind that we build this equation by just adding up terms that we considered relevant for CR

transport. Equation 2.47 is by no means a complete description of the physics of CR transport

since it does not include any reacceleration processes and it neglects convection. In addition, most

handy (and therefore widely-used) solutions have to make additional simplifying assumptions

about the geometry of the Galaxy, which makes the model predictions very sketchy.
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2.3.4 Leaky Box Models

An extremely simplified, yet helpful, approximation of a diffusion model is the so called ”leaky-

box” approximation. Although the predictive power of this model is rather limited, it provides us

with some very useful tools that can help to understand CR physics on a very illustrative level and

will come in handy in more complicated cases later on. Here we will discuss the leaky-box model

focussing on its predictions for radioactive instable isotopes and secondary to primary ratios. The

predictions of this simple model form the motivation for us to derive the full CR transport equation

in the diffusion limits in Section 2.4.

Leaky-box models can be understood as a limit of a diffusion model assuming that

1. scattering in the disk and halo is weak and there is strong reflection only at the galactic

boundary and

2. there is only little leakage from the Galaxy.

The first assumption forces particles to traverse the Galactic plane many times before escaping

to intergalactic space, as required by the observed grammage (see Section 2.1.3). The second

assumption allows us to consider only spatially averaged quantities, thus leading to spatially

constant CR densities and escape times. Physically, this approximation is justified by the argument

that diffusion is fast. In this case we can express the diffusion term as

∇(Di∇Ni) −→ − Ni
τesc

, (2.58)

where τesc is the confinement time for CRs, given by the diffusion coefficient D ∼ κ(p):

τesc(p) ∝ κ−1(p). (2.59)

After this substitution one can assume that CRs stream freely inside the confinement volume,

with reflections only at the boundaries. Note, that in the case of free-streaming no reacceleration

can occur, so in the leaky-box approximation the neglection of these terms is implicitly justified.

The transport equation then reads

∂Ni
∂t

= qi −
Ni
τesc

− ∂(biNi)

∂ǫk
− (nHvσi +

1

τi
)Ni +

∑

i<j

(nHvσij +
1

τij
)Nj . (2.60)

For CR nuclei with energies above a few MeV/nucleon we can neglect any continuous momentum

losses. Asking only for the steady state solution the transport equation then simplifies to

(nHvσi +
1

τi
)Ni = qi −

Ni
τesc

+
∑

j<i

(nHvσij +
1

τij
)Nj . (2.61)

Despite the many assumptions we made, this equation is very useful for simple estimates, e.g. the

escape time of CRs or the halo height. In the following we will apply the leaky-box approximation

to the case of secondary to primary ratios and radioactive isotopes.

Secondary to primary ratios Following Schlickeiser (2002) we now apply equation 2.61 to a

secondary CR element (e.g. boron) that mainly results from the spallation of primary elements (in

the case of B predominantly C, N and O). Any additional contribution from radioactive decays

of heavier nuclei such as 10Be is negligible. The secondary source is therefore given by

∑

j>B

(nHvσBj +
1

τBj
)Nj ≃ σBvnHNCNO, (2.62)
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where σB denotes the partial fragmentation cross section for the production by CNO-nuclei. Since

B is stable and can only be lost by spallation or escape from the Galaxy the transport equation

for boron then reads

(nHvσf,B +
1

τesc
)NB = σBvnHNCNO, (2.63)

where σf,B is the cross section for catastrophic loss of boron due to spallation. Equation 2.63 then

yields for the secondary to primary ratio

NB
NCNO

=
σB

σf,B + (vnHτesc)−1
. (2.64)

In the leaky-box approximation with the homogeneous confinement volume the grammage reads

as

X(p) =

∞
∫

0

dl n(r) ≃ vnHτesc, (2.65)

where v is the CRs velocity, nH the average gas density in the Galaxy and τesc the mean residence

time of the primary CR in the Galaxy. Now we can write equation 2.64 as

NB
NCNO

=
σB

σf,B +X−1(p)
. (2.66)

The power law decrease of the measured secondary/primary ratios ∝ p−0.5 at relativistic particle

energies shown in Fig. 2.3 indicates according to 2.66 a corresponding decrease of the CR escape

time and according to equation 2.59 a corresponding momentum variation of the spatial diffusion

coefficient

κ(p) ∝ p0.5. (2.67)

Such a momentum variation is possible for Kolmogorov turbulence when the turbulence spectral

index q = 2− b ≃ 1.5 is close to the Kraichnan value. However, one has to keep in mind that this

simple estimate is only valid in the leaky-box approximation. A more detailed model including

the effects of reacceleration will give a different value.

Secondary Cosmic Ray Clocks In order to get an estimate of the time CRs spend in the con-

finement volume we consider two isotopes of one secondary CR element, one of which is radioactive

instable (e.g. 10Be) and the other one is stable (e.g. 9Be). Since beryllium is a secondary CR

element, produced by spallation of CNO-nuclei in the interstellar medium, the respective source

terms are

q9(p) = σ9vnhNCNO and q10(p) = σ10vnhNCNO, (2.68)

where the partial spallation cross sections for the channels (CNO) →9 Be and (CNO) →10 Be

are known from accelerator experiments.

The catastrophic loss times due to spallation can be expressed as τc,9 = (vnHσf,9)
−1and τc,10 =

(vnHσf,10)
−1 respectively. The transport equation 2.61 for the stable 9Be isotope then reads

N9(vnHσf,9 +
1

τesc(p)
) = σ9vnHNCNO, (2.69)

while the transport equation for the unstable 10Be isotope reads

N10(vnHσf,10 +
1

τesc(p)
+

1

γτd
) = σ10vnHNCNO. (2.70)

The ratio of the two isotopes then becomes

N10

N9
=
σ10

σ9

vnHσf,9 + τesc−1(p)

vnHσf,10 + τesc−1(p) + (γτd)−1
. (2.71)
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All cross sections and the decay lifetimes in this equation are known and thus by measuring the

ratio 2.71 at different energies one can infer the value of the gas density in the confinement region

nH and the value and the momentum dependence of the escape time τesc(p). By combining with

inferences drawn from the traversed grammage (Eq. 2.66) from secondary to primary measure-

ments one can determine the values of nH and τesc separately.

Table 2.1 summarizes the density and escape time measured with several cosmic ray isotopes.

All measurements are consistent with a CR escape time of ≃ 107 yrs at non-relativistic particle

energies. The average gas density seen by CRs is substantially lower than the Galactic average in

the disk of 1 atom cm−3, which indicates that CRs have spent substantial parts of their lifetime

in low density regions of the interstellar medium, like, e.g. the halo of the Milky Way.

The time scale for continuous momentum losses of relativistic CR nucleons in the Galaxy is much

longer than 107yr (see Fig. 2.6). Thus, the neglection of these processes in the above approxima-

tion of the transport equation 2.61 is justified.

Isotope ρ CR lifetime Reference

[atoms x cm3] [Myr]

10Be 0.18(+0.18,-0.11) 17(+24,-8) Garcia-Munoz, Mason, Simpson ’77

0.30(+0.12,-0.10) 8.4(+0.4,-2.4) Wiedenbeck,Greiner ’80

0.23(+0.13,-0.11) 14(+13,-5) Garcia-Munoz, Simpson, Wefel ’81

0.24(+0.07,-0.07) 15(+7,-4) Simpson, Garcia-Munoz ’88

0.28(+0.14,-0.11) 27(+19,-9) Lukasiak et al. ’94

0.23(+0.04,-0.04) 18(+3,-3) Connell ’97

26Al 0.28(+0.72,-0.19) 9(+20,-6.5) Wiedenbeck ’83

0.52(+0.26,-0.20) 13.5(+8.5,-4.5) Lukasiak, McDonald, Webber ’94

0.28(+0.72,-0.19) 15.6(+2.5,-2.6) Connell, Simpson ’97

36Cl 0.39(+0.15,-0.15) 11(+4,-4) Connell & et al. (1997)

54Mn 0.37(+0.16,-0.11) 14(+6,-4) DuVernois ’97

Table 2.1: Density and escape time measurements of cosmic clocks. Adapted from Schlickeiser (2002).

N.B.: (Adapted from DuVernois (1997)). These are the quoted, published, confinement

times. Using a different pathlength distribution (PLD) would alter these values somewhat.

Mn confinement is for an assumed 54Mn β+ partial half life of 1 Myr.

2.4 The Cosmic Ray Transport Equation

The constraints from secondary CRs and radioactive isotopes found in the last section provide

good reasons to model CR transport by diffusion. However, up to now the description was purely

phenomenological and the underlying physical processes remained unknown.

In this section we will derive the full CR transport equation, starting with the Boltzmann kinetic

equation. To this end we work in the context of the kinetic theory following the derivation of

the propagation equation given in Ginzburg et al. (1990) to which we refer the reader for further

explanations.

At the end of this section stands the full transport equation for CRs in the diffusion-convection

approximation, which will serve as the basis for all CR transport models in the remainder of this

thesis.
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2.4.1 The Boltzmann Kinetic Equation

The number of particles contained in the phase space volume Γ at the time t can be written as

the integral of the phase space density distribution f(t,x,p)

N(t) =

∫

Γ

dxdpf(t,x,p) =

∫

Γ

dn. (2.72)

During an infinitesimal timestep δt, the position and momentum of the particles change by

δx = ẋδt =
p

m
δt,

δp = ṗδt =
F

m
δt, (2.73)

where F is an external force. The total number of particles in the infinitesimal phase space volume

δxδp then changes by

δdn = dxdp δf(t,x,p) = dxdp

(

∂f

∂t
+ ẋ∇f + ṗ

∂f

∂p

)

δt. (2.74)

In the absence of energy losses through collisions the Liouville theorem holds, asserting that

δf(t,x,p) = 0. (2.75)

If collisions occur, we have to introduce the variation rate R of the distribution function

dn′ − dn = Rδt, (2.76)

where the rate R has to be specified case by case, depending on the properties of each interaction.

With 2.74 and 2.76 the full kinetic equation reads

∂f

∂t
+ ẋ∇f + ṗ

∂f

∂p
= R. (2.77)

Collisions between particles are always mediated by an interaction of some sort. Consequently,

we have to distinguish between forces whose contribution can be included in the collision term R,

and forces which contribute to the ṗ term in 2.77. The two relevant quantities to compare are

the interaction range and the mean free path of the particles. In a gas of neutral atoms, e.g., the

range of interactions extends about distances of the order of atomic dimensions. Compared to the

mean free path these distances are very short. In this case we have a genuine collision framework

and if no external field is applied the ṗ term in 2.77 can be neglected.

CRs form a plasma of ionized particles and each particle carries a charge which is responsible

for a long range interaction. The collective macroscopic field, generated by the CRs themselves,

reduces the free mean path to zero. Thus, if the plasma is dense enough we can neglect collisions.

In the case of a rarefied plasma the Debye length can be used to characterize the interaction range

of the macroscopic field. If the Debye length is large compared to the mean distance between

particles, collisions can be disregarded. Introducing the Lorentz force F = Ze
(

~E + (ẋ × ~H)/c
)

,

the magnetic field ~H and the electric field ~E , we can write the kinetic equation as

∂f

∂t
+ ẋ∇f + Ze

(

~E +
ẋ × ~H
c

)

∂f

∂p
= 0. (2.78)
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2.4.2 Quasi-Linear Approximation

The assumption that the distribution f(t,x,p) is dominated by a slowly evolving part and only

a small fluctuating part is called the standard quasi-linear approximation. In this case f(t,x,p)

can be expressed as

f(t,x,p) = f0(p) + f1(t,x,p), (2.79)

where f0(p) is the slowly evolving background and f1(t,x,p) the fluctuating part which is required

to be small with respect to f0. We consider an instability such that a continuous spectrum of

waves is excited. If the wavelength of the perturbation is of the order of a few Debye lengths

f0 can be considered spatially uniform. Averaging 2.79 over the spectrum of perturbations the

fluctuating part vanishes

< f1 >= 0, (2.80)

and we are left with

< f >= f0. (2.81)

The same procedure is applied to the magnetic field, so that

~H = ~H0 + ~H1, (2.82)

where ~H1 represents the random fluctuating part of ~H and

< ~H >= ~H0, < ~H1 >= 0. (2.83)

Since the CR plasma is a highly conductive medium, the mean value of the electric field ~E over

the ensemble of waves vanishes, so that

< ~E >= 0. (2.84)

The perturbations ~H1 and ~E can be thought of as a superposition of waves with random continuous

phases. Using a Fourier expansion we get

~H1 =
∑

α

∫

d3ke−i[ω
α(k)t−k·r] ~Hα

1 (k),

~E =
∑

α

∫

d3ke−i[ω
α(k)t−k·r] ~Eα(k), (2.85)

where the index α refers to different types of waves. Averaging the homogeneous Maxwell equation

∇× ~E = −1

c

∂ ~H
∂t

, (2.86)

and applying Eqs. 2.82 and 2.84 we have

∇× ~E = −1

c

∂ ~H1

∂t
. (2.87)

This equation allows us to express the electric and magnetic Fourier coefficients 2.85 in terms of

one another by
~Hα

1 (k) =
c

ωα(k)
[k × ~Eα(k)], (2.88)

thus enabling us to eliminate one type of coefficient.
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2.4.3 Approximated Solution for the Slowly Varying Distribution

We now go back to equation 2.78 and use a slightly relaxed but more realistic quasi-linear ap-

proximation to solve it. In this case the dependence of f0 on space and time is not neglected, but

the fluctuating parts f1, ~E and ~H1 are still assumed to be small compared to equilibrium values.

The goal is to find a closed differential equation for f0 taking into account the influence of the

perturbations ~E and ~H0. The searched equation will form the basis for our subsequent diffusion

model. In a first step we look for a first order expression for f1 satisfying a differential equation

approximated up to linear terms in f1, ~E and ~H1. In a second step this first order expression can

be used to close a second order averaged differential equation for f0.

Inserting equations 2.79 and 2.82 into the Boltzmann equation 2.78 we get

∂(f0 + f1)

∂t
+
(

ẋ · ~∇
)

(f0 + f1) + Ze

[

~E +
ẋ

c
×
(

~H0 + ~H1

)

]

∂f0
∂p

+

+Ze

[

~E +
ẋ

c
×
(

~H0 + ~H1

)

]

∂f1
∂p

= 0. (2.89)

Averaging equation 2.89 yields

∂f0
∂t

+
(

ẋ · ~∇
)

fo + Ze

(

ẋ

c
× ~H0

)

∂f0
∂p

= − < Ze

(

~E +
ẋ

c
× ~H1

)

∂f1
∂p

>, (2.90)

where 2.80, 2.83 and 2.84 have been used. Neglecting all the quadratic terms in f1, ~E and ~H1,

equations 2.89 and 2.90 reduce to

∂(f0 + f1)

∂t
+
(

ẋ · ~∇
)

(f0 + f1) + Ze

[

~E +
ẋ

c
×
(

~H0 + ~H1

)

]

∂f0
∂p

+

+Ze

[

ẋ

c
× ~H0

]

∂f1
∂p

= 0, (2.91)

∂f0
∂t

+
(

ẋ · ~∇
)

fo + Ze

(

ẋ

c
× ~H0

)

∂f0
∂p

= 0. (2.92)

Now, subtracting Eq. 2.92 from Eq. 2.91, we get a closed expression for f1

∂f1
∂t

+
(

ẋ · ~∇
)

f1 + Ze

(

ẋ

c
× ~H0

)

∂f1
∂p

= −Ze
(

~E +
ẋ

c
× ~H1

)

∂f0
∂p

, (2.93)

This step is equivalent to assuming that f0 depends only on p, since the same result is achieved

directly by inserting f0 = f0(p) in Eq. 2.91. As a solution of the first order approximation 2.93

the expression

f1 = −
t
∫

−∞

dt′Ze

(

~E +
ẋ

c
× ~H1

)

∂f0
∂p

, (2.94)

can be used. This is the first order expression for f1 we searched for. Inserting this into the the

second order differential equation 2.90 yields the closed differential equation for f0 we were looking

for

∂f0
∂t

+
(

ẋ · ~∇
)

f0 + Ze

(

ẋ

c
× ~H0

)

∂f0
∂p

=

=< Ze

(

~E +
ẋ

c
× ~H1

)

∂

∂p

t
∫

−∞

dt′Ze

(

~E +
ẋ

c
× ~H1

)

∂f0
∂p

> . (2.95)
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To simplify this expression we introduce cylindrical coordinates (p||, p⊥, ϕ) in momentum space

with

p · ~H0 = p||H0. (2.96)

The time scale ∆t of particle motion in a magnetic field is given by the gyro-frequency ωH associ-

ated to the circular motion of a particle of charge Ze induced by the surrounding magnetic field,

namely

∆t−1 ∼ ωH =
ZeHc

E
, (2.97)

where E is the particle’s total energy

E2 = p2c2 +m2c4. (2.98)

In the case of large turbulence the time scale ∆t is much larger than the time scale of fluctuations

in ~E and ~H1, so that CR transport is driven by the random field fluctuations. In the limit of weak

turbulence, corresponding to the assumption that the time scale ∆t is much smaller than the time

scale associated to the frequency of the random fluctuations of ~E and ~H1, the field fluctuations

have no effect on the circular motion of fast moving particles. This allows a reasonable average

over the angle ϕ so that f0(t, r,p) can be replaced by

f̄0(t, r, p||, p⊥) =
1

2

2π
∫

0

dϕ < f0(t, r, p||, p⊥) > . (2.99)

It can be demonstrated (for more details see Akhiezer (1975) and Kennel & Engelmann (1966))

that with the above approximation, equation 2.95 can be written as

∂f̄0
∂t

+ v||
∂f̄0
∂z

=

= πZ2e2
∑

α

∫

d3k

∞
∑

s=−∞

〈

[

Eα|| JsP̂α|| + Eα⊥P̂α⊥ +
Eα⊥
p⊥

(

1 − k||v||

ωα(k)

)

−
Eα||
p⊥

v||

v⊥

sωH
ωα(k)

Js

]∗

·

·
[

Eα|| JsP̂α|| + Eα|| P̂α⊥
]

· δ(ωα(k) − k||v|| − sωH)〉f̄0, (2.100)

where

P̂α|| =
∂

∂p||
− sωH
ωα(k)

1

v⊥

(

v⊥
∂

∂p||
− v||

∂

∂p⊥

)

, (2.101)

P̂α⊥ =
∂

∂p⊥
− k||

ωα(k)

(

v⊥
∂

∂p||
− v||

∂

∂p⊥

)

, (2.102)

Eα⊥ =
1

2

(

EαR(k)eiΨJs+1 + EαL(k)e−iΨJs−1

)

, (2.103)

EαL,R(k) = Eαx (k) ± Eαy (k), (2.104)

Eα|| (k) = Eαz (k), (2.105)

and Eα|| is the component of ~Eα projected along H0, Ψ is the azimuthal angle of the wave vector

and Js(k⊥v⊥/ωH) the Bessel function of order s. The resonance character of the particle-wave

interaction is introduced by the δ-function in 2.100. Resonance is realized by the condition

ωα(k) = k||v|| + sωH , s ∈ Z, (2.106)

where k||v|| takes into account the Doppler effect and sωH stands for the cyclotron rotation in the

magnetic field H′.
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A comparison between the particle’s Lamor radius rH = v⊥/|ωH |, which is the curvature induced

by the magnetic field H0, and the wavelength of turbulence tells us whether the particle can

interact with the wave. In this case the particle is said to be magnetized. There are two limits to

discuss

• magnetized particle: k⊥v⊥/ωH << 1 ⇒ the harmonics involved are

1. s = 0 for Eα|| 6= 0 ⇒ ωα = k||v||;

2. s = ±1 for Eα⊥ 6= 0 ⇒ wα(k) = k||v|| ± ωH ;

• unmagnetized particle: k⊥v⊥/ωH >> 1 ⇒ the harmonics involved are

s ∼ k⊥v⊥/ωH ⇒ ωα(k) − k||v|| − sωH ∼ ωα(k) − k · v = 0.

In the second case we have short magnetized waves with λ << 2πrH , where the effective scattering

rate of ultra-relativistic particles has an energy dependence E−2. Such an energy dependence is

ruled out by the slope of the B/C ratio above 1 GeV, which decreases as ≈ E−µ with µ = 0.5

(see Fig. 2.3). Such a decrease implies a corresponding decrease in the escape time

T ∝ E−µ, µ = 0.5. (2.107)

If the wavelength is comparable to the Lamor radius, i.e. λ ∼ 2πrH , each frequency in the spectrum

of turbulences interacts with a particle of different energy, leading to an energy dependence of the

effective scattering rate and thus the diffusion coefficient. A full discussion would require to

consider different types of waves separately. Here we restrict ourselves to the case

vs << vA, (2.108)

with

vs =

√

KTe
m

, (2.109)

the sound speed in a medium with Te being the temperature of thermal electrons and

vA =
H0√
4πρ

, (2.110)

the Alfvèn velocity. ρ is the density of the medium, i.e. the CR density. With this assumption

there are only two types of oscillations left in the magnetohydrodynamic region (ω << ωH):

• Alfvèn waves identified by the dispersion relation

ωα(k) = ±|k|||vA, (2.111)

and by the following properties

v ⊥ (k, ~H0),

~E ∈ (k, ~H0), (2.112)

where (k, ~H0) is the plane identified by k and ~H0;

• magnetosonic waves identified by the dispersion relation

ωα(k) = ±kvA, (2.113)

and

v ∈ (k, ~H0),

~E ⊥ (k, ~H0), (2.114)

which propagate transverse to the Alfvèn waves and have an opposite circular polarization

while propagating along the magnetic field.
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For k⊥ 6= 0 the magnetohydrodynamic waves are strongly damped. Therefore we can restrict

ourselves to the case where the waves propagate along the regular magnetic field H0, so that

k = k||, E⊥ 6= 0 and the resonance condition 2.106 gives

k|| = ± ωH
ωα(k)/k|| − vcosθ

≈ ± ZeH0

pc(ωα(k)/kv − µ)
. (2.115)

Here we used the relativistic approximation E ∼ pc and v ∼ c, we introduced µ = cosθ, where θ

is the angle between p and ~H0 (so that v|| = vcosθ = vµ). With the above approximations the

transport equation 2.100 then becomes

∂f̄0
∂t

+ µv
∂f̄0
∂z

=

π2Z2e2
∑

α

(

ωα(k)

kc

)2
1

p2

(

∂

∂p
+

∂

∂µ

(

kresv

ωα(kres)
− µ

))

×

×p(1 − µ2)Wα(kres)

|vµ− ωα(kres)/k|

(

∂

∂p
+

(

kresv

ωα(kres)
− µ

)

1

p

∂

∂µ

)

f̄0, (2.116)

where the following replacements have been performed

(p||, p⊥) → (p = |p|, µ) ⇒ f̄0(t, r, p||, p⊥) → f̄0(t, r, p, µ), (2.117)

and we introduced

kres =

∣

∣

∣

∣

ZeH0

pcµ

∣

∣

∣

∣

=
1

rH |µ| , (2.118)

and assumed that the energy density of waves of type α, namely Wα(k), does not depend on phase

and polarization. Notice that the wave energy is equally parted between the kinetic energy of the

particles of the medium and magnetic field energy

∞
∫

0

dk||W
α(k||) =

1

4π

∫ ∞

−∞

dk||

∣

∣

∣

~Hα
1 (k||)

∣

∣

∣
, (2.119)

by virtue of the approximation vA << v.

2.4.4 Diffusion Approximation

By identifying the term that mostly contributes to 2.116, we can define the effective scattering

rate by

ναµ : = 2π2|ωH |kresW
α(kres)

H2
0

(

1 − ωα(kres)

kresv
µ

)2

≈ 2π2|ωH |kresW
α(kres)

H2
0

. (2.120)

In order to create an isotropic CR flux the relaxation time

τrel : = (ναµ )−1 ≈ 1

2π2|ωH |
H2

0

kresWα(kres)
, (2.121)

is required. Similarly, the relaxation length is defined as λrel : = v(ναµ )−1. Previously we assumed

weak turbulence, i.e. ναµ << |ωH | , and this assumption now acquires the explicit form

Wα(kres) <<
H2

0

2π2kres
. (2.122)
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In order to further simplify the propagation equation 2.116, we define two scattering rates corre-

sponding to waves propagating along and opposite to the field H0

ν±µ : ≈ 2π2|ωH |kresW
±(kres)

H2
0

, (2.123)

where W±(k) are the spectral energies associated to the two propagation directions. Now we can

express the transport equation 2.116 as the sum of these two transport modes

∂f̄0
∂t

+ µv
∂f̄0
∂z

=
v2
A

p2

(

∂

∂p
p+

v

vA

∂

∂µ

)

1 − µ2

2
ν+
µ

p3

v2

(

∂

∂p
+

v

vA

1

p

∂

∂µ

)

f̄0 +

+
v2
A

p2

(

∂

∂p
p− v

vA

∂

∂µ

)

1 − µ2

2
ν−µ

p3

v2

(

∂

∂p
− v

vA

1

p

∂

∂µ

)

f̄0, (2.124)

where we again used |ωα(k)/kv| = vA/v << 1. As a consequence of the large value of the factor
∣

∣

∣

∣

kresv

ωα(kres)
− µ

∣

∣

∣

∣

≈ v

vA
>> 1, (2.125)

that weights the ∂/∂µ term in equation 2.116, scattering changes angles rapidly compared to

changes in energy. If the anisotropic part f̄0 of the distribution is large enough to satisfy the

condition

f̄0 − f̂0 >> f̂0
vA
v
, (2.126)

where f̂0 is the mean value of f̄0 over the angles

f̂0 =
1

2

1
∫

−1

dµf̄0, (2.127)

then it is reasonable to neglect the energy change of the particle in favor of the angular diffusion.

In other words if the time intervals considered are large enough, then the distribution can be

assumed almost isotropic. In the following we want to move to the diffusion approximation, i.e.

we consider time intervals and distances such that

∆t >> τrel, ∆x >> λrel, (2.128)

In this case the expansion

f̄0 = f̂0 + δf(µ), δf(µ) << f̂0, (2.129)

is justified. Substituting 2.129 in 2.124 and keeping only the leading terms (δf << f̂0) we get

µv
∂f̂0
∂z

=
1

p2

∂

∂µ

vA
v

1 − µ2

2
(ν+
µ − ν−µ )p3 ∂f̂0

∂p
+

∂

∂µ

1 − µ2

2
(ν+
µ + ν−µ )

∂

∂µ
δf. (2.130)

Averaging over µ yields

∂

∂µ
δf = − v

ν+
µ + ν−µ

∂f̂0
∂z

− vA
v

ν+
µ − ν−µ

ν+
µ + ν−µ

p
∂f̂0
∂p

, (2.131)

which allows to express ∂f in terms of f̂0.

Now we turn again back to 2.124 and insert 2.129, but this time we keep all terms. Averaging

over µ gives

∂f̄0
∂t

+
v

2

1
∫

−1

dµµ
∂δf

∂z
=
v2
A

p2

∂

∂p

1
∫

−1

dµ
1 − µ2

2
(ν+
µ + ν−µ )

p4

v2

∂f̂0
∂p

+

+
vA
p2

∂

∂p
p

1
∫

−1

dµ
1 − µ2

4
(ν+
µ − ν−µ )

p2

v

∂δf

∂µ
. (2.132)
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Then, by rewriting the second term of the left-hand side as follows

v

2

1
∫

−1

dµµ
∂δf

∂z
=
v

2

∂

∂z

1
∫

−1

dµ
1 − µ2

2

∂δf

∂µ
, (2.133)

and using the expression for δf expression that can be derived from 2.131, we end up with

∂f̂0
∂t

− ∂

∂z
Dzz

∂f̂0
∂z

+
1

3p2

∂(p3uw)

∂p

∂f̂0
∂z

− ∂uw
∂z

p

3

∂f̂0
∂p

=
1

p2

∂

∂p
p2Dpp

∂f̂0
∂p

. (2.134)

Here we introduced the effective velocity of convective particle transport by the waves

uw : = vA

1
∫

0

dµ
3(1 − µ2)

2

ν+
µ − ν−µ

ν+
µ + ν−µ

, (2.135)

which constitutes a drift due to the different energy density ν±µ of the waves along the magnetic

field. The spatial diffusion coefficient along the regular magnetic field ~H0 is defined as

Dzz =
v2

2

1
∫

0

dµ
1 − µ2

ν+
µ + ν−µ

, (2.136)

and the momentum diffusion coefficient that enters in the stochastic acceleration term is defined

by

Dpp = p2(
vA
v

)2
1
∫

0

dµ2(1 − µ2)
ν+
µ ν

−
µ

ν+
µ + ν−µ

. (2.137)

The particle flux Jz, given by ∂f̂0
∂t = ∂Jz

∂z can be written as the sum of a diffusive and convective

term, by just identifying the respective terms in 2.134

Jz =
v

2

1
∫

−1

dµµ∂f = −Dzz
∂f̂0
∂z

− uw
3
p
∂f̂0
∂p

. (2.138)

Eq. 2.134 is almost the transport equation we were looking for. Except for additional terms due

to momentum losses in the ISM, particle losses due to spallation and fragmentation and source

terms, this equation forms the basis for all diffusion models.

Two particular cases which greatly simplify equation 2.134 are of special interest

• if the energy density propagating in opposite directions is the same, then ν+
µ = ν−µ and the

convection velocity 2.135 vanishes;

• if the energy density propagates only in one direction, then the diffusion in momentum space

disappears since the coefficient in 2.137 vanishes, i.e. no stochastic acceleration occurs.

Most simple diffusion models, in particular most analytical models, neglect both these terms. The

assumption of equal energy density in both transport modes, i.e. uw = 0 is rather arbitrary,

but simplifies the transport equation significantly, since only spatial diffusion and diffusion in

momentum space remain. This is e.g. the case in the GALPROP code (Strong & Moskalenko,

2006), a widely-used program invoking an isotropic diffusion model which currently is the official

Fermi-LAT model for diffuse Galactic γ-rays. On the other hand analytical models usually neglect

diffusion in momentum space and only solve the much simpler spatial diffusion equation.
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Later in this work, we would like to include the effects of a moving background medium and

anisotropic diffusion. Although the motivation to include such processes will be discussed later

on (Section 3) we will continue to derive this equation here, because this is only a short way from

Eq. 2.134.

2.4.5 A Note on the Terms Convection, Advection, Diffusion and Drift

In the last section we have introduced the term convection describing the drift and subsequent

energy losses and gains due to an anisotropy in wave energy density. CRs are transported along

with the plasma waves and a resulting energy transport, corresponding to a non-vanishing uw,

results in an additional drift, which we called convection. The term convection has different

meanings in different contexts. Especially in the context of CR physics it is not used in a uniform

way and is often used synonymous with advection, so a clarification is in order.

Advection is the transport of a substance or conserved property by a fluid in motion. The fluid

motion can be described as a vector field, the material or property transported is usually a scalar

concentration. An example for advection is e.g. the transport of pollutants (as a substance) or

heat (as a property) downstream in a river.

Generally, convection is the movement of molecules within fluids (i.e. liquids, gases and rheids).

Convection is one of the major modes of heat and mass transfer. In fluids, convective heat and

mass transfer take place through both diffusion and by advection, in which matter or heat is

transported by the larger-scale motion of currents in the fluid. In the context of heat and mass

transfer, the term ”convection” is used to refer to the sum of advective and diffusive transfer. In

this general meaning convection comprises CR drift via diffusion (due to a gradient in the source

distribution or in the density of scattering centers) or via a general background movement of the

ISM.

There is no uniform usage of the terms convection, advection and drift in the literature. In this

thesis we will use the term convection to describe both, particle transport via a moving background

medium, such as Galactic winds which consist of the material expelled by SNs and can carry CRs

with them, and particle transport via a non-vanishing effective wave velocity uw. We will see in

the following, that it is not possible for us to differentiate between these two cases, because both

velocities enter the transport equation in the same way. Transport via Galactic winds is a purely

advective transport mode, while transport via an effective wave velocity is a mixed advective-

diffusive transport mode. It should, however, be noted that by convection we do not mean particle

transport via diffusion, i.e. the flux generated by one of the two gradients in ∂f
∂t = ∇D∇f . In this

case we will refer to the particle transport as ”drift via diffusion”.

2.4.6 Large-Scale Motion of the Interstellar Medium and Drift

If we want to consider Galactic winds, i.e. gas expelled by SNs moving into the halo with a

velocity |u(r)| << v and whose scale of variation is much larger than the mean path length of the

particles, then we have to introduce the large-scale motion of the medium in which the plasma

waves propagate. This is easily introduced in Eq. 2.134 with the replacements

uw → uz + uw, ωα → ωα(k) + kuz, (2.139)

where the velocity of the medium along the regular field is assumed to be

u =
~H0

| ~H0|
uz. (2.140)
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We can easily see this by transforming the fields associated with the waves propagating in the

medium from the reference system, moving with velocity uz, to the system at rest. If this trans-

formation is applied to the starting kinetic equation 2.78, then we realize that, up to terms of

order vA/c and u/c, the magnetic field does not change while the electric field becomes

~Eα = −1

c

(

ωα(k)

k
+ uz

)

(

~H0

| ~H0|
× ~Hα

1

)

. (2.141)

From this equation we can deduce the replacements 2.139. In the following we can perform the

steps from equation 2.78 to equation 2.134 and end up with

∂f̂0
∂t

− ∂

∂z
Dzz

∂f̂0
∂z

+
1

3p2

∂[p3(uz + uw)]

∂p

∂f̂0
∂z

− ∂(uz + uw)

∂z

p

3

∂f̂0
∂p

=
1

p2

∂

∂p
p2Dpp

∂f̂0
∂p

, (2.142)

which is identical to Eq. 2.134 except for the replacement uw → uw+uz. The particle flux is then

simply replaced by

Jz = −Dzz
∂f̂0
∂z

− uz + uw
3

p
∂f̂0
∂p

, (2.143)

with the contribution of a diffusion term and a convection term, which includes advection via uz
and convection via uw (see Section 2.4.5 for a definition of convection and advection and their

usage in this thesis).

In addition to the motion of the medium along the field, there could be a velocity in arbitrary

direction. This is generated by spatial inhomogeneities of the system, by gravitational forces or

by the action of the electric field ~E0. As an example we consider the case of drift generated by a

slowly changing electric field

u⊥ = c
~E0 × ~H0

| ~H0|2
, (2.144)

with (u⊥ << v) and

~E0 =
1

c

(

~H0 × u⊥

)

. (2.145)

The electric field does not contribute to the scattering of the particles, but it has to be added to

2.141. We recall the closed differential equation for f0 Eq. 2.95 and modify it as follows

∂f̃0
∂t

+
(

v · ~∇
)

f̃0 +
Ze

c

[

(v − u⊥) × ~H0

] ∂f̃0
∂p

=

= 〈Ze
(

~E +
v

c
× ~H1

) ∂

∂p

t
∫

−∞

dt′Ze
(

~E +
v

c
× ~H1

) ∂f̃0
∂p

〉. (2.146)

The new term Ze/c[u⊥ × ~H0]∂f̃0/∂p is proportional to u⊥ which is assumed to be much smaller

than v, which suggests the expansion

f̃0 = f0 + ∆f, (2.147)

where f0 is the solution of Eq. 2.95 and ∆f has to be understood as a small variation induced by

the drift due to the electric field variation. Substituting 2.147 in 2.146 and keeping only leading

terms, we get
Ze

c

(

v × ~H0

) ∂∆f

∂p
− Ze

c

(

u⊥ × ~H0

) ∂f0
∂p

= 0, (2.148)

which is solved by

∆f = −u⊥ · p
v

∂f0
∂p

, (2.149)
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The diffusion approximation can now be applied through

f̃0 = f0 + δf + ∆f. (2.150)

The net effect of this expansion on the propagation equation 2.146 is the introduction of tensorial

quantities

∂f0
∂t

−∇iDij∇jf0 +
1

3p2

∂[p3(u + uw)]

∂p
· (∇f0) −

p

3
∇ · (u + uw)

∂f0
∂p

=
1

p2

∂

∂p
p2Dpp

∂f0
∂p

,

(2.151)

with

Dij = D||hihj , uw = uwh,h =
~H0

| ~H0|
, (2.152)

with D|| = Dzz. This is the full transport equation we were looking for. This equation includes

anisotropic and spatially inhomogeneous diffusion by virtue of the diffusion tensor Dij , Galactic

winds by virtue of the velocity u of the background medium, which may take place in any direction

and possibly a transport mode due to an anisotropic energy transport by the plasma waves by

virtue of uw. Note, that in the solution of the transport equation we cannot differentiate between

u and uw, which is why in the following we will attribute the total velocity u+uw entirely to the

movement of the background medium. This means that we assume that the magnetohydrodynamic

waves propagate equally in both directions and we have (uw = 0 and ∂u/∂p = 0)

∂f0
∂t

−∇iDij∇jf0 + (u∇)f0 −
p

3
∇ · u∂f0

∂p
=

1

p2

∂

∂p
p2Dpp

∂f0
∂p

. (2.153)

This is the one equation which governs all subsequent discussion.

