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Abstract

In the current information era, everyone has instant access to huge amounts
of textual data. Unfortunately, the information is often unstructured and
difficult to handle. So the use of search engines is indispensable.

Different aspects of search engines are well-established but still active
areas of research. Across the relevant literature, inverted index data struc-
tures have been proved to be the key to fast text search. Classical inverted
index-based search engines store at least major parts of their data structures
on disk. But with growing amounts of RAM in recent computer systems it
becomes possible to keep everything in main memory.

This thesis studies algorithms and data structures for in-memory text
search in a bottom-up fashion. We investigate the predominant operation
on inverted indexes, which requires intersecting two sorted lists of integers.
We explore compression and performance of different list data structures
in combination with suitable intersection algorithms. We present a new
integer list data structure that comes along with an intersection algorithm
called Lookup. It has interesting theoretical properties, and outperforms
previous algorithms in particular for the very frequent case when the input
lists have quite different lengths.

Using the new data structure, we develop the algorithmic core of a full
text database that allows fast Boolean queries, phrase queries, and docu-
ment reporting using less space than the input text. The system uses a
carefully choreographed combination of classical data compression tech-
niques and inverted index based search data structures. It has an efficient
memory management that avoids fragmentation and that keeps down the
space requirement close to the amount that we would expect by summing
up the sizes of all its components.

As phrase queries are among the computationally most expensive op-
erations of text search engines, we present a new flexible approach that
allows a speedup of the most difficult queries, yielding a certain perfor-
mance robustness. We also use this approach to design a new index scheme
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ABSTRACT

for small text documents tailored to database-like scenarios. It outperforms
classical positional indexes for both space requirement and querying time.

In contrast to other search engines that keep copies of documents for
return as hits, our document reporting algorithm needs only to store the
differences between the information contained in the indexes and the orig-
inal documents. In most applications, reconstructing documents is faster
than retrieving them from disk.

We extensively evaluate all our algorithms and data structures using
real-world text collections and query logs. Our experiments show that our
main memory text search engine can considerably improve query times of
disk-based systems, and we show that inverted indexes are preferable to
purely suffix array based techniques for in-memory (English) text search
engines.
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Zusammenfassung

Im heutigen Informationszeitalter hat jeder direkten Zugriff auf riesige
Mengen von Textdokumenten. Sei es im Internet, im Firmennetzwerk oder
am eigenen PC — tiberall sind Informationen leider oft unstrukturiert und
teils uniibersichtlich abgelegt. Um diese Datenflut {iberhaupt in den Griff
zu bekommen, ist es unerldsslich, Suchmaschinen zu bemiihen.

In Praxis und Forschung hat sich der invertierte Index als effiziente
Datenstruktur fiir schnelle Textsuche durchgesetzt. Dabei wird zunéchst
jedem Textdokument einer zu indizierenden Dokumentensammlung ein
ganzzahliger Bezeichner zugewiesen. Bei der Konstruktion des invertier-
ten Index wird dann fiir jedes Wort der Dokumentensammlung eine Lis-
te aller Bezeichner angefertigt, in deren Dokumenten dieses Wort auftritt.
Um damit zum Beispiel nach Dokumenten zu suchen, die zwei bestimmte
Worter enthalten, muss einfach nur die Schnittmenge der entsprechenden
Listen berechnet werden.

Klassische Suchsysteme speichern aufgrund der grofien Menge von Da-
ten den iiberwiegenden Teil ihrer Indexstrukturen auf Festplatten. Da aber
aktuelle Computersysteme zunehmend mehr RAM besitzen, wird es (bald)
moglich, alle Daten im Hauptspeicher zu halten. Der sich daraus ergeben-
de Vorteil liegt nahe: Durch die um einen Faktor von 10~7 geringere Latenz
und die um einen Faktor von 10 héhere Bandbreite bei Speicherzugriffen
des RAM gegeniiber einer Festplatte ist zu erwarten, dass sich die Suchzei-
ten erheblich verkiirzen. So ergibt sich auch ein viel feinkdrnigeres Opti-
mierungspotential.

Beginnend mit einer der haufigsten Elementaroperationen von inver-
tierten Indices, dem Berechnen der Schnittmenge zweier sortierter Listen
von ganzen Zahlen, untersucht diese Dissertation Algorithmen und Da-
tenstrukturen fiir Hauptspeichersuchmaschinen. Dabei steht nicht nur die
reine Laufzeit im Vordergrund, sondern auch eine moglichst kompakte Re-
prasentation der zugrunde liegenden Indexstrukturen. Wir untersuchen
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bereits existierende Arrayreprédsentationen in Kombination mit verschie-
denen Schnittalgorithmen. Basierend auf der Idee, die ganzzahligen Do-
kumentenbezeichner randomisiert zu vergeben (und damit randomisierte
Listen zu erhalten), stellen wir eine neue Arraydatenstruktur vor, die mit
einem nicht ausschliefilich vergleichsbasierten Schnittalgorithmus einher-
geht. Durch Aufteilung der Listenelemente in Bereichsintervalle mit kon-
stanter Grofie einer Zweierpotenz und das Abspeichern von Einsprungs-
punkten in diese Intervalle, ist es wahrend des Schnitts moglich, direkt
oder kurz vor die Stelle zu springen, an der ein bestimmter Wert zu erwar-
ten wire. Dadurch reduziert sich die Anzahl der zu betrachtenden Werte
erheblich, und durch die Randomisierung lassen sich interessante theoreti-
sche Eigenschaften feststellen. Der Algorithmus ist fiir den hiufigsten Fall
unserer Anwendung zugeschnitten, falls die Listen in ihrer Linge sehr un-
terschiedlich sind. Gegeniiber dem klassischen Algorithmus, der die Listen
sequentiell schneidet, ist er in den meisten Féllen sogar um Gréfienordnun-
gen schneller.

Mit Hilfe unserer neuen Datenstruktur entwickeln wir den algorith-
mischen Kern einer Volltextdatenbank, die Boolsche UND-Suchen, Phra-
sensuchen und die Rekonstruktion indizierter Texte unterstiitzt. Die dabei
benétigten Datenstrukturen belegen weniger Platz als der Eingabetext. Im
Gegensatz zu anderen Suchmaschinen, die zusatzlich zu den Indexstruktu-
ren auch die Originaltexte speichern, um diese als Resultate zuriickgeben
zu konnen, halt unser Volltextdatenbankkern nur die Differenzen zwischen
diesen Originalen und den Informationen, die ohnehin schon im Index
enthalten sind. In den meisten Anwendungen in der Praxis ist die Rekon-
struktion der Texte aus unseren Datenstrukturen schneller, als wenn diese
von der Festplatte nachgeladen werden miissten. Wir skizzieren auch, wie
diese Indexdatenstrukturen schnell und platzeffizient aufgebaut werden
koénnen, indem Fragmentierung und hdufiges Kopieren vermieden wird.

Die Suche nach kurzen Folgen von Woértern (Phrasen) ist eine der zeitin-
tensivsten Aufgaben einer Textsuchmaschine. Denn bei solchen Phrasen-
suchen muss nicht einfach nur bestimmt werden, in welchen Dokumenten
die einzelnen Worter einer Phrase vorkommen, sondern auch an welcher
Stelle. Nur so kann eine Phrase eindeutig identifiziert werden. Dazu wer-
den klassischerweise Positionsindices verwendet. Diese speichern simtliche
Positionen an denen ein gegebenes Wort innerhalb eines gegebenen Doku-
ments auftritt. Wir prasentieren einen Algorithmus, der die schwierigsten
kurzen (Teil-)Phrasensuchen fiir eine Sammlung von Textdokumenten er-
mittelt und beschleunigt. Dabei schitzt er deren Aufwand durch ein fle-
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xibles Kostenmafs, und speichert deren Ergebnis im Voraus, falls dieser zu
hoch sein sollte. So ist es moglich, eine gewisse Robustheit zu erlangen.
Wir nutzen diesen Ansatz auch, um einen auf sehr kurze Texte zugeschnit-
tenen Index zu entwerfen. Dabei speichern wir die Wortpositionen nicht
explizit wie in einem Positionsindex, sondern implizit, indem wir fiir je-
des Dokument die Abfolge dessen Worter in komprimierter Form ablegen.
Fiir eine Phrasensuche fithren wir dann zunéchst eine UND-Suche nach
den Teilwortern durch, um mogliche Trefferdokumente vorzuselektieren.
Schliefslich identifizieren wir tatsdchliche Treffer mittels sequentieller Su-
che auf den Wortfolgen der Kandidatdokumente. Um die Vorselektion zu
verfeinern und damit diesen Suchvorgang zu verkiirzen, speichern wir im
invertierten Index zusétzlich kurze (Teil-)Phrasen nach obigem Schema.
Als Resultat bietet unser Kurztextindex sowohl schnellere Durchschnitts-
suchzeiten, als auch bessere Suchzeiten unter den ungiinstigsten Rahmen-
bedingungen und benétigt dabei weniger als dreiviertel des Platzes im Ver-
gleich zu unserem Positionsindex.

Wir zeigen ausgewdhlte Details unserer hoch-modularen und dennoch
effizienten Implementierung, die es erlaubt, auf verschiedenen Abstrakti-
onsebenen schnell und einfach einzelne Komponenten auszutauschen. So
ist es moglich, alle vorgestellten Algorithmen und Datenstrukturen auf ei-
ner gemeinsamen Basis zu evaluieren. Dabei greifen wir auf reale Textdo-
kumente und Anfrageprotokolle zuriick. Unsere Ergebnisse zeigen, dass
unsere Hauptspeichersuchmaschine bis zu zwei Gréfienordnungen schnel-
ler als eine herkommliche Festplatten-basierte Suchmaschine ist. Aufler-
dem zeigen wir, dass unsere Hauptspeichersuchmaschine in praxisrelevan-
ten Anwendungen selbst fiir Phrasensuchen Suffixarray-basierten Haupt-
speichersuchsystemen vorzuziehen ist.
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CHAPTER

Introduction

Searching in huge collections of text documents is a pervasive feature of
modern life. Many search engines are deployed to execute queries on col-
lections of documents or records taken from the web, from personal com-
puters, or from large corporate intranets and databases. The amount of
information is growing day by day.

In practice, modern computer systems use different types of memory
to store their data structures. They are organized in a hierarchy around the
CPU, as a tradeoff between performance and size. The lower a storage is
located in this hierarchy, the lesser its bandwidth and the greater its access
latency from the CPU. Traditionally, search engines store at least the ma-
jor parts of their indexes on the hard disk, a low-level storage. But now,
with growing amounts of RAM, it is possible to step up the hierarchy and
to hold all the index data in main memory. Memory latency is about 107
times lower and its bandwidth about 10? times higher than disk. Never-
theless, the amount of main memory assigned to a single processing core is
always lower than the size of a hard disk. But the data can be distributed
over a cluster of low-cost machines each indexing a small part of the collec-
tion [19]. As a result, we can expect reduced times for answering queries
associated with a finer-grained potential for optimization.



CHAPTER 1. INTRODUCTION

1.1 Basics

Index data structures for (disk-based) text search engines have been stud-
ied extensively in the past. Across the relevant literature, the inverted in-
dex has been proved to be the method of choice for fast query evaluation
[126, 135].

Figure 1.1 shows a possible scheme for the indexing process of an in-
verted index based text search engine. Each document (tagged with an in-
teger document identifier) is at first analyzed by the preprocessor. The pre-
processor normalizes the document. It removes all term separators (spaces,
commas, ...), replaces non-alphanumeric symbols, and unifies upper and
lower-case characters. The preprocessor may also perform further analysis,
for example linguistic extraction. But in any case, it returns a list of single
terms that occur in the document. The set of all these terms in the index is
called the vocabulary. It is stored in a dictionary that maps a unique integer
identifier (ID) to each of the terms. The inverted index itself just handles
IDs: for each term ID, there is an inverted list of document IDs showing in
which documents the term appears. When a query has to be resolved, it is
preprocessed in the same way as the documents, resulting in a sequence of
query term IDs. Actually, it is not mandatory for inverted indexes to assign
identifiers to terms. Instead, in some implementations, the dictionary di-
rectly stores pointers to the inverted lists. However, as we will see later, it
is sometimes of great value to use IDs.

Such document-level (or document-grained) indexes can answer queries
for uncoupled terms. But locating phrases in one or more documents needs
additional positional information. More precisely, it is required to know
the positions where each term occurs in each document. These positions
are usually stored either in-place after each document ID in the inverted list,
or in a separate structure. An index that contains positions is also called a
positional index.
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1.2. OVERVIEW OF THIS THESIS

to
be
content
Preprocessor or
not
to
v
(term, doc ID, <pos.>)
— —
0/1,4,6
Dictionary 1l1,5,7
2(1,9
3(1,2,3
2 (term ID, doc ID, <pos.>)
not | 4
or 3
to 1
the | 0

Inverted Index

Figure 1.1: Indexing process on an inverted index based search engine

1.2 Overview of this Thesis

We summarize previous work dealing with different (low-level) aspects of
text search engines in Chapter 2. With main-memory systems in mind, we
investigate in Chapter 3 the predominant operation on inverted indexes,
which requires intersecting two sorted lists of document IDs. We explore
compression and performance of different inverted list data structures and
suitable intersection algorithms. Furthermore, we introduce a new inverted
list data structure together with a new intersection algorithm that has in-
teresting theoretical properties, and which also outperforms previous ap-
proaches in many practical situations.

Using the results, we present in Chapters 4, 5, 6, and 7 the algorithmic
core of an inverted index based full text database that allows fast Boolean

queries, phrase queries, and document reporting using less space than the
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CHAPTER 1. INTRODUCTION

input text. The document reporting is based on a new technique that al-
lows us to reconstruct the document content by mainly using the infor-
mation stored in our inverted index data structures. In Chapter 6, we
present a method for speeding up phrase queries by adding carefully se-
lected phrases to an existing inverted index. In contrast to competing ap-
proaches, our scheme is flexible as it can be adapted to fit the specific char-
acteristics of a given text search engine implementation. Our approach out-
performs others especially for difficult queries, and it enables us to derive
theoretical performance guarantees for arbitrary phrase queries. We also
use our phrase index to design a new index scheme for short text docu-
ments that completely dispenses with a positional index. It uses less space
than a classical positional index, and it even outperforms the positional in-
dex for phrase queries.

In Chapter 8, we experimentally show by using real-world inputs that
all our approaches maintain their theoretical advantages in practice. More-
over, our experiments give evidence that our inverted index is preferable
over purely suffix array based techniques for in-memory (English) text
search engines.

We outline methods for processing updates of indexed documents
within our data structures in Chapter 9, and we give some implementation

details in Chapter 10. Finally, we summarize all our results in Chapter 11.



CHAPTER

Related Work

The area of efficient text search has been extensively studied in the past.
The most popular data structure for text search engines is the inverted in-
dex. This chapter illuminates different aspects of inverted indexes that are
covered by previous work. Above all aspects, there is a recurring tradeoff
between index compression and query performance. Besides the optimiza-
tion of inverted indexes, we also outline previous work on storage manage-
ment of index data structures, as well as on (query) caching, which is not a
technique that is restricted to inverted indexes. Finally, we briefly list work
dealing with suffix arrays. They have become an interesting alternative for

text searching since there are also compressed versions.



CHAPTER 2. RELATED WORK

2.1 Inverted Index Compression

In the past it was popular to exclude stop words or to prune the index (see
Carmel et al. [37]). Nowadays it is usual to apply lossless compression to
obtain exact and clear results (see Manning et al. [84]). The most common
lossless approaches work on sorted inverted lists. They reduce the list of
document IDs to a sequence of differences between consecutive document
IDs, and apply one out of the multitude of standard techniques for com-
pressing sequences of integers (see, for example, Salomon [104] or Trotman
[117]). An index using such a standard compression needs about 10 % of
the text size (see, for example, Witten et al. [126]).

Some authors investigated compression schemes adapted to the typi-
cal characteristics of document ID distributions in inverted lists. In real-
world scenarios, document IDs have the tendency to appear in clusters.
The binary interpolative coding of Moffat and Stuiver [87, 88] exploits this. It
stores the middle element of an inverted list in binary, and handles recur-
sively the two sublists in the resulting narrowed ranges, using only as few
bits as needed. This coding scheme can reduce the size of an inverted in-
dex by more than 10 % compared to the most compact integer compression
methods. Another coding scheme sensitive to variations in the density of
inverted lists was proposed by Anh and Moffat [4, 5, 6]. It splits the list
in small blocks of fixed-size binary words. The widths of the words in
each block are indicated by additional selector bits. This requires about 2 %
more space than the best standard techniques but can decompress inverted
lists 54 % faster. Zhang et al. [130] refine the approach of Anh and Moffat.
Zukowski et al. [137] propose to code integers in batches of fixed-width bi-
nary words. For each batch, they choose an independent word width b such
that the majority of the values to be coded is less than 2, and consequently
fit into the binary words. All greater values exceeding this range are en-
coded as exceptions using larger words. Blandford [25, 26], Silvestri et al.
[111, 110], as well as Blanco and Barreiro [24] give methods to enhance the
clustering property of inverted lists by reordering the document IDs. They
achieve further compressions of up to 40 % for suitable encoding schemes.
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2.1. INVERTED INDEX COMPRESSION

Scholer et al. [108], Zhang et al. [130], and Yan et al. [128] compare different
approaches regarding coding/decoding speed and compression.

All of these integer compression methods yield different tradeoffs be-
tween space and time. To get a reasonable parameter space in this thesis,
we mainly focus on the extremes of this tradeoff. In particular, we use
a highly optimized inverted list implementation that uses fixed-width bi-
nary words (see Section 3.2.1 and Chapter 10). In contrast to the fastest
coding methods mentioned above that also use fixed-width words (com-
bined with other techniques), ours has a simplified control structure, and
therefore, it is supposed to be faster in coding/decoding values (probably
at cost of compression). To cover the other extreme close-by the most com-
pact representations, we consider Golomb coding, which is a variable-bit
length encoding that has been successfully applied to inverted lists (see,
for example, [126]). Furthermore, we also use an encoding scheme that
falls between these two extremes called Escaping (see Section 3.2.1).

