
Task Activity Vectors:
A Novel Metric for Temperature-Aware

and Energy-Efficient Scheduling

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Institutes für Technologie (KIT)

genehmigte

Dissertation

von

Andreas Merkel

aus Karlsruhe

Tag der mündlichen Prüfung: 4. Februar 2010
Erster Gutachter: Prof. Dr. Frank Bellosa
Zweiter Gutachter: Prof. Dr. Wolfgang Karl

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Abstract

Over the past decades, microprocessors have seen an enormous increase in integra-
tion density and power consumption. Today, we have reached a point where on-chip
temperature has become a severe problem, and energy efficiency is of paramount im-
portance. In addition, increasing the frequency or the complexity of a processor core
is no longer economical. This has lead to the introduction of explicit thread-level
parallelism on processor chips (simultaneous multithreading, chip multiprocessing).
Threads running in parallel on a chip compete for shared chip resources and are af-
fected by chip-wide power management, which leads to interdependencies between
those threads.

All three aspects—temperature, energy efficiency, and interdependency between
threads of execution—are strongly connected to the characteristics of the applications
(tasks) executed by the processor. Different tasks utilize chip-related resources such
as integer or floating point units, caches, or the memory interface to different degrees.
Since power dissipation is caused by activity on the chip, processor temperature is
inherently coupled to the utilization of the resources on the chip and thus depends on
the running task. Tasks that run in parallel and utilize the same shared chip resources
to a high degree lead to contention, poor performance, and poor energy efficiency.

The operating system scheduler—managing the running tasks—can take great in-
fluence on temperature and resource contention by virtue of its scheduling decisions,
i.e., by deciding which tasks to run at what time and in combination with which other
tasks. Schedulers found in today’s general purpose operating systems are unaware
of the utilization of chip resources caused by the tasks they manage. Uninformed
scheduling decisions lead to thermal problems, resource contention and, overall, inef-
ficient use of the processor’s resources.

In this thesis, we propose task activity vectors as a new metric to guide scheduling.
An activity vector provides the scheduler with information about which processor
resources a particular task uses. With this knowledge, the scheduler can make more
informed scheduling decisions and use the chip’s resources more efficiently.

Two use cases demonstrate the applicability of task activity vectors. Firstly, we
show that the information provided by activity vectors can be used to attain a more
balanced temperature distribution on the chip and to avoid pernicious hotspots by
controlling the temporal order in which tasks are scheduled. Secondly, we show that
activity vectors are suitable for co-scheduling tasks in a way that avoids resource con-
tention and improves performance as well as energy efficiency.

We implemented our proposed policies for the Linux kernel. Our evaluations with
multithreaded and multicore processors show that vector-based scheduling is a low-
overhead way to improve performance, attain better thermal behavior, and make more
efficient use of energy.

i

ii

Contents

1 Introduction 1
1.1 Modern Microprocessors—a Challenge for Task Scheduling 1
1.2 The Role of Resource Utilization . 2

1.2.1 Temperature-aware task scheduling 2
1.2.2 Co-scheduling for energy efficiency 3

1.3 Contributions . 6
1.4 Structure . 7

2 Background 9
2.1 Tasks . 9
2.2 Symmetric Multiprocessing . 9
2.3 Chip Multiprocessing and Simultaneous Multithreading 10
2.4 Multiprocessor Scheduling . 10
2.5 Thermal Behavior of a Processor Chip 11
2.6 Thermal Management . 13
2.7 Power Management . 14
2.8 Energy Efficiency Metrics . 15
2.9 Event Monitoring Counters . 15

3 Task Activity Vectors 17
3.1 The Need for Task Characterization 17
3.2 Definition of Task Activity Vectors 18
3.3 Versatility and Portability . 19
3.4 Activity Vector Framework . 21
3.5 Determining Activity Vectors . 21
3.6 Implementation . 26
3.7 Overhead . 27
3.8 Vector-Based Scheduling . 28
3.9 Uniform vs. Non-uniform Policies 29

4 Temperature-Aware Scheduling 31
4.1 Introduction . 31
4.2 Determining Chip Temperature . 33
4.3 Related Work . 35

iii

4.3.1 Approaches guided by temperature 35
4.3.2 Approaches guided by utilization 36
4.3.3 Approaches at the hardware level 37
4.3.4 Shortening timeslices . 38

4.4 Vector-Based, Temperature-Aware Scheduling 38
4.4.1 Runqueue sorting . 39
4.4.2 Activity balancing . 48
4.4.3 Activity unbalancing . 50

4.5 Implementation . 52
4.5.1 Activity vectors . 52
4.5.2 Runqueue sorting . 53
4.5.3 Activity balancing/unbalancing 54

4.6 Evaluation . 55
4.6.1 Setup and methodology . 55
4.6.2 Overhead of activity vectors 56
4.6.3 Runqueue sorting . 57
4.6.4 Activity balancing . 62
4.6.5 Activity unbalancing . 63
4.6.6 Shortening timeslices . 66
4.6.7 Analysis . 69

4.7 Summary . 70

5 Resource-conscious Scheduling for Energy Efficiency 73
5.1 Introduction . 73
5.2 Related Work . 75

5.2.1 Contention for SMT resources 76
5.2.2 Cache contention . 77
5.2.3 Memory contention . 78
5.2.4 Profiting from shared resources 79
5.2.5 Frequency selection . 80

5.3 Analysis of Resource Contention and Frequency Selection 82
5.3.1 System description . 83
5.3.2 Metric . 84
5.3.3 Energy measurements . 86
5.3.4 Resource contention . 86
5.3.5 Frequency selection . 91
5.3.6 Optimal co-scheduling . 95
5.3.7 Results for the AMD Opteron 96

5.4 Activity Vectors for Multicore Scheduling 97
5.4.1 Frequency dependency of activity vectors 98

5.5 Resource-conscious Scheduling . 101
5.5.1 Vector balancing . 102

iv

5.5.2 Vector-based co-scheduling 105
5.5.3 Sorted co-scheduling . 106
5.5.4 Greedy co-scheduling . 108
5.5.5 Scalability . 112

5.6 Frequency Heuristic . 113
5.7 Implementation . 115

5.7.1 Activity vectors . 115
5.7.2 Vector balancing and co-scheduling 117
5.7.3 Frequency selection . 118

5.8 Evaluation . 119
5.8.1 Methodology . 119
5.8.2 Overhead . 120
5.8.3 Workload dependence . 121
5.8.4 Sorted co-scheduling . 126
5.8.5 Greedy co-scheduling . 127
5.8.6 Frequency heuristic . 130
5.8.7 Application of co-scheduling to the NetBurst architecture . . . 132

5.9 Summary . 133

6 Conclusion 135
6.1 Recapitulation . 135
6.2 Comparison of the Proposed Scheduling Policies 136
6.3 Achievements . 137
6.4 Limitations and Future Work . 138

List of Figures 141

List of Tables 142

Bibliography 145

A The SPEC CPU 2006 Benchmarks 159

B Deutschsprachige Kurzfassung 161

v

vi

1 Introduction

1.1 Modern Microprocessors—a Challenge for Task
Scheduling

In the past decades, microprocessors have seen a steady increase in integration density
and power consumption. This has lead to the following situation:

• Heat has become a severe problem. Today’s processor chips dissipate power in
the order of 100W in an area as small as 1cm2, which is ten times the power
density of a hot-plate. This necessitates considerable cooling efforts, as well as
thermal management features provided by the hardware to counteract thermal
emergencies. Thermal management has implications on the computational per-
formance of the chip, because preventing thermal emergencies usually means
slowing down the processor. Since chip temperature depends on the instruc-
tions executed by the chip and thus on the software, achieving optimal perfor-
mance under thermal constraints necessitates software that is aware of thermal
problems and supports thermal management.

• Energy efficiency is becoming an ever more important issue. Better energy effi-
ciency mitigates thermal problems and reduces the need for cooling. In addition,
rising energy costs increase the demand for energy efficient computer systems
in the area of compute centers as well as for workstations. For mobile comput-
ers, energy efficiency enables longer battery times. This has led to the inclusion
of power management features in today’s microprocessors. Similar to thermal
management, the power management mechanisms offered by the hardware af-
fect performance, and the efficiency of the mechanisms at conserving energy
depends on the instructions executed by the chip and thus on the software.

• Increasing the operating frequency or the complexity of a processor core in or-
der to increase performance is no longer economical. Instead, thread-level par-
allelism has been introduced in today’s processors in the form of simultaneous
multithreading (SMT) or chip multiprocessing (CMP). In contrast to traditional
symmetric multiprocessing with physically distinct chips, SMT or CMP threads
share resources of one chip and are thus likely to influence each other. In partic-
ular, if the software running on the individual hardware threads utilizes the same
shared resources excessively, contention can lead to poor performance and bad

1

1 Introduction

energy efficiency. In addition, power management features such as frequency
scaling often affect all threads running on a chip, which creates further interde-
pendencies.

In this thesis, we address the problems of temperature, energy efficiency, and in-
terdependency between execution contexts (that is, SMT threads or CMP cores) by
adapting operating system task scheduling, i.e., the assignment of running applica-
tions to processors performed by the operating system.

The operating system is the central component that is suitable to address the men-
tioned problems from the software side. In its role as a resource manager, the operating
system has knowledge about and exercises control over both hardware as well as ap-
plications. Task scheduling is a central functionality of an operating system and has
great implications on temperature and energy efficiency, since the task selected for
running on a processor determines the processor’s power consumption and tempera-
ture [BWWK03, IM03]. In SMT and CMP systems, contention for shared resources
makes co-scheduling, i.e., selecting what tasks run in parallel on the hardware con-
texts, decisive for performance and energy efficiency, since the combination of tasks
determines the degree of resource contention [ST00, BP04, MM07].

We argue that in order to address the problems of today’s processors, a scheduler
needs to be aware of task specific characteristics like the utilization of processor-
related resources. Only with this knowledge, a suitable scheduling policy can consider
the implications that scheduling decisions have on temperature, energy efficiency, and
on the interdependencies between tasks running in parallel.

To limit the complexity of our research, the focus of this thesis is on single-threaded
applications. In the remainder of the thesis, when we use the term “task” we will
therefore imply that a task is single-threaded unless mentioned otherwise.

1.2 The Role of Resource Utilization

1.2.1 Temperature-aware task scheduling

Heat is a localized phenomenon caused by switching activity in different parts of
the chip. Processor chips encompass various components such as functional units
(arithmetic logic units (ALUs), floating point units (FPUs), branch predictors, reorder
buffers), storage units (register files and caches), or interface units (cache and memory
interface). Different tasks utilize these resources to varying degrees. Therefore, the
switching activity in the chip units and the temperature distribution on the chip de-
pend on the task being executed. High utilization of a particular resource can lead to
an increased temperature in the respective part of the chip, resulting in a hotspot. To
avoid damage to the chip, thermal management reduces the chip’s power consump-
tion by throttling, implemented with mechanisms that reduce switching activity but
also performance.

2

1.2 The Role of Resource Utilization

(a) Inauspicious scheduling: Tasks utiliz-
ing the same resources on a processor cause
hotspots.

(b) Auspicious scheduling: Tasks utilizing
different resources on a processor lead to a
more balanced temperature distribution.

Figure 1.1: Impact of scheduling on temperature distribution

The decisions that a scheduler makes have a direct impact on temperature distribu-
tion and thus indirectly affect throttling and performance. Depending on the current
temperature distribution on the chip and the resource utilization of the selected task,
a scheduling decision can either aggravate thermal problems, if a task is selected that
utilizes resources that already have an increased temperature, or mitigate thermal prob-
lems if a task is selected that utilized resources having only a moderate temperature.

Figure 1.1 shows an example of a dual-processor system with two floating point
tasks and two integer tasks. A scheduler that is unaware of task characteristics could
possibly schedule both integer tasks on CPU 0 and both floating point tasks on CPU 1,
causing continuous activity in the respective units of the CPUs (left part of the figure).
Thus, the integer unit would become a hotspot on CPU 0, while the floating point unit
would become a hotspot on CPU 1. Eventually, thermal management would have to
intervene and reduce temperature by throttling at the cost of performance penalties.

A scheduler that is aware of the tasks’ resource utilizations and their implication on
temperature can schedule one integer task and one floating point task alternatingly on
each CPU, allowing integer and floating point units to cool down during the periods of
inactivity (right side of Figure 1.1), and rendering throttling unnecessary. Knowledge
about the resource utilization of tasks enables temperature-aware scheduling policies
that lead to a balanced temperature distribution and avoid overheating parts of the
chip.

1.2.2 Co-scheduling for energy efficiency

For SMT chips, almost all chip resources are shared by multiple logical processors.
To a lesser extent, this is also the case for CMP chips, where memory access infras-
tructures and, in some cases, caches are shared by multiple cores residing on a chip.

3

1 Introduction

The resource utilization characteristics of tasks running in parallel on different log-
ical processors or cores determine the degree of contention for shared resources and
thus the performance. For example, the demands of several memory-bound tasks run-
ning in parallel on a multicore chip can easily exceed the memory bandwidth available
to the chip. This leads to reduced performance because of stall cycles introduced on
the cores while waiting for memory requests to be serviced.

Figure 1.2 shows a dual-core system with two compute-bound tasks and two
memory-bound tasks. Scheduling both compute-bound tasks during one timeslice
and both memory-bound tasks during the next timeslice (top half of the figure)
leads to unused capacity of the memory bus in the first timeslice and a bottleneck
with corresponding performance degradation for the memory-bound tasks in the sec-
ond timeslice. This performance degradation is avoided if memory-bound tasks are
co-scheduled with compute-bound tasks each timeslice, making optimal use of the
memory bus’s capacity (bottom half of Figure 1.2).

A scheduler that is unaware of resource sharing will inadvertently schedule tasks
in a way that causes resource contention and sub-optimal performance. Sub-optimal
performance in this context also implies inefficiency in terms of energy: The power
consumed by the processor is wasted if the processor has to stall while waiting for
resources to become available. Knowledge about the resource utilization of tasks
enables co-scheduling policies that avoid contention and increase performance and
energy efficiency.

Power management features such as frequency and voltage scaling create further
interdependencies between the cores of a CMP, which need be taken into account for
optimal performance and energy efficiency. Many multicore chips offer frequency
and voltage scaling only chip-wide, meaning that all cores need to run at the same
frequency and voltage, since allowing multiple frequencies and voltages introduces
additional hardware complexity.

The optimal frequency at which the processor can execute a task most efficiently
in terms of runtime and energy depends on the task’s characteristics [WB02, CSP04,
KDG+04], in particular on the frequency of memory accesses. With chip-wide fre-
quency scaling, it is only possible to run all tasks at their corresponding optimal fre-
quency if tasks with similar characteristics are running on all cores of a chip. This
however, can be in conflict with the goal of avoiding contention, since tasks with sim-
ilar characteristics are likely to utilize the same resources.

As a consequence, when taking both, resource contention and frequency selection
into account, the question arises whether it is more advantageous to run tasks with
different characteristics or tasks with similar characteristics together, since the former
avoids resource contention, while the latter allows to run the chip at a frequency that
is optimal for all tasks.

4

1.2 The Role of Resource Utilization

core 0 core 1

comp mem comp mem

bu
s

core 0 core 1

memcomp memcomp

bu
s

co-schedule co-schedule
timeslice 1: timeslice 2:

(a) Inauspicious co-scheduling: tasks utilizing shared chip resources simultane-
ously cause contention.

core 0 core 1

comp mem mem comp

bu
s

core 0 core 1

memcomp compmem

bu
s

co-schedule co-schedule
timeslice 1: timeslice 2:

(b) Auspicious co-scheduling: tasks utilizing shared resources at different times
avoid contention.

Figure 1.2: Impact of scheduling on resource contention

5

1 Introduction

1.3 Contributions

A scheduler that is supposed to exercise control over temperature distribution or re-
source contention needs information about the tasks it manages. We show that infor-
mation about the utilization of processor resources can be used as a basis for schedul-
ing policies that attain an improved temperature distribution, reduced resource con-
tention, and better energy efficiency. Such information is not available to schedulers
in today’s operating systems, so these schedulers make resource-unaware decisions
leading to thermal problems, contention, and energy inefficiency.

Our thesis makes three main contributions: task activity vectors as an abstraction to
represent resource utilization, temperature-aware, vector-based scheduling as a pol-
icy to mitigate thermal problems and resource-conscious scheduling and frequency
selection as a policy to achieve energy efficiency.

Task activity vectors We introduce the concept of task activity vectors as an ab-
straction that represents a task’s resource utilization. An activity vector is part of
the task’s runtime context and describes the degree of utilization the task causes for
various chip-related resources when executed. This enables scheduling policies to
consider resource utilization when selecting a task to be scheduled.

We show that the operating system can maintain task activity vectors with minimal
overhead by using performance monitoring counters, which are present in almost all
modern processors.

Temperature-aware, vector-based scheduling Based on activity vectors, we pro-
pose scheduling policies that strive at balancing the temperature within a chip and be-
tween chips to avoid hotspots and throttling. We achieve this (1) by scheduling tasks
that use different resources successively on a chip, (2) by distributing tasks among
the processors of a multiprocessor system so that each processor executes tasks that
use different resources, and (3) by running tasks that use different resources simultane-
ously on multithreaded processors. Our evaluations show that vector-based scheduling
succeeds at reducing hotspots considerably.

Resource-conscious scheduling and frequency selection We analyze what is the
optimal way to co-schedule tasks considering the criteria of resource contention and
frequency selection. We find that in order to optimize the product of runtime and
expended energy (energy delay product, EDP) in today’s architectures, the main goal
must be to avoid contention by combining tasks that use different resources; it is not
worthwhile to co-schedule tasks that share a common optimal frequency if this would
lead to resource contention.

According to our analysis, we propose two scheduling policies that avoid resource
contention by co-scheduling tasks with different resource demands, based on the in-

6

1.4 Structure

formation provided by activity vectors. We propose a specialized policy applicable
if there is one resource mainly responsible for contention, and a generic policy that
is applicable if different resources cause contention. For workloads that contain too
many memory-bound tasks for our scheduling policies to avoid contention, we pro-
pose a heuristic that engages frequency scaling as a fallback to mitigate the waste of
energy introduced by memory contention. Our evaluation with a Linux implemen-
tation of vector-based co-scheduling reveals that our policies manage to reduce EDP
considerably.

1.4 Structure

The rest of this thesis is structured as follows: Chapter 2 discusses the background
upon which our work depends. In Chapter 3, we introduce the abstraction of task
activity vectors. We cover the application of activity vectors to scheduling in Chapters
4 and 5. Chapter 4 shows how vector-based scheduling can tackle the problem of
thermal imbalances and hotspots, and leads to a better and more balanced temperature
distribution. Chapter 5 shows how the information provided by activity vectors can
be used to reduce resource contention and to make efficient use of a microprocessor
in terms of time and energy. With Chapter 6, we conclude and discuss directions for
future work.

7

1 Introduction

8

2 Background

In the following, we briefly introduce the terminology we will be using in the remain-
der of the thesis. We also cover common hardware and operating system principles
that constitute the foundation of our thesis.

2.1 Tasks

We have already introduced the term task for a running application. More precisely, a
task is an abstraction that encompasses flows of execution (threads), a view on mem-
ory protected from other tasks (address space) and other resources managed by the
operating system such as open files or communication channels. As mentioned, we
will use the term task in the meaning of “single-threaded task”.

2.2 Symmetric Multiprocessing

In a multiprocessor system, multiple processors operate in parallel. The focus of our
thesis lies on symmetric, cache coherent, shared memory multiprocessor systems. In a
shared memory multiprocessor system, all processors have access to a shared memory
for storing data and code. Cache is fast processor-local memory of limited size that
buffers contents of main memory in order to hide memory latencies. A cache coherent
multiprocessor system provides consistency of data written to or read from different
processors’ caches. In a symmetric multiprocessor system, all processors are equal,
i.e., identical pieces of hardware. From the software side, symmetric multiprocessing
means that the operating system as well as any application can run on any proces-
sor. Originally, symmetric multiprocessor (SMP) system were assembled of several
physically different single-core, single threaded processor chips. We will refer to such
systems as traditional SMP systems.

Processors of an SMP system communicate with memory via a shared memory in-
terconnect. This way, limited memory bandwidth can become a bottleneck, especially
in systems with many processors. To mitigate contention for the memory interconnect,
non uniform memory access (NUMA) systems partition their processors into nodes.
Each node possesses its own memory and memory interconnect. Access to memory
of other nodes is possible, but has a higher latency than access to node-local memory.

9

2 Background

2.3 Chip Multiprocessing and Simultaneous
Multithreading

A chip multiprocessor (CMP) consists of several processors, also termed cores, laid
out next to each other on one chip [ONH+96]. Like traditional SMP systems, the
cores of a CMP share a common memory, potentially with cores from other chips if
the system consists of multiple CMPs. Depending on the cache architecture, cores of
a CMP can also share a common cache.

Simultaneous multithreading (SMT) means that a processor has multiple execution
contexts called logical processors, which are able to simultaneously issue instruc-
tions from different flows of execution (e.g., different tasks) to the chip’s functional
units [TEL95]. To the software, the logical processors look like independent proces-
sors, each with its own registers and state. On the hardware side, the logical processors
share the resources (e.g., ALUs, FPUs, caches) of one single processor. For distinction
from the logical processors, we call this the physical processor. Logical processors of
the same physical processor are termed siblings.

2.4 Multiprocessor Scheduling

In an SMP system, a task can run on any processor. If there are more runnable tasks
than processors in the system, next to the question which task to execute on which
processor, the additional question arises which tasks shall be executed on a processor
at a certain point in time and which ones not. In its role as a resource manager, the
operating system performs scheduling, the assignment of tasks to processors. The
corresponding component of the operating system is called scheduler.

Schedulers found in general purpose operating systems like Linux or Windows per-
form time-sharing multitasking: They assign a processor to different tasks in a row
for a defined period of time, a timeslice. This way, several tasks can make progress
and the user has the impression that the tasks are running in parallel, even if there are
more tasks than processors.

For SMP systems, most of today’s general purpose operating systems do affinity
scheduling, which means they associate each task to a particular processor and run the
task—either preferably or exclusively—on this processor. This takes advantage of the
fact that a task that has once run on a particular processor has built up some state; for
example, the data the task is working on is in the processor’s cache [SL93].

Many operating systems, like recent versions of Linux, partition the set of runnable
tasks between the processors and assign a subset of tasks to each processor. The sched-
uler manages the set of runnable tasks assigned to a processor in a data structure, the
runqueue, which keeps track of all tasks eligible for running on a specific processor.
To provide optimal performance and fairness, schedulers perform load balancing; they

10

2.5 Thermal Behavior of a Processor Chip

migrate tasks between runqueues for equalizing the number of tasks assigned to each
processor.

If scheduling decisions on different processors happen in a coordinated fashion,
and tasks are selected to run in parallel on different processors following a defined
scheme, we speak of co-scheduling. In today’s general purpose operating systems,
co-scheduling is usually not performed.

Most general purpose operating systems schedule the tasks of a runqueue following
the same basic principles. Firstly, all tasks are supposed to make progress. The sim-
plest scheduling policy that ensures this property is round robin, i.e., executing each
task in turn for a timeslice. Secondly, most operating systems allow a form of prior-
itization in the sense that higher priority tasks are allotted more CPU time. Thirdly,
there is often a distinction between interactive and CPU-bound tasks. Interactive tasks
tend to use the processor only for short periods of time and block frequently, waiting
for input data from a user or a peripheral device like a hard disk. CPU-bound task oc-
cupy the processor continuously and have little interaction with the user or peripheral
devices. Therefore, many schedulers favor interactive tasks over CPU-bound tasks
to give the user the impression of a more responsive system and to utilize peripheral
devices better.

2.5 Thermal Behavior of a Processor Chip

The units a microprocessor consists of (ALUs, FPUs, caches, register files, and so on)
are usually laid out as blocks, i.e., (mostly) rectangular areas on the die. Figure 2.1
shows the floorplan of an Intel Pentium 4 Northwood, derived from a die photo, as an
example.

From a physical point of view, the units are located on a silicon die, which in today’s
processor generations is of rather small dimensions—typically in the order of one
centimeter in width and length and of one millimeter in height. The die is covered by
a heat spreader consisting of thermally well conducting material and by a heat sink,
which is comparably large in relation to the die and consists of copper or aluminum.
In relation to its size, the die dissipates large amounts of power, which can surpass
100W in recent processors. This results in a power density of 100W/cm2 and more.

The temperature of an object, be it a chip unit, the die as a whole, or the heat sink, is
determined by the amount of energy that the object contains (referred to as internal or
intrinsic energy) and its heat capacity. The heat capacity is a material specific constant
describing how many Joules it requires to heat the object by one Kelvin.

The heat capacity of the die is small compared to its power dissipation. Therefore
the die (and thus the individual chip units) can heat up rather quickly. A small example
shall demonstrate this: A silicon die of 11mm×12mm×0.7mm (which corresponds to
the chip we use in our evaluation of temperature-aware scheduling in Chapter 4) has
a heat capacity of 0.15J/K. If it dissipates 70W and no heat is removed from the die,

11

2 Background

itlb

retirealloc

rename
queue

sched instr
queue

instr

int reg

ucode
rom

fp regfpu

fpu

int
alu

mem
ctrl

bus ctrl

dtlb

bpu 1l
cache
trace mob

bpu 2linstr
decode

l2
cache

l1
cache

l1
cachetrace cache

Figure 2.1: Floorplan of the Intel Pentium 4 Northwood processor

it takes only 2ms for the die to heat up by 1K. In contrast to that, the heat sink has
a much larger heat capacity, since it is considerably more massy, and typically takes
seconds to heat by 1K.