2.4.7 Solar Modulation

We have already seen in Section 2.1.3 that the low-energy spectra of CRs can be modifies by

CR transport in our Solar system. The sole reason for this modulation is the interaction of the

CR flux from outside the Solar system with the Solar wind which is directed away from the Sun.

Depending on the Solar activity this effect can be significant below particle energies of 10-20 GeV.

For these energies the LIS predictions of any transport model have to be corrected for the effect

of Solar modulation. Here and for the remainder of this thesis we use the so-called force-field

approximation, which turns out to be a sufficient approximation in most cases.

Provided, that some specific approximations are taken into account, the propagation equation

2.153 can be applied to the Solar system.

Assuming spherical symmetry in 2.153, only the radial component of the diffusion tensor is left.

Furthermore we can safely assume that reacceleration is absent and the Solar wind is radially

directed to the outer space. The transport equation 2.153 then reads

∂f

∂t
− 1

r2
∂

∂r

(

r2Drr
∂

∂r
f

)

+ ur
∂f

∂r
− 1

r2
∂

∂r
(r2ur)

p

3

∂f

∂p
= 0. (2.154)

Gleeson & Axford (1968) showed that it is possible to solve Eq. 2.154 analytically under a number

of assumptions. Assuming a spatially constant diffusion coefficient Eq. 2.154 reads in the steady-

state case

Drr
∂2f

∂r2
+

2Drr

r

∂f

∂r
− ur

∂f

∂r
+

2urp

3r

∂f

∂p
= 0. (2.155)
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We can now estimate the importance of the first three terms by considering a very simple diffusion

case where the inward diffusion flux is balanced by the outward convection flux

Drr
∂f

∂r
= urf. (2.156)

In this zero approximation case the cosmic rays density is given by the exponential

f = F0 · e
ur

Drr
r. (2.157)

Substituting the solution 2.157 in 2.155 one sees that the first three terms are of order u2
r/Drrf ,

2ur/rf and u2
r/Drrf respectively, so we have to compare ur/Drr with 2/r, i.e. the first and the

third term has to be compared to the second term. In this simple model we can write the diffusion

coefficient as Drr = 1/3λv, with v velocity of the particle. Now we can compare ur/v to λ/r.

During the derivation of the propagation equation we assumed ur/v << 1. Quantitatively we can

assume λ ≈ 1 AU and v ≈ c for 1 GeV protons and

ur
c

≈ 1.3 · 10−3 <<
λ

r
≈ 0.1 − 10. (2.158)

This means that the second term dominates 2.155. The neglection of the first and the third term

in 2.155 is called the force-field approximation

∂f

∂r
+

urp

3DRR

∂f

∂p
= 0, (2.159)

which is widely used. With this rather simple expression for CR transport in the Solar system

we can focus on the variations in the spectral index of cosmic ray flux. Since all processes that

modify the particle density have been excluded, we can consider curves identified by constant f ,

i.e. curves along df/dr = 0. This means we have to solve the system

{

df
dr = ∂f

∂r + dp
dr
∂f
∂p = 0

∂f
∂r + urp

3DRR

∂f
∂p = 0

, (2.160)

which gives us
dp

dr
=

urp

3DRR
. (2.161)

Assuming that any spatial dependence of the diffusion coefficient can be neglected on the scales

of interest we can work in the quasi-linear theory with dDrr

dr = 0 and

DRR = D0 · βp. (2.162)

Inserting this expression in Eq. 2.161 we get

βdp =
ur

3D0
dr. (2.163)

In a final step we introduce the relativistic energy dE = β · dp in 2.163

dE =
ur

3D0
dr, (2.164)

that brings us to the very simple solution

EISM − E(r) = TISM − T (r) = Φ
RISM − r

RISM − 1
, (2.165)
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where T (r) is the kinetic energy and Φ is called modulation strength. The subscript ISM stands

for the distance between the Earth and the interstellar medium and the factor R − 1 has been

introduced to give to the modulation strength

Φ =
ur(RISM − 1)

3D0
, (2.166)

the meaning of the energy loss between the ISM and 1 AU as can be seen by setting r = 1 AU in

Eq. 2.165

Φ = TISM − T (1 AU). (2.167)

The units used here are MeV for the energy and AU for the distance. Consequently the modulation

strength given here is in MV. Equation 2.166 is widely used because of its simplicity and usability.

Nevertheless one has to keep in mind that we made a number of simplifying assumptions to get here

and in the end enclose the entire Solar modulation problem, i.e. all processes that occur between

the detector and the heliopause, in just one single parameter Φ. This modulation parameter is

model-dependent, it does not represent the Solar potential itself. A value of Φ can only be quoted

in the context of a given propagation model. Note, that the force field approximation above is

independent of the charge of the sign of the CR’s charge. It has been suggested in the literature for

a long time that this approximation might not hold. The recent measurements of the PAMELA

experiment on electrons and positrons as well as protons and antiprotons seem to indicate that

there is indeed a charge sign dependent Solar modulation (Gast & Schael, 2009).



Chapter 3

Models for Cosmic Ray Transport

While most objects in the Milky Way can only be observed indirectly via the electromagnetic

radiation produced in some process, CRs can be directly sampled which makes them a unique

probe of Galactic astrophysics. Other examples are meteorites and stardust. CRs provide us with

a detailed elemental and isotopic sample of the current (few million years old) interstellar medium

not available in any other way. It is this which makes the subject especially rich and complementary

to other disciplines. A detailed CR transport model can help us to understand the physical

processes in the CR acceleration regions, the most energetic regions in our Galaxy. It can be used

as a cross check of our models of the local ISM and to smaller extend of the ISRF and the magnetic

field. For most indirect dark matter searches in diffuse γ-rays, synchrotron radiation or charged

annihilation or decay products Galactic CRs form the dominant background. Practically all our

knowledge of CR propagation comes via secondary CRs, with additional information from γ-rays

and synchrotron radiation. The fact that the primary nuclei are measured (at least locally) means

that the secondary production functions can be computed from primary spectra, cross sections

and interstellar gas densities with reasonable precision; the secondaries can then be “propagated”

and compared with observations. Since the realization that CR fill the Galaxy it has been clear

that nuclear interactions imply that their composition contains information on their propagation

(Bradt & Peters, 1950). A historical event was the arrival of satellite measurements of isotopic Li,

Be, B in the 1970’s (Garcia-Munoz et al., 1975). Since then the subject has expanded enormously

with models of increasing degrees of sophistication. The simple observation that the observed

composition of CR is different from the Solar abundances, in that rare Solar system nuclei like

Boron are abundant in CR, proves the importance of propagation in the interstellar medium. At

present we believe that the diffusion model with possible inclusion of convection provides the most

adequate description of CR transport in the Galaxy at energies below about 1017 eV so we begin

by presenting this model.

In this chapter, we introduce the GALPROP code, which utilizes an isotropic diffusion model.

After a detailed description of our model of the Milky Way in terms of gas distribution, ISRF,

magnetic field and CR sources, we will discuss some of the isotropic diffusion models in the GAL-

PROP frame, which constitute the state-of-the-art in CR transport modelling. We will end this

chapter with a comparison of these models to recent observations and well established knowledge

about our Galaxy and show that the isotropic GALPROP models are incompatible with some of

our observations and that there is evidence for anisotropic CR transport.

43
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Figure 3.1: Left Demodulated local B/C ratio for different variations of an isotropic model: isotropic

reference model - a model similar to the conventional GALPROP model (Strong et al.,

2004a)- (full line), isotropic model with constant (energy independent) diffusion (dashed

line), isotropic model without diffusive reacceleration (dotted line). For energy independent

diffusion (which means the escape time does not depend on energy), the B/C ratio is in-

dependent of energy once the nuclei become relativistic. Setting the Alfvén velocity vα to

zero eliminates diffusive reacceleration, which therefore shifts the peak in the B/C ratio

to lower energies. The grey band refers to a run with increased halo height (from zh = 4

kpc to zh = 5.3 kpc). Data: HEAO-3 (Engelmann et al., 1990) ACE (Davis, 2000) Right

Demodulated local 10Be/9Be ratio for different lifetimes of 10Be: τ1/2 = 1.6 · 106 yrs (full

line), τ1/2 = 1.6 · 104 yrs (dashed line), τ1/2 = 1.6 · 108 yrs (dotted line). The grey band

refers to a run with zh = 5.3 kpc. Data: ISOMAX (Hams et al., 2004), ACE (Yanasak et al.,

2001), Voyager (Lukasiak, 1999), Ulysses (Connell et al., 1998).

3.1 Isotropic Propagation Models

The main features of our Galaxy are a barred central bulge with a diameter of a few kpc and a

large spiral disk with a radius of about 15 kpc and an density falling exponentially in R with a

scale length of about 2.5 kpc and in z with a scale height of about 0.25 kpc. Most of the gas

is distributed in the disk with a broad maximum between R = 4 kpc and 6 kpc for molecular

hydrogen, while the distribution of ionized hydrogen is nearly constant between R = 4 kpc and

13 kpc. The supernovae remnants (SNR) are also distributed in the disk, but peak at a distance

of a few kpc from the center with a slow fall off to larger radii (Case & Bhattacharya, 1996), as

will be shown later. The CRs form a plasma of ionized particles, in which the electric fields can

be neglected by virtue of the high conductivity and the magnetic fields form Alfvén waves, where

the ion mass density provides the inertia and the magnetic field line tension provides the restoring

force. If the wavelength of the Alfvén waves equals a multiple of a particle gyroradius, resonant

scattering occurs, leading to a change in the CRs pitch angle without energy losses. Such a process

leads to a random walk, which can be described by a diffusion equation as derived in Section 2.4.6

∂f

∂t
= ∇iDij∇jf − (~u∇)f +

p

3
∇ · ~u∂f

∂p
+

1

p2

∂

∂p
p2Dpp

∂f

∂p
, (3.1)

where f(~r, ~p, t) is the CR phase space density, Dij are the components of the diffusion tensor

for spatial diffusion, Dpp the diffusion coefficient in momentum space and ~u is the convection

velocity. Convective transport is possible either by a large scale motion of the interstellar medium

with velocity ~V or by the effective velocity of the Alfvén waves ~uw. Assuming that the energy

density in Alfvén waves propagating in opposite directions is the same ~uw vanishes and ~u = ~V .
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In addition to spatial diffusion, diffusion in momentum space can be caused by CRs scattering on

moving Alfvén waves, which leads to diffusive reacceleration. One finds the corresponding diffusion

coefficient to be Dpp ∝ p2v2
α/Dzz, where the Alfvén velocity vα is introduced as a characteristic

velocity of weak disturbances propagating in a magnetic field (Strong et al., 2007). The Alfvén

waves propagate in the direction of the magnetic field with velocity vα = B/
√

4πρ, where B is

the magnetic field and ρ the plasma density. Waves at oblique incidence exist and Alfvén waves

smoothly change into magnetosonic waves when the propagation is perpendicular to the magnetic

field. It is usually assumed that the steady state condition is reached, i.e. ∂f/∂t = 0, which

implies that the injection rate of CRs by sources equals the loss rate. CRs can be lost either by

fragmentation, decay or escape from the Galaxy. In the steady state case the diffusion equation

for CRs can be solved numerically for given boundary conditions. Usually one requires the CR

density to become zero above a certain halo height.

Most primary nuclei show a power law spectrum falling with rigidity like E−2.54. This can be easily

reproduced by selecting the injection spectrum of the primary particles, the rigidity dependence

of the diffusion coefficient and the energy gains due to diffusive reacceleration accordingly. During

their journey CRs may interact with e.g. the gas in the Galaxy and produce secondary particles.

This changes the ratio of secondary/primary particles, like the B/C ratio. From this ratio one can

determine the grammage, which was found to be of the order of 10 g/cm
−2

(Ginzburg et al., 1990;

Schlickeiser, 2002). This corresponds to a density of about 0.2 atoms/cm
3
, which is significantly

lower than the averaged density of the disk of about 1 atom/cm
−3

. Under the assumption of a

homogeneous gas distribution this suggests that CRs travel a large time in low density regions,

like the halo.

For relativistic energies the inelastic cross sections for secondary particle production usually do

not strongly depend on the energy of the particle. This would lead to rather flat spectra for the

secondary/primary ratios in contrast to the observed B/C ratio, which shows a maximum at about

1 GeV/nucleon and decreases as E−0.6 towards higher energy, as shown by the dashed line in the

right hand side of Fig. 3.1. This can be accommodated by assuming that energetic particles diffuse

faster out of the Galaxy, i.e. the energy dependence of the diffusion coefficient and the energy

gains due to diffusive reacceleration are chosen accordingly (see the full line in the left hand side

of Fig.3.1). The decrease at low energies can be accommodated by both diffusive reacceleration,

which shifts the spectrum to higher energies, as well as convective transport mechanisms (Strong

et al., 2007). Alternatively, one could assume a strong increase of the diffusion coefficient at low

energies due to damping of the Alfvén waves (Ptuskin et al., 2006).

From the ratio of unstable/stable secondary nuclei (like 10Be/9Be) one obtains the average resi-

dence time of CRs in the Galaxy to be of the order of tCR = 107 yrs (Cesarsky, 1980). Fig. 3.1

shows the local 10Be/9Be-fraction assuming different lifetimes of 10Be. The data require residence

times between 1.6 · 106 and 1.6 · 108 years.

3.2 The GALPROP Code

A widely-used program providing a numerical solution to the diffusion equation is the publicly

available GALPROP code (Strong & Moskalenko, 2006). CR transport in GALPROP is completely

based on the kinetic theory discussed in Chapter 2. The code numerically solves the transport

equation including Galactic winds (convection), diffusive reacceleration in the interstellar medium,

energy losses, nuclear fragmentation and decay with a given source distribution and user-defined

boundary conditions (assuming free escape of CRs beyond the boundary) for all CR species. The

numerical solution of the transport equation is based on a Crank-Nicholson (Press et al., 1992)

implicit second-order scheme. Since we have a 3-dimensional (R, z, p) or 4-dimensional (x, y, z, p)
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problem (spatial variables plus momentum) one uses “operator splitting” to handle the implicit

solution. The transport equation in GALPROP is not written in the form of a phase space density

f(r,p, t), but in the form of density per unit of total particle momentum Ψ(r, p, t) defined by

Ψ(p)dp = 4πp2f(p)dp, (3.2)

since this is the natural unit for propagation. With the convection velocity u = V, the forth term

in Eq.2.153 then can be rewritten as follows

1

3
p(~∇ · u)

∂

∂p

(

Ψ

p2

)

=
1

3
p(~∇ · V)

∂

∂p

(

1

p3
p · Ψ

)

= − 1

p2
(~∇ · V)Ψ +

1

3p2
(~∇ · V)

∂

∂p
(pΨ). (3.3)

Using 3.3 and 3.2 and multiplying the transport equation 2.153 by p2 one obtains

∂Ψ

∂t
= ~∇ · (D~∇Ψ − ~VΨ) +

∂

∂p
p2Dpp

∂

∂p

1

p2
Ψ +

1

3

∂

∂p

[(

~∇ · V
)

pΨ
]

, (3.4)

where it is assumed that the diffusion coefficient D is a scalar quantity with the same value

everywhere and in all directions, i.e. the tensor Dij has only diagonal components, which are all

equal. The full transport equation used in GALPROP can then be written as

∂Ψ

∂t
= q(~r, t) + ~∇ · (D~∇Ψ − VΨ) +

∂

∂p
p2Dpp

∂

∂p

1

p2
Ψ − ∂

∂p

[

ṗΨ − p

3

(

~∇ · V
)

Ψ
]

− 1

τf
Ψ − 1

τr
Ψ,(3.5)

where q(~r, t) is the source term, τf is the time scale for fragmentation and τr is the time scale for

radioactive decay.

The basic parameters for GALPROP are the injection spectrum parameters, the diffusion coef-

ficient D, the convection velocity V, Alfvén velocity vα, which enters Dpp, and the size of the

transport box, needed as a boundary to solve the differential equation. Usually one assumes the

density of scattering centers outside the diffusion box to be so small that CRs propagate freely

with the speed of light to outer space (free escape). Consequently the CR density becomes zero

at the boundary.

GALPROP employs the so-called “test-particle approach”, meaning that all transport parameters

are treated as fixed quantities while the CR density assumes a stationary state with respect to

those fixed parameters. Specifically this means that the spectrum and the amplitude of turbulence

as described by the diffusion coefficient and vα does not depend on the evolving CR distribution

itself, although this distribution is expected to generate the turbulence in reality. Since with

GALPROP we are looking for a steady-state solution and we can safely assume that the fraction

of “fresh” CRs is generally small, the test-particle approach is a reasonable approximation, because

it forces the solution to adapt to a fixed spectrum of turbulence, which can be considered to be

generated by the steady-state solution we are looking for. Following Strong & Moskalenko (2006)

we briefly describe the numerical procedure applied in GALPROP.

Numerical Solution of the Transport Equation The diffusion, reacceleration, convection

and loss terms in Eq. 3.5 can be finite-differenced for each dimension (R, z, p) in the form

∂Ψi

∂t
=

Ψt+∆t
i − Ψt

i

∆t
=
α1Ψ

t+∆t
i−1 − α2Ψ

t+∆t
i + α3Ψ

t+∆t
i+1

∆t
+ qi, (3.6)

where all terms are functions of (R, z, p) and the index i indicates the type of nucleus under

consideration. In the Crank-Nicholson implicit method (Press et al., 1992) the updating scheme

is

Ψt+∆t
i = Ψt

i + α1Ψ
t+∆t
i−1 − α2Ψ

t+∆t
i + α3Ψ

t+∆t
i+1 + qi∆t. (3.7)
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The tridiagonal system of equations,

−α1Ψ
t+∆t
i−1 + (1 + α2)Ψ

t+∆t
i − α3Ψ

t+∆t
i+1 = Ψt

i + qi∆t, (3.8)

is solved for the Ψt+∆t
i by the standard method (Press et al., 1992). The three spatial boundary

conditions

Ψ(R, zh, p) = Ψ(R,−zh, p) = Ψ(Rh, z, p) = 0 (3.9)

are imposed at each iteration. No boundary conditions are imposed or required at R = 0 or in

p. Grid intervals are typically ∆R = 1 kpc, ∆z = 0.1 kpc; for p a logarithmic scale with ratio

typically 1.2 between successive energies is used. Although a finer grid would allow to model small

scale phenomena such as density variations in the ISM, the maximum resolution is tightly limited

by the available memory capacities 1. The model is symmetric around z = 0, but the solution

is generated for −zh < z < zh since this is required for the tridiagonal system to be valid. For

the 3-dimensional (R, z, p) problem we handle the implicit solution as follows. One applies the

implicit updating scheme alternately for the operator in each dimension in turn, keeping the other

two coordinates fixed. To account for the sub steps 1/3qi and 1/3τ are used instead of qi and

τ . The method was found to be stable for all α (Strong & Moskalenko, 2006), and this property

can be exploited to advantage by starting with α >> 1 (see below). The standard alternating

direction implicit (ADI) method, in which the full operator is used to update each dimension

implicitly in turn, is more accurate but was found to be unstable for α > 1. This is a disad-

vantage when treating problems with many timescales, but can be used to generate an accurate

solution from an approximation generated by the non-ADI method. A check for convergence is

performed by computing the timescale Ψ
∂Ψ/∂t and requiring that this be large compared to all

diffusive and energy loss timescales. The main problem in applying the method in practice is the

wide range of time-scales, especially for the electron case, ranging from 104 years for energy losses

to 109 years for diffusion around 1 GeV in a large halo. Use of a time step ∆t appropriate to

the smallest time-scales guarantees a reliable solution, but requires a prohibitively large number

of steps to reach the long time-scales. The following technique was found to work well: start

with a large ∆t appropriate for the longest scales, and iterate until a stable solution is obtained.

This solution is then accurate only for cells with α << 1; for other cells the solution is stable

but inaccurate. Then reduce ∆t by a factor (0.5 was adopted) and continue the solution. This

process is repeated until α << 1 for all cells, when the solution is accurate everywhere. It is found

that the inaccurate parts of the solution quickly decay as soon as the condition α < 1 is reached

for a cell. As soon as all cells satisfy α < 1 the solution is continued with the ADI method to

obtain maximum accuracy. A typical run starts with ∆t = 109 years and ends with ∆t = 104

years for nucleons and 102 years for electrons performing ∼60 iterations per ∆t. In this way

it is possible to obtain reliable solutions with reasonable computer resources, although the CPU

time required is still considerable. All results are output as FITS2 datasets for subsequent analysis.

Since lighter nuclei can have source terms from the spallation or decay of heavier nuclei, the

propagation equation is solved first for the heaviest nuclei (A) and all secondary source functions

1For a model with spatially dependent transport parameters as introduced in Chapter 4 and run over all nuclei

from Z = 28 to Z = 1 plus the additional CR species from dark matter annihilation (see Chapter 5) between 8 and

16 GB memory are required. For simpler isotropic models with constant transport parameters and no contribution

from dark matter annihilation the memory requirements can be reduced to 2-4 GB for a grid spacing as given in

the text.
2FITS stands for “Flexible Image Transport System” and is the standard astronomical data format endorsed by

both NASA and the IAU (International Astronomical Union). FITS is primarily designed to store scientific data

sets consisting of multi-dimensional arrays (1-D spectra, 2-D images or 3-D data cubes) and 2-dimensional tables

containing rows and columns of data.
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are calculated from the steady state solution. The production of secondary and tertiary particles

is calculated in GALPROP using a network with more than 2000 cross sections. This step is then

repeated for the next lighter nuclei (A − 1) up to hydrogen (A = 1). Finally the electrons and

positrons are propagated. With this algorithm all secondaries and tertiaries are automatically

taken into account. The whole chain is usually repeated twice to increase the accuracy of the

predicted secondary to primary ratios and of β±-instable isotopes.

Internal Units The kinetic energy of nuclei is internally given as kinetic energy per nucleon

Ekin. The reasoning behind this, is that the secondary-to-primary computation is simplified

since in this case primaries produce secondaries of the same Ekin. On the other hand the basic

CR density used has units of density per total momentum p since this is the natural unit for

propagation. The combined requirements of transport and secondary production can be elegantly

met if one uses c
4πn(p) internally, where n(p) = dn/dp in units of cm−3MeV−1. In this case the

flux I(Ekin) in cm−2sr−1s−1(MeV/nucleon)−1, which is useful for comparison with observations

is simply given by

I(Ekin) =
βc

4π

dn

dp

dp

dEkin
=

c

4π
n(p)A, (3.10)

where A is the mass number of the nucleus (or 1 in the case of electrons and positrons), and Ekin
corresponds to the total kinetic energy). Equation 3.10 follows from dp = A

β dEkin.

3.3 The Milky Way Model

Any model for CR transport is based on two fundamental types of simplification, which outline

the edge of our knowledge in the respective fields: On the one hand the transport equation already

comprises assumptions about the relevant physical processes by means of the approximations that

were made in deriving the equation or the neglection of certain processes. On the other hand the

model of our Milky Way, its gas content, magnetic fields etc., constitute a significant uncertainty

since the exact properties of our Galaxy are generally poorly known and have to be derived very

carefully from the column density measurements.

Here we will briefly describe the GALPROP model of the Milky Way, which - in the field of CR

transport models - is currently the most detailed description of our Galaxy.

GALPROP is designed to treat both two and three spatial dimensional models. In order to re-

duce the CPU and memory requirements we chose a cylindrical symmetry. In this framework the

Galaxy is considered as a dense central disk of thickness 2h where h is around 100 pc, surrounded

by a cylindrical halo where cosmic rays are still trapped by the Galactic magnetic field. The gas

content and CR sources are located in the central disk. The half height of the halo is one of

the most important parameters, usually running between a few kpc to ∼ 20 kpc as suggested by

previous studies on radioactive nuclei (Lukasiak, 1994) and distribution of synchrotron radiation

(Phyllips, 1981). The radial extension of the box is fixed to 20 − 30 kpc, which means it ex-

tends beyond the gaseous disk (∼ 15 kpc). Outside of the transport box free escape of cosmic rays

is assumed, i.e. the CR density is set to zero. The Solar system is located at R = 8.3 kpc and z = 0.

The structure of the Galaxy is included in the form of the gas content, which is important for

secondary production and energy losses, the interstellar radiation field (ISRF) and magnetic field,

which both strongly affect electron energy losses and lead to the production of γ-rays from IC

and synchrotron radiation. The distribution of atomic hydrogen is reasonably well known from

21-cm surveys, but the distribution of molecular hydrogen can only be estimated using CO as
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a tracer. The Galactic magnetic field is best determined from Faraday rotation measurements

from the polarized radio emission of pulsars with known distances combined with a model for the

distribution of ionized gas. The ISRF consists of contribution from cosmic microwave background

and starlight and is modified by absorption and reemission by interstellar dust.

3.3.1 The Interstellar Gas

The space between the stars in our Milky Way is populated by diffuse matter. The interstellar

medium mainly consist of hydrogen (70%) followed by helium (28%) and only a 2% contribution

from heavier elements. Hydrogen is present in three possible forms: atomic hydrogen HI, molec-

ular hydrogen H2 and ionized hydrogen HII.

Atomic hydrogen occurs in cold clouds of temperature T ≃ 50 K and density n ≃ 30 cm−3 or

in the form of diffuse matter with temperature T ≃ 104 K and density n ≃ 0.1 cm−3.

Averaged over the azimuthal coordinate Φ and radial sizes of 0.5 kpc a good fit to the atomic

hydrogen distribution is given by an exponentially decreasing function of the halo height (Burton,

1988)

nHI(r, z) = n0
HI(r)e

− z2

2h2
HI

(r) cm−3, (3.11)

where nHI(r) is taken from Gordon & Burton (1976) and shown in figure 3.2 while hHI(r) has

the form proposed in Cox et al. (1986), namely

hHI(r) =

{

0.25 kpc, r ≤ 10kpc

0.083e0.11r kpc, r > 10kpc.
(3.12)

Molecular hydrogen can be traced with the λ = 2.6 mm (J = 1 → 0) emission line of CO,

since collisions between the CO and H2 molecules in the clouds are responsible for the excitation

of CO. The large-scale density distribution can be represented by (Bronfman, 1988)

nH2
(r, z) = n0

H2
(r)e

− z2

2h2
H2 cm−3, (3.13)

with hH2
= 0.05 ± 0.01 kpc. The averaged radial dependence of nH2

is again reported in figure

3.2, it shows a pronounced peak between 4 and 6 kpc and has values between 0.15 an 0.45 H2

molecules cm−3 in the inner Galaxy (R < R⊙) whereas in the outer Galaxy the density is very

small. H2 can exist only in dark clouds where it is protected from the ionizing UV radiation

from stars. Roughly 40% of the mass of the ISM occurs in this form. However, the volume filling

factor of these clouds is below 2%, which means that the number density of the clouds must

be of the order 103 molecules cm−3. Given the fact that these clouds are accompanied by large

magnetic fields this could have a significant impact on CR propagation and secondary production:

CRs can be reflected from the high magnetic fields in the clouds, thus reducing the number of

CR interactions in the H2 component of the ISM significantly. Due to their strong frozen-in

magnetic fields molecular clouds align in the form of cloud complexes, where the single clouds are

interconnected by weak magnetic fields. The molecular clouds in one complex then form magnetic

mirrors which could repeatedly reflect and thus trap CRs for a significant amount of time in the

intercloud material of the cloud complex, excluding them from the molecular clouds themselves.

These processes occur on very small length scales, likely below the mean scattering length of

diffusion (Chandran, 2000). Trapping by molecular cloud magnetic mirrors will be discussed in

Chapter 5 in more detail. For now we will assume that CRs propagate in H2 as in the rest of

the ISM, so that the clumpiness of the H2 component has no influence on CR propagation and
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Figure 3.2: Schematic profile of the radial dependence of the three components of hydrogen gas as a

function of radius at z=0 kpc from Strong & Moskalenko (1998).

secondary production. Consequently, the H2 distribution can be modelled by the averaged gas

density.

Ionized hydrogen occurs in the vicinity of young O and B stars. Here the UV radiation from

the stars ionizes the ISM. HII regions are distributed similar to the molecular hydrogen, but

mass-wise their contribution is negligible. Since they only occur close to bright stars, HII regions

are a good tracer of the spiral structure of the Milky Way. The averaged large scale distribution

of this gas components can be parameterized as (Cordes, 1991)

nII(r, z) =
(

0.025e−
|z|

1kpc−( r
20kpc )2 + 0.2e−

|z|
0.15kpc−( r

2kpc−2)2
)

cm−3, (3.14)

where the second term takes the concentration around r=4 kpc into account.

Other components of the ISM The so-called coronal gas component is negligible in mass, but

it may occupy up to 80 % of the volume of the interstellar gas. This gas exists in the form of a

very dilute (density n ≃ 10−3 cm−3) hot (T ≃ 105 − 106 K) plasma and is very similar to the

solar corona. This component can be traced by soft X-rays and ultraviolet OV I absorption lines.

According to our current understanding the coronal component results from intersecting SNR,

where the outgoing SN shock sweeps up interstellar material and leaves behind a dilute hot gas

(Schlickeiser, 2002).

Finally, helium can be traced by photospheric methods (Grevesse et al., 1996). Helium appears

to follow the hydrogen distribution with a factor He/H = 0.10 ± 0.08. We adopt a value of

He/H = 0.11, which is widely used in the literature. The uncertainties in secondary production

due to a possibly smaller value are negligible and much smaller than the uncertainties of the

hydrogen distribution itself.

Table 3.1 shows an overview over the different phases of the ISM and the respective radio tracers.
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State Gas Phase Number Kinetic Volume Mass Radio

density temperature filling fraction tracers

[cm−3] [K] [%] [%]

Giant

molecular 103 10


















































≤ 2































40 CO, NH3, H2CO

clouds

Molecular

Dark

clouds 102 − 103 10

HI clouds 30 50-100 40

HIAtomic

Intercloud 0.1 − 1 103 − 104 50 20

HII 1 − 105 104 ≤ 2 ≤ 1 Recomb. Lines

regions Free-Free

Ionized

Coronal 10−4 − 10−2 104 − 106 20 − 80 ≤ 1 UV-absorp. lines

gas soft X-rays

Table 3.1: Phases of interstellar matter (after Downes & Guesten (1982))

3.3.2 Source Distribution

In Section 2.1.2 we argued that supernovae are a reasonable source of cosmic rays. Assuming to

have a supernova event every 104 yrs inside a volume of a cubic kpc and assuming that an SNR

accelerates CRs for 104 yr we have at least one cosmic ray acceleration site every cubic kpc at

any time. The derivation of the Galactic distribution of SNRs, commonly based on radio surveys

as in the case of Case & Bhattacharya (1996), is subject to large observational selection effects.

Other tracers of the SNR distribution are available, in particular pulsars. The Parkes Multibeam

survey with 914 pulsars has been used by Lorimer (2004) to derive the SNR distribution, which

basically confirms the concentration of SNR in the inner Galaxy. The SNR distribution can be

parameterized by (Case & Bhattacharya, 1996)

Q(R, z) = q0

(

R

R0

)α

e−β
(R−R0)

R0 e
−|z|
zs , (3.15)

where q0 is a normalization constant, R0 is the Galactocentric radius of the Sun, α = 1.69, β = 3.22

and zs = 0.2 kpc.

Figure 3.3 shows the SNR distribution and the pulsar distribution from Lorimer (2004). Also

shown is the flattened source parameterization by Strong & Moskalenko (1998) as inferred from

the soft γ-ray gradient in the COS-B and EGRET data.

It has been suggested that a considerable amount of C and O is accelerated in the wind material

of C- and O-enriched pre-supernovae Wolf-Rayet stars (Meyer et al., 1997). Since these stars

generally coincide with the SNR distribution this does not affect the source model.
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Figure 3.3: Source distribution: pulsar distribution (Lorimer, 2004) ( blue, dotted), SNR distribution

(Case & Bhattacharya, 1996) ( red, dashed) and the flattened parameterization used by

Strong & Moskalenko (1998) ( black full).

3.3.3 Injection Spectrum

After the initial acceleration process in the SN shock fronts CRs are injected into the ISM and

their transport is governed by the transport equation 3.5. At the end of Section 2.3.2 we found

that a power law in momentum

q(E) = q0Q(Ekin),
dQ(Ekin)

dEkin
∝ p−γ , (3.16)

would best describe the initial energy spectrum. Here q0 is a normalization constant and Q(Ekin)

is the source flux. Remember that Eq. 3.10 tells us that we are already in the proper units for the

transport equation used in GALPROP. Since the rigidity ρ = p/Z is the property that governs

the CR transport equation it is preferable to write Eq. 3.16 in the following form

dIs(Ekin)

dρ
∼
(

ρ

ρ0

)−γ

, (3.17)

to account for a possible break at a reference rigidity ρ0 with different values of γ above and below

ρ0.

3.3.4 Interstellar Radiation Field

For the calculation of the spectrum of γ-rays arising from inverse Compton scattering and electron

energy losses, the full ISRF as function of (R, z, ν) is required. The ISRF consists of contributions

from starlight, emission from dust, and the CMB. The estimation of the spectral and spatial distri-

bution of the ISRF therefore crucially relies on models of the distribution of stars, absorption, dust

emission spectra and emissivities. GALPROP uses the ISRF calculation provided by Moskalenko
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Figure 3.4: ISRF energy density as a function of R at z = 0 (left), and of z at R = 4 kpc (right). Shown

are the contributions of stars (dashed), dust (dash-dot), CMB (dash-3-dots), and total (full

line). From Strong et al. (2000)

et al. (2006); Porter (2005); Strong & Moskalenko (2006). Fig. 3.4 shows the spatial distribution

and composition of the ISRF as used in GALPROP.

3.3.5 Galactic Magnetic Field

Although the uniform magnetic field is a key parameter for CR transport, since it influences the

CR scattering rate (together with the perturbed component of the field) as well as the size of the

CR confinement volume, i.e. the halo height, the magnetic field does not enter the CR transport

equation directly. The reason for this is, that in the test particle approach we are using here, all

properties of the magnetic field are “hidden” in the diffusion coefficient and the Alvén velocity.