Especially the most compact inverted list compression techniques suf-
fer from the constraint that simple lists have to be (almost) completely un-
packed for accessing any single value. Therefore, Moffat and Zobel [90]
introduced a technique for reducing the number of unnecessarily decom-
pressed values. They divide the inverted lists into a sequence of blocks each
containing a fixed number of document IDs. A skip pointer in front of each
block stores the bit-length of the block. The document IDs within the blocks
as well as the value offsets of the blocks can be encoded as differences. To
access a value in a list, one can just unpack its block; all preceding blocks
can be skipped. Another inverted list structure was proposed by Anh and
Moffat [2] as an enhancement of Moffat et al. [92, 3]. They divide a list into
subintervals each spanning a power-of-two range. A header indicates the
number of document IDs falling in each interval. It is coded in unary, so
that the interval of the i-th document ID can be determined by counting
all zeros within the first 7 ones. The document IDs themselves are stored as
differences relative to their interval offsets using a fixed-width binary code.
Accessing the i-th value requires to add the interval offset to its difference
coded in the i-th binary word. Like the representation of Moffat and Zobel

7
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[90], the structure allows values to be skipped while accessing a list, but
locating an arbitrary value still requires O(n) time.

Recent theoretical work of Barbay and Navarro [18] explores techniques
to compress permutations of integer sequences. They apply their approach
to positional inverted indexes by interpreting the concatenation of all in-
verted lists as a permutation of the absolute term positions. In addition,
they store a pointer to each inverted list resulting in a full and very com-
pact inverted index representation. They show that their representation

enables them to execute classical inverted index operations in small time.

2.2 Inverted List Intersections

Intersecting inverted lists is one of the main operation of inverted index
based text search engines (see Chapter 3). The problem of sorted set in-
tersections has already been studied decades ago (see Hwang and Lin
[64, 65]). Their goal was to reduce the required number of comparisons
made between the elements. The simplest algorithm does a binary merge
by scanning both sets. For two sets with n and m elements, it needs n + m
comparisons in the worst case. If m < n, it is better to binary search each
element of the smaller set in the larger set, requiring mlgn comparisons
which can be improved to mlg ;- (see Section 3.3).! The approach of Baeza-
Yates [11, 13] binary searches the middle element of the smaller set in the
larger one, and proceeds recursively on the two resulting subsets.

Several authors have also investigated in the general case of intersect-
ing k sorted sets at once. The simplest approach repeatedly intersects the
two smallest sets. Using multiple binary search, the algorithm takes nlg 7
comparisons in the worst case. Demaine et al. [47, 48] and Barbay et al. [17]
give algorithms requiring fewer comparisons. The basic idea behind their
various approaches is to locate an eliminator from one set in all other sets,
using a variant of binary search. A greedy technique updates the eliminator

adaptively after it has been processed.

!In this thesis we set Ig z = log,, .



2.3. INDEX STORAGE AND CACHING

The number of comparisons as given in the works cited above is not al-
ways a good predictor of running time. In practice, binary search based
methods have several disadvantages. In real implementations, binary
search based algorithms beat merging only when n > 20m although at
n ~ 20m they perform several times fewer comparisons (see Baeza-Yates
and Salinger [13]). The main reason is that the linear access pattern of merg-
ing causes a good cache behavior. Furthermore, binary searching requires
random access which is incompatible with many compression techniques.

While the previous works above do not study both space efficient rep-
resentations and asymptotically optimal intersection algorithms, Sanders
and Transier [106], Culpepper and Moffat [45], Moffat and Culpepper [86],
as well as Claude et al. [43] compare different algorithms using different
compressed inverted list data structures.

2.3 Index Storage and Caching

Search engines store traditionally at least the major parts of their index
structures on hard disks. They use either storage managements that are
similar to those of Zobel et al. [136] or the persistent object stores of
databases as implemented by Brown et al. [29]. Luk and Lam [80] pro-
pose a main memory storage allocation scheme suitable for inverted lists
of smaller size using a linked list data structure. The scheme uses variable
sized nodes, so it is well suited for inverted lists that are subject to frequent
updates. Typically, such approaches are used in combination with larger
main indexes to overcome the bottleneck of updating search optimized in-
dex structures (see, for example, Cutting and Pedersen [46]). Due to the
growing amount of random access memory in computer systems, recent
work has also considered purging disk-based structures from index design.
Strohman and Croft [113] show how top-k Boolean query evaluation can be
significantly improved in terms of throughput by holding impact-sorted
(document-precise) inverted index structures in main memory (see Anh

and Moffat [7] for details on impact-sorted indexes).
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The advantages of random access memory were also exploited by pre-
vious work for improving the query performance of search engines by
caching. Brown et al. [29] use the buffer management of their object store
for caching inverted lists in main memory. While they use a Least Recently
Used replacement strategy, Jonsson et al. [67] compare different strategies
in interaction with some buffer-optimized query evaluation algorithms.
Zhang et al. [130] also investigate different replacement strategies, and
show their impact on compressed inverted lists. Tsegay et al. [118] show
results for caching only the parts of inverted lists that were actually needed
during answering previous queries. Caching of complete query results is
widely used and considered by several authors (see Lempel and Moran
[71], Xie and O’Hallaron [127], Markatos [85], or Williams et al. [124]).
Saraiva et al. [107] combines the approach of caching query results with
caching of inverted lists. Long and Suel [78] explore a three-level approach
of caching query results, inverted lists, and intersections of frequently oc-
curring pairs. Baeza-Yates et al. [12] compare different caching approaches
and give a good overview.

In this thesis, we focus on the basic (low-level) design of inverted index
based text search engines. Therefore, our work is orthogonal to caching,

and can even be combined with the techniques mentioned above.

2.4 Accelerating Phrase Queries

Decades ago, researchers began to create inverted indexes by indexing
phrases instead of single terms (see, e.g., Salton et al. [105]). But building
indexes that cover all phrases within a (large) document collection takes
enormous amounts of space and time. So authors designed a variety of
methods for selecting (short) phrases. All of these approaches focus on
choosing phrases that are as meaningful as possible. They use syntactical
and statistical analyses of a given text to extract suitable candidate phrases
for the index (see, for example, Salton et al. [105], Fagan [50], or Gutwin et
al. [60]). The main aim of such analyses is to improve the retrieval quality

in the absence of a full-text index.
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More recently, Williams et al. [123] proposed nextword indexes, in which
for each term or firstword, a list of all successors is stored together with the
positions at which they occur as a consecutive pair. With this approach,
phrase queries can be answered four times faster than by a classical posi-
tional inverted index. However, this technique requires an additional 50 %
to 60 % of the space occupied by a standard inverted index. This can be re-
duced to about 40 % to 50 % using the compression techniques of Bahle et
al. [14] at little cost in query performance. To achieve further reductions in
memory consumption, Bahle et al. [16] introduced partial nextword indexes.
A partial nextword index contains only the most common words as first-
words. It can be used in combination with a conventional inverted index
acting as fall-back for query terms that are not listed in the nextword index.
A partial nextword index enables phrase queries to be evaluated in half the

time using 10 % more space compared to an inverted index.

A combination of partial nextword index, partial phrase index, and in-
verted index was proposed by Williams et al. [124]. An existing query log
is analyzed to optimize the indexes. This reduces the average query time to
a quarter by indexing the three most common words as firstwords and the
10 000 most common phrase queries. The space overhead for the three-way
index combination is about 26 %.

Another method, based on the analysis of query logs, was introduced
by Chang and Poon [38]. Their approach divides the vocabulary into two
sets: rare terms and common terms. Common terms are the most frequent
terms found in the query log; all others are rare terms. For each common
term, there is a tree whose root-to-leaf paths contain all phrases from the
query log starting with that term and ending with a terminal term. Terminal
terms are defined by a lexical analysis of the query log: any term that is not
a preposition, adverb, conjunction, article, or pronoun is a terminal term.
Each leaf points to the inverted list for its phrase. The resulting common
phrase index shows 5% improvement in average query time over a partial
nextword index with only a 1 % extra storage cost. For long query phrases

the query time improvement can reach 20 %.
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All these approaches are designed for systems that hold major parts of
their indexes on disks. So the cited values apply for disk-based systems.

2.5 Suffix Arrays

A further text index data structure held mostly in main memory, and be-
coming more and more popular is the suffix array. Originally designed
for substring search, it stores all suffixes of a given text and can therefore
answer queries consisting of (concatenated) terms very quickly.

Due to their high space consumption, they were first unsuitable for
large text indexing. However, various authors have worked on the com-
pression or succinct representation of suffix arrays. For an overview see
Navarro and Mikinen [96] or the Pizza&Chili website [54]. According to
Gonzélez and Navarro [58], they need about 30 % to 150 % of the size of the
indexed text — depending on the desired space-time tradeoff. Moreover,
they are self-indexing, i.e. they can reconstruct the indexed text efficiently.
For comparison, a positional inverted index needs between 20 % and 100 %
of the text size depending on compression and speed (see, for example,
Witten et al. [126]). Unfortunately, inverted indexes can not reconstruct the
text, so they require this amount of space in addition to the (compressed)
text size.

Puglisi et al. [100] compared compressed suffix arrays and inverted
indexes as approaches for substring search. They indexed g¢-grams, i.e.
strings of length ¢, instead of words to allow full substring searches rather
than just simple term searches within their inverted index. They found
that inverted indexes are faster in reporting the location of substring pat-
terns when the number of their occurrences is high. For rare patterns they
noticed that suffix arrays outperform inverted indexes. Bast et al. have
observed that suffix arrays are slower for prefix search [20] and for phrase
search [21].

Ferragina and Fischer [51] investigated building suffix arrays on terms.
They need just about 80 % of the space of character-based suffix arrays and
are twice as fast during the construction. In recent work, Brisaboa et al.
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[27] design a new word-based (large alphabet) compressed suffix array, and
compare it to an in-memory inverted index implementation. They use an
inverted index that is built over the compressed text. The (compressed)
text is partitioned into equal-sized blocks rather than documents, such that
their inverted lists contain block IDs. In addition, they include skip val-
ues in the list for speeding up intersections. For searching a word, they
first obtain the list of block IDs from the index, and then they locate the oc-
currences within the compressed blocks by traversing them linearly. More-
over, they introduced an indexing scheme for their word-based suffix array
that allows non-searchable to be detached from searchable content. That
is, they indexed just a normalized version of the text and stored the dif-
ferences between the original input and normalized text separately. Their
result was that the word-based suffix array was faster for single-word and
phrase searches, particularly when using little memory. However, when
more memory is available, the inverted index can at least compete with
word-based suffix arrays.

13



CHAPTER 2. RELATED WORK

14



CHAPTER

Set Intersections

In this chapter, we consider sets of integers. We are motivated by inverted
lists as used by inverted index based text search engines. They contain in-
teger IDs each assigned to a unique indexed document. Whenever a user
asks for documents that contain several terms at once (executing an AND
query), the search engine has to intersect those lists. Therefore, set inter-
sections are the predominant operation on inverted index based search en-
gines, so they offer the greatest scope for optimizing such systems. In the
following, we explore different representations of sets as well as methods
for intersecting them. We show how the idea of randomized sets can lead to a
simple but very efficient data representation. This chapter is mainly based
on [106].
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3.1 Related Set Operations

3.1.1 Unions and Differences

As mentioned above, set intersections are the most common operation on
inverted indexes. Unions and differences are important as well, but they
are less frequently requested due to users’ querying behavior (see also
[112]). Unions of inverted lists are required when resolving an OR query of
different terms. Differences have to be calculated when a term should not
appear in the results (due to a Boolean NOT operator).

3.1.2 Rank and Select

Rank and select are very basic operations on sorted sets. For a set .S of
integers they are defined as follows. The rank r of an element e € S is
the number of elements in S which are not greater than e. Selecting ¢ in S
means retrieving the i-th smallest element in S. The two operations play an
important role in the design of succinct data structures [99]. They can also be
used for implementing intersections, unions, and differences [45, 44], and

they are used for building compressed versions of suffix arrays.

3.2 Set Representations

We consider a set S of n integers, and list the set as a sequence of its sorted
elements (s1,...,s,) throughout this thesis. The simplest representation
for S is a list of its n integers each stored in a machine word of its own.
In this thesis, list denotes a continuous sequence in memory, i.e. an array,
unless otherwise stated. Therefore, this uncompressed format requires n

machine words, i.e. 32n or 64n bits on modern computer systems.

3.2.1 Compression

A simple approach to reduce the space consumption of such integer arrays
is bit-compression. It uses only the bits actually needed to represent the inte-
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gers under consideration. As s,, is the maximal value in .S, bit-compression

reduces the space consumption of S to n [1g s, | bits.

We can use A-encoding to reduce the maximum value to be coded. In-
stead of plain values, we store differences: the sorted sequence of the ele-
ments of S is coded as (di,...,d,) := (s1,52 — S1,53 — S2,...,8n — Sp—1)-
Sometimes, A-encoding is referred to as encoding of d-gaps. If the ele-
ments in S are uniformly spread over the range [1, s,|, bit-compressed A-
encoding can reduce space consumption to nlg > bits. Of course, differ-
ences can get as big as s, —n + 1. Thus, in the worst case, A-encoding with

bit-compression is no better than bit-compression alone.

Variable Bit Length Encodings. This type of coding addresses the above
mentioned drawback of bit-compression. Suppose we could encode an in-
teger d using lgd bits. Then A-encoding of S would need } " ,lgd; <
nlg *= bits. There is a multitude of encoding schemes with different trade-
offs between space consumption and coding/decoding cost [117, 122]. But
none of them can reach this overoptimistic space consumption. In the fol-

lowing, we describe two of the most popular schemes.

Escaping. Consider a parameter b. A k-bit integer is split into K =
[k/(b—1)] pieces of b — 1 bits each and encoded into K blocks of b bits
each. All but the last block are marked by a 1 in the most significant bit.

Let us assume that all n integers of the set S are uniformly distributed
over the universe U. Then p = {; is the probability for a given value to be
contained in S, and 1 —p is the probability not to be contained in S. A value
d in the A-encoding of S means that there is a gap of d — 1 integers that are
not contained in S. Hence, its probability of occurrence is approximately

d=1p. We can ob-

given by the geometric distribution Pr(X = d) = (1 — p)
tain the probability of occurrence for a value requiring w bits by summing

up all single probabilities of the w-th power-of-two range, resulting in the
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frequency distribution

2w_1 2w 1

faw)y=n Y PrX=d)=n""3 (1-pe

d=2w—1 1 B p d=2w—1

The latter sum is the difference between two finite geometric series s,, =

Zkoq_

p. Therefore,

1—pd:2w71 q—1 q—1
QW 2w—1
N1 :1_p((1—) 1-p)")

(R (R

We can determine the space M, (b) required to store the sequence of the n
uniformly distributed A-values of S by summing up the space according
to the frequency distribution f,,. The maximum possible A-valueis U — n,

and therefore,

[lg(U—n)]

Vol®) = X0 o )]

Using M,,(b), the optimal parameter Bn for the A-encoding of S is given by
by = mbin M, (b).

Note that in practice b and [lg(U — n)] are bounded by the width of a ma-
chine word. Therefore, the computational complexity for determining by, is
low. Escaping with b = 8 is also called variable byte coding [122]. Due to its
use of fixed size pieces, Escaping is amongst the fastest to decompress.

Golomb Coding. Again, consider a parameter b. An integer value v > 0

is coded in two parts: the quotient ¢ = |v/b| and the remainder r = v — ¢b.

18



3.2. SET REPRESENTATIONS

The quotient ¢ is coded in unary followed by the remainder r in trun-
cated binary encoding over the finite alphabet {0,1,...,b6 — 1}. Truncated
binary encoding is a generalization of binary coding where the number
of all codewords is not necessarily a power of two (for details see [120]).
Golomb coding is very space efficient for the geometrically distributed A-
values of equally distributed sets (see [104]). Therefore, it is a very popu-
lar coding scheme for inverted lists. However, decompression of Golomb
codes is much more expensive than decoding escaped lists. According to
[126], the parameter b for the A-encoding of a uniformly distributed set
S = {si|li = 1l.n} with (dy,...,dp) := (51,52 — S1,...,8, — Sp—1) is opti-
mally chosen as

Using this parameter, Golomb codes have clearly limited memory re-
quirements. A complex analysis is given by [89], but the following theorem
and its proof already show this nice property.

Theorem 1. Let S = {s;|i = 1..n} be a set of n integers and (di,...,dy) =
(S1,82—51,53—52,...,Sn—Sn—1). Storing the A-values d;_,, of S using Golomb
encoding with parameter b = [In 252 requires not more than n(1+ [1g £+ 25)
bits.

Proof. Let v be an integer value, ¢ = |v/b], and r = v — bg. The unary
coding of ¢ requires |v/b| + 1 bits and the truncated binary encoding of r is
not larger than [lg b] bits. Therefore, the Golomb representation of v (using

parameter b) is not larger than ¢+ 1+ [lg b] bits. Hence, the maximum space

19



CHAPTER 3. SET INTERSECTIONS

in bits required to store the sequence of A-values (d;,ds, ds, ..., d,) is

Moz = i(ﬁj +1+[lgb]) =n(1+ [lgb1)+izn; H}J

=1
< n(1+[lgbl) +Z% = n(1 + [lgb])+2?bldi

i=1
Z?:l di
[In 2% > di
E?:l di
In 2% Z?:l dz‘
1

=n(1+[lgb] + é) <n(l+ ’VIg Z—‘ +—).

=n(1+ [lgb]) +

<n(l+[lgb])+

In2

For implementing a Golomb encoder, Theorem 1 can be very helpful. It
allows us to predict the maximum memory requirement of a given set in
advance, so that no resize (and thus no copy) operations are required while
encoding a list.