A rapid increase in chip temperature as described in the example happens primar-
ily when there is a boost in chip power consumption, since the removal of heat via
conduction requires a temperature gradient between the chip and the heat sink having
built up in the first place. The bigger the gradient, the more heat is removed; therefore
the increase in temperature slows down, until temperature settles at a certain level,
depending on the power consumption (see Figure 2.2). The inverse happens when the
chip’s power consumption drops.

Since different chip units have different structures and are—depending on the
software—utilized to varying degrees, they show mutually different power densities.
In addition, owing to the small height of the chip, lateral heat conduction between
neighboring chip areas is limited. As a result, the temperature varies from chip unit to
chip unit, so there typically is a non-uniform temperature distribution on the chip.

The course of the intrinsic energy and the temperature of the units on the die and of
the heat sink can be described by similar differential equations. The solution to those
equations is an exponential function [BWWK03, MB06]. The function

ϑ(t) =
−c̃
c2

· e−c2t +
c1

c2
·P+ϑ0 (2.1)

describes the course of temperature for the heat sink or of a single chip unit (neglecting
lateral heat conduction to other units) over time. The only difference between the heat

12

2.6 Thermal Management

time

temperature
power

Figure 2.2: Dependence of temperature from power

sink and the chip units is the size of the constants in the equation. The constants c1

and c2 depend on the thermal resistance and the thermal capacitance of the chip units
or the heat sink; c̃ is an integration constant depending on the initial temperature at
the time t = 0. ϑ0 is the temperature of the component the heat is conducted to (i.e.,
ambient air or heat sink).

2.6 Thermal Management

With increasing power densities, designing cooling facilities for the theoretical maxi-
mum power that a processor can consume in the worst case results in over-provisioning
and high costs. Thus, cooling is usually designed for a lower thermal design power
(TDP). If the processor exceeds the TDP, overheating and damage to the chip can re-
sult. Preventing this requires thermal management, i.e., monitoring temperature and
engaging countermeasures in case of critical temperatures.

For thermal management, processors support hardware mechanisms that decrease
power consumption, for instance by scaling the voltage and/or frequency, by modu-
lating the clock signal, or by introducing halt cycles [BM01, SSH+03]. We refer to
these mechanisms as throttling. All throttling mechanism have in common that they
not only reduce power consumption, but also performance.

Since thermal management must reliably prevent thermal emergencies, policies for
thermal management are typically implemented in hardware or firmware. Examples
are Intel’s Catastrophic Shutdown Detectors (Thermal Monitor 1 and 2), which engage
clock modulation or frequency scaling if a certain temperature threshold is reached
[Int06].

13

2 Background

2.7 Power Management

Similar to thermal management, power management uses hardware mechanisms to
reduce power consumption in exchange for reduced performance. However, the focus
of power management is not limited to preventing thermal emergencies. The aim of
most power management policies is to make efficient use of energy, for example, to
perform a given task using as little energy as possible. This leads to longer battery
times on mobile systems, or lower expenses for power and cooling in data centers.

For processor power management, frequency and voltage scaling is often the mech-
anism of choice, since it allows non-linear power reduction in relation to the runtime
increase it causes. For most other throttling mechanisms, the increase in runtime is
proportional to the reduction in power. In that case, consuming less power, but for a
longer time, does not lead to energy savings.

Using a very simple model, the power dissipation of a processor can be described as
proportional to the square of its operating voltage and as proportional to its operating
frequency [BB95, Fle01, Mud01]:

P ∝ V 2 · f

The voltage required to drive the processor reliably, in turn, is (within a limited
range) approximately proportional to the operating frequency:

V ∝ f

Scaling down the voltage requires a low enough frequency, so voltage scaling is
commonly applied in combination with frequency scaling (dynamic voltage and fre-
quency scaling, DVFS). With frequency and voltage scaling in combination, the power
is proportional to the cube of the frequency (combination of the above two equations):

P ∝ f 3

Since performance is in the best case proportional to the frequency, DVFS allows
net energy savings (it reduces power by a greater factor than it increases runtime).
Although, in practice, these savings are diminished by static contributions to power
consumption such as leakage, DVFS is beneficial in certain scenarios, for example,
when not the speed of the processor, but the speed of other components such as mem-
ory is decisive for performance [WB02, CSP04].

The simplest option for implementing DVFS for multicore hardware is per-chip
DVFS, i.e., running all cores at the same frequency and voltage. Adding multiple clock
generators and latches for synchronizing the data flow between different clock do-
mains allows running cores at different frequencies (per-core DVFS). However, with-
out additional voltage regulators (which introduce additional complexity), all cores
need to run at the voltage determined by the core running at the highest frequency,

14

2.8 Energy Efficiency Metrics

which greatly diminishes the potential for energy savings. Recently, on-chip volt-
age regulators have been proposed for enabling per-core DVFS [KGWB08]. Though
on-chip regulators facilitate running different cores at different voltages, introducing
multiple voltage domains still causes overhead in terms of die area and energy effi-
ciency.

2.8 Energy Efficiency Metrics

The mechanism of DVFS allows the processor to execute tasks while requiring less
energy, at the expense of a prolonged runtime. For situations where both performance
and energy consumption are important, the energy delay product (EDP) has been pro-
posed as a metric [HIG94, GH96]. The EDP is obtained by multiplying the runtime
of a task with the amount of energy required for the run. A similar metric that gives
more weight to runtime is ED2, the product of energy and squared runtime.

2.9 Event Monitoring Counters

Event monitoring counters are model-specific registers that are able to count various
processor-internal events. Event monitoring counters found in today’s commercially
available processors were introduced for performance analysis and profiling (perfor-
mance monitoring counters) and are therefore tailored to performance-critical events
like, for example, cache misses or mispredicted branches.

Despite their focus on performance, in the past, event monitoring counters of var-
ious architectures have also been used for inferring the activity of different parts
of the processor chip [IM03] and for deducing power consumption and tempera-
ture [BWWK03].

15

2 Background

16

3 Task Activity Vectors

Information about what chip resources particular task is using constitutes valuable
input for a scheduler. In order to make informed decisions concerning which tasks to
run at what time and in which combination, a scheduler needs to know what effects
running a particular task or a particular combination of tasks will have; it needs to be
provided with a characterization of the tasks it manages.

In this chapter, we introduce the abstraction of the task activity vector as a way
to characterize a task by the resource utilization it causes [MB08b]. The notion of
vector-based scheduling describes a scheduling policy that makes use of the task char-
acterization provided by activity vectors to attain a specific goal.

3.1 The Need for Task Characterization

As outlined in Chapter 2, today’s general purpose operating systems like Linux or
Windows categorize tasks by applying user-specified priorities, and, in addition, dis-
tinguish between interactive and CPU-bound tasks. Still, CPU-bound tasks having
the same priority are treated as equal. We argue that treating such tasks as equal for
scheduling is no longer optimal on today’s processors, and that a coarse categoriza-
tion into interactive and CPU-bound tasks does not consider the importance of the
utilization of CPU-related resources.

In order to make optimal decisions, a scheduler needs to know what consequences
running a particular task will have, for instance, what will be the impact on chip tem-
perature and temperature distribution, and how the task will interact with other tasks
running on the same chip. Thus, we need to provide the scheduler with a way to judge
the impact of running a task.

As mentioned in the introduction, phenomena like the dissipation of energy and
the interaction between tasks running on a chip are closely coupled to the utilization
of processor-related resources like the units on the chip (e.g., ALUs, FPUs, register
files, or caches) and the memory interconnect. A task that causes a high utilization
of a particular resource leads to an increased temperature in the corresponding part of
the chip because of increased switching activity. If the resource in question is shared
between several logical processors or cores, the task will interfere with tasks running
on other logical processors or cores. If several tasks utilize a resource at the same
time, this leads to a slowdown of the tasks involved, and, in turn, to inefficient use of
energy.

17

3 Task Activity Vectors

We propose the concept of task activity vectors to reflect the growing importance
that the characteristics of tasks have on the temperature, the performance, and the en-
ergy efficiency of modern processors. The activity vector is an abstraction that models
the resource utilization caused by a task. Task activity vectors make the resources the
task uses part of the task’s runtime context, so the operating system and especially
the scheduler have detailed information about the characteristics of each task and can
foresee and consider the implications that running this particular task will have.

3.2 Definition of Task Activity Vectors

We define a task activity vector as an n-dimensional vector that is part of a task’s
runtime context. The dimension of an activity vector corresponds to the number of
resources we want to consider, and each component of the vector corresponds to the
degree of utilization of one specific resource. The values of the vector’s components
range between 0 (the resource is not utilized at all) and 1 (the resource is fully utilized).

We define utilization as the number of accesses a task makes to the resource in a pe-
riod of time, divided by the maximum number of accesses the resource supports in that
period of time. The maximum can either be calculated theoretically by studying the
microarchitecture (for instance, deducing that an integer unit containing three ALUs
can execute up to three integer operations per cycle) or measured using specific mi-
crobenchmarks (for instance measuring memory bandwidth with the ������ [McC95]
benchmark).

For chips that support multiple operating frequencies, we define the activity vector
of a task by the resource utilization the task causes at the chip’s maximum frequency.
We postpone a detailed discussion of activity vectors in connection with frequency
scaling to Chapter 5.

In general, an activity vector can be used to model any resource that can be utilized
by a task to varying degrees, including, for example, network or disk bandwidth. In
this thesis, we focus on resources related to the processor chip, since we want to
study the implications of scheduling on processor-related phenomena. Including the
utilization of other resources such as peripheral devices is a topic for future research.

For most resources, the definition of utilization by access frequency is a suitable,
and the only sensible way to define utilization. An exception are storage units such
as cache or memory, for which utilization can also be defined in terms of space occu-
pancy. For example, two memory-bound applications running in parallel on a CMP
are competing for both memory bandwidth and for memory space, and performance is
diminished both by insufficient bandwidth (stall cycles) and insufficient space (thrash-
ing).

In our thesis, we assume that memory space is available in sufficient quantity and
that bandwidth is the limiting factor. With the growing size of the main memory found

18

3.3 Versatility and Portability

in typical systems, this is a reasonable assumption. Contention for memory space is
beyond of the scope of this thesis.

The situation is different for caches, which are typically small. On the one hand, uti-
lization defined by access frequency is the right metric for temperature-aware schedul-
ing, since more accesses to the cache mean higher power consumption and tempera-
ture. On the other hand, however, for avoiding contention, cache space is much more
important than cache bandwidth: If a cache has multiple ports, accesses from different
cores or logical processors can happen in parallel, and there is no contention when dif-
ferent portions of the cache are accessed. Rather, contention results when tasks whose
working sets do not fit into the shared cache simultaneously run in parallel and evict
each other’s data from the cache.

For many applications, frequent cache accesses coincide with a big working set
and a high probability of evicting other tasks’ data, so there is a correlation between
access frequency and contention. Yet, using the size of the working set in relation
to the size of the cache or even a more sophisticated metric like the reuse distance
profile [BH04] as a measure for representing cache behavior would be more accurate.
However, information about the working set and the cache behavior cannot be ob-
tained easily, but would require a computationally expensive model, special hardware
support, instrumentation, or off-line tracing of applications [AHH89, BS96, SDR02,
FSSN05, ZII+07].

Since we cannot easily obtain a more sophisticated metric on-line and with low
overhead on today’s hardware, we use access frequency to represent cache utilization.
In Section 5.4, we will discuss in more detail why this is a viable approach for shared
caches of CMP chips such as the Intel Core2.

Ultimately, the better solution would be to allow a scheduler to specify whether the
activity monitor should provide utilization of space-constrained resources like mem-
ory or cache in terms of access frequency or space, or even represent both as separate
vector components.

In the rest of this thesis, when we use the terms “memory utilization” or “cache
utilization”, we will be referring to bandwidth utilization of the respective resource
unless stated otherwise.

3.3 Versatility and Portability

In the past, a number of scheduling policies have been proposed that use met-
rics related to the utilization of various on-chip resources to avoid thermal prob-
lems [GPV04, DM06, KSPJ06] and to determine what tasks to co-schedule on SMT
or CMP processors [PELL00, NP02, BP05, MAN05, EMGAD06, ZDFS07].

While we discuss the these approaches in more detail in Chapters 4 and 5, we note
here that all previous approaches have one common property: There is a close cou-
pling between the metrics used to characterize tasks and the respective scheduling

19

3 Task Activity Vectors

policies, i.e., the metrics were specifically designed and selected for the respective
policy, and the policies were designed to consider fixed, and often microarchitecture-
specific metrics. To our knowledge, the general characterization by resource utiliza-
tion we propose as a new abstraction to be used for diverse scheduling policies with
varying goals is new.

We argue that it is possible to specify scheduling policies in a way that is indepen-
dent from a particular microarchitecture or even architecture, if information about the
implications of running a particular task is provided in a generic way. The utilization
of chip-related resources is a metric that suggests itself for this purpose because of
its close relation to thermal phenomena and to the interaction of execution contexts
(logical processors, CMP cores) via shared resources. Yet, resource utilization is a
generic concept that is common to all architectures and microarchitectures.

Activity vectors enable flexible scheduling policies by providing a layer of abstrac-
tion from the resources of a particular platform. As a simple example, an algorithm
“do not co-schedule tasks that use the resource memory” can be transformed into an
algorithm “do not co-schedule tasks that use the resource cache” simply by changing
the component of the activity vector the algorithm considers; the algorithm need not
even be aware of the actual resource for which it avoids contention.

On the same basis, it is possible to implement generic scheduling algorithms that
can be applied even if it is unknown what are the most critical resources for the plat-
form the algorithm is running on; such algorithms could be as simple as “avoid running
tasks using the same resources together” for mitigating resource contention or “avoid
running tasks using the same resources in succession” for mitigating hotspots. As we
will show in Section 5, we were able to successfully reduce contention on a multicore
chip of the Core2 microarchitecture and on a multithreaded chip of the NetBurst mi-
croarchitecture using exactly the same scheduling algorithm, with the only difference
being the underlying implementation of activity vectors.

The concept of activity vectors decouples the mechanism of determining resource
utilization, which is (micro)architecture-dependent, from the actual scheduling poli-
cies, which are often architecture-independent. For example, determining the utiliza-
tion of the memory bus involves different counters on different architectures, but an
algorithm for avoiding memory contention by co-scheduling tasks can be formulated
independently from a particular architecture.

Hence, a vector-based scheduling algorithm can be used on any platform for which
there is a suitable implementation of activity vectors. Vice versa, activity vectors need
only be implemented once for a particular platform, and then different scheduling
algorithms can build upon them.

At the same time, the concept of activity vectors still enables a great degree of flex-
ibility and customizability, since the number of components and the actual resources
considered can be adapted to the specific characteristics of each architecture. For
instance, for an SMT processor with many resources shared between siblings, the ac-

20

3.4 Activity Vector Framework

tivity vector can have a large number of components and cover a large number of
resources, whereas for a CMP processor with only cache and memory as shared re-
sources, fewer components suffice. Another criterion for the number and the selection
of resources represented by the activity vector are the facilities the particular platform
offers for determining resource utilization, for example, the number of performance
monitoring counters and the selectable performance events.

3.4 Activity Vector Framework

For applying vector-based scheduling in an operating system, we introduce an activity
vector framework, the general architecture of which Figure 3.1 depicts. The frame-
work consists of three components: The activity monitor for observing task charac-
teristics, the activity vectors for representing the characteristics, and the vector-based
scheduler, which performs scheduling guided by task characteristics.

We introduce the activity monitor as a new component into the operating system.
The activity monitor observes the utilization of processor-related resources and uses
this information to maintain the task activity vectors. Periodically, the activity monitor
updates the activity vector of the currently running task with the resource utilization
observed during the execution of the task. We represent activity vectors by extending
the task control block (TCB), a data structure used by the operating system to rep-
resent task state. A vector-based scheduling policy can then take advantage of the
characterization provided by activity vectors to make optimal use of the processor and
its resources.

3.5 Determining Activity Vectors

For determining a task’s activity vector, the activity monitor samples the utilization
of resources during the execution of the task. In our case, we need to sample the
utilization of processor-related resources, i.e., of the units found on the processor, and
the utilization of the memory interconnect.

Information about utilization could be provided directly by the hardware, for ex-
ample via special registers. Unfortunately, this is not the case in today’s processors.
Isci and Martonosi [IM03] has shown that for an Intel Pentium 4 processor, the de-
gree of utilization for each chip unit can be determined using performance monitoring
counters. The method suggested by Isci and Martonosi attributes events or combina-
tions of events to each chip unit and determines the utilization of the units by counting
how many events occur in a given timeframe. We adopt this methodology to deter-
mine activity vectors for the NetBurst microarchitecture of the Pentium 4 (Chapter 4),
and use a similar methodology for determining activity vectors for the Intel Core2
microarchitecture (Chapter 5).

21

3 Task Activity Vectors

Figure 3.1: Structure of the activity vector framework

22

3.5 Determining Activity Vectors

To characterize tasks, we need to attribute the utilization of chip resources to the
task that caused them. Therefore, we need to sample utilization at least on every
task switch. On some architectures, the limited number of performance monitoring
counters necessitates multiplexing counters, i.e., switching between different counter
configurations, for capturing all relevant events [IM03]. Therefore, we perform addi-
tional sampling at timer interrupt granularity. This way, we obtain event counts of all
counter configurations during a task’s timeslice.

Thus, on each timer interrupt and on every task switch, the activity monitor reads the
necessary performance monitoring counters, compares the event counts to the saved
values from the last sampling point, calculates the number of accesses to the individual
resources, and, using the theoretical maximum number of accesses that could have
occurred, determines the utilization of the resource. If necessary, we re-program the
event monitoring counters to monitor different events for the next sampling period in
order to accomplish multiplexing.

Multiplexing at constant intervals has the potential of introducing systematic errors
if the tasks monitored change their behavior at the same frequency as the multiplexing
interval. In addition, malicious programs could purposefully adopt a certain behav-
ior during the intervals during which they are monitored in order to manipulate their
activity vector. Anderson et al. [ABD+97] proposes to randomize the sampling in-
terval length used for task characterization in order to avoid systematic errors; the
same mechanism is suitable to counteract manipulations [ZDFS07]. Accordingly, our
design could be adapted to multiplex event monitoring counters not at every timer
interrupt, but after a (small) random number of timer interrupts.

In case of multicore or multithreaded processors, we need to address the problem
that for a shared resource, multiple tasks running in parallel on the cores or logical
processors can be responsible for the utilization of the resource. Therefore, the activity
monitor needs to distinguish which core or logical processor (and thus which task)
issued the instruction that has lead to an event that has occurred on the chip. For the
microarchitectures we consider in this thesis (NetBurst and Core2), the performance
monitoring facilities generally allow to configure the counters in a way that they only
count events issued by a specific core or logical processor, thus allowing to attribute
events to individual tasks. However, for the NetBurst microarchitecture, some events
can only be counted globally, i.e., they can not be attributed to a logical processor
(see Chapter 4.5.1). This introduces error into the corresponding components of the
activity vectors. Yet, the evaluation of our scheduling policies shows that activity
vectors on the NetBurst microarchitecture are accurate enough for the policies to yield
significant benefit.

The activity vector of a task is not constant, but can change over time as the task
passes through different phases, e.g., runs different algorithms successively. There-
fore, the activity monitor continually updates the activity vector of each task that is

23

3 Task Activity Vectors

executed on a processor using the information about resource utilization sampled dur-
ing the task run.

The optimal base for scheduling decisions would be the future characteristics of the
tasks, especially the characteristics for the next timeslice. Since we determine activity
vectors on-line, the future behavior of tasks is unknown. However, if a task shows
stable behavior, i.e., the characteristics of the past persist for the near future, and phase
changes only occur from time to time, past characteristics are a good proxy for future
characteristics. This is the case for many applications: An analysis of the SPEC CPU
2000 benchmarks by Isci et al. [IMB05] revealed that of 25 benchmarks, 17 spend
more than 70% of their runtime in phases longer than 200ms (which is considerably
longer than scheduling time quanta).

On the other hand, even within a relatively stable phase, the utilization of chip re-
sources is not fixed, but varies to a certain degree, though not as strongly as between
different phases. We consider variations that occur on a timescale shorter than a times-
lice as noise, since those variations are irrelevant to scheduling; especially we should
not make scheduling decisions based on short-term changes in task behavior, since the
consequence of a scheduling decision (the dispatching of a task to a processor), lasts
for an entire timeslice.

We performed an analysis of the SPEC CPU 2006 benchmarks by sampling their
unit utilization over a complete run at millisecond granularity. As an example, Fig-
ure 3.2 shows the phase behavior of the SPEC benchmark ����� (which performs A*
path finding algorithms [HNR68]). The figure depicts the utilization of the memory
bus, the L2 cache and of the chip components not shared between cores (accumu-
lated) as sampled on an Intel Core2 processor. On the one hand, the figure clearly
shows long phases that last up to minutes. These phases stem partly from the fact
that the ����� benchmark consists of three distinct algorithms [Hen06], but the total
number of phases being larger than three indicates that there are also phase changes
within the individual algorithms. On the other hand, the figure also depicts short-term
variation of utilization within phases (the noise), which manifests itself in the vertical
breadth of the depicted curves.

The example of ����� unites both extremes that we could also observe with the
other SPEC benchmarks: on the one hand, long, differentiated phases, and, on the
other hand, short-term changes that we need to consider as noise. For providing mean-
ingful activity vectors, we need to address both cases. We need to adapt a task’s ac-
tivity vector whenever there is a change between long-term phases, but we also need
to filter out the noise in order to avoid fluctuations of the activity vector that could
provide the scheduler with inaccurate information.

As a solution, we calculate each component of the activity vector as an exponential
moving average over the utilization of the respective chip unit. The exponential aver-
age is a weighted moving average that weights sample values with an exponentially
lower weight the further they lie in the past.

24

3.5 Determining Activity Vectors

0 100 200 300 400 500 600 700
time [s]

0

20

40

60

80

100

ut
ili

za
tio

n
[%

]

Figure 3.2: Phases of the astar benchmark

25

3 Task Activity Vectors

As a result of averaging, short term changes in a task’s behavior do not cause the
task’s activity vector to change significantly, whereas—owing to the exponential fad-
ing of the past values’ contributions—a permanent change is reflected in the activity
vector after an appropriate time (the order of a timeslice, as can be adjusted by se-
lecting appropriate weights for the moving average). Thus, the exponential average
acts as a low-pass filter and smoothes out changes in a task’s behavior that are only of
short duration. This way, we avoid erroneously changing the task’s activity vector if
its characteristics show temporary fluctuations.

3.6 Implementation

We implemented activity vectors for the Linux kernel and for two microarchitectures,
the NetBurst microarchitecture and the Core2 microarchitecture.

As mentioned in Section 3.4, we represent task activity vectors as part of the task
control block (TCB), the data structure the operating system uses for representing
task state. Thus, for implementing activity vectors in Linux, we supplement the
��������	
� data structure, which implements the TCB in Linux, with an array hold-
ing the components of the task activity vector.

As mentioned, the range of an activity vector’s components lies between 0 and 1. In
Linux, however, kernel code is not supposed to use floating point arithmetic in order to
avoid saving and restoring the contents of the floating point registers upon kernel entry
or exit. Thus, we implement activity vectors using fixed-point arithmetic and scale the
vector components by a constant factor to transform them to an integer range.

We implement the activity monitor as a microarchitecture-specific routine that we
invoke from the timer interrupt handler, as well as from the scheduler prior to a task
switch. The activity monitor updates the elements of the array representing the activ-
ity vector in the TCB of the task that is currently running (invocation from the timer
interrupt handler) or that is about to lose control of the processor (invocation from the
scheduler prior to a task switch) by calculating the exponential moving average over
the utilization of processor resources as described in the preceding section. Calcu-
lating the exponential moving average does not require a history of sampling values,
but merely the current sample value and the exponential average of the last sampling
period (i.e., the old value of the activity vector’s respective component).

For determining unit utilization on the NetBurst microarchitecture, we implement
the methodology proposed by Isci and Martonosi [IM03]. For the Core2 microarchi-
tecture, we use a similar methodology, which is detailed in Chapter 5.

In addition to providing activity vectors to the scheduler, we also export the infor-
mation provided by activity vectors to userspace via Linux’s ���

������� interface
for informational purposes.

26

3.7 Overhead

3.7 Overhead

Activity vectors provide information to be used by schedulers. One main goal of
many scheduling policies is achieving optimal performance. Hence, it is a primary
requirement for activity vectors to cause low overhead. In particular, for performance-
oriented policies, the overhead required for acquiring activity vector information needs
to be outweighed by the performance improvement achievable with the vector-based
scheduling policy.

Since vector-based scheduling by definition relies on the characteristics of the tasks
present in the system, and since we do not want to make any assumption on the work-
load, it is possible that a vector-based scheduling policy does not yield any perfor-
mance improvement for a given situation. Especially if all tasks present in the system
have similar or equal characteristics, vector-based scheduling cannot lead to better de-
cisions than conventional scheduling policies. If determining activity vectors had a
significant overhead, vector-based scheduling would in total yield worse performance
than traditional scheduling for those situations. Thus, we demand that activity vectors
involve close to zero overhead.

Since sampling utilization for updating activity vectors only happens periodically,
this is a feasible goal if the time required for updating the vectors is negligible in com-
parison to the sampling interval length. Reading a performance monitoring counter
typically takes in the order of 10 to 100 cycles (e.g., we measured 140 cycles on an
Intel Pentium 4 or 54 cycles on a Core2, using the ����
 instruction), whereas with
Gigahertz clocks and timer interrupts in the range of milliseconds, a sampling inter-
val encompasses millions of cycles. Calculating utilization from the counter values
involves only few arithmetic operations.