In GALPROP the Galactic magnetic field is only used for the calculation of synchrotron losses for

electrons and positrons. Investigations on the uniform component of the Galactic magnetic field

are complicated by the random component of the field, whose strength exceeds that of the uniform

component (for instance in Phno & Shibata (1993) the non-random component is estimated to

be ∼ 5 µG with a scale length for fluctuations ∼ 100 pc). Various techniques have been applied

to determine the magnetic field. E.g. in the detailed analysis based on the pulsar rotation and

dispersion measures carried out in Rand & Lyne (1994), a local field strength of 1.4 ± 0.2 µG

and direction θ0 = 88o ± 5o are found. Some problems arise if one considers a magnetic model

of concentric circular field lines as in Rand & Lyne (1994). In fact in other galaxies it has

been observed that the galactic magnetic field closely follows the spiral configuration. The work

presented in Heiles (1996) develops this spiral-frame line of research which is based on the large-

scale data set on starlight polarization (Mathewson & Ford, 1970) with nearly 7000 stars. The

advantage of this kind of data is that they are free of systematic errors and the polarization

is accompanied by the source location and estimate of extinction. We use the magnetic field

parameterization by Strong et al. (2000)

Btot = B0e
−(R−R⊙)/RB−|z|/zB . (3.18)
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The parameters B0, RB and zB are chosen to best reproduce the Haslam et al. (1982) 408 MHz

all-sky continuum survey, which combines data from four different surveys using Jodrell Bank

MkI, Bonn 100 meter, Parkes 64 meter and Jodrell Bank MkIA telescopes.

Random fluctuations are not included in the model, although they might contribute to the observed

synchrotron emission.

3.3.6 Diffusion Coefficients

In Section 2.4.4 the spatial diffusion coefficient 2.136 and momentum diffusion coefficient 2.137

have been deduced for a charged particle which is scattered by random hydromagnetic waves

propagating along a regular magnetic field H0. Here we assume that the CR plasma obtains a

stationary state in a fixed spectrum of turbulences. We restrict ourselves to a power law energy

spectrum in wavenumber k so that wave energy density is

W (k) =
wH2

0L

4π91 − a
(kL)(−2+a), kL ≤ 1, a = const., (3.19)

where

w =
4π

H2
0

∫

1/L

W (k)dk, (3.20)

characterizes the turbulence level which is equal to the ratio of magnetohydrodynamic wave energy

density to magnetic field energy density; L is the principal scale of the turbulence. Substituting

3.19 in 2.136 and 2.137 yields

D =
2

3π

1 − a

a(2 + a)

vL

w
(
rg
L

)a, (3.21)

and

Dpp = p2 v
2
A

vL

2π

(1 − a)(2 − a)(4 − a)

(rg
L

)−a

, (3.22)

where rg = v/|ωH | is the particle’s gyroradius. The parameter w in Eq. 3.21 characterizes the level

of turbulence, i.e. the ratio of magnetohydrodynamic (MHD) wave energy density to magnetic field

energy density. Remind that the diffusion coefficient D has been derived for transport along the

large scale magnetic field H0, i.e. only the component Dii = D|| is nonzero. It is usually assumed

that some large scale wandering of the magnetic field creates a large scale random magnetic field

and consequently the other diagonal elements of the diffusion tensor become non-zero. In the limit

of isotropic diffusion, i.e. Dii = D for all i, the spatial diffusion coefficient 3.21 is reduced by a

factor 3, to account for this large scale wandering of the magnetic field lines. Note, that the limit

of isotropic diffusion is a strong simplification. For a realistic scenario one would expect that the

propagation along the unperturbed field is still more pronounced than perpendicular to this field.

This has also been impressively demonstrated by following the path of a single CR in a perturbed

magnetic field for various scenarios (De Marco et al., 2007). Clearly, anisotropic diffusion should

dominate CR diffusion in most regions of the Galaxy. An exception may be regions with a very

high level turbulence such as SN shells. However, only very few state-of-the-art transport models

actually allow for anisotropic diffusion. The reason for this is that the detailed magnetic field

structure of our Galaxy is unknown and that anisotropic diffusion adds at least two additional

free parameters to the transport model, which, given the fact that all transport parameters have

almost no observational constraints at all, leads to more paramters than constraints. For now we

will follow the isotropic approach and return to the more realistic anisotropic diffusion in Chapter

4. From Eqs. 3.21 and 3.22 we find

DppD =
4p2v2

A

3a(4 − a2)(4 − a)w
, (3.23)
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Figure 3.5: B/C ratio for DC models without (left) and with (right) break in diffusion coefficient, for

dV/dz = 0 (solid line), 5 (dotted line), and 10 km s−1 kpc−1 (dashed line). The halo height

is in all cases zh = 10 kpc. Solid lines: interstellar ratio, shaded area: modulated to 300 -

500 MV. Data: as in Fig. 3.6. The figures are reproduced from Strong & Moskalenko (1998),

the model numbers shown in the figures refer the the GALPROP parameter files used by

the authors.

which means that that the momentum diffusion coefficient is given by the spatial diffusion coeffi-

cient and vα. Note that the diffusion coefficient has been reduced by a factor 3 compared to Eq.

3.21. Since only v2
A/w is relevant here, one can subsume w = 1 in vα and treat v2

A as an effective

parameter. After analyzing all the quantities in Eq. 3.21 one can argue that a convenient form

for the spatial diffusion coefficient is

D = βD0(
ρ

ρ0
)δ, (3.24)

where ρ is the rigidity, ρ0 is a reference rigidity introduced for an eventual break, D0 is a normal-

ization factor and δ is a free parameter of the model, which can be different below and above the

break. Finally, we have reduced the problem of diffusion to two fundamental parameter D0 and δ

(plus ρ0 in case of a break) while diffusive reacceleration is connected to diffusion via vα.

3.4 The Isotropic GALPROP Models

Despite the many simplifications like the homogeneous gas distribution or the isotropic diffusion

coefficient, the most important observations like the secondary to primary ratios and the local CR

spectra can be described in the isotropic GALPROP models. On the other hand isotropic CR

transport has rigorous limits which we will discuss in Section 3.5. Here we briefly describe the

predictions of the isotropic GALPROP models, of which various branches exist.

The propagation parameters are usually tuned to the secondary/primary ratio and the unsta-

ble/stable ratio of locally observed charged particles, while the injection spectra are chosen to

best reproduce the local proton and electron spectra.
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Figure 3.6: Left: Predicted 10Be/9Be ratio as function of zh for dV/dz = 0, 5, 10 kms−1kpc−1 at

525 MeV/nucleon corresponding to the mean interstellar value for the Ulysses data Connell

(1998); the Ulysses experimental limits are shown as horizontal dashed lines. The shaded

regions show the parameter ranges allowed by the data. From Strong & Moskalenko (1998).

Right: B/C ratio for diffusive reacceleration models: zh = 1 (dotted), 5 (dashed), 10 (thin

solid), and 20 kpc (thick solid). In each case the interstellar ratio and the ratio modulated

to 500 MV is shown. Data: vertical bars: HEAO-3, Voyager (Webber et al., 1996), filled

circles: Ulysses (DuVernois et al., 1996), Φ= 600, 840, 1080 MV.

Plain Diffusion (PD) Models

The most simple model one can think of is a plain diffusion model with no diffusive reacceleration

and no convection. This model is very similar to a leaky-box approach, except that here we can

also take care of the case of slow diffusion, i.e. the steady state CR distribution is not flat in spatial

coordinates. The price to pay for this simplicity is an ad-hoc break in the rigidity dependence of

the diffusion coefficient and an additional factor of β−3 that needs to be introduced to match the

B/C ratio at low energies. Specifically, in this model D = β−2D0(ρ/ρ0)
δ with δ = 0 below and

δ = 0.6 above the reference rigidity ρ0 = 3GV and D0 = 2.2 · 1028 cm2 s−1. A good fit to the B/C

and 10Be/9Be ratio is obtained for a halo height of zh = 4 kpc.

Diffusion Convection (DC) Models

Here diffusive reacceleration is neglected in favor of convection. The basic parameters are the

diffusion coefficient and the convection velocity gradient dV/dz. The convection velocity at z = 0

is assumed to be negligible. In such models a good fit to the data is not possible, because the

characteristic peaked shape of the measured B/C ratio cannot be reproduced. The left side of

Fig. 3.5 shows the B/C ratio for zh = 10 km. In order to force a fit to the data, one can assume

an ad hoc break in the diffusion coefficient, this is also shown in Fig. 3.5.

From the 10Be/9Be ratio the maximum gradient in convection velocity can be limited to 7 km/s

for zh ≥ 4 kpc. The left side of Fig. 3.6 summarizes the limits on zh and dV/dz using the
10Be/9Be ratio at the kinetic energy of 525 MeV/nucleon appropriate to the Ulysses data (Connell,

1998). Obviously, larger convection velocities require larger haloes, which is clear considering
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that convection increases the particle flux in Eq. 2.143 and the escape time of CR increases for

increasing halo heights.

Diffusion Reacceleration (DR) Models

If diffusive reacceleration (i.e. 2nd order Fermi acceleration as described in Section 2.3.2) is in-

cluded, a good description of the data can be found for vA = 30 km s−1 and no break in diffusion

coefficient (Strong & Moskalenko, 1998). The diffusion coefficient has the well motivated form

D = βD0(ρ/ρ0)
δ with δ = 1/3 and D0 = 1.7 − 16 · 1028 cm2 s−1 for zh = 1 − 20 kpc. Reacceler-

ation provides a natural mechanism for reproducing the energy dependence of the B/C ratio as

shown on the right side of Fig. 3.6. It should be noted that statements about propagation pa-

rameters must always be considered in the context of a given model, for example the Kolmogorov

spectrum (δ = 1/3) is ruled out in the semi-analytical model studied in Maurin et al. (2001).

DC models, which are quasi-isotropic, since they incorporate a weak anisotropy via the weak

convection velocity, have difficulties in accounting for the observed B/C ratio, unless one assumes

an ad hoc form of the diffusion coefficient. On the other hand models with reacceleration account

naturally for the energy dependence over the whole observed range, with only two free parameters.

Combining these results points rather strongly towards the reacceleration picture.

3.5 Limits of Isotropic Transport Models and Evidence for

Anisotropic CR Transport

The isotropic transport models already provide reasonable predictions of the local CR fluxes. They

are based on a number of priors which can be formulated in the following way:

1. propagation is homogeneous and dominated by isotropic pitch-angle scattering, in particular

the scattering rate is assumed to be the same in the halo and in the disk

2. convective transport modes are assumed to be negligible and any R-dependence in convective

transport is neglected

3. the gas in the disk is distributed homogeneously, leading to an equal weight for the interaction

rate with the different components of the gas.

These priors fulfill the basic picture of the origin and propagation of cosmic rays discussed in

Chapter 2.

However, isotropic transport models come with severe caveats. First of all, the assumption of

isotropic, spatially constant diffusion, is at odds with what one would expect from the ISM. From

a practical point of view the reduction of the spatially dependent diffusion tensor to a single scalar

constant is a great advantage, but this procedure is generally considered an oversimplification.

Secondly, there are a number of observations which are incompatible with the assumption of

isotropic or quasi-isotropic transport, such as the ROSAT observations of Galactic winds, the soft

γ-ray gradient as observed by EGRET and COS-B, the large Bulge over Disk ratio in positrons and

the exclusion of thermal positrons from the molecular phase of the ISM as observed by INTEGRAL.

These observations and the corresponding implications for CR transport will be discussed in the

following.
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Figure 3.7: X-ray emission at 3/4 keV (the “R45 band”) as seen by ROSAT (Snowden et al., 1997).

These observations suggest a “Galactic X-ray Bulge”, seen most clearly in the southern

Galactic Hemisphere, and stretching over the Galactic longitude range, l, from |l| ≤ 30o and

down to approximately −15o in Galactic latitude. This X-ray bulge in the southern Galactic

Hemisphere can be explained with a combined thermal and cosmic-ray driven wind. From

Everett et al. (2008)

Figure 3.8: Left: Dependence of the diffusion-convection boundary, zc(R), on Galactocentric radius

R. The location of zc at any radius is defined by the balance of diffusive and convective

CR fluxes. The curve shown here has been obtained from self-consistent Galactic wind

calculations. From Breitschwerdt et al. (2002). Right: Velocity vs. height in a fiducial

wind model. The solid line represents the wind velocity, the dashed line represents c∗, the

composite sound velocity, and the dot-dashed line shows the change in the Alfvén velocity

with height. This velocity curve shows the rather standard increase in velocity of a pressure-

driven wind, rising from the relatively low v0, through the critical point at v = c∗, and

accelerating on to v ∼ v∞. From Everett et al. (2008).
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3.5.1 The ROSAT Galactic Wind Observations

Isotropic diffusion models are generally incompatible with vertical wind velocity gradients larger

than 10 km/s/kpc (Strong et al., 2007), because for larger wind velocities the CRs are blown

into the halo and the required ratio of times spent in the halo and the disk from the combined

constraints from local secondary to primary ratios and radioactive cosmic clocks cannot be met.

Figure 3.6 shows the 10Be/9Be ratio for different convection velocities in an isotropic diffusion

model. Clearly, a wind speed of around 7 km/s/kpc seems to be the limit for the GALPROP

models. Until recently there was no direct observational evidence that the Milky Way’s atmosphere

might feature winds at all. It has been suggested that the Milky Way’s SN rate is too small to build

up sufficient CR pressure to overcome the Galactic gravitational potential. In this respect, the

fact that current transport models are incompatible with significant convection velocities has not

been considered a serious deficiency. This changed in 2007 when it was found that the Milky Way

drives a large scale wind too: the ROSAT-satellite observed an enhancement of the diffuse soft

X-ray background emission (Levenson et al., 1997). Figure 3.7 shows the X-ray sky as observed

by ROSAT. The emission can be explained best by a mixed CR and thermally-driven wind model

(Everett et al., 2008). Their model is based on a model by Breitschwerdt et al. (2002), where

the spatial shape of the wind velocity is given by the balance of the gravitational potential and

CR pressure and basically follows the SNR distribution. Breitschwerdt et al. (2002) demonstrated

that the Milky Way can launch winds, if the dynamical coupling between the escaping cosmic rays

and the thermal plasma is taken into account. Since the CR energy density is with 1.5 eV/cm
3

(Webber, 1987) comparable to the energy density of galactic magnetic field and to the energy

density of turbulent motions of interstellar gas, CRs are an important dynamical factor in the

Galaxy. Breitschwerdt et al. (2002) carried out a self-consistent calculation of Galactic winds.

Given a dependence of the cosmic ray source distribution on Galactocentric radius R, the numerical

wind solutions show that the wind velocity depends both on R, as well as on vertical distance z.

In regions with a high density of CR sources the CR pressure is strong enough to overcome the

gravitational forces and drives gas into the halo. The convection velocity increases with increasing

height above the plane, which means that for some distance zc the convective transport will become

stronger than the diffusive transport. Following Jokipii (1976) the convection-diffusion boundary

zc can be defined to lowest order by

zc(R) ∼ Dzz(R, zc)

Vc(R, zc)
(3.25)

Above this boundary convection dominates and the probability for a CR to return to the diffusion

region below zc decreases exponentially. In the presence of CR sources, where it is easy to overcome

the gravitational potential, CRs will leave the Galaxy earlier and consequently the interaction rate

will be smaller than e.g. in the outer Galaxy. In such a model grammage and escape time depend

on both particle rigidity and Galactocentric radius.

The local CR escape time is then given by

τesc ∼
z2
c

Dzz
∼ Dzz

V 2
c

. (3.26)

If the wind velocity depends on Galactocentric distance the diffusion-convection boundary will also

depend on R, thus significantly changing the shape of our effective diffusion box. The left side of

Fig. 3.8 shows the convection-diffusion boundary as calculated by Breitschwerdt et al. (2002). The

functional dependence of zc(R) with radius is straightforward to understand. Close to the Galactic

center, the gravitational pull is strongest. Since the authors of Breitschwerdt et al. (2002) chose

all other quantities being the same across the disk (constant density, thermal pressure, magnetic

field strength), the outflow velocity, and hence mass loss rate, is smallest in the Galactic center.
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Equation 3.25 then tells us, that zc(R) must be largest. In the outer parts of the Galaxy the source

strength and hence the CR pressure decreases. Consequently the outflow velocity also decreases

and zc(R) must increase again. It is noteworthy that the minimum of zc(R) at R ∼ 6 kpc does

not coincide with the maximum of the source distribution (see Fig. 3.3) at R ∼ 3− 4 kpc. This is

probably a consequence of the interplay between the gravitational field and the source distribution

in the fully nonlinear equations (cf. Breitschwerdt et al. (1991)). Breitschwerdt et al. (2002) chose

a constant thermal pressure throughout the Galaxy. In reality one should also take into account

the thermal temperature and pressure in regions of higher supernova activity. The net effect would

be a more pronounced peak in outflow velocity and a deeper minimum in zc(R), respectively, and

therefore an even better quantitative proportionality between Vc(R) and the source distribution.

Therefore we find it reasonable to assume that the convection velocity is proportional to the source

distribution.

Returning to the ROSAT observations, Everett et al. (2008) found wind velocities from 173 km/s

in the disk to 760 km/s in the halo from a fit of their thermally driven wind model as can be

seen from the right side of Fig. 3.8. Compared to starburst galaxies which feature wind velocities

up to 3000 km/s these wind velocities are still moderate. However, the impact of even moderate

convection velocities of a few 100 km/s on CR transport is significant as we will show in Section

4.3.

In the isotropic models which can allow only for very small convection velocities the diffusion-

convection boundary is basically defined by the free escape boundary condition at a fixed height

zh above the plane, which leads to a constant CR escape time throughout the disk. The ROSAT

observations constitute strong evidence of anisotropic transport by virtue of a significant convective

transport mode.

3.5.2 The COS-B and EGRET Soft γ-Ray Gradient Observations

It is interesting to note that the model suggested by Breitschwerdt was not motivated by direct ev-

idence for Galactic winds, but by another problem of isotropic transport models: The distribution

of supernova remnants, which are believed to be the sources of CRs, peaks toward the Galactic

center, as shown in Fig. 3.3. In an isotropic diffusion model the propagated CR distribution still

strongly resembles the source distribution, leading to a peak in the radial distribution of diffuse

γ-rays, i.e. one observes a strong gradient, as shown on the left side of Fig. 3.9. This is incompat-

ible with the soft γ-ray gradient as observed by COS-B and EGRET3. In order to reproduce the

observed γ-ray gradient, a source distribution significantly flatter than the observed distribution

of supernova remnants has to be chosen (Strong & Moskalenko, 1998) (see the right side of Fig.

3.9, the flattened source distribution is also shown in Fig. 3.3). Breitschwerdt et al. (2002) found

that the discrepancy between the CR source distribution and the diffuse Galactic γ-rays can be

explained entirely by propagation effects, if dynamical coupling between the escaping CRs and

the thermal plasma is accounted for. From Eq. 3.26 it is clear that the CR escape time decreases

with increasing source strength, if the convection velocity is proportional to the source strength.

This leads to an R-dependent CR interaction rate and consequently a mild γ-ray gradient.

As an alternative to anisotropic transport Strong et al. (2004b) investigated the possibility of a

strong increase in XCO on the diffuse γ-rays. XCO is the conversion factor from the CO integrated

temperature to the H2 column density. The λ = 2.6 nm (J = 1 → 0) emission line from carbon

monoxide (CO) is a tracer for the spatial distribution of H2 molecules, because collisions between

the CO and H2 molecules in the clouds are responsible for the excitation of carbon monoxide. This

3Note, that this γ-ray gradient refers to a spatial feature of the diffuse γ-rays. A possible miscalibration of the

EGRET instrument will not modify the spatial shape of the observed radiation.
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Figure 3.9: Left: Radial distribution of 3 GeV protons at z = 0, for diffusive reacceleration model

with halo sizes zh = 1, 3, 5, 10, 15, and 20 kpc (solid curves). The source distribution is

that for SNR given by Case & Bhattacharya (1996), shown as a dashed line. The cosmic-

ray distribution deduced from EGRET >100 MeV gamma rays (Strong & Mattox, 1996) is

shown as the histogram. Right: Radial distribution of 3 GeV protons at z = 0, for diffusive

reacceleration model with halo sizes zh = 1, 3, 5, 10, 15, and 20 kpc (solid curves). The

source distribution used is shown as a dashed line, and is that adopted to reproduce the

cosmic-ray distribution deduced from EGRET >100 MeV gamma rays (Strong & Mattox,

1996), shown as the histogram. From Strong & Moskalenko (1998).

means that any variation in XCO only applies to the molecular component of the gas, not to the

atomicHI andHII components. TheXCO conversion factor can be determined either by methods

based on the assumption of molecular cloud virialization, which suffer from large uncertainties, or

from γ-ray analyses. The second of these methods is much more reliable, however, we would like to

point out, that this method only holds if one assumes that CRs penetrate molecular clouds freely

and produce secondaries such as γ-rays there. Taking the observed pulsar distribution, which is

thought to be a good tracer of the SNR distribution, as CR source function, an isotropic transport

model is able to reproduce the observed γ-rays only if a strong increase of the XCO scaling factor

with Galactocentric radius R is assumed. The reasoning behind this is, that XCO increases if

the metallicity decreases. Since the metallicity dependence of XCO is logarithmic a significant

decrease in metallicity is required to change XCO.

Diffuse γ-rays stem from interactions with all components of the ISM as well as from inverse

Compton scattering and so the variations in the XCO factor have to be rather large in order to

have a significant effect. Diffuse Galactic γ-rays require an increase in XCO of a factor of 25

between 3 kpc and 15 kpc and still a factor of about 12.5 from 6 kpc to 11 kpc. In addition the

electron flux has to be scaled by an additional factor of 0.7. This means that the local electrons

are a factor 2.8 too high in a model with increasing XCO (compared to a factor 4 for a model with

flattened source distribution).

Although an increase of XCO with Galactocentric radius is expected from the observed metallicity

gradient, the authors of Strong et al. (2004b) found that the gradient has to be rather large in

order to be compatible with the diffuse γ-ray data.

When examining the impact of Galactic winds on CR transport, we assume a constant XCO factor
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in this work as a first step and allow for an increase with Galactocentric radius only if required.

3.5.3 The Size of the Transport Box

The halo size is one of the most important parameters for an isotropic transport model, since it

severely limits the allowed transport parameters. Generally, diffusion coefficients and convection

velocities can only be quoted for a given halo height. The reason for this is that the diffusion

coefficient and the convection velocity determine the CR flux as given in Eq. 2.143. For a given

halo height this flux has to be chosen in such a way, that the constraints from the local secondary

to primary ratios and the radioactive instable isotopes are met. Isotropic transport models prefer

halo heights slightly above 4 kpc. Figure 3.1 shows the changes in the locally measured B/C

and 10Be/9Be ratio for an increase in halo height, while the transport parameters are fixed. In

GALPROP the halo height is given by the boundary applied to the numerical solution of the

transport equation. Beyond this boundary the CR density is put to zero, which basically means

that free escape is assumed. Since the CR density in the intergalactic space is non-zero, this is

obviously only an approximation, which can be relaxed in models with a physical treatment of

the boundary condition. For an isotropic diffusion model with constant diffusion coefficient this

means that one assumes the density of scattering centers to suddenly decrease to zero beyond the

boundary, while inside the transport box the density of scattering centers is constant. Of course

a smooth decrease in the scattering centers would be a much more natural solution, but this

requires an increase in diffusion coefficient towards the boundary. This is exactly what is needed

in anisotropic propagation models, as will be discussed in Sect. 4.1. In such anisotropic models the

boundary of the diffusion box can be in principle at infinity in contrast to isotropic models, where

the residence time increases with the size of the diffusion box for a constant diffusion coefficient.

3.5.4 The INTEGRAL 511 keV Line

Recent observations of the positron annihilation line by the INTEGRAL instrument onboard the

NASA SPI mission led to surprising insights into transport phenomena in our Galaxy. INTEGRAL

observed the positron annihilation signal from the Galactic center (Weidenspointner et al., 2007).

The main source of low energetic positrons are SNIa which are distributed in the bulge and in the

disk. Strikingly, the annihilation signal in the disk can be entirely explained by the decay of 26Al

from core collapsed SNs, leaving no room for additional positrons from SNIa (Prantzos, 2006). Low

energy positrons can annihilate with electrons, preferentially bound to nuclei in order to prevent a

large momentum transfer during the collision. A detailed account of the annihilation process was

given by Guessoum et al. (2005). Such positrons largely originate from the decay of radioactive

nuclei expelled by dying stars. In the case of SNIa the SNR core makes up a large fraction of the

mass, so it has a relatively thin layer of ejecta, which makes it easier for the positrons to escape.

Light curves, which are sustained first by the γ-rays in the shock waves and later by the electrons

and positrons, suggest that only a few percent of the positrons escape from the ejecta and can

annihilate outside after thermalization. Positrons annihilating inside the ejecta will also produce

γ-rays, but these will not be visible as an annihilation line due to the successive interactions in

the shock wave.

Positron Large Bulge over Disk Ratio

INTEGRAL found a very strong 511 keV positron annihilation line towards the Galactic center

corresponding to an annihilation rate of (1.5±0.1) ·1043s−1 (Knödlseder et al., 2005). In contrast,

the annihilation signal from the disk was very weak. A bulge/disk (B/D) ratio of a few was

quoted, although additional data show a clear disk signal as well (Weidenspointner et al., 2007).
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Figure 3.10: Graphical representation of magnetic field line focussing in MCCs and CR trapping. From

Chandran (2001)

Taking the dominant source to be β+ decay of 56Co in SNIa, one would expect a B/D ratio to

be well below one, because of the higher mass in the disk and the higher rate of SNIa explosions

expected in the thick disk as compared to the bulge (Prantzos, 2006). An additional problem

presents the observation of the 1.8 MeV line from the 26Al radioactive isotope, which was clearly

observed in the bulge and the disk by the Comptel detector on NASA’s CGRO observatory (Diehl

et al., 2006). These nuclei are thought to be produced by nucleosynthesis in massive stars and

yield in their decay on average 0.85 positrons. The observed flux of positron annihilation in the

disk seems to be saturated already by the positrons from 26Al and 44Ti, leaving little room for

additional positrons from SNIa explosions in the disk. Remember that 26Al has a half life of the

order of 7.2 · 105 years, so the positrons from their decay are not convected away by the wind

from the dying star. In isotropic transport models this result cannot be understood, because the

∼ MeV positrons do not propagate (Dzz = DRR ∝ β · ρδ), so that positrons annihilate close to

their sources in the bulge and in the disk.

In isotropic models the observed large bulge/disk ratio is only explainable if an additional positron

population is assumed. This positron population has to be confined to the bulge in order to repro-

duce the observed B/D ratio and in addition the positrons have to be assumed to annihilate close

to their sources. Several possible candidates have been proposed, which are able to either par-

tially (see, e.g. the low-mass-X-ray-binaries in Weidenspointner et al. (2008)) or entirely (see, e.g.

the contribution from dark matter annihilation in Ascasibar et al. (2006)) explain the observed

signal from the bulge. However, these explanations cannot account for the absence of a positron

annihilation signal from the positron from the SNIa population. Prantzos (2006) pointed out that

B/D ratios as small as 0.5 are compatible with the INTEGRAL data if the disk positrons diffuse

sufficiently away from their sources. He estimated that about 50% of the ∼ MeV positrons have

to leave the confinement region below zc before slowing down.

In Subsection 4.3.3 it will be shown that transport models including convection can explain the

large B/D ratio in a natural way.
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Exclusion of Positrons from Molecular Clouds

Diffusion models generally assume that all transport parameters are global parameters and that

the gas is homogeneously distributed. As long as only the γ-rays, which give the averaged emission

along a line of sight are of interest, this is a reasonable assumption. If the local fluxes of CRs are

considered, then local deviations have to be included in a model.

In addition to the large B/D ratio the INTEGRAL instrument measured the spectral morphology

of the annihilation line. The positron annihilation predominantly seems to take place in the diffuse

non-molecular phase of the ISM. The annihilation signal from the molecular component, which

makes up about 40% of the total gas mass of our Galaxy, appears to be compatible with zero

(Jean et al., 2006). A possible explanation might be the small volume filling factor of the H2

clouds of only a few % (Launhardt et al., 2002). The rest of the gas is homogeneously distributed

and constitutes the intercloud material. As mentioned in Section 3.1 the isotropic transport

models assume that the gas distribution is not clumpy, i.e. the interaction rate in the different

components is defined by the average density, leading to a large number of interactions in the

molecular component.

The magnetic field in molecular clouds (MCs) is proportional to the cloud’s gas density and ranges

from 6 µG to 120 µG (Troland & Heiles, 1986) while the magnetic field in the intercloud material

(ICM) is 4 − 5µG (Zweibel & Heiles, 1997). Since magnetic field lines are focussed into the

strong field regions a magnetic field line passing through a molecular cloud complex has a higher

probability of entering a MC than a straight line of sight (see Fig. 3.10). For molecular cloud

complexes (MCCs) this means that there is more magnetic flux through the smaller dense clumps

than through the complex as a whole. A CR will be magnetically reflected by a cloud complex if

its pitch angle cosine fulfills
v||

v⊥
<

√

Bmax
BICM

− 1, (3.27)

where BICM is the field strength in the ICM and Bmax is the maximum field strength a CR

encounters inside a cloud complex and v|| is the velocity component parallel to the magnetic field.

Thus molecular clouds, like any high field region, can magnetically reflect CRs and act as magnetic

mirrors. If the mean distance of magnetic mirrors is smaller or of the order of the mean diffusive

scattering length for a CR, MCs can act as magnetic traps and confine CRs to the volume between

MCs until their pitch-angle no longer fulfills equation 3.27. A well-understood example of such a

process are the so called van-Allen-belts of our Earths magnetic field.

If MCCs are indeed efficient at trapping CRs, then this would mean that CRs can spend time in

the intercloud material and possibly undergo radioactive decays or interact with the intercloud

material without changing their spatial distribution due to diffusive scattering. Such a process

cannot be modelled in a pure diffusion model, because it occurs on scales below or comparable to

the mean scattering length. It can be incorporated by scaling the energy losses and gains, as well

as the secondary interaction rate accordingly. However, such a scaling is complicated, because

the details of this scaling factor and especially its energy dependence are unknown. We show

the impact of magnetic traps on a diffusion model in Appendix D in more detail, but due to the

unknown details we will neglect trapping by MCCs in the following.

Other Inhomogeneities of the ISM

There are other inhomogeneities in the ISM that are likely to affect CR transport, especially the

secondary to primary ratios. Examples are the Local Bubble, a low density region surrounding

the Sun, and the spiral structure of the Milky Way. It is not known in how far these structures

have an impact on CR transport and none of the contemporary transport models is able to embed

these structures in the calculations. Here we are interested in the consequences of Galactic winds
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mainly and therefore we will neglect these features for now and in the next chapter we will show

that it is possible to be compatible with wind speeds as expected from ROSAT. In this course we

will develop a program which is actually capable to model structures like the Local Bubble and

the spiral arms and we will address these issues in Chapter 5.





Chapter 4

An Anisotropic Transport Model

for Galactic Cosmic Rays

In the past years new observations as well as theoretical considerations have modified and com-

plicated our picture of CR transport significantly, as discussed in Section 3.5 in detail before:

• Self-consistent Galactic wind calculations have led to the conclusion that convective trans-

port plays a non-negligible role for CR transport. In such models the size of the diffusion

dominated zone in the Milky Way changes with Galactocentric distance (Breitschwerdt et al.,

2002). Recently, an analysis of the ROSAT X-ray observations (Everett et al., 2008) has

confirmed this picture, as discussed by Breitschwerdt (2008).

• The large scale distribution of the positron annihilation signal as observed by INTEGRAL

shows a large bulge to disk (B/D) ratio, which is strong evidence for a propagation effect,

because even the addition of an -unknown- positron source cannot explain why there is

almost no annihilation signal in the disk.

Isotropic diffusion models for Galactic cosmic ray transport put tight constraints on the maximum

convection velocity in the halo. For a half halo height of 4 kpc the maximum convection speed is

limited to 40 km/s in the halo, since otherwise the constraints from local secondary to primary

ratios and radioactive isotopes cannot be met. The ROSAT Galactic wind observations of wind

speeds up to 760 km/s therefore constitute a problem for diffusion models.

Here it is shown that such wind speeds are possible, if the diffusion coefficient in the halo is different

from the diffusion coefficient in the disk. The radial dependence of the wind velocity was taken to

be proportional to the source strength, as expected from winds which are sustained by cosmic ray

pressure. In this case the cosmic ray density and with it the diffuse γ-ray production from nuclear

interactions are suppressed near the sources. This solves in a natural way the problem of the soft

gradient in the radial dependence of the γ-ray flux. Furthermore, the absence of an annihilation

signal from disk positrons from SNIa as observed by INTEGRAL, can be explained by positron

escape from the disk in such a model.

In this chapter we develop an anisotropic model for CR transport (anisotropic propagation model

(aPM)) which is capable of explaining both local and interstellar CRs with a common source

spectrum. The model meets the observational constraints from ROSAT and INTEGRAL. The

collection volume for CRs in such a model is comparable to the collection volume of the isotropic

models and thus the local grammage and CR age is correctly estimated. The model was realized

by adapting the GALPROP code, which is now the most detailed and most powerful tool for CR

transport that we have.

67
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This chapter is organized as follows: In Section 4.1 we will describe the minimal extensions of the

isotropic transport model which are necessary to account for the observations described above.

Section 4.2 describes the parameter determination for this new model and sections 4.3 and 4.4

present the model’s predictions in terms of local charged CRs and γ-rays, respectively. We will

end this chapter with a few remarks on diffuse γ-rays.

4.1 Minimal Modifications of the Transport Equation

From the discussion in Section 3.5 we find that any realistic transport model should at least allow

for the following features:

1. Wind velocities as expected from the self-consistent Galactic wind calculations, the soft γ-

ray gradient (Breitschwerdt et al., 2002) and the ROSAT data (Breitschwerdt, 2008; Everett

et al., 2008)

2. spatial inhomogeneities in all transport parameters

3. possibly anisotropic diffusion

4. spatial inhomogeneities in the ISM.

To this end the GALPROP code was modified in the following way:

• In GALPROP an equidistant grid is used to numerically solve the diffusion equation. How-

ever, for parameters varying on small scales a fine grid is required, which would dramatically

increase the memory requirements and computing time. Therefore a non-equidistant user-

defined spatial grid with arbitrary grid points was implemented to allow for a course grid

spacing in the halo with simultaneously a fine grid in the disk.

• The isotropic diffusion coefficient is replaced by DRR for transport in the R direction and

Dzz for transport in the z direction. Both diffusion coefficients may depend on spatial

coordinates and may have an independent energy dependence.

• The convection velocity may depend on Galactocentric radius.

• To model local gradients in transport parameters and gas density the user can specify regions

(possibly corresponding to the Local Bubble and the Local Fluff (Frisch, 2009)) for which

the transport parameters or gas density may differ from the global parameters.

• The spatial derivatives of the propagation parameters, which are needed to solve the diffusion

equation, have been calculated for the additional R and z dependence of the diffusion and

convection parameters. The corresponding Crank-Nicholson coefficients are given in the

Appendices B.1 and B.2.

The parameterization of the spatial dependence of the convection and diffusion will be discussed

in the following sections.

4.1.1 Convection Velocity

Convection was chosen to be proportional to the R-dependence of the source density to take care

of the increased CR pressure close to the maximum of the source distribution. The convection

velocity is parameterized as follows:

Vc(R, z) = Q(R, 0)(Θ(|z| − z0 · V0 +
dV

dz
z). (4.1)
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Figure 4.1: Left Convection velocity in an aPM.Vc(R, z) = Q(R, 0)(V0 +z(dV/dz)), with V0 = 100 km/s

and dV /dz = 35 km/s and Q(R, 0) given by the SNR distribution by Case & Bhattacharya

(1996) (normalized to 1 at Ro). Right Convection velocity for different distances from the

Galactic plane. Below z=0.1 kpc only the contribution from zdV /dz plays a role. The

maximum wind velocity was chosen to be 591 km/s (in good agreement with ROSAT).