3.2.2 Two-Level Representations

The big drawback of A- and variable bit length encodings is that they do
not provide random access. Since the width of a value is not known un-
til it has actually been decompressed, accessing the i-th element requires
us to decode all i — 1 preceding values. Two-level representations can be
used to overcome this limitation of linear encoded lists. In addition to the
encoded values of a set S, a (random-accessible) top-level data structure ¢
stores every B-th element of S together with its position in the encoding
(see, for example, [2, 106, 45]). We can now access the i-th element of S by
proceeding to the position stored in the |i/B]-th field of ¢ and decoding
just the next i — B |i/B] values. The smaller B is chosen the faster random
accesses are, but also the more space is required for storing t.
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3.3 Selected Intersection Algorithms

In the following, we consider two sets R, S of integers represented by a
sequence of their elements with m = ||R|| and n = ||S|. Without loss of

generality, we assume m < n.

3.3.1 Zipper

The simplest intersection algorithm scans both sets as in a binary merg-
ing operation. It needs time O(n + m) with a quite small constant factor.
Hence, Zipper is very good if the sets have about equal size. Moreover,

Zipper harmonizes well with linear encodings.

3.3.2 Variants of Binary Search

A simple, (suboptimal) algorithm that is sublinear in the size of the greater
set S scans the smaller set R and locates each element e of R in S using bi-
nary search. This takes time O(mlgn) with constant factors worse than in
algorithm Zipper. Binary search can be improved to an asymptotically op-
timal O (mlg ) by exploiting that R is sorted [64]. If R[i — 1] was located at
position j in S, i.e., j = max {k | S[k] < R[i — 1]}, then R[i] must be located
at a position j/ > jin S. If j/ = j + §;, we can find an upper bound on §;
in time O(lg ¢;) using exponential search [23]—we double an estimate ¢’ of J;
until S[j + §'] > R[i]. We can then locate R[i] exactly using binary search
in time O(lg 6;). Overall, we get execution time > | O(Ig&;) < O(mlg 2).
Since we perform two searches for each element, the constant factors are
even worse than for binary search. A somewhat faster variant of binary
search by Baeza-Yates [11, 13] therefore uses the divide-and-conquer princi-
ple. The middle element S[|n/2]] of S is located in R using binary search
and then intersection proceeds recursively on the respective left and right
halves of R and S. All these algorithms have the disadvantage that binary
search is incompatible with linear encodings.
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3.3.3 Skipper

Using a two-level representation we can also run a variant of Zipper that
scans the top level data structure and delves down into the lower level
whenever necessary. This avoids the complicated control structure of bi-
nary search and allows us to use linear encodings also for values and refer-
ences stored in the top level data structure. A similar scheme where all the
information is embedded into a single bit sequence has been proposed and
implemented in [90] (see Chapter 2).

3.4 Randomized Sets

3.4.1 Representation

Consider a set S = {s;|i = 1..n} where all elements are uniformly dis-
tributed over [1, U]. We split the range into buckets based on the most sig-
nificant bits. Let B denote a parameter that roughly controls the average
bucket size and w = [lg %] Then, the i-th bucket b; stores the sequence
of value residues (d; mod 2V : |d;27"] = i). Due to randomization, and
because of the ceiling function in the term above, the average size of each
bucket is between B/2 and B. There can also be smaller and larger buck-
ets, but basic balls-into-bins theory guarantees with high probability that
no bucket size is very much larger than B. The encoding of all buckets can
be stored consecutively in one stream of bits b using an arbitrary coding
scheme. A top level data structure ¢ provides the information leading from
the most significant bits i = [d27"| of a value d to the i-th bucket. In the
simplest case, ¢ is an uncompressed array of indexes into b. We call this
two-level data structure a Lookup list.

Using a fixed-width encoding in the bottom level, Lookup lists also sup-
port rank and select operations in acceptable time. Selecting the k-th ele-
ment takes O(lg(n/B) + B) time by binary searching the top level for its
bucket position 4, and taking the (k — i)-th element in the bucket. Ranking
an element requires O(B) time by branching into the bucket and scanning

it linearly. Using variable-width encodings, Lookup lists supporting fast
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rank and select operations are easy to obtain by adding rank information
to the top level. Thatis, weadd r; = Z;:O ||b;|| for the i-th bucket. As a side
effect, we can also use variable Golomb coding for the buckets without storing
any parameters. The range of a bucket is given by 2 and the number of
values coded in a bucket is given by r; —7;_1. Due to uniformly distributed
values, we can estimate a suitable Golomb parameter (in accordance with
Section 3.2) by approximating the average A-value through (r; — r—1)/2".
We do not need to store this parameter as we can make exactly the same

estimation while decompressing a bucket.

3.4.2 Intersection

Figure 1 gives pseudo-code for the intersection of two Lookup lists. The
smaller set R is traversed by the outermost loop. The current element d
of R is disassembled into its most significant bits /4 and its least significant
bits ¢ such that h can be used as an index into the top level data structure of
S. Thus h determines the bucket of S where we have to look for elements
matching ¢. We now have to scan the h-th bucket of S for an element ¢’ that
coincides with 4. If this is not the bucket we have been scanning before, we
have to scan it from the start. Otherwise, we continue scanning from where
we left off. There are three ways to stop scanning: First, if we reach the end
of the bucket. Second, if we encounter an element ¢ < ¢'. Then we know
that d cannot be in S and go to the next iteration of the outer loop. Third,
we have found d in S (indicated by ¢ = ¢’), we output it, and we continue
with the next element of R. We call this algorithm Lookup. Note that R can

also be present in another compressed (or uncompressed) form.

3.4.3 Analysis

In the following, we give time and space analyses of Lookup lists and their

intersection algorithm.
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Algorithm 1 High level pseudo-code for our intersection algorithm
Require: list R, list S

O {output}
i——1 {current bucket in S (now a dummy)}
foralld € Rdo {unpack R on-the-fly}
h «— [d27%s | {d would fall into the h-th bucket of S}
l— d&2%s — 1 {least significant bits of d}
if h > i then {do we enter a new bucket?}
i—h {set h-th bucket of S as current bucket}
J — tsi] {read start of current bucket from toplevel of S}
e« tgi+1] {read end of current bucket from toplevel of S}
end if
while j < e do {current bucket not yet exhausted }
V' — bglj] {unpack value from bottom of S}
if ¢ < ¢ then
if { = /' then
O—O0ud {disin R and S}
end if
break while loop
end if
Je=g+1
end while
end for
return O
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Theorem 2. Algorithm Lookup runs in expected time O(m + min {n, Bm}).

Proof. (Outline) The total time spent outside the inner loop is O(m). Since
each bucket of S is scanned at most once, there is also a bound of O(m + n)
on the time spend in the inner loop. Another bound for the time in the inner
loopis > cn Hdesz ] || which makes the conservative assumption that for
each d € R the entire bucket of S corresponding to d has to be scanned. [J

Theorem 3. Using bit-compressed A-encoding and assuming a uniform random
distribution over [1, U], our representation needs

U . lgn
n<lgn+lgmm{B,lgn}+(’)(1+B))

bits for storing a list of size n with high probability.

Proof. (Outline) There are ©(%) buckets. Storing a pointer to a bucket
needs O(lgn) bits. The largest difference between two bucket entries can
be bounded in two ways — the bucket width ©(BY) and the largest dif-
ference between any two consecutive list entries. The latter quantity is
well known from probability theory: We throw n balls into U (different)
bins and ask for the longest consecutive stretch of unoccupied bins. Us-
ing standard techniques, it can now be shown that the largest difference
is O(Y1gn) with high probability. The two bounds can be combined to a
bound of lgmin {©(BY),0(Y1gn)} =1g ¥ + lgmin {B,lgn} + O(1) bits
per list element. O

In this bound and its proof we can see that using B = Q (lgn) avoids
empty buckets (and their dispensable pointers in the top level) with high
probability. For smaller B, it is hence also quite likely that there are some
buckets with only one element, which will set a maximum difference close
to the range of the residues (and the width of an entire bucket). For bit-
compression, this means that using A-encoding in this case actually makes

no sense.
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Theorem 4. Using Golomb A-encoding and assuming a uniform random distri-
bution over [1, U], our representation needs

n(ng%—O(l%— hi;))

bits for storing a set of size n.

Proof. (Outline) There are ©(%) buckets. Storing a pointer to a bucket
needs O(lgn) bits. The average A-value is © (%) Together with Theorem 1,
wegetn(lg%—i—(’)(l))—i—n(’)(l%). O

By comparing Theorems 3 and 4, we can see that a variable bit length
encoding can harness the full power of A-encoding. It replaces the term
nlgmin {B,lgn} by O(n). The term nlg % is unavoidable since it already
shows up in the information theoretic lower bound Ig (g) ~ lg % =
nlg Y 4+0(n). The term O (nlg?") can be made arbitrarily small by choosing
a sufficiently large bucket size. However, this comes at the cost of increased
running time when intersecting lists of asymmetric size. Still, for all but the
longest lists the term n1g ¥ will dominate space consumption.

For very long lists which need only a few bits for encoding each en-
try of a bucket, it might pay off to replace our two-level data structure
with a three-level data structure. We could use metabuckets of size O(lgn)
and bottom-level buckets of size O(1) whose position within a metabucket
can be encoded using O(Iglg n) bits with high probability. In practice, this
might boil down to using a single byte for encoding the relative position of
a bottom-level bucket.

3.4.4 Achieving Randomization

All of the ideas concerning Lookup lists above rely on the assumption of
uniformly distributed values. But in practice, document IDs are not neces-
sarily uniformly distributed. Therefore, we show how to achieve (pseudo)

randomization.
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Pseudo Random Permutations

For simplicity, we explain the algorithm for the case that U = 22“ for some
integer u. The general case was explained in [79] and [49]. Consider the
Feistel permutation 7;(uov):=vo(u f;(v)) where o denotes the concatenation
of u-bit bitstrings, @ denotes bit-wise exclusive-or, and where f is a random
mapping 0..2% — 1 — 0..2* — 1. Note that f can be efficiently implemented
by filling a lookup table of size VU with random values. As [79] showed,
chaining four Feistel permutations gives a permutation which is pseudo-
random even in a cryptographic sense. Our implementation chains only

two Feistel permutations.

Load Balancing by Randomization

Any large full-text database will nowadays use multiple processors. Cur-
rently, a typical configuration is a cluster of low-cost servers each equipped
with one or two multi core processors. The easiest way to exploit p pro-
cessing elements (PEs) is to assign about U/p documents to each PE [36, 1].
Now queries simply go to all the PEs. Doing this naively, based on ordered
document IDs, will lead to poor load balancing, because document sizes,
and term appearances will be correlated with the document IDs. Random-
ization largely dissolves all these problems. We can just map document i to
PE i mod p (round robin). We get strong probabilistic guarantees not only
that every PE is responsible for a similar overall amount of data but also
that every list of the inverted index is split almost evenly. Note that trying to
do this deterministically would be more complicated. Using balls-into-bins
arguments one can see that a given list of length n gets split into sublists
of size 7 + O(, /7 1g p) with high probability [102]. In particular, long lists,
which cause the largest query times, will get split very evenly.

Stick to Determinism

Randomization gives us certain guarantees for storing and intersecting in-

verted lists. But as shown in [87], non-uniformity present in real-world
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inputs can also have advantages. In practice, terms tend to appear very of-
ten in consecutively indexed documents before they disappear for a while,
and finally they occur again. This clustering effect can be exploited to im-
prove inverted index compression. Moreover, [25] shows that by carefully
choosing document IDs, inverted lists can be made even more clustered,
and hence more compact. Also, several authors have mentioned that load
balancing can be achieved without randomization of documents by repli-
cating the index data on several PEs [19, 35].

Using a deterministic distribution of document IDs, it is wasteful to
store in each Lookup list a top level that covers the entire universe U of all
document IDs. Instead, we build the Lookup list of a set S = {s;|i = 1..n}
according to the range [0, s,, — s1], and store the offset s; in addition. To
make Lookup lists even more useful for deterministic distributions, we can
also use variable Golomb encoding as described in Section 3.4.1. It adapts
the parameter of buckets depending on whether they span sparse or dense
regions. The theoretical guarantees do not hold for deterministic data, but
our experiments show that Lookup lists perform well on non-randomized

values too.
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Compressed
In-Memory Indexes

In this chapter, we describe how to build an in-memory text search engine
using inverted index based data structures. Our text index mainly focuses
on the following three operations: Boolean AND queries, phrase queries,
and document reporting. The first two operations are well known from ev-
eryday usage of web search engines. The third operation, document report-
ing, is less established, as many search engines do not store the indexed
texts itself. In contrast, they contain just pointers to documents stored at
an external location (for example a disk or the network). But document
reporting out of the search engine is very important in database-like envi-
ronments. Furthermore, we show how document-grained indexing can be

applied to suffix arrays. This chapter is mainly based on [114].
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4.1 Compressed Inverted Indexes

Our inverted index design is modular, and consists therefore of several
parts. Besides space efficiency, we attach great importance to query per-
formance. Because our index is highly (and carefully) optimized, and its
success often depends on details, we also give, on some points, practical

considerations achieved through our implementation.

41.1 A Document-grained Inverted Index

Zipf [131, 132] has observed that term occurrences in text collections fol-
low an inverse power law with an exponent close to one. The frequency
p of a term is inversely proportional to its rank r in the frequency table:
p o 1/r* with o =~ 1. Figure 4.1 shows the distribution of term frequencies
ordered by the rank for an example text collection. We can see that Zipf’s
law does not necessarily match the characteristics of a real-world collection,
but for some ranges it provides a good approximation. Roughly speaking,
Zipf's law says that on the one hand, a major part of all term occurrences are
distributed among just few terms, and on the other hand, there are many
terms that occur very rarely. This suggests usage of different types of in-
verted lists depending on their very different lengths [114, 86].

Therefore, we use the following scheme. For each term ID we store
either a pointer to an inverted list or — if the term occurs in a single doc-
ument only — just a document ID. We distinguish between two types of
inverted lists. The first type is used for all terms that occur in less than K
documents where K is a tuning parameter. In our implementation we use
Golomb A-encoding to store these small lists very compactly. For the re-
maining terms, we use the Lookup data structure, and call those lists large
inverted lists. The distinction between single values, small lists and large
lists offers two advantages. First, the majority of inverted lists are highly
compressed (without any auxiliary information). Second, very large lists

do not have to be scanned completely whenever they are involved. The
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Figure 4.1: Term occurrences

following lemmas stress the importance of different list types, and show

that there is actually a major portion of single values and small lists.

Lemma 1. Assuming the classical Zipfian distribution of M terms over U docu-
ments, our index contains at least M — % single value entries.

Proof. The classical Zipfian law says that the 7-th most frequent term of a

U
rHpp

dictionary of M words occurs times in a collection of U documents,

where H); is the harmonic number of M. Claiming an occurrence fre-
quency of 1, we get r = HLM as the order of the first term that occurs just
once. As the total number of terms in our index is M, we have M — HLM
unique terms. According to [129], H,, — In(n) — v < %, where ~ is Euler’s
constant. Therefore, we have M — HLM > M — Uz + In(M) +9)7! >
M - phn- O

Lemma 2. Our document-grained index contains at least (1 — %)% small

lists.

Proof. As in proof of Lemma 1, we can obtain the order of the first term
whose occurrence frequency is equal to K using the Zipfian law, rx =
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_N
KHpy

the number of terms that occur more than once but less than or equal to

K times. Thus, 11 —rxg = (1 — %)HLM and according to [129] r — 7, >

N1 = %) (g + (M) +7)7" > (1= &) iy O

By subtracting this rank from that of the unique term r;, we get

The tuning parameter K controls a tradeoff between index size and
querying performance. The larger K is, the smaller the index is, but also
the slower query response times are. In practice, K should be chosen large
enough, such that in any case the top level contains more useful data than
it produces space overhead, i.e. £ 1g K > c where c is the implementation
specific overhead in bits. It is essentially given by the difference between

small and large list object sizes. In our implementation we use ¢ = 96.

4.1.2 Storing Positional Information

As an extension of our document-grained inverted index we store the po-
sitional information of the terms in a separate structure. The separation be-
tween the two data structures yield different advantages: for cases in which
we do not need the functionality of a positional index, we can easily switch
off this part (to save space) without any influence on the document-grained
data. Furthermore, Boolean queries are very cache efficient as the inverted
lists are free of other information than the document IDs themselves (see
also [8]). In the following, we propose two methods for indexing the posi-

tional information.

Positional Indexes. We use a positional index that contains for each term-
document pair (¢, d) a list [(; 4) of positions where ¢ occurs in d. Similar to
the document-grained index, our positional index distinguishes between
different list data structures depending on the number of term positions.
Our index stores for each term ¢ the lists [, Vi : ¢ € i in a contiguous
stream. Again, we use a vector where we store pointers to such a stream,
or a single position (if the term occurs only once within the index). Po-
sitions of terms that occur more often, but in just one single document,

are stored in a A-Golomb coded stream. Positions of terms that appear in
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multiple documents, but just once in each, are stored (random accessibly)
bit-compressed. They are ordered according to the ranks in the correspond-
ing inverted list of the document-grained index. For all the other terms, we
use indexed lists. An indexed list is a two-level data structure whose top
level points to buckets at the bottom level containing an arbitrary number
of values each. In our case, such a bucket contains a list of positions. We
again use the inverted index ranks for accessing the buckets: for each term
t, the i-th entry in the top level points to the list [, 4, where d is the i-th
document in the inverted list of ¢. Because we work in main memory, we

can jump to any term positions actually needed at little cost.

Term Lists. Maintaining a positional index for a collection that contain
just short documents is prohibitive in space. In those cases, the overhead
for keeping a huge amount of very small position lists is tremendous. In-
stead, we propose to store the term positions implicitly by keeping a se-
quence of term IDs for each document. Our implementation uses Golomb
coded lists with individually chosen parameters. This is not only more
space efficient for short documents, but also its document reporting is sim-
pler (and faster). We give details for that in Chapter 7. The phrase query
evaluation using term lists is very different than using positional indexes.
We describe it for both approaches in Chapter 6.