While generally, the time required for reading one counter is low compared to the
length of the sampling interval, the overhead can accumulate if a large number of
counters need to be read, or if multiplexing requires additional writes to configuration
registers, which are often more costly than reads (e.g., 950 cycles for writing a con-
figuration register on a Pentium 4). As an example, sampling unit utilization for the
NetBurst microarchitecture, which involves a total of 15 counters and multiplexing in
our implementation, causes a total overhead of 33,000 cycles (see Section 4.6).

Our experiments with SPEC workloads presented in Chapter 4 indicate that activity
vectors introduce an overhead in the percent range for the NetBurst architecture. For
the Core2 architecture, where determining activity vectors only involves four coun-
ters and no multiplexing (Section 5), our experiments do not reveal any measurable
overhead.

27

3 Task Activity Vectors

3.8 Vector-Based Scheduling

A vector-based scheduling policy is a scheduling policy that uses the information pro-
vided by task activity vectors in order to attain a specific goal, for example, increased
performance, a better temperature distribution, or higher energy efficiency. In the
following chapters, we will develop such scheduling policies.

The focus of our proposed policies lies on non-interactive, CPU-intensive tasks that
do little I/O. In addition, our policies are intended for situations in which all execu-
tion contexts are utilized. For situations with idle contexts, there are straightforward
policies for mitigating hotspots (e.g., leaving the hottest processors idle) or reducing
resource contention (e.g., running the most resource intensive tasks on processors with
idle siblings).

While we will detail the specific vector-based scheduling policies we propose in
the following two chapters, at this point, we want to give an overview about the basic
mechanisms of vector-based scheduling. Conventional scheduling policies used in
today’s operating systems leave several degrees of freedom unexplored. Vector-based
scheduling seeks to exploit these degrees of freedom:

Scheduling order With round-robin–like scheduling policies, all tasks assigned to
a processor are scheduled in turn, but the actual order in which tasks are scheduled
is arbitrary. We propose sorted scheduling, which arranges the runqueues of the pro-
cessors in a certain order that is defined by the tasks’ activity vectors. An example of
sorted scheduling is executing tasks that use different functional units successively in
order to avoid having constantly utilized units that could become hotspots.

Co-scheduling As mentioned in Chapter 2, co-scheduling is not applied in today’s
general purpose operating systems. As a consequence, the combination of tasks run-
ning simultaneously on a chip is arbitrary. Vector-based co-scheduling controls the
combination of tasks running at a time by scheduling tasks with certain characteristics
together. An example for co-scheduling is to run tasks utilizing different functional
units of an SMT processor in parallel to avoid contention.

Assignment of tasks to processors As described in the preceding Chapter, affinity-
based SMP schedulers do load balancing to have an equal number of tasks running
on each processor. Which tasks are migrated to countervail load imbalances is largely
arbitrary. In addition, the way newly started tasks are distributed to processors in the
first place usually follows no defined scheme other than not creating load imbalances.

Vector-based task placement and migration policies control the distribution of tasks
to processors with the aim of creating runqueues with specific properties. An example
for vector-based task assignment is to distribute tasks in a way that each processor is
assigned tasks utilizing different functional units.

28

3.9 Uniform vs. Non-uniform Policies

In many cases, proper task-to-processor assignment is a prerequisite for effective
sorted scheduling and co-scheduling, since it determines the contents of the indi-
vidual runqueues, which in turn determines the available options for sorting and co-
scheduling.

3.9 Uniform vs. Non-uniform Policies

We define two ways a scheduling policy can use activity vectors: the uniform and the
non-uniform view. A scheduling policy that has a uniform view on activity vectors
(uniform policy, for short) does not associate a particular meaning with the individual
vector components other than the fact that each component represents the utilization
of a resource. Which component stands for which particular resource is unknown to
a uniform scheduling policy. A uniform policy thus threats all components equal. An
example for a uniform policy could be “co-schedule tasks that use mutually different
resources”.

A scheduling policy that has a non-uniform view on activity vectors (non uniform
policy) is aware of additional properties of the resources that the vector components
represent and thus associates a meaning with the individual components. A non-
uniform policy could be “co-schedule tasks utilizing resource x either with other tasks
utilizing resource x or with tasks utilizing resource y, but do not co-schedule two tasks
using resource y” (resource x could be the integer unit and resource y the memory bus
of a multicore system). Since activity vectors abstract from the actual chip resources,
even a non-uniform scheduling policy need not know what resources x and y actually
represent, but it needs to be aware that two tasks that both utilize resource y interfere
with each other, whereas two tasks that both utilize x or one task that utilizes x and
one that utilizes y do not interfere. Thus, a non-uniform policy needs to distinguish
between vector components and associate properties with individual components that
are not applicable for other components.

While uniform policies are more generic and can be designed with less knowledge
about the properties of the hardware, non-uniform policies can consider the charac-
teristics of a particular platform. For example, the fact that two compute-bound tasks
running on two different cores of a multicore chip do not influence each other, whereas
two memory-bound tasks do, can be expressed using a non-uniform view on activity
vectors, but not using a uniform view. Thus, the non-uniform policy in the example
above can be expected to yield better performance on a CMP than the more generic
uniform policy mentioned at the beginning of this section, since it allows to consider
the characteristics of the given architecture. On the other hand, the non-uniform policy
is beneficial if applied to different cores, but not if applied to SMT siblings, since in
an SMT processor, there is interference between tasks that utilize the integer unit. The
uniform policy that simply avoids co-scheduling tasks that utilize the same resources
is beneficial on both platforms.

29

3 Task Activity Vectors

In general, we can say that uniform policies have a broader scope, whereas non-
uniform policies allow optimizations for a particular range of platforms, such as CMP
or SMT.

30

4 Temperature-Aware Scheduling

4.1 Introduction

Increasing clock rates in combination with rising integration densities have led to an
aggravation of thermal problems in recent generations of microprocessors. Owing to
dramatically increasing cooling costs, processor packaging and cooling is no longer
designed for the worst case, but rather for more moderate demands that realistic appli-
cations are assumed not to exceed (Thermal Design Power). As mentioned in Chap-
ter 2, strategies for dynamic thermal management are applied to avoid overheating the
processor in case of violation of the thermal design point.

In general, the temperature of a chip cannot be described accurately by a single
temperature value. Different units on the chip such as ALUs, FPUs, or caches have
different structures and thus different power densities, resulting in a non-uniform tem-
perature distribution within the chip. In addition, the actual temperature distribution
within a chip depends on the switching activity in the individual chip units, which is
determined by the instruction mix running on the processor: Chip units that are not
needed to process a certain instruction are inactive and have a lower power consump-
tion than when active.

Moreover, mechanisms for clock and power gating have been introduced to limit
the overall power consumption of the chip. Clock gating deactivates the clock sig-
nal for units that are currently not in use; power gating completely deactivates the
power supply for those units. Despite the positive effect these mechanisms have on
overall power consumption, they are not suitable for reducing localized heating in
permanently active areas of the chip, but instead increase thermal imbalances between
active and inactive areas.

Different programs differ in the type of instructions they execute, depending on their
functionality, on the way they are written, and on the compiler that was used for trans-
lating them. There are programs that issue many integer instructions, but no floating
point instructions, or floating point programs that contain only few integer instruc-
tions, programs that do many memory accesses and programs that almost only work
on registers. Thus, the program that the processor currently executes influences the
distribution of power density on the processor die and for that reason also the distribu-
tion of temperature. We observed variations of up to 30 Kelvin for the temperature of
chip units between different applications from the SPEC CPU2006 benchmark suite
on an Intel Pentium 4 Xeon processor.

31

4 Temperature-Aware Scheduling

Preventing thermal emergencies requires throttling the processor as soon as the tem-
perature of the hottest part of the chip surpasses the critical temperature limit, no mat-
ter if there are other units whose temperature is far below the limit. Throttling reduces
the processor’s power consumption, but also its performance, and should therefore be
avoided.

In this chapter, we investigate to what extent the scheduler can influence the tem-
perature distribution within a processor. As mentioned before, the temperature distri-
bution of a chip is determined by the software that runs on the chip. If, for example,
the integer ALUs of a chip are near the critical temperature, and an integer task is
scheduled next, the processor is likely to overheat soon, which results in throttling.
On the other hand, if a floating point task is scheduled next, the integer ALUs remain
mostly idle and can cool down. Thus, balancing temperature within a chip—which
means preferably scheduling tasks using cool units—avoids throttling.

The decisions of the operating system’s scheduler influence the need for throttling a
processor, which in turn influences the system’s performance. We argue that in order
to achieve maximum performance, the scheduler needs to know about the character-
istics of each task, that is, which units of the chip a particular task uses, and to what
degree it utilizes these units.

Based on task activity vectors delivering information about the utilization of
individual chip units, we propose and evaluate the following scheduling strate-
gies [MB08b]:

• scheduling tasks that use different units successively

• distributing tasks among processors of a multiprocessor system so that each
processor executes tasks that use different units

• running tasks that use different units simultaneously on multithreaded proces-
sors.

Our approach of temperature-aware scheduling is best-effort, meaning that our poli-
cies strive to improve temperature distribution, but cannot guarantee to avoid overheat-
ing. In particular, the success of our policies depends on the workload. For instance,
if only tasks are available that all cause a hotspot at the same location, our policies
cannot avoid the formation of such a hotspot. Saving the hardware from overheating
is the responsibility of hardware mechanisms like the Catastrophic Shutdown Detector
(Thermal Monitor 1 and 2) used in the Intel processors [Int06], which avoid overheat-
ing at the cost of introducing performance penalties. Though not being able to avoid
overheating in all cases, our policies reduce the need for engaging thermal throttling
by improving temperature distribution.

We implemented the scheduling strategies mentioned above for the Linux kernel.
As our evaluation platform, we chose the Intel Pentium 4 Xeon processor. The reason
for this choice is that the NetBurst architecture of the Pentium 4 features a rich set of

32

4.2 Determining Chip Temperature

performance monitoring counters that allow determining utilization at the granularity
of individual chip units, and that simultaneous multithreading is supported, so we can
study the implications of this feature on temperature distribution. In addition, the
Pentium 4 is known as a thermally challenging processor.

We verified the benefits of our policies with experiments using an eight-way mul-
tiprocessor system. We perform task characterization and scheduling on the real
physical system, and, for observing temperature distribution on the chip, resort to
the HotSpot [HSS+04] temperature simulator, which we feed with power samples
acquired during the test run. Our experiments show that vector-based, temperature-
aware scheduling achieves a more balanced temperature distribution than standard
Linux scheduling and reduces hotspots.

The rest of this chapter is structured as follows: Section 4.2 explains how we obtain
information about the temperature distribution on a processor chip. Section 4.3 dis-
cusses related work in the area of temperature-aware scheduling. Section 4.4 presents
the design of our vector-based scheduling policies. Section 4.5 outlines the implemen-
tation for Linux. Section 4.6 evaluates our design. Finally, Section 4.7 concludes the
chapter.

4.2 Determining Chip Temperature

The scheduling policies we propose in this chapter aim at improving the temperature
distribution on the processor chip. To verify the benefits of our policies, we need a way
of observing the temperature distribution. Moreover, some of our proposed policies
need the temperature distribution on the chip in addition to the tasks’ activity vectors
as a basis for deciding which task to schedule.

Traditionally, strategies for avoiding overheating a processor are based on a single
chip temperature value [GBCH01, DM05, MB06]. This value usually stems from a
thermal diode located somewhere on the processor [Int02], or is assembled out of
several temperature readings, if multiple sensors are present on the chip [NRM+06,
RHAH06].

However, physical sensors have several limitations: Firstly, their number is limited,
since increasing the number of sensors is expensive in terms of die area. Hence not all
possible hotspots can be covered. Secondly, thermal sensors often cannot be placed
directly at the hottest chip units for topological reasons. Thirdly, when analog tem-
perature sensors (thermal diodes) are used to read temperature via the super-I/O chip
and the system management bus, reading temperature takes a long time and cannot
be performed more than several times per second [GBCH01, HKK06]. (This is no
longer a concern for temperature sensors whose readings are digitized on-chip and
made accessible to the software via model-specific registers [RHAH06, NRM+06].)

The consequence of the limitations of physical sensors is that either some parts
of the chip can possibly overheat without the sensors detecting it, or that the critical

33

4 Temperature-Aware Scheduling

temperature at which response mechanisms in software or hardware are engaged must
be set to a lower value to compensate for the sensors reporting values that are lower
than the maximum temperature somewhere on the chip. The latter, however, may
lead to engaging thermal management without need and thus needlessly sacrificing
performance.

The temperature monitoring facilities that today’s commodity processors offer are
not suitable for accurately observing the temperature distribution on the chip. We
experimented with several Intel Pentium 4 and Core2 processors by starting thermally
demanding tasks on a formerly idle processor. The temperature values reported by
the sensors of the Pentium 4 chips only changed slowly over the course of several
minutes, which indicates that the values the temperature monitoring facilities report
are more representative of the heat sink temperature than of the silicon temperature.
For the Core2, a more immediate temperature change was visible, which suggests that
the digital temperature sensors deployed in these chips are indeed representing silicon
temperatures. However, the Core2 only offers one temperature reading per core, which
does not allow to observe temperature distribution within the cores.

Bellosa et al. [BWWK03] proposes to use performance monitoring counters in com-
bination with an energy model and a thermal model for estimating the power consump-
tion and temperature of a processor chip as a whole. Lee and Skadron [LS05] uses a
more complex thermal model in combination with energy estimation by performance
monitoring counters to obtain the temperature of individual parts of the chip: As ex-
plained in Chapter 3, the information obtained from performance monitoring counters
allows to estimate the degree of utilization of individual chip units. The power con-
sumption of each unit, in turn, depends on the unit’s utilization, and can thus be esti-
mated when utilization is known. Using a thermal model, temperature estimation for
the blocks of the chip based on their power consumption is possible [LS05, HKK06].

Estimation of power consumption from performance counters yields an error of less
than 10% [BWWK03, IM03]. The thermal model proposed by Lee and Skadron has
been verified against a test chip and yields a worst case error of 7% for temperature
estimation [HSS+04]. Hence, using estimation and simulation allows to obtain real-
istic temperature values with finer granularity than achievable with hardware sensors,
not only in terms of space (obtaining temperatures for each unit is possible), but also
in terms of time. The latter is determined by the rate at which the performance mon-
itoring counters are sampled, which can be done at every timer interrupt, that is up to
1000 times a second in today’s systems.

The methodology just described enables us to verify the benefits of our proposed
scheduling policies, since it allows us to observe the course of temperature for each
chip unit at a high enough temporal and spacial resolution, which is not possible using
the sensors provided by the hardware.

34

4.3 Related Work

4.3 Related Work

In the past, a number of approaches have leveraged the characteristics of individual
tasks for improving temperature distribution. Related work that has addressed thermal
problems by using task characterization can be categorized into software approaches
that are guided directly by temperature, software approaches guided by utilization, and
approaches at the hardware level using special hardware features. A further approach
that consists in using shorter timeslices does not directly apply task characterization,
but relies on workload diversity being present.

4.3.1 Approaches guided by temperature

Some previous approaches that have addressed thermal imbalances within a chip by
means of scheduling have characterized tasks by the temperature they cause when
running on the chip.

Kursun et al. [KCBB06] investigates the impact of the order in which tasks are
scheduled on the temperature distribution within the chip. The authors find that tem-
perature distribution can be improved considerably by scheduling, which mitigates
the need for thermal throttling. They propose a scheduling policy that is similar to our
approach of temperature-aware scheduling and selects tasks that are expected not to
stress the parts of the chip that are currently hot. To provide input to the scheduler,
tasks are profiled by reading on-chip temperature sensors. The authors circumvent the
problem that today’s hardware often does not provide the necessary number of sensors
for doing detailed task characterization by using a simulator for their studies instead
of real hardware. Apart from using temperature for characterization, the difference to
our approach is that only single-processor systems are considered, and that Kursun et
al. does not address the problem of implementing the proposed policy in an operating
system.

Choi et al. [CCF+07] evaluates the potential of mitigating thermal problems by
operating system scheduling and comes to the conclusion that scheduling offers the
potential of mitigating hotspots with negligible overhead. The approach uses temper-
ature sensors to categorize tasks into “hot tasks” and “cold tasks”, which is a more
coarse-grained characterization than we use in our work and does not consider the lo-
cation at which heat is dissipated. Similar to our approach, the authors use a modified
load balancing algorithm in order to balance the number of hot and cold tasks on the
processors. In addition, they defer the execution of hot tasks in favor of cool tasks if
high temperatures are detected .

Coskun et al. [CRW07] addresses temperature-aware scheduling for multicore
system-on-chips. The work distributes tasks to cores in a temperature-aware fash-
ion using a probabilistic load balancing algorithm that sends tasks to cooler cores
with higher probability than to hotter cores. Similarly, Stavrou and Trancoso [ST07]
proposes scheduling algorithms that place tasks on cores of a CMP that have a low

35

4 Temperature-Aware Scheduling

temperature or have neighboring cores with low temperatures. In contrast to our
approach, both do not address temperature distribution of functional blocks within
a processor core, and do not directly characterize tasks by temperature, but take ad-
vantage of the fact that if a task is assigned to a core, this core will have a higher
temperature than an idle core.

Using temperature for characterizing tasks has several drawbacks. Since today’s
processors typically feature only a small number of temperature sensors, temperature
distribution can only be inferred at a relatively coarse spacial granularity, and it is not
possible to characterize tasks at the level of chip units to address temperature distri-
bution within a core. Also, using temperature values is inadequate if tasks running on
different chips are to be compared, since the cooling situation of the chips may differ.
For instance, one chip can be located more closely to a fan or air inlet than another.
Therefore, a task that is found to result in a certain temperature on a certain chip need
not necessarily lead to the same temperature if migrated to another chip. Temperature
is also not suitable as a metric if tasks are running on SMT siblings in parallel, since in
that case, the resulting temperature is a mix of the characteristics of the tasks running
on the siblings.

An alternative approach that solves some, but not all of these problems, is charac-
terizing tasks by the power consumption they cause instead of by temperature. The
concept of task energy profiles we proposed in an earlier work [Mer05] allows an
energy-aware scheduler to balance the temperature of physically different chips, but
not to address temperature distribution within a chip. Unlike a characterization by uti-
lization of processor resources, the energy profile does not provide information about
where on the chip the power is dissipated.

4.3.2 Approaches guided by utilization

We are aware of two previous approaches at mitigating thermal problems that have
used a characterization of tasks by utilization of chip units.

Gomaa et al. [GPV04] proposes combining tasks with different characteristics on
SMT siblings to avoid overheating individual chip units while other units are cold. The
authors propose to characterize tasks by instructions per cycle (IPC), the utilization
of integer and floating point resources, or the utilization of chip resources prone to
overheat, and propose several policies for creating heterogeneous workloads. Gomaa
et al. states that task characterization and temperature-aware scheduling are supposed
to be done at the operating system level, but uses simulation for evaluation instead of
real hardware and a real operating system. The paper does not discuss how exactly
the characterization by resource utilization should be done, and how operating system
scheduling can put the proposed policies into practice.

Donald and Martonosi [DM06] studies the application of DVFS in combination
with task migrations to prevent hotspots in multicore processors. The approach uses
performance monitoring counters to assess tasks in respect of the thermal intensity

36

4.3 Related Work

they show for certain chip resources such as integer and floating point units and regis-
ter files. When a chip unit reaches a critical temperature, a migration to another core
is initiated. The approach is comparable to our migration policy, which also strives at
avoiding hotspots by distributing tasks to CPUs accordingly. The difference between
the approaches is that Donald and Martonosi only considers scenarios with exactly
one task per core and rotates tasks to ameliorate temperature distribution. Our ap-
proach, in contrast, considers scenarios with multiple tasks per processor core, uses
migrations to provide tasks with differing characteristics for each processor, and, in
addition, modifies the order in which tasks are scheduled on a processor to attain a
better temperature distribution.

A third approach, Kumar et al. [KSPJ06], uses performance monitoring counters to
determine the utilization of functional units on the chip, but aggregates the utilization
of all functional units into a single temperature estimate that is then used to character-
ize tasks. Therefore, the approach only addresses overall chip temperature but cannot
leverage the fact that different tasks can dissipate heat at different locations.

4.3.3 Approaches at the hardware level

Many approaches that aim at mitigating thermal problems by leveraging workload
characteristics address those problems at the hardware level rather than in the operat-
ing system. In contrast to the operating system, the hardware has no knowledge about
tasks, so in order to exploit the characteristics of different threads of execution, poli-
cies in hardware operate at the level of hardware threads, e.g., the logical processors
of a multithreaded chip.

Donald and Martonosi [DM05], like our approach, exploits the characteristics of
individual threads of execution to mitigate thermal problems. Donald and Martonosi
uses an adaptive fetch policy or register renaming policy for multithreaded chips to
avoid the formation of hotspots. The approach uses performance monitoring counters
to determine the utilization of the integer and the floating point unit for each thread.
Depending on the temperatures of these units, the processor prefers threads using
cooler units by fetching more instructions for these threads than for threads using
hotter units. In contrast to our approach, reducing hotspots is accomplished at the
expense of fairness. Moreover, an adaptive fetch policy is only beneficial if tasks
showing different unit utilizations are co-scheduled on the logical processors. Since
the hardware cannot influence the mapping of tasks to hardware threads, a hardware
level approach such as an adaptive fetch policy could benefit from operating system
policies like the ones we propose, ensuring that tasks with different characteristics are
co-scheduled.

Winter and Albonesi [WA08] addresses thermal non-uniformity in clustered SMT
architectures. Based on a characterization of logical threads by temperature or activity
of the floating point and integer units, the approach leverages the physically distinct
backends of the clustered SMT architecture and assigns threads that caused a hotspot

37

4 Temperature-Aware Scheduling

in a particular backend to another backend that exhibits a low temperature for the
resources the thread utilizes most. Winter and Albonesi shows that such a hardware-
based steering mechanism reduces the need for throttling in order to avoid thermal
emergencies.

Another hardware related approach to avoiding hotspots consists in adding spare
resources such as register files, issue queues, or ALUs on the processor chip, and
to migrate computation to one of those spare resources when the original resource
reaches a critical temperature during the execution of a thermally challenging work-
load [HBA03, SSH+03]. This requires additional chip units, which occupy additional
die area.

Mechanisms like adapting the fetch policy or migration to spare chip units are not
available to the software, since the hardware typically does not expose these mech-
anisms. On the other hand, some mechanisms relevant to thermal behavior, like the
migration of tasks between chips or the switching between tasks on a processor are
not available to the hardware. In our opinion, optimal results can only be achieved if
hardware and operating system software cooperate. One solution would be to allow
the software to control hardware mechanisms. An example for this is the approach of
Cazorla et al. [CKS+04], which proposes a modification to SMT hardware that allows
the operating system to set priorities that the hardware considers when processing in-
structions of different logical processors. A similar mechanism is present in the IBM
Power5 processor [KST04]. In the remainder of our work, we will not consider such
hardware features, since they are not available in the majority of today’s processors.

4.3.4 Shortening timeslices

Michaud and Sazeides [MS06] proposes to use shorter timeslices to prevent overheat-
ing individual parts of the chip, based on the rationale that with shorter timeslices,
tasks using different resources are switched in quicker succession, so hotspots cannot
form. We argue that shorter timeslices are only beneficial if there are tasks available
that use different chip resources, and that the order in which they are scheduled is
important. Our work addresses both problems. Our evaluations show that the ap-
proaches of shortening timeslices and vector-based scheduling can be combined to
attain maximum benefits.

4.4 Vector-Based, Temperature-Aware Scheduling

As mentioned at the beginning of this chapter, the scheduling decisions of the operat-
ing system—determining what task the processor shall execute next—also determine
the temperature distribution on the chip. Up to now, scheduling strategies found in
general purpose operating systems like Linux or Windows are oblivious to this fact.

38

4.4 Vector-Based, Temperature-Aware Scheduling

Today’s schedulers make their decisions according to criteria like task priorities, fair-
ness or good interactive performance, but neglect the impact that the order in which
tasks are executed has on temperature distribution.

At the same time, in many scheduling strategies the exact order in which tasks are
executed is unspecified. For example, in round-robin scheduling, it is not relevant in
which order the tasks are scheduled, as long as each task gets its timeslice in turn and
all tasks make progress. The same holds true for proportional share scheduling. Even
with priority-based scheduling, the order in which tasks having the same priority are
scheduled is not specified.

This can be used to influence the temperature distribution of the chip without break-
ing the properties and objectives of the respective scheduling policy. In the remainder
of this section, we will concentrate on the widely-used round-robin policy.

Enabling the scheduler to influence temperature in a sensible way requires that we
provide it with information about the characteristics of the tasks it manages, that is,
what task utilizes which parts of the processor. The abstraction of activity vectors
introduced in Chapter 3 provides this information. Task activity vectors characterize
tasks by their utilization of processor resources. The activity of those resources is
responsible for chip temperature and determines the temperature distribution. In the
following, we propose scheduling strategies that use activity vectors to achieve a more
balanced temperature distribution.

4.4.1 Runqueue sorting

We propose runqueue sorting as a scheduling policy that makes use of task activity
vectors to avoid the formation of hotspots. We accomplish this by choosing a task to
run next that does not utilize the parts of the processor that are currently hot, provided
that such a task is available.

Our policy is based on the assumption that there are CPU-local runqueues, i.e., there
is a list of tasks assigned to each CPU, and that the tasks in this queue are scheduled in
round-robin fashion, that is, executed for a timeslice and then re-appended to the end
of the queue thereafter. This holds true in many of today’s operating systems, although
the scheme is often slightly altered or enhanced. For instance, round-robin scheduling
is often combined with a priority scheme, or the runqueue is split into several sub-
queues as is the case with the O(1)-Scheduler used in the 2.6 series of Linux up to
version 2.6.22 [Jon06].