Here Q(R, 0) is the R-dependence of the CR source distribution, z0 is the initial height from

where the wind is launched, Θ is the Heaviside step function, V0 is the convection velocity at

z = z0 and dV /dz the gradient of the convection velocity. A linear increase in z was chosen for

reasons of simplicity. The source distribution was adopted from Case & Bhattacharya (1996),

the parametrisation is given in Eq. 3.15 where we adopted their values α = 1.69, β = 3.22 and

zs = 0.2 kpc.

The ROSAT data indicates an initial velocity of 173k m/s at the base of the wind, see Fig. 3.8.

Therefore z0 = 0 kpc with a local start velocity of 100 km/s was chosen, which results in a start

velocity of about 170 km/s at the peak of the SNR distribution. dV/dz was chosen to be 35

km/s/kpc leading to a maximum convection velocity of 591 km/s at zh = 7.5 kpc and 733 km/s

at 16 kpc, which is in good agreement with ROSAT. The spatial distribution of the convection

velocity for these parameters is shown in Fig. 4.1.

Note, that Everett et al. (2008) found that for Galactocentric radii smaller than 1.5 kpc no wind

can be launched due to the high gravitational potential. They used a simple rectangular function

to model the R-dependence of the Galactic wind. In this work we assume that the strong decrease

in source distribution and thus convection velocity towards the Galactic center is sufficient to

model the influence of the Galactic gravitational potential.

4.1.2 Diffusion Coefficients

The spatial dependence of the diffusion tensor is not well constrained. There have been efforts

to calculate the detailed behavior of the diffusion coefficient in the halo (see. e.g. Dogiel et al.

(1994); Dogiel & Gurevich (1993)), but generally one would expect an increase of the diffusion

coefficient in the halo from the observed isotropy of CRs, the amount of local 10Be and the

vertical CR distribution (see e.g. Ginzburg et al. (1980); Ptuskin & Khazan (1976)). Here, a

linear vertical increase in diffusion coefficients is chosen. This choice correctly reproduces the

slope of the secondary to primary ratios as we will see in Section 4.3. Any possible R-dependence

is neglected.

In the disk diffusion is assumed to be constant. In this model we use a rather large zone of constant
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Figure 4.2: Left Convection diffusion boundary as defined by Dzz(R, zc) = Vz(R, zc) · zc in an aPM

for different particle rigidities. The full lines correspond to protons, the dotted lines cor-

respond to electrons. For rigidities larger than 104MV Dzz and therefore zc is the same

for protons and electrons. The kink at 1kpc above the plane is caused by the sudden in-

crease of the diffusion coefficient in this model (see Subsection 4.1 for details). Right The

rigidity dependence of the convection-diffusion boundary zc for R = 8.3 kpc as defined by

Dzz(8.3 kpc, zc, ρ) = Vc(8.3 kpc, zc) · zc. The change in slope at 1 kpc corresponds to the

transition from constant diffusion to z-dependent diffusion.

diffusion with a half height of zd = 1 kpc. The diffusion coefficients are parameterized as

Dzz = DRR =











βD0

(

ρ
ρ0

)δ

, |z| < zd,

βD0
|z|
zd

(

ρ
ρ0

)δ

, |z| ≥ zd,
(4.2)

where ρ0 is the reference rigidity, D0 is a proportionality constant, which is treated as a free

parameter, δ is the slope of the power law describing the rigidity dependence of the diffusion

coefficient and β = v/c is the particle velocity. The parameter δ is taken to be the same for all

rigidities, i.e. there is no break in the power law of the rigidity dependence. In the following

we assume that the regular magnetic field plays no role, although this is clearly a questionable

assumption. In principle one would expect an anisotropy in diffusion coefficients, because even in

the presence of strong scattering, the large scale component of the Galactic magnetic field is non-

negligible (Codino & Plouin, 2007; De Marco et al., 2007). In the model presented here we choose

Dzz = DRR, which implies locally an isotropic scattering, but the overall scattering rate decreases

towards the boundary by the positive gradient in Dzz and DRR. However, a more detailed model

for CR transport should also take care of the structure of the unperturbed magnetic field.

4.1.3 Diffusion-Convection Boundary

For a large enough gradient in convection, convective transport will dominate over diffusion above

a certain value in z. In Section 3.5.1 the convection-diffusion boundary zc was defined as (Eq. 3.25)

zc(R) ∼ Dzz(R, zc)/Vc(R, zc). Above this boundary convection dominates and the probability for

a CR to return to the diffusion region below zc decreases exponentially. The R and z-dependence of

the parameters are explicitly included. For the parameters of the anisotropic propagation model as
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Parameter aPM Conventional Model

Injection Spectra

Protons/

nuclei

α1/α2/α3
1 1.6/1.8/2.41 1.98/2.42

ρp1/ρ
p
2 2 GV/9 GV 9 GV

Electrons

β1/β2 1.6/2.54 1.6/2.54

ρe1 4 GV 4 GV

Injection spectra are of the form
(

ρ
ρi

)−(αi,βi)

Transport Parameters

D0 5.3 · 1028 cm2

s 5.8 · 1028 cm2

s

ρ0 4 GV 4 GV

δ 0.33 0.33

zd 1 kpc -

V0 100 km
s -

z0 0 kpc -
dV
dz 35 km

s·kpc -

Vc(R) ∝ Q(R) -

vα 56kms 30kms
B0 6.5 µG 6.1 µG

Table 4.1: Parameters of the aPM and a conventional GALPROP model.

determined in Section 4.3, the R-dependence of zc is plotted in Fig. 4.2 for different rigidities. For

most radii the regions of confinement where diffusion dominates, i.e. below the curves, are much

smaller than the halo boundary, set to 7.5 kpc. Note that near the GC the convection becomes

small by virtue of the decrease in the source distribution. Such a strong decrease is also expected

from first principles, because of the strong gravitational potential in the Galactic Center (GC),

which will inhibit the launch of Galactic winds. Figure 4.2 also shows the rigidity dependence of

the diffusion-convection boundary for protons. The increase in diffusion for distances larger than

1 kpc leads to a change in slope of zcρ around 1 GeV. In Section 4.2 we will see that this change in

slope is the key point to reproducing the high energy slope of the local B/C ratio in the presence

of Galactic winds.

4.2 Parameter Determination for the Anisotropic Propaga-

tion Model (aPM)

In this section we discuss the parameter tuning for the aPM proposed in Section 4.1. It is not the

aim of this study to present a fine-tuned best fit model, which anyway would be rather short-lived

in the light of the upcoming Fermi-LAT and PAMELA data releases, but rather to show that the
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Figure 4.3: Left Proton flux in an aPM: local proton flux ( full line) and LIS proton flux ( dashed line).

Right Electron flux in a conventional aPM. Line coding as on the left. Data are taken from

the CR database by Strong & Moskalenko (2009).

ROSAT Galactic winds in principle are compatible with local CR measurements.

The optimization of the parameters follows the same path as for the isotropic model discussed in

Chapter 3, i.e. the diffusion coefficients are chosen to best reproduce the local B/C and 10Be/9Be

ratio and the injection spectra for protons and electrons are chosen to fit the local proton and

electron spectra. The convection velocity parameters are taken from the ROSAT data, as discussed

above in Section 4.1.1. The most important transport parameters for this model are summarized

in Table 4.1 and will be discussed in more detail below.

The left side of Fig. 4.3 shows the local protons spectrum (at Earth) and the local interstellar pro-

ton (LIS) spectrum. The correction for solar modulation was done in the force-field approximation

(Gleeson & Axford, 1968), as implemented in the GALPLOT program 2.

The right side of Fig. 4.3 shows the local electron spectrum. The electron injection index was

chosen to give a propagated electron spectrum with an index of roughly 3.3. This yields a somewhat

softer spectrum than observed by Fermi (Abdo et al., 2009), but agrees with an extrapolation of

the low energy electron data. The reasoning behind this is that for high energies local sources may

contribute significantly to the local electron flux, because the large electron synchrotron losses

cool electrons from distant sources efficiently. These sources are not included in our calculations,

which means that one expects our propagated electron spectrum to be somewhat softer than the

data indicates. We will discuss possible local sources that might contribute in this energy range

in Chapter 5.

In order to cope with the large CR transport time and the comparably small amount of secondaries,

CRs have to spend a certain time in the halo. The times spent in the halo and the disk, denoted

by th and td, respectively, are constrained by the ratio of secondary/primary CRs, which is most

precisely measured for the B/C ratio and the ratio of unstable/stable CRs, which is most precisely

measured for the 10Be/9Be ratio. Isotropic transport models can reproduce the observed B/C

and 10Be/9Be ratios, because the diffusion coefficient and halo size can always be chosen in such

a way that td/(th + td) agrees with the measurements.

To understand how it is possible to invoke convection velocities as expected from ROSAT we

examine the impact of convection on the vertical proton distribution, shown in the left column

of Fig. 4.4. Starting from a pure diffusion model (black full line) an increase in the convection

velocity gradient dV/dz from 0 to 35 km/s/kpc narrows the proton distribution (blue short dashed-

dotted line). This leads to a reduction of grammage and a corresponding decrease of CR age, as

2The GALPLOT routine is available from http://www.mpe.mpg.de/∼aws/propagate.html.
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Figure 4.4: Left column: The influence of dV/dz and V0 on the vertical proton distribution in arbitrary

units (top), B/C (center) and 10Be/9Be (bottom). The vertical proton distribution has

been normalized to the local density of the isotropic run to allow for better comparison, the

normalization factors are given in parenthesis. Note that the difference in normalization is

the result of transport in spatial coordinates and energy losses. Since the CR densities are

normalized to the locally measured proton flux, the difference in normalization vanishes if

the CR injection spectra are chosen accordingly. The open circles indicate the position of

the diffusion-convection boundary zc for the different models. For the isotropic model zc is

identical to the halo boundary at 4 kpc. Data for B/C: HEAO-3 (Engelmann et al., 1990)

ACE (Davis, 2000). Data for 10Be/9Be: ISOMAX (Hams et al., 2004), ACE (Yanasak

et al., 2001), Voyager (Lukasiak, 1999), Ulysses (Connell et al., 1998). Right column:

Same as the left column for a model with Galactic winds as expected from ROSAT (blue

short dashed-dotted line) and a model with Galactic winds and increased halo height and

diffusion coefficient. Data for B/C and 10Be/9Be as in the left column.



74 4.2. Parameter Determination for the Anisotropic Propagation Model (aPM)

 [GV]ρ
-110 1 10

[k
p

c]
cz

-110

1

/s2cm28 10×=6.40D

/s + break at 4 GV2cm28 10×=6.40D

/s+increase in D above 1 kpc2cm28 10×=5.30D

diffusion dominates

convection dominates

constant diffusion

increasing diffusion

z[kpc]
-8 -6 -4 -2 0 2 4 6 8

p
ro

to
n

 d
en

si
ty

 [
a.

u
.]

0

50

100

150

200

250

300

350

400
isotropic

/s (x 0.98)2cm28 10×=6.40D
/s+break at 4 GV (x 0.85)2cm28 10×=6.40D
/s+increase in D above 4 kpc (x 0.91)2cm28 10×=5.30D

Vertical proton distribution at 5 GeV

Figure 4.5: Left: Rigidity dependence of the diffusion-convection boundary zc for a model with constant

diffusion coefficient (black full line), a model with broken diffusion coefficient (red long

dashed-dotted line) and a model with increasing diffusion coefficient in the halo (blue short

dashed-dotted line). For the model with break in diffusion coefficient we use δ = 0.33 below

4 GV and δ = 0.5 above 4 GV. D0 is kept at 6.4 · 1028 cm2/s and the proton injection

index is with 2.25 above 9 GV somewhat harder than the conventional model with 2.42

to counteract the additional momentum losses above 4 GV. For the model with increasing

diffusion coefficient we use Dzz = DRR = 5.3 · 1028cm2/s · (ρ/4 GV)0.33 for z ≤ 1 kpc and

Dzz = DRR = 5.3 · 1028cm2/s · (|z|/kpc) · (ρ/4 GV)0.33 for |z| > 1 kpc. The change in

slope at 1 and 4 kpc corresponds to the transition from constant diffusion to z-dependent

diffusion (indicated by the blue full line) and the transition from δ = 0.33 to 0.5, respectively.

Right: Vertical proton distribution at 5 GeV for the three models compared to an isotropic

model. In order to allow for easy comparison, the proton density has been normalized to

the isotropic model, the normalization factor are given in parenthesis.
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Figure 4.6: B/C ratio (left) and 10Be/9Be ratio (right) for a model with constant diffusion coefficient

(black full line), a model with broken diffusion coefficient (red long dashed-dotted line) and a

model with increasing diffusion coefficient in the halo (blue short dashed-dotted line). Data

as in Fig. 4.6.
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can be seen from the B/C and 10Be/9Be ratio in the left column of Fig. 4.4. On the other hand,

an increase in the initial wind velocity V0 from 0 to 100 km/s has the opposite effect: the proton

distribution is widened and grammage and CR transport time are increased (red long dashed-

dotted line). The different behavior of these two parameters becomes understandable if one looks

at the corresponding terms in the transport equation. With Vc = V0 + dV/dz · z and Eq.3.5, CR

transport along z can be written as

[

∂Dzz

∂z
− Vo −

dV

dz
z

]

∂Ψ

∂z
+Dzz

∂2Ψ

∂z2
− dV

dz
Ψ =

(

dΨ

dt

)

, (4.3)

where we neglected momentum and particle losses and gains. Unlike the vertical gradient dV/dz

the initial wind velocity V0 only occurs in the first term. An increase in V0 can be interpreted as

a decrease in ∂Dzz/∂z, which just corresponds to the reduction of the forward mean scattering

length in a moving reference frame. In the examples discussed above dDzz/dz = 0, so an increase

in V0 indeed acts as a reduction of the diffusion coefficient with increasing distance from the plane

and therefore widens the proton distribution.

Thus, the vertical gradient dV/dz and the initial wind velocity V0 have opposite effects on the

density in the halo. Now we combine them and parameterize convection as described in section

4.1.1 with V0 = 100 km/s and dV/dz = 35 m/s/kpc. The resulting vertical proton distribution,

B/C and 10Be/9Be ratios for this case are shown as the blue short dashed-dotted line in the right

column of Fig. 4.4. At 5 GeV the proton distribution resembles the one of the isotropic model.

For this energy diffusion dominates up to distances of 1.5 kpc from the plane, as indicated by the

vertical lines with the circles on top. However, the B/C ratio is somewhat too low, which can be

remedied by a larger transport box, which leads to a lower vertical gradient in the CR density and

a correspondingly higher secondary density in the disc, as shown by the red long dashed-dotted

line in the right column of Fig. 4.4). Above 1 GV the ratio is too high, but the 10Be/9Be is

still acceptable for the chosen diffusion coefficient. To reduce only the high energy part of the

B/C distribution one can only play with diffusion, since convection is energy independent. The

crucial quantity to look at in this case is the diffusion convection boundary zc, shown as the black

line on the left side of Fig. 4.5. A shift of the diffusion convection boundary towards larger

vertical distances above 1 GV (corresponding to an increase in diffusion coefficient) would give

rise to faster CR escape for these energies. There are two obvious options to accomplish this: on

the one hand a break in the diffusion coefficient leads to a larger diffusion coefficient for higher

energies (see the red long dashed-dotted line in Fig. 4.5) and on the other hand an increase of

the diffusion coefficient in the halo leads to faster CR escape for higher energies (see the blue

short dashed-dotted line in Fig. 4.5). The latter option describes the data on B/C and 10Be/9Be

somewhat better, as shown in Fig. 4.6, so this option is used in the following with the diffusion

coefficient as given in Table 4.1. The increase of the diffusion coefficient in the halo allows one

to reduce the diffusion coefficient in the disk by about 20% while keeping the halo height fixed

at zh = 7.5 kpc. This shifts the diffusion convection boundary towards the Galactic plane for

rigidities smaller than 1 GV (see the left side of Fig. 4.5). Because of the smaller diffusion

coefficient in the disk, the model with increasing diffusion coefficient in the halo leads to a very

similar vertical proton distribution as in the isotropic model for z . 3 kpc, i.e. below zc (see right

side of Fig. 4.5). Below this boundary CR transport is dominated by diffusion and the different

diffusion coefficients (Diso = 6.2 · 1028 cm2/s at 5 GV for the isotropic model and D < Diso below

1.1 kpc, while D > Diso above 1.1 kpc for the anisotropic model) lead to a similar vertical proton

distribution. Note, that despite the use of an isotropic diffusion coefficient, CR transport in this

model itself is anisotropic due to the non-negligible convection velocities, hence the choice of the

name aPM.

With the basic transport parameters fixed by the local measurements of B/C and 10Be/9Be and
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Figure 4.7: Left The antiproton flux in the aPM. The solid line denotes the local flux and the dashed line

the flux corrected for solar modulation. Data: BESS 95-97 (Orito et al., 2000), CAPRICE

98 (WiZard/CAPRICE Collaboration, 2001), MASS91 (Basini, 1999). Right The positron

flux in the aPM (black lines). The solid line denotes the local flux and the dashed line the

flux corrected for solar modulation. Also shown is the modulated positron flux in a model

with break in diffusion coefficient (red line). Data: AMS I (Alcaraz et al., 2000), CAPRICE

94 (Boezio et al., 2000), HEAT 94 (DuVernois et al., 2001)

the CR injection spectra given by the local proton and electron spectra the model parameters are

basically settled. Fine-tuning of the transport parameters can be done by considering additional

secondary particles, like antiprotons and positrons, which originate from nucleon-nucleon collisions

in the ISM.

The left side of Fig. 4.7 shows the local antiproton and positron flux. Antiprotons show an excess

of about 40% to 50% below 4 GeV. This excess is very similar to the excess seen in the isotropic

transport models (Strong et al., 2007). It is possible to increase the local antiproton flux by

increasing the local CR interaction rate via diffusion or convection. However, this would worsen

the B/C ratio and the local positron flux.

The right side of Fig. 4.7 shows the local positron flux. For energies below 5 GeV the model shows

a slight excess in local positrons. This is probably the result of too efficient diffusive reacceleration

driven by either a too large vα or a too small diffusion coefficient. On the other hand less efficient

diffusive reacceleration would worsen the local B/C ratio. An improvement for both positrons

and the local B/C ratio is expected if convective transport was slightly more efficient.

4.3 Performance of the aPM

4.3.1 Halo Size

As discussed before, the diffusion coefficient increases with increasing z, thus providing a natural

transition to free escape independent of the boundary condition. For example, increasing the

boundary box from z=7.5 to 30 kpc does not change the residence time or the ratio td/(th + td),

as can be seen from the gray band on top of the black line for the B/C ratio in Fig. 4.8, which is

hardly distinguishable from the black line for a boundary of z=7.5 kpc. This is in strong contrast

to isotropic transport models, which are highly sensitive to the size of the diffusion region, as

discussed in Section 3.1 (see Fig. 3.1). Given this large difference in sensitivity to the boundary

condition between the isotropic and anisotropic models it is interesting to compare the CR density

profiles for protons in the halo. This is done in Fig. 4.9 for two halo sizes in the aPM (zh = 7.5
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kpc (see Section 4.3.1 for a discussion).

and 10 kpc) and two halo sizes in an isotropic model (zh = 4 and 5.3 kpc) at rigidities of 0.01 GeV

and 10 GeV at the Sun’s Galactocentric radius. Most sources are located in the disk, so the source

density at z = 0 kpc is highest. In the isotropic model low energy CRs are almost at rest and

the CRs stay for a large fraction inside the gaseous disk (indicated by the vertical gray band in

Fig. 4.9; a disk height of 1 kpc is chosen for illustrative purposes, note that this is not identical to

the significantly smaller scaleheight of 250 pc used in the calculation) with tails towards the halo

boundary, where the density drops to zero. For the aPM this distribution is broadened at larger

z-values by convection. For high energies the situation changes, because the diffusion starts to

become more important and the diffusion-convection boundary zc moves to z-values of a few kpc,

as indicated by the hatched area on the right-hand side of Fig. 4.9. The ratio of times spent in the

disk and in the halo is approximately given by the area below the curves in the disk and the halo.

One observes that this changes for the isotropic model significantly, if one moves the boundary

from 4 to 5.3 kpc, while for the aPM the changes are mainly in the convection zone from which

only few CRs return to the disk. Together with the increase in diffusion coefficient, convection

therefore allows us to reproduce the vertical distribution of the CR distribution in such a way

that the requirements from local B/C and 10Be/9Be are met and at the same time reduces the

model’s sensitivity to the exact position of the boundary condition, provided that the diffusion-

convection boundary zc is small enough. Clearly, with increasing energy the convection-diffusion

boundary also moves further into the halo until it becomes comparable to the halo height zh. With

increasing energy any aPM will therefore become more and more sensitive to the position of the

boundary condition. At the same time however, CRs become less and less confined and for very

high energies the diffusion approximation will break down. Figure 4.8 shows that for convection

speeds as expected from ROSAT a halo height of 30 kpc still does not yield any significant change

on the local B/C and 10Be/9Be ratio for all energies of interest, i.e. the energy range in which

the diffusion approximation holds.

The radial difference between the two models is less significant, as shown by the two-dimensional

proton distribution at 5 GeV in the Rz plane in Fig. 4.10. Both distributions are similar up

to Galactocentric radii of 4 kpc. For larger radii the aPM falls off less steep than the isotropic

model. The reason for this is that diffusion is assumed to be independent of radius, while convection
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Figure 4.9: The halo density profile of protons for rigidities of 0.01 GeV and 10 Ge at Ro for an aPM

(black lines) and an isotropic model (red lines). In order to allow for easy comparison, the

proton density for each energy bin has been normalized to the aPM with zh = 7.5 kpc in

this figure.

decreases at larger radii, so diffusion becomes more important there, thus widening the distribution

in R. This helps in solving the soft γ-ray gradient problem, as will be discussed in more detail in

Section 4.4.2.

4.3.2 Collection Distance

Galactic winds lead to preferred transport in z-direction. As a consequence one could expect, that

in the absence of Galactic winds CRs are collected from much larger distances, because they can

travel further into the halo and return to the disk. We determine the collection distance of CRs,

meaning the maximum distance of CR sources which still contribute to the CR flux measured at a

certain point. The collection distance depends on all (local) transport parameters, as well as the

local shape of the secondary and primary source distributions.

To examine the R-dependence of the collection distance we consider only sources at a distance d.

Note, that this study refers to a two-dimensional run, meaning that the area from where sources

can contribute is a ringlike structure with a thickness of 2 · d and a height of 2 · zH =15 kpc. For

primaries we apply the cuts directly in the source distribution, for secondaries we consider cuts

in the secondary source function. The top left panel of Fig. 4.11 shows the fraction of proton,

electron, positron and antiproton flux below 1 GeV at the position of the Earth originating from

distances between 0.1 kpc and 12 kpc for an aPM. At these energies the protons are basically at

rest (from 1 GeV to 10−3 GeV the diffusion coefficient for protons drops by a factor of more than

200) and more than 60 % of the local proton flux stems from distances within 0.1 kpc, while sources

within 0.4 kpc contribute with about 90% to the local proton flux. The contribution from sources

with distances larger than 2 kpc is insignificant. This local proton population does not produce

antiprotons. Due to baryon number conservation the threshold for antiproton production is at

about 7 GeV. At threshold the antiproton is produced at rest in the center of mass frame and has

an energy of Ekin = 938 MeV in the laboratory frame. Antiprotons with Ekin < 938 MeV have

to be produced in the backward hemisphere of higher energy collisions. Most of the antiprotons

below 1 GeV are therefore particles which have been produced at higher energies and cooled down
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Figure 4.10: The density distribution of 5 GeV protons in the Rz plane for an aPM (left) and an

isotropic model (right). Note the different boundaries in z of 7.5 and 4 kpc, respectively.

The boundary in R is 20 kpc in both models.

on their way to Earth, thus explaining the large collection distance.

When protons become relativistic their collection distance increases significantly, since the diffusion

coefficient in proportional to β. Only 10% of the relativistic protons originate from distances within

0.1 kpc and one has to include sources up to a distance of 4 kpc in order to gather 90% of the

local protons. For energies larger than 10 GeV the collection distance for protons and antiprotons

is comparable (see figure 4.11).

Electrons at 1 GeV are already relativistic, leading to a larger collection distance below 1 GeV.

Between 1 GeV and 10 GeV electrons and protons have approximately the same collection distance.

Due to their larger energy losses, especially their synchrotron losses, the collection distance for

electrons and positrons drops significantly for energies above 10 GeV. Between 103 and 105 GeV

already 70% of the local electrons originate from distances within 0.1 kpc and sources withing 0.2

kpc already contribute more than 90% of the local electron flux.

Figure 4.12 shows the collection distance in the plane for an isotropic model with D = 5.8 ·
1028 cm2/s, no convection and a half-halo height of 4 kpc. For all energies, even for the lowest

energies, the collection distance is only slightly larger than for the aPM. The reason for this is on

the one hand that the diffusion coefficients for both models are still comparable and on the other

hand the smaller transport box leads to faster escape in z-direction, thus mimicking the effect of

convection. Also shown in figures 4.11 and 4.12 is the uncertainty in collection distance which

originates from a change in the local diffusion coefficient.

The collection distance in an aPM is therefore absolutely comparable to an isotropic model. Minor

deviations are due to the slightly different diffusion coefficients (Diso = 5.8 · 1028 cm2/s and

DaPM = 5.3 · 1028 cm2/s), the large convection velocity does not reduce the radial collection

distance of CRs. This means that CRs produced in the peak of the source distribution at 4

kpc, where convection is strongest, will not be immediately blown into the halo, but will still

reach Earth with the same probability as in the isotropic model. As the consequence the isotopic

composition and the diffuse γ-ray predictions of both models will be similar or only subject to

slight variations. We will check the latter in Section 4.4.
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Figure 4.11: Collection distance for protons (full red line), electrons (full blue line), antiprotons (dotted

red line) and positrons (dotted blue line) for an aPM for different energy ranges between

10−3 GeV to 105 GeV. The grey uncertainty band indicates the change in collection distance

due to local variations in the diffusion coefficient in a region with diameter of 0.6 kpc and

a height of 0.2 kpc and a diffusion coefficient decreased or increased by a factor of 2.

For energies between 10−3 GeV and 1 GeV the uncertainties due to a local gradient in

diffusion coefficient are shown for primaries and secondaries, for the other energy ranges

the uncertainties are shown for primaries only.

4.3.3 The INTEGRAL Positron Annihilation Signal

As discussed in Section 3.5.4 the INTEGRAL satellite observed a large B/D ratio for the positron

511 keV annihilation line. In an aPM this is expected, because low energy particles propagate

predominantly by convection, which is large in the disk and small in the bulge. Positrons produced

in the disk are transported into the halo, but stay near the sources in the bulge. Furthermore,

the bulge has a large extension in all directions, so even if the positrons are slowly transported by

diffusion, they still have time to thermalize and find an electron to annihilate. In the disk positrons

are produced predominantly in the region of a high source density, i.e. a region of high convection.

To quantify the escape probability from the disk the SNR distribution given by equation 3.15 is

taken as the source distribution for MeV positrons, but a somewhat larger scale height of 300 pc

is used, which is the scale height of SN1a (Prantzos, 2006). These are presumably the supernovae

with the highest escape fraction, because of the thinner ejecta. The positron spectrum from 56Co

β+-decays is modeled as a rectangular function between 0.1 MeV and 5 MeV. Figure 4.13 shows

the vertical positron distribution between 10−6 MeV and 1 MeV in an isotropic model, a model

with V0 = 100 km/s, a model with V0 = 100 km/s and dV/dz = 35 km/s/kpc and the aPM. The

positron density has been normalized to the area below the curve, which means the same source
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Figure 4.12: Same as fig. 4.11 for an isotropic model with zh = 4kpc, D = 5.8·1028 cm2/s, vα = 30 km/s

and no convection.

luminosity is assumed in all four cases. Compared to the isotropic model (black full line) the

positron density in the disk is reduced by a factor of 2 when a constant wind velocity of V0 = 100

km/s is assumed (blue dotted line). A vertical increase in wind velocity further decreases and

slightly widens the positron distribution (blue dash-dotted line). The linearly increasing diffusion

coefficient in halo in the case of the aPM (red dashed line) increases the amount of positrons in

the halo above 1 kpc (where diffusion starts to increase) and thus leads to a further increase in

the positron escape fraction. To further quantify the positron escape fraction in the presence of

convection we compare the amount of positrons above and below the diffusion-convection boundary

zc. Table 4.2 shows the fraction of positrons above zc for different parameters of the aPM. For

the aPM more than 89% (83.2%) of the 0.1 (4) MeV positrons escape from the Galaxy. Since

CR transport in this energy range is mainly governed by convection, variations of 10% in the

diffusion coefficient or a constant diffusion coefficient in the halo (aPM1-aPM3) do not change

these numbers significantly. In the disk V0 is larger than dV/dz, so that a decrease in dV/dz

by 50% (aPM4) still yields about the same positron escape fraction. When decreasing V0 from

100 km/s to 30 km/s for a constant dV/dz = 0 km/s/kpc (aPM5-aPM7) the positron escape

fraction decreases significantly and becomes incompatible with the INTEGRAL requirements for

V0 = 10 km/s (ISO1). A strong increase in convection of dV/dz = 100 km/s/kpc is compatible

with the requirements by INTEGRAL even if the velocity at the base of the wind is zero (aPM8).

However in this case the requirements by ROSAT and local charged CRs are no longer met. For

a quasi isotropic model with convection velocity of dV/dz = 7 km/s/kpc and zh = 4 kpc (ISO)

the positron escape fraction ranges from 10.7% at 0.1 MeV to only 3.1% at 4 MeV. Models with

V0 smaller than 30 km/s are generally incompatible with the INTEGRAL requirements.
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Figure 4.13: The vertical distribution of positrons from SNIa between 10−6 MeV and 1 MeV in an

isotropic model, a model with V0 = 100 km/s, a model with V0 = 100 km/s and dV/dz = 35

km/s/kpc and the aPM. The positron density has been normalized to the area below the

curve, which means the same source luminosity is assumed in all four cases

In summary, models that meet the requirements by ROSAT automatically provide a positron

escape fraction high enough to explain the large bulge/disk ratio observed by INTEGRAL. In-

termediate convection velocities too small for ROSAT are already able to meet the requirements

by INTEGRAL. In the keV range the scale height of the propagated positron distribution is

∼ 1−1.5 kpc, in excellent agreement with the scale height of 1 kpc adopted by Prantzos (2006) in

his models B and D. Note, that the positron escape fraction shown here is just a simple estimate.

A more detailed modeling of the positron source spectrum would have a significant impact upon

the energy dependence of the escape fraction. Furthermore, one has to keep in mind that the

diffusion coefficient obtained from a fit to the B/C and 10Be/9Be ratio in the GeV range has

been extrapolated to MeV energies. This procedure implies that the assumption that CRs scatter

on Alvén waves holds down to MeV energies, which is not necessarily true. However, our diffusion

coefficient is in rough agreement with the bulge diffusion coefficient derived from contraints on the

ISM phase positrons annihilate in Jean et al. (2006). Recently Jean et al. (2009) found that the

interaction of MeV positrons with magnetohydrodynamic waves in the neutral phases of the ISM

is negligible, which means that positrons move along magnetic field lines with helical trajectories

which are perturbed by collisions with particles of the ISM and consequently their diffusion coef-

ficient would be larger than assumed here. On the other hand resonant interaction with Alfvén

waves generated by the streaming CRs themselves in the warm interstellar medium might confine

positrons for long times to their source regions and thus lead to small diffusion coefficients. In this
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simple estimate we showed that for diffusion coefficients of the order of 1027 cm2/s 3 an additional

convective transport mode can help to explain the observed large B/D ratio.

We have shown that the large positron escape from the disk can be understood if positron transport

is taken into account, but it should be noted that due to the smaller source strength in the bulge

the number of positrons produced in the bulge is not sufficient to entirely explain the signal from

the bulge (Prantzos, 2006). Even in an aPM SNIa may not be enough and an additional process or

an additional source population in the bulge may be required to explain the observed emission from

the bulge. Prantzos (2006) suggested that a fraction of the positrons escaping the disk may even

be channeled by the poloidal field to the bulge where the positrons then would be confined by the

large magnetic field. A detailed study of the efficiency of such a channeling process would require

to adapt the anisotropy in the diffusion coefficient according to the direction of the magnetic

field in the halo and take care of the positron confinement in the bulge by a decreased diffusion

coefficient. In this rather qualitative approach we refrain from any fine-tuning of the diffusion

coefficients.

Recently, it has been found that an additional low mass x-ray binary (LMXB) population seems

to reside in the bulge region showing even the morphological features of the observed annihilation

signal (Weidenspointner et al., 2008). As a possible candidate positrons from annihilating (Boehm

et al., 2004) or decaying (Hooper & Wang, 2004) light Dark Matter (m < 100MeV) have been

suggested. However, any additional source in the bulge cannot explain why there is almost no

annihilation signal from positrons from 56Co from the disk, but added to an aPM an additional

source in the bulge can nicely explain the observe B/D ratio.

With wind velocities taken to be simply proportional to the source distribution we already find

excellent agreement with the model presented by Prantzos (2006). The problem of the large B/D

ratio for positron annihilation is thus intimately related to the propagation of positrons.

3Since D = βD0( ρ
ρ0

)δ our D0 = 5.3 · 1028 cm2/s at 4GV leads to an order of magnitude reduction in the MeV

range.



Model Dzz = DRR
a dD/dzb V0 dV/dz zh fesc@0.1MeV fesc@1MeV fesc@4MeV INT ROS

[cm2/s] [cm2/s/kpc] [km/s] [km/s/kpc] [kpc] [%] [%] [%]

aPM3 1.9 · 1027 0 100 30 7.5 88.5 85.3 82.1 + +

aPM1 1.7 · 1027 1.7 · 1027 100 30 7.5 89.3 87.3 83.3 + +

aPM 1.9 · 1027 1.9 · 1027 100 30 7.5 89.2 86.3 83.2 + +

aPM2 2.1 · 1027 2.1 · 1027 100 30 7.5 88.0 83.7 81.7 + +

aPM4 1.9 · 1027 1.9 · 1027 100 15 7.5 89.0 86.5 82.5 + +

aPM5 1.9 · 1027 1.9 · 1027 100 0 7.5 89.0 85.2 82.0 + -

aPM6 1.9 · 1027 1.9 · 1027 50 0 7.5 78.0 66.9 65.3 + -

aPM7 1.9 · 1027 1.9 · 1027 30 0 7.5 65.9 54.4 47.7 + -

aPM8 1.9 · 1027 1.9 · 1027 0 100 7.5 58.6 58.3 56.4 + -

ISO1 1.9 · 1027 1.9 · 1027 10 0 7.5 29.1 8.4 0 - -

ISO2 1.9 · 1027 1.9 · 1027 0 30 7.5 38.9 34.4 32.0 - -

ISO3 1.9 · 1027 1.9 · 1027 0 15 7.5 24.9 18.0 13.4 - -

ISO4 1.9 · 1027 1.9 · 1027 0 7 7.5 11.7 4.1 1.7 - -

ISO 1.9 · 1027 0 0 7 4 10.7 4.9 3.1 - -

Table 4.2: Positron escape fraction for different convection velocities and diffusion coefficients. For details see text.

aFor ρ = 1 MV, z = 0
bFor ρ = 1 MV
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4.4 γ-rays and Radio Emission

In GALPROP all spectra are internally normalized to units of c
4π . At the end of the processing

of all nuclei the proton flux c
4πn(p) at the user-defined reference Ekin at R = R0 and z = 0 is

computed by interpolation to get the correct nomalizing factor as specified in the user defined

input file. Since the normalization of all nuclei and the secondary electrons and positrons is linked

by the relative source abundances as well as the fragmentation, spallation and decay cross sections

the same normalizing factor is applied for all nuclei, positrons and secondary electrons. Primary

electrons are normalized separately to a user-defined flux at a user defined energy.