4.1.3 Further Issues
A Simple Dictionary

As usual for inverted index based text search engines, we use a dictionary
that maps normalized terms to term IDs and vice versa. Since this part of
a search engine is not our main focus, we use a simple uncompressed dic-
tionary. It stores the normalized terms in a memory-optimized hash map
[109] using the hash function of [63]. The inverse mapping is done via a
separate vector that is indexed by the term IDs and contains pointers to
the respective terms. Certainly, our dictionary is not very fancy, but as it

holds uncompressed terms, it certainly does no harm to our reconstruction
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process in Section 7. A more sophisticated dictionary was for example pro-
posed in [55].

Index Construction and Memory Management

The inverted index construction on in-memory search engines is straight-
forward. We assign all IDs in the order of the term and document appear-
ance in the text collection to be indexed. We loop through the terms of
each document, append the current document ID to their inverted lists,
and add each term occurrence to the positional index (or to the term lists).
We use temporary data structures during the indexing process for the in-
verted index as well as for the positional index. Both contain lists that are
growing whenever new documents are added. So a bit-compressed vector
storing A-values that dynamically adapts its word width to fit its largest
value seems to be a suitable choice. It provides a good tradeoff between
updating performance and compression.

Memory management turns out to be crucial for the speed and the peak
memory usage during index construction. To avoid wasteful fragmentation
and to reduce the number of expensive system memory allocation calls, we
largely organize the memory occupied by inverted lists in blocks of 512 KB
each. Figure 4.2 shows a coarse scheme of our memory management. Anal-
ogous to the static index structure, we distinguish between different-sized
inverted lists. The lists are growing during construction, and we adapt
their memory organization accordingly. The smallest possible representa-
tion is a plain value stored in a simple array — the inverted list directory.
For lists that contain more than a single value, the array stores a pointer
to a list object. Each of these objects has a data field containing the actual
list values. The field changes depending on the size of the list. Lists that
require less than the size of a pointer (in our case less than 8 B) use in-place
storage within the objects. Lists that are larger than that get one or several
continuous memory snippets with a power-of-two size between 16 B and
512KB, where we combine small equal-sized snippets less than 16 KB in

512 KB blocks. These blocks maintain a free list consisting of a bit for each
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Figure 4.2: Organization of inverted list memory during index construction
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snippet indicating whether the snippet is currently in use or not. Snippets
larger than 8 KB are managed directly by the operation system. Whenever
the data field of a list has to be expanded, we copy the old content into a
free snippet with the next larger power-of-two size (possibly marking the
old snippet as freed). Lists larger than 512 KB are organized using several
512 KB memory blocks and an additional smaller snippet that can grow
(not exceeding 512 KB). This avoids the need to copy all the content of a
very large list when its capacity is exhausted. We choose the size values
and the types of the data fields so that they fit the Zipf-like distribution of
the inverted list lengths: typically, there are many small lists and just a few
large lists.

After the last document has been added, the temporary lists are con-
verted into the static data structures, and one block after the other is freed.
The memory management of the static structures turned out to be crucial
for obtaining actual space consumption close to what we would expect from
summing the sizes of the many ingredients. Most data is again stored in
blocks of 512 KB each. Lists that are greater than such a block get their own
contiguous memory snippet. Within the blocks, we use word-aligned al-
location of different objects. We tried byte alignment but did not find the

space saving worth the computational overhead.

4.2 Indexing Documents into Suffix Arrays

Suffix arrays do not support multi-document indexing innately. Therefore,
we index the normalized text of all documents as a continuous string. We
separate the normalized terms by spaces and the documents by a pair of
spaces. This allows us to identify document bounds and to exclude hits that
overlap document bounds while querying for phrases (see Section 6.5). The
use of two space separators (in the following indicated by “_’) is an advan-
tage over inserting a single special separator (for example ‘$’) for marking
documents: we do not need to distinguish between the cases of a hit at the
bounds or within a document during query time. For instance, if we want

to search for a single term ¢, we can just search for “_t_’, and we do not have
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to search for ‘¢, ‘$t_’, and “_t$’ simultaneously. In the example, we see
that we search for “_t_" instead for ‘¢’. This is because we do not want to get
results where ¢ is postfix or prefix of another term (“st_" or “_ts’). As suffix
arrays return absolute text positions as query results, we store the start po-
sitions for all documents in a Lookup list. Using their rank functionality,
we can map absolute suffix array positions to document IDs (assigned in
indexing order) very quickly.
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Boolean AND Queries

Inverted indexes are by design well suited to answer AND queries. As
already mentioned in Chapter 3, they are the predominant operation of
text search engines, and they correspond to an intersection of a set of in-
verted lists. Chapter 2 has shown that the problem of intersecting inverted
lists has been studied extensively. Furthermore, we have explored some
intersection algorithms in Chapter 3. This chapter briefly describes how
we evaluate AND queries consisting of more than two terms on our index
structures and on suffix arrays.
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5.1 Query Evaluation on Inverted Indexes

We evaluate AND queries of £ > 1 terms by a series of £k — 1 pair-wise
intersections. Beginning with the two smallest lists, the remaining £ —2 lists
are intersected in increasing order with the current result set. This approach
is widely used in practice [48, 17, 45, 86]. In Chapter 2, we have seen more
sophisticated algorithms to intersect a set of k£ inverted lists. However,
we believe that this algorithm has a decisive advantage, because it is more
cache-efficient than the others. Depending on the involved inverted list

data structures, we use Zipper or Lookup for the pair-wise intersections.

5.2 Boolean AND Queries on Suffix Arrays

Suffix arrays do not support AND queries innately. Therefore, we use the
following algorithm to resolve those queries. First, we locate the occur-
rences for each query term by a substring search in the suffix array. Second,
we map the result list of the least frequently occurring term to a list of doc-
ument IDs. Third, we insert the list in a binary search tree (std: :map) and
incorporate the results of the next frequently occurring term by performing
a tree lookup for each of its items. Finally, we put all hits in a second tree
and swap them as soon as we have checked all of the items. We repeat this
until all term IDs are processed.

We also tried two other approaches for Boolean AND queries. The first
one was to build a hash table from the shortest document ID list using
stdext: :hash.map and to check there for the IDs of the remaining lists.
The second one was to sort all lists and to intersect them like the inverted
lists. However, these two alternatives could not compete with the previous
one. Anyway, as we will see later in Chapter 8, the major part (> 99 %) of
the querying time is spent during suffix array operations.
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The advantage of entering a phrase query in a search system is that it spec-
ifies certain relations between the words in the phrase, and this constrains
the result set more narrowly than individual AND-combined search terms
can do. In the following, we explain how phrase queries can be resolved
using the data structures of the previous sections. Moreover, we show dif-
ferent speed up techniques for accelerating phrase queries on inverted in-
dex based search engines. We also show how we can profit from these
techniques while building an efficient index for short documents. Parts of
this chapter are based on [115].
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6.1 Query Evaluation using Positional Indexes

The classical approach for resolving phrase queries is to use a positional
index as also described in Section 4.1.2. It stores for each term and docu-
ment a list of all positions where the term occurs in the document. A phrase
query can be answered by intersecting all these position lists — n lists per
document for a query with n terms — regarding the offset given by the
term positions in the query phrase.

As we did for Boolean AND query evaluation, we use a pair-wise pro-
cessing strategy. We start a phrase search t; - t5 - - - t,, by sorting the phrase
terms ¢, according to their frequency, i.e. their inverted list lengths. In the
following, 7(i) denotes the position in the query phrase of the term with the
i-th smallest list. We intersect the document-grained inverted lists /;_,, and
Ut o) of the two least frequent terms ¢ (;) and ¢ () (using algorithm Lookup
if applicable). During the intersection, we keep track of the current rank of
each list. That is, for each result document d, we also record the positions r
and s indicating where d is located in l;_, and l;_, , respectively. The list
of all those result triples (d,r, s) contains also at least all hits of the phrase
query (and probably some other occurrences). To identify actual hits in this
set of candidates, we need to match their position lists. Therefore, we iter-
ate through the list of triples (d, r, s), and use the ranks r and s to retrieve
the position lists [, _ (1)) and [(;_ 2)d) for the document d from the positional

index structure according to Section 4.1.2. We intersect the lists [ and

(1) 7d)

Lt (), where we add an offset of 0; = 1 — 7 (1) to all values in [, and

Tr(1)7d)

an offset of 0 = 1 — 7(2) to all values in [ . We use a simple binary

(2 7d)
merge algorithm similar to Zipper for this in(te)rsection. The result is a list
of pairs consisting of a document d and a position list [ showing where the
terms ¢ (1) and ¢, (o) occur in the same order and with the same distance as
in the query phrase. Finally, we continue with intersecting the list of result
documents with the document-grained inverted list of the next frequent
term ¢, 3) and with matching their position lists. We repeat this procedure

until all terms are processed.
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6.2 Partial Phrase Indexes and Nextword Indexes

Unfortunately, query evaluation using positional indexes is computation-
ally expensive. Therefore, attempts have been made to speed up phrase
queries on inverted indexes by adding further information to their data
structures (see Section 2.4). These attempts have the disadvantage that
they consume more space. This disadvantage is especially critical for main-
memory search engines. Although modern hardware configurations fea-
ture ever more random access memory, memory capacity is still signifi-
cantly more restricted and more expensive than disk capacity in classical
search engine systems. Thus, it is essential to optimize the “return on in-
vestment” when investigating approaches that need extra space.

Long ago, Gutwin et al. [60] observed that storing pre-calculated re-
sults of a set of phrase queries can significantly reduce the average response
time of a search system. But this applies only if queries currently entered
were actually considered before. Using all possible phrases is prohibitive in
space and time [124]. An alternative is to store only a subset. The problem
of selecting the most useful phrases leads to the concept of caching pre-
vious query results, which then involves updating strategies. Section 2.3
has summarized previous work that addresses this issue for any type of
query. A more simple but competitive approach for phrase queries pro-
posed in [124] is to use a partial phrase index. This is essentially a positional
inverted index whose vocabulary is enriched by the most frequently oc-
curring phrases of some query log. The single-term part of the positional
inverted index acts as fall-back if a phrase that is searched for was not in-
dexed. However, examining query logs, we can observe that often hype
words appear for a while and quickly disappear again [112]. This dynam-
ical aspect of user behavior regarding search terms may be unpredictable
and makes it difficult to optimize partial phrase indexes sufficiently. This
means that the (static) partial phrase indexes can get suddenly out-of-date
resulting in a miserable worst-case behavior of the search system.

The nextword index proposed by Williams et al. [123] is (in a high-level

point of view) a phrase index that stores all phrases with a length of two
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terms. However, such an index is still prohibitive in space and time for
large amounts of data. The partial nextword index of Bahle et al. [16] con-
tains, therefore, only the phrases whose first word is a common or a top

frequently occurring word.

Williams et al. [124] showed that a three-way index combination of an
inverted index, a partial phrase index, and a nextword index can improve

on the performance of its components.

6.3 Two-Term Phrase Indexes

Whereas many approaches for speeding up phrase queries mainly use
query logs, we present a flexible framework that works out of the box and
needs only the (static) information contained in the index of single terms.
This is an advantage over other approaches because query logs (a) are not
available for many real-world applications and (b) are just a snapshot of
user behavior, which often changes unpredictably. Despite this, we show
in Section 8.5 that our method is competitive in terms of query performance
and can even improve on other approaches at least for difficult queries.
Also, our approach enables us to derive theoretical performance guaran-
tees for some queries. Our main focus is on search engines that hold all
their data structures in main memory, but we give evidence that the results

can be applied to classical disk-based systems as well.

Our phrase selection scheme is confined to a subset of the two-term
phrases contained in a document collection to be indexed. Two-term
phrases are the most widely used form of text queries [66]. They are also
the slowest to resolve [114]. Once they are in the index, they can be used
to speed up queries of arbitrary length greater than two [15]. Furthermore,
as we outline in Section 6.3.4, our two-term phrase indexing approach can

easily be generalized for phrases consisting of more than two terms.
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6.3.1 Constructing Phrase Indexes

Generalizing the nextword indexes of [123, 16], the idea behind our phrase
indexing scheme is simple. Assuming there is an inverted index I, we de-
fine a function C/(s, t) estimating the real costs caused by evaluating a term
pair query s - ¢t through I. We require C' to be determined by properties
that are also available at query time. We choose a suitable threshold 77 and
add all the phrases s - t such that C(s,t) > 17 to the index I. Depending
on how large the phrase index will be (indicated by the threshold 77) and
whether the performance of the base index is skewed to indexing or query-
ing, we propose two different methods for adding phrases. The naive way
is to make an extra pass over the data, and to rerun the indexing process ex-
tracting (two-term) phrases rather than single terms. We call this re-process
phrase indexing. However, if preprocessing is very expensive, the threshold
Ty large enough, and the query performance not too bad, it might pay off
to use search-based phrase indexing. That is, we firstly make a list of all two-
term phrases that occur during the standard indexing process. Then, we
search for all of the phrases whose cost is above the threshold, and add the
results to the index.

We can exploit our phrase selection scheme to speed up the handling of
some phrase queries with empty result sets. We estimate the cost of each
two-term phrase occurring in the query and check whether it is above the
threshold for the index. If it is, and if there are results for the phrase, the
phrase is in the index and we return the results. Otherwise, we know the
result set is empty and we are done.

6.3.2 Phrase Selection and Cost Models

There are various options to define suitable cost functions for a two-term
phrase s-t. In the following, let || s|| be the length of the inverted list, i.e. the
occurrence frequency, of some term s. For simplicity, we use the number of

documents rather than positions.
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Nextword Indexes. In its original design, the partial nextword index of
Bahle et al. [16] is a three-level data structure where all distinct two-term
phrases of the indexed text are organized as firstword-nextword pairs. Each
firstword is associated with a set of nextwords, and each of the nextwords
has its own inverted list. Firstwords are selected according to their occur-
rence frequency. That is, a partial nextword index is just a different repre-
sentation of a two-term phrase index that implicitly uses the cost function

Co(s, 1) = [Is]| -

Minimum. It is not hard to see that the cost of a phrase query s - ¢ is
not suitably rated by the frequency of the term s, in particular because an
intersection is a commutative set operation. In Section 3.4 we have seen that
on main-memory systems the running time of an inverted list intersection
is essentially linear in the size of the smaller list, when a form of per-list
index is used. Therefore, the minimum of the inverted list lengths may be

more closely related to the real cost of an intersection:

C<(s,t) := min{[[s[|, [|£]]}-

Sum. On external memory systems, we would rather take the sum of the
lengths of the inverted lists as this reflects the amount of data to be re-

trieved from an external storage for intersecting them:

Cy(s,t) == sl + 121l -

Further Criteria. Of course, there are other — more or less complex —
cost functions that might be used. For instances, the phrase query is often
implemented as a (fast) AND query followed by a check for consecutive
term positions. In this case, a cost function can be defined as the number of
entries in the result set of the AND query. Queries that do not profit from

the phrase index can be still evaluated in nearly the same time.
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Performance Guarantee

All of these selection methods have their practical application, and all of
them yield a kind of performance robustness. However, the sum-based cost
function is of theoretical importance because it matches the formal worst

case of intersecting two inverted lists.

Proposition 1 (Performance guarantee). Let I be a two-term phrase index and
C(s,t) = ||s|| + ||t]| > T its selection criterion. Then, the cost of a two-term
query s -ton I is O(Ty).

6.3.3 Query Plans

Bahle et al. [15, 16] have studied different query plan generators that use
simple algorithms for choosing suitable combinations of two-term phrases.
Also observing that it is useful to sort the components of the query plan,
they conclude that phrase queries can be evaluated simply but efficiently,
as follows. Let ¢ - to---t, be a phrase query consisting of n terms and
l1,1a,...,1, their inverted lists. Starting at 1, we replace each list /; with
the inverted list of the phrase ¢; - t;;1 where possible, because ||t; - tj11]| <
||lt:||. Then, we sort the resulting set of inverted lists by increasing length.
Taking the smallest list as the initial result set, the others are intersected
(taking phrase offsets into account) with it successively. We skip inverted
lists of two-term phrases that are already covered by previous lists during
the intersections.

6.3.4 Generalization

We can easily generalize our approach to phrases consisting of more than
two terms. The two-term phrase index replaces virtually each frequent
term pair by a new single word (consisting of the pair). Therefore, we can
repeat our two-term phrase indexing process incrementally on an already
existing two-term phrase index. Physically, this adds triples and quadru-
plets of terms to the index.
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The query plan calculation on generalized phrase indexes is more com-
plex than on simple two-term phrase indexes. But it can also be extended in
an incremental manner. However, for an [-level generalized phrase index

this adds a factor of I — 1 to the running time of the query plan calculation.

6.4 Indexes for Small Documents

The result of a phrase query is always a subset of the AND query assembled
out of the terms within the phrase. Therefore, a phrase query can be imple-
mented in two steps. In step 1, preselect possible documents by executing
the AND query. In step 2, select the results from them by using the string
matching algorithm of [68] on the result documents term ID lists (which we
introduced as an alternative for a positional index in Section 4.1.2). Because
this implementation is generally slower than evaluating a phrase query us-
ing a positional index, we add a phrase index that makes the preselection
process more precise. This gives a better tradeoff between compression and
query performance (see Section 8.5). We call this modified index design a
short-text index.

6.5 Phrase Queries on Suffix Arrays

Phrase querying on suffix arrays is straightforward. Here, a phrase search
is equal to a substring search of the normalized query phrase. Due to the
two separator characters between the documents, it is impossible to get
a result phrase that overlaps document bounds (see Section 4.2). As the
result, the suffix array returns (unsorted) positions where the phrase occur-
rences start. They have to be remapped to document IDs. We use a Lookup
list for this.
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Document Reporting

The query result of an inverted index is a list of document IDs which are
associated with pointers to the original documents. Traditionally, the doc-
uments are archived in a separate storage location, i.e. in files on disk or
on the network. They are retrieved from there when the search engine re-
turns the results. However, since we want to exploit associated advantages
of main memory, our space is scarce. So instead of storing the documents
separately, we use the information about the indexed documents we have
already stored. In fact, from the inverted index we know in which doc-
ument a term appears, and from the positional index we know where it

appears within a document. The main ideas of this chapter are also pub-
lished in [116].
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7.1 Reconstructing Term Sequences

According to both ways of storing the positional information in the in-
dex (see Section 4.1.2), we give two variants of reconstructing the term se-

quences.