We propose two forms of runqueue sorting, a simple form and an enhanced form
that uses a thermal model. The simple form arranges the tasks in the runqueue in a
way that two successive tasks use resources of the CPU that are as complementary as
possible, so the resources the previous task has used can cool down during the execu-
tion of the following task. The enhanced form considers the estimated temperatures
of the CPU’s units for choosing the next task in addition to activity vectors.

39

4 Temperature-Aware Scheduling

The simple form of runqueue sorting has a uniform view on activity vectors, since
it does not associate a special meaning with the individual vector components and
treats all components as equal. The enhanced form uses a non-uniform view, since it
associates the vector components with particular chip units to be able to consider the
temperature of these units.

Sorting efficiently

The set of tasks that compose a CPU’s runqueue is not fixed. Tasks can terminate or
block and thus be removed from the queue, and new tasks may be started. In addition,
the load balancer can move tasks between the runqueues of different CPUs. Thus,
keeping the runqueues sorted can cause a lot of overhead.

The alternative to sorting is searching the runqueue for a suitable task every time
a scheduling decision is made. Searching, however is not scalable, since the time
required to search for a suitable task grows with the length of the runqueue. Since
scheduling tasks is a frequently invoked operation, scheduling algorithms have to be
efficient. For example, Linux’s O(1)-Scheduler scheduler is designed to satisfy an
O(1) property, meaning that the cost of scheduling is independent of the number of
tasks in the system.

We use a combination of searching and sorting to keep the overhead low. We adopt
the scheme used in the O(1)-Scheduler of having two runqueues per processor, the first
queue consisting of tasks waiting to be scheduled, and the second queue consisting of
tasks that have been executed lately. When choosing the next task to be scheduled, we
look at the first c tasks in the first queue and choose the best suited task out of them.
After executing it for one timeslice, we append the task to the second queue. This way,
the second queue is automatically sorted in a way that tasks using complementary
resources follow each other. When the first queue is empty, we switch the queues.
Since we operate on a queue now that has previously been sorted, there is a high
probability that there is a suitable task among the first c tasks in the queue.

In addition, having two queues ensures that all tasks are making progress: A task
that has been scheduled and is appended to the second queue is not scheduled again
until all other tasks still residing in the first queue have been scheduled.

Example:

We consider a scenario with two types of tasks. Tasks of type A use different resources
than tasks of type B. We assume there are five tasks of type A and three tasks of type B,
we have chosen c = 3, and the initial order of the runqueue is BBBAAAAA. Figure 4.1
shows how the runqueues evolve under runqueue sorting. We underline the tasks the
scheduler considers for making its decision, and mark the task the scheduler selects
with a dot. Note that after sorting, there is still a succession of three tasks of type A
since there are more tasks of this type than of type B. One might argue that it would

40

4.4 Vector-Based, Temperature-Aware Scheduling

queue 1 queue 2

BBBAAAAȦ
BBBAAAȦ A
BBBAAȦ AA
BBḂAA AAA
BBAȦ BAAA
BḂA ABAAA
BȦ BABAAA
Ḃ ABABAAA

BABABAAA
BABABAAȦ
. . .

Figure 4.1: Example for runqueue sorting

be better to sort the queue in a fashion that distributes the tasks of type A more evenly,
like ABAABAAB, but this is not feasible without global knowledge of the whole queue.
In addition, the chip’s units have typically already reached their peak temperature after
one timeslice, so it does not matter whether we execute the supernumerous tasks of
type A in groups of two or three.

Simple runqueue sorting

For the simple form of runqueue sorting, we use only the tasks’ activity vectors for
deciding which tasks out of the first c tasks in the queue we select for execution. If
the timeslices are long enough (10ms to 100ms), which is the case in most operating
systems, and a task switch occurs because of timeslice expiration, the unit utilization
of the previously running task is a good indicator for the units’ temperatures: Because
of the comparatively small thermal capacitance of the chip units, the units the task has
utilized are hot and the units the task has not utilized are cold. Therefore, we choose
a task that uses different units than the one that ran before.

Whether a task uses different units than another task can be inferred from the angle
the tasks’ activity vectors form, as we want to explicate in the following. We denote
the angle between two vectors�x and�y by � (�x,�y).

Let �a be the activity vector of the task that has run on the CPU up to now and �bi

with i ∈ {1, ..,c} the activity vectors of the tasks we consider when choosing the next
task to run. We want to choose the task whose unit utilization is most different from
the unit utilization of the previously running task. In the ideal case, when two tasks
use completely distinct units, their activity vectors are orthogonal, so � (�a,�bi) = 90◦.

41

4 Temperature-Aware Scheduling

Figure 4.2: Angles between activity vectors

Hence, we select a task whose activity vector forms an angle with�a as close as possible
to 90◦.

Figure 4.2 shows a simple example: Assume the task with activity vector �a has
utilized both the floating point units and the memory units, but not the integer units.
In this case, the activity vector �b1 of a task that only utilizes the integer units forms an
angle of 90◦ with�a, whereas the activity vector of any task that utilizes either memory
or floating point units—such as �b2—forms a smaller angle with �a.

The components of all activity vectors are positive or zero, so no two vectors can
form an angle greater than 90◦, since they all point into the same orthant. Therefore,
we choose the task whose activity vector �b j with j ∈ {1, ..,c} forms the biggest angle
with �a:

j = arg
c

max
i=1

� (�a,�bi) (4.1)

With � (�x,�y) = arccos �x·�y
|�x||�y| we transform this to:

j = arg
c

max
i=1

arccos
�a ·�bi

|�a||�bi|
(4.2)

Since for 0◦ ≤ α ≤ 90◦, arccos α is strictly falling, this is equivalent to:

j = arg
c

min
i=1

�a ·�bi

|�a||�bi|
(4.3)

|�a| is a constant, so we can omit it from the equation:

j = arg
c

min
i=1

�a ·�bi

|�bi|
(4.4)

42

4.4 Vector-Based, Temperature-Aware Scheduling

We base our scheduling policy on a modified version of this formula. Instead of

using the Euclidean length ||�bi|| =
√

∑n
k=1 b2

i,k, where bi,k is the k-th component of

vector�bi, we use the Manhattan length ||�bi||manh = ∑n
k=1 |bi,k|. Since all components

of our vectors are positive, we can omit using absolute values. Hence, we choose the
task with activity vector �b j to be scheduled next, if:

j = arg
c

min
i=1

�a ·�bi

∑n
k=1 bi,k

(4.5)

Both, equations 4.4 and 4.5 lead to choosing a task that uses, as far as possible,
different units than its predecessor, which is accomplished by the scalar product in
the numerator of the fraction. Using the Manhattan length of �bi in the denominator
instead of the Euclidean length leads to preferring activity vectors having medium
values in many components to vectors with high values in some components and low
values in other components, since for the former ones, the Manhattan length is, in
particular, greater than the Euclidean length (see Figure 4.3). This is advantageous for
our strategy, since scheduling several tasks causing medium utilization of the same
units does typically not lead to hotspots, although the vectors of such tasks point in
similar directions. In addition, determining the Manhattan length is computationally
less expensive than determining the Euclidean length. (The latter involves calculating
square roots.)

The policy of simple runqueue sorting uses a uniform view on activity vectors: As
mentioned, calculating the angle between two vectors does not distinguish between
individual vector components, but considers all components equally. Simple runqueue
sorting avoids scheduling two tasks in a row that have high values for the same vector
components, no matter what particular units these resources stand for. This has the
advantage that the scheduling policy requires no knowledge about the topology and the
actual temperature distribution of the chip, but can also lead to suboptimal scheduling
decisions, as we will detail in the next paragraph.

Enhanced runqueue sorting

We also propose an enhanced form of runqueue sorting that considers the actual tem-
peratures of the chip units for making scheduling decisions. As described in Sec-
tion 4.2, the temperatures of the individual chip units cannot be obtained directly from
the hardware. Therefore, we use a thermal model of the processor for estimating the
temperatures.

As mentioned above, simple sorting assumes that tasks are exhausting their times-
lice or at least consuming a significantly long portion of it, so that upon releasing
the CPU, the temperature distribution of the processor chip corresponds to the task’s
characteristics. If a task uses only a small fraction of its timeslice and then blocks

43

4 Temperature-Aware Scheduling

a

b
c

v

Figure 4.3: Manhattan length (a + b) and Euclidean length (c) of a two-
dimensional vector�v

or voluntarily releases the CPU, the characteristics of this task are not crucial for the
temperature distribution of the CPU, since during short periods of time, formerly cold
units utilized by the task do not heat to the saturation point, and formerly hot units not
utilized by the task do not have enough time to cool down.

Enhanced sorting can cope with this, since the thermal model considers the amount
of energy each tasks dissipates in each unit, which is small if a task runs only for a
short time. Thus, using a thermal model implicitly considers the actual period of time
that a task spends on the CPU.

In addition, using a temperature model has the advantage of considering the phys-
ical properties of the chip, for example lateral heat spreading: Even a unit that the
previously running task has not utilized can have an increased temperature, if it is
located next to a unit that the task has utilized heavily. On the downside, using es-
timated temperatures for runqueue sorting is computationally more expensive than
simple runqueue sorting, owing to the calculations required for the thermal model.

To consider temperatures on the chip, enhanced sorting needs to associate the in-
dividual vector components with chip units. Therefore, enhanced runqueue sorting
uses a non-uniform view on activity vectors. In addition, a thermal model is always
microarchitecture-specific. Although the thermal model need not be integrated into the
scheduler, but can be implemented as a separate component that supplies the scheduler
with the temperature values, which maintains the portability of the scheduling policy
itself, the need for a thermal model increases the effort required for applying enhanced
runqueue sorting to a new platform. In return, enhanced runqueue sorting offers the
potential for more accurate scheduling decisions.

Thermal model For our purposes, a rather simple thermal model is sufficient. As
mentioned before, our approach of temperature-aware scheduling is best-effort. Thus,
wrongly estimated temperatures only lead to performance degradation, but not to hard-
ware damage: If our scheduling policy takes a “wrong” decision caused by an inaccu-

44

4.4 Vector-Based, Temperature-Aware Scheduling

racy of the temperature model, which would lead to a hotspot, hardware mechanisms
engage throttling, so the only consequence is reduced performance.

In addition, our proposed scheduling policy does not rely on absolute accuracy, but
works by comparing temperatures. Therefore, a temperature model that delivers the
right trends (whether a unit is currently rather hot or rather cold) is already beneficial.

Rather than on being exact to the point, the focus our model is on being computa-
tionally inexpensive in order to limit the overhead introduced by temperature estima-
tion. In the following, we want to describe the thermal model we use briefly.

Similar to Skadron et al. [SSH+03], we use a dynamic compact model. Compact
models seize the fact that the phenomena of thermal capacitance and thermal con-
ductance can be seen analogously to the respective electric phenomena, electric ca-
pacitance and electric conductance. Hence, a compact model represents the micro-
processor and its heat sink by a network of thermal capacitors and resistors. For the
reasons stated above, we choose a simpler model than Skadron et al. and model only
the different units of the CPU plus the heat sink, omitting interface materials and heat
spreader. Our model delivers an estimated temperature for each chip unit and is com-
parable to Temptor [HKK06], another adoption of Skadron’s methodology to runtime
temperature estimation. Our model is simpler than Temptor and thus less exact, but
requires fewer calculations.

We derive the chip units of the processor from the floorplan and model each one as
a thermal capacitor whose capacitance depends on the volume of the corresponding
block on the chip, which we calculate by multiplying the area the block occupies
on the floorplan with the chip height. In addition, we model the heat sink as one
huge thermal capacitor. Each chip block is linked to each neighboring block via a
thermal resistor with conductance proportional to the length of the border the blocks
have in common. Also, each block is linked to the heat sink via a resistor whose
conductance is proportional to the surface area of the block. The heat sink is linked to
the surrounding air (which corresponds to ground in an electrical circuit) via a thermal
resistor. Figure 4.4 shows a basic example of our thermal model for a hypothetical chip
with four units.

While the processor is powered on, the chip units dissipate heat. As a consequence,
the energy used to power the chip gets partially stored in the units (thermal capacitors),
resulting in an increased temperature of the units. The temperature gradient between
the chip units and the heat sink leads to a conduction of energy from the units to the
heat sink via the thermal resistors. Analogously, the heat sink stores a part of this
energy, resulting in increased temperature of the heat sink, which in turn causes an
energy flow from the heat sink to to the surrounding air. In addition, there is also a
lateral energy flow within the chip, meaning that energy is conducted from hotter areas
to cooler ones.

45

4 Temperature-Aware Scheduling

conductivity
between units

conductivity
to heat sink units

heat
sink

conductivity
to ambient

chip

Figure 4.4: Thermal model of a simple chip with four units

While Skadron et al. uses computationally expensive numerical methods to solve
the differential equations describing the network of thermal capacitors and resistors,
we use simple discrete calculations.

We estimate the amount of energy that is dissipated in a chip block by using activity
information. We follow the approach of Isci and Martonosi [IM06] and approximate
the power dissipation of each block by a fixed part Pbase that is independent of activity
and models leakage, and a dynamic part that is proportional to unit utilization and
models the power consumed by switching activity. We calculate the dynamic part
by multiplying the maximal dynamic power Pdyn of the block with the utilization u
(which ranges between 0 for no utilization and 1 for full utilization). For simplicity,
we neglect the fact that leakage, and thus the units’ power dissipation, is dependent on
temperature. In summary, the amount of energy ΔEdiss dissipated during the time Δt
becomes:

ΔEdiss =
(
Pbase +Pdyn ·u

)
Δt (4.6)

The amount of energy ΔEcond conducted between two components (two chip blocks,
a chip block and the heat sink, or the heat sink and ambient air) during Δt depends
on the conductance c of the thermal resistor connecting the components and on the
temperatures ϑa and ϑb of the components.

ΔEcond = c(ϑb −ϑa)Δt (4.7)

46

4.4 Vector-Based, Temperature-Aware Scheduling

At each timer interrupt, we update the amount of energy stored in each of the ther-
mal capacitors.

• We add the amount of energy that was dissipated in each chip block since the
last timer interrupt to the block’s capacitor according to Equation 4.6.

• We subtract the amount of energy that was conducted from the block to the
heat sink from the block’s capacitor and add it to the heat sink’s capacitor. The
amount of energy is determined according to Equation 4.7.

• For each two blocks adjacent to each other, we subtract an amount of energy
corresponding to lateral heat transfer from the hotter block’s capacitor and add
it to the cooler block’s capacitor, also according to Equation 4.7.

• We subtract from the heat sink’s capacitor the amount of energy that was con-
ducted to the ambient air since the last timer interrupt, again according to Equa-
tion 4.7.

After updating the energy stored in each capacitor, we calculate the new tempera-
tures of the components, which are proportional to the respective amounts of energy
stored in the components and the components’ heat capacities.

Scheduling policy The basic idea of enhanced runqueue sorting is to choose a task
to be scheduled next that utilizes chip units having a low temperature and does not
utilize units having a high temperature. For deciding whether a unit’s temperature is
currently high or low, we compare the current temperature of the unit to the average
temperature of the unit observed over the past timeslices. For this purpose, we calcu-
late an exponential moving average over the temperature of each unit (as delivered by
our thermal model).

Let �m be a vector containing the average temperatures of all units and�t a vector
containing the current temperatures of the units. The difference�t −�m is a vector with
positive components for units that are currently hot and negative components for units
that are currently cold.

Let again �bi with i ∈ {1, ..,c} be the activity vectors of the tasks we consider for
scheduling for the next timeslice. When choose the task with activity vector �b j if:

j = arg
c

min
i=1

(�t −�m) ·�bi (4.8)

If a unit is currently hotter than its average temperature, scheduling a task that uses
this unit is discouraged: The corresponding component of the temperature difference
(�t − �m) is positive; multiplication with a nonzero utilization from vector �bi yields a
positive contribution to the scalar product. On the other hand, if a unit is currently

47

4 Temperature-Aware Scheduling

colder than its average temperature, scheduling a task that uses this unit is encour-
aged: The corresponding component of the temperature difference is negative; multi-
plication with a nonzero utilization from vector �bi yields a negative contribution to the
scalar product.

4.4.2 Activity balancing

Runqueue sorting is only effective if a runqueue contains tasks with different charac-
teristics. In a multiprocessor system, the scheduler can influence the contents of the
runqueues by migrating tasks between CPUs. In today’s operating systems, this is
done for the purpose of load balancing, i.e., equalizing runqueue lengths by moving
tasks from long runqueues to shorter ones.

We use task migration to create the prerequisites for runqueue sorting. For example,
if one runqueue consists solely of integer tasks and another runqueue consists solely
of floating point tasks, we migrate some integer tasks to the second queue and some
floating point tasks to the first queue.

Activity balancing is beneficial if done between processors that are physically dif-
ferent chips, as well as between different cores of a multicore chip, since it makes
sure that for each location (chip or core), tasks having different characteristics are
available. For logical processors of a simultaneously multithreaded processor, how-
ever, a different strategy makes sense, since several logical processors dissipate heat
at the same physical location. We will describe this strategy in Section 4.4.3.

In previous work, we have proposed energy balancing for equalizing the power con-
sumptions of CPUs by migrating tasks depending on the energy they consume during
a timeslice [Mer05, MB06]. We propose a similar algorithm, activity balancing, to
equalize the utilization of chip units between the CPUs. In contrast to energy balanc-
ing, where decisions upon task migrations are steered by just one parameter (power
consumption), activity balancing considers multiple parameters, namely the compo-
nents of the tasks’ activity vectors.

To solve this multi-dimensional optimization problem heuristically, we construct a
scalar measure as the basis for deciding whether the migration of a task is beneficial or
not. This measure, which we call thermal stress, describes whether the tasks contained
in a runqueue use mainly the same units or not. The goal of activity balancing is to
keep the thermal stress of all runqueues as low as possible by migrating tasks between
queues.

We define the thermal stress of a CPU as the sum of the average utilization of all
units whose utilization is greater than a constant l. If the average utilization of a unit
is greater than l, this means that too many tasks are utilizing the unit too heavily, and
runqueue sorting cannot always find a task that does not utilize the unit.

Using the average utilization as a metric assumes that the tasks in a runqueue have
equal timeslice lengths. If different tasks have timeslices of different lengths, using a

48

4.4 Vector-Based, Temperature-Aware Scheduling

weighted averaging function that gives higher weights to tasks with longer timeslices
would be appropriate.

Since for the calculation of thermal stress, no special meaning is associated with
the individual vector components, activity balancing has a uniform view on activity
vectors.

Definition. Let n be the dimension of the activity vectors, p the number of tasks in a
runqueue, and�bi, i ∈ {1, . . . , p} the activity vectors of the tasks in the queue. Let �m be
the average of the activity vectors�bi:

�m =
1
p

p

∑
i=1

�bi (4.9)

We define the thermal stress s of the queue formally as:

s = ∑
j∈{1,...,n}: m j>l

m j (4.10)

This way, units that are used only by few tasks, or used by many tasks, but only
to a low degree, do not contribute to thermal stress. Hence, migration of a task that
utilizes a certain unit heavily to a runqueue whose tasks do not utilize the unit has the
potential of reducing the thermal stress of the source queue while not increasing the
target runqueue’s thermal stress.

Activity balancing works by migrating a task from one runqueue to another if this
either decreases the thermal stress of both queues, or decreases the stress of one queue,
while the stress of the other queue remains constant. At the same time, we ensure
that activity balancing does not cause load imbalances by migrating a task back for
compensation if necessary. In this case, we select a task whose migration does not
increase the thermal stress of any of the two queues. Vice versa, we also consider
thermal stress when doing load balancing. If the need for a task migration arises
because of a load imbalance, we select a task whose migration does not increase the
thermal stress of the queues the task is migrated between for resolving the imbalance.

The parameter l determines the average level of utilization that is acceptable for a
chip unit. The lower the value of l, the more difficult it is for activity balancing to find
a target runqueue for migrations: If a task x utilizes a certain unit to a high degree, and
we want to migrate task x to another runqueue without increasing the target queue’s
thermal stress, the target queue needs to contain enough tasks that utilize the unit
concerned to a low enough degree to offset the contribution of task x in order to keep
average utilization below l.

On the other hand, the higher the value of l, the more difficult it is for runqueue
sorting to avoid hotspots: For each unit that is utilized heavily by a task, runqueue
sorting requires the availability of at least one other task that does not utilize the unit,
since this permits to schedule tasks using and not using the units alternatingly. From

49

4 Temperature-Aware Scheduling

this viewpoint, a value as low as l = 1
2 would be optimal, since if the average utilization

of a unit is 1
2 , this means that there are as many tasks that use the unit as there are tasks

that do not.
For our experiments described in Section 4.6, we use a value of l = 2

3 , which is a
compromise that enables activity balancing both to find target runqueues for migra-
tion, and to create runqueues that are reasonably suitable for runqueue sorting. A value
of l = 1

2 turned out to be too restrictive and to prevent migrations in many situations,
when no configuration could be found that keeps unit utilization below 1

2.

4.4.3 Activity unbalancing

Multithreaded CPUs offer multiple logical processors that make use of the hardware
units of the same physical chip. Typically, multithreaded processors show even higher
power densities and temperatures than single-threaded processors, since feeding the
execution engines from several instruction streams leads to higher utilization of the
chip units [YSBZ05].

Gomaa et al. [GPV04] has shown that regarding thermal constraints, multithreaded
chips can be used most efficiently if siblings execute tasks that use different units (and
hence possess different activity vectors). With our approach, we want to verify that
the principle of running tasks with different characteristics together can be achieved
in a real operating system by using automatic task characterization (activity vectors)
and a suitable scheduling policy (activity unbalancing).

From the operating system’s point of view, the logical processors of a chip behave
like individual processors, and most operating systems treat them this way in many
respects. In particular, scheduling decisions happen independently for each logical
processor, and operating systems that provide CPU-local runqueues typically provide
a separate runqueue for each logical processor.

Scheduling decisions for different logical processors do not necessarily happen at
the same time, since tasks on different logical processors can block or release the CPU
at different points in time. Synchronizing scheduling decisions to enforce that siblings
do not execute tasks with similar activity vectors simultaneously would require coor-
dination between the logical processors. While this is possible and leads to a form
of gang scheduling (see Chapter 5), we choose a simpler solution in this place. As
we will discuss in Section 5.8.7, a solution using coordination of scheduling decisions
is also viable, but is more complex and does not have any additional benefits in the
context of avoiding hotspots.

We solve the problem of running tasks with different characteristics simultaneously
without using synchronization by using task migrations to arrange the runqueues of
siblings in a way that the tasks in a runqueue all use different units than the tasks in the
other siblings’ runqueues.This solution is viable if the number of siblings per physical
processor is small in comparison to the number of chip units considered, as is the

50

4.4 Vector-Based, Temperature-Aware Scheduling

case, for example, with Intel’s Hyper-Threading [MBH+02] employed on NetBurst,
Core i7, and Atom processors.

As an example, on a two-way multithreaded processor, after arranging the run-
queues, one queue might contain only cache intensive tasks and memory intensive
tasks, and the other queue only floating point tasks and integer tasks. This way, it
is unimportant whether scheduling decisions happen independently for the siblings,
since no matter which task is chosen, it is guaranteed to use different units than the
task running on the sibling.

For sibling processors, our goal is the opposite of what we want to achieve for phys-
ically different processors with activity balancing. For runqueues belonging to phys-
ically different processors, we want to spread tasks with similar characteristics over
several runqueues in order to avoid having too many similar tasks on one physical pro-
cessor. For runqueues belonging to siblings on the same physical processor, however,
it is desirable not to spread tasks with similar characteristics over the runqueues, but
to collect them in one runqueue in order to avoid the possibility that similar tasks are
scheduled on different siblings at the same time.

Therefore, we must apply a policy different from activity balancing between sib-
lings. Our goal is to distribute all available tasks to runqueues in a way that the tasks
in one runqueue use different units than the tasks in all other runqueues. Thus, we
propose a strategy for activity unbalancing.

A naïve idea for activity unbalancing would be to do the exact opposite of activity
balancing, i.e., to use migrations that increase thermal stress. But increasing thermal
stress is not necessarily our goal; we do not necessarily want to have tasks that all use
the same units in a logical processor’s queue, merely tasks that use units different from
those used by tasks in the siblings’ queues. This is a weaker requirement, and thus
allows a policy that is more likely to find a suitable assignment of tasks to processors
than a policy that maximizes thermal stress.

The policy we propose is based on a measure we call diversity. The diversity of two
runqueues q1 and q2 denotes whether the tasks in q1 mainly use the same units as the
tasks in q2 or not.

Definition. Let n be the dimension of the activity vectors and �m the average of the
activity vectors of the tasks from q1, as defined by Equation 4.9, and �o the average of
the activity vectors of the tasks from q2, respectively. The diversity d(q1,q2) is then
defined by the following equation:

d(q1,q2) =
n

∑
j=1

|m j −o j| (4.11)

Hence, if two siblings utilize a chip unit to a different degree, i.e., most tasks on
one sibling utilize the unit heavily, while most tasks on the other hardly utilize it, this
causes a high contribution to the diversity of the siblings. On the other hand, siblings

51

4 Temperature-Aware Scheduling

with runqueues that contain tasks that, on average, utilize the same units, have a low
diversity.

Analogously to activity balancing, activity unbalancing works by migrating a task
from one sibling to another, if this increases the diversity of the siblings. In systems
consisting of multiple multithreaded chips, we perform activity unbalancing between
runqueues belonging to siblings, but activity balancing between runqueues belonging
to different physical processors, since this ensures that there are tasks with different
characteristics available on each physical processor to distribute between the logical
processors.

Besides running tasks with different characteristics simultaneously on siblings, we
additionally perform runqueue sorting on each sibling. This is beneficial, since typi-
cally, the number of units on a processor is greater than the number of logical proces-
sors. Hence, even if we distribute the tasks to the runqueues in a way that the logical
processors always use mutually different units, the units that the tasks in a particular
runqueue are using may still differ from task to task, so that runqueue sorting is still
beneficial.