To check the validity of such a self-consistent propagation model at scales outside the kpc scale

of the collection volume of charged particles the fluxes of diffuse γ-rays and synchrotron radiation

are calculated in GALPROP using the emissivity of the complete diffusion box. The absorption

of both γ-rays in the GeV range and synchrotron radiation above a few hundred MHz is small,

so that information on the CR density and gas density even in the Galactic Center (GC) can

be obtained in the form of line-of-sight integrals, i.e. column densities. The diffuse γ-rays from

π0-decay, bremsstrahlung, IC scattering and synchrotron radiation are calculated self-consistently

from the steady-state solution. For this the propagated proton, electron and positron distribution

and the respective gas densities, ISRF and magnetic fields, which have already been applied to the

calculation of the energy losses are used. The skymaps are produced by integrating the emissivities

over the line-of-sight for an observer at the Solar position, for each (l, b) direction in the map. For

IC this is straightforward since the volume emissivity is directly calculated using the ISRF and

electron, positron spectra. For bremsstrahlung and π0-decay the emissivity is per nucleon of gas.

To best implement the observed Galactic structure in the gas, HI and CO radio-astronomical

surveys in Galacticentric rings are used together with the user defined H2-to-CO (XCO) relation.

These data only give column densities per ring, so that the variation of emissivity and gas density

within each ring has to be taken into account by some approximation. This is done using a

gas-density model as a function of (R, z) as follows:

Iγ =
∑

i

NHI,i + 2XCO,iWCO,i
∫

ring i

(nHI + 2nH2
)ds

×
∫

ring i

qγ(nHI + 2nH2
)ds (4.4)

where i indexes the Galactocentric rings. Here (nHI + 2nH2
) is the modelled gas density at any

point (R, z) as described in Section 3.3.1, s is the line-of-sight distance and (NHI,i+2XCO,iWCO,i)

is the survey-based column density in ring i. The integral is thus corrected for the observed column

density while maintaining the model-based variation within the ring. The integrals are performed

with a resolution in the line-of-sight distance s of 10 pc.

The calculation of the γ-ray and synchrotron skymaps is done after the normalization of the nuclei,

electrons and positrons to the local fluxes. Consequently, the γ-ray and synchrotron predictions are

also normalized to the local electron and proton density. This is the correct procedure, if the local

CR densities are indeed representative for the averaged local proton and electron density, i.e. the

CR distribution is sufficiently smooth. If, however, the locally measured proton and electron fluxes

represent a local over- or underdensity, then local CRs and the averaged CR densities as observed

in diffuse γ-rays and synchrotron radiation have separate normalizations. This can be invoked by

just ad hoc applying a different normalization as has been done by Strong et al. (2004a) or, more

elaborate, by modeling the phenomena which lead to the local deviations, such as variations in

the ISM or the source strength. We will discuss this second case in Section 5.3.
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Figure 4.14: Diffuse γ-rays for the six different sky regions as defined in Strong et al. (2004a). Line

coding: bremsstrahlung (light blue dashed), inverse Compton (green long dashed), π0-decay

(red long dashed-dotted), total (blue full). The pink full line is the extragalactic background

model according to Sreekumar et al. (1998). The EGRET data is corrected for the point-

spread function (PSF), for regions A, B and C the uncorrected EGRET data is shown as

the grey band. Also shown is the total γ-ray flux as predicted by an isotropic model with

D0 = 5.8 · 1028cm2/s at 4 GeV and vα = 30km/s (dotted blue line).
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Region Longitude l Latitude |b| Description

A 330-30 0-5 Inner Galaxy

B 30-330 0-5 Disk without inner Galaxy

C 90-270 0-10 Outer Galaxy

D 0-360 10-20 Low longitude

E 0-360 20-60 High longitude

F 0-360 60-90 Galactic Poles

Table 4.3: The longitude and latitude of the six sky regions shown in Fig. 4.14.

4.4.1 Diffuse γ-rays

To our knowledge, there is currently no isotropic transport model in GALPROP able to explain

the diffuse γ-rays and the local CRs in a consistent picture. Models are either tuned for local

CRs, thus leading to an excess in γ-rays above 1 GeV (conventional models) or tuned for γ-rays

leading to an incompatibility with local charged CRs by CR density and spectral shape (optimized

models).

In the light of the upcoming release of the Fermi-LAT data on diffuse γ-rays a cross-check with

diffuse γ-rays is difficult. The EGRET data does not agree with the preliminary Fermi-LAT data

even in the lowest energy range (Porter, 2009). In the absence of other options we continue to

use the EGRET data as a cross-check, keeping in mind that the softer Fermi data will probably

require a larger contribution from inverse Compton (IC) and bremsstrahlung.

The diffuse Galactic γ-rays are shown in Fig. 4.14, the regions used in this figure are the regions

as introduced in Strong et al. (2005). The latitude and longitude ranges are given in Table 4.3.

The γ-ray prediction of the aPM in general is similar to the prediction of an isotropic model with

the same source distribution and constant XCO (shown in Fig. 4.14 as the dotted blue line). For

region A (inner Galaxy) the flux in the isotropic model is somewhat larger than for the aPM. This

is the result of a too high proton density close to the sources in the absence of convection. For

the other regions the γ-ray flux in the aPM is insignificantly larger than in the isotropic model,

which is mainly the result of slight deviations in the propagated proton and electron spectra.

The latitude and longitude profiles for the inner Galaxy are presented in Figs. 4.15 and 4.16 for

100 MeV < E < 500 MeV. The model shows the same deficiency of IC emission at intermediate

latitudes as the conventional isotropic model, this can also be seen from region D in Fig. 4.14.

Note, that we use a simple power-law extragalactic background model with IEB ∝ E−2.1. A more

detailed model may yield a better description of the γ-ray flux from the halo and at intermediate

latitudes. However, this extragalactic background model should be determined from the Fermi-

LAT data. The longitude distribution at intermediate latitudes, shown in Fig. 4.17, reveals that

the deficiency almost exclusively results from a lack of diffuse γ-rays from the GC region for

both, the aPM and the isotropic model. Since bremsstrahlung and emission from π0-decay are

rather flat for intermediate latitudes, an increased contribution from IC would improve the model

prediction. Independent of direction the model prediction below 100 MeV is somewhat too low,

which also indicates that the contribution from IC is underestimated. The deficiency in IC can

be remedied by assuming that the Galactic electron density is somewhat larger than the local

electron density, thus leading to a larger contribution from IC at low energies, as has been done

previously by Strong et al. (2004a). Figure 4.18 shows the γ-ray spectra for a Galactic electron

density increased by a factor 1.5, while the Galactic proton density remains unchanged. Figures

4.19 and 4.20 show the longitude and latitude profiles for the inner Galaxy for an aPM with the
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Figure 4.15: Latitude profiles for the inner Galaxy (|l| < 30.5) for the aPM compared to the EGRET

data between 100 and 500 MeV.The EGRET-excess above 500 MeV is not confirmed by

preliminary FERMI data, so only data below 500 MeV are considered here. Line coding

as in Fig. 4.14

Galactic electron density increased by a factor 1.5 and the proton density kept constant. The right

side of Fig. 4.17 shows the longitude profile between 150 and 300 MeV for intermediate latitudes.

Whether or not the Galactic electron density can be different from the local electron density

strongly depends on the transport parameters and the electron energy losses. Another possibility

would be an untraced component of non-equilibrium gas (Breitschwerdt & de Avillez, 2006). In this

case an additional bremsstrahlung contribution from electrons in the hot gas would be expected.

Such a contribution would be most significant at large latitudes in the source region, where the

relative component of the hot gas blown out by SNs is expected to dominate. This is exactly what

is required by the latitude and longitude profiles in Figs. 4.15 and 4.17.

Alternatively an increase in the proton density above the plane in the inner Galaxy would lead to

a more pronounced peak in the π0 emission at intermediate latitudes. This could be achieved by

a smaller diffusion coefficient in this region which would be well motivated by the decrease of the

regular magnetic field above the disk. However, this will not improve the model prediction below

100 MeV, so additionally a softer electron spectrum would be required.

As discussed earlier, the aPM is almost completely independent of the position of the boundary

condition, i.e. the halo size, provided, that the boundary is positioned well outside the diffusion

zone limited by zc. In this model it is therefore possible to examine the impact of additional IC

emission from an extended halo with zh=100 kpc without loosening the constraints on local CRs.

The gain in additional IC at intermediate latitudes is at the % level and thus negligible in the total

flux. An increased halo therefore will not improve the γ-ray emission from the halo significantly.

An additional untraced gas component in the source region, a larger Galactic electron density or

possibly an additional electron population appears to be required both in the isotropic model and

the aPM.

4.4.2 Soft γ-ray Gradient

The aPM, as well as the isotropic models, require a somewhat increased Galactic electron density.

In the isotropic case this leads to a pronounced peak in the Galactic IC emission from the GC,

as can be seen from the top row in Fig. 4.21. As a possible solution a significantly flatter source

distribution has been proposed by Strong & Moskalenko (1998), shown in Fig. 4.2 as the black

full line, which reduces the contribution from π0-decay and bremsstrahlung in the GC. However,

this source distribution has to be chosen ad hoc according to what is expected from γ-rays. An

increase in the XCO scaling factor towards the outer Galaxy is a more likely explanation, but the

gradients required by the EGRET data are on the limit of what is expected from the increase in
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Figure 4.16: Longitude profiles for the Galactic disk (|b| < 5.5) for the aPM compared to the EGRET

data between 100 and 500 MeV. Line coding as in Fig. 4.14.
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Figure 4.17: Longitude profiles for region D in the aPM (left), an isotropic model (middle) and the

aPM with the Galactic electron density increased by a factor 1.5 (right) for γ-rays between

150 MeV and 300 MeV. The full blue line is the sum of the contributions from inverse

Compton (green dashed), bremsstrahlung (light blue dotted), π0-decay (red fine-dotted)

and extragalactic background (purple full).

metallicity (Strong et al., 2004b).

As mentioned previously the self-consistent Galactic wind calculations by Breitschwerdt et al.

(2002) predict a softer γ-ray gradient, because the CR escape time varies with Galactocentric

radius depending on the local source strength. Enhanced particle injection by the sources therefore

results in enhanced CR escape and thus smoothens the propagated CR distribution. Since γ-rays

from π0-decay predominantly originate from GeV protons it is interesting to compare the radial

proton distribution at this energy. Figure 4.22 shows the radial distribution for 1-5 GeV protons

in an aPM and an isotropic model with zh = 4 kpc, both models use the SNR distribution as

the source distribution. In the isotropic model the propagated proton distribution still resembles

the strong peak of the source distribution, which will lead to problems in the γ-ray production

rate unless a strong increase in XCO is assumed. Protons in an aPM are significantly flatter than

protons in the isotropic model and a constant XCO scaling factor is almost consistent with the

observed flat γ-ray gradient, even if the Galactic electron density is increased to match the IC

emission from intermediate latitudes. The bottom row of Fig. 4.21 shows the longitude profile for

the Galactic disk in this case. The improvement due to the flatter profile of emission from π0-decay

and bremsstrahlung is clearly visible, but above 100 MeV a slight excess in emission from π0-decay

and bremsstrahlung is still visible. A fine-tuned radial dependence of the convection velocity or a

rather soft gradient in XCO appears to be compatible with the data.
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Figure 4.18: Diffuse γ-rays for the six different sky regions as defined in Strong et al. (2004a) for an aPM

with the Galactic electron density increased by a factor 1.5. Line coding: bremsstrahlung

( light blue dashed), inverse Compton ( green long dashed), π0-decay ( red long dashed-

dotted), total ( blue full).The pink full line is the extragalactic background model according

to Sreekumar et al. (1998). The EGRET data are corrected for the PSF.
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Figure 4.19: Latitude profiles for the inner Galaxy (|l| < 30.5) for the aPM with the Galactic electron

density increased by a factor 1.5 compared to EGRET data between 100 and 500 MeV.

Line coding as in Fig. 4.18.
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Figure 4.20: Longitude profiles for the Galactic disk (|b| < 5.5) for the aPM with the Galactic electron

density increased by a factor 1.5 compared to EGRET data between 100 and 500 MeV.

Line coding as in Fig. 4.18.

4.4.3 Radio Emission in an aPM

We checked that the electron energy losses via synchrotron radiation are reasonably well described

by calculating the radio emission in longitude and latitude in comparison to the 408 MHz data

from the (Haslam et al., 1982) sky map.

Following Moskalenko et al. (1998) we use the following parameterization of the total regular

magnetic field for the calculation of the electron energy losses:

Breg(R) = B0e
[
−R−R0

RB
]
e
[−

|z|
zB

]
, (4.5)

with RB = 10 kpc and zB = 0.2 kpc. Figure 4.23 shows the latitude and longitude profile of syn-

chrotron radiation in an aPM at 408 MHz and the synchrotron spectrum. We choose B0 = 6.5 µG

in order to best reproduce the (Haslam et al., 1982) all-sky map. The spatial shape of the model

prediction is not too good, which is due to a too simple parameterization of the magnetic field.

However, here we are not interested in a good synchrotron prediction, but rather use the syn-

chrotron data to constrain the magnetic field strength. This magnetic field strength is used in

order to calculate the electron and positron synchrotron losses during propagation. A choice of B0

which, on the average, reproduces the observed synchrotron radiation after propagation ensures a

consistent estimate of the electron and positron synchrotron losses.
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Figure 4.21: Longitude profile for the disk (1.5 ≥ |b|) for an isotropic model (top row) and an aPM

(bottom row). For both models the Galactic electron density is increased by a factor 1.5

to meet the requirements from γ-rays at intermediate latitudes.
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Figure 4.22: Radial distribution of GeV protons for the aPM and an isotropic model. The source

distribution is in both cases that of (Case & Bhattacharya, 1996).
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Figure 4.23: Synchrotron latitude profile (top) and synchrotron longitude profile (bottom) at 408 MHz

an an aPM. The synchrotron data are used as a cross check for the electron and positron

energy losses. A proper choice of B0 according to the synchrotron data ensures a correct

estimate of the electron and positron synchrotron losses during propagation. The spatial

shape is not well reproduced due to our simple magnetic field model. Data (blue dotted):

Haslam et al. (1982).

4.5 Interlude

In this chapter a new model for Galactic cosmic ray transport was presented, which allows for

significant convective transport as expected from the Galactic winds deduced from the X-ray

data from the ROSAT satellite. The model has been realized by modifying the publicly available

GALPROP code, which up to now allowed only isotropic transport. Isotropic transport models,

which feature globally constant transport parameters, can only accommodate negligible convection

speeds, since with convection the CRs are driven away from the disc, thus not returning often

enough to the disk to produce secondary particles.

A possible way to allow for large convection is to allow the diffusion in the halo to be different from

the diffusion in the disk, i.e. to give up isotropic propagation with globally constant transport

parameters. The GALPROP code was modified in the following way:

• the Galactic winds were assumed to be proportional to the CR source distribution, which

was taken to be the SNR distribution

• the mean free path of CRs - and therefore the diffusion coefficient - in the halo was assumed

to increase linearly with the distance from the disk. Although the exact spatial dependence

of a diffusion coefficient generated by CRs leaving the Galaxy can be complicated (see e.g.

(Dogiel & Gurevich, 1993) and (Dogiel et al., 1994) for a derivation of the spectrum of

turbulences in the halo), the locally measured isotropy of CRs suggest a larger diffusion

coefficient in the halo (Ptuskin & Khazan, 1976).

Fixing the magnitude of the convection speed to the wind speeds suggested by the ROSAT data, the

increase in diffusion coefficient in the halo can be fitted from the amount of secondary production

(from B/C ratio) and the residence time of CRs (from the cosmic clocks, in this case the 10Be/9Be

ratio). It is shown that such a model is consistent with all available CR data, including not only the

ROSAT data on convective winds, but also the large bulge/disk ratio of the positron annihilation

line as observed by the INTEGRAL satellite. In the anisotropic model presented here the small

positron annihilation signal from the disk can be explained by fast escape of positrons from the disk.
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The large B/D ratio can be naturally explained by the energy independent convective transport

of low energy positrons from the disk to the halo, where there are no electrons to annihilate with.

Convective transport is absent in the bulge, because the gravitational potential is too strong there

to launch Galactic winds.

An additional interesting feature of the present model is the smooth transition to free escape of

CRs, because of the increase in mean free path with increasing distances from the disk. Therefore

the boundary condition can be moved to infinity in contrast to isotropic propagation models,

where the boundary condition is fine-tuned to get the correct residence time of CRs inside the

Galaxy.

The model describes the local fluxes and relative abundances of charged CRs well, a cross check

with the published EGRET data on diffuse γ-rays below 1 GeV reveals the same deficiency as the

widely-accepted isotropic models. For energies above 1 GeV a meaningful comparison to the data

is difficult, since the preliminary Fermi-LAT data on diffuse γ-rays do not confirm the EGRET

excess. Furthermore, the modified GALPROP version we developed is capable of simulating

detailed structures in the ISM and their respective counterparts in the transport parameters. Thus,

the code developed in this work will be a valuable tool to examine the details of CR transport

that will become accessible to us with the upcoming data by Fermi, PAMELA and AMS-02.

In the next chapter we will address the issues discussed above: On the one hand we will compare

our model predictions to the preliminary unpublished Fermi-LAT data on diffuse γ-rays, exercising

due care with respect to their preliminary nature, and on the other hand we will discuss some of

the small scale features of our Galaxy, that are expected to have an impact on CR transport, such

as local deviations in the gas density or the spiral structure of the Milky Way, in the context of

the aPM.

The next chapter is called ”The Dark Chapter” for two reasons: Firstly, we will address indirect

dark matter searches in diffuse γ-rays and charged CRs and, secondly, we will discuss the current

dark spots in CR transport modelling, which are basically given by the limited knowledge of the

detailed geometry and the magnetic fields of the Milky Way.



Chapter 5

The Dark Chapter

The universe is a lot more complicated than you might think even if you start from a position of

thinking that its pretty damn complicated to begin with.

Douglas Adams - Mostly Harmless

The dark matter (DM) problem is fascinating scientists for more than 75 years now. A variety of

observations, from galactic to cosmological scales, lead to the conclusion that an unknown form

of matter must exist which contributes significantly to the energy density in the Universe. Early

observational evidence was given by Zwicky’s observation of a large velocity dispersion of the Coma

Cluster (Zwicky, 1933) and, a few years later, Babcock’s measurements of the fast rotation of the

stars in the Andromeda galaxy (Babcock, 1939). Both these measurements indicate too large

velocities to be bound by Newtonian gravity, so that an additional invisible matter component

has to be assumed.

Today, an impressive amount of data from studies of the microwave background radiation, super-

nova distance measurements, and large-scale galaxy surveys have solidified the Standard Model

of cosmology. In this model structure formed through gravitational amplification of small den-

sity perturbations with the help of cold dark matter. Without the existence of dark matter the

density contrast seen in the universe today could not have formed, given the small amplitude of

density fluctuations inferred from anisotropies of the cosmic microwave background. Especially

the WMAP measurements (Komatsu et al., 2009) of the fluctuation in the CMB radiation allow

us to make precise predictions about the properties and abundance of this unknown matter. The

relative height and positions of the first few peaks of the multipole spectrum of CMB tell us that

dark matter makes up about 22% of the energy of the universe and that it must be non-baryonic.

The baryonic constituents of matter only add up about 4% of the total energy, the remaining

energy is believed to occur in the form of dark energy.

Recently, the PAMELA (Adriani et al., 2009a,b), Fermi (Abdo et al., 2009) and ATIC (Chang

et al., 2008) results on electrons and positrons have led to an explosion of papers, interpreting

these observations as a signal of dark matter annihilation (DMA) (or decay). In the following we

will discuss some contemporary DMA interpretations of astrophysical observations and comment

on the astrophysical uncertainties in the background which is given by CRs. After introducing

the most important particle DM candidates in Section 5.1, we will focus on γ-rays in Section 5.2

and discuss the DMA interpretation of the EGRET excess. Then we will turn to the preliminary

diffuse Fermi-LAT data and discuss whether or not a DM candidate as expected from EGRET (de
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Table 5.1: Properties of various Dark Matter Candidates. Adopted from Bergström (2009).

Type Particle Spin Approximate Mass Scale

Axion 0 µeV-meV

Inert Higgs Doublet 0 50 GeV

Sterile Neutrino 1/2 keV

Neutralino 1/2 10 GeV - 10 TeV

Kaluza-Klein UED 1 TeV

Boer et al., 2005) is compatible with the Fermi-LAT data. Unlike the EGRET data, the Fermi-

LAT data makes an astrophysical interpretation plausible and we will discuss a model with hard

electron and proton spectrum to explain the FERMI results. We will see that with or without

an additional contribution from DM, the Fermi data require a different normalization for diffuse

γ-rays than for the local electrons and protons. We will discuss possible causes of this discrepancy

in Section 5.3. We will then turn to the local antiproton flux which also constitutes a problem

for most CR transport models: while conventional CRs within GALPROP can only account for

60% of the observed antiprotons, the additional contribution from DMA overshoots the data by an

order of magnitude (for the case of a 60 GeV neutralino as expected from EGRET). We will discuss

the uncertainties in the local antiproton flux from CRs and DMA in Section 5.4. Finally, in Section

5.5, we will review some contemporary DMA interpretations and comment on the uncertainties

from CR transport within the context of the aPM.

5.1 Indirect Dark Matter Searches and Dark Matter Can-

didates

The dominant fraction of dark matter has to be non-baryonic and only weakly interacting. It must

be stable on cosmological timescales or it would have disappeared from the cosmic stage long ago.

If the standard concept of quantum field theory is used to describe the properties of elementary

particle candidates, as it is in most current models of dark matter, the candidate particle can be

characterized by the mass and spin. The mass of proposed candidates spans a very large range,

as illustrated in Table 5.1.

The averaged density of cold dark matter (CDM) is now known to an accuracy of a few percent.

With h being the Hubble constant today in units of 100 kms−1Mpc−1, the density derived from

the 5-year WMAP data (Komatsu et al., 2009) is

ΩCDMh
2 = 0.1131 ± 0.0034, (5.1)

with the estimate of h = 0.705 ± 0.0134.

Assuming thermally produced dark matter this corresponds to a cross section averaged over ve-

locities at the time of thermal decoupling of (Jungman et al., 1996)

〈σAv〉 = 2.8 · 10−26 cm3s−1. (5.2)

Interestingly, this averaged cross section just corresponds to what one gets with a weak interaction

cross section for particles of mass around the electroweak scale of a few hundred GeV and this

agreement is sometimes called the ”WIMP miracle” (WIMP standing for Weakly Interacting

Massive Particle). Of course the ”WIMP miracle”may be coincidence, but most of the detailed

present-day models proposed for the dark matter are in fact containing WIMPs as dark matter

particles.
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When estimating the observable annihilation rate today, one has to keep in mind that there are

large astrophysical uncertainties arising from the presence of substructure in the dark matter

distribution. Such substructures have been discovered in large simulations of structure formation

(Diemand et al., 2007; Springel et al., 2008).

For the indirect detection of DM diffuse γ-rays are a good tracer of the DM distribution, because

they are not bend by the Galaxy’s magnetic field and suffer only insignificant energy losses.

The DMA signal depends on the distribution of WIMPs. The annihilation rate is proportional

to the number densities of particles and of possible annihilation partners which in this case are

the same species, i.e. the signal is proportional to the squared number density. To take the DM

density profile into account one has to integrate along the line of sight to get the total flux in a

particular direction (Bergström, 2009):

Φdm(E,ψ,∆Ω) =
〈σv〉
4π

·
∑

f

dN

dE
bf ·

1

∆Ω

∫

∆Ω

∫

line of sight

1

2

ρχ(l)2

m2
χ

dlψ (5.3)

Here Φ is the differential flux at the energy E in a direction ψ for a cone with a solid angle ∆Ω;

〈σv〉 is the total thermal averaged annihilation cross section; the factor bf is the fraction of a

particular final state with the differential number of photons per annihilation at the given energy

dN/dE; the number density of the WIMPs is given by ρχ/mχ, the factor 1/2 is due to the fact

the dark matter constitutes its own antiparticle.

A fraction of the WIMPS is expected to be distributed in small scale clumps with masses above

10−6 M⊙ (Berezinsky et al., 2008) as a result of hierarchical clustering. Any deviation from a

smooth distribution of the WIMPs results in an enhanced signal, because the annihilation rate

is proportional to ρ2
χ(l). The procedure in this situation has been to introduce a “boost factor”.

If the clumps are distributed in a way that the median density of the clumps is proportional to

the local median density, then the median squared density is proportional to the square of the

local median density. Such a model can be described as a halo of amorphous interpenetrating

substructures. The boost factor in this case is dimensionless.

〈ρ2
χ〉 ≈ b · 〈ρχ〉2 (5.4)

Unfortunately the boost factor does not have a unique definition in the literature. Many authors

do not boost the annihilation rate as in Eq. 5.4, but the detections rates (see e.g. Bergström

(2009)). This leads to large uncertainties in the predicted signal, especially when it comes to

charged annihilation products. For these the effects of propagation then have to be invoked in

the boost factor. For example, a nearby clump of DM, would lead to a larger boost factor for

protons than for electrons, simply due to the large electron energy losses. Any definition of the

boost factor in the form of an increase in detection rate is forced to make implicit assumptions

about the transport model in addition to the clumpiness of DM. This sometimes makes the fits of

the charged annihilation products of a certain DM candidate hard to interpret, because usually a

more or less detailed transport model is used to calculate the background from CRs. Boost factors

applied to the detection rate implicitly depend on particle type and energy and therefor are only

indirectly linked to the clumpiness of DM.

Since we have a detailed transport model at hand we will use the boost factor as defined in Eq.

5.4, i.e. the boost factor is a measure for the clumpiness of DM. This means that the boost factor

is applied to the annihilation rate, and not to the detection rate.

For γ-ray observations, the enhancement should be computed within the line of sight cone, and

therefore one may get different boost factors for different directions.

The computation of the boost factor in realistic astrophysical and particle physics scenarios is a

challenging task, which has so far only been partially addressed (see e.g. Berezinsky et al., 2008)
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in analytical calculations. N-body simulations do not have the resolution to treat clumps as small

as 10−6 solar masses.

Among the candidates for dark matter currently under discussion are non-particle candidates,

such as primordial black holes and a variety of particle candidates, such as axions, inert higgs,

sterile neutrinos (which because of their large mass would be warm dark matter), and WIMPS

like the lightest supersymmetric particle and the lightest Kaluza-Klein particle.

Recently the PAMELA positron fraction and the ATIC and Fermi results on electrons, created a

blast of papers with dark matter interpretations. Among these the axion, the lightest supersym-

metric particle (LSP) and the lightest Kaluza-Klein particle (LKP) have been used to explain these

observations as a signal from dark matter annihilation (or decay). Although this work focusses

on CR transport and does not deal with the nature of dark matter, these dark matter candidates

are of special interest to us in the sense that their stable, charged decay products are subject to

conventional CR propagation. Some of them are therefore introduced in brevity.

Standard model neutrinos only interact by the weak force and they are known to be massive

from the observation of neutrino oscillations. They have been considered as candidates for dark

matter in the past and among the candidates presented here, they are special because their exis-

tence is not hypothetical but has been well established. Their relic density can be calculated to

be

Ωνh
2 =

∑

mν

93 eV
(5.5)

Due to their low mass, neutrinos are relativistic and therefore a candidate for so-called hot dark

matter. Data on the large-scale structure of the Universe, combined with anisotropies in the

cosmic microwave background and other cosmological probes can be used to set an upper limit

of 0.17 eV (95% confidence level) on the neutrino masses (Seljak et al., 2006), implying a relic

density of not more than Ωνh
2 < 0.006, which is not enough for neutrinos to be the dominant

form of dark matter.

Axions are one of the earliest suggestions for particle dark matter. The axion has initially

been introduced to solve the strong CP -problem (Peccei & Quinn, 1977; Weinberg, 1978; Wilczek,

1978). In general, the action density of the standard model includes a term

LSM = . . .+
θg2

32π2
GaµνG

aµν (5.6)

where Gaµν are the QCD field strengths, g is the QCD coupling constant, and θ is a parameter.

The observed physics depends on the value θ̄ ≡ θ−arg detmq where mq is the quark mass matrix.

While the term in (5.6) violates the C and CP symmetries, as do the weak interactions in the

standard model, the experimental upper bound on the electric dipole moment of the neutron

limits |θ̄| < 10−10 (Asztalos et al., 2006) and the question arises why θ̄ is so small when it can

be expected to be an arbitrary number. It was shown that the introduction of an additional field

A(x), called the axion, can naturally explain why θ̄ is zero. The corresponding term in the action

is

Laxion =
1

2
∂µA∂

µA+
g2

32π2

A(x)

fA
GaµνG

aµν (5.7)

fA is a constant with dimension of energy, and the mass and couplings of the axion can be expressed

in terms of this constant, mA, gAii ∝ f−1
A . The allowed axion mass range is limited from below by

cosmological bounds and from above by the physics of stellar evolution and SN dynamics to lie in

the range 10−6∼10−3 eV. Nevertheless, the axion is a viable candidate for cold dark matter, with

relic density ΩA ∝ m
−7/6
A , because cold, non-thermal axions may have been produced during the
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QCD phase transition in the early Universe, so they could have been produced in large numbers

out of thermal equilibrium. Searches for cosmological and solar axions are underway, but they

have eluded discovery so far.

Lightest Supersymmetric Particle arises in the context of supersymmetric extensions of the

standard model of particle physics (Ferrara et al., 1974; Wess & Zumino, 1974a,b). Although the

standard model of particle physics has been enormously successful in describing the interactions of

matter at the most fundamental level, it has a number of theoretical shortcomings. Two examples

are the hierarchy problem and the problem of unification of the gauge couplings. The former is

related to the question why the Higgs mass is so small. While the mass scale of the standard

model is set by the vacuum expectation value of the Higgs v ≈ 246GeV, divergent quadratic

loop corrections to the Higgs mass occur, δm2
H ∼ Λ2, where Λ is a cut-off scale at which the

standard model must be modified to remain valid. This is usually associated with the Planck

scale, MP = (GN )−1/2 ≈ 1.2 · 1019 GeV, which means that the mass parameter µ in the Higgs

potential V = −µ2φ†φ+ λ/4(φ†φ)2 must be of a similar amplitude to cancel the divergence. This

large fine-tuning, where two large mass scales almost cancel to produce the observed masses of

the standard model, seems unnatural and is known as the hierarchy problem.

The second example revolves around the unification of gauge couplings. The running of the

gauge couplings in the standard model as a function of the energy scale is described by the

renormalization group equations (RGEs). The inverse gauge couplings α−1
1 (Q2), α−1

2 (Q2), and

α−1
3 (Q2) fail to meet at high energies, although they come close to doing so. A unification of the

gauge couplings is a highly desirable property of a fundamental theory. In fact, these and other

problems can be overcome in supersymmetric extensions to the standard model (Amaldi et al.,

1991; Bertone et al., 2005; de Boer, 1994; Tata, 1997).

To prevent rapid proton decay a conserved multiplicative quantum number, called R-parity, is

introduced:

R = (−1)
3(B−L)+2S

, (5.8)

where B is the baryon number, L the lepton number and S the spin of the particle. This implies

that R = +1 for ordinary particles and R = −1 for supersymmetric particles. If R-parity is con-

served supersymmetric particles can only be created or annihilate in pairs in reactions of ordinary

particles. This way a single supersymmetric particle can only decay into final states containing an

odd number of supersymmetric particles. As a consequence the lightest supersymmetric particle is

stable, since there is no kinematically allowed state with negative R-parity which it can decay to.

In the context of supersymmetry the neutralino χ is the most discussed candidate. If neutralinos

are indeed the particle constituting most of the dark matter, then in the early universe neutralinos

χ were created by pair-production. As the universe kept cooling they left thermal equilibrium and

at some point the expansion rate of the universe exceeded the annihilation rate which lead to a

non-zero relic abundance today. If the scale of supersymmetry breaking is related to that of elec-

troweak breaking, χ will be a WIMP and Ωχ will be of the right order of magnitude to explain the

non-baryonic cold dark matter. Even if the particle content of the supersymmetric model is kept

minimal (as in the Minimal Supersymmetric Model MSSM) the number of free parameters is un-

handily large (of the order of 100, although unhandyness is not an argument against the existence

of these parameters). Most studies have focused on constrained supersymmetric models, such as

minimal supergravity (mSUGRA) models (Chamseddine et al., 1982), where one unifies not only

gauge couplings, but also susy breaking terms. In such models the total number of parameters is

reduced to 5 or 4 plus a sign of the Higgsino mass parameter (for a detailed discussion of dark

matter in mSUGRA models see Edsjo et al. (2003)).
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Lightest Kaluza-Klein particles arise in theories of universal extra dimensions. Here it is

assumed that there are dimensions in addition to the known four-dimensional space-time. The

additional dimensions have not been observed yet, so they have to be compactified which introduces

some characteristic scale R. This leads to the appearance of a so-called tower of new particle states

in the effective four-dimensional theory, with the mass of the n-th Kaluza-Klein (KK) mode given

by

m(n) =
√

(n/R)2 +m2 (5.9)

for a standard-model particle of mass m. Assuming a symmetry called KK parity, the lightest

KK state (LKP) can be stable and therefore constitutes a candidate for dark matter (Kolb &

Slansky, 1984; Servant & Tait, 2003). It is likely to be associated with the first excitation of the

hypercharge gauge boson, the B(1). If its mass is on the order of 1000GeV the LKP can explain

the observed relic density Ωdm. Recently the B(1) has attracted a significant amount of attention,

because it has the attractive feature of dominantly producing charged leptons in its annihilation.

This would provide a source of hard positrons and electrons as indicated by the recent PAMELA

and Fermi measurements.

Other candidates Many other candidates including sterile neutrinos, gravitinos and little Higgs

models have been proposed (Bertone et al., 2005). Positrons from annihilation of light scalar dark

matter have been proposed to cause the 511 keV-line observed in the direction of the Galactic

bulge. Little Higgs models, introduced as an alternative mechanism to supersymmetry to stabilize

the weak scale, may contain a dark matter candidate. Superheavy dark matter particles, so called

wimpzillas, would be interesting because of their expected contribution to ultra-high energy CRs.

5.2 Diffuse Galactic γ-rays: EGRET and Fermi-LAT, Dark

Matter and Astrophysics

Here we will review the DMA interpretation of the EGRET excess and compare the DM model

derived from the EGRET data to the preliminary Fermi-LAT data in diffuse γ-rays. We will also

discuss possible astrophysical explanations of the data, which, given the generally softer Fermi

spectrum, appear more likely than in the case of EGRET.