7.1.1 Bag of Words

Using a positional index, we could restore the sequence of (normalized)
terms of a document by traversing the inverted lists, gathering the term
IDs and placing their dictionary items at the correct positions. However,
reconstructing a term sequence this way would take too much time. In-
stead, we store a bag of words for each document in addition to our existing
data structures. A bag of words is a set of all the term IDs occurring in a
document (without duplicates). We store them sorted in increasing order
of IDs using A-Golomb encoding. As sequences of consecutive value IDs
appear often in the bags, we encode them as a 0 followed by the length
of that series. Using bags of words, we can build term sequences without
traversing through all inverted lists. We just have to position all terms of a

bag.

7.1.2 Term Lists

The second approach of Section 4.1.2 was to store all the positional informa-
tion as sequences of term IDs as they occur in the documents. In this case,
the reconstruction of a documents’ term sequence is very simple: unpack
the list of term IDs and replace each ID by the term from the dictionary.

7.2 Document Reporting on Suffix Arrays

All compressed or succinct suffix arrays of [54] (and the word-based suffix
array of [27]) have the functionality of extracting snippets of any length
starting at an arbitrary position in the text. Therefore, it is easy to im-

plement a document reporting algorithm on suffix arrays: for returning
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a document with the ID d we just extract the text starting at the beginning
position of d and ending at the beginning position of d + 1 (if it exists, or at
the end of the complete text). The Lookup list that maps absolute suffix ar-
ray positions to document IDs stores all these starting positions. However,
it cannot efficiently return the values in this reverse direction. Therefore
we store an additional vector that stores for each document ID, its starting

position in the suffix array text.

7.3 Text Delta

Because of the normalization, there are differences between the sequence
of normalized terms and the original document we have indexed. For that
reason, we store all changes made to text during the normalization process.
We refer in this section to inverted indexes. However, with minor modifi-
cations, our algorithms can also be applied to suffix arrays. For word-based

suffix arrays, [27] gives a further approach.

7.3.1 Term Escapes

In our dictionary, all terms are normalized to lower-case characters — the
most frequent spelling of words in English texts. Any differences to this
notation in the original document are recorded in a list of term escapes. An
item in that list consists of a pair of a position where the variation in the
sequence occurs and an escape value. The escape value indicates how the
term has to be modified. A value of 0 means that the first character has to
be capitalized and a value of 1 means that the whole term has to be spelled
with capital letters. Each greater escape value points to a replacement term

in a separate escape dictionary.

7.3.2 Term Separators

In the original text of the indexed documents, there is at least one term sep-
arator between each consecutive pair of terms (for example a space or a
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comma). We store the arrangement of separators and terms of each docu-
ment as a (Golomb-coded) list of values: a 0-value followed by x indicates
that there are x terms separated by spaces. A 1-value indicates a term.
Recall that the normalized text already tells us which term. A value of 2
or larger encodes the ID of a separator (stored in a dictionary). We use
a simple binary merge algorithm to reconstruct a document from its term

sequence and its list of separators.
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Experiments

This chapter evaluates the compressed inverted index as proposed above,
following the results of the theoretical section. First, we give a short
overview of our experimental setting and the data we used in our exper-
iments. Then, we investigate inverted list data structures with respect to
compression and running time of different intersection algorithms. Using
the results, we compare our compressed inverted index against a recent
in-memory indexing technology, the compressed or succinct suffix arrays
(and trees). They are often proposed as an all-in-one device for text in-
dexing, and they are becoming (rightly) more and more popular. We use
publicly available implementations from the Pizza&Chili website [54]. As
the alphabet size of those (character-based) implementations is bounded
by a universe of eight bit, we also explore the word-based suffix array im-

plementation of [27] that indexes word IDs rather than characters.
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8.1 Experimental Setting

8.1.1 Implementation

We have implemented the data structures and algorithms as described in
Chapters 3-7. The implementation was done using C++. To be able to
switch easily between different combinations of data structures and algo-
rithms, and to reduce redundant coding, we made heavy use of generic
programming using C++ templates. Nevertheless, our code has more than
30000 physical source lines of code (SLOCs).

8.1.2 Environment

The experiments were done on one core of an Intel Core 2 Duo E6600 pro-
cessor clocked at 2.4 GHz with 4 GB main memory and 2 x 2048 KB L2
cache, running OpenSuSE 10.2 (kernel 2.6.18). The program was compiled
by the gnu C++ compiler 4.1.2 using optimization level -03. Timing was
done using PAPI 3.5.0 developed by Mucci et al. [94]. PAPI uses hardware

performance counters.

8.1.3 Test Collections

Our experiments are based on three different text collections. All collec-
tions were normalized for filling the indexes. We removed HTML tags
with the HTMLparser of [75]. We split the text into words using the to-
ken separators of Table 8.1. All characters were folded to lowercase, and
non-alphanumeric characters and symbols were replaced where possible
using a subset of the translation table of [69]. Table 8.2 summarizes the
properties of our test collections.

WT2g. The WT2g test collection was introduced by [62] as a 2 GB subset
of the larger VLC2 collection. The VLC2 collection consists of 100 GB of a
web-crawl carried out by the Internet Archive in 1997 (see [61]). Although

its WT2g subset is by now considered a ‘small” input, it seems to be the
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Table 8.1: Token separators with Unicode positions

WT2g WT2g.s GOV2
documents 247491 | 11272769 25205179
terms 2008964 | 1823710 n/a
maximum list length 212974 | 5742167 | >21424402
volume [MB] 2105.32 2105.32 436224
volume w/o HTML [MB] | 1583.49 1583.49 n/a
normalized volume [MB] 1454.20 14154 n/a

Table 8.2: Properties of the text corpora used

right size for the amount of data assigned to one processing core of a main
memory search engine based on a cluster of low-cost machines. Using more
than 1-2 GB of data on one core would mean investing much more money

in RAM than in processing power.

WT2g.s. This test collection was introduced by [106]. It contains short
documents and is derived from the WT2g corpus by interpreting each sen-
tence of the plain text as a single document. The total size of the normal-
ized text of WT2g.s is about 1.5 GB. The average document size of the test
collection is 18.5 terms. However, about 2000 of its more than 10 million
documents were much larger than that, so we truncated them to a size of
1024 terms each. This reduced the size of the corpus by almost 40 MB in
total.

GOV2. The GOV2 test collection from TREC is a crawl of a large propor-
tion of the websites from the . gov domain in early 2004 (see [42]). This
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corpus contains 25 million documents filling 426 GB. We mainly use this
large corpus for the external memory experiments in Section 8.5.4. In the
appendix, we also give bottom-line results using GOV2 for other experi-
ments. For processing the GOV2 data with our in-memory search engine,
we split the corpus into 64 roughly equal-sized and contiguous parts. After
normalization, each part had about 2 GB. This is again the amount of data
normally assigned to a single processing core of an in-memory text search
engine. For our main-memory measurements, we randomly selected one
of the parts. It would have been much more expensive to average over all
the parts, and the sizes of the result sets suggested that the chosen portion

fit the query logs in the same manner as the complete corpus.

8.1.4 Query Logs

We used four different query logs for our experiments. One of them was
artificially generated, and the others were real-world inputs. All logs con-
tain AND queries as well as phrase queries consisting of between one and

at least ten terms. Figure 8.1(a) shows some properties of the logs.

Random Hits. The Random query log contains pseudo real-world
queries generated by selecting random hits [114]. From a randomly chosen
document of the underlying corpus, we randomly selected different terms
to build an AND query. Similarly, we chose a random term from such a
document as the start of a phrase query. In each case, we built queries
varying in the lengths according to the distribution given by [66]. They
reported that over 80 % of real world queries consists of between one and
three terms. Of course, the result sets of the queries contain at least one
document, but in fact, they are much larger. Figure 8.1(b) shows what per-
centage of the intersections caused by a pair-wise evaluation of the random
AND queries on WT2g fall into some range of list lengths ratios. We can see
that for nearly 90 % of the intersections this ratio is below 0.1. We therefore

turn our attention in particular to those ratios in our experiments.
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Excite. Our real-world query log was taken from [112]. We extracted
queries that were explicitly indicated as phrases by means of quotation
marks, and considered all the others as AND queries. In fact, the Excite
query log can be processed much more quickly than the Random log, as
it contains many terms that occur either rarely or not at all in WT2g. This
is because the queries were originally addressed to the whole web and not
just to the sites included in WT2g. Figures 8.2(a) and 8.2(b) confirm this.
The fraction of queries that do not return any results is very high for the
Excite log. In contrast, the Random log has also a high fraction of queries
that produce many hits. Therefore, the Excite log can be seen as an “easy’
counterweight to the Random log. We expect that many interesting appli-

cations fall somewhere between these two extremes.

TREC Efficiency Task 2005 and 2006. Finally, the last two logs consist of
the queries from the TREC Efficiency task topics from the years 2005 (see
[40]) and 2006 (see [30]). We call them 05eff and O6eff respectively. They
were extracted from a real-world query log to compare the performance
of different search engine systems on the GOV2 test collection. In fact, the
2005 query log does not match GOV2 very well, so it can be processed
much more quickly than more realistic queries because it contains many
terms that occur either rarely or not at all in GOV2 (or in the documents
of the . gov domain). For this reason, the 2006 queries were selected more
carefully to fit the data [41, 31]. The queries were not especially indicated as
AND or phrase queries. Although some of them were obviously phrases,
some were not. For our experiments, we used all of them for testing AND
queries as well as for testing phrase queries. As the TREC logs were gener-

ated for GOV2, we use the logs exclusively with that corpus.

The partial phrase index of Section 6.2 requires a training log. Therefore,
we adopt the procedure of [124] and split each query log into two halves.
We used the first half for training and the second half for measuring.
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8.2 Inverted List Compression and Intersections

8.2.1 Space Consumption of Inverted Lists

To compare the space consumption of Lookup lists (of Section 3.4.1) and
Skipper lists (of Section 3.2.2), we built inverted indexes of the WT2g col-
lection preprocessed as described in Section 8.1.3. We varied between dif-
ferent compression schemes for the bottom levels of both data structures.
Because algorithms Lookup and Baeza-Yates need random access to their
top levels, we encoded them using bit-compression. Throughout our ex-
periments, we denote the case in which document IDs were assigned in the
order of indexing as deterministic (or det. for short), and we denote the cases
where we used pseudo-randomized data meeting the requirements of the

theoretical sections in Chapter 3 as randomized (or rnd. for short).

Figure 8.3(a) shows the impact of randomization on the space consump-
tion of the inverted index. It displays the compression that can be achieved
by randomization against the bucket size for different encodings. A com-
pression ratio of one means that the randomized inverted index occupies
the same amount of space as the deterministic version. A ratio smaller
than one implies that randomization yields a more compact representation.
All values larger than one show the cases in which randomization actually
costs space. We can see in the figure that randomization does not have
an influence on bit-compression. But when using bit-compression on A-
values in combination with large bucket sizes, randomization can achieve
respectable compression ratios. In this case, it eliminates a disadvantage of
the deterministic data: in larger bucket ranges it is more likely that there is
at least one larger A-value amongst the deterministic IDs that forces all oth-
ers to be encoded using a larger word width. However, Figure 8.3(b) shows
the average size per encoded document ID against the bucket size, and rel-
ativizes the advantage of randomization for A-bit-compression. For larger
bucket sizes all variants of bit-compression become quite unattractive, as
Golomb codes and Escaping perform significantly better. Furthermore, get-
ting back to Figure 8.3(a), we see that these schemes suffer from random-
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Figure 8.3: Space consumption of different Lookup lists on WT2g
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ization while they can actually profit from a deterministic non-uniformity.
We can conclude that randomization is not good for the space consumption
of Lookup lists.

Figure 8.3(b) compares different encodings using deterministic data.
Coinciding with our analysis of the Lookup list, bit-compression does not
need A-encoding for the very small bucket size of two. In this case, both
bit-compressed encodings are the best choice and are preferable to the other
compression schemes. But with increasing bucket sizes, bit-compression
requires more and more memory, as more of the most significant bits of
the list entries have to be stored explicitly in the bottom level. Using A-
encoding this effect can be weakened. But beginning at a bucket size of

four, using Escaping or Golomb A-encoding is more compact.

Lookup lists can profit even more from non-uniformity when using a
variable and bucket-wise Golomb encoding as described in Section 3.4.1.
But as also described, we need to store additional rank information for es-
timating the Golomb parameters of each bucket. As shown in the figure,
this can pay off only if the rank information is required anyway, i.e. if we
also use a positional index (see Sections 4.1.2 and 3.4.1). It is not a good idea
to store additional ranks just to enable usage of variable Golomb coding.

Figure 8.4 compares Lookup with Skipper lists using the most promis-
ing encoding schemes. It shows again the average size per encoded docu-
ment ID against the bucket size of both two-level data structures. We im-
mediately see evidence for a higher potential of the Lookup data structure
in compressing inverted lists. A reason for this is that the most significant
bits of the values encoded in the bottom level do not need to be stored ex-
plicitly, as they are given implicitly by the index of the top-level. So there
is no redundant information in the top level that is also contained in the
bottom. However, each bucket has a certain overhead in space for both
two-level representations, because each bucket has a pointer from the top
to the bottom level or stores the bucket offset. So, very small bucket sizes
result in considerably higher memory requirements for Lookup and Skip-

per lists. Practical values for Lookup lists seem to be bucket sizes greater
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Figure 8.4: Space consumption of different representations on WT2g

than or equal to eight. For Skipper lists, bucket sizes of 16 or greater seem

to provide acceptable space consumptions.

As to be expected, Skipper lists do not work well with bit-compressed
encodings. The reasons were already mentioned above: all values in the
bottom level require explicit storage of all of their most significant bits.
Nevertheless bit-compressed A-encoding is again best for a small bucket
size of two. Escaping and Golomb coding can again exploit the non-
uniformity of the input for larger sizes, and can achieve a clearly smaller
space consumption compared to a bit-compression of A-values. The over-
head in space of the top level of a variable-width coded Skipper list is
higher as it needs to store the first entry of each bucket in addition to the
pointer of its successor. This disadvantage would be smaller in a repre-
sentation optimized for algorithm Skipper, because it could actually work

with a top level using A-encoding.
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We conclude again that compact representations of Lookup lists can
profit from deterministic inputs, and Lookup lists can achieve higher com-
pression ratios than Skipper lists. Skipper lists do not work well with bit-
compression, and regarding space consumption, a bucket size of eight or
greater is good for Lookup lists, and a bucket size of 16 or greater is good
for Skipper lists.

8.2.2 Intersecting Inverted Lists

To qualify the performance of Lookup and Skipper lists for intersections,
we executed the AND queries of our Random query log on the WT2g cor-
pus, each as a series of pair-wise intersections (see Chapter 5). We recorded
the running times of the first intersections of the series, as both input lists of
those intersections are in the same compressed form. Lookup and Baeza-
Yates are asymmetric algorithms that could have advantages (compared
to Zipper and Skipper) by passing one list in an uncompressed version.
Besides, we also observed that intersections between compressed and un-
compressed lists had the same characteristics, but were slightly faster for
both, Lookup and Skipper lists.

Our figures show the results for the most ‘difficult” intersections involv-
ing long lists. We investigate the range of length ratios [0.001, 1] by sub-
dividing it into 100 intervals with the same width on a logarithmic scale.
This stresses small ratios that occur very often and that are therefore the
most important ones (see Section 8.1.4). Our plots use for each interval the
three most difficult intersections (with different inputs), where we average
the running time for intersections that had to be evaluated more than once
(with the same input).

Again, we investigate the impact of randomization on algorithm
Lookup and Lookup lists. Because bit-compression needs about equal
space on randomized and deterministic data (see Figure 8.3(a)), it seemed
to be a good choice for comparing the running time of the intersections on
both document ID distributions. Again, we varied the bucket size between

the power-of-two values from 2 to 1024. For each different intersection,
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Figure 8.5: Impact of randomization on running time

we determined the speedup possibly achieved by randomization. That is,
we divided the running time required on deterministic data by the run-
ning time that elapsed using randomized data. As our experiments did not
show any influences of the bucket sizes on the speedup, we combine all
results in a single plot. Figure 8.5 shows a density map of our measuring
points recording the speedup against the length ratio. The density levels
were estimated using the normal kernel estimator kde2d of the R software
package [101, 119], where darker regions indicate dense areas. The legend
shows what percentage of all measuring points are located in the specified
levels. We can see that for roughly 90 % of the intersections (covering the
complete range of ratios), randomization is actually a disadvantage. There-
fore, we can conclude that randomization does not help for the perfor-
mance of Lookup. Moreover, Lookup can profit from the non-uniformity

of the input, and is faster on deterministic data than on randomized data.
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Figure 8.6: Impact of the bucket size on the running time of algorithm Lookup
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Figure 8.6(b) investigates the impact of the bucket size on algorithm
Lookup. To weaken the influence of the input sizes, it shows the speedup
versus algorithm Zipper (rather than the running time) against the length
ratio of the input lists. Again, we used A-bit-compression while we var-
ied the bucket size between 2 and 1024. We used simple A-bit-compressed
lists (without buckets) for obtaining the reference values from Zipper. The
plot shows that using Lookup lists with small buckets is better for small
length ratios and worse for nearly equal lengths. However, the speedup
achieved in the lower range is a magnitude higher than the slow-down
that Lookup incurs in the upper range. A bucket size of between 8 and 32
seem to be a good choice for Lookup using A-bit-compression: those rep-
resentations are very fast for small ratios and not too bad for nearly equal
lengths. The results for Escaping and Golomb codes were nearly the same.
Figure 8.6(b) compares the shapes of their measurement points. It displays
the minimum and maximum values within our 100 measurement intervals
using the gnuplot option smooth bezier. We can observe that using a
more compact encoding, the speedup (versus algorithm Zipper executed
on the same encoding) increases. The reason for this shift is that the more
complex the encoding is, the more time can be saved by being able to skip
values during an intersection. Before we explore more details on the im-
pact of encodings, we briefly conclude our current results. Harmonizing
with the experiments investigating the space consumption, a bucket size of
8,16, or 32 seem to be a good choice for Lookup.