4.5 Implementation

4.5.1 Activity vectors

As mentioned at the beginning of this chapter, we chose the Intel NetBurst architecture
as our evaluation platform and thus implemented activity vectors for this platform.
Our implementation is based on a Linux 2.6.16 kernel

As described in Chapter 3, we enhanced the ��������	
� data structure that Linux
uses to maintain task state by fields describing the task’s activity vector. For deter-
mining activity vectors, we implemented the mechanism described by Isci and Marto-
nosi [IM03] to obtain unit utilization by evaluating performance monitoring counters
of the Pentium 4. The mechanism delivers utilization for 22 chip units. We enhanced
the mechanism for supporting multithreaded processors, which involves additional
multiplexing of counters, since Hyper-Threading for the NetBurst architecture fea-
tures one set of performance monitoring counters per physical processor, shared by
two logical processors.

Owing to the limited number and configuration options for the performance mon-
itoring counters present in the Pentium 4, Isci and Martonosi proposes a four-way
rotation of counters for a single-threaded processor. To support multithreading, we
extend the four-way rotation to an eight-way rotation, which in addition to switching
between the four configurations proposed by Isci and Martonosi, switches between
counting events for the first or the second sibling.

To capture task characteristics accurately, multiplexing has to happen at a higher
frequency than the frequency of scheduling. The standard timeslice length in Linux

52

4.5 Implementation

is 100ms. We chose to multiplex at 1ms intervals, especially since we also do an
evaluation of shorter timeslice lengths (Section 4.6.6).

The counters for floating point, trace cache, and front side bus events are not able
to distinguish between logical processors, but count events regardless from which sib-
ling they originate. For these events, we divide the event count and assign half the
events to each sibling. This introduces error into the task characterization. Simi-
larly, multiplexing introduces error, since we cannot observe all events all of the time
(cf. Chapter 3). As our evaluation shows, the characterization obtained this way is
still accurate enough for the scheduling policies to yield significant benefits. In ad-
dition, the inaccuracy is no inherent problem; the accuracy of activity vectors could
be improved if the hardware provided more suitable monitoring facilities that report
utilization caused by each logical processor without requiring multiplexing.

We also implemented energy estimation based on unit utilization as proposed by
Isci and Martonosi and temperature estimation using a compact model as described
in Section 4.4.1 to obtain temperatures for each chip unit, which is required for the
extended version of runqueue sorting.

4.5.2 Runqueue sorting

We implement runqueue sorting by modifying the O(1) Scheduler used in Linux up to
version 2.6.22. The O(1) Scheduler combines round-robin scheduling with priorities.
The scheduler assigns more CPU time to tasks with higher priorities and schedules
tasks with higher priorities before tasks with lower priorities. However, the scheduler
avoids starvation of low-priority tasks by making sure that no high-priority task re-
ceives a new time quantum unless all lower-priority tasks have been scheduled in the
time in between.

This is achieved by introducing two data structures for storing ready-to-run tasks,
one containing tasks that have already exhausted their time quantum (the expired ar-
ray) and one for tasks that have not yet exhausted their time quantum (the active
array). Both arrays consist of linked lists of tasks, one list for each of the 140 priori-
ties Linux supports (multilevel queueing; see Figure 4.5). When making a scheduling
decision, the scheduler chooses the first task of the linked list with the highest priority
from the active array. After executing, the task is enqueued in the linked list of the
expired array that corresponds to its priority. When the list with the highest priority is
empty, the scheduler resorts to the second highest priority, and so forth. When all lists
of the active array are empty, the scheduler exchanges expired and active array.

To support runqueue sorting, we modify the policy for choosing the next task to
schedule. Instead of choosing the first task from the queue with the highest priority
in the active array, we look at the first c tasks in the queue with the highest priority
in the active array. If the queue with the highest priority contains less than c tasks,
we also consider tasks from the queue with the second highest priority and so forth.
In our implementation, we chose c = 4. We choose the task that suits best according

53

4 Temperature-Aware Scheduling

Figure 4.5: Active and expired array of the Linux O(1)-Scheduler

to our metric (Equation 4.5 or 4.8), execute it for one timeslice, and append it to
the expired array. Like for the activity vectors, we use fixed-point arithmetic for all
metrics derived from activity vectors.

Considering tasks from lower priority queues for selection despite higher priority
tasks being present softens the priority scheme of Linux. However, it increases the
chances that a suitable task is found if there are only few tasks of a given priority.
In addition, priorities in Linux are already designed to be soft priorities only. Native
Linux also schedules a lower priority task although a higher priority task is in the
ready state, if the low priority task is it the active array and the high priority task is in
the expired array.

4.5.3 Activity balancing/unbalancing

For implementing activity balancing between physical processors and activity unbal-
ancing between siblings, we modified Linux’s load balancer to consider the metrics
described by Equations 4.10 and 4.11 in addition to load. Although Linux does assign
different timeslice length to tasks of different priorities, for simplicity, we use an un-
weighted average to calculate thermal stress (cf. Section 4.4.2). This is justified, since
our focus is on non-blocking workloads that typically run at the same priority level.

We take advantage of the scheduler domain hierarchy that Linux uses to represent
the processor topology of the system. The hierarchy defines groups of CPUs at differ-
ent levels, e.g. groups comprising all siblings of the same physical processor, groups
comprising all cores on a die, groups comprising all processors residing on the same
NUMA node, and so on. Within groups consisting of siblings, we perform activity
unbalancing, and migrate tasks if this increases diversity, but between CPUs not be-

54

4.6 Evaluation

longing to the same group of siblings, we perform activity balancing, i.e., migrate
tasks if this decreases thermal stress.

Linux’s load balancer checks periodically for load imbalances between the run-
queues. We supplement these periodic checks with additional checks for opportunities
to reduce thermal stress between physically different processors by activity balancing,
or increasing the diversity of sibling processors by activity unbalancing.

Upon detecting an imbalance, Linux invokes a function for migrating tasks in order
to resolve the imbalance. This function searches for candidate tasks that are suitable
for migration according to various criteria, for instance, that the task is not currently
running, and is expected to have little data in the processor’s cache. We extend this
balancing function to also reduce thermal stress and increase diversity. For physically
different processors, we add to the criteria for a task migration the requirement that
thermal stress of either the source or the target runqueue be reduced by the migration
(activity balancing). For sibling processors, instead we add the requirement that the
diversity of the runqueues be increased (activity unbalancing).

4.6 Evaluation

4.6.1 Setup and methodology

We evaluated our implementation with a set of workloads composed of programs taken
from the SPEC CPU 2006 suite [Hen06], a benchmark suite consisting of several com-
pute intensive integer and floating point benchmarks derived from real user applica-
tions. Appendix A gives an overview of the programs from the SPEC CPU suite.

As described in Section 4.2, the temperature sensors deployed on today’s chips
are not suitable for verifying the impact of our approach, namely the reduction of
hotspots. Temperature measurement via external sensors such as laser thermometers
is not applicable either, since it is not possible to operate the chip without a heat sink
attached, and hence the chip is not accessible for temperature measurements.

For these reasons, we used a combination of real hardware and simulation. We let
our modified Linux kernel run on real physical hardware. We used an IBM xSeries 445
eight-way multiprocessor system (eight Pentium 4 Xeon Gallatin processors with
2.2GHz each). The system consists of two NUMA nodes with four two-way mul-
tithreaded processors on each node.

For investigating temperature, we resort to simulation with the HotSpot [HSS+04]
temperature simulator. During the test runs, we sampled the utilization of each chip
unit using performance monitoring counters. From unit utilization, we estimated the
power consumption of each unit. Afterwards, we used the power estimates as input
to the HotSpot simulator, with which we performed offline temperature simulation to
study the effects of our policies on temperature distribution.

55

4 Temperature-Aware Scheduling

Although we use performance monitoring counter readings both to guide our
scheduling policies and to feed the temperature simulator used for evaluation, our
methodology is still viable for evaluating the benefits of our policies. Our goal is
not to prove that unit utilization and power consumption can be inferred from perfor-
mance counters (this has already been done before [BWWK03, IM03]), but to show
that if unit utilization is known, this knowledge can be used to influence temperature
distribution.

Since we had no floorplan for the Pentium 4 Xeon Gallatin processor at our dis-
posal, we performed temperature simulation based on the floorplan of a Pentium 4
Northwood processor, which has the same feature size and also the same amount of
L1, L2, and trace cache, but lacks the L3 cache of the Gallatin processor. Since the
power consumption of the L3 cache is moderate in relation to the area the cache oc-
cupies, the L3 cache is no hotspot and can therefore legitimately be neglected.

For evaluation, we sampled unit utilization at millisecond granularity. To limit the
amount of data and to shorten the time required for the offline temperature simulations
while at the same time capturing long-term behavior, we only consider every 100th
second of the runtime for our evaluation. Thus, during a test run, the programs ran 99
seconds unobserved, then, during the following second, we took 1000 samples, let the
program run for 99 seconds again, and so forth.

4.6.2 Overhead of activity vectors

We evaluated the overhead of our implementation of activity vectors. As already men-
tioned, the method of Isci and Martonosi for determining unit utilization requires mul-
tiplexing counters, i.e., saving and re-loading counter values periodically. Since for
SMT chips, in addition, all counters have to be multiplexed between the two siblings,
we expect a non-negligible overhead: While we measured an overhead of 140 cycles
for reading a performance monitoring counter via the optimized ����
 instruction,
re-writing a configuration register via the ����� instruction, which is necessary for
multiplexing, amounts to 950 cycles on our test system.

We measured the total number of cycles required for determining unit utilization
(reading performance counters, calculating utilization, and re-configuring the multi-
plexed counters) by reading the time stamp counter at the beginning and at the end of
our activity monitor routine. The overhead amounts to 33,000 cycles, or 1.5% of the
cycles of a timer tick.

We also measured the resulting overhead for applications by executing the SPEC
CPU benchmarks with activity vectors disabled and again with activity vectors en-
abled. Averaged over all benchmarks, we measured an increase in runtime of 1.4%
when we enabled activity vectors. When we disabled multiplexing and just read the
performance monitoring counters every millisecond, this increase was nearly halved
to 0.8%. This strongly suggests that processors featuring a more suitable set of per-
formance monitoring counters would reduce the overhead for characterizing tasks.

56

4.6 Evaluation

Furthermore, without multiplexing, there would be no need to sample counters ev-
ery millisecond, like we do in our current implementation; sampling at every task
switch would be sufficient. We measured a modified implementation that only sam-
ples counters at the frequency of task switches; here we observed no measurable in-
crease in application runtime introduced by activity vectors. This indicates that with
adequate hardware support, task characterization is possible “for free”.

4.6.3 Runqueue sorting

To demonstrate the benefits of runqueue sorting, we selected two SPEC benchmarks
that use complementary resources. ����� uses mainly the integer units (integer ALUs
and integer register file) as well as the L1 cache. When ����� is running alone, the
hottest unit on the chip is the integer register file. ���� uses mainly the floating point
units; when ���� is running, the hottest unit is the floating point register file.

We started three instances of ����� and three instances of ���� simultaneously.
Since we wanted the tasks to run on one CPU together, we disabled all CPUs of the
system but one and also disabled simultaneous multithreading.

Figure 4.6 shows the effect of runqueue sorting. The figure depicts the course of
temperature over time for the floating point register file, which reached the highest
temperature of all units during the test.

Without runqueue sorting, the order in which the tasks are scheduled is arbitrary. In
the most unfavorable situation, which is shown it the top half of the figure, three time-
slices in a row are assigned to the three instances of ����, followed by three timeslices
assigned to �����. Whenever an instance of ���� is running, the temperature of the
floating point registers increases, whereas whenever ����� is running, the temperature
of the floating point registers decreases. Since a timeslice is 100ms long, temperature
rises/decreases for 300ms, respectively.

With runqueue sorting enabled, the scheduler arranges the tasks in a way that when-
ever an instance of ���� has been executed for one timeslice, an instance of �����
gets scheduled during the next timeslice. The effect of this can be seen in the bottom
half of the figure: The time during which the floating point register file’s temperature
increases is one timeslice at most, since after this timeslice, the scheduler selects a
task that does not utilize the floating point units. Therefore, the temperature of the
register file does not rise as high as it does without runqueue sorting. The effect on
the other units’ temperatures is similar.

The benefits of runqueue sorting become visible in a histogram that displays the
frequency of occurrence for the temperature values observed during the test run. Fig-
ure 4.7 shows histograms of the temperature of the floating point registers.

Without sorting (top histogram in Figure 4.7), two major spikes appear in the his-
togram, one around 60◦C, and one around 82◦C. When unit utilization is constant for
a longer period of time, as is the case when many tasks with similar characteristics
are scheduled successively, the units reach a steady state temperature (also compare

57

4 Temperature-Aware Scheduling

0 1000 2000 3000 4000
time [ms]

60

65

70

75

80

85

te
m

pe
ra

tu
re

 [°
C

]

0 1000 2000 3000 4000
time [ms]

60

65

70

75

80

85

te
m

pe
ra

tu
re

 [°
C

]

Figure 4.6: Temperature of the floating point registers with (bottom) and without
(top) runqueue sorting

58

4.6 Evaluation

50 60 70 80
temperature [°C]

oc
cu

rr
en

ce

no sorting

50 60 70 80
temperature [°C]

oc
cu

rr
en

ce

simple sorting

50 60 70 80
temperature [°C]

oc
cu

rr
en

ce

enhanced sorting

Figure 4.7: Temperature of floating point registers (hmmer + namd)

59

4 Temperature-Aware Scheduling

Figure 4.8: Temperature of floating point registers (hmmer + namd, combination
of the histograms from Figure 4.7)

Figure 2.2). The spike at 60◦C results from the floating point registers being inactive
during a longer period of time, whereas the spike at 82◦C results from the registers
being active for a longer period of time. When runqueue sorting is enabled (bottom
histograms in Figure 4.7), the spikes are diminished, and temperature is biased towards
medium temperatures.

The effects of runqueue sorting on temperature become most apparent when over-
laying the three histograms, as can be seen in Figure 4.8. To improve readability,
the figure lacks the bars of the histograms and displays only the tops. As can be
seen, runqueue sorting biases temperature towards the middle of the range, which in
particular leads to high temperatures occurring less frequently, and also reduces the
observed maximum temperature. The figure also shows that enhanced sorting guided
by a thermal model is superior to simple sorting guided only by unit utilization.

In our experiment, without runqueue sorting, the temperature of the floating point
register file was greater than 80◦C for 25% of the time. With simple sorting, this
percentage dropped to 9% and with enhanced sorting further to 6%.

For other combinations of tasks, runqueue sorting yields similar effects: If the tasks
possess different characteristics regarding the utilization of certain chip units, the tem-
peratures of these units get biased towards medium temperature ranges by runqueue
sorting. Figure 4.9 shows histograms of the temperature for the data translation look-
aside buffer (DTLB), which is the hottest unit when �
���, a memory intensive bench-

60

4.6 Evaluation

Figure 4.9: Temperature of DTLB (gobmk + leslie3d)

mark, is running in combination with ��������, which is also memory intensive, but
does not stress the DTLB as much as �
��� does. Although the overall temperature
of the DTLB is lower than that of the floating point registers in the previous test, a bias
towards the medium range can also be observed. Since �
��� and �������� both use
the DTLB to some degree, the spikes in the histogram are not as prominent as in the
previous test.

For combinations of tasks that have similar characteristics, runqueue sorting is not
beneficial. Figure 4.10 shows histograms for the temperature of the floating point
registers when running
��
	��� in combination with ���
. Both benchmarks show
high utilization of the floating point registers, although not as high as with ����.
Therefore, the histogram shows only one spike around 70◦C. Since the tasks have
similar characteristics, runqueue sorting cannot reduce the temperature of the floating
point registers and the histogram looks similar with sorting activated.

We also measured the overhead introduced by sorting. We compared our imple-
mentation of runqueue sorting to Linux’s original scheduling policy. The runtime of
the benchmarks increased by 1.3% with simple sorting and by 1.5% with enhanced
sorting.

61

4 Temperature-Aware Scheduling

Figure 4.10: Temperature of floating point registers (calculix + milc)

4.6.4 Activity balancing

We tested activity balancing by running the same workload as described at the begin-
ning of the preceding Section, but on all eight processors of the system (simultaneous
multithreading disabled). Hence, we started 24 instances of each, ����� and ����,
which the load balancer distributed to the individual CPUs. To eliminate the possibil-
ity of buying the reduction of hotspots on one CPU with an aggravation on some other
CPU, we observed the temperature of all eight CPUs.

We performed two runs, one with activity balancing disabled and one with activity
balancing enabled. During both runs, we activated enhanced runqueue sorting. Since
runqueue sorting depends on runqueues consisting of tasks with different character-
istics, it is only beneficial if the load balancer distributes tasks to CPUs accordingly.
The default Linux load balancer, however, is oblivious of the tasks’ characteristics.

This becomes apparent in Figure 4.11, which displays histograms of the temper-
ature values accumulated from all eight processors. Without activity balancing, the
histogram looks similar to the one in the top of Figure 4.7, which resulted from a
test run with runqueue sorting disabled. Runqueues containing too many instances
of ���� are responsible for this behavior. Only when runqueue sorting and activity
balancing are combined, the desired effect eventuates.

Migrating a task to another processor introduces an overhead, since the task needs
to warm up the cache of the new processor. However, activity balancing triggers task

62

4.6 Evaluation

Figure 4.11: Temperature of floating point registers (8 processors)

migrations only when new tasks start or unblock, when existing tasks terminate or
block, or when the characteristics of the running tasks change significantly. Other-
wise, once the tasks are distributed to the CPUs according to their unit utilization, no
further migrations are necessary. Thus, we measured only 0.3% overhead introduced
by activity balancing.

4.6.5 Activity unbalancing

To test activity unbalancing, we enabled only one CPU in the system, but activated
the processor’s Hyper-Threading capability, which resulted in a system consisting of
two logical CPUs. We ran one test with runqueue unbalancing enabled and one test
with runqueue unbalancing disabled. Both times, we enabled runqueue sorting and
ran four instances of ����� and ����, respectively.

It is remarkable that with Hyper-Threading enabled, the histogram (Figure 4.12)
looks completely different than with Hyper-Threading disabled. Instead of two spikes,
one in the low and one in the high temperature ranges (compare Figure 4.8), with
Hyper-Threading, the temperatures in the middle range dominate.

The reason for this becomes evident when looking at the course of temperature.
Power consumption and temperature of the chip units are no longer determined by the
order in which tasks are scheduled by one scheduler, but by the scheduling decisions
of two independent schedulers. Figure 4.13 shows a typical section of the course

63

4 Temperature-Aware Scheduling

Figure 4.12: Temperature of floating point registers (Hyper-Threading)

of the floating point registers’ temperature over time. Since task switches happen
independently for both logical processors, this leads to situation in which none of the
processors uses the unit as shown at point (1) in the figure, both processors use the
unit (2), or one processor uses the unit and the other does not (3) and (4).

When one logical processor uses a unit and the other does not, the unit’s temperature
is in the middle range. Combined with the fact that it takes some time for temperature
to increase or decrease after both processors start using or not using a unit at the same
time, this yields the bias towards medium-range temperatures that can be observed in
the histogram (Figure 4.12). Yet, temperatures in the lower and the higher ranges still
occur.

Provided that the set of runnable task allows it, activity unbalancing ensures that
tasks using complementary resources are always scheduled together on sibling pro-
cessors. This avoids temperature spikes to the upper and lower ranges (like points
(1) and (2) in Figure 4.13) and ensures that a situation as shown at points (3) and (4)
dominates, where temperature is in the middle range.

The histogram in Figure 4.12 reflects this: With activity unbalancing enabled, tem-
perature values are completely constrained to the middle range. This shows the bene-
fits of activity unbalancing. Without unbalancing, the temperature of the floating point
registers is higher than 80◦C during 17.7% of the time. Activity unbalancing achieves
that the temperature of the floating point register never exceeds 80◦C in this scenario,
so our policy succeeds in avoiding hotspots.

64

4.6 Evaluation

Figure 4.13: Course of temperature for floating point registers (Hyper-
Threading)

Activity unbalancing is also advantageous in another respect: Running tasks that
use complementary resources together also makes sure that the tasks running simul-
taneously on sibling processors obstruct each other less, since they do not compete
as much for resources as would be the case when running tasks with similar charac-
teristics together. This is the same principle symbiotic job scheduling [ST00] takes
advantage of. Less resource contention means higher throughput; in our scenario, the
runtime of the benchmarks decreased by 3.6% when activity unbalancing was enabled.

We verified that this is generally the case by test runs using other SPEC benchmarks:
With one physical processor and Hyper-Threading activated, we ran six benchmarks
simultaneously. The benchmarks were chosen at random out of the SPEC CPU2006
suite. Whenever one benchmark terminated, we started another benchmark, also se-
lected at random, so there were always six benchmarks running simultaneously, but in
arbitrary combinations.

We measured the runtimes of the benchmarks with activity unbalancing disabled
and also recorded the order in which the benchmarks were started. After the first run,
we enabled activity unbalancing and replayed the same sequence of benchmarks as
before. A comparison of the runtimes showed an improvement (reduction of runtime)
of 3.3%.

Improved performance by reduced resource contention comes as a byproduct of
temperature-aware scheduling on multithreaded processors, since both goals, avoid-

65

4 Temperature-Aware Scheduling

setup overhead [%] maximum temperature fp regs [◦C]
100ms 0.0 84.7
100ms, sorting 1.1 82.7
50ms 0.2 83.5
50ms, sorting 1.1 79.8
16ms 1.9 79.0
16ms, sorting 2.5 76.5

Table 4.1: Effects of different timeslice lengths in combination with runqueue
sorting

ing hotspots and reducing contention for shared resources, are achieved by scheduling
tasks using complementary resources together. We will discuss the avoidance of re-
source contention by vector-based scheduling in greater detail in Chapter 5.

4.6.6 Shortening timeslices

As mentioned in Section 4.3, Michaud and Sazeides [MS06] proposes using shorter
timeslices to avoid thermal emergencies. The reason behind this approach is that with
shorter timeslices, tasks utilizing different units on the chip are switched in quicker
succession, so the units do not have enough time to heat up. On the other hand, shorter
timeslices means higher task switching overhead caused by saving and restoring task
context, switching the address space (which on some architectures means invalidating
the TLB or virtually indexed caches), and cache misses caused by tasks evicting each
other’s data in the cache.

We argue that it is beneficial to shorten timeslices and at the same time apply
temperature-aware scheduling. Even when timeslices are short, there is still the possi-
bility that tasks with similar characteristics are scheduled successively, so scheduling
can yield an improvement regardless of the timeslice length. Our measurements con-
firm that shorter timeslices and vector-based scheduling work best in combination.

Figure 4.14 depicts the temperature distribution for the scenario with three instances
of ����� and three instances of ���� on one processor for different timeslice lengths
and, optionally, with enhanced runqueue sorting. A comparison shows that 100ms
timeslices in combination with runqueue sorting leads to lower maximum tempera-
tures than 50ms timeslices without sorting. Also, 50ms and sorting is almost as good
as 16ms without sorting. The most important observation, however, is that for any
given timeslice length, runqueue sorting yields a considerable improvement.

Shortening timeslices comes with an overhead, since task switches introduce a
penalty. The exact overhead introduced by shortening timeslices depends on the ar-

66

4.6 Evaluation

Figure 4.14: Temperature of the floating point registers with different timeslice
lengths and scheduling policies

67

4 Temperature-Aware Scheduling

chitecture, which determines the cost of reloading task state, but also on the tasks
themselves. For example, two tasks that both occupy large portions of the cache need
to reload their working set into the cache on each task switch, whereas tasks occupying
only a small portion of the cache are likely to retain their working set over the execu-
tion of the other task. The architecture determines the immediate cost for switching
tasks (reloading task state), but also the size of the caches.

In our example scenario, the overhead of shortening timeslices is rather modest,
since both ����� and ���� are compute-bound applications (cf. Chapter 5) with rel-
atively small working sets. Table 4.1 shows the overhead and the benefits of different
timeslice lengths and, optionally, runqueue sorting in comparison to standard Linux
scheduling with 100ms timeslices. Two observations can be made: Firstly, reducing
the timeslice length to 50ms causes only little overhead for this scenario, but has a
noticeable effect on temperature. Secondly, further reducing the timeslice length to
16ms causes nearly twice the overhead of combining 50ms timeslices and runqueue
sorting, while both setups lead to a comparable temperature distribution. Therefore,
we suggest to use moderately short timeslices in combination with runqueue sorting.

Depending on the scenario, shortening timeslices can have a considerably bigger
performance impact that in our example scenario. For demonstrating this, we con-
structed a worst-case microbenchmark that generates as much memory references as
possible, and executed each SPEC benchmark together with the microbenchmark on
one processor, using the standard Linux scheduler and timeslices of 100ms and then of
16ms. Linux schedules the tasks alternatingly for one timeslice each; thus, whenever
the SPEC benchmark is scheduled for a timeslice, it needs to reload its working set
into the cache, since the microbenchmark that has run during the previous timeslice
has overwritten the cache.

In this setup, the runtime of ����� increases by 3.3% when timeslices are shortened
from 100ms to 16ms; for ���� the increase is 2.4%. Other SPEC benchmarks, like
the memory-bound ��� are affected much more; ���’s runtime increases by 40% if
timeslices are shortened from 100ms to 16ms. The reason for this tremendous increase
is the cache architecture of our test system. Besides the L1, L2, and L3 cache of the
Gallatin Processor, the IBM x440 also features a L4 system cache (XceL4 Server
Accelerator Cache [HWW02]), which benefits applications like ��� that cause many
L3 cache misses. Shorter timeslices lead to the caches being overwritten and the
working sets of the tasks reloaded more often, which is especially costly for the L4
cache, owing to its large size of 64MiB.