5.2.1 The EGRET γ-ray Excess

As discussed earlier an excess of diffuse gamma rays has been observed by the EGRET telescope on

board of NASA’s CGRO (Compton Gamma Ray Observatory) (Hunter et al., 1997). Below 1 GeV

the CR interactions describe the data well, but above 1 GeV the data are up to a factor two above

the expected background (see e.g. Fig. 4.14). This so-called EGRET excess was analyzed using a

data-driven calibration of the background (de Boer et al., 2005). Such an approach is particularly

suitable if the shape of the dominant background is well known. For diffuse Galactic gamma rays

this is π0 production in inelastic collisions of CR protons on the hydrogen gas of the disk, as we

have seen in Section 4.4.1. The shape of the resulting γ-ray spectrum is known from fixed target

accelerator experiments and the shape of the DMA signal is known from e+e− annihilation. Since

the signal has a significantly harder spectrum than the background one can perform a data-driven

analysis by fitting the two shapes to the experimental data with a free normalization for each

shape, thus obtaining the absolute contribution from signal and background for each sky direction

in a rather model-independent way. This analysis assumes that the uncertainties in the interstellar

background shape, i.e. the proton and electron spectrum are small. A simultaneous fit of DMA

signal and background shape has been made to 180 independent sky directions. The average χ2
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per degree of freedom summed over all (ca. 1400) data points is around 1, indicating that the

errors are correctly estimated. The resulting background and signal is shown in Fig. 5.1 for the

GC region. The excess is compatible with a WIMP mass between 50 and 70 GeV and the DMA

interpretation of the EGRET excess is consistent with the expectations from Supersymmetry (de

Boer et al., 2006).

Independent support for the DMA interpretation of the EGRET excess is delivered from a variety

of measurements:

• The derived DM halo profile shows some unexpected substructure: outside the disk it cor-

responds to a cored halo profile, but inside the disk it reveals two additional doughnut-like

structures at distances of about 4 and 13 kpc from the Galactic center (see Fig. 5.2).

Structures like this are expected from the tidal disruption of dwarf galaxies captured in the

gravitational field of our Galaxy. The ”ghostly” ring of stars or Monocerus stream (with

about 108−109 solar masses in visible matter) could be the tidal streams of the Canis Major

dwarf galaxy (see e.g. Martin et al. (2004); Peñarrubia et al. (2005) and references therein).

If so, the tidal streams predicted from N-body simulations are perfectly consistent with the

ring at 13 kpc (Peñarrubia et al., 2005). The ring at 4 kpc might also originate from the

disruption of a smaller dwarf galaxy, but here the density of stars is too high to find evi-

dence for tidal streams. However, direct evidence of a stronger gravitational potential well

in this region comes from the ring of dust at this location. Since this ring is slightly tilted

with respect to the plane its presence and orientation can be explained by the presence of a

ringlike structure of DM.

• The halo profile derived from the EGRET data agrees with the rotation curve of the Milky

Way as shown in Fig. 5.1. Note that the change of slope close to the position of the Sun is

well described by the presence of the outer ring. However, one has to keep in mind that the

rotation velocities in the inner and outer Galaxy are derived with different methods and, as

always in astronomy, are subjects to artifacts.

• The strong gravitational potential well in the outer ring might cause the reduced gas flaring

observed at the position of the ring (Kalberla et al., 2007). The half-width-half-maximum of

the gas layer in the disk is shown on the right-hand panel of Fig. 5.1. The reduction in gas

flaring corresponds to more than 1010 solar masses, in agreement with what one would expect

from the EGRET data. It should be noted that the peculiar shape of the gas flaring was only

understood after the astronomers heard about the EGRET ring. The effect is so large that

visible matter cannot explain this peculiar shape, simply because there is not much visible

matter beyond 10 kpc. A similar ring in the outer disk has been discovered in a nearby

galaxy, indicating that such infalls may shape the disk and its warps (Mart́ınez-Delgado

et al., 2009).

The DMA interpretation of the EGRET excess received some serious criticism, e.g. the amount

of dark matter would give rise to a too high Galactic surface density or the constraints from local

antiprotons could not be met (Bergstrom et al., 2006). In the first case, one has to keep in mind

that the diffuse halo component (which determines the gravitational effects of the DM halo) and

the clumped halo component (which determines the annihilation signal), are not expected to have

the same spatial distribution (Springel et al., 2008) and have been kept identical in the original

analysis for reasons of simplicity. Bergstrom et al. (2006) also pointed out that the expected local

antiproton flux from DMA would be factor of up to 100 too high if the charged stable decay

products are taken into account. We will discuss antiprotons from DMA in Section 5.4 in detail.
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Figure 5.1: Left: Fit of the shapes of background and DMA signal to the EGRET data in the direction

of the GC. The light shaded (yellow) area indicates the background using the shapes known

from accelerator experiments, while the dark shaded (red) area corresponds to the signal

contribution from DMA for a 60 GeV WIMP mass, where the small intermediate (blue)

shaded area corresponds to a variation of the WIMP mass between 50 and 70 GeV. The two

black full lines correspond to the sum of all contributions for a WIMP mass of 50 GeV (softer

spectrum) and a WIMP mass of 70 GeV (harder spectrum). Taken from Ref. de Boer et al.

(2005). Right: The Galactic rotation curve. Indicated are the different contributions from

dark and baryonic matter. From de Boer et al. (2005).
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Figure 5.2: Left: The halo profile in the Galactic plane as derived from the EGRET data. From de

Boer et al. (2005). Right: The half-width-half-maximum (HWHM) of the gas layer of the

Galactic disk as function of the distance from the Galactic center. Clearly, the fit including

a ring of dark matter above 10 kpc describes the data much better. Adapted from data in

Kalberla et al. (2007).
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Figure 5.3: Fermi all-sky view after 1 year of data taking.

5.2.2 Fermi-LAT diffuse γ-ray model

The Fermi collaboration has recently made available data from the first year of data taking 1.

Figure 5.3 shows Fermi’s all-sky view after one year of data taking. In most regions of the sky

point sources like pulsars or SNRs contribute significantly to the γ-ray flux. An exception are

intermediate latitudes. Here the diffuse emission is still significant, whereas only few point sources

are present. Fig. 5.4 shows the “preliminary diffuse emission” (meaning no point sources have

been subtracted) from intermediate latitudes compared to the EGRET diffuse γ-rays from this

region. Clearly, the EGRET excess above 1 GeV is not confirmed by Fermi-LAT. In addition the

Fermi-LAT data show a generally softer spectrum: even below 1 GeV the two measurements are

incompatible.

Although a publication of the diffuse (meaning point source subtracted) emission is still pending

the Fermi Science Support Center (FSSC) made available a preliminary model of the diffuse

emission 2. The gll iem v02 model for the Galactic diffuse emission was developed using spectral

line surveys of HI, CO (as a tracer of H2) to derive the distribution of interstellar gas. Infrared

tracers of dust column density were used to correct column densities in directions where the optical

depth of HI was either over or under-estimated. To allow for a Galactocentric gradient of cosmic-

ray flux in the Galaxy, the N(HI) column-densities and W (CO) intensities have been derived for

six Galactocentric rings. The model of the diffuse gamma-ray emission was then constructed by

fitting the gamma-ray emissivities of the rings in several energy bands to the LAT observations.

While the different gas column-density maps offer a template for photons originating from π0-

decay and Bremsstrahlung emission, there is no simple template for the inverse-Compton emission

IIC . For this the prediction from GALPROP using the ISRF model from Porter (2005) was used.

Ten logarithmically distributed energy bands between 100 MeV and 10 GeV have been used to

determine the differential emissivities dq
dE for all the components. The spectral shapes of the

1The data are publicly available from the Fermi Science Support Center at http://fermi.gsfc.nasa.gov/ssc
2The diffuse background model is available from http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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Figure 5.4: Left: Preliminary diffuse emission intensity averaged over all Galactic longitudes for latitude

range 10◦ ≤ |b| ≤ 20◦ (region D) (Porter, 2009). Data points: LAT, red dots; EGRET, blue

crosses. Systematic uncertainties: LAT, red; EGRET, blue. Point sources have not been

subtracted. Right: Isotropic spectrum for the analysis of LAT data. Separate spectra

are presented for Front and Back converting events because the residual charged particle

background is different for them, the contamination by residual background being greater in

the Back section. The ‘Both’ spectrum is the overall average as given in isotropic iem v02.txt.

These are valid only for the P6 V3 DIFFUSE response functions and the gll iem v02.fit

model of Galactic diffuse emission. Note that what is plotted in each case is E2 times the

differential intensity. The broad feature near 100 GeV is understood to be due

to residual (misclassified) heavy cosmic rays in the Pass 6 analysis and is not

astrophysical.

emissivities were then frozen and, in a second step, the relative normalizations of the different

contributions were obtained by fitting the single band γ-ray map integrated from 0.3 to 20 GeV.

For energies above 20 GeV the model has been extrapolated and globally renormalized to fit the

LAT data so that the final model cube comprises 30 logarithmically-spaced energies between 50

MeV and 100 GeV. The isotropic component is not included in the cube, but is provided separately

as a tabulated spectrum. The agreement between modelled emission and observed photon count is

good as can be seen from the top row of Fig. 5.5, which shows the Fermi-LAT photon count map

(top left) and the diffuse model gll iem v02 plus modelled point sources (top right). The bottom

row of Fig. 5.5 shows the diffuse model gll iem v02 and the residual map for the gll iem v02

model. Except for localized spots, where the point sources are not correctly modelled the deviation

between model and data is on the 1 sigma level. Although this model is the most accurate the

Fermi-LAT team has produced, it is accompanied by severe caveats (a detailed discussion can be

found in Diffuse and Molecular Clouds Science Working Group Fermi-LAT (2009)), e.g.

• For energies above 20 GeV the model has been extrapolated and globally renormalized to

the LAT data. A spectral fit has not been performed in this energy range.

• The diffuse model for energies below 120 MeV was not fitted to the data and is therefore

less reliable.

• For energies above 50 GeV, the number of photons produced through interaction with the gas

is probably underestimated compared to photons produced by IC scattering, so the spatial
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Figure 5.5: Top left: LAT all-sky γ-ray count map, Nobs(l, b), in the 0.3-20 GeV energy band (log-scale).

Top right: Diffuse model (gll iem v02) prediction together with modeled point sources,

Npred(l, b), in the 0.3-20 GeV energy band. Bottom left: Diffuse model (gll iem v02)

prediction alone, in the 0.3-20 GeV energy band. Bottom right: Gll iem v02 residual map

expressed in sigma values: (Nobs − Npred)/
p

Npred. From Diffuse and Molecular Clouds

Science Working Group Fermi-LAT (2009).

structure of the diffuse model above 50 GeV is probably too smooth.

• The diffuse model extends to 100 GeV in the current version, and the isotropic diffuse

spectrum with residual background at higher energies was derived based on an extrapolation

of that model. Studies of sources and diffuse emission at energies greater than 100 GeV are

likely to be limited primarily by photon statistics but the reduced accuracy of the modeling

at these energies should be kept in mind as well.

Given these constraints we limit our analysis to energies between 120 MeV and 20 GeV in the

following.

The isotropic component was determined separately from the Galactic diffuse component by a

maximum likelihood method including only high latitude emission (|b| > 30o). It is continued to

energies greater than 100 GeV using a simple extrapolation (linear in the logarithm of energy)

of the diffuse Galactic emission model. The isotropic component includes any true extragalactic

component as well as charged particle background misreconstructed as γ-rays. The right side of

Fig. 5.4 shows the isotropic spectrum for the analysis of LAT data, which belongs to the diffuse

emission model discussed above.

Here and in the following we are referring to the model gll iem v02 from August 24, 2009 as “Fermi

data”. just in the same way we have been referring to the EGRET diffuse model as “EGRET

data” up to now 3. Note, however, that the model used here is a preliminary model. A new

3In the EGRET data used in the comparison to the aPM previously, the contribution from point sources, such

as pulsars, have been subtracted in order to get the diffuse emission. Insofar the EGRET data points shown also

constitute a model of the diffuse emission.
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version is expected to be released in 2010. Despite the fact that we limit our analysis to the most

reliable energy range, it should be kept in mind that the model prediction even in this range might

change. More information about this preliminary diffuse emission model can be found in Diffuse

and Molecular Clouds Science Working Group Fermi-LAT (2009).

Figure 5.6 shows the Fermi and EGRET data compared to the aPM. Since the diffuse Fermi data

do not include the isotropic extragalctic background (EB), a power-law fit to the isotropic emission

model for energies smaller than 100 GeV, were CR contamination is assumed to be small, has been

added to the Fermi data to allow for better comparison to the EGRET data for large Galactic

latitudes. The same EB model has been used in the aPM prediction. Despite the softer Fermi

spectrum the aPM prediction still reveals a slight excess above 1-2 GeV in those regions of the sky

where the Galactic emission dominates. More importantly, the overall normalization of the model

prediction appears to be too low by a factor ∼ 1.5. In the following we will discuss possibilities

to improve this situation. Having discussed the EGRET GeV excess in terms of DMA, we will

stay in this context and first compare the DM signal derived from EGRET to the Fermi data. In

a second approach we will drop the contribution of a possible signal from DMA and discuss the

Fermi-LAT data in the context of a purely astrophysical explanation, using constraints on electrons

and protons from ATIC and Fermi. In Sections 5.3 and 5.4 we will discuss the uncertainties in

the absolute normalization of the Galactic γ-ray flux and the local antiproton flux, respectively.

5.2.3 Fermi-LAT and Dark Matter

Since the Fermi-LAT results have been published rather late in the course of this work, a detailed

fit of a DM halo profile and DM mass to the Fermi data is yet to be performed. As a first es-

timate, we can however ask whether or not the Fermi-LAT data are compatible with the halo

profile and DM mass as derived from EGRET. Figures 5.7 to 5.10 show the longitude profiles

for energies above 0.5 GeV for a pseudo-isothermal profile (PISO) as derived in Sander (2005).

The parameters of the profile are given in Appendix C4. Only the Fermi-LAT data between 142

MeV and 20 GeV have been used in the fit (see discussion in Section 5.2.2). The spectral shape

of background used for the fits is taken from the conventional GALPROP model (Strong et al.,

2004a), an isotropic model with very similar π0-, bremsstrahlung- and IC-spectra as the aPM.

Since here we are only interested in the general question whether or not the Fermi-LAT data are

compatible with an EGRET-like halo profile, we can disregard the slight differences between the

different background models. The sky has been subdivided into 4050 spatial bins and for each

4o × 4o bin the shapes of the background contributions are normalized to the Fermi-LAT data

below 0.5 GeV, where any DMA contribution is assumed to be negligible. The resulting scaling

factors for the background are shown in Fig. 5.11. Note, that this approach is different from

what one usually does in the context of CR modelling: Here we assume that the spectral shape of

the background is given by a detailed transport model (the conventional GALPROP model) and

determine the absolute normalization for each direction from a fit to the data. This way, features

that are present in the data, but are not modelled by the transport model can be included in

the background, but at the same time it is not known which astrophysical process might produce

these features and, in particular, whether or not this process would also change the spectral shape

of the background in the region under consideration. Insofar the background prediction in these

fits does not constitute a model prediction, which is based on astrophysical assumptions, but a

”data-driven model”, where the impact of (unknown) astrophysical effects is incorporated by the

background scaling factors. Such a data-driven model, of course, yields a better description of

4The fits to the Fermi-LAT data have been performed in close collaboration with Markus Weber, using the

halofitter code developed by Christian Sander and Marc Herold (Sander, 2005).
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Figure 5.6: The aPM diffuse γ-ray prediction for the six sky regions compared to the EGRET and

preliminary Fermi-LAT data. The Fermi point to point errors are assumed to be 15%,

similar to EGRET. The red data points are the EGRET data, the blue data points are the

Fermi data in the energy range we consider here (120 MeV to 20 GeV, see text for details)

and the grey points are the Fermi data outside this range, which are shown for completeness.
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Figure 5.7: Longitude profile for a fit to the preliminary Fermi-LAT data for a halo profile with (left)

and without (right) rings: 0◦ ≤b< 5◦.

Figure 5.8: Longitude profile for a fit to the preliminary Fermi-LAT data for a halo profile with (left)

and without (right) rings: 5◦ ≤b< 10◦.
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Figure 5.9: Longitude profile for a fit to the preliminary Fermi-LAT data for a halo profile with (left)

and without (right) rings: 10◦ ≤b< 20◦.

Figure 5.10: Longitude profile for a fit to the preliminary Fermi-LAT data for a halo profile with (left)

and without (right) rings: 20◦ ≤b< 90◦.
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Figure 5.11: Sky map of the background scaling factor for the FERMI-LAT data in a conventional GAL-

PROP model. A 90 × 45 binning was used. The gas distribution used for the preliminary

gll iem v02 model is very similar to the gas distribution in the conventional model. For

this reason the scaling factor is close to one in those regions where the emission from the

gas dominates. The regions with values above 1 correspond to unsubtracted point sources.

The overall scaling factor is around 1 which indicates that the GALPROP predictions are

in good agreement with the scaling derived from the fit.

the data than a model based on a limited number of astrophysical assumptions. The background

scaling factors derived from the low energy data are then assumed to also hold in the GeV range.

This way the precise description of the low energy data can be used to see whether or not an

additional contribution from DMA is required by the data. As long as the background scaling

factors derived from the fit to the low energy data do not exceed the uncertainties of the gas and

CR density distribution in the underlying CR transport model, this approach is valid. From Figs.

5.7 to 5.10 it is clear that the Fermi data are compatible with the halo profile derived from the

EGRET data. One notes from the χ2 values in the figures that the inclusion of the DM halo from

the EGRET data significantly improves the fit compared with a fit without DM, called background

only in the figures. Especially Fig. 5.7 shows how the inner ring derived from EGRET improves

the fit, although further optimization would be required. Since here we are only interested in the

question whether or not the preliminary Fermi-LAT data are in principle compatible with the

EGRET profile, we refrain from additional fine tuning of the halo profile until the Fermi-LAT

data are officially published. In Figs. 5.7 to 5.10 we use error bars of 7%, which corresponds to

the point-to-point errors determined for the EGRET data (Sander, 2005). A detailed discussion

of the goodness of fit would require to optimize the halo profile for the preliminary Fermi-LAT

data and choose the uncorrelated errors in such a way that the total χ2/d.o.f adds up to one for

the optimized profile.

Having established, that the DM profile derived from the EGRET data is compatible with the

Fermi-LAT data we can return to an astrophysical interpretation of the data and compare the

CR background prediction of the aPM together with a DMA contribution to the Fermi-LAT data.

Figure 5.12 shows the diffuse γ-rays for the six sky regions as defined in Section 4.4.1 for the

aPM plus an additional component from DMA. The Galactic electron density has been scaled by
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Figure 5.12: The aPM diffuse γ-ray prediction for the six sky regions compared to the EGRET and

preliminary Fermi-LAT data. The DMA signal with a boost factor of 10 has been added

to the model prediction, the Galactic electron density has been scaled by a factor of 1.5.
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Figure 5.13: Locally measured proton (left) and electron (right) spectra with the injection indices

optimized for ATIC (protons) and Fermi (electrons). The electron flux is normalized to the

Fermi data, the proton flux is normalized to BESS.

a factor 1.5. The halo profile is the profile described in Appendix C, the boost factor 5 derived

from the Fermi-LAT data is 10. With the additional component from DMA the spectral shape of

the model prediction is greatly improved, however, the total predicted emissivity is still too low.

A good description of the data can be obtained with the additional scaling of the electron density.

Clearly, with or without an additional signal from DMA the Fermi data either require the Galactic

electron density to be significantly larger than what one would expect from the locally measured

flux, or the gas density has to be increased. We will discuss effects that might decouple the local

CRs and γ-ray production rate in Section 5.3 in more detail.

5.2.4 Fermi-LAT and Astrophysical Explanations

Here we are going to address a purely astrophysical explanation of the Fermi-LAT data on diffuse

γ-rays. From the spectral shape in Fig. 5.6 it is clear that the Fermi data still require a somewhat

harder spectrum than the aPM currently predicts. A harder γ-ray spectrum can be accomplished

by choosing a harder proton and harder electron spectrum, but both these spectra are limited by

the locally measured spectra. If one takes into account that the source spectrum of CRs in other

parts of the Galaxy might be different from the spectrum of local sources or that the local diffusion

coefficient might be not representative for other parts of the Galaxy, one could, in principle, allow

for the Galactic proton and electron spectra to be significantly harder than the locally measured

proton and electron spectra. Recent results of the Fermi-LAT collaboration strongly favor only

slight variations of the spectra (Abdo et al., 2009b). We therefore use the hardest locally measured

proton and electron spectra to limit the Galactic spectra. The aim of this study is to determine

whether or not the locally measured electron and proton spectra are in principle compatible with

the Fermi-LAT data on diffuse γ-rays.
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Figure 5.14: Diffuse γ-rays in an aPM with hard electron and proton spectra. The Galactic proton

density has been increased by a factor 1.2 compared to the normalization of the local

proton flux, the Galactic electron density has been increased by a factor 1.5 compared to

the local electron flux.

Table 5.2: Injection spectra of electrons and protons for the Fermi and ATIC data. Two breaks at ρ1

and ρ2 are used, α/β1 − α/β3 are the correspoonding injection indices.

Protons/nuclei

α1/α2/α3 1.6/2.41/2.25

ρp
1
/ρp

2
9 GV/400 GV

Electrons

β1/β2/β3 1.6/2.54/2.3

ρe
1/ρe

2 4 GV/100 GV
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The Fermi and ATIC results on electrons and protons

Figure 5.13 shows the locally measured electron and proton spectra. For the protons the hardest

spectrum available is the ATIC measurement with a slope of 2.64. However, this data has to

be handled with due care: ATIC is a calorimeter experiment and without a charge measurement

prone to background from low energetic heavy nuclei. Note that ATIC measures an increase above

the index from spectrometer experiments for both the electron and proton/nuclei spectra. Just at

the edge of acceptance the spectra then fall sharply. Since here we are interested in the hardest

possible proton spectrum we will put these doubts aside for now and assume that the local proton

spectrum has a slope compatible with the ATIC measurement. Since the normalization between

different experiments can be off, we apply the same arguments to the absolute value of the local

proton flux and normalize the model prediction to the high energy BESS data. This way we make

sure to get the highest and hardest π0-prediction, which can still be considered compatible with

the local proton measurements.

For electrons we use the Fermi-LAT measurement since it covers the largest energy range with

the smallest errors. It also allows us to keep the correlation between the diffuse γ-ray data

and the electrons. The usage of the ATIC data might appear more reasonable since it would

correlate proton and electron fluxes, but the contribution from high-energy electrons to the γ-rays

is insignificant compared to protons. Also note that for γ-rays below 1 GeV the normalization

of the local electron spectrum is most important and not so much the spectral shape. Given

the large ATIC error bars the normalization of the Fermi and ATIC data is compatible. Figure

5.13 shows the predicted proton and electron flux in an aPM with the injection indices optimized

for the respective data. The injection indices used here are given in Table 5.2. The change in

injection index does not influence the B/C and 10Be/9Be ratios since here the spectral dependence

cancels.

Figure 5.14 shows the diffuse γ-rays for the six sky regions. The spectral shape of the model

prediction is improved compared to model prediction for the softer proton and electron spectra

shown in Fig. 5.6. The overall deficiency remains, but after scaling the Galactic proton density

by a factor 1.2 and the Galactic electron density by a factor 1.5, as was done in Fig. 5.6, we find

the γ-rays well-described within the assumed errors of 15%.

5.3 On the Link between Local Charged CRs and Diffuse

γ-Rays

In the previous sections we have discussed the Fermi-LAT data in the context of DMA and

in the context of a purely astrophysical explanation. In both cases the normalization of local

electrons and protons and the diffuse γ-rays do not agree. Possible reasons for this discrepancy

can be variations in the CR density distribution (such that the local CR density is lower than the

Galactic average) or the gas distribution (again the local gas density would have to be lower than

the averaged density). There also might be an additional γ-ray contribution from large distances,

i.e. the region beyond the mathematical boundary of our numerical solution. The most obvious

solution of course would be a locally decreased source strength. Naively one would expect that

this way the local CR density could be decreased by a factor ∼1.5, so that the normalization

of local CRs and diffuse γ-rays would be in agreement. In Section 4.3.2 we have shown that the

collection distance for CRs in an aPM and an isotropic model are similar. Furthermore, with more

5Note, that this boost-factor is different from the boost-factors derived from the fit to the Fermi data, because

here we keep the background scaling constant for all directions and in addition the local DM density differs slightly

(see Appendix C). The boost-factor derived from the fit with spatial variations in the background scaling are 8.61

for the profile with two rings and 10.69 for the profile without rings.
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Figure 5.15: Left: Radial proton distribution for 3 GeV protons for a model with zero source strength

between R = 8.2 kpc and R = 8.4 kpc (black full line). Also shown in the normalized source

distribution (red marker) with the gap between 8.2 kpc and 8.4 kpc. Right: Diffuse γ-rays

in the aPM (zh=7.5 kpc) for region F. The grey line shows the IC contribution for a run

with zh=30 kpc.

than 50% of the protons between 10 and 103 GeV originating from distances larger than 1 kpc we

find it hard to believe that gradients in the source distribution or the transport parameters, which

would occur on scales of parsecs, would not be washed out. Figure 5.15 shows the radial proton

distribution for a model with zero source strength between R = 8.2 kpc and R = 8.4 kpc (i.e.

the Local Bubble region, see Section 5.3.3). Clearly, CR transport is efficient enough to remedy

such small scale variations in source strength. In the following we will first estimate the maximum

additional γ-ray flux from an extended halo and find that this contribution is negligible (Section

5.3.1). We will then estimate the amount of additional gas required by the Fermi-LAT data in

Section 5.3.2 and identify structures in the ISM that would reduce the local gas density in sections

5.3.3 and 5.3.4.

5.3.1 The γ-ray contribution from the halo

In order to solve the obvious discrepancy between the local normalization of charged CRs and

the Galactic γ-ray emissivity it has been suggested that a large Galactic halo would give rise to

an additional IC signal. Since the scale height of the gas distribution is around 250 pc, only

little bremsstrahlung or π0-decay emission is expected from above the Galactic disk. As we

have discussed in Section 3.5.3 isotropic diffusion models are very sensitive to the size of the

transport box, since this basically constitutes the diffusion-convection boundary. The local B/C

and 10Be/9Be ratio are best reproduced for a halo height of 4-4.5 kpc, thus the assumption that the

IC contribution from distances above the halo boundary might increase the diffuse γ-ray flux stands

to reason. In the aPM it is possible to increase the halo to arbitrary sizes, as we have discussed

in Section 4.3.1. We have also mentioned that the additional IC contribution from regions above

7.5 kpc is at the percent level. Above ∼ 10 kpc the contribution from starlight and dust emission

to the ISRF drops below the CMB radiation, which is spatially constant. Consequently, from this

height on the IC emissivity drops proportional to the electron density. Figure 5.15 shows the IC

contribution for a run with zh =7.5 kpc (grey line). The increase in flux from IC is below 10% and

the corresponding increase in total γ-radiation is negligible. Note, that the increase in IC emission

from region F sets an upper limit on the additional IC emission for the other regions, since the

relative contribution from the halo is maximal for this region. Insofar an increased IC contribution
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from a large halo can be excluded as the reason for the discrepancy between the normalization of

local CR fluxes and diffuse γ-rays. Also one should not forget that the deficiency in γ-ray flux is

independent of direction. An increased halo would, if at all, contribute at high and intermediate

latitudes, but not in the Galactic center region.

5.3.2 Untraced Gas Components

Untraced gas components have been suggested as a possible source of additional γ-radiation.

”Untraced” gas components could be e.g. H2 untraced by CO. Assuming that the ”untraced”

gas component does not follow a specific distribution, but just increases the overall Galactic gas

density by a factor χgas we find that values around χgas ≈ 1.5 are necessary to explain the ob-

served γ-radiation. Figure 5.16 shows the diffuse γ-rays for an aPM with the Galactic gas density

globally increased by 50%. Of course, an increase in the gas density also affects the local sec-

ondaries, simply because the number of CR interactions with the ISM is increased by the same

factor. The left side of Fig. 5.17 shows the local B/C ratio for this model, the right side of

the same figure shows 10Be/9Be, which is also increased because the fraction of locally produced

beryllium increases and thus CRs ”appear younger”. Usually, one would now try to remove the

excess secondaries by an increase in the diffusion coefficient or a decrease of the halo height, but

both these adjustments would also decrease the γ-ray flux. This is clear because both modifi-

cations would lead to a globally larger CR flux towards the boundary. From here it is obvious,

that any process that reduces the local secondary flux has to be a local process insofar that it

does not influence the diffuse γ-ray production rate. In the following we will discuss two features

of our local environment, the Local Bubble and the local interarm region, that might reduce the

local secondary production rate without changing the averaged γ-ray production rate significantly.

Of course, the assumption of an untraced gas component which makes up about one third of the

total Galactic gas mass is unlikely. Clearly there must be other effects which also contribute to

the increased γ-ray production rate (or the decreased local secondary production rate). Since we

do not know these effects, we simply estimate the maximum impact of the known structures of our

Galaxy to see whether or not these structures in principle could explain the observed γ-radiation.

5.3.3 The Local Bubble

It is well known that our Sun resides in the Local Bubble (LB), a low density region of space

extending about 200-300 pc into the Galactic plane and 600 pc perpendicular to it. The LB prob-

ably began to form more than 10 Myr ago and is believed to be the result of more than 14 local

supernova explosions since then (Fuchs et al., 2006). This region is associated with Gould’s Belt

(Frisch, 2009), a region of young stars bounding the void. The density inside the Local Bubble

is about 0.05 atoms
cm3 , which is approximately a tenth of the average density of the ISM. The Sun

entered the LB more than 5 million years ago and currently moves through the Local Fluff (LF)

complex of interstellar clouds, a slightly denser region within about 35 pc around the Sun. The

density of the LF is with 0.26 atoms
cm3 about five times the density of the LB. The LF coincides

with the region where the LB and the Loop I superbubble overlap (Frisch, 2009), thus the ISM

surrounding the Sun is part of the shell of a superbubble expanding into the low density interior

of the Local Bubble. The LB and LF are illustrated in Fig. 5.18

We have implemented the LB and LF in the GALPROP code in the form of two user-defined re-

gions of arbitrary size and arbitrary spatial resolution, in which the gas density and all transport

parameters can be reduced or increased by a certain factor fparLB or fparLF , where par stands for the

transport parameters, the gas density or the source strength. Note, that in a 2D model as it is
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Figure 5.16: The aPM diffuse γ-ray prediction for a model with the Galactic gas density increased by

50%.
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Figure 5.17: The local B/C and 10Be/9Be ratio for a model with the Galactic gas density increased by

50%.

Figure 5.18: Left: Local Bubble and Local Fluff. The blue regions depict regions with decreased gas

density relative to the yellow regions. The image is available under the terms of CC-by-sa,

credit: N. Henbest/H.Couper.
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Figure 5.19: Locally decreased source strength: B/C (left) and 10Be/9Be (right) ratio for models with

fsource
LB = 0.5 − 0.001 compared the aPM. The size of the LB region is hLB = 0.2 kpc and

dLB = 0.2pc. For LB models only the LIS spectra are shown, since the uncertainties in

solar modulation could absorb the effect of the reduced source strength.
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Figure 5.20: Simultaneous decrease in local gas density and source strength: B/C (left) and 10Be/9Be

(right) ratio for models with fsource
LB = fnH

LB = 0.5 − 0.001 compared the aPM. The size of

the LB region is hLB = 0.2 kpc and dLB = 0.2pc. For LB models only the LIS spectra are

shown, since the uncertainties in solar modulation could absorb the effect of the reduced

source strength.

used here a LB or LF region actually corresponds to a ring-like structure. This does impose an

error upon our estimates: with no gradient in the source distribution, the gas distribution, the

diffusion coefficient and all relevant fields, the problem is symmetric and no resulting flux can

occur (although, of course, single particles will change places). If gradients in any of the above

are present, the propagated CR distribution will adapt to these gradients at the border of the LB

or LF region and thus slightly modify the result. Given the high memory requirements of a 2D

implementation of the aPM and the additional memory required for a local high resolution region,

a 3D implementation is beyond the scope of the available computing resources6. Since we do not

intend to model all aspects of our local environment (which are anyway unknown on a level of CR

transport parameters), we can airily reduce the level of accuracy and stay in cylindrical symmetry.

Naturally, secondary to primary ratios are especially sensitive to local changes in the gas density.

6We have currently one machine with 32 GB memory, which can be used for extensive scans.
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Figure 5.21: B/C (left) and 10Be/9Be (right) ratio for a model with Galactic gas density increased by

a factor 1.5, as required by the preliminary Fermi-LAT data and a LB with hLB=0.1 kpc,

dLB=0.4 kpc and fnH
LB = 0.1.

With lower local gas densities the amount of local secondaries will decrease, which will reduce

both, the B/C ratio and the 10Be/9Be ratio. The degeneracy between the different parameters is

large, e.g. a decrease in gas density can be counterweighted by a decrease in diffusion coefficient

and the appropriate change in vα, and so a detailed modelling of the Sun’s local environment

would be without physical meaning. A further complication arises from the fact that the source

strength inside the LB might drop to very small values, since there are no known sources for

CRs inside this region. We have already seen that even a reduction in source strength to zero

has almost no effect on the propagated proton distribution, at least at relevant energies. For the

local B/C ratio a decrease in local source strength will increase the B/C ratio especially at low

energies, because the amount of low-energy C that can reach the Earth from outside the LB will

be reduced (see the left side of Fig. 5.19). For 10Be/9Be only a negligible effect is expected, since

the secondary production rate is not changed (see the right side of Fig. 5.19). This changes not

only the source distribution, but also the gas distribution is reduced. Figure 5.20 shows 10Be/9Be

for fnH

LB = fsourceLB , the reduction in 10Be/9Be is due to the fact, that inside the LB 10Be can

decay, but only little beryllium can be produced. For B/C on the other hand a simultaneous

decrease in gas density and source strength does not affect the ratio.

Since here we are interested in a reduction of the amount of secondaries, we just examine the

impact of a reduced gas density in a region with vertical height hLB and radial extension dlb upon

the local B/C ratio. From Fig. 5.16 we know that the local B/C ratio has to be reduced by

a factor of ∼ 1.15. Figure 5.21 shows the resulting B/C (left) and 10Be/9Be (right) ratio for a

global gas density increased by a factor 1.5 and a local gas density decreased by a factor fnH

LB=0.1

in a region with hLB=0.2 kpc and dlb=0.4 kpc, which means that we choose a slightly larger

diameter for our LB than the usually quoted 200-300 pc. The overall amount of secondaries is

well reproduced, only the spectral shape of the B/C ratio requires some minor fine tuning above

1 GeV. The local age of CRs is somewhat too large as can be seen from the rather low 10Be/9Be

ratio. The reason for this is that inside the LB 10Be can decay, but too few Be is produced.

Additional fine-tuning of the model can be done via fDLB and fvα

LB , however, for this level of detail

a 3D implementation would be required.

Nevertheless, with this simple estimate we have demonstrated that the difference in normalization

of the diffuse γ-rays and the local CR density can be understood in the context of variations in

the gas density. Although the reduction in local gas density is compatible with what is expected
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Figure 5.22: Observed spiral structure of the Milky Way galaxy following Taylor & Cordes (1993). The

Sun is indicated by the yellow spot, the arrow indicates the direction of the solar system’s

motion relative to the spiral arms. The plotted orbit of the sun does not account for

perturbations caused by interactions with the spiral arms. Source: Wikipedia.

from the LB, the increase of Galactic gas density by 50% has currently no immediate physical

motivation. In the next section we will discuss the spiral structure of the Milky Way, which is

likely to help in this matter.