As mentioned above, we also investigated the impact of the encoding
scheme on the running time of Lookup. Figure 8.7 compares Lookup lists
with different encodings and bucket sizes. For the plot, we divided the
running times of Lookup on compressed representations by the running
time using uncompressed lists (in each case with the same bucket size).
Following our previous experiments, we used bucket sizes in the range
between 8 and 32 such that the index sizes did not differ too much. As
expected, the higher the compression is, the slower algorithm Lookup runs.
Bit-compression is the fastest but it also requires the most space. Escaping

is just slightly faster than Golomb coding, but not so much as to justify a
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Figure 8.8: Performance of Skipper and Baeza-Yates on Skipper lists
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higher space consumption (see Figure 8.4). Variable Golomb coding does
not cost too much compared to Golomb codes with a global parameter and
seems to be a good alternative when space is more restricted than time.
We can conclude that algorithm Lookup is fastest using bit-compression.
Golomb codes or variable Golomb codes are good for very space efficient
indexes, because they yield a better space-time tradeoff than Escaping.

Analogous to our experiments with Lookup lists, we investigated the
impact of the bucket size of Skipper lists on the running time of algorithm
Skipper and Baeza-Yates (see Chapter 3). Figure 8.8 shows the speedup
of both algorithms versus Zipper for different bucket sizes. We used Es-
caping (of A-values) for this experiment because it seemed to be roughly
competitive compared to the compressed representations of Lookup lists in
terms of space requirements. Indeed we also tried other encodings, but all
of them yield similar results. Algorithm Skipper shows also dependencies
on varying the bucket sizes. In particular, neither very large nor very small
buckets give the best choice. This is because we have a delicate compromise
between two evils — scanning big buckets or scanning many entries on the
top level. A bucket size of 32 seems to be a good compromise. Algorithm
Baeza-Yates cannot compete with Skipper for any but very small length
ratios. There is again a fine balance between two evils. Larger buckets in-
crease bucket scanning overhead but also require more expensive levels of
recursion.

Figure 8.9 compares the best inverted list configurations from above
using similar amounts of space. To allow a comparison on a basis indepen-
dent of input lengths, encodings, and bucket sizes, the plot shows speedup
values versus algorithm Zipper using simple uncompressed lists. Lookup
lists (together with algorithm Lookup) clearly perform best for the very
important small list length ratios. For larger ratios, Lookup lists are also
well positioned and the difference to the competitors is marginal. Skipper
lists using Skipper are good for very small ratios, but cannot compete with
Lookup. However, they are slightly ahead of Lookup for ratios greater than
about 0.1. As expected, algorithm Zipper, which does not use two-level
data structures, is good for nearly equal lengths. Especially on uncom-
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Figure 8.9: Comparison of Lookup and Skipper

pressed lists where the speedup of Lookup and Skipper falls below one,
Zipper is better than the others. But as indicated by the (smoothed) lines
in the figure, using (higher) compression, the advantage of Zipper shrinks.
This suggests that it does not necessarily make sense to use algorithm Zip-
per on the two-level data structures for list lengths ratios greater than a
certain threshold.

Concluding all our results, we can say that an index that uses bit-
compressed A-encoded Lookup lists with a bucket size of eight is a good
choice for a system that allows very fast intersections but that do not re-
quire too much space (see Figures 8.4 and 8.9). If space is even more re-
stricted than time, then Golomb coded (or variable Golomb coded for sys-
tems with positional indexes) Lookup lists with a size of 16 are a good
choice (see also Figures 8.4, 8.6(b), and 8.7).
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We also made experiments for WT2g.s and a smaller index consisting
of the title fields of a collection of computer science bibliographies. The

results were similar. For details see [106].

8.3 Document Indexing

8.3.1 Compressed Inverted Indexes

In Section 8.2 we determined practical configurations for the large lists of
our compressed inverted index (CII). It turned out that Lookup lists with
a bucket size of 8 or 16 using either bit-compression or Golomb code pro-
vide a good tradeoff between memory requirement and execution times of
intersections.

To address the positional index as described in the theoretical sections,
we also need Lookup lists to allow fast rank operations (see Section 4.1.2).
Our experiments above suggested two practical configurations for large in-
verted lists when using positional indexes. Bit-compressed Lookup lists
with a bucket size of 8 yield the best running times, and Lookup lists with
variable Golomb codes and a bucket size of 16 resulted in particularly good
compression. We use the faster bit-compressed configuration in the follow-
ing.

Consistent with the bucket size of 8, we used a threshold of K = 128 to
switch between small and large inverted lists (see Section 4.1.1). All small
lists were encoded using A-Golomb coding.

The first two columns of Table 8.3 summarize the properties of our
two test collections and their compressed indexes. The WT2g index re-
quires 726.7 MB. For reconstructing the normalized text, we need the bag
of words, which uses 116.4 MB and gives a compression of 58 % for the
normalized text. The text delta requires additional 334.3 MB, resulting in a
total of 1176.1 MB for the original content of WT2g (without HTML). This
still provides a compression of 74 % for the index that includes the text.

For comparison, we also give the amount of space that is required to

store the input text using the compression library z11ib [56] as an alterna-
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WT2g WT2g.s WT2g*
Documents 247491 11272769 50000
Terms 2008964 1832710 609 362
Single values 1107 046 969913 316063
Small lists 864679 807208 277093
Large lists 37238 46 589 16206
Dictionary 74.1 74.1 21.7
Document index 136.6 376.6 33.9
Positional index 516.0 658.2 139.6
Sum / index 726.7 1108.9 195.2
Bag of words 116.4 421.5 231
Text delta (334.3) (606.3) (86.5)
Sum / index, text 843.1 (1177.4) | 1530.4 (2136.7) | 218.3 (304.8)
Input size 2105.3 2105.3 562.4
Input size w/o HTML | 1454.2 (1583.5) | 1426.9 (1533.6) | 420.5 (452.3)
zlibw/o HTML 527.3 (620.3) n/a | 143.78 (169.8)
Compression 0.58 (0.74) 1.07 (1.39) 0.52 (0.67)
Indexing time [min] 5.5 (6.3) 6.3 (7.2) 1.4 (1.5)
Peak mem usage [GB] 1.6 (1.9) 2.9 (3.5) 0.4 (0.5)

Table 8.3: CII on WT2g and WT2g.s

72



8.3. DOCUMENT INDEXING

tive way replacing the bags of words to report result documents. To allow
document-grained access within the compressed stream (comparable to the
reporting with bags of words), we added synchronization points after each
document using the Z_FULL_FLUSH flag of z1ib. The compressed stream
of the original content occupies 620.3 MB. However, the bags of words in
combination with our text delta need just 450.7 MB — roughly 27 % less.
But note that we need the indexes for decompression.

As indicated by the column of WT2g.s, an average document length of
18.5 already exceeds the limit of the compression potential of the bag of
words approach (the ratio is 1.07 > 1). The shorter the document lengths
are, the more values have to be stored in the bags while indexing equal
contents. Furthermore, the positional index has to store many pointers to
very small position lists. We show in Section 8.5.4 that in the case of short
documents, it is more efficient to follow Section 6.4 and to dispense with
a positional index and to extend the bags of words into sequences of term

IDs as they occur in the documents.

8.3.2 Comparison with Suffix Arrays

We compare our inverted index against different suffix array (and suffix
tree) implementations listed in Table 8.4. The peak memory usage while
indexing the first 50000 documents of WT2g exceeded the limits of our
physical main memory for some of the suffix array implementations. So
our comparison is based on this subset (called WT2g* in Table 8.3). It has
a volume of roughly 452 MB. After normalization, the size shrank to about
420 MB. We indexed the normalized text of all documents as a continuous
string, separating the normalized terms by spaces and the documents by
a pair of spaces (see Section 4.2). Table 8.3.2 summarizes the results of the
indexing processes.

The peak memory requirement during construction was measured us-
ing the Linux tool 1ibmemsuage. so. The sizes given for the Pizza&Chili
indexes were determined by their API function index_size. We used de-
fault parameters for all Pizza&Chili indexes except for RPSA and LCSA2.
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Implementation | Name References
SSA v3.1 Succinet Suffix A Miki dN [83]
SSA2 v11 uccinct Suffix Array dkinen and Navarro
. Alphabet-Friendly .
af-index_v2.1 FM-index Ferragina et al. [53]
CCSA Corr}pressed Compact Miékinen and Navarro [81]
Suffix Array
Run-Length Maékinen
RLEM FM-Index and Navarro [82, 83]
. Ferragina
fmindexV2 FM-Index and Manzini [52]
LZ-index7 Navarro [95],
LZ-index4 LZ-Index Arroyuelo et al. [9]
RPSA Locally Compressed .
LCSA? Suffix Array Gonzalez and Navarro [58]
Compressed
sada_csa Suffix Array Sadakane [103]
Table 8.4: Pizza&Chili implementations used
Construction Result
Time | Mem. Size Compr.
[min] | [GB] [MB] Y%
CIlI 1.417 | 0.426 | 218.264 51.90
SSA v3.1 24.753 | 4.324 | 412.431 98.07
SSA2 v1.1 24.644 | 4.324 | 412.431 98.07
af-index_v2.1 | 38.225 | 3.409 | 308.173 73.28
CCSA 32.450 | 3.614 | 542903 | 129.01
RLFM 24.610 | 2.592 | 341.966 81.32
fmindexV2 8.682 | 2.509 | 215.613 51.27
LZ-index7 6.607 | 2.688 | 513.880 | 122.19
LZ-index4 7284 | 2.616 | 465.768 | 110.75
RPSA >739 | >6.1|764.720 | 181.84
LCSA2 >180 | >6.1 | 684.050 | 162.66
sada_csaj 19.373 | 3.709 | 264.180 62.82
sada_csas 19.353 | 3.707 | 218.173 51.88
WCSA; 3.794 | 1.087 | 223.202 53.07
WCSA, 3.797 | 1.087 | 179.643 42.72

Table 8.5: Index properties

74




8.3. DOCUMENT INDEXING

Their poor indexing speed forced us to activate the ¥ heuristics (see [27]).
For Sadakane’s compressed suffix array, we explore two different configu-
rations. The first one indicated by sada_csa; has default parameters. The
second configuration sada_csa; was adapted to match the size of the CII,
and therefore, uses the sample rates D4 = 24 and Dy = 92.

For the word-based compressed suffix array from [27], we also built
two different configurations. One of them (WCSA ) uses the parameter set
{tw,ta,t4-1} = {8,8,8}, and occupies roughly the same amount of space
as the CII. The other (WCSA3) uses {ty,ta,t4-1} = {16,8,16}, and was
adapted to match the size of the CII without its document-grained index.
This case explores the approach of using a combination of a word-based
suffix array and a document-grained inverted index (details are discussed
later). We do not explore further configurations of the WCSA needing even
less space, because our experiments showed that especially their worst-case
query times are quite unattractive. Concerning the different parameters

used in our configurations, we refer to the respective papers.

Comparing the indexing times of Table 8.3.2, it turns out that there are
big differences between the different implementations. Some indexes need
just a few minutes for construction while others (RPSA and LCSA2) need
hours. The construction time of many character-based suffix arrays is about
half an hour. With 20 minutes, the compressed suffix array (sada_csa) is
slightly faster. But the fastest Pizza&Chili indexes need only about seven
minutes. The WCSA is about twice as fast, and beats all character-based
suffix arrays (and trees) with a time of less than four minutes. However, it
cannot compete with the compressed inverted index (CII), which requires

less than two minutes.

We can make clear statements about the peak memory usage during
index construction. The compressed inverted index needs less than the
size of the input text for construction when the text is streamed from disk
or network. Even the most economical character-based Pizza&Chili index
(fmindexV2) need more than six times than that. The WCSA requires more
than twice the amount of the CII.
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The index compression is heavily dependent on the selection of its pa-
rameters. With default values, there are two character-based Pizza&Chili
indexes (fmindexV2 and sada_csas) that achieve roughly the same com-
pression as the CIL. They need about half the size of the input text. All the
others occupy more space than that. Some need even more than the input

size.

Even if other configurations are possible for each suffix array, none of
the Pizza&Chili implementations seem to be promising enough such that it
could provide a better tradeoff than the CII or the WCSA just by modifying

its parameters.

8.4 AND Queries

8.4.1 Compressed Inverted Index

Figure 8.10(a) shows the average query time against the query length for
the AND queries of our two test logs on WT2g and WT2g.s. As expected,
the Excite log can be processed much more quickly with its very small re-
sult sets than the Random log which produces many results. The reason
can already be seen at a query length of one where just a single inverted list
has to be unpacked: the Random log involves clearly more frequent terms.
For larger queries, the CII benefits from an increasing number of query
terms, as this makes it more likely that the query contains a rare term with
a short inverted list. Since the running time of Lookup is essentially linear
in the smaller list, this decreases processing time.

AND queries for small query lengths are slower on WT2g.s, as there
are about 45 times more documents and hence more results. Because the
Random log was generated for the larger documents of WT2g, it is less
likely that larger queries return a hit in the shorter documents of WT2g.s.
This results in smaller result sets and compensates the negative impact on
the running time of the larger number of documents. So the querying times

on both test collections are about equal for larger queries.
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Figure 8.10: AND query performance of CII on WI'2g and WT2g.s
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Figure 8.11: Average AND query running times on WI2g*

Figure 8.10(b) shows the histogram of AND query execution times for
the Random log on WT2g and WT2g.s. In both cases, the major part (over
80 %) of the queries is processed within the period of the first boxes. The
worst case for WT2g is less than 20ms, and for WT2g:s it is still below
300 ms.

8.4.2 Comparison with Suffix Arrays

We implemented the AND query evaluation on suffix arrays as described
in Section 5.2. Figure 8.11 shows the average query time over the AND
queries of our Random query log. The inverted index performs well over
the entire range of query lengths. In contrast, the compressed suffix arrays
produce unsorted lists of occurrences for all query terms that have to be
generated using complicated algorithms, which cause many cache faults.
This takes the major part of the querying time. In comparison to that, the
time required for mapping the positions to document IDs and merging the
lists is negligible. The bottom-line difference is huge. On the average, our
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data structure is more than 1000 times faster than the fastest suffix array
(RPSA) that needs more than 3.5 times the space.

In Figure 8.12 we take a closer look at the “difficult’ queries with a
length of two terms. The figure shows what percentage of the queries take
longer than a given time. In a double logarithmic plot, all curves have a
quite clear cutoff. However, the differences are again huge. While the in-
verted index never took more than 1.6 ms, the fastest suffix array (RPSA)
needs up to 3.9s, almost 2500 times longer (using more than 3.5 times the
space). We can conclude that a search engine based on suffix arrays (in-
cluding WCSA) would probably need an additional inverted index at least
for Boolean queries.
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8.5 Phrase Queries

8.5.1 Positional Inverted Indexes

Figure 8.13(a) shows the average phrase querying time against the query
length for the inverted index on WT2g and WT2g.s. As already observed
in the experiment for AND queries, the Excite log can be processed much
more quickly than the Random log, as it has less hits. Again, the CII bene-
fits from an increasing number of query terms for larger queries. It makes
it more likely that the query contains a rare term that also produces fewer

results.

Phrase queries are faster on WT2g.s than on WT2g, because the position
lists are shorter for small documents. In this case, the problem is moved
from expensive merges of position lists into the highly optimized inter-
sections of Lookup lists. However, this is bought dearly by a higher space
consumption (see Section 8.2.1). But as Figure 8.13(b) shows, the worst-case
querying time of the Random log is nevertheless nearly twice the number
for WT2g.s. This is because the log contains very frequent (short) phrases
that occur in most documents of WT2g.s (which has about 45 times more
documents than WT2g).

8.5.2 A Home Match for Suffix Arrays?

We implemented the phrase query evaluation on suffix arrays as described
in Section 6.5. In Figure 8.14(a) we see the average time required for the
phrase queries of our Random query log. As indicated above, phrase
queries are easy wins for suffix arrays. Therefore we compare the CII only
with those that occupy more or less the same amount of space. For the
most frequent practical case of two terms, the inverted index is nevertheless
about 10 times faster than the best character-based suffix array (sada_csas).
Pizza&Chili suffix arrays are sometimes slightly faster for rare and easy
phrases with more terms, where almost all average running times are al-

ready below 10ms. The WCSA has about the same (good) performance
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as the CII in the two-term case, and is even faster than its character-based
pendants for larger queries.

Again, Figure 8.14(b) shows what percentage of the difficult queries of
the Random log with a length of two terms can be processed in a certain
time. Even the fastest character-based suffix array (sada_csas) needs nearly
8s for some of the phrases. This is more than a factor 30 longer than CII.
The reason is that some phrases occur very frequently, and unpacking all
of them can be very expensive. The WCSA, however, can compete with
the good running times of CII for the difficult queries. Although its longest
observed query time is a factor of 3.6 longer, the WCSA can process more
of the two term queries within the range from around 0.1 ms to 75 ms.

Results for the Excite log are shown in Figures 8.15(a) and 8.15(b). The
inverted index is clearly best for single-term queries. As the Excite log pro-
duces few results, all indexes are far below 1ms for larger queries. How-
ever, worst-case times of the suffix arrays are factors longer than that of
CII.

Experiments for WCSA on the complete WT2g showed similar results
relative to CII. The difference between WCSA; and WCSA,; is marginal.
So, it seems also to be a good alternative to use WCSA; instead of the po-
sitional index and the bags of words of CII. This would also remove the
major disadvantage of WCSA for single-term (phrase) queries.

8.5.3 Partial Phrase Indexes

Figure 8.16 and Table 8.6 show the results for our experiments with the
simplest approach for speeding up phrase queries on inverted indexes, the
partial phrase index of Section 6.2. As described in the introduction of this
chapter, we split the query logs in two parts and used the first part for
filling the phrase index and the second part for measuring.