We conducted the same test on a desktop system with a comparable Intel Northwood
processor that just features L1 and L2 cache. Here, the ��� benchmark runs only 0.7%
slower with 16ms timeslices. Since the desktop system lacks the deeper cache levels
and the working set of ��� does not fit into the L1 and L2 cache, overwriting the
caches more often has only little impact. The maximum slowdown we observed on
the desktop machine for SPEC benchmarks was 3.5% for the �
���� benchmark.

68

4.6 Evaluation

This worst-case scenario shows that the cost of reduced timeslice lengths is task
and architecture dependent, and a general comparison of the cost of vector-based,
temperature aware scheduling and shortening timeslices cannot be made. The decision
about the optimal timeslice length depends on the system concerned, the workload
that is running, as well as on thermal and performance constraints. Determining the
optimal timeslice length for a given setup is beyond the scope of this thesis.

However, runqueue sorting and reducing timeslice lengths are orthogonal mecha-
nisms for balancing chip temperature. Since runqueue sorting causes only little over-
head, it is beneficial to apply it regardless of the chosen timeslice length to reduce tem-
perature further. In addition, short timeslices are only beneficial if tasks with different
characteristics are assigned to a processor, which is accomplished by mechanisms like
activity balancing.

4.6.7 Analysis

Our experiments show that information about the utilization of chip units, provided
by activity vectors, can be used successfully for temperature-aware scheduling. Run-
queue sorting improves the temperature distribution on the chip and reduces hotspots.
Activity balancing creates the prerequisites for runqueue sorting in SMP systems. For
multithreaded processors, activity unbalancing reduces hotspots and, in addition, in-
creases performance.

The overhead introduced by vector-based scheduling has to be compared to the
overhead that results when throttling has to be engaged to prevent overheating. The
overhead introduced by throttling depends on the actual throttling mechanism, and on
the trip temperature at which throttling starts. Both, mechanisms and trip tempera-
tures, vary between different CPU types.

For instance, Intel’s thermal monitor 1 feature periodically disables the clock signal,
effectively reducing the processor’s frequency by 12.5% to 87.5%. The thermal mon-
itor 2 feature uses frequency scaling for reducing power and temperature; the penalty
introduced by thermal monitor 2 depends on the frequency settings the hardware of-
fers. In both cases, throttling results in a performance penalty that is considerably
higher than the penalty introduced by our vector-based scheduling policies, which we
measured to be 1.8% at most (1.5% introduced by runqueue sorting and an additional
0.3% introduced by activity balancing). This holds true even if, in addition, the cost of
maintaining activity vectors by using performance monitoring counters not designed
for this specific purpose is taken into account (1.4%, see Section 4.6.2).

As an example, we showed in Section 4.6.3 that for a scenario with tasks using
complementary resources, runqueue sorting manages to reduce the percentage of time
during which the hottest of the processor’s units operates above 80◦C from 25% to
6%. If the processor is not supposed to operate at more than 80◦C, throttling has to be
used to keep the temperature below 80◦C, at the price of prolonged execution times. If
we assume the CPU processes a task at half the original speed when throttled, without

69

4 Temperature-Aware Scheduling

runqueue sorting, 25% of the instructions have to be executed at half speed, which
doubles the time required to process these instructions and increases total execution
time by 25%. With runqueue sorting, the total execution time is only increased by 6%
because of throttling, plus the additional 1.5% introduced by the overhead runqueue
sorting causes. A program running 100s on an unthrottled processor thus runs 125s
without runqueue sorting and 107.6s with runqueue sorting, which is a speedup of
14%. Even if a throttled processor is running at 75% maximum speed instead of 50%,
the speedup is still 7%.

Depending on the processor, 80◦C, which we have used as a reference temperature
for illustrating the benefits of our approach, need not necessarily be a critical temper-
ature. In the system we used, we were therefore not able to increase performance by
decreasing temperature, since even without our improved temperature distribution, no
throttling was engaged. Yet, with increasing power and integration densities, thermal
problems can be expected to aggravate in the future. In addition, the lifetime and the
reliability of a processor chip decrease with temperature. Increasing temperature by
10 to 15 degrees halves the lifetime of an electrical circuit [VWWL00,YC01]. There-
fore, reducing hotspots is always beneficial.

Besides avoiding hotspots, our policies also have an impact on thermal cycling, i.e.,
the variation of chip temperature over time. As can be seen in Figure 4.6, runqueue
sorting increases the frequency, but reduces the amplitude of the temperature swing.

Thermal cycling reduces chip lifetime by causing fatigue. The reason is that differ-
ent materials of the die, the package, and the die interface show different degrees of
thermal expansion. However, thermal cycling has only been investigated in the case
of large-scale temperature cycles that result from powering the system on and off or
from entering and exiting low-power states, and affect the entire package [JED08].

The effect of small-range, localized temperature cycles as those introduced by
switching between tasks of different characteristics has not been well studied yet
[SABR04], so it remains unclear whether increasing the frequency but reducing the
amplitude of small thermal cycles aggravates or mitigates fatigue. Investigating the
effects of thermal cycling is beyond the scope of this thesis, but, ultimately, should
be considered when techniques like runqueue sorting are applied with the goal of
increasing reliability.

4.7 Summary

The tasks running on a processor chip determine the chip’s temperature distribution
and the location of hotspots. This chapter has addressed the influence the operating
system can take on the temperature distribution by scheduling tasks in a suitable man-
ner. We have shown that activity vectors are a valuable input for a scheduler that aims
at reducing hotspots. We have proposed three scheduling strategies that make use of
activity vectors:

70

4.7 Summary

Runqueue sorting arranges the tasks in a processor’s runqueue in a way that tasks us-
ing complementary resources are scheduled successively. This reduces thermal stress,
since hot units can cool down when a task not using the units is scheduled. Activity
balancing makes sure that runqueue sorting can be applied effectively in multiproces-
sor systems: By distributing tasks with similar characteristics over all processors of a
system, we make sure that the composition of each runqueue is suitable for runqueue
sorting. Activity unbalancing, in contrast, concentrates tasks with similar characteris-
tics in the same runqueue. Activity unbalancing is beneficial if applied between SMT
siblings, ensuring that tasks with different characteristics are running simultaneously,
which reduces thermal stress and at the same time increases throughput.

Our experiments show that vector-based temperature-aware scheduling succeeds
at reducing hotspots. Our scheduling policies considerably reduce the percentage of
time during which the processor operates in high temperature ranges. This avoids
thermal emergencies and alleviates the need for thermal throttling. The overhead of
vector-based scheduling is minimal; in case of multithreaded processors, vector-based
scheduling even has negative overhead (increased throughput).

71

4 Temperature-Aware Scheduling

72

5 Resource-conscious Scheduling for
Energy Efficiency

5.1 Introduction

The energy efficiency of a processor chip is influenced by its mode of operation (i.e.,
the operation frequency and voltage), the access patterns to resources like functional
units, caches, or memory, and the contention for shared resources. The latter arises
when a chip encompasses multiple execution contexts, as is the case with today’s
SMT and CMP processors. Resource utilization is a characteristic of the individual
application, and the degree of contention for resources shared between the execution
contexts depends on the applications running in parallel. Since it is the role of the
scheduler to decide which applications to run at what time and in which combination,
scheduling crucial for energy efficiency.

The design of most scheduling algorithms employed in today’s operating systems
stems from a time when multiprocessor systems were assembled of physically differ-
ent single-core chips (traditional SMP systems). Hence, these schedulers do not take
the peculiarities into account that arise when multiple threads are executed in parallel
by one physical chip, as is the case with today’s SMT and CMP hardware.

In case of an SMT chip, multiple logical threads of execution share the resources
of one physical core. To a lesser extent, this is also the case for CMP chips, where
memory access infrastructures and, in some cases, caches are shared by multiple cores
residing on a chip. In most multiprocessor operating systems, scheduling decisions
happen independently for each processor, that is, on every processor, a local scheduler
decides which task to run at what time. Therefore, the combination of tasks running
at a time is arbitrary, and situations in which several tasks utilizing the same resources
are running in parallel are not precluded.

Contention for shared resources leads to stall cycles, i.e., pauses execution while
the processor is waiting for a resource to become available. This reduces performance
and, in addition, decreases energy efficiency, since power is dissipated without making
progress.

Power management features such as frequency and voltage scaling create further
interdependencies between the hardware threads of SMT and CMP chips, which need
also be taken into account for achieving optimal performance and energy efficiency.
On SMT chips, all logical processors share the frequency selected for the physical

73

5 Resource-conscious Scheduling for Energy Efficiency

Figure 5.1: Two mutually exclusive ways for achieving energy efficiency

processor. In the case of CMP chips, it is possible to design hardware that supports
setting a separate frequency and voltage for each core. However, commodity hardware
often lacks this feature, since allowing multiple frequencies and especially multiple
voltages at a time introduces additional hardware complexity [HM07, KGWB08].

The optimal frequency at which the processor can execute a task most efficiently
in terms of runtime and energy depends on the task’s characteristics, in particular on
the frequency of memory accesses [WB02, CSP04, KDG+04]. The performance of
memory-bound tasks depends on the speed of memory rather than on the processor
speed; therefore, slowing down the processor by frequency scaling does not affect the
runtime of such tasks as much as is the case for compute-bound tasks, whose perfor-
mance is strongly correlated to processor speed. As a consequence, memory-bound
tasks are most efficiently executed at lower processor frequencies and voltages, since
a moderate increase in runtime and a reduced processor power consumption result in
overall energy savings. Compute-bound tasks, on the other hand, are best executed at
high frequencies, since the prolonged runtime introduced by lower frequencies would
negate the power savings of frequency and voltage scaling.

If we consider both aspects, resource contention and frequency selection, the central
question arises whether it is advantageous to run tasks with similar characteristics to-
gether in order to be able to run a SMT or CMP chip at the corresponding optimal fre-
quency, or if tasks utilizing mutually different resources should be scheduled together
in order to avoid contention (Figure 5.1). As an example, on a CMP, one possibility
would be to schedule several memory-bound tasks at a time, which run most effi-
ciently at a low frequency, and then to schedule several compute-bound tasks, which
run most efficiently at a high frequency. On the other hand, with shared resources such
as caches and memory interfaces, memory-bound tasks running together are likely to

74

5.2 Related Work

suffer from resource contention [MM07], so it might be more advantageous to sched-
ule memory-bound tasks together with compute-bound tasks.

Taking an Intel Core2 CMP chip as example, we analyze what is the optimal way
to co-schedule tasks, i.e., which tasks should be selected to run in parallel on the
execution contexts of the chip. In our analysis, we consider the criteria of resource
contention and frequency selection. We find that in order to optimize the product of
runtime and expended energy (energy delay product, EDP), the main goal must be
to avoid contention by combining tasks with different characteristics; co-scheduling
tasks that run best at a common optimum frequency does not pay off, since the de-
crease in energy efficiency introduced by resource contention cannot be offset by fre-
quency scaling. Only if nothing but memory-bound tasks are available and contention
cannot be avoided, it is beneficial to apply frequency scaling.

Activity vectors as introduced in Chapter 3 provide information about task charac-
teristics. According to our analysis, we propose scheduling policies that make use of
this information to co-schedule tasks with different characteristics in order to improve
energy efficiency [MB08a].

The remainder of this chapter is structured as follows: In Section 5.2, we discuss
related work in the area of contention-aware scheduling and in the area of optimal fre-
quency selection. Section 5.3 presents our analysis of the effects of co-scheduling on
resource contention and frequency selection. We describe the application of activity
vectors to multicore scheduling in Section 5.4; the design of the scheduling policies
is discussed in Section 5.5. To take advantage of frequency and voltage scaling, we
propose to supplement our policies with a heuristic that lowers the frequency as a fall-
back solution when nothing but memory-bound tasks are running (Section 5.6). We
implemented our proposed policies for Linux; Section 5.7 describes the implementa-
tion. The evaluation of our scheduling policies presented in Section 5.8 reveals that
resource-conscious scheduling manages to reduce EDP considerably.

5.2 Related Work

Our work investigates the cross-effects of tasks running in parallel on one SMT or
CMP chip. We address the problems of resource contention and optimal frequency
selection with the goal of achieving energy efficiency by co-scheduling tasks based on
their characteristics.

The concept and the term of co-scheduling have been introduced by Ouster-
hout [Ous82] several decades ago. The aim of co-scheduling is to schedule related
threads of execution at the same time. Relation was originally defined by communica-
tion [Ous82, SW95] or synchronization [FR92] between threads. In the past, several
approaches have considered co-scheduling to reduce contention for shared proces-
sor resources such as the functional units of SMT processors, or cache and memory
bandwidth on multicore processors.

75

5 Resource-conscious Scheduling for Energy Efficiency

While there has been research dedicated to resource contention in SMP, SMT, and
CMP systems as well as research in the area of selecting an optimal frequency for
a specific workload, resource contention and frequency selection have hardly been
considered in combination for improving energy efficiency.

Related work can be categorized into approaches addressing contention for shared
resources of SMT chips, approaches addressing memory contention or cache con-
tention in the context of SMP, SMT, and CMP systems, and approaches that explore
the benefits of shared resources. Most approaches strive at reducing resource con-
tention with the goal of improving performance, while the aspect of energy efficiency
is not considered. Apart from this, a number of approaches are dedicated to the prob-
lem of frequency selection.

5.2.1 Contention for SMT resources

Snavely and Tullsen [ST00] combines tasks on a multithreaded processor in a way
that results in maximum throughput, based on the rationale that the degree of resource
contention depends on the combination of tasks executed in parallel. In contrast to
our approach, the optimal combination of tasks is not inferred directly from the tasks’
characteristics, but determined empirically by trying out different combinations.

Fedorova et al. [FSNS04] shows that the performance of SMT chips can be im-
proved by co-scheduling high-IPC (instructions per cycle) tasks with low-IPC tasks.
This policy is based on the idea that low-IPC tasks are often memory-bound and do
not stress the other shared resources, while the opposite is the case for high-IPC tasks.
However, as the authors state, IPC is not suitable to distinguish exactly which re-
sources high-IPC tasks utilize. In addition, Fedorova et al. uses simulation instead of
implementing the proposed policies in a real operating system.

Nakajima and Pallipadi [NP02] strives to minimize contention in SMT systems by
evaluating performance monitoring counter readings, and in this respect constitutes
the approach most closely related to vector-based scheduling. Nakajima and Pallipadi
defines certain metrics that model the utilization of critical resources such as the in-
teger unit, the floating point unit, and the L2 cache. However, these metrics are not
seen with respect to a processor-specific maximum, as in our approach, but rather as
an absolute number of accesses per time, which the proposed algorithm tries to bal-
ance across physical CPUs. Also, Nakajima and Pallipadi lets the kernel only provide
the metrics and leaves the distribution of tasks to CPUs to userspace programs. This,
however, does not allow to control the set of tasks executed in parallel if there are
more tasks than CPUs, since in a time-sharing environment, the kernel-level sched-
uler determines the sequence of task execution on each CPU.

Parekh et al. [PELL00] and El-Moursy et al. [EMGAD06] characterize tasks using
performance monitoring counters and, by simulation, study several scheduling algo-
rithms that strive at improving the performance of an SMT processor. The approaches
use metrics that directly or indirectly represent resource utilization and evaluate poli-

76

5.2 Related Work

cies that avoid contention for shared resources by co-scheduling. The goal lies on op-
timizing performance-related metrics like IPC. In contrast to our approach, Parekh et
al. proposes policies that improve performance at the expense of fairness by schedul-
ing tasks that do not cause contention and yield the best performance, while penalizing
unsuitable tasks by scheduling them less frequently. El-Moursy et al. favors a policy
guided by the ratio between ready and in-flight instructions, a metric that is not ob-
tainable using the performance monitoring counters deployed in today’s processors.

Bulpin and Pratt [BP05] investigates the correlation between different performance
counter metrics and task performance on an SMT processor. From the metrics, the
most promising combination of tasks is inferred. The difference to our work is that
the performance metrics are used to characterize combinations of tasks, not individual
tasks. However, maintaining metrics for task combinations scales poorly with the
total number of tasks, which can be a problem for large systems with many execution
contexts and tasks.

McGregor et al. [MAN05] proposes scheduling based on resource utilization in
multithreaded SMP systems. Similar to our proposed policy for avoiding contention,
the approach pairs threads with complementary characteristics to run in parallel on
a chip. In contrast to us, McGregor et al. uses a two-phase approach to enable co-
scheduling: The first phase distributes tasks to physical processors in a way that bal-
ances memory bandwidth utilization, whereas the second phase distributes the tasks
assigned to a physical processor to its logical processors based on either memory band-
width, cache misses, or stall cycles. In addition, task characterization and scheduling
is performed by a user-level processor manager instead of in the kernel.

5.2.2 Cache contention

Most of the research on avoiding resource contention on multicore chips has concen-
trated on cache as the constraining resource. Our experiments with the recent SPEC
CPU 2006 benchmarks, however, suggest that contention for memory bandwidth is
becoming more important than cache contention.

Siddha et. al. [SPM07] investigates the effects of placing tasks on cores sharing or
not sharing L2 cache and shows that the performance impact depends on the degree
of data sharing between the tasks and on the use each task can make of the cache.

Jiang et al. [JSCT08] analyzes the problem of distributing a set of tasks to a set of
multicore chips and proves that the problem of finding an assignment of tasks to chips
that yields minimal performance degradation is NP-complete for chips with more than
two cores. Based on the assumption that cache is the single resource affected by con-
tention, and that the performance degradation that results from co-scheduling a par-
ticular set of tasks is known in advance, the authors propose heuristic algorithms that
come close to the optimal distribution. However, the approach relies on knowledge
that typically is not available in real systems, and in addition does not consider the
possibility of having more tasks than execution contexts.

77

5 Resource-conscious Scheduling for Energy Efficiency

Suh et al. [SDR02] proposes policies for co-scheduling tasks based on cache
hit/miss counter information and on cache models. Simulation is used for evalua-
tion, as the proposed policy would need additional counters not available in today’s
hardware.

Fedorova [Fed06] investigates scheduling policies that are aware of resource con-
tention in CMP systems and aim at improving performance, fairness and predictability.
The main difference to our approach is that L2 cache is considered the most critical re-
source, and that co-scheduling is deliberately not performed. Instead, the algorithms
vary the number of concurrently executed tasks and the time quanta allotted to the
individual tasks.

Chandra et al. [CGKS05] and Fedorova et al. [FSSN05] propose models for pre-
dicting the L2 cache miss rate that results from a combination of tasks, and suggest
to use these models for co-scheduling tasks whose combination yields low miss-rates.
However, the proposed models are computationally expensive, and obtaining the nec-
essary input data for the models requires profiling of the tasks, which must either be
done off-line or by running each task in isolation. This is prohibitive in a production
system.

Banikazemi et al. [BPA08] uses the metrics of cycles per instruction, L1 and L2
cache miss ratios, L2 prefetch count, and floating point instruction count to character-
ize tasks. A user-level meta-scheduler employs a cache model to predict the impact
of co-scheduling tasks onto cores sharing L2 cache based on the metrics, and sets the
CPU affinity of the tasks accordingly.

Anderson and Calandrino [ACD06] proposes strategies for co-scheduling real-time
tasks on a CMP that reduce contention for a shared L2 cache.

Zhao et al. [ZII+07] proposes to introduce new hardware monitoring features that
provide the operating system with detailed information about the cache occupancy,
cache interference, and cache sharing of tasks running on a CMP. The authors suggest
to use this information for co-scheduling tasks with complementary demands for cache
space or tasks that share common data in the cache, and demonstrate that this approach
can yield significant performance improvements. Unfortunately, features like the ones
proposed are not present in today’s hardware.

5.2.3 Memory contention

Scheduling for reducing memory contention has been investigated in the context of
multicore and traditional SMP systems. Moscibroda and Mutlu [MM07] investigates
to what extent memory-intensive applications running in parallel on multicore proces-
sors slow down each other. Using an Intel Pentium D dual-core system, the authors
show that an application’s execution time can be increased by a factor of up to 2.9 if
an application showing an inauspicious memory access pattern is running on a core
of the same chip. The authors even argue that this interference could be abused for
denial-of-service attacks.

78

5.2 Related Work

Bellosa [Bel97b] identifies memory contention as a problem in multiprocessor real-
time systems and proposes to throttle non-real-time tasks in order to guarantee mem-
ory bandwidth for real-time tasks.

Zhang et al. [ZDFS07] proposes to introduce performance metrics as a resource in
operating systems and to use them for scheduling with the goal of avoiding resource
contention. In particular, the approach evaluates using memory bus utilization as a
metric to avoid memory bus contention in SMP systems and achieves significant im-
provements over resource-oblivious scheduling and scheduling guided by the metric
of IPC.

Kondo et al. [KSN07] addresses memory bus contention in multicore processors.
In contrast to our work, the approach assumes that separate frequencies can be chosen
for the individual cores and tries to counteract the unfairness introduced by memory
contention by slowing down cores that utilize too much memory bandwidth. Thus,
frequency scaling is not used to improve energy efficiency, but to increase fairness.
Similarly, Hedrich et al. [HII+09] proposes to throttle low-priority tasks in order to
limit their interference with high-priority tasks via memory and cache contention. The
authors suggest task characterization with performance monitoring counters as a pos-
sible way to infer whether there is resource contention between high and low-priority
tasks.

Koukis and Koziris [KK06] investigates contention for memory and network band-
width in the context of clusters of SMP systems. In particular, the authors devise a
scheduling policy that selects ready-to-run tasks based on the bandwidth left over by
already chosen tasks, which is similar to one of the policies we propose for avoiding
contention. In contrast to our work, the authors propose a coarse-grained user-lever
approach tailored to cluster systems. The approach is interesting in the respect that
it also considers the contribution other devices than the CPU make to memory con-
tention via DMA, which is beyond the scope of our work.

5.2.4 Profiting from shared resources

Some approaches aim at taking advantage of shared resources in order to improve
performance or energy efficiency. Bellosa [Bel97a] proposes to take advantage of
physically indexed caches that are shared between threads running in time-sharing
fashion on a single core. The approach arranges runqueues in a way that threads
accessing common data are scheduled in succession, so they can profit from the data
that was loaded into the cache by their predecessors.

Thekkath and Eggers [TE94] investigates the potential of co-locating threads that
access the same data onto SMT siblings in order to take advantage of the shared cache.
The paper comes to the conclusion that no performance benefits are to be achieved this
way, since for all applications studied, there is a high degree of locality for the shared
data within each thread, and the overall number of invalidations and misses that occur
when threads sharing data run on separate caches is low. Tam et al. [TAS07], on the

79

5 Resource-conscious Scheduling for Energy Efficiency

other hand, achieve speedups of 7% by clustering tasks that access common data on
processors sharing cache using a SMP machine that features both SMT and CMP.

Rajagopalan et al. [RLA07] proposes a scheduling framework for many-core (i.e.,
large-scale CMP) processors that allows the user to guide the scheduling of application
threads. The user specifies which threads are related, e.g., work on the same data or
communicate frequently. With this knowledge, the scheduler places those threads on
cores that share cache or are physically close to each other on the chip and thus have
low communication overhead. In addition, the user can specify whether respecting
data locality or balancing load over all cores is more important, and whether related
threads should be co-scheduled.

De Vuyst et al. [VKT06] argues that on a chip that features both CMP and SMT,
depending on the workload, it can be advantageous in terms of energy efficiency to
schedule several tasks onto the logical processors of a subset of cores, while leaving
other cores idle. This takes advantage of the fact that the logical processors of a core
share the same physical resources and thus consume less power than logical proces-
sors of physically distinct cores. As a consequence, the authors propose policies for
unbalanced scheduling. The approach is orthogonal to ours, since it assumes that there
are fewer tasks than execution contexts, while our policies are suitable for scenarios
with all contexts utilized.

On multicore processors with shared cache, variable portions of the cache can be
allocated to the individual cores. This allows reducing the cache size for tasks that do
not profit much from a larger cache either because of a small working set or bad data
locality, and to increase the amount of cache allocated to tasks that do profit from a
larger cache. Hsu et al. [HRIM06] investigates different policies for allocating cache
to the cores of a CMP and finds that the optimal policy depends on the combination
of applications that is running. While on today’s CMPs, the cache allocation policy
is implemented in hardware and fixed, Liu et al. [LSK04] proposes a shared L2 cache
that is divided into splits. The splits can be assigned to individual cores, allowing
the operating system to assign variable portions of cache to cores. Similarly, Rafique
et al. [RLT06] proposes hardware mechanisms that allow the operating system to set
quotas for cache utilization. This enables the operating system to allocate more cache
to applications that profit most from it, in exchange for reducing the cache space allo-
cated to applications whose performance does not significantly depend on cache.

5.2.5 Frequency selection

Previous research has investigated the problem of improving energy efficiency by
selecting a frequency according to task characteristics in the context of embed-
ded [WB02, CSP04, DR07, LCCF08], server [KGKR05], or cluster systems [HF05,
FPL+07] as well as for notebook and desktop systems [HF04, SLSPH09]. Memory-
bound tasks can be executed at lower CPU frequencies without significant slowdown,
since memory throughput and not CPU speed is the determining factor for their perfor-

80

5.2 Related Work

mance. In contrast, compute-bound tasks run more efficiently at higher frequencies,
since lower frequencies prolong their runtime and cause them to consume power for a
longer time, often negating the power savings gained by frequency scaling.

Many previous approaches that addressed frequency scaling for CMP systems were
based on the assumption that a separate frequency can be chosen for each core (per-
core DVFS, as opposed to per-chip DVFS).

Juang et al. [JWP+05] investigates per-core DVFS for multithreaded applications
and shows that the decisions for setting the frequencies of the individual cores need to
be coordinated in order to achieve an optimal EDP.