5.3.4 The Spiral Structure of the Milky Way

Here we will address a feature of our Milky Way that might reduce the effective local gas density

and increase the effective Galactic gas density and in this way help to reduce the amount of

”untraced” gas components. The spiral structure of the Milky Way, i.e. the fact that the gas

and source distribution is aligned along the spiral arms, is generally neglected in CR transport

models. It does enter the calculation of the diffuse γ-ray emission in GALPROP by virtue of

the normalization to the HI and CO astronomical surveys, but the gas distribution used for the

propagation of CRs is rather smooth, as discussed in Section 3.3.1. In reality the gas and the SN

distribution are closely linked to the spiral structure of the Milky Way, which is obvious since the

spiral arms consist of young stars and molecular gas. The Sun happens to reside just between two

spiral arms, the Perseus arm and the Sagittarius arm, as can be seen from Fig. 5.22. This means

that the effective gas density is probably lower than the smoothed gas density used in GALPROP.

The exact alignment of the Milky Ways spiral arms is still under discussion (see Hou et al. (2009)

for an overview). However, there seems to be convergence towards a model with four spiral arms

(Vallée, 2005). To estimate their impact on CR transport the spiral arms can be simply modelled

by a set of Gaussian rings in the Galactic plane with a width of 2 kpc. We model the four spiral

arms by four rings with Galactocentric distances

• Cygnus: 13 kpc

• Perseus: 10 kpc

• Sagittarius: 7.5 kpc

• Crux+Norma: 4.5 kpc
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which approximately correspond to the Galactocentric radii of the respective arms in the direction

of the Sun. The gas density in the spiral arms can be assumed to be a factor 10 higher than in the

interarm region. For GALPROP this means that the local gas density is greatly reduced in a region

much larger than the LB, since the Sun is positioned at the tails of Perseus and Sagittarius. It is

obvious that redistributing the Galactic gas content in the form of spiral arms can either increase

the flux of diffuse γ-rays or decrease the local amount of secondaries: In the latter case the local

reduction of gas density will decrease the B/C ratio. To balance the secondary production rate the

diffusion coefficient can be reduced, which means that CRs stay for a longer time in the Galaxy.

This way more CRs will occupy the gaseous disk in the steady-state case and consequently the

γ-ray emissivity, which is given by the CR (proton or electron) density times the gas distribution

or the respective field, will be increased.

Although the above idea is quite promising, there are other effects which have to be taken into

account:

• Since the molecular phase of the ISM is accompanied by its own small-scale magnetic field,

variations in the H2 distribution are expected to be accompanied by a corresponding vari-

ation in the diffusion coefficient and Alfvén velocity. This is currently not modelled in our

code.

• If the source strength is modulated on a kpc scale, the same modulation is expected in the

wind strength, since in regions between the spiral arms, i.e. regions with low source density,

the CR pressure might not suffice to launch a wind. In addition a resulting radial wind

component VRR towards the outer Galaxy would be expected in the regions with low source

strength. Both these effects are currently not modelled in our code.

Similar to the case of the LB, at this level of detail a full 3D implementation would be required to

take into account all the effects expected from the respective features. The extended GALPROP

version developed for the aPM is the first transport code capable of examining these structures.

It will be a valuable tool in the detailed examination of small scale structure in the future.

5.3.5 Some concluding Notes on the Link between diffuse γ-rays and

local charged Cosmic Rays

We have seen that diffuse γ-rays require a Galactic gas density increased by a factor of 1.5 in order

to be compatible with the Fermi-LAT data. Such an increase in gas density would increase the

amount of local secondaries to an unacceptable level. A global increase in diffusion would decrease

the number of produced secondaries, but at the same time the number of produced γs will be

decreased. As a possible solution we discussed variations in the local gas density which would

decrease the locally produced amount of secondaries, while keeping the global γ-ray production

rate almost constant.

For the gas distribution errors of 10-20% are generally accepted. Insofar the assumption of untraced

gas components which add up to 50% of the traced gas components appears rather extreme, but

remember, that here we were only interested in a rough estimate of the size of this effect. In

particular we neglected possible variations in the diffusion coefficient in the disk. A more detailed

modelling of the geometry of the Milky Way, especially the spiral arm structure, is expected

to help in this context. Furthermore, a radial dependence of the diffusion coefficients or an

additional anisotropy in diffusion, which have been neglected so far, might improve the diffuse γ-ray

prediction. Unfortunately, almost nothing is known about the spatial dependence of the diffusion

tensor, so that a large number equivalent scenarios have to be tested. For example, a smaller radial

diffusion coefficient DRR in the plane would increase the CR density and consequently the γ-ray
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Figure 5.23: Left Local antiproton prediction from DarkSUSY. Taken from Bergstrom et al. (2006).

Right Local antiproton flux in an aPM using a boost factor of 27. The contribution from

CRs is very similar to the predictions of the isotropic models. The DM contributions from

halo and rings are shown separately.

emission from the plane. Yet, at the same time the gradient of the diffuse γ-ray emission would

become harder and the soft-γ-ray gradient-problem would reappear. In order to keep the γ-ray

gradient flat one would have to resort to a rather fine-tuned scenario of diffusion vertical to the

plane and convection. Alternatively, one could imagine that the vertical diffusion coefficient Dzz is

smaller for Galactocentric distances other than R⊙. This assumption is motivated by the fact that

the Sun resides in the local interarm region (modelled by Dloc
zz ) while Dav

zz models the averaged

diffusion coefficient of spiral arms and interarm regions). A smaller Dav
zz would lead to a smaller

CR flux towards the halo boundary and consequently to a higher CR density in the Galactic plane

(and therefore more γ-ray emission), while the local age of CRs and their grammage would still

be given by Dloc
zz .

Many more scenarios are possible and none of them can be prioritized by first principle. Here

we have developed a GALPROP version, which is capable to account for spatial variations in

basically all transport parameters and therefore allows us to test these scenarios in future studies.

On the side of the data a great improvement is expected from the AMS-02 detector, which will

be launched mid 2010. AMS-02 will provide us with data on all components of charged CRs and

γ-rays. Having data on B/C, protons, electrons, positrons and antiprotons from the same detector

will greatly improve our understanding of the transport processes in our local environment and

together with the diffuse γ-rays we will be able to better constrain the global transport parameters

and thus the number of possible scenarios.

5.4 Constraints from Antiprotons

Having discussed the problems and possible solutions of diffuse γ-rays, we now turn to the local

antiproton flux, which constitutes a problem in both, purely astrophysical models and models

which invoke an additional contribution from DMA. We have already seen that the antiproton

flux from CRs is too low. In fact, most GALPROP models usually predict local antiproton fluxes

from CRs about 40% too low and the aPM is no exception as we have seen in Section 4.2. There

are simple analytical models like DarkSUSY, that are able to describe the local antiproton flux

well without an additional antiproton component from DMA. These models are strongly simplified

analytical or semi-analytical solutions of the diffusion equation, close to the leaky-box approach,
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Figure 5.24: Local antiproton flux in an aPM for a EGRET compatible halo profile and a boost-factor

of 10.

and feature only few details of the actual geometry of the Milky Way, like the gas distribution

and the magnetic field. In this situation an additional antiproton contribution from DMA might

be considered a welcome addition, but the contribution from DMA generally overshoots the data

as we will see in the following. The left side of Fig. 5.23 shows the antiproton flux from DMA

for a 60 GeV neutralino and a halo profile as derived from the EGRET data. The fact that the

antiprotons overshoot the data by a factor of ∼ 37 has been considered a major argument against

the DMA interpretation of the EGRET excess by Bergstrom et al. (2006). The authors used the

simple analytical solution of the transport equation in DarkSUSY for their prediction of the local

antiproton flux. One could now expect that a model with strong wind velocities would significantly

reduce the local antiproton flux from DMA, since antiprotons produced in the large DM halo

are unlikely to reach Earth. We have implemented additional CR components for antiprotons,

protons, electrons and positrons from DMA in GALPROP. The yield per annihilation of the

respective particle is taken from DarkSUSY and gives the injection spectrum, the DM halo profile

is chosen to agree with the EGRET excess and gives the source distribution for these particles. The

subsequent propagation is identical to the propagation of conventional CR antiprotons, protons,

electrons and positrons. Charged species from DMA and charged species from CRs are propagated

as separate densities, which is valid, since the CR transport equation is linear in CR density and

so the gradient in the CR proton source distribution does not influence the propagation of the

DMA protons and vice versa. Since the source strength for CRs from DMA is known (i.e. given

by the DM density and boost-factor derived γ-ray signal) no normalization is applied at the end

of the propagation. The right side of Fig. 5.23 shows the local antiproton flux for an aPM with

the halo profile as derived from the EGRET DMA interpretation and a boost-factor of 27. The

antiproton flux from nuclear interactions tends to be on the low side compared to the data, while

the additional component from DMA exceeds the data by a factor of ∼ 8. Also shown are the

separate contributions from the different halo components to the antiproton flux. From Fig. 5.23

one can see, that the inner ring at 4 kpc is the major contributor to the local antiproton flux.

Compared to the simple DarkSUSY prediction in the aPM the local flux from DM antiprotons is

slightly reduced due to the slightly decreased diffusion coefficient, but the model predicts still a

factor of ∼ 8 too many antiprotons.

Figure 5.24 shows the antiproton flux at the position of the Earth for a boost-factor of 10 as

expected from the Fermi-LAT data on diffuse γ-rays (see Fig. 5.12). Since the boost-factor used

here is independent of position, the reduction in this parameter of course directly enters the local
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antiproton density. The model prediction is therefore only a factor ∼ 3.2 above the data.

This means that for each photon from DMA around 1 (for a boost-factor of 10) or around 3 (for a

boost factor of 27) antiprotons from DMA arrive at Earth. Given the fact that only around 0.01

antiprotons per photon are produced during the annihilation, this is a rather surprising result.

However, it is understandable if one considers the transport effects that affect the antiprotons, but

not the γ-rays: Unlike the γ-rays which follow straight lines, the antiprotons immediately begin

to scatter on the magnetic turbulences generated by the CR plasma. Since the source strength

of CRs from DMA is fixed by the yield per annihilation and the DM annihilation rate, i.e. the

γ-ray signal, the absolute flux of these CRs depends on the transport parameters and the source

distribution. Note that this is different from ”conventional” CRs for which the source strength

is not well constrained and which are normalized to the local CR fluxes after propagation. More

specifically the local antiproton density depends on the drift velocity of CRs toward the boundary,

which, given the fact that annihilation in the ISM in negligible for antiprotons, is the only loss

mechanism for this species. Large drift velocities will lead to fast particle escape and, due to

the fixed production rate, to low local antiproton densities in the steady state. However, the

transport parameters, and thus the drift velocity, is fixed by the measurements of secondary to

primary ratios and radioactive isotopes as we have seen in Chapter 3. The local measurements of

B/C and 10Be/9Be require CRs to spend a certain amount of time in the thin halo and in the

gaseous disk. A low antiproton flux from DMA would require fast CR escape from the Galaxy,

but for a given halo height (or diffusion convection boundary) this is tightly constrained by the

ratio of 10Be/9Be (see the comment on unstable isotopes in Appendix A.7). Likewise an increase

in halo height, which would allow for large drift velocities, is forbidden by the local B/C and
10Be/9Be ratio, which constraints the relative amount of time spend in the halo and in the disk.

Thus, for a given gas distribution, these two measurements fix the drift velocity, leaving only small

uncertainties in the local antiproton flux from DMA. One of these uncertainties originates from

the difference in source distributions. For CR antiprotons this is the gas distribution times the

proton distribution, for DM antiprotons, this is the squared DM distribution. For the DM profile

derived from the EGRET data the sun resides in a local minimum (see Fig. 5.2). From the right

side of Fig. 5.23 it is clear that most of the local antiprotons from DMA originate from the inner

ring at 4 kpc. This means that it would be preferable if the collection distance for antiprotons

(and consequently also for all other nuclei) would be as small as possible. That way, the inner

ring would contribute less to the local antiproton flux. We will discuss these uncertainties in the

antiproton flux from DMA in Section 5.4.1.

5.4.1 Disentangling B/C and Antiprotons from Dark Matter Annihila-

tion

Anisotropic Diffusion

A reduction in collection distance requires slower CR transport. In radial direction diffusion is

the only transport mechanism and consequently a reduction in diffusion coefficient is required. If

the convection velocity is kept compatible with the ROSAT observations any change in diffusion

coefficient will also change zc, as well as B/C and 10Be/9Be. The additional freedom from local

variations of the gas density is limited, so one would like to keep the diffusion coefficient as close

to the value of the aPM as possible. Looking at Fig. 5.23 we find that most of the local antiproton

flux originates from the inner ring at 4 kpc. Although the DM halo decreases much slower than the

CR source distribution in z-direction the additional antiproton sources in the halo do not increase

the local antiprotons density, because the antiproton flux is always directed towards the boundary
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Figure 5.25: Left: Illustration of the Galactic magnetic field structure. Right: The galactic magnetic

field in the plane as infered from pulsar rotational measures (RM). The RM distribution of

pulsars projected onto the Galactic plane. Red data (squares) are newly observed, and blue

(circles) are previously published. Filled symbols stand for positive RMs and open ones

for negative RMs. The large-scale magnetic fields are drawn by arrows, which was inferred

from RM data. Solid-line arrows stand for confirmed field structures, while dashed-line

arrows stand for proposed field structures in controversy and to be confirmed. From Han

(2004).

(see Eq. 2.143) 7. This means that we are looking for a model with small diffusion coefficient in

radial direction, in order to keep antiprotons from the inner ring away from the Sun, and with a

vertical diffusion coefficient Dzz at the aPM value. Up to now we have neglected anisotropies in

diffusion for practical reasons, but in fact such anisotropies are expected from the magnetic field

structure of our Galaxy. The CR diffusion coefficient is basically determined by the ratio of the

regular magnetic field (B) to the perturbed magnetic field (δB, the turbulences on which CRs

scatter): D ∼ B2/δB2. In regions with large magnetic field and only little turbulence CRs will

follow magnetic field lines with helical trajectories. In this case the diffusion coefficient parallel

to the magnetic field is large, while the diffusion coefficient perpendicular to the magnetic field is

small. It has been shown in Monte Carlo simulations that this anisotropy remains even if the ratio

B2/δB2 is small (the case of strong scattering), i.e. the diffusion coefficient along the magnetic

field lines is always larger than the perpendicular diffusion coefficient (Codino & Plouin, 2007;

De Marco et al., 2007). Although the absolute value of the diffusion coefficients and their ratio

are unknown, because the spectrum of magnetic turbulences is not known, the direction of the

anisotropy can be derived from the magnetic field structure of our Galaxy.

Magnetic Field Structure The magnetic field of the Milky Way is commonly modelled by

two components (Han, 2004): a toroidal field following the Galaxy’s spiral arms with alternating

direction from arm to arm and a polodial field, which is negligible in the disk, but dominates

in the halo and in the GC (see Fig. 5.25). The toroidal field dominates in the galactic disk

leading to a strong transport mode in ϕ direction (parallel to the magnetic field in the disk

along the spiral arms) while the transport in R and z direction is suppressed. The polodial field

dominates in the halo leading to a preferred transport in z direction (parallel to the field in

the halo) and a relatively weak transport mode in ϕ and R direction (see e.g. Fig. 1 in Han

7Of course a single antiproton from the halo can be scattered into the plane, but at the same time more

antiprotons from the plane will be scattered into the halo
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(2004)). Consequently, one would expect the diffusion coefficient in R direction to be smaller

than the diffusion coefficient in z-direction throughout the Galaxy, while the diffusion coefficient

along the spiral arms, i.e. in ϕ-direction dominates in the disk and becomes smaller than the

diffusion coefficient in z-direction in the halo. Assuming cylindrical symmetry, diffusion in ϕ-

direction will not change the source distribution: with no gradient in the source distribution,

the gas distribution, the diffusion coefficient and all relevant fields, the problem is symmetric

and no resulting flux can occur (although, of course, single particles will change places). Since

for transport along a curved path the diffusion tensor does have off-diagonal elements 8 we will

consider one-dimensional transport along an infinitesimal segment in an arbitrary direction η as

an example: Assuming a flat source distribution and no gradients in the diffusion coefficient as

well as no convection, the transport equation 3.5 for η-direction reads:

∂Ψ

∂t
= q(~r, t) +

∂

∂p
p2Dpp

∂

∂p

1

p2
Ψ − ∂

∂p
[ṗΨΨ] − 1

τf
Ψ − 1

τr
Ψ, (5.10)

which means that no spatial transport along η occurs. Thus, preferred (or suppressed) transport

along η will only lead to a misestimation of the amount of diffusive reacceleration by virtue

or the larger (or smaller) diffusion coefficient which gives rise to a smaller (or larger) Dpp and

to a misestimation of the momentum losses. The momentum diffusion coefficient is determined

by the Alfvén velocity and the spatial diffusion coefficient as a measure for the scattering rate:

Dpp ∼ v2
a/D. In the presence of anisotropic diffusion D and vα have to be replaced by effective

parameters, e.g. if Dϕ > DRR the value of vα has to be scaled with a factor
√

Dϕ/DRR. In

addition the momentum losses through transport along ϕ can be considered as a reduction in vα.

Therefore, preferred transport in ϕ-direction can be incorporated by treating vα as an effective

parameter, which is only indirectly linked to the averaged velocity of the Alfvén waves. Remind

that vα is an effective parameter anyway, in the sense that we do not incorporate possible spatial

changes in vα which might arise from the spatial dependence of the diffusion coefficient. Finally,

anisotropic diffusion in cylindrical coordinates can be modelled by the two diffusion coefficients

DRR = βD0
RR

(

ρ

ρ0

)δ

,

Dzz = βD0
zz

(

ρ

ρ0

)δ

, (5.11)

where D0
RR and D0

zz are independent constants and δ = 0.33, ρ0 = 4 GV and an effective Alfvén

velocity. From the structure of the Milky Way’s magnetic field one would now expect that Dzz >

DRR in the halo (where the dominant magnetic field is directed along z) and DRR ≥ Dzz in

the disk, where the magnetic field is directed along the spiral arms, which also have a radial

component. In order to reduce the antiproton flux we require the diffusion coefficient along R

to be smaller than the diffusion coefficient along z, so in the following we will assume that the

anisotropy in diffusion coefficients is constant throughout the Galaxy (DRR/Dzz = const.).

Results Here we estimate the impact of anisotropies in diffusion on the locally measured sec-

ondary to primary ratios and the local antiproton flux. The rigidity dependence of the diffusion

coefficients is kept identical for all directions, meaning that the spectrum of turbulences is just

shifted toward larger or smaller wavelengths for different directions. The anisotropy in diffusion

8Due to the fact that a diffusive process always occurs along straight lines (i.e. there is no infinitesimal diffusion

step along ϕ-direction) cylindrical coordinates do not represent a natural basis for diffusion, if an anisotropy

between diffusive transport in ϕ and R direction is considered. A correct 3-dimensional implementation of the

model therefore has to use a cartesian basis.
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Figure 5.26: Left: Local antiproton flux from DMA for different anisotropies in diffusion. Right: Local

antiproton flux from CR interactions for different anisotropies in diffusion.
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Figure 5.27: Left: Radial distribution of antiprotons from DMA for different anisotropies in diffusion.

Right: The corresponding B/C ratio.
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Figure 5.28: Left: Local antiproton flux in an aPM with Dzz = 2.3 · 1029 cm2/s. Right: The corre-

sponding B/C ratio.
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given by χD = DRR/Dzz is varied from 10−4 to 10−1. Figure 5.26 shows the local antiproton

flux for different anisotropies in diffusion for antiprotons from DMA (left) and antiprotons from

CR interactions (right). A reduction in DRR by a factor of 104, while Dzz is kept constant, only

leads to a marginal reduction in antiprotons from DMA and to a slight increase in antiprotons

from CR interactions. Since the anisotropy of 10−4 is already a rather extreme value, this de-

crease in antiprotons from DMA can be considered the maximum achievable reduction. Obviously

a reduction of DRR cannot confine the antiprotons produced in the inner ring efficiently to the

source region. This is also visible from the left side of Fig. 5.27 where the radial distribution

of antiprotons from DMA is shown. For the reduced diffusion coefficient in R-direction the DM

antiproton distribution becomes more similar to the (squared) DM halo profile. The outer ring

and the increase towards the center become more pronounced, while the reduction of local an-

tiproton density is visible around R = 10 kpc, but by far not sufficient. On the other hand an

increase in Dzz leads to a larger CR flux in z-direction. The red line in Fig. 5.26 shows that

an increase in Dzz by only a factor of 10 is sufficient. The radial diffusion coefficient is kept at

5.3 · 1028cm2/s in this case. Figure 5.27 impressively demonstrates that the density of antiprotons

from DMA is reduced throughout the Galaxy. The relative height of the peaks due to the outer

ring and the GC is not changed compared to the aPM, because DRR is the same in both runs,

but the overall antiproton density is reduced. At the same time the flux of antiprotons from CR

interactions is greatly reduced due to the fast CR escape in z-direction. This, of course, also affects

the B/C ratio, which is shown on the right side of Fig. 5.27. Clearly, in order to be compatible

with the DMA interpretation of the EGRET/Fermi-LAT data, one requires a mechanism which

increases, the number of secondary CRs, at least locally. This, however, constitutes a catch-22:

any mechanism, which keeps the primary CRs in the Galactic disk, so that enough secondaries

are produced, will also keep the antiprotons from DMA in the disk. Insofar the only option left is

a local increase in gas density (contrary to what is required from the diffuse γ-rays). Figure 5.28

shows the minimum anisotropy in diffusion, which would lead to a local antiproton flux compatible

with the data. The corresponding diffusion coefficient in z-direction is Dzz = 2.3 · 1029 cm2/s,

which means χD = 0.23. Since both antiproton components are reduced by approximately the

same factor, the flux from DMA still dominates, which leads to a rather soft spectrum. This could

be remedied by an increase in diffusive reacceleration, however the maximum allowed Alvfén speed

is constrained by B/C. The corresponding B/C ratio shown in Fig. 5.28 is still a factor 2.3 too

low. To compensate this would require a significant increase in the local gas density. The Fermi

data on diffuse γ-rays require a higher normalization than the local proton and electron flux and

that independent of whether or not DM is invoked (see sections 5.2.3 and 5.2.4). Previously, in

Section 5.3, we have seen that this is possible, if the local secondary production rate is smaller

than the Galactic secondary production rate, e.g. if the Galactic local gas density is smaller than

the global gas density. This, again, is contrary to the requirements from antiprotons from DMA.

Conclusion We have shown that with the current level of detail the local flux of antiprotons

from DMA forms a tremendous constraint for the halo profile. An inner ring of DM, as expected

from the EGRET analysis, will lead to a too high local antiproton density. This can be remedied

by assuming an anisotropy in diffusion coefficients of the order χD = DRR/Dzz = 0.23. However,

if this anisotropy is applied everywhere the local secondary production rate, as measured by the

B/C ratio, cannot be reproduced. One has, however, to keep in mind that here we applied a

global anisotropy as a simple estimate. From the spiral structure of the Galaxy as introduced

in Section 5.3.4 one would expect that the diffusion coefficients vary throughout the Galaxy. In

particular one would expect a larger diffusion coefficient in the spiral arms, where the CR sources

are located and a higher CR density is expected. The inner DM ring roughly coincides with the
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two inner spiral arms, Crux and Norma, while the Sun is located in the interarm region between

Sagittarius and Perseus. If the vertical diffusion coefficient Dzz is large in and above the spiral

arms and small in the interarm regions, the antiprotons from the inner ring will escape fast into

the convection zone above zc (by virtue of a larger Dzz), while the local secondary production

rate can be kept at a reasonable level (by virtue of a smaller Dzz). This way antiprotons from the

inner ring will contribute less to the local antiproton flux. In order to estimate whether or not

such a scenario is consistent with the constraints from γ-rays (see e.g. our discussion in 5.3.5), a

detailed implementation of the spiral structure of the Milky Way is required.

5.5 Contemporary Indirect Dark Matter Searches versus

Transport Model Uncertainties

In the last section we have seen that even with the additional degrees of freedom in an aPM

the local antiproton flux still forms a tremendous constraint for DM models. The discussion in

the previous section demonstrates the difficulties which come along with indirect DM searches in

charged CRs. Diffuse γ-rays and antiprotons are just one example of many. A number of recent

observations have created a blast of papers, many of them focussed on DM interpretations of the

data. For most of these observations astrophysical alternatives exist, some of which even have

been expected to be visible in CRs, like the pulsar interpretation of the PAMELA positron fraction

(Blasi, 2009; Chowdhury et al., 2009; Grasso et al., 2009; Hooper et al., 2009; Profumo, 2008;

Serpico, 2009; Yüksel et al., 2009). However, due to the unknown details of CR transport and the

unknown parameters of astrophysical sources, DM remains a viable explanation. In this section

we will review the most discussed observations and their possible interpretations and comment on

them from a viewpoint of CR transport uncertainties.

We have already discussed the DMA interpretation of the INTEGRAL positron annihilation line

in Section 4.3.3 and found that while CR transport can in principle explain both, the absence

of an annihilation signal from positrons from SNIa from the disk and the large B/D ratio, any

DMA interpretation can only account for the latter. Here we will first show how CR transport

can modify the expected signal from DMA for the example of the WMAP-haze. We will then

turn to the most discussed observations: the rising positron fraction observed by the PAMELA

space-borne experiment (Adriani et al., 2009a) in combination with rather hard spectra of elec-

trons and positrons above expected background by the FERMI satellite (Abdo et al., 2009a), the

ATIC balloon experiment Chang et al. (2008) and the HESS earth-bound Cherenkov telescope

(H. E. S. S. Collaboration: F. Aharonian, 2009). These excesses were not accompanied by an

obvious excess in diffuse gamma rays in the halo at mid-latitude (Porter, 2009) nor in antiprotons

(Adriani et al., 2009b), which has led to speculations about a new class of ”leptophilic” dark matter

candidates (Arkani-Hamed et al., 2009; Nomura & Thaler, 2009), which fit the data (Bergström

et al., 2009).

5.5.1 The WMAP- and Fermi-haze as a Signature of Dark Matter

The WMAP haze (Dobler & Finkbeiner, 2008) consists of an excess of microwave emission from

a small region close to the Galactic center (see the left side of Fig. 5.29), where the spectrum

suddenly becomes slightly harder. WMAP covers the range from 20 GeV to 104 GeV in 5 bands

with increasing badwidth (K-band (23 GHz), Ka-band (33 GHz), Q-band (41 GHz), V-band (61

GHz), W-band (94 GHz)). It was discovered in a reanalysis of the public WMAP data, where the

Haslam 408 MHz map was used as a template for the synchrotron radiation (Dobler & Finkbeiner,

2008). Recently, an IC counterpart was found in the Fermi-LAT data by the same group (Dobler
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haze (adapted from Hooper et al. (2007)) and the contribution from the DMA interpretation

of the EGRET excess is shown as the red line. The dotted lines belong to the frequency

bin from 17481 MHz to 20978 MHz.

et al., 2009). It has been suggested that this signal could be synchrotron emission from relativistic

electrons and positrons, possibly originating from DMA in a cuspy halo (Hooper et al., 2007). The

authors used a simplified diffusion model to estimate the propagation length of the electrons and

positrons from DMA. However, even in a cored profile the synchrotron radiation from the disk

shows a steep increase, as we show in Fig. 5.29. Here the synchrotron emission for the 21 GHz

band from CR and DM electrons in an aPM is shown. Even with a boost-factor of 27 (as expected

from EGRET), the intensity of synchrotron radiation from DMA in a cored profile is too low, but

the spatial shape is generally compatible with the observed haze. This demonstrates how difficult

it is to infer the underlying halo profile from the spatial shape of the observed signal (provided

that it originates from charged decay products which are subject to CR transport). Both, the

existence of the WMAP-haze and the Fermi-haze and the properties of the underlying halo profile,

strongly depend on the CR transport model under consideration.

5.5.2 The ”anomalous” PAMELA, ATIC, and Fermi-LAT Results on

Electrons and Positrons as a Signature of Dark Matter

The positron fraction is defined as the ratio of fluxes of positrons and the sum of electrons and

positrons, i.e. e+/(e+ + e−). The PAMELA data on the positron fraction (Adriani et al., 2009a)

indicate a positron flux much harder than what is expected from CR transport (see the aPM

prediction on left side of Fig. 5.30, the aPM prediction is very siilar to the predictions of isotropic

models). In contrast, the antiprotons did not show any particular feature (Adriani et al., 2009b)

(see the right side of Fig. 5.30). At the same time the electron spectrum as measured by ATIC

(Chang et al., 2008) and PPB-BETS (Torii et al., 2008) indicates a ”bump” at around 500 GeV

(see e.g. Fig. 5.13 or Fig. 5.31). These observations suggest an additional hard positron and

electron component which dominates the local spectra for higher energies. Both results have been

interpreted as a possible signal from DMA by many authors (for an extensive compilation of

references see Profumo (2008)). The bump in the electron spectrum has led to speculations about

new physics, especially the possibility of the annihilation of Kaluza-Klein type WIMPs. Since the

excess stops around 800 GeV, this would require WIMP masses in this range. It is interesting
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Figure 5.30: Left: The positron fraction measured by the PAMELA experiment compared to the pre-

diction of the aPM. One standard deviation error bars are shown. If not visible, they lie

inside the data points. The green dotted line is the contribution from CRs, the red dotted

line is the contribution from DMA (for a boost factor of 10) and the black full line is the

sum of both contributions. Data are from Adriani et al. (2009a). Below a few GeV the dif-

ference between the averaged data without PAMELA (blue) and the PAMELA data (red)

in the low energy range is the result of a difference in solar modulation potential during

the different observation periods. The solar modulation potential assumed for the model

prediction has been optimized for the low-energy electron and positron data from AMS01

and therefore does not agree with the PAMELA data or the averaged data. Above a few

GeV the PAMELA data roughly agree with the averaged data, but they clearly indicate a

rise in the positron fraction. Right: The PAMELA antiproton-to-proton flux ratio from

Adriani et al. (2009b) compared to contemporary measurements.

to note that ATIC measures an increase above the index from spectrometer experiments for both

the electron and proton/nuclei spectra (Panov et al., 2006). Just at the edge of acceptance the

spectra then fall sharply, which may point to background from heavy nuclei increasing towards

higher energies. In fact, the ATIC-bump was not confirmed by data from the Fermi telescope

(Abdo et al., 2009a). The Fermi data show a smooth spectrum as can be seen e.g. from Fig. 5.31.

The spectrum up to 1 TeV is well described by a power law proportional to E−3.0 in agreement with

data from the HESS experiment as shown in Fig. 5.31. The HESS data also show no indication

of a structure in the electron spectrum, but rather a power-law spectrum with a spectral index of

3.0 ± 0.1(stat.) ± 0.3(syst.), which steepens at about 1 TeV.

CR positrons are produced by the decay of positively charged pions produced by inelastic collisions

of CRs with the gas in the disk. Electrons mainly originate from SNRs and the fraction of electrons

produced by the decays of negative pions from CR interactions is small compared to the primary

electrons from SNRs. In the absence of additional sources, the local positron spectrum is therefore

related to the local spectrum of the nuclei and the energy losses, while the local electron spectrum

is determined by the electron injection index and the electron energy losses. Positrons from DMA

are produced mainly by the decays of positively charged pions produced after the hadronization

of the quarks. The contribution from DMA in the local e+/(e+ + e−)-fraction is highly uncertain

and does depend on the transport model. In an aPM the contribution of DMA from a halo profile

as preferred by EGRET and a boost-factor of 10 is small, as shown in Fig. 5.30.

Since the observed rise in the PAMELA positron fraction is not accompanied by a rise in antipro-

tons (see the right side of Fig. 5.30), any DMA interpretation of the data requires a leptophilic

WIMP. These WIMPS decay into new states, which are too light to produce antiprotons, i.e.
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Figure 5.31: Electron plus positron spectrum (left) and positron fraction (right) from multiple pulsars

plus the Galactic component with experimental data (dotted line). Each gray line represents

the sum of all pulsars for a particular combination of pulsar parameters. The blue dot-

dashed (pulsars only) and blue solid lines (pulsars + Galactic CR component) correspond

to a representative choice among the set of possible realizations. From Grasso et al. (2009).

typical WIMP masses are below 1 GeV. For example, Nomura & Thaler (2009) proposed DM

fermions decaying into an axion and a scalar with the latter decaying again to axions. For an

axion mass in the range 360 - 800 MeV antiproton production is forbidden.

Several other DM candidates have been discussed in the literature (see e.g. the list of references in

Profumo (2008) or the review by de Boer (2009)). However, even if a certain candidate matches

the constraints from local antiprotons and diffuse γ-rays (which would require a rather fine-tuned

DM model), the energetic e+e− pairs should be visible in synchrotron radiation, especially in

the GC. All this strongly points to a local point source or a group of local point sources, such

as pulsars, as has been suggested by many authors (Aharonian et al., 1995; Coutu et al., 1999;

Hooper et al., 2009; Profumo, 2008; Serpico, 2009). In the following we will discuss the most

promising astrophysical ideas to explain the PAMELA data.

Astrophysical Explanations for PAMELA

The increase in the positron fraction cannot be explained by current propagation models in a

consistent picture as demonstrated in Fig. 5.30. Blasi (2009) suggested that additional positrons

could be generated and accelerated in old SNRs which are located inside dense molecular clouds.

Distant SNRs generate a softer spectrum than local SNRs due to positron energy losses during

propagation. Provided that there are enough SNRs at a distance of 1-2 kpc, this mechanism could

explain the cut-off at about 1 TeV in agreement with the HESS data (H. E. S. S. Collaboration:

F. Aharonian, 2009). If the rise in the positron fraction is due to the acceleration of secondary

positrons in SNRs the same mechanism should work for antiprotons. Consequently one would

expect a corresponding rise in the antiproton/proton ratio, which is currently not observed (see

Fig. 5.30). However, this increase may happen above 100 GeV, as shown by Blasi & Serpico

(2009). Other astrophysical explanations are positrons from pulsars and electrons from local

sources, which will be discussed in the following.

Pulsars Pulsars are rapidly spinning, magnetized neutron stars. They emit electromagnetic

radiation along the magnetic poles, which can be observed when the emission cone strikes the

Earth. In the strong magnetic fields in the polar region of a pulsar photons are created by
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Figure 5.32: Top: Electron and positron spectra for primary arm electrons (long dashed purple), pri-

mary disk electrons with nearby sources excluded (short dashed green), nearby SNRs (dot-

dashed black), secondary positrons (dot-dashed red), and their sum (blue). The hatched

region describes the solar modulation range (from 200 MV to 1200 MV). Bottom: The

positron fraction for the model shown in the top panel. From Shaviv et al. (2009)

synchrotron emission. These photons can generate electrons and prositions by interaction with

the magnetic field, which in turn produce synchrotron radiation. This way a large number of high-

energy positrons and electrons, but no antiprotons, can be produced. The energy and the amount

of escaping positrons and electrons depend on the specific properties of the pulsar, which are

unknown: especially young pulsars are surrounded by nebulae (the remnant of the SN explosion

creating the pulsar). These nebulae are thought to be the prime acceleration region for CRs,

because a first order Fermi acceleration process is expected to occur in the expanding SN shells.

In addition to the directed shock fronts there are undirected magnetic turbulences in the nebulae,

which can trap the electrons and positrons in their magnetic fields for about 105 years. Therefore

one has to consider pulsars older than this. Assuming both, the escape rate and the number of

old and nearby pulsars to be free parameters, pulsars can nicely explain the PAMELA and Fermi

data, as shown in Fig. 5.31 (Grasso et al., 2009). If only a few nearby sources contribute, an

anisotropy in the positron flux above 10 GeV is expected: Although positrons and electrons that

leave the pulsar nebulae will loose any directional information quickly due to resonant scattering,

a larger electron and positron flux is expected from the pulsar region (see Eq. 2.143). Since the

local pulsar candidates are located at larger Galactocentric radii than the Sun, the anisotropy in

the electron and positron fluxes, which is generally compatible with a CR flux out of the source

region toward the outer Galaxy, will decrease or might even change sign above a few hundred

GeV. A review about pulsars and how they can explain the data was given by Profumo (2008).