We indexed the most frequently occurring queries of the training logs,
varying the size of the phrase index between the values 10, 100, 1000,
10000, 20000, 30000, and 40000. The table shows the space and time re-
quired for building the index. As to be expected, the difficult Random
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Cached queries 10 100 1000 10000 20000 30000 40000

Excite 0.08 030 1.31 8.81 16.69 2225 26.89
Rnd. 492 1725 71.88 200.78 27141 34156 394.14

Excite 032 090 253 714 1023 1210 13.97
Rnd. 11.29 3143 73.06 115.05 131.16 150.12 166.05

Size [[ime
[MB]| [s]

Table 8.6: Resources required by partial phrase indexes
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Figure 8.16: Partial phrase indexes on WT2g

queries are much more expensive. However, the first line in the plot shows
that the high cost for building the phrase index pays off by considerable
speedups of the Random log. As the second line in the plot shows, the Ex-
cite log can noticeably profit from a partial phrase index as well. Especially,
an index size of 10000 phrases seems to yield a good tradeoff between re-

quired space and obtained query performance.

This observation should be interpreted with care, since here the phrase

index is being benchmarked on the Excite log for which it was optimized.

85



CHAPTER 8. EXPERIMENTS

Indeed, these results are unrealistically good, as in most cases no suitable
query logs are available or existing query logs are out of date. To simulate
the more usual situation, we also measured both logs in each case using
the other log for training. As the two lower lines of Figure 8.16 show, this
transforms the outcomes. The speedup in both cases has become almost
invisible. In particular, a Random-trained phrase index, which might be
a tempting alternative to overcome the problem of missing query logs as
training set, is not an attractive approach. Furthermore, our experiments
showed that also the worst-case times cannot be significantly improved by

partial phrase indexes.

8.5.4 Two-Term Phrase Indexes

Table 8.7 shows the time required to build the two-term phrase indexes
of Section 6.3 using different cost models and both indexing strategies of
Section 6.3.1. We varied the size of the phrase indexes by investing be-
tween 10 % and 50 % in addition to the memory required by the underly-
ing inverted index (on WT2g). As we can see in the table, the two indexing
methods have quite different construction times. The re-process phrase in-
dexing is much faster than the search-based approach and it seems that it
provides great scalability. However, the values given in the table are plain
indexing times, and they do not contain the time required for preprocess-
ing the text again, which would be necessary when using the re-process
phrase indexing strategy. In fact, for our implementation, preprocessing is
expensive and the search-based approach is actually faster for small phrase
indexes requiring 10 % of additional space or less. Moreover, the search-
based method allows us also to derive some characteristics of the different
cost models. The nextword index (using the cost function C from Sec-
tion 6.3.2) has the longest search-based indexing times when the two-term
phrase index occupies 10 % of additional space. But, investing more space,
the minimum-based cost model (cost function C.) requires clearly more
time for construction than the others. Rather than seeing this as a disad-

vantage, we identify a quality feature of the minimum-based cost model
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Add. Re-process Search-based

size Cy Co  C Cy C< Co
10% | 312 3.16 329 | 592 6.53  8.46
20% | 396 399 4.04 | 1579 2192 1558
30% | 5.14 5.10 5.00 | 28.68 47.74 27.62
40% | 624 643 6.11 | 3994 8251 45.12
50% | 7.67 797 739 | 6083 12398 72.70

Table 8.7: Phrase index construction time in minutes for different amounts of
space in fractions of the underlying inverted index

(on in-memory systems). Indeed, our goal while designing suitable cost
functions was to select the most difficult phrases possible. Our idea behind
this was to move as much work as possible from query time to construction
time.

Figure 8.17(a) and 8.17(b) confirm the strength of C'« for in-memory
systems. The minimum-based cost model shows good performance on the
Random log and on the Excite log. In particular, its scalability is excellent
and it clearly wins over the other cost models when investing more than
30 % of additional memory. Using less memory, the performance of the
minimum-based cost model is similar to that of the sum-based model. The
nextword cost model, however, cannot compete with the others for either
of the query logs.

Comparing the result of the query logs shows that the Random log can
be considerably more effectively accelerated than the Excite log. This is
because the logs have quite different characteristics. In particular, the Ran-
dom log was generated by randomly selecting phrases of different lengths
from the underlying WT2g corpus. Therefore, it is more likely that the log
contains phrases that occur frequently (in WT2g) than phrases that occur
rarely. On the other hand, our phrase index selects term pairs from the
WT2g index that have — assuming a reasonable cost model — very large
inverted lists. That is, the phrase index contains also some of the most fre-
quently occurring (two-term) phrases of WT2g. Hence, we have similar

circumstances as within the log. Even if this is an overoptimistic case, we
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Figure 8.17: Query time speedup using different cost models
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can identify a good property of our two-term phrase index: difficult logs
that match the data seem to profit more from the two-term phrase index
than easy logs that are fast anyway.

Experiments on a subset of the GOV2 corpus using the Random (gener-
ated over the complete GOV2 corpus), the Excite, and the TREC query logs
showed similar results. For some details see [115].

External Memory Systems

We also implemented the two-term phrase index as an extension of the
disk-based search engine Zettair [125]. We report a query performance com-
parison between CII and Zettair in Appendix B. We downloaded Zettair
version 0.9.3 and adapted it to get comparable results: we deactivated the
ranking, as well as the expensive encoding of the result sets and the query
cache. We modified Zettair to keep a second index in addition to its original
one where we indexed the phrases. This seemed to be the most convenient
way to implement a phrase index on top of Zettair. To avoid negative in-
fluences between the indexes, we put both indexes on different physical
hard disks. As Zettair preprocesses documents very quickly, we used the
re-process phrase indexing strategy that is also preferable for other external
memory systems.

Throughout our experiments with Zettair, we switched off stemming
and used the —-big-and-fast option allowing the engine to consume
larger amounts of memory. We used the GOV2 corpus as it has a larger
size suitable for experiments with an external memory search engine. Con-
sequently, we used also the 05 and 06 TREC query logs. We measured the
query times in a batched fashion, but we cleared the file system caches us-
ing drop_caches whenever we changed the index configuration or the
query log.

Table 8.8 shows the average query time speedup for all our query logs
using different cost models. Again, we varied the size of the phrase indexes
by investing between 10 % and 50 % in addition to the memory required by
the underlying inverted index (on GOV2). The sum-based cost function
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Add. Random Excite

size Cy C. Co Cy Cc Co
10% | 1.499 | 1.487 | 1.160 | 1.230 | 1.180 | 1.234
20% | 1.977 | 1.778 | 1.744 | 1.533 | 1.276 | 2.645
30% | 2.626 | 2.113 | 2.204 | 2.122 | 1.422 | 3.157
40% | 3.494 | 2.396 | 2.623 | 3.085 | 1.566 | 3.551
50% | 4.754 | 3.018 | 3.124 | 3.679 | 1.708 | 3.872
Add. 05eff 06eff
size Cy C. Cy Cy C< Co
10% | 1.142 | 1.116 | 1.216 | 1.416 | 1.363 | 1.295
20% | 1.445 | 1.261 | 3.107 | 1.981 | 1.664 | 3.674
30% | 2.381 | 1.405 | 3.806 | 2.712 | 1.931 | 4.741
40% | 3.566 | 1.428 | 4.573 | 4.505 | 2.146 | 5.625
50% | 4.422 | 1.574 | 5.374 | 5.871 | 2.524 | 6.596

Table 8.8: Average query time speedup of the external memory phrase index
on GOV2

Cy performs clearly best for the difficult Random query log, and there-
fore it fulfills our intention to speedup the most expensive queries. For
the easier logs, the Nextword index (using cost function Cp) shows slightly
better results. As expected, the minimum based cost model designed for

in-memory systems cannot keep up with the others.

The worst-case times in Table 8.9 emphasize the strength of the sum-
based cost model in terms of a certain performance robustness. In partic-
ular, for difficult queries it can significantly improve the worst-case query
times. Moreover, it seems that C can provide better scalability for increas-
ing phrase index sizes than Cj can do. The results coincide with previous
estimations that we made in [115]. This suggests that even the query log
based approach of [124] (which we explore for our in-memory system in
Section 8.5.5) cannot compete with our two-term phrase index for difficult

queries.
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Add. Random Excite 05eff 06eff

size C+ Co C+ Co C+ Co C+ Co
10% | 3.104 | 1.365 | 1.645 | 1.639 | 1.210 | 1.293 | 1.539 | 1.119
20% | 3.796 | 1.994 | 1.431 | 2.484 | 1.667 | 2.886 | 1.732 | 4.273
30% | 5.369 | 3.187 | 2.273 | 2.495 | 2.433 | 2.875 | 2.882 | 5.065
40% | 7.407 | 3.502 | 6.174 | 2.512 | 4.802 | 2.874 | 6.293 | 5.021
50% | 7.368 | 3.920 | 7.684 | 2.494 | 6.728 | 2.885 | 9.770 | 6.419

Table 8.9: Speedup of worst-case times of the external memory phrase index on

GOV2
Pos. index Short-text index

Term lists + phrase index | Term lists
Size [KB] 1460683 | x1.0 x0.9 x0.8 x0.7 x0.6
o 05eff 0.614 | 0.186 0.260 0.386 0.592 0.987
E Ooeff 0.687 | 0.120 0.178 0.296 0.487 0.804
%0 Excite 1.193 | 0.298 0.475 0.765 1.179 2.200
< Random 23.985 | 0.943 1.249 2.097 5.062 63.118
o 05eff 134 | 126 126 124 126 424
E o6eff 88 13 19 68 81 366
¢  Excite 212 18 22 46 108 697
Z  Random 1918 | 110 110 110 178 4277

Table 8.10: Positional index vs. short-text index on WT2g.s

Small Document Indexes

We also implemented the short-text index of Section 6.4 and used the two-
term phrase index (in combination with the term lists of Section 4.1.2) as
a powerful substitute for the positional index. For the following experi-
ments, we used the WT2g.s test collection.

We compared the short-text index with the classical positional index.
Table 8.10 shows the average query times as well as the worst-case query
times for different query logs on both indexes. For the short-text index,
the table shows the results of different configurations varying the available
space (given as fractions of the size of the positional index). The reference

value of the positional index contains the sizes of the bags of words of all
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documents. Recall that a bag is the sorted list of the term IDs of a document
(without duplicates). It is used for reconstructing the document content
from the indexes (see Section 7.1), and for fast updates (see Chapter 9).
Because the short-text index holds term ID sequences called term lists (see
Sections 6.4 and 4.1.2), the bags become superfluous. So, the size values
of the short-text index contain just the space needed for the term lists. The
plain short-text index without any phrase needs about 60% of the size of the
positional index. We added phrases and measured the query log running
times at different thresholds. As Table 8.10 shows, if we use about 70%
of the space of the positional index, the short-text index already performs
better than the classical approach. Using the same amount of space, the

short-text index is even up to 25 times faster.

8.5.5 Combined Approaches

We also conducted experiments with combinations of partial phrase in-
dexes and two-term phrase indexes using different cost models. For the
partial phrase index, we used in each case the 10 000 most frequent queries
of the training log. This number gave a good time-space tradeoff in our
experiments above (coinciding with [124]). The previous experiments
showed also that partial phrase indexes where the training log differs from
the test log do not yield gains in query performance. Therefore, we show
only the results with the optimistic configuration that uses the first half of
each log for training and the second half of the same log for measuring.
The combination that uses the nextword cost model corresponds exactly to

the three-way index combination of [124].

Figure 8.18(a) shows again the average query time speedup of the com-
bined approaches for the Excite log, and Figure 8.18(b) illustrates analo-
gous results for the Random log. While for the Random log the combined
approaches are not much better than a two-term phrase index alone (see
Section 8.5.4), the partial phrase index and the two-term phrase index seem

to complement one another for the Excite log. The minimum-based cost
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model is again best on our main memory search engine. Its index combi-

nation can accelerate the Excite queries with a factor up to of eight.

8.6 Document Reporting

8.6.1 Compressed Inverted Index

Figure 8.19(a) shows the average throughput for document reporting as
a function of (KB-rounded) document size. We get noticeable differences
between the data rate for reconstructing the normalized text and the data
rate for reconstructing the original text (both without HTML). Our scheme
allows roughly 5 MB per second of (original) text output (when using a text
delta). Retrieving data from disk (assuming an access latency of 5ms and
a transfer rate of 100 MB/s) would be faster beginning at around 32 KB.
This suggests a hybrid storage scheme keeping longer files on disk. But
note that in many applications, texts are much shorter (see, for example,
[42]). At first glance, it looks like parallel disks would be a way to mitigate
disk access cost. However, with the advent of multicore processors, this
option has become quite unattractive — one disk now costs more than a
processing core so that even rack servers now tend to have less than one
disk per processing core. Using blade servers, the ratio of cores to disks is

even larger.

8.6.2 Comparison with Suffix Arrays

Figure 8.19(b) compares the four most competitive indexes when returning
normalized text. The character-based suffix array sada_csa; is far behind
the others. Its bandwidth is roughly five times smaller. WCSA; and CII
are comparable, but CII can beat WCSA especially for documents larger
than 10 KB. WCSA;, shows again the performance for a combination of a
document-grained inverted index and a word-based suffix array. Although
it is behind WCSA; and CII, its bandwidth is still acceptable.
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Figure 8.19: Average document reporting speed
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CHAPTER

Dynamization

All previous chapters assume a static scenario: the index is created from a
collection of text documents once, and then the collection is never changed.
However, on productive real-world systems this is often not admissible. In-
stead, new documents are inserted, old documents are deleted, or the con-
tents of indexed documents are changed. Therefore, this chapter discusses
how updates of documents can be implemented for our data structures.
There are different strategies for keeping (disk-based) inverted indexes
up to date [74, 73, 59]. A simple approach is to rebuild an index from scratch
when (possibly accumulated) updates arrive. However, this is in general
very time-expensive, and pays off only if the number of documents that
remain untouched is low. But in most cases only a small fraction of the
documents in the collection is subject to update [76]. Therefore, it might be
better to insert each update in-place into the single inverted lists. However,
this requires frequent locks on some of the inverted lists resulting in a bad
overall query performance. Thus, between the two extreme approaches,
it has become popular to store updates in a smaller (fast updatable) delta
index [126], and to merge them lazily [39] or in a batched fashion [28] into

a larger (query-optimized) main index. Some approaches keep also several
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indexes in parallel, and merge them (in some way at some time) repetitively
to avoid the reorganization of a single huge main index [33, 72].

In delta index scenarios, search becomes a federated task requiring to
merge the result sets of all indexes. On the other hand, a delta index can
make updates instantly visible for users [70]. If there is any inconsistency
between the results, the newer delta index overwrites the results of main
index(es). Of course, the query performance during a merge is highly in-
fluenced by the merging strategy, the number of main and delta indexes,
and their sizes [33].

The aspect of dynamization is certainly not the main focus of our work,
but we believe that it is important to outline that our data structures could
also be used in a dynamic environment. However, we have to keep in
mind that our system is designed for a cluster of low-cost machines. If the
search engine is subject to huge amounts of insertions, we suggest the use
of additional cores.

For a single core of our main-memory search engine, we propose to use
in addition to the main index (described in the previous chapters) a small
but very fast updatable delta index. The delta index should be merged into
the larger main index as soon as its size exceeds a certain threshold. During
the merge, both indexes remain searchable as we store the updated parts
separately, and activate them at one go. That reduces the down-time to
a few seconds. Furthermore, we use a second delta index that maintains
updates during the merge, and that becomes the new delta index after the
merge. We briefly describe our delta index implementation and our merge
algorithm in the following sections.
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Figure 9.1: Delta index scheme

9.1 Fast Updatable Delta Indexes

Figure 9.1 shows the scheme of our fast-updatable delta index that is par-
ticularly designed for short documents. Instead of maintaining an inverted
index, we store the term IDs of the documents in a large bit-compressed
vector. That is, for updating a document we mainly have to append its
sequence of term IDs to this content vector. Searching for some term ID re-
quires a full-table scan over the vector. In our implementation this is highly
optimized by loop-unrolling and hard-coded search functions for queries
with a length of up to five terms. Alongside, we keep a list that stores all
document offsets within the content vector together with the correspond-
ing (global) document IDs. Positions found in the content vector have to be
mapped to document IDs using this list. We keep a global bit-vector that
has a flag for each document of the main and the delta index, indicating
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whether an entry is valid or not. This guarantees that during a merge or
when returning search results, the most recently committed document data
is used.

The dictionary of our delta index has a B-tree structure, and therefore,
it allows fast inserts. In addition, each leaf (corresponding to a term) stores
the smallest and greatest index that a term can have in the content vector.

The values can be used to truncate the full-table scan.

9.2 Merging Indexes

Our merging process begins with removing invalid entries from the docu-
ment list of the delta index, and sorting it in increasing order of IDs. For
each of the update documents, we use Algorithm 2 to fill temporary in-
sertion and deletion lists that are similarly maintained as the inverted lists
during the index construction (see Section 4.1.3). That is, each term ¢ of
the document index has an insertion list I” that keeps the IDs of inserted
documents containing ¢. Equally, each term ¢ has a deletion list D where
all deleted documents (formerly containing ¢) are listed. We implement the
modification of documents as a combination of a deletion and an insertion.
As we explain later, we also keep similar lists I7 and D} for our positional
index. In its second loop, Algorithm 2 exploits a particular advantage of
our index scheme. As we store for each document a bag of words, we
exactly know in which deletion lists its ID has to be added when the doc-
ument is deleted (or updated). We therefore do not need to re-process the
old version of the document (which probably no longer exists), nor do we
need to rebuild the index. Furthermore, we do not need to use complicated
techniques that try to reduce the update work by finding differences be-
tween the indexed and the update version of the document [77], as we can
match insertion and deletion lists of a term before merging them into the
index. Note that we can apply this for updating the inverted lists of the
short-text index of Section 6.4 with minor modifications.