Isci et al. [IBC+06] investigates policies that aim at keeping a chip-wide power
budged by using coordinated frequency scaling on chip multiprocessors. The ap-
proach assumes that the frequency can be scaled individually for each core and tries
to optimize metrics like throughput or fairness while adhering to the power budget by
considering the characteristics of the tasks running on each core.

Kong et al. [KCCC08] optimizes the EDP or ED2 of applications running on a CMP
chip by profiling the applications off-line and setting the optimal frequency indepen-
dently on each core.

Rangan et al. [RWB09] assumes a chip whose cores run at different, but fixed fre-
quencies. The authors investigate the potential of migrating hardware threads between
cores of different frequencies instead of varying the frequencies of the cores. This
avoids the overhead of frequency changes. Rangan et al. finds that the approach is su-
perior to changing the cores’ frequencies, but assumes that migrations are performed
in hardware and on a timescale that is much smaller than operating system scheduling
intervals. Similarly, Kotla et al. [KDG+04] assumes a CMP whose cores run at differ-
ent frequencies. For deciding on which core (and hence at which frequency) to run a
particular task, Kotla et al. develops a model based on memory intensity for predicting
at which frequency a task runs most efficiently in terms of energy without losing too
much performance.

Curtis-Maury et al. [CMSB+08] and Li and Martínez [LM06] investigate DVFS in
combination with dynamic concurrency throttling (i.e., limiting the number of threads)
for multithreaded applications on CMP systems. Curtis-Maury et al. also takes the
assignment of threads to cores into account and therefore, like our work, combines
DVFS with co-scheduling (albeit only considering setups with a smaller or equal num-
ber of threads than the number of cores). The approach assumes per-chip DVFS and
uses event counters to characterize applications. In contrast to our approach, the events
are selected automatically during an off-line calibration phase. At runtime, a predic-
tive model is used to select the optimal setup (frequency, concurrency level, and as-
signment of threads to cores). Li and Martínez also assumes per-chip DVFS and uses a
heuristic search to determine the most energy efficient setting concerning the number
of active cores and the chip frequency that still meets a predefined performance target
by empirically trying different configurations.

81

5 Resource-conscious Scheduling for Energy Efficiency

In the context of hardware design, the question has been addressed whether it is ben-
eficial to support per-core DVFS instead of the more simple per-chip DVFS. Herbert
and Marculescu [HM07] investigates the consequences of the restriction that several
cores need to run at the same frequency and voltage, and comes to the conclusion that,
for multithreaded workloads, the benefits gained by multiple frequency/voltage do-
mains do not justify the additional complexity introduced for realizing these domains.

Kim et al. [KGWB08] investigates per-core DVFS using on-chip voltage regula-
tors. Compared to the off-chip regulators employed today, this has the advantage of
providing more frequency domains and quicker switching of frequencies at the cost
of additional hardware complexity. The paper concludes that fast per-core DVFS can
lead to energy savings, but must carefully be weighed against the hardware overhead
it introduces.

Sharkey et al. [SBB07] compares several policies that aim at keeping a chip-wide
power budget. The authors find global policies that coordinate the power management
of the individual cores to be more efficient than independent local policies. Further-
more, they find that global policies that make use of per-core DVFS to set different
frequency/voltage levels on the individual cores achieve only small improvements over
policies that use per-chip DVFS.

5.3 Analysis of Resource Contention and Frequency
Selection

Knowledge about the effects that different hardware and software mechanisms have
on power consumption and performance is a prerequisite for designing energy-aware
scheduling policies. In a first step, we analyze the effects of resource contention and
frequency selection on the energy delay product (EDP), a metric that considers both
energy efficiency and performance. In particular, we want to resolve the question
whether it is preferable to co-schedule similar tasks in order to profit from DVFS,
or whether tasks with different resource demands should be co-scheduled in order to
avoid resource contention.

We use a CMP system as our test platform. In contrast to SMT, where almost all
chip resources are shared, the cores of a CMP chip typically share only last level
caches and memory access infrastructure. Thus, the latencies that occur upon cache
or memory accesses lead to stall cycles during which no useful work is done. This
is much more the case for CMP than for SMT, since for the latter, when a sibling
is stalling on a memory or cache access, functional units can be used by the other
siblings. As a consequence, frequency scaling as a means to reduce stall cycles is of
particular importance for CMP chips.

82

5.3 Analysis of Resource Contention and Frequency Selection

Figure 5.2: Architecture of the Intel Core2 Quad

Our findings are the following:

• The performance and the energy efficiency of a processor chip depend signif-
icantly on the combination of tasks running simultaneously on the cores. In
particular, we find contention for memory bandwidth to be a crucial factor.

• Co-scheduling memory-bound tasks in order to be able to profit from frequency
scaling is not beneficial, since the resulting memory contention diminishes en-
ergy efficiency to a degree that cannot be offset by frequency scaling.

• Instead, co-scheduling memory-bound with compute-bound tasks at the chip’s
maximum frequency results in an optimal EDP.

• Only if scheduling cannot avoid contention owing to a lack of compute-bound
tasks, lowering the chip’s frequency is indicated.

5.3.1 System description

As test platform for investigating the effects of resource contention and frequency
selection, we chose a 2.4GHz Intel Core2 Quad Q6600, which is a quad-core CMP.
The Core2 Quad Q6600 is a multi-chip module that consists of two silicon dies in one
package. Each die comprises two cores sharing 4MiB of L2 cache (Figure 5.2). This
allows observing the relevance of cache as a shared resource, since it is possible to
conduct experiments on cores sharing or not sharing L2 cache.

The shared cache is allocated dynamically to the cores [Wec06]. This means cores
can dynamically increase their utilization of the shared cache, based on the ratio-
nale that cores executing cache-intensive workloads profit from larger portions of the
cache.

83

5 Resource-conscious Scheduling for Energy Efficiency

All four cores share a front side bus for accessing memory. Our test system uses a
266MHz front side bus and has 8GiB of DDR2 PC-6400 memory.

The processor supports scaling the frequency down to 1.6GHz. In this case, the core
voltage is scaled from 1.24V to 1.13V. (For the rest of this chapter, when we speak of
frequency scaling, we will imply that voltage scaling is also applied.)

The chip supports only one voltage setting for all four cores. It is, however, possible
to run the two dies at different frequencies. Since scaling down the frequency of only
one die does not allow to scale the voltage, this results only in marginal energy savings.
Therefore, we will only consider two settings in our analysis: all four cores running at
2.4GHz and all four cores running at 1.6GHz. For all of the experiments described in
this chapter, we ran the processor cores in 64-bit mode.

We also performed experiments with an AMD Opteron 2354 quad-core chip. In
contrast to the Core2, the Opteron does not access memory via a front-side bus, but
possesses an integrated memory-controller on the chip. The cores of the Opteron
possess private L1 and L2 caches and all share a common L3 cache, which makes it
harder to analyze the importance of cache contention than on the Core2, where two
cores share a common cache, respectively.

Our basic finding is the same for both the Core2 and the Opteron—it does not pay
off to co-schedule memory-bound tasks in order to be able to profit from lower chip
frequencies. Therefore, and since the cache architecture of the Core2 allows a better
analysis of cache contention, we will discuss our analysis of the Core2 in detail and
only summarize the results for the Opteron at the end of this section.

5.3.2 Metric

The goal we want to achieve with the scheduling policies we propose in this chapter is
to increase the energy efficiency of the processor. We choose the energy delay product
as the metric we want to optimize. In many systems, the processor is the component
requiring the most energy and cooling effort, so it is desirable to reduce its energy
consumption. Energy efficiency is of paramount importance especially for multicore
processors, since having multiple cores close together on a chip makes overall energy
dissipation the main reason for thermal problems rather than localized heating, as is
the case with SMT processors [YSBZ05]. On the other hand, it is undesirable to
sacrifice too much performance. EDP considers both factors, energy efficiency and
performance.

We deliberately consider only the energy consumption of the processor and not of
other system components. This is a simplification, since we imply that the energy
consumption of the other components is not influenced by scheduling, i.e., that the
power consumption of all other components stays the same regardless which schedule
is applied. Considering these components, especially memory that can be put into a
low-power sleep state if not accessed [LFZE00, FEL03], is a topic for future work.

84

5.3 Analysis of Resource Contention and Frequency Selection

Since we perform our measurements on real commodity hardware, we are only
able to determine the energy consumed by the processor chip in total, but are not
able to distinguish how much energy was consumed by each individual core. We
can therefore only give EDP as a per-chip metric (runtime of a task multiplied by the
energy consumed by the entire chip, divided by the number of cores), attributing equal
amounts of power to the individual cores, and not as a per-core metric (runtime of the
task multiplied by the energy consumed by the core the task ran on).

Prior research on energy efficiency for CMPs, for example Juang et al. [JWP+05],
Isci et al. [IBC+06], or Herbert and Marculescu [HM07], has used simulation and
power estimation, which allows to determine the amount of energy each simulated
core consumes. Measuring per-core energy in a real physical system, however, is only
possible if the cores are supplied with power via separate lines, which, is typically not
the case. Also, the power consumption of components shared by multiple cores, such
as shared caches or the memory interface, can, in practice, not be attributed to a task
running on a specific core, which makes per-chip EDP the only sensible metric for our
study.

The per-chip EDP of a task is always dependent on the tasks running on the other
cores, and EDP values must therefore always be seen with respect to the specific
workload. We believe that chip-specific EDPs are a valuable metrics for evaluating
the benefits of our policies if we consider the following guidelines:

• Since the EDP of a task depends on the tasks running on the other cores and thus
on the workload, we only compare EDPs of tasks within the same workload.
For example, we compare the EDPs of a certain combination of tasks under
vector-based scheduling to the EDPs of the same combination of tasks under
standard Linux scheduling. This way, even if the actual distribution of power
consumption to cores differs from the assumption that all cores consume equal
amounts of power, the overall trend (EDPs increase or EDPs decrease) is still
the same for the core-specific and the chip-specific EDP metric.

• When comparing the efficiency of our policies for different workloads, we do
not compare individual tasks, but always use the average EDP of all tasks of a
certain workload.

• Comparison of EDPs from tasks within a workload only reveals the effects of
the policy on the relative runtime of the tasks. It does not capture the change in
power consumption caused by the policy, since all EDP calculations are based
on average power. For instance, if a certain policy would cause the power con-
sumption of only one particular task do drop, this would result in a lower per-
chip-EDP of all tasks in the workload. However, since we do not consider ap-
plying frequency scaling to individual cores, but only chip-wide, it is unlikely
that a change in policy has a big effect on the relative power consumptions of

85

5 Resource-conscious Scheduling for Energy Efficiency

the tasks: The relative reduction in power achieved by frequency scaling is ap-
proximately the same for different types of applications, as we verified with
experiments using SPEC CPU 2006.

• In addition, we only evaluate the energy efficiency for scenarios with all cores
occupied. This avoids the problem of attributing the power consumed by idle
cores.

5.3.3 Energy measurements

For performing energy measurements, we instrumented the power supply of the pro-
cessor chip. We inserted a 5mΩ resistor into the 12V lines running from the power
supply to the motherboard. This allows us to determine the power consumption of the
processor including the voltage regulators, which are supplied via the 12V lines.

We used a National Instruments SC-2345 board connected to a measurement com-
puter to sample the voltage drop at the resistor at a granularity of 10,000 samples per
second. This enables us to infer the power delivered via the 12V line, and in turn, to
obtain the energy consumed by the processor during a given period of time.

5.3.4 Resource contention

Methodology

In this section, we evaluate the problem of resource contention in isolation, i.e., at
a fixed chip frequency. Unless stated otherwise, the experiments presented in the
following subsections were performed at the chip’s maximum frequency of 2.4GHz.

In Section 5.3.5, we evaluate the aspects that dynamic frequency scaling has on dif-
ferent types of workloads. Finally, Section 5.3.6 brings together both aspects, resource
contention and frequency selection.

Microbenchmarks

First, we evaluate resource contention between the cores using several microbench-
marks. The resources the cores are contending for are L2 cache (shared by two cores,
respectively) and memory bandwidth (shared by all four cores).

We select microbenchmarks that differ in their use of the named resources. ��	���
is a compute-bound microbenchmark compiled from hand-written assembler code
that performs integer additions exclusively on the CPU’s registers. Hence, this mi-
crobenchmark does not utilize any resources shared between cores. As a memory-
bound microbenchmark, we use the ������ memory benchmark [McC95], which
causes heavy utilization of the shared memory bus. We also create modified cache-
bound versions of the benchmark by sizing the working set to fit into the shared L2
cache once (������� ��!) or twice (������� ��"). Since the microbenchmarks

86

5.3 Analysis of Resource Contention and Frequency Selection

Figure 5.3: Normalized runtime of microbenchmarks

possess only relatively short runtimes in the order of seconds, in this experiment and
all further experiments involving microbenchmarks, we run the benchmarks in loops
and report the average runtimes.

Figure 5.3 shows the runtimes of the microbenchmarks when running alone, to-
gether with another instance of the same benchmark running on a core using a differ-
ent L2 cache, together with a instance on a core using the same cache, and together
with three instances on the other cores. All runtimes are normalized to the runtime of
an instance running alone.

As expected, ��	���’s runtime is not influenced by instances running on other
cores. ������� ��"’s runtime increases slightly when another instance uses the same
cache. Although the cache’s capacity is big enough for holding both task’s working
sets, conflict misses, that is, too many addresses being mapped into the same cache set,
can still occur. ������� ��!’s runtime increases considerably when two instances
share a cache. Since now, the combined working sets of the benchmarks do not fit
into the cache, a lot of capacity misses occur, necessitating frequent memory accesses
and causing slowdown. When four instances are running, memory contention causes
a further increase in runtime. Finally, the original memory-bound ������ benchmark
suffers from memory contention already when two instances are running on different
caches.

SPEC CPU 2006

We performed the same evaluation using the SPEC CPU 2006 benchmarks. Figure 5.4
depicts the runtimes of the benchmarks, sorted by the slowdown four instances suffer

87

5 Resource-conscious Scheduling for Energy Efficiency

Figure 5.4: Normalized runtime of SPEC benchmarks

in comparison to one instance running alone. Many SPEC benchmarks (those on the
left side of the figure) behave like ��	��� and ������� ��", showing no or only
little slowdown even when combined on the same cache, which indicates that these
benchmarks hardly suffer from resource contention. The rest of the benchmarks (on
the right side) all show a considerable increase in runtime when multiple instances
are running. It is remarkable that the benchmarks that do suffer substantially reduced
performance with multiple instances do so already when two instances are running
on cores with separate caches, which indicates that memory contention is responsible
for the slowdown. The most affected benchmark is ���, which shows a slowdown of
factor 3.2.

The ���
 benchmark is a special case since it runs faster on shared caches than on
separate caches. We performed further experiments with the benchmark and noticed
that the anomaly disappeared when we disabled the speculative prefetching of data
from memory to the cache the Core2 performs by default. In addition, the runtime
of ���
 decreases when prefetching is disabled. This indicates that ���
 does not
profit from prefetching. On the other hand, prefetching useless data causes additional
memory contention. When running with separate caches, prefetching is done for two
caches instead of just one, as is the case with a single shared cache. This explains the
anomaly.

Importance of memory contention

Our experiments indicate that memory contention is a problem for many SPEC bench-
marks, and that the case that only cache is the constraining resource is rare. As men-
tioned, the SPEC benchmarks either suffer from no or only little resource contention,
or suffer from (memory) contention already when two instances run on cores not shar-
ing cache. Behavior like that of the microbenchmark ������� ��! (slowdown when

88

5.3 Analysis of Resource Contention and Frequency Selection

running on shared, but not when running on separate caches, indicating that cache is
the limiting factor) is only observed for �#��", �������� and �������; however, the
overall slowdown for two instances of these benchmarks is not nearly as severe as for
������� ��!. Therefore, and since cache contention has already been addressed in
numerous previous studies (e.g., Suh et al. [SDR02], Chandra et al. [CGKS05], Fe-
dorova [Fed06], Siddha et al. [SPM07]), we will concentrate on memory bandwidth
as constraining resource.

Research on contention in CMP systems that has concentrated on cache as the con-
straining resource has mostly used the older SPEC CPU 2000 benchmark suite for
evaluation. An analysis of the SPEC CPU 2000 benchmarks by Lee [Lee06] reveals
that only few of these benchmarks are memory-bound. Bird et al. [BPJ+07] compares
SPEC CPU 2006 to its predecessor SPEC CPU 2000 and finds SPEC CPU 2006 to
cause considerably more L2 cache misses and thus to stress the memory subsystem
considerably more than SPEC CPU 2000.

According to the SPEC documentation, the memory space required to run the SPEC
benchmarks is four times higher for SPEC CPU 2006 than for SPEC CPU 2000 (1GB
vs. 250MB). When compiling SPEC CPU 2006 for a 64-bit architecture, even 2GB
are recommended. This indicates that demands for memory bandwidth have also in-
creased between the SPEC versions. The fact that SPEC is intended to be represen-
tative for real user application workloads suggests that these applications also tend to
become more dependent on memory bandwidth.

Interaction of different benchmarks

Up to now, we have investigated resource contention between instances of the same
benchmark. To investigate how instances of different benchmarks affect each other,
we selected three memory-bound benchmarks heavily affected by resource contention
in the previous test (���, ���$	���	�, and �
) and two compute-bound benchmarks
hardly affected by resource contention (����� and ��
��
�). We ran every possible
combination of the five selected benchmarks on two cores with separate L2 caches.
(We also performed the experiment with cores sharing L2 cache and obtained similar
results.) Since the benchmarks have different runtimes, in order to have a constant
load, we re-started all benchmarks with shorter runtimes until the benchmark with
the longest runtime terminated, but only considered the data of the first run for each
benchmark.

Figure 5.5 shows the runtimes of the benchmarks, normalized to the time it takes
to run the respective benchmark alone. As expected, benchmarks that were affected
by resource contention in the previous test also suffer from resource contention when
running in combination, whereas benchmarks that were not affected by resource con-
tention in the previous test do not lead to resource contention when combined.

When one benchmark from the first and one from the second group are combined,
neither of the benchmarks is slowed down significantly. This demonstrates the poten-

89

5 Resource-conscious Scheduling for Energy Efficiency

Figure 5.5: Combinations of memory-bound and compute-bound benchmarks

tial for reducing the runtime (and thus also the energy consumption) of memory-bound
tasks by running them in combination with compute-bound tasks.

Effects on energy efficiency and EDP

Resource contention causes performance degradation and prolonged task runtimes.
The increase in runtime influences EDP in two respects. Firstly, the increased run-
time directly leads to an increase of EDP, since EDP is the product of runtime and
energy. Secondly, resource contention causes tasks to consume power for a longer
time, which increases the amount of energy required to run a task: As explained in
Chapter 4, the power consumption of a processor can be divided into a dynamic part
that depends on switching activity, and a static part independent from activity. With
resource contention, activity is stretched out over a longer period of time. Thus, the
static power, which is independent from activity, is consumed for a longer time and
results in increased energy requirements. This leads to a further increase of EDP.

To quantify the implications of resource contention on EDP exactly, we would
have to measure the energy consumption of a task susceptible to resource contention
once with and once without the presence of contention. This, however, would require
changing the workload, (e.g., combining the task concerned once with memory-bound
and once with compute-bound tasks), because contention always depends on the com-
bination of tasks running. Since we can only measure the power consumption of the
chip as a whole, this would lead to incomparable results, as the power consumption
depends on all tasks running on the chip. (We can determine EDP only as a workload-
dependent per-chip metric; cf. Section 5.3.2.)

90

5.3 Analysis of Resource Contention and Frequency Selection

Figure 5.6: Effects of frequency scaling on aluadd and stream

Yet, we can make the qualitative statement that resource contention leads to a dra-
matic increase of EDP. As we have seen, contention leads to a huge increase of run-
time, and because of the additional increase in energy consumption, EDP is increased
even more. Thus, from the standpoint of EDP like from the standpoint of performance,
it is beneficial to co-schedule memory-bound and compute-bound tasks.

5.3.5 Frequency selection

Microbenchmarks

For investigating the problem of frequency selection, i.e., choosing the best frequency
for a given workload, as a preliminary test, we ran different combinations of the
��	��� and the ������ benchmark on the cores.

Figure 5.6 shows the effects of frequency scaling on the two microbenchmarks.
The figure depicts power consumption, runtime, energy, and EDP of the benchmarks
at 2.4GHz and at 1.6GHz, normalized to the respective values at the full frequency of
2.4GHz. The data for the figure was sampled for a combination of four instances of
the respective microbenchmark.

Since ��	��� is compute-bound and thus depends purely on the speed of the CPU,
its runtime increases when the frequency is scaled. This increase outweighs the de-
crease in power consumption achieved by frequency scaling, so the energy, and even
more the EDP, increase at the lower frequency.
������, on the other hand, is memory-bound and thus depends largely on the avail-

able memory bandwidth, which is independent from the CPU’s frequency. Accord-
ingly, the runtime of ������ hardly increases when the CPU frequency is lowered.
As a result, the energy required to run the benchmark—and as a consequence, the
EDP—decreases because of the reduced power consumption at lower frequencies. It

91

5 Resource-conscious Scheduling for Energy Efficiency

aluadd stream average
instances time energy EDP time energy EDP EDP

4 aluadd 1.49 1.16 1.68 — — — 1.68
3 aluadd + 1 stream 1.49 1.08 1.63 1.13 0.83 0.93 1.45
2 aluadd + 2 stream 1.49 1.10 1.60 1.07 0.77 0.82 1.23
1 aluadd + 3 stream 1.49 1.10 1.60 1.09 0.85 0.93 1.13

4 stream — — — 1.04 0.80 0.83 0.83

Table 5.1: Relative runtime, energy, and EDP of benchmark combinations

is notable that, at 1.6GHz, the increase in EDP for ��	��� is much bigger than the
decrease for ������, which suggests that when combinations of the two microbench-
marks are running, frequency scaling is not beneficial.

Table 5.1 shows the results of heterogeneous combinations of microbenchmarks
running together. For each microbenchmark, the table shows the factor by which run-
time, energy and EDP of the microbenchmark change when the frequency is reduced
from 2.4GHz to 1.6GHz. The last column shows the average change of EDP.

When looking at the average, as expected, only a combination of four memory-
bound tasks justifies frequency scaling; that is, lowering the frequency is only benefi-
cial if tasks suffering from memory contention are running on all cores. As suggested
earlier, the reason is that the increase of EDP, which frequency scaling introduces for
compute-bound tasks, is much higher than the reduction of EDP achieved for memory-
bound tasks. In the following, we show that the same holds true for more realistic
workloads—the SPEC CPU 2006 benchmarks.

SPEC CPU 2006

Figure 5.7 depicts runtime, energy and EDP for the SPEC benchmarks when run at
1.6GHz, relative to the respective values at 2.4GHz. All values were obtained by
running four instances of a benchmark simultaneously on all cores. The order in
which the benchmarks are depicted is the same as in Figure 5.4. The figure shows
that the benchmarks that do profit from frequency scaling (i.e., show a lower EDP
at 1.6GHz) are all located on the right side, which means they are memory-bound
(cf. Section 5.3.4) and thus susceptible to resource contention. The compute-bound
benchmarks on the left, in contrast, all show considerably higher EDPs at 1.6GHz
compared to 2.4GHz, since, like ��	���, their runtime increases considerably with
the lower frequency.

To show that frequency scaling is not only beneficial for homogeneous workloads
where all cores are running instances of the same benchmark, we ran combinations

92

5.3 Analysis of Resource Contention and Frequency Selection

Figure 5.7: Relative runtime, energy, and EDP for the SPEC benchmarks

core1 core2 core3 core4 time energy EDP
libquantum omnetpp libquantum omnetpp 1.06 0.8 0.85
libquantum mcf libquantum mcf 1.05 0.79 0.83
omnetpp mcf omnetpp mcf 1.06 0.8 0.85
libquantum mcf omnetpp mcf 1.05 0.79 0.83
libquantum omnetpp omnetpp mcf 1.05 0.8 0.86
libquantum omnetpp libquantum mcf 1.08 0.82 0.89

Table 5.2: Combinations of memory-bound benchmarks—relative runtime, en-
ergy, and EDP at 1.6GHz compared to 2.4GHz, averaged over the
benchmarks involved

of different benchmarks that showed a reduced EDP at 1.6GHz. Table 5.2 shows
the runtime, energy, and EDP sampled at 1.6GHz relative to the respective metric at
2.4GHz. The values are averaged over all benchmarks of the respective scenario. For
all combinations, the effect of attaining a reduced EDP at 1.6GHz persists.

We repeated the test, but combined benchmarks that showed a reduced EDP at
1.6GHz (�
 , factor 0.84), an increased EDP (�����, factor 1.56) and roughly the
same EDP (������, factor 1.01) (Table 5.3). In particular, we can observe that, on
average, all combinations that include the compute-bound ����� show a worse EDP at
1.6GHz. This is even the case for one instance of ����� combined with three instances
of the memory-bound �
 . An improved EDP at 1.6GHz is only observable for two
or three instances of �
 combined with the moderately memory-bound ������.

This confirms that the results we achieved with the combinations of microbench-
marks persist for real applications like the SPEC benchmarks: If memory-bound and

93

5 Resource-conscious Scheduling for Energy Efficiency

core1 core2 core3 core4 time energy EDP
hmmer bwaves hmmer bwaves 1.37 0.98 1.35
hmmer bwaves hmmer mcf 1.36 0.98 1.34
hmmer mcf hmmec mcf 1.34 0.95 1.31
hmmer bwaves bwaves bwaves 1.28 0.93 1.2
hmmer bwaves bwaves mcf 1.28 0.92 1.2
hmmer mcf bwaves mcf 1.22 0.88 1.09
hmmer mcf mcf mcf 1.16 0.87 1.04
bwaves bwaves bwaves mcf 1.19 0.87 1.04
bwaves mcf bwaves mcf 1.13 0.82 0.93
bwaves mcf mcf mcf 1.05 0.77 0.83

Table 5.3: Combinations of memory-bound and compute-bound benchmarks—
relative runtime, energy, and EDP at 1.6GHz compared to 2.4GHz,
averaged over the benchmarks involved

compute-bound tasks are running in combination, the EDP is best at high frequencies;
only four memory-bound tasks running in parallel justify lowering the frequency.