Local Sources The spiral structure of our Galaxy, introduced in Section 5.3.4, might also help

to explain the Fermi and PAMELA data on electrons and positrons. Sagittarius and Perseus, the

nearest arms, are located at distances of around 1 kpc and 2-3 kpc, respectively (see Fig. 5.22).

Since CRs produced in these arms have to travel significant distances, they will suffer significant

energy losses and consequently a large fraction of electrons with a relatively soft spectrum will
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arive at Earth. Electrons produced in the Galactic disk will show a somewhat harder spectrum and

very local sources, which are possibly located just outside our LB, will contribute predominantly

at the highest energies. Assuming an arbitrary normalization of these three components, they can

describe the Fermi electron spectrum resonably well, as shown in Fig. 5.32 (Shaviv et al., 2009).

Positrons are produced from CR interactions in the gas. Although the gas is far from being

homogeneous (the gas also follows the spiral arms and there can be ”local positron sources” in

the form of gas clumps) the authors of Shaviv et al. (2009) assumed that positrons come from

all distances and have a smooth distribution. In their model the resulting positron fraction first

increases and then decreases, similarly to what would be expected from dark matter annihilation,

but different from most other astrophysical explanations.

5.6 A Comment on Simplicity and Complexity of Models

By the time this is written there are more than a hundred papers on DM interpretations of the

PAMELA, Fermi, ATIC, INTEGRAL and WMAP results available on the ArXiv and only a small

fraction includes estimates of a possible contribution from astrophysical sources. It may appear as

a shift of paradigm, that the unknown sources (invoking new physics) receive much more attention

than the known sources. Unfortunately both, astrophysical explanations and explanations invoking

new physics, depend on a number of free parameters which can be fitted to explain all current

observations reasonably well.

In his paper entitled “Dissecting Pamela (and ATIC) with Occam’s Razor: existing, well-known

Pulsars naturally account for the ’anomalous’ Cosmic-Ray Electron and Positron Data” Profumo

(2008) reminded the reader, that in the presence of two competing theories with comparable predic-

tion, the simpler theory is the better choice. Complexity and simplicity are of course perspectives

of notion and one must not forget that the existence of DM is a well-established fact, confirmed by

a variety of independend observations, such as the rotation curves of galaxies and clusters of galax-

ies, the primordial density fluctuations, observed as fluctuations in the CMB radiation by COBE,

WMAP and Planck (which is currenly taking data), the gravitational lensing of galaxy clusters

and many others. If DM is a thermal relic from the big bang, it has to annihilate into standard

model particles which can be detected. The exact annihilation rate depends on the substructure

of the DM halo, which unfortunately is only poorly constrained by models for Galactic structure

formation. Therefore the absolute strength of a possible DM signal constitutes a free parameter

for any model and any DMA signal may as well dissapper in the CR background. Nevertheless, a

complete neglection of a possible contribution from DMA would constitute an incorrect hypothesis

and if DM is indeed visible in CRs this will inevitably lead to false conclusions. It is the opinion of

the author that the large number of DM interpretations concerning the PAMELA, Fermi, ATIC,

INTEGRAL and WMAP data are to be seen in this context.

It is one of the greatest challenges of physics to simultaneously envision multiple possibilities of

how nature could be and to keep track of what we actually know and how we know it. Until the

definite discovery of DM, which has to be accompanied by the extraordinary evidence required by

an extraordinary claim, particle physicists, astrophysicists and cosmologists can learn a lot from

each other.





Chapter 6

Summary and Outlook

Our information on cosmic ray transport largely stems from two entirely different sources: charged

cosmic rays provide information about the local cosmic ray densities and γ-rays provide informa-

tion about the interstellar environment. Cosmic ray transport in our Galaxy has been successfully

described by isotropic diffusion models, where the locally observed cosmic ray fluxes can be used

in conjunction with the interstellar data on diffuse gamma rays to constrain the transport parame-

ters. It has been shown by several authors that it is possible to describe the local fluxes of charged

cosmic rays, including cosmic ray clocks such as the 10Be/9Be ratio and the secondary fluxes as

well as the Galactic γ-rays up to 1 GeV in such a model. Since the knowledge of the exact setup

of our Galaxy is limited, the predictive power of any model for cosmic ray transport is narrowed

and no set of transport parameters can be considered unique. An example for this degeneracy is

the size of the diffusion region which crucially determines the diffusion coefficient.

One of the most advanced programs providing a numerical solution to the diffusion equation is the

publicly available GALPROP code. The basic parameters are the injection spectrum, diffusion

coefficient, convection velocity, Alfvén velocity and the size of the halo. Together with the diffu-

sion coefficient the latter determines the cosmic ray residence time in the Galaxy, since as soon

as they pass the border, they are assumed to escape to outer space. By tuning these parameters

to the secondary/primary ratio and the unstable/stable ratio one obtains a self-consistent prop-

agation model of our Galaxy. The amount of secondary cosmic ray particles and Galactic γ-rays

are described by the cross sections of the interactions of the primary and secondary cosmic ray

with the gas of the disk using a network with more than 2000 cross sections. Since γ-ray emission

and cosmic ray densities are determined self-consistently for all regions of the Milky Way, the

GALPROP models are widely-used in the context of astrophysical research and in the context of

indirect Galactic dark matter searches. The Fermi-LAT diffuse emission models, for example, are

currently based on the predictions of the isotropic GALPROP models and virtually all studies of

a possible dark matter contribution in cosmic rays use GALPROP in order to estimate the con-

tribution from secondary positrons. However, the GALPROP models can only allow for isotropic

and homogeneous cosmic ray transport. In particular, the convection velocity is limited to a few

tens of km/s in the halo. For the equidistant grid used in GALPROP the spatial resolution is

strictly limited by the available memory resources. This smears out small scales structures, such

as the Local Bubble, a low density region surrounding our Sun, or the spiral structure of the Milky

Way, and makes them unavailable to studies.

In the past years new observations have increased our knowledge about the transport processes in

our Galaxy and, in particular, in the Sun’s local environment. At the same time more accurate

data on the local cosmic ray fluxes have demonstrated the necessity for a more detailed transport
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model. Here we argued that one has to resort to a more detailed model in order to be compatible

with all observations: With the insight that the cosmic ray pressure can launch Galactic winds

in the Milky Way (as deduced from the X-ray data from the ROSAT satellite) the assumption

of isotropic cosmic ray transport has to be dropped. Simultaneously, the observation of a rising

positron fraction can be explained only if local sources, such as pulsars, are taken into account or

if an additional contribution from dark matter annihilation is assumed.

In this thesis a new model for Galactic cosmic ray transport, which allows for significant convective

transport compatible with the ROSAT observations, is presented. The model was realized by

modifying the publicly available GALPROP code, which up to now allowed only isotropic transport

and spatially constant transport parameters. The GALPROP code was modified in the following

way:

• the Galactic winds were assumed to be proportional to the cosmic ray source distribution,

which was taken to be the supernova remnant distribution

• the mean free path of cosmic rays - and therefore the diffusion coefficient - in the halo was

assumed to increase linear with the distance from the disk.

Fixing the magnitude of the convection speed to the wind speeds suggested by the ROSAT data, the

increase in diffusion coefficient in the halo can be fitted from the amount of secondary production

(from the B/C ratio) and the residence time of cosmic rays (from the cosmic clocks, in this case

the 10Be/9Be ratio). It is shown that such a model is consistent with all available cosmic ray data,

including not only the ROSAT data on convective winds, but also the large bulge-over-disk ratio

of the positron annihilation line as observed by the INTEGRAL satellite. In an anisotropic model

disk positrons are efficiently transported to the halo, were they find no electrons to annihilate

with.

A novel and important feature of the anisotropic propagation model is the smooth transition to

free escape of cosmic rays, because of the increase in mean free path with increasing distances

from the disk. Therefore the boundary condition can be moved to infinity in contrast to isotropic

propagation models, where the boundary condition is fine-tuned to get the correct residence time

of cosmic rays inside the Galaxy. This features allows for the first time a realistic modelling of

cosmic ray escape from the Galaxy. Given the fact that all transport parameters are directly

or indirectly constrained by the cosmic ray flux towards the boundary, the independence of the

cosmic ray flux from the boundary condition is a great improvement.

With increasing level of data accuracy modelling of the substructures in the ISM and variations

in the transport parameters becomes more and more important. An example for this are the

preliminary Fermi data on diffuse γ-rays which require a somewhat different normalization than

the local protons and electrons. The modified GALPROP version presented here is the first tool

capable of estimating the impact of Galactic structures, such as the Local Bubble or the spiral

structure of our Galaxy, which might help to explain this discrepancy. We have shown that in

an anisotropic transport model the Fermi data are in principle compatible with the local cosmic

ray density, if structures like the Local Bubble and the spiral arms of the Galaxy are taken

into account. At the same time a more detailed model for cosmic ray transport also allows us

to improve the constraints on a possible contribution from dark matter annihilation in charged

cosmic rays or diffuse γ-rays. We found the dark matter interpretation of the EGRET and Fermi

data to be tightly constrained by the local antiproton flux, while the PAMELA and Fermi data

on electrons and positrons allow for a variety of dark matter and astrophysical explanations. We

have demonstrated at the example of the WMAP-haze, the INTEGRAL positron signal and the

rise in the positron fraction as observed by PAMELA, that any attempt to disentangle a potential
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dark matter annihilation signal from astrophysics requires deep understanding of the conventional

astrophysics background.

Currently the PAMELA and Fermi data on electrons and positrons allow for a variety of different

explanations: positrons and electrons from local supernova remnants and electrons from the closest

spiral arm can describe the rise in the positron fraction and the electron spectrum just as well as an

additional contribution from dark matter annihilation or positrons and electrons from local pulsars.

In 2010 shuttle flight STS-134 will launch and bring the AMS-02 detector to the International

Space Station. For the first time cosmic ray data between 1 GeV and 1 TeV will be measured

simultaneously by the same detector. AMS-02 will cover an energy range which is currently

unavailable. In particular, AMS-02 will extend the positron measurements above 100 GeV, thus

allowing us to test the pulsar hypothesis, which predicts a rising positron fraction beyond this

energy. The dark matter annihilation and supernova remnant hypothesis on the other hand,

predict a decrease in the positron fraction at about 100 GeV. At the same time an accurate

measurement of the antiproton spectrum at high energies might help to support or rule out the

supernova remnant hypothesis, which predicts a rise in the local antiproton flux above 100 GeV.

The behavior of the electron, positron and especially antiproton spectrum in the AMS-02 data

will hopefully help to falsify some of the hypothesis that are currently under discussion.

The anisotropic propagation model developed in the framework of this thesis is the most consistent

transport model currently at our hands and will be most helpful in these future studies. The results

shown in this work have been derived in a 2-dimensional model with cylindrical symmetry. A full

3D implementation of this model will allow us to better estimate the uncertainties in the local

electron, positron and antiproton fluxes originating from structures like the Local Bubble and the

spiral arms, as well as a possible contribution from dark matter annihilation.





Appendix A

Energy Losses

A.1 Bremsstrahlung

For electrons and positrons the energy losses due to bremsstrahlung in the ISM become relevant.

Electron-proton bremmstrahlung in a cold plasma is goverened by the equation (von Stickforth,

1961)
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(A.1)

For the electron-electron bremsstrahlung one can obtain (Haug, 1975; Moskalenko & Jourdain,

1997)
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and the asteriks denotes center-of-mass variables. The total bremsstrahlung losses in the ionized

gas are given by the sum (dE/dt)BI = (dE/dt)ep + (dE/dt)ee. A good approximantion is given

by (Ginzburg, 1979, p.408)
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(A.3)

Bremsstrahlung energy losses in neutral gas can be optained by integration over the bremsstrahlung

luminosity (Koch & Motz, 1959)
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142 A.2. Compton losses

A suitable approximation for equation A.4 is given by (Ginzburg, 1979, p.386,409)
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(A.5)

with a linear connection in between. Here Ms is the atomic mass and Ts is the radiation length

(TH ≃ 62.8 g/cm2, THe ≃ 93.1 g/cm2).

A.2 Compton losses

The Compton energy losses are calculated using the Klein-Nishina cross section (Jones, 1965;

Moskalenko & Jourdain, 1997)
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where the background photon distribution, fγ(ω), is normalized to the photon number density as

nγ =
∫
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and Li2 is the dilogarithm:

Li2 = −
−2k
∫

0

dx
1

x
ln(1 − x) (A.8)

=















∞
∑

i=1

(−2k)i/i2, k ≤ 0.2;

−1.6449341 + 1
2 ln2(2k + 1) − ln(2k + 1) ln(2k) +

∞
∑

i=1

i−1(2k + 1)−1, k ≥ 0.2.

A.3 Synchrotron losses

Synchrotron energy losses are given by
(
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)
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where UB = H2

8π is the energy density of the random magnetic field.

A.4 Ionization Losses

Ionization losses in the ISM can be written as:
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(Mannheim & Schlickeiser, 1994, Eq. 4.24), where αf is the fine structure constant, ns is the

number density of the corresponding species in the ISM, β0 = 1.4e2/~c− 0.01 is the characteristic

velocity of the electrons in hydrogen, and
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, (A.11)

where γ is the Lorentz factor of the ion. The largest possible energy transfer from the incident

particle to the atmic electron is defined by kinematics

Qmax ≈ 2mec
2β2γ2

1 + [2γme/M ]
, (A.12)

where M >> me is the nucleon mass and Ĩsdenotes the geometric mean of all ionization and

exitation potentials of the atom. The values ĨH = 19 eVand ĨHe = 44 eV are given in Mannheim

& Schlickeiser (1994). The shell correction term Cs/zs, the density correction term δs and the B′

correction term (for large Z or small β) in equation A.10 can be neglected for this purpose, so

that we end up with
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for the nucleon ionization losses.

For electron ionization losses in a medium of neutral hydrogen and helium the Bethe-Bloch formula

has to be applied
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where Zs is the nucleus charge, ns is the gas number density, Is is the ionization potential (IH =

13.6eV and IHe = 24.6eV) and E is the total electron energy.

A.5 Coulomb Scattering

Coulomb collisions of nuclei in a completely ionized plasma are dominated by scattering off the

thermal electrons. The corrsponding energy losses are given by Mannheim & Schlickeiser (1994,

Eqs. 4.16, 4.11),
(

dE

dt

)

Coul

≈ −4πr2emec
2Z2ne ln Λ

β2

x3
m + β3

, (A.15)

where re is the classical electron radius, me is the electron rest mass, Z is the projectile nucleon

charge, ne is the electron number density in the plasma, xm ≡ (3
√
π/4)1/3 ×

√

2kTe/mec2, and

Te is the electron temperature. The Coulomb logarithm ln Λ in the cold plasma limit is given by

(e.g. Dermer (1985))

ln Λ ≈ 1

2

(

m2
ec

4

πre~2c2ne
· Mγ2β4

M + 2γme

)

, (A.16)

where M is the nucleon mass. For appropiate number densities, ne ∼ 10−1−10−3 cm−3, and total

energies, E ∼ 103 − 104MeV, the typical value of the Coulomb logarithm ln Λ lies in the range of

∼ 40 − 50, instead of the value of 20, which is usually adopted.

For electrons, the Coulomb energy losses in the fully ionized medium in the cold plasma limit

are described by Ginzburg (1979)
(

dE

dt

)

Coul

= −2πr2emec
2ne

1

β

[

ln

(

Emec
2

4πre~2c2ne

)

− 3

4

]

(A.17)
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where ne ist the electron number density. For an accurate treatment of the electron energy losses

in a plasma of arbitrary temperature see e.g. Dermer (1985); Moskalenko & Jourdain (1997).

A.6 Ineleastic Scattering

CRs crossing the thin Galactic disk it may undergo nuclear interactions with the interstellar

hydrogen or helium. These encounters can result in inelastic scattering with the result that the

paren nuceus is destroyed and new CR secondaries are created. The fragmentation of the initial

CR nucleus is goverend by the total cross section, while the production of the doughter nuclei is

given by the branching ratio for each channel. In the first case we talk about fragmentation, the

second case is called spallation. In a diffusion equation fragmentation can be treated by associating

a fragmentation rate 1/τf to the cross sections.

For CR transport the most important aspect of spallation is that nuclei, which are not produced

in SN explosions can be created. The interstellar medium is mainly composed of H and He, so

that the most relevant contribution to secondaries comes from reactions such as

n1 + (p,He) → n2 +X, (A.18)

where n1 stands for some kind of primary nucleus while n2 is the secondary produced in the

interaction. Also heavier components of the ISM can contribute to secondary production, so in

fact we have

(n1 + (p,He,CNO,Fe) → n2 +X) (A.19)

From A.18 and A.19 it follows that the source term for secondary nucleons can be written as

qj(~r, p) = βc
∑

i

fprimi (~r, p) ·
[

σ
(H)
ij (p)nH(~r) + σ

(He)
ij (p)nHe(~r) + σ

(CNO)
ij (p)nCNO(~r)+ (A.20)

+σ
(Fe)
ij (p)nFe(~r) ],

where fprimi is the primaries density of the parent nucleus i, σ
(H,He,CNO,Fe)
ij is the cross section for

the production of nucleus j from nucleus i that scatters on H, He,CNO, FE. One can disregard

the i index by introducing the weighted production cross sections σ
(X)
j =

∑

i

fprimi σ
(X)
ij for the

daughter j-nucleus produced on the X-nucleus target, so that we are left with

qj(~r, p) = βc ·
[

σ
(H)
j (p)nH(~r) + σ

(He)
j (p)nHe(~r) + σ

(CNO)
j (p)nCNO(~r)+ (A.21)

+σ
(Fe)
j (p)nFe(~r)

]

,

A comparision of the mean time of each reaction on a target (X) τ = βcσ
(X)
ij n(X)and the typical

propagation time of CRs immediately gives an estimate of the relevance of the different scattering

processes. In nuclear reactions in the interstellar medium, the kinetic energy per nucleon is

approximately conserved so that all the information is contained in cross sections. The isotopic

cross section database in GALPROP currently consists of more than 2000 points collected from

sources published in 1969-1999.

A.7 Radioactive Decay

Radioactive instable isotopes in CRs are created both, by fragmentation of heavier nuclei (e.g.
10Be) and directly in the CR sources (e.g. 26Al). For a large population of nuclei we can use the

statisical approximation

N(t) = N0e
t/ ln 2τ1/2 (A.22)
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in order to describe radioactive decays. HereN0 is the intial population and τ1/2 is the half lifetime.

If we consider a frame moving with relativistic speeds, the half-lifetime becomes τ1/2 → γτ1/2.

So far the problem is well defined and easy to solve once the half-lifetimes associated to each

nucleus are given. Unfortuanetly, different decay modes are affected in different ways by CR

transport, while the half-lifetime is often a a combination of all decay modes. In the context

of CR propagation, the most relevant decay processes are β-decay and K-capture, where the

nucleus captures a K-shell electron. Naturally β-decay does not depend on a specific environment,

while for K-capture an attached electron is necessary. Since the ISM is very poor in electrons

the lifetime of a K-capture isotope can be significantly longer than the ones measured on Earth.

The importance of unstable elements resides in the possibility of measuring the average local age

of CRs. Pioneering work on this subject focussed on 10Be (Garcia-Munoz et al., 1977; Hagen

et al., 1977; Webber et al., 1977) followed by heavier elemts like 26Al (Freier et al., 1980), 36Cl

(Wiedenbeck, 1985) and 54Mn (Leske, 1993). It truns out that the typical age of a CR is about

10− 20Myr.This value can be used to select the interesting unstable nuclei for cosmic ray physics

once the γ-factor that enhances the lifetime of the nuclei is taken into account. In Donato et al.

(2002) a complete list of such a nuclei is given. Only three purely β-decay unstable elements

have a half-life within the interval 1 kyr-100 Myr as reported in Table A.1 The transition from

Fe to Ni, includes the transition from Fe to Co as an intermediate step with a half-life of 1.5 Myr

while transition from Co to Ni is immediate from a cosmic ray point of view (τ1/2 ∼ 5 yr). Such

short-lived intermediate steps do not have to be propagated and the complete decay chain can be

executed at once.

Z Nucleus Daughter tunit
1/2 (error)

4 10
4 Be 10

5 B 1.51Myr(0.06)

6 14
6 C 14

7 N 5.73kyr(0.04)

26 60
26Fe (6027Co

β−→)6028Ni 1.5Myr(0.3)

Table A.1: Pure β unstable isotopes (1 kyr < t1/2 < 100 Myr) from Donato et al. (2002)

The interesting elements that undergo purely electronic capture are summed in Table A.2. Another

set of nuclei that are worth to be considered, show a mixed electronic capture and β decay that

means that the half-lives associated to the two channels are comparable. A list of these nuclei is

presented in Table A.3. An obvious application of unstable nuclei in the context of cosmic ray

physics, is the evaluation of the halo height. Strong & Moskalenko (1998) used the ratio 10Be/9Be

to gain information about the halo in connection with the Ulysses data (Connell et al., 1998).

Further improvement was presented in Strong & Moskalenko (2001) where the ACE data were

added to obtain the more robust estimate zh = 3 − 7kpc. Donato et al. (2002) pointed out that

the most probable distance L =
√
Dγτ0 covered by unstable elements is not enough to make them

sensitive to the boundaries of the propagation volume. This can be seen clearly in table A.4 where

we find the rest frame lifetimes and corresponding values of L for some β radioactive nuclei at two

different energies as presented in Donato et al. (2002). Of course the quoted distances strongly

depend on the diffusion coefficient, which itself depends on the transport model used, but even

if the values were true for any model, the conclusion that the halo height cannot be constrained

from radioactive instable isotopes is incorrect: Together with the transport parameters the halo

height determines the CR flux and this way the escape time of CRs, which is measureable via the

ratio of radioactive stable to instable isotopes.
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Z Nucleus Daughter tunit
1/2 (error)

4 7
4Be 7

3Li 53.29d(0.07)

18 37
18Ar 37

17Cl 35.04d(0.04)

20 41
20Ca 41

19K 103kyr(4)

22 44
22Ti (4421Sc

β+→)4420Ca 49yr(3)

23 49
23V

49
22Ti 330d(15)

24 48
24Cra (4823V

β+→)4822Ti 21.56h(0.03)b

24 51
24Cr 51

23V 27.702d(0.004)

25 53
25Mn 53

24Cr 3.74Myr(0.04)

26 55
26Fe 55

25Mn 2.73yr(0.03)

27 57
27Co 57

26Fe 271.79d(0.09)

28 59
28Nic 59

27Co 80kyr(11)

aThis nucleus has an alowed β transition, but contrary to 54Mn and 56Ni, it has not been studied recently, so

that we can set it as a pure K-capture decay.

bIn this two step reaction, the second transition 48V
β+
→

48

Ti has a half lifetime grater than the first one

(15.9735d(0.0025). Nevertheless, this second reaction can be taken as immediate, because of its β nature. We thus

can consider this second element as a ghost. Finally, only the first reaction ( 48Cr →48 V) enters the decay rate.)
cThis nucleus has a β decay, but with τ1/2 > 100 Gyr, thus it is sufficient to take into account only the K-capture

channel.

Table A.2: Pure K-capture isotopes from Donato et al. (2002)

Z Nucleus Daughter (EC) tunit
1/2 (error) Daughter (β) tunit

1/2 (error)

13 26
13Al 26

12Mg 4.08Myr(0.15) 26
12Mg 0.91Myr(0.04)

17 36
17Cl 36

16S 15.84Myr(0.11) 36
18Ar 0.307Myr(0.002)

25 54
25Mn 5424Cr 312.3d(0.4) 54

26Fe 0.494Myr(0.006)

28 56
28Ni (5627Co

β+→)5626Fea 6.075d(0.02) (5627Co
β+→)5626Fe 0.051Myr(0.022)

a56
26Co decays via electronic capture (80%) and β+ (20%). Since the half life time for electronic capture is of the

order of two months, one cann assume that the only effective channel is β-decay. Note that these values are taken

from Goldman (1982). More recent references Audi (1997) or nuclear charts on the web are ignored because they

give either pure β channel or pure electronic capture channels.

Table A.3: Mixed K-captire and β-decay isotopes from Donato et al. (2002)

τ0(Myr) 1 GeV/nuc 10 GeV/nuc

10Be 2.17 220 pc 950pc
26Al 1.31 110 pc 470pc
36Cl 0.443 56 pc 250 pc

Table A.4: Propagation distance for unstable nuclei. From Donato et al. (2002).
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Crank-Nicholson coefficents

B.1 Crank-Nicholson coefficients for R-dependent convec-

tion

The propagation method used in GALPROP can be found in Strong & Moskalenko (1998). For

the numerical solution of the transport equation the Crank-Nicholson implicit method is used

Press et al. (1992). Following the notation of the GALPROP explanatory supplement Strong

& Moskalenko (2006) we find the Crank-Nicholson coefficients for R-dependent convection in z-

direction to be

α1

∆t
=
V (Rj , zi−1)

zi − zi−1
,
α2

∆t
=
V (Rj , zi)

zi − zi−1
,
α3

∆t
= 0 (B.1)

for z > 0 and

α1

∆t
= 0,

α2

∆t
=
V (Rj , zi)

zi+1 − zi
;
α3

∆t
=
V (Rj , zi+1)

zi+1 − zi
(B.2)

for z < 0.

For transport in momentum space the coefficients read

α1

∆t
= 0

α2

∆t
=
V (Rj , zi+1) − V (Rj , zi)

zi+1 − zi

pi
3(pi+1 − pi)

(B.3)

α3

∆t
=
V (Rj , zi+1) − V (Rj , zi)

zi+1 − zi

pi+1

3(pi+1 − pi)

for z > 0 and

α1

∆t
= 0

α2

∆t
=
V (Rj , zi−1) − V (Rj , zi)

zi − zi−1

pi
3(pi+1 − pi)

(B.4)

α3

∆t
=
V (Rj , zi−1) − V (Rj , zi)

zi − zi−1

pi+1

3(pi+1 − pi)

for z < 0.
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B.2 Crank-Nicholson coefficients for anisotropic diffusion

Following the notation of the GALPROP explanatory supplement Strong & Moskalenko (2006) we

find the Crank-Nicholson coefficients for the R and z dependent diffusion coefficients DRR(R, z, p)

and Dzz(R, z, p) to be

α1

∆t
=

DRR(Ri, zj , pj)

(Ri+1 −Ri)(Ri −Ri−1)
− DRR(Ri, zj , pj)

Ri(Ri −Ri−1)
−

−DRR(Ri+1, zj , pj) −DRR(Ri−1, zj , pj)

(Ri+1 −Ri−1)2
,

α2

∆t
=

DRR(Ri, zj , pj)

(Ri+1 −Ri)(Ri+1 −Ri)
+

DRR(Ri, zj , pj)

(Ri+1 −Ri)(Ri −Ri−1)
, (B.5)

α3

∆t
=
DRR(Ri+1, zj , pj) −DRR(Ri−1, zj , pj)

(Ri+1 −Ri−1)2
−

− DRR(Ri, zj , pj)

Ri(Ri+1 −Ri−1)
+
DRR(Ri+1, zj , pj)

(Ri+1 −Ri)2

for transport in R direction and

α1

∆t
=

Dzz(Rj , zi, pj)

(zi+1 − zi)(zi − zi−1)
− Dzz(Rj , zi+1, pj) −Dzz(Rj , zi−1)

(zi+1 − zi−1)2
,

α2

∆t
=
Dzz(Rj , zi, pj)

(zi+1 − zi)2
− Dzz(Rj , zi, pj)

(zi+1 − zi)(zi − zi−1)
, (B.6)

α3

∆t
=
Dzz(Rj , zi+1, pj) −Dzz(Rj , zi−1, pj)

(zi+1 − zi−1)2
+
Dzz(Rj , zi, pj)

(zi+1 − zi)2

for transport in z direction. In the limit of an equidistant grid and constant diffusion our Crank-

Nicholson coefficients agree with those used in Strong & Moskalenko (2006) except for a factor 2 in

α1 and α3 for transport along R. However, deriving these coefficients for the case of an equidistant

grid and constant diffusion from their Eq. 25 we find

α1

∆t
= DRR

Ri − ∆R

Ri(∆R)2
,

and

α3

∆t
= DRR

Ri + ∆R

Ri(∆R)2

in agreement with our coefficients. The coefficients for diffusive reacceleration remain unchanged,

because here only derivatives in momentum space occur. However, if Dzz > DRR one has to

keep in mind that vα has to be considered an effective parameter, scaled with the anisotropy in

diffusion, e.g. v̄α = vα ·
√

Dzz/DRR



Appendix C

Halo Parameters

The halo profile used for the analysis of the EGRET and Fermi-LAT data is taken from Sander

(2005). It can be parameterized by a spherical halo with the superposition of two Gaussian rings at

radius Rn with a width σR,n. The ring density above the plane is assumed to decrease exponetially

with a decay constant σz,n. The total halo profile can be written as

ρχ(~r) = ρ0 ·
(

r̃

r0

)−γ
[

1 +
(

r̃
a

)α

1 +
(

r0
a

)α

]

γ−β
α

+
2
∑

n=1

ρn exp

(

− (r̃gc,n −Rn)
2

2 · σ2
R,n

−
∣

∣

∣

∣

z

σz,n

∣

∣

∣

∣

)

(C.1)

with

r̃ =

√

x2 +
y2

ε2xy
+
z2

ε2z
, r̃gc,n =

√

x2
(n) +

y2
(n)

ε2xy,n
, (C.2)

and the excentricities εxy and εz of the triaxial halo profile and the excentricities εxy,n of the

elliptical rings. Additional degrees of freedom are the angles with respect to the axis earth -

galactic center of the halo φgc and of the rings φn, i.e. each component has its own coordinate

system which is rotated around the z-axis.

The radial width of the outer ring is taken to be different for the inner and outer side as expected

from the infall of a dwarf galaxy. Since infalling matter has an angular momentum with respect

to the GC it cannot reach the GC. A Gaussian profile still has a non vanishing density in the

galactic center so the shape was modified to fall off to zero within a distance dn. The fall off is

parametrized by two quadratic functions

ρ(r) =

{

4ρn

d2n
· (r − (Rn − dn))

2 for (Rn − dn) < r < (Rn − dn/2),

ρn − 4ρn

d2n
· (r −Rn)

2 for (Rn − dn/2) < r < Rn
(C.3)

The parameters of the halo profile used in this work can be found in Table C.1 and are those

of Sander (2005). Details on the implementation of the halo profile and the fit can be found in

Sander (2005) and de Boer et al. (2005).
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Parameter PISO with rings

ρ0 [GeV cm−3] 0.5a (0.725b)

ρtot at earth [GeV cm−3] 1.2

r0 [kpc] 8.3

α 2

β 2

γ 0

a [kpc] 5

εxy 0.8

εz 0.75

φgc [◦] 90

ρ1 [GeV cm−3] 4.5

R1 [kpc] 4.15

σr,1 [kpc] 4.15

σz,1 [kpc] 0.17

εxy,1 0.8

φ1 [◦] -70

M1 [M⊙] 9.3 · 109

ρ2 [GeV cm−3] 1.85

R2 [kpc] 12.9

σr,2 [kpc] 3.3

d2 [kpc] 4

σz,2 [kpc] 1.7

εxy,2 0.95

φ2 [◦] -20

M2 [M⊙] 8.5 · 1010

boost-factor (GALPROP) 10c

boost-factor (halofitter, rings) 8.61d

boost-factor (halofitter, no rings) 10.69e

aFor the halo profile from Sander (2005) used in GALPROP
bFor the halo profile used in the fits performed with the halofitter presented in this work. The difference in

the local halo density results from the fact that the local halo denisty is normalized to the rotation curve at the

position of the Sun. Different from Sander (2005) we here use the slightly smaller velocity of 244 km/s (Gillessen

et al., 2009; Reid & Brunthaler, 2004).
cThis boost factor refers to ρ0=0.5 [GeV cm−3]
dThis boost factor refers to ρ0=0.725 [GeV cm−3]
eThis boost factor refers to ρ0=0.725 [GeV cm−3]

Table C.1: Fit results for the pseudo-isothermal profile with rings; for the calculation of the local density

the position of the earth was assumed to be 0.1 kpc above the galactic plane. From Sander

(2005).



Appendix D

Magnetic Mirrors and Trapped

CRs

In section 3.5.4 we introduced the idea of CR trapping by molecular cloud complexes. If magnetic

reflection on molecular clouds is indeed efficient, the CR interaction rate with the H2 component

of the ISM would be greatly reduced. Trapping by MCCs cannot entirely be modelled by diffusion.

At any point in time CRs consist of a passing and a trapped fraction. The passing fraction is taken

care of by the diffusion tensor, the trapped fraction is not subject to a purely diffusive movement.

Although trapped particles scatter on magnetic turbulences the scattering always occurs under an

angle of π, thus allowing for momentum losses, fragmentation and radioactive decays in the atomic

phase of the gas without any change of the spatial CR distribution. It is entirely possible that the

trapping efficiency of MCCs is very small. Even in this case still an effective reflection from the

high field regions in MCs is expected, because the spectral analysis of the positron annihilation

line strongly supports reflection of CRs by MCs (see section 3.5.4). A detailed description of MCC

trapping can be arbitrary complicated: The time CRs are trapped inside a MCC and the depth

CRs penetrate into MCs are basically unknown. In addition MCCs are moving in the ISM and can

thus contribute signififanctly to CR reacceleration (Zirakashvili, 1999) (see section 2.3.2). Without

any assumptions about the efficiency of trapping by MCCs, we can estimate the maximum impact

of trapping by molecular clouds by assuming that the H2 distribution does not contribute the

secondary production, which means that CRs are totally excluded from MCs. Figure D.1 shows
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Figure D.1: The reduction in B/C (left) and 10Be/9Be (right) exptected in an aPM with complete

exclusion of CRs from MCs.
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the contribution of the H2 component to B/C and 10Be/9Be.

An intresting feature of a model with reflection by MCs is the fact that the soft γ-ray gradient

problem dissappears: From Fig. 3.2 it is clear that the peak in the gas distribution and conse-

quently the γ-ray emissivity is due to molecular hydrogen. If CRs are excluded from this phase

of the ISM by magnetic reflection, the CRs interaction rate with H2 is zero and consequently the

gradient in diffuse γ-rays will be flat enough to be compatible with the SNR distribution without

the help of convection.

Modelling Magnetic Trapping Assuming a homogeneous gas distribution the interaction

and decay rate is just proportional to the average length of the path CRs traveled: 1/τi,d ∼ s.

In the presence of magnetic traps this pathlength is elongated by the additional pathlength CRs

lay back in the trapping regions 1/τ ′i,d ∼ s + st. In a diffusion model with the interaction rate

defined by the diffusion coefficient (and other transport parameters), the interaction and decay

rate 1/τi,d has to be replaced by the increased rate 1/τ ′i,d = GMCC · ri,d with GMCC = 1 + s/st.

This way, in the presence of trapping the fragmentation and decay rate, momentum losses and

secondary production rate in the molecular component of the gas remain unchanged and while

the corrresponding processes in the atomic component are enhanced by a factor GMCC .

The trapping efficiency GMCC has another physical meaning: it is given by the ratio of the

maximum field strength Bmax a CR encounters at the mirror point and the typical field strength

in the ISM BISM . Since BICM/Bmax is only weakly constrained GMCC is essentially a free

parameter. Chandran (2000) considered values of up to 200 for GMCC . Note, that the above is

still a very simple estimate. The trapping efficiency GMCC might feature and energy dependence

due to the energy dependent diffusive scattering length and in addition a reacceleration process is

expected to occur if the traps are moving.
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