After the updates have been propagated from the delta index into the
insertion and deletion lists, the lists have to be merged into the index. For
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Algorithm 2 Pseudo-code for preparing updates of the main index

Require:
update document U,
document ID u,
current term set T,

document insertion lists 12,
document deletion lists D},
positional insertion lists 1/,
positional deletion lists DY,

inverted lists L

S—10 {new bag of words}
p—1
while p < ||U]| do {insert new terms}
t — Ulp| {term at position p of update document}
if d ¢ S then
IP «— IP U {u} {prepare insertion into document index}
r— ||IF]| + i | Leli]) = w {rank in insertion-merged inverted list}
It — {p} {initialize list of positions}
IF — 1P u{(r,it)} {prepare insertion into positional index}
S — Su{t} {append to updated bag of words}
else
It —1tu{p} {append p to position list of last insertion}
end if
p—p+1
end while
Jg=1
while j < ||T,,|| do {delete old terms}
t— Tulj]

DP «— DP U {u}
r—i| Lifi] = u
Df «— Df U{r}
j—j3+1

end while

return S

{prepare deletion from document index}
{rank of ¢ in current inverted list}
{prepare deletion from positional index}

{updated bag of words ready for replacing 7., }
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our document-grained index, this is straightforward. We match the inser-
tion and deletion lists, merge the results with the inverted lists of the index,
and replace existing inverted lists by their updated versions. However, up-
dating the positional index is more complex. Because the position list of
a term ¢ occurring in a document d is accessed using the rank of d in the
document-grained inverted list of ¢ (see Section 4.1.2), we need to store
these ranks (rather than IDs) in the update lists I/ and D}’. An additional
pitfall is that inserting an update somewhere in between an inverted list
increments the ranks of all following entries. Therefore, ranks appended to
the insertion lists I by Algorithm 2 are shifted by adding the number of
insertions done so far (with increasing IDs or ranks). That is, we initially
assume that there were insertions only and handle deletions (eventually
also caused by changing documents) later. Consequently, Algorithm 3 that
merges the position lists, carries an offset o that records the rank difference
between the original and the updated version of the positions list. It is in-
cremented whenever a new entry is appended to the result. Ranks in the
deletion list correspond directly to the ranks in the original list. Hence they
have to be shifted using offset 0. They decide whether an old entry is in-
serted or not where the latter case is equivalent to a deletion. Finally, we
replace also the updated positions lists with their old versions.

Summing up the process above, we use an in-place merge strategy
which updates only the lists actually changed. Unfortunately, such strate-
gies require a non-trivial memory management to avoid fragmentation,
which consumes both space and time [34, 32]. However, we believe that
reorganizing the space on main-memory systems is less expensive than on
disk-based systems. Note that the document IDs of deleted documents still
exist physically in the index and refer to empty documents (unless they
were deleted from the end). But the IDs can be reused as soon as a new

document is indexed.
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Algorithm 3 Pseudo-code for our positional list merge algorithm
Require:

term ID ¢,

positional insertion list I},

positional deletion list D,

current position list L’

P—10 {output: new position list}
i—0 {control variable inserts}
j<—0 {control variable deletions}
00 {rank offset between old and new list}
s 0 {rank}
while s < || LT|| + ||I]|| do {range of s assumes insertions only}

ifi < HUtPH then
(r,1) < IF[i]
if r = s then {check for an insertion}
P—PuUl {add new positions}
t—1+1
o—o+1 {increment offset}
s—s+1
continue while
end if
end if
if j < |DF|| A DP[j] = (s — o) then
j—j+1 {delete old positions (’silent insertion’) }
else
P« PULF[s— 0 {insert old positions}
end if
s—s+1
end while
return P {return updated list}
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9.3 Updating Phrase Indexes

The phrase index of Section 6.3 can be updated easily. Assuming that the
threshold that decides whether a (two-term) phrase should be indexed or
not is kept constant, only phrases that occur in updated documents can re-
quire a change within the phrase index. We therefore record all phrases
of inserted and deleted documents, in a way like that described in Sec-
tion 6.3.1. We get the phrases for deleted documents quickly by recon-
structing their term sequences as described in Chapter 7. Finally, we loop
through those phrases and check whether the inverted lists have to be
deleted or replaced.
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Implementation Details

During our experiments, we have explored a huge number of index con-
figurations and combinations. While providing convenient interchange-
ability between different approaches (with many parameters at all levels
of abstraction), it was a big challenge to avoid negative influences on the
performance. Even though our implementation is highly modular, there is
highly optimized code behind well-defined APIs enabled by making exten-
sive use of generic programming. But in addition, our code contains spe-
cialized versions for many tasks. So, it turned out that how we read or write
the index data is crucial for the overall performance. This includes, for
instance, using suitable memory allocation strategies, accessing the mem-
ory in a cache-friendly way, and being sparing in our use of functions like
memset or memcpy. Giving all details of our implementation would go

beyond the scope of this thesis, but here, we give some selected examples.
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10.1 Bit-compressed Vectors

Bit-compressed vectors are among the key data structures in our search en-
gine. This is not only because they show good performance (see Chapter 8),
but also because they allow random access (see Section 3.2.1). Therefore,

we show how we can implement them efficiently.

10.1.1 Encoding Integers

Built-in integer data types on modern computer systems are fixed-width
words, where each type occupies a power-of-two number of whole bytes.
Unfortunately, this means that we cannot address the main-memory with
bit precision, as we may require for storing bit-compressed values of ar-
bitrary width. Instead, we need to patch each bit-compressed value into
an array of (typically) machine words by shifting it to the right position,
masking out the target bits, and pasting it there using bit-wise OR opera-
tions. The target position and the required amount of shifts depend on the
desired word width and index of the value in the list that we wish to en-
code: if i be the index, w < W the width parameter of the bit-compression,
and W the machine word width in bits, then the number of (left-)shifts is
s =W —w — (tw) mod W. This implies that the first position is i = 0 and
that the encoding begins at a machine word bound. If s < 0 the value spans
two target machine words. In this case, we shift the value —s to the right
for the first word and W + s to the left for the second one. The indexes of
these target machine words are j = [(iw)/W] and j + 1, respectively (if the
latter exists).

We have seen that bit-compression allows random access. But deter-
mining the target word(s) and the shift value is computationally far from
negligible. Even if the integer division (or the modulo operation) by the
width of a machine word W can be calculated using a fixed bit-shift (or
a fixed bit-mask), we require at least one multiplication. This is unavoid-
able for writing a random single value, but when we encode many values

linearly (either using a STL vector-like push_back or an iterator), we can
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also calculate the shift and the machine word position incrementally. Given
the current shift value s, the next value s, is given by spy; = s — w if
s > 0and sg41 = s + Wif s < 0. Accordingly, weset j = j + 1if s < 0.
We can implement this using status variables that modern compilers might

keep in CPU registers.

10.1.2 Decoding Integers

Generally, there is no big difference between encoding bit-compressed vec-
tors and decoding them. For reading a single value or just a couple of
values, we use the process as we described in the section above in reverse
order. But often we are required to scan — we may even try to enforce
this — a complete list linearly, as this is the most cache-friendly access pat-
tern. While decoding a large number of bit-compressed values, we can
observe that the way we shift the words recurs cyclically. At the latest,
when we have consumed the least common multiple of W and w in bits,
we arrive exactly again at a machine word bound. This is after W machine
words in the worst case. Therefore, we can also read bit-compressed val-
ues in chunks of m,, < W machine words: our implementation contains
(for each w < 64) hard-coded sequences that decode m,, machine words
in one go without calculating any shifts or masks. We pre-calculate those
variables during compile time using generic meta-programming. To follow
our well-defined AP], this is encapsulated in a read-only iterator that inter-
nally holds a buffer (with the size of a chunk), whose dereference operator

returns uncompressed values directly from this buffer.

10.2 Accessing Lookup Lists

In Section 3.4.1 we introduced Lookup lists. A Lookup list is a two-level in-
verted list data structure that logically splits its content values into buckets
based on their most-significant bits. The actual data is stored in the bottom
level, and the top level holds pointers to each of the buckets for allowing

fast access to the values. We used Lookup lists for the larger inverted lists
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in our search engine, and therefore, they are responsible for the time effi-
ciency (see Section 8.2). Depending on the task, we use different methods
for operating the lists.

10.2.1 Bucket Search

Algorithm Lookup of Section 3.4.1 intersects a Lookup list with an arbi-
trary smaller list by traversing the smaller list, and locating its values in
the larger Lookup list. Because the values in the Lookup list are organized
in buckets (based on their most-significant bits), we can jump almost ex-
actly to the position where we expect a value that we are searching. In
most cases, it suffices to read just a couple of values to decide whether we
actually can find the element or not. Similarly quickly, we can determine
the rank of a given value within these lists. We need ranks, for instance,
for accessing the positional index (see Section 4.1.2). In these cases, we
use bucket iterators that can be exactly positioned and that can decode the
bucket value by value. In particular, we would not use the buffered iterator
from the previous Section 10.1.2.

10.2.2 Unpacking Lookup Lists

When intersecting two inverted lists, algorithm Lookup traverses the
smaller list linearly. Thus, if we have two Lookup lists as input, then we
have to decode one of them completely from beginning to end. The sim-
plest way to do this is to iterate over the buckets, and to unpack each of
their values in an inner loop. However, our experiments showed that this
is not very efficient. Therefore, we first unpack the top level before we iter-
ate through the bottom. More precisely, we build a bit-vector that has a bit
set at all the positions where a new bucket starts in the bottom. Note that
this bit-vector uses at most as much memory as the coding of the bottom
level. In addition, we hold an uncompressed vector that stores an offset for
each of the set bits. The offset carries the most-significant bits of the val-
ues in the corresponding bucket, i.e. it is equal to the shifted bucket index.
Thus, for unpacking a list, we iterate through the bottom and modify the
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most significant bits of the current value whenever we hit a set bit. This
approach has different advantages. First, we can decompress the normally
bit-compressed top level in chunks (see Section 10.1.2). Second, because
we do not need a top-level iterator, we can reduce the number of status
variables that might replace each other from CPU registers. Third, we ob-
tain a simpler program flow without too many branches. While iterating
through the list, checking a single bit suffices to find out if we are currently
entering a new bucket or not. This procedure is again encapsulated within
a read-only iterator.
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Conclusion

Text search engines have to manage huge amounts of data. Therefore, clas-
sical search systems hold the major parts of their index structures on hard
disks. But given growing amounts of RAM [93, 57] it becomes possible to
store also larger indexes in main memory. In particular, in scenarios where
fast response times are essential, using in-memory approaches is a great
opportunity. In this thesis, we have studied data structures and algorithms

for in-memory text search engines in a bottom-up fashion.
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11.1 Contributions

We have designed, implemented, and extensively studied the modular core
of a purely main-memory based full text search engine. We have explored
different inverted list representations with respect to both compression and
performance of pair-wise intersections. We have used three different en-
coding schemes covering a wide range of space-time tradeoffs. For Escap-
ing (which provides an interesting tradeoff between the compactest and
fastest encodings), we have given a new solution for how a space-optimal
parameter can easily be determined (assuming a normal distribution of the
differences). Inspired by the idea of randomly assigned document IDs, we
have designed and analyzed a new inverted list data structure that uses
auxiliary information for speeding up important operations which avoids
(in contrast to others) to storage of redundant information.

We have seen that in practice roughly 90 % of the pair-wise intersections
caused by AND queries have list length ratios % < 0.1. Hence, it is worth
looking for an algorithm that is especially suitable for those small ratios.
The classical algorithm Zipper is good for nearly equal lengths but at least
for 7+ < 0.2 it cannot compete with algorithms that use auxiliary informa-
tion. Using a higher compression, this disadvantage of Zipper compared
to the two-level algorithms is even larger. Algorithm Skipper, for instance,
is noticeably better for smaller ratios. Asymptotically efficient algorithms
like Baeza-Yates cannot realize their theoretical advantages in practice. For
all > there are other algorithms that are considerably faster. In addition,
Baeza-Yates and its successors are comparatively complicated and get even
more complicated when combined with compression. Rather than seeing
this as another disadvantage, its supporters could argue that a clever im-
plementation could considerably improve on our results.

Our new (not purely comparison based) intersection algorithm Lookup
is at the same time simple and among the best algorithms over the entire
spectrum of length ratios. For small °* it can claim considerable speedups
over all other algorithms in our experiments. Randomization allows inter-

esting performance guarantees on both execution time and space require-
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ment. However, it seems less advantageous in practice to obliterate the
dependencies present in real world inputs. Even Lookup itself profits from
these dependencies.

Using these findings, we have shown that a carefully engineered in-
memory search engine based on inverted indexes and positional indexes al-
lows fast queries using considerably less memory than the input size (while
being able to reconstruct the input).

We have compared our approach with recent implementations of
character-based suffix arrays. Their space consumption is comparable to
our inverted index. However, they need more time and space during con-
struction. As inverted indexes are well designed to answer AND queries,
suffix arrays cannot compete with them in this field. Their response times
are orders of magnitude slower. But for phrase queries, suffix arrays per-
form quite well. Nevertheless, they have a major disadvantage when gen-
erating large results. We have seen that in practice more than 50 % of
all phrase queries are of length two. Furthermore, our experiments have
shown that these short queries are the most expensive ones as they pro-
duce large result sets. This aspect narrows the advantage of suffix arrays
in some cases where the average querying time is already below 10 ms for
all competitors. We believe that it is important to afford good worst-case
times, as it is often difficult to explain to users of a search engine that they
have to wait (for example) up to 8 s to getting their answers.

Word-based suffix arrays can dispel this worst-case behavior and can
even improve the average phrase query execution time of their character-
based pendants. But they are still slow for single term queries as well as for
AND queries. In particular, they have poor worst-case behavior in common
with character-based suffix arrays, when queries produce a large number
of hits. Furthermore, they require more than twice the time for index con-
struction than compressed inverted indexes. Therefore, a purely suffix ar-
ray based text search engine is not yet a serious alternative to an inverted
index based system. But note that there are other scenarios than (English)
text search engines, where suffix arrays might be the better choice.

113



CHAPTER 11. CONCLUSION

The main problem area for inverted indexes is that of phrase queries. In
this area, the suffix arrays were most likely to be a serious competitor for
inverted indexes. But, our experiments have shown that our new and flex-
ible two-term phrase indexing scheme can be used to achieve significant
query time speedup compensating this disadvantage. It is adaptable to the
underlying storage system and can achieve significant speedups on both
in-memory and external memory search systems. Also, it yields interesting
theoretical robustness for difficult queries. We have explored different cost
models for selecting suitable phrases to be indexed. Our minimum-based
cost model outperforms others clearly, and, in particular, it provides high
scalability. Partial phrase indexes are satisfactory only in the optimal situa-
tion where we use perfectly fitting training logs with easy phrases. In this
case, the advantages of the partial phrase index and the two-term phrase

index seem to complement one other.

We have used our phrase query acceleration technique to design a new
index scheme suitable for small documents. It outperforms positional in-
dexes in terms of compression and query performance at the same time.
Furthermore it is tunable to obtain different space-time tradeoffs. For in-
stance, our experiments have shown that using 70 % of the space of a po-
sitional index, our short-text index scheme already has better average and
worst-case query times. Using the same amount of space, it is more than 25

times faster than the classical approach.

We have designed a new framework for reconstructing document con-
tents using inverted indexes. It stores only the fraction of the information
that is not yet contained in the index but that is essential for reporting the
documents. This results in a compact representation of the text (using less
space than the input) that allows fast querying.

We have outlined that our data structures can efficiently handle changes
in the indexed document collection. Finally, we have explored some low-

level details of our main memory search engine implementation.
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11.2 Outlook

Although our search engine is implemented carefully and a lot of work has
been put into details, we believe that we still have not yet reached the end
of what can be achieved with our approach. For accessing our compressed
data structures, a promising approach (especially for bit-compressed lists)
seems to be to use low-level SIMD instructions (see, for example, [121]).
Lookup lists seem also to provide a good basis for even more fine-grained
parallelism. Due to their organization in power-of-two ranges, we could
easily intersect corresponding ranges (probably with different sized buck-
ets) of Lookup lists in parallel.

The text delta compression could be improved by maintaining a dictio-
nary storing building blocks for sequences of separators occurring between
terms. Perhaps we could combine this with a mechanism that learns re-
curring patterns of terms and separators during indexing, and that gener-
ates grammar-like rules (similar to [97]) using the dictionary terms and the
building blocks as terminals.

Our dictionary is very simple, so for example it does not allow efficient
pattern or fuzzy search. It is also not compressed. Here, existing work
could be used or adapted (see, for example, [133, 10, 55]).

Although we have explored two very important types of queries, there
are other query types that might also be fundamental. Our search engine
core does not yet support ranking. It returns the results in the order of doc-
ument IDs. Ranking is a major area of research, and there are approaches
that could be applied to our engine (see, for example, [91, 134]).

In the introduction we mentioned that our text index should be seen as
a part of a large distributed search system. A next step would be to embed
our index into a multicore framework that can also support techniques for
load balancing. Then, it would be interesting to compare the system with
a distributed state-of-the-art disk-based search engine. In particular if in-
teractive response time (see also [98]) is an essential claim, the main-memory

based system could be a very competitive approach (see also [22]).
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APPENDIX

Results on GOV2

In this section, we give bottom-line results for some of our experiments
for a randomly selected sixty-fourth subset of the GOV2 corpus contain-
ing roughly 400 000 documents. We used the query logs described in Sec-
tion 8.1.4, where we generated the Random log using the complete GOV2
corpus and not only the selected subset.
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Figure A.1: CII on a subset of GOV2
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As Figure A.1(a) shows, the average AND querying times are very fast
(<1ms) for all logs. The average phrase querying times shown in Fig-
ure A.1(b) are good as well. The Random phrase queries are somewhat
more expensive in particular for small lengths. This coincides with the re-
sults for the smaller WT2g corpus (see Section 8.5). Figure A.2 shows that
for the difficult Random log the minimum-based cost model again outper-
forms the others for our in-memory index (see Section 8.5.4).

Concluding the results, our search engine seems to provide reasonable
scalability. It provided comparable times in our tests when the number of

documents was significantly increased (relating to Chapter 8).
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APPENDIX

In-memory vs. Disk-based

The following plots show a comparison between our in-memory text search
engine implementation as described in this thesis and the disk-based search
engine Zettair [125]. We used the WT2g corpus introduced in [62] to run the
queries of the Excite log and the Random query log (see Section 8.1.4). All
plots show average query times against the query length, i.e. the number
of words in the query.
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