Intermediate frequencies

Besides the two documented operation points of 2.4GHz/1.24V and 1.6GHz/1.13V,
the Core2 Q6600 can also be operated at 1.82GHz and at 2.13GHz by manually set-
ting the frequency multiplier. We also ran the SPEC benchmarks at these two frequen-
cies (with corresponding voltages of 1.16V and 1.20V, respectively). However, the
additional operation points yield only little benefits: All benchmarks except four are
executed most efficiently in terms of EDP at either the maximum frequency (compute-
bound benchmarks) or the minimum frequency (memory-bound benchmarks), with
efficiency degrading monotonously towards the opposite end of the frequency spec-
trum.

The four exceptions are ������, �

, ������� (optimal frequency of 1.82GHz),
and �������� (optimal frequency of 2.13GHz), which are exactly the benchmarks
that lie somewhere in between compute-bound and memory bound (cf. Figures 5.4
and 5.7). Out of these four benchmarks, only for �

, there is a significant improve-
ment of EDP at the optimal frequency (10%), while the other three benchmarks only
yield minor improvements compared to the maximum or minimum frequency (1% for
������ and �������, 3% for ��������). For these reasons, we do not consider the
intermediate frequencies in our further experiments.

94

5.3 Analysis of Resource Contention and Frequency Selection

5.3.6 Optimal co-scheduling

The experiments described in the preceding sections indicate that (1) co-scheduling
memory-bound and compute-bound tasks reduces contention and, as a consequence,
EDP and (2) that frequency scaling reduces EDP if only memory-bound tasks, but not
if memory-bound and compute bound tasks are co-scheduled.

On a multicore chip, if there are more tasks eligible for execution than there are
cores, the question arises whether it is better to run memory-bound tasks together
in order to be able to profit from frequency scaling, or to run compute-bound with
memory-bound tasks in order to avoid resource contention. In a system consisting of
several multicore chips, a similar question arises regarding the distribution of tasks to
chips.

The experiments in Section 5.3.4 indicate a huge performance penalty for memory-
bound tasks running simultaneously (see Figures 5.3 and 5.4). The ������ mi-
crobenchmark is slowed down by a factor of 3.9, the SPEC benchmark ��� by a
factor of 3.2 when four instances of the respective benchmark are running in parallel.
As a consequence, there is a significant increase in energy consumption. On the other
side, frequency scaling achieves a reduction of energy consumption by a factor of
0.77 at best (c.f. Tables 5.1 and 5.2). Thus, the slowdown introduced by contention
outweighs the reduction of power consumption achievable with frequency scaling by
far. Since a longer runtime means consuming power for a longer time, combining
compute-bound tasks and engaging frequency scaling yields an overall increase in
energy consumption despite the lower power consumption. The effect is even bigger
for EDP, which considers both, energy and runtime.

When looking at Figure 5.7, the least memory-intensive SPEC benchmark that prof-
its from frequency scaling is ��������. However, �������� already suffers a slow-
down of factor 1.64 when four instances are co-scheduled (cf. Figure 5.4). Thus, in
summary, the EDP is worse for memory-bound tasks running in combination, even
when frequency scaling is applied, than for memory-bound tasks running together
with compute-bound tasks at the highest frequency.

We want to illustrate this with the results of an experiment with two SPEC bench-
marks. In our scenario, we want to run four instances of �
����, a typical memory-
bound benchmark we found to profit from frequency scaling, and four instances of
�����, a completely compute-bound benchmark, on our quad core. We compare the
following three scheduling scenarios:

1. Always run the four instances of ����� at their optimal frequency of 2.4GHz,
then run the four instances of �
���� at their optimal frequency of 1.6GHz.

2. Always run two instances of ����� with two instances of �
���� at a time at
2.4GHz

3. Always run two instances of ����� with two instances of �
���� at a time at
1.6GHz

95

5 Resource-conscious Scheduling for Energy Efficiency

time [s] energy [KJ] EDP [MJs]
Scenario hmmer soplex hmmer soplex hmmer soplex average
1: hmmer @ 2.4GHz, soplex @ 1.6GHz 923 1310 17.0 13.7 15.6 18.0 16.8
2: hmmer + soplex @ 2.4GHz 952 837 15.7 13.8 15.0 11.6 13.3
3: hmmer + soplex @ 1.6GHz 1420 911 17.0 10.9 24.1 9.9 17.1

Table 5.4: Impact of different schedules and frequency settings

Table 5.4 shows the runtime, CPU energy, and EDP for the scenarios. For scenario 1,
resource contention slows down the four instances of �
���� running in parallel,
negating the power savings that result from frequency scaling; the energy consump-
tion of �
���� is as high as in scenario 2, where �
���� runs at 2.4GHz. In scenario
3, running ����� at 1.6GHz increases its runtime substantially compared to the other
scenarios. The high runtimes of �
���� in scenario 1 and of ����� in scenario 3
clearly favor scenario 2. As expected, scenario 2 shows the best average EDP; here
the benchmarks can be executed requiring only 80% of the EDP shown by the other
two scenarios.

Motivated by the results of this analysis, our scheduling policies presented in Sec-
tion 5.5 strive to combine tasks with different characteristics, and only engage fre-
quency scaling as a fallback if nothing but memory-bound tasks are available.

5.3.7 Results for the AMD Opteron

We also conducted experiments with the microbenchmarks well as with the SPEC
benchmarks on a 2.2GHz AMD Opteron 2354 quad-core. As on the Intel Core2,
memory-bound benchmarks scheduled together suffer from substantial slowdown be-
cause of contention, although the slowdown is less severe than with the Core2. We at-
tribute this to a better performance of the integrated memory controller in the Opteron,
as opposed to the front-side bus used in the Core2. Four instances of ������ running
together on the four cores of the Opteron are slowed down by a factor of 2.7 compared
to a single instance (Core2: factor 3.9); the most memory intensive SPEC benchmark,
���, suffers a slowdown of factor 2.5 (Core2: factor 3.2).

Our test chip supports frequency scaling to 2.0, 1.7, 1.4, and 1.1GHz. Voltage is
scaled accordingly, but all four cores are required to run at the same voltage. As with
the Core2, the benchmarks that profit from frequency scaling are exactly the ones that
are affected most by memory contention. Since the Opteron allows lower frequen-
cies than the Core2, it offers more potential for conserving energy for memory-bound
tasks. ��� profits most from frequency scaling; at the lowest processor frequency of
1.1GHz, the benchmark can be executed with only 0.64 times the EDP compared to
2.2GHz. (Core2: factor 0.87 at 1.6GHz).

96

5.4 Activity Vectors for Multicore Scheduling

Although memory contention is not as severe on the Opteron as on the Core2 and
although the Opteron can improve energy efficiency for memory-bound tasks more
than the Core2, this still does not warrant co-scheduling memory-bound tasks. Like
with the Core2, alone the increase in runtime that results from co-scheduling memory-
bound tasks offsets the reduction of EDP that is achievable by frequency scaling, as
can be seen at the example of ���. The same is the case for the other memory-bound
benchmarks, which suffer from less slowdown when co-scheduled, but for which fre-
quency scaling also yields smaller savings.

5.4 Activity Vectors for Multicore Scheduling

Before we introduce the design of our scheduling policies, we want to discuss how we
apply the concept of activity vectors for characterizing tasks as a base for resource-
conscious scheduling.

In Chapter 3, we have mentioned that the choice of components represented by an
activity vector depends on the characteristics of the platform. For SMT processors,
many resources such as ALUs, FPUs, branch predictors, reorder buffers, and caches
are shared between siblings. Thus, for contention-aware scheduling on those proces-
sors, activity vectors with many components representing the individual chip units
make sense. An example are the activity vectors on the Intel NetBurst architecture we
introduced in Chapter 4.

For multicore processors, we choose to use the concept of activity vectors at a
coarser granularity than for SMT processors. The reason is that contention on mul-
ticore chips affects just two resources: memory bandwidth and cache. In addition,
we include a third component in the activity vector that represents all non-shared re-
sources for which there is no contention.

Representing the utilization of non-shared resources in the activity vector is useful
since otherwise, tasks that do not utilize shared resources would possess a zero vector
as activity vector. This would be problematic for scheduling policies that are based on
angle calculations (cf. Section 4.4). In addition, the utilization of non-shared resources
is typically lower for tasks that are slowed down by contention for other resources and
thus serves as further means for distinguishing between tasks that suffer or do not
suffer from contention. However, since the utilization of the individual resources for
which there is no contention is insignificant for interference between the tasks, it is
appropriate to accumulate the utilization of these resources in one vector component.

Hence, the three resources considered by the activity vector are: memory band-
width, L2 cache, and non-shared. While memory bandwidth and L2 cache are the
resources for which there is contention, the resource “non-shared” stands for all re-
sources that are not shared between cores, such as, for instance, L1 cache or integer
and floating point units.

97

5 Resource-conscious Scheduling for Energy Efficiency

As discussed in Chapter 3, we define the utilization of all resources by access fre-
quency. For memory, bandwidth, or in other words, the number of accesses that the
cores can make per time, is limited by the memory interconnect and the speed at which
the memory chips can deliver data. Therefore, it is sensible to define memory utiliza-
tion as the number of memory accesses initiated by a core during a certain period of
time divided by the maximum number of accesses the system supports during that pe-
riod of time. Since the cores of a chip share the memory interconnect, multiple cores
showing high memory utilization indicates contention.

In contrast, for the L2 cache, bandwidth is not a problem, since typically a multi-
port, multi-bank cache [SF91] and a crossbar interconnection is used, allowing
multiple cores to access the cache simultaneously [KZT05, HKS+07]. Our exper-
iments with the microbenchmarks in Section 5.3.4 reflect this: The microbenchmark
������� ��", whose working set fits into the cache twice, shows little interference
if two instances have to share a cache, although both instances heavily stress the L2
cache.

However, the available space in the cache is a limited resource. Therefore, it would
be natural to define cache utilization by the percentage of cache lines a task occupies,
as proposed, for instance, by Zhao et al. [ZII+07]. Unfortunately, such information
is not easily obtained, since today’s commodity hardware does not export information
about cache allocation to the software.

On the other hand, cores that perform more cache accesses have the potential of
evicting other cores’ cache lines more frequently and thus of occupying greater por-
tions of the shared cache. Since access frequency can be obtained more easily than
space occupancy, we use the access frequency for determining cache utilization and
define cache utilization, like memory bandwidth utilization, as the number of cache
accesses a core initiates, divided by the maximum number possible. As with other
resources, the maximum can either be inferred from the hardware specification, or be
determined empirically via microbenchmarks.

5.4.1 Frequency dependency of activity vectors

For maximum energy efficiency, we will run different tasks at different frequencies.
The frequency at which a task is running has an impact on the task’s resource uti-
lization, and thus the task-specific utilization of a particular chip resource is likely to
change upon a frequency switch. In particular, the maximum number of accesses a re-
source supports during a period of time can, depending on the resource, be dependent
on the chip’s frequency.

Since activity vectors represent a task’s resource utilization, we have to consider
the effects of different chip frequencies with respect to task activity vectors. We ac-
complish this by introducing the concept of translation vectors. A translation vector
allows to infer how the resource utilization of a task running at a certain frequency can
be expected to change when the task is running at another frequency.

98

5.4 Activity Vectors for Multicore Scheduling

Figure 5.8: Resource utilization caused by the SPEC benchmarks at 2.4GHz (x-
Axis) compared to 1.6GHz (y-Axis) in percent

Frequency changes affect the utilization of different resources in different ways.
The reason is that the memory and memory interconnect usually operate with a clock
separate from that of the chip, and in most of today’s systems, frequency scaling only
affects the processor clock, while memory keeps operating at the same speed as before.

Therefore, the utilization of memory bandwidth effectively decreases when fre-
quency scaling is engaged: At a lower frequency, the processor can issue fewer mem-
ory requests per time, since the calculations done between two successive memory
accesses take longer.

On the other hand, if the chip is running at a reduced frequency, memory is faster in
relation to the chip. Thus, the utilization of chip resources such as the ALUs increases,
since the number of cycles during which these resources are idle while waiting for
memory decreases. The same holds true for the L2 cache, whose frequency is scaled
down with the chip.

The dependency of resource utilization from frequency becomes apparent when
looking at the three resources represented by activity vectors for a specific application
run at different frequencies. Figure 5.8 shows the dependency of the utilization of the
memory bandwidth, the L2 cache, and the non-shared chip components on frequency
for our test chip. We ran all SPEC CPU benchmarks once at 1.6GHz and once at
2.4GHz, and monitored the utilization of the named resources for each benchmark. In
the diagrams, we use the average utilization at 2.4GHz as the x–value and the average
utilization at 1.6GHz as the y–value. Each point represents one benchmark, whereas
the straight line denotes the trend.

The frequency dependency of resource utilization raises the question of how to
define task activity vectors with respect to chip frequency. The options are defining
an activity vector as the actual resource utilization of a task at the frequency the task

99

5 Resource-conscious Scheduling for Energy Efficiency

is currently running at, or as the resource utilization the task would cause at a certain
fixed reference frequency, regardless of the actual frequency the task is running at.

A consequence of the first option would be that we could not simply compare activ-
ity vectors of tasks that are running at different frequencies. For instance, assume two
tasks T1 and T2 running on a core. The core first executes T1. Then, T2 is scheduled
and, according to some policy, the frequency of the chip is reduced. Now assume that
while T1 was running, the memory bandwidth utilization was higher than while T2 was
running. If we simply define the activity vectors of the tasks as the resource utilization
they caused while running, the component of the activity vector representing memory
bandwidth utilization would be higher for T1 than for T2. If both tasks were executed
at the same frequency, however, it could well be that T2 was more memory intensive
than T1, and that the lower memory utilization in our scenario was only caused by
the low frequency T2 was executed at in comparison to the frequency T1 was executed
at. Thus, if we defined activity vectors as the actual utilization a task causes at the
frequency it is currently running at, a vector-based scheduling policy would have to
be aware of the frequencies the tasks’ activity vectors were sampled at, and would
have to consider these frequencies when comparing activity vectors of tasks sampled
at different frequencies.

The second option, defining activity vectors with respect to a fixed reference fre-
quency, would mean that the activity vector of a task would not necessarily represent
the actual resource utilization of the chip, but instead the hypothetical resource uti-
lization the task would cause if the chip were operated at the reference frequency. For
instance, a task T1 could utilize 50% of the memory bandwidth when executed at the
reference frequency, but only 30% when executed at a lower frequency. Thus, if the
chip is currently running at the low frequency, scheduling T1 will cause a memory
bandwidth utilization of 30%, although the corresponding component of the task’s
activity vector has a value of 50%.

However, since our scheduling policies do not rely on the absolute values of the
vector components, but rather compare activity vectors of different tasks, the draw-
back that activity vectors do not correspond to actual resource utilization at frequen-
cies other than the reference frequency is no concern for us. Hence, we choose the
second option and define activity vectors with respect to a fixed reference frequency.
Abstracting activity vectors from the actual chip frequency facilitates the design of
vector-based scheduling policies, since it results in activity vectors that are compara-
ble regardless of the frequencies the corresponding tasks were running at when the
activity vectors were sampled. As reference frequency for determining activity vec-
tors, we choose the chip’s maximum frequency.

For being able to determine activity vectors of tasks running at frequencies different
from the maximum frequency, we supply a translation vector for each chip frequency.
Similar to activity vectors, each component of the translation vector corresponds to
one chip-related resource. We define the assignment of vector components to re-

100

5.5 Resource-conscious Scheduling

sources to be the same for translation vectors as for activity vectors. A component
of the translation vector denotes by which factor the utilization of a corresponding
resource is expected to change when the chip is running at the respective frequency,
compared to the maximum frequency. Thus, the components of the translation vector
correspond to the slopes of the trend lines in Figure 5.8. We determine the transla-
tion vectors by running a set of representative benchmarks at all available frequencies
and by calculating the average ratios of unit utilizations compared to the maximum
frequency.

Using translation vectors, it is possible to “translate” resource utilization sampled at
a specific frequency to an activity vector representing resource utilization with respect
to the maximum frequency: For determining activity vectors, we sample the resource
utilization of the chip at the actual chip frequency into a “raw” activity vector first,
and do a component-wise division of the raw activity vector with the translation vector
corresponding to the chip frequency in order to obtain the final activity vector.

5.5 Resource-conscious Scheduling

In Section 5.3, we have shown that avoiding resource contention is of paramount im-
portance for achieving energy efficiency. We want to adapt timeslice-based multitask-
ing, multiprocessor scheduling policies, like those found in today’s general purpose
operating systems, to become aware of and to avoid resource contention. While in
the preceding sections, we have analyzed the impacts of resource contention using a
CMP chip as an example, our policies proposed in the following sections are generic
and suitable to avoid contention for other architectures with shared resources, such as
SMT. For simplicity and without loss of generality, we will only talk of CMP in the
following.

Since the degree of contention depends on the combination of tasks running simul-
taneously on the cores of a chip, we need to control the combination of tasks that run at
a time. This leads to the concept of gang scheduling [Ous82]. While gang scheduling
has been proposed to co-schedule threads of a multithreaded application in order to
optimize communication, our goal is to combine tasks that use as different resources
as possible. As already mentioned in Chapter 3, in this thesis, we only consider inde-
pendent single-threaded tasks, i.e., we assume that there is no communication between
tasks. If there is communication, co-scheduling based on communication patterns and
co-scheduling based on resource utilization can be conflictive goals. This is a topic
for future work.

A prerequisite for being able to co-schedule tasks is a suitable distribution of tasks
to cores. In particular, tasks intended to be co-scheduled may not be assigned to the
runqueue of one and the same core. In the following, we will introduce a migration
policy that makes sure that tasks showing diverse resource utilizations are available
on each processor for co-scheduling. Based thereon, we present two co-scheduling

101

5 Resource-conscious Scheduling for Energy Efficiency

policies, a specialized one that is applicable if there is one known resource mainly
responsible for contention, and a generic one that is applicable without knowledge
which resources are responsible for contention.

5.5.1 Vector balancing

We propose vector balancing as a task migration policy guided by activity vector in-
formation. The goal is to distribute tasks to cores in a way that enables co-scheduling
tasks with different characteristics. Vector balancing uses a uniform view on activity
vectors and considers all resources equally.

Vector balancing is comparable to the migration policies of activity balancing and
activity unbalancing proposed in Chapter 4, in the sense that we calculate a metric
from the activity vectors of all task in a runqueue, and strive to improve the metric by
task migrations.

A simple solution for enabling co-scheduling would be to collect tasks with sim-
ilar characteristics on one hardware context, for example, to run all memory-bound
tasks on core 0 and all compute-bound tasks on core 1 of a dual-core processor (a pol-
icy similar to activity unbalancing). This way, even without a special co-scheduling
policy, there would never be two memory-bound task running simultaneously on the
chip.

However, it is not always optimal to collect similar tasks on one core. For example,
several cache-intensive tasks on one core can overwrite each other’s working sets in
the cache, and memory-intensive tasks are always cache-intensive to a certain degree.

In addition, it is not always possible to divide tasks into sets that use mutually
different resources, especially if there are only few resources to consider, as with
multicore chips. For instance, assume a situation with two tasks of medium memory
intensity, a memory-bound task and a compute-bound task (Figure 5.9). Collecting
similar tasks would mean running the two tasks with medium memory intensity on one
core. This would likely cause resource contention, since then the memory-bound task
on the other core would have to be co-scheduled with one of the tasks with medium
memory intensity, leading to a request for memory bandwidth greater than 100%.

The optimal solution would be to co-schedule both tasks of medium memory inten-
sity, and to co-schedule the memory-bound and the compute-bound task. Although
two tasks with medium memory utilization are still likely to interfere (see next sec-
tion), the interference between two tasks of medium memory intensity is lower than
the interference between a completely memory bound task and a task of medium mem-
ory intensity.

The same example also explains why a policy like activity balancing as proposed
in Chapter 4 is no optimal base for resource-conscious co-scheduling. Activity bal-
ancing strives to level the average utilization of resources over the processors (cf.
Section 4.4.2). In our previous example, on average, the memory utilization of the

102

5.5 Resource-conscious Scheduling

core0

core1

memory
required

bandwidth

TS1

100%
50%
0%

schedule

TS2 TS1 TS2

Figure 5.9: Sub-optimal (left) and optimal (right) co-scheduling of tasks. Shades
of gray represent memory intensity.

tasks assigned to the cores is balanced. Yet, this does not prevent contention because
of a lack of options what task to pair with the memory-bound task.

Instead of balancing utilization, we want to spread tasks with similar activity vectors
over different cores (hence the term vector balancing), and collect tasks having differ-
ent characteristics on each core. This gives co-scheduling policies more options for
finding suitable combinations. In addition, for systems encompassing multiple multi-
core chips, applying the policy between cores belonging to different chips reduces
resource contention by distributing tasks utilizing a certain resource to physically dif-
ferent chips.

Like with activity balancing in Chapter 4, we define a scalar metric that allows us
to decide whether the migration of a task with a particular activity vector is beneficial
or not. Our goal is to have tasks in a core’s runqueue that show different degrees of
utilization for the different chip units. In this respect, the statistical variance of the
unit utilization among tasks in a runqueue constitutes a meaningful metric, since it
allows to differentiate whether the tasks in a runqueue all show similar utilization of a
particular chip unit, or if the utilization varies from task to task. Since we want a high
variance in the utilization of all chip units, we use the sum over the variances of all
vector components as a metric, which we define formally in the following way:

Definition. Let xi be a random variable describing the i–th component of the activity
vector of a task selected at random from a particular core’s runqueue, and V (xi) the
statistical variance of the random variable xi. Then our measure for balancing is the
sum of all components’ variances, varsum:

varsum :=
n

∑
i=1

V (xi) (5.1)

103

5 Resource-conscious Scheduling for Energy Efficiency

Example:

As an example, we assume a dual core. The runqueues contain tasks with the follow-
ing activity vectors:

runqueue 0: runqueue 1:⎛
⎝

0.1
0.2
0.8

⎞
⎠,

⎛
⎝

0.9
0.1
0.3

⎞
⎠,

⎛
⎝

0.8
0.2
0.2

⎞
⎠

⎛
⎝

0.2
0.9
1.0

⎞
⎠,

⎛
⎝

0.1
0.7
0.8

⎞
⎠

For runqueue 0, the random variable x0 can take the values of the first vector
components (0.1, 0.9, and 0.8) with equal probability. This leads to a variance of
V (x0) = 0.127. The same way, we determine V (x1) = 0.002, and V (x2) = 0.069; thus
varsum = 0.198. For runqueue 1, we obtain varsum = 0.023, accordingly.

Runqueue 1 consists of two similar tasks, hence it has a rather low varsum value. In
addition, the last two tasks of runqueue 0 have similar characteristics, thus we could
consider migrating one of them to runqueue 1 in order to improve the varsum of this
queue (and thus give the scheduler of the corresponding core a greater variety of task
characteristics to choose from).

After the migration, the runqueues could look the following way:

runqueue 0: runqueue 1:⎛
⎝

0.1
0.2
0.8

⎞
⎠,

⎛
⎝

0.9
0.1
0.3

⎞
⎠

⎛
⎝

0.2
0.9
1.0

⎞
⎠,

⎛
⎝

0.1
0.7
0.8

⎞
⎠,

⎛
⎝

0.8
0.2
0.2

⎞
⎠

The according varsum metrics are 0.225 for runqueue 0 and 0.298 for runqueue 1,
which is an improvement for both queues. Thus, we perform the migration. The
next step could be to migrate the second task of runqueue 1 to runqueue 0, for a final
distribution of:

runqueue 0: runqueue 1:⎛
⎝

0.1
0.2
0.8

⎞
⎠,

⎛
⎝

0.9
0.1
0.3

⎞
⎠,

⎛
⎝

0.1
0.7
0.8

⎞
⎠

⎛
⎝

0.2
0.9
1.0

⎞
⎠,

⎛
⎝

0.8
0.2
0.2

⎞
⎠

Again, this improves the varsum of both queues (0.267 for runqueue 0 and 0.373
for runqueue 1), since it creates a greater variety in the middle vector components of
runqueue 0, and removes one of two similar tasks from runqueue 1.

Migration policy

While in our example, the migrations we performed have always increased the varsum
metric of both runqueues, there is also the case that a migration increases the varsum of
one queue, but decreases the varsum of the other. Since our goal is having a reasonable
amount of variance in all queues rather than maximizing the variance of a single queue,

104

5.5 Resource-conscious Scheduling

we perform a migration if the minimum of the varsums of both queues involved is
greater after the migration than before. Like with activity balancing and unbalancing
described in Chapter 4, we strive not to create load imbalances and migrate tasks back
in exchange, if necessary. We also consider the varsum metric for the initial placement
of newly started tasks.

Calculating the varsum metric

For optimizing the calculation of the varsum metric, we express the variance V (xi) in
Equation 5.1 by using the expected values of xi and x2

i :

varsum =
n

∑
i=1

E
(
x2

i

)− (E (xi))
2 (5.2)

Since xi is discrete (there is only a limited number of tasks in each runqueue), we
can express E(xi) as E(xi) = 1

m ∑m
j=1 a j,i, where m is the number of tasks in the queue,

and a j,i is the i–th component of the j–th tasks’s activity vector. The same applies to
the squared values.

Thus, we can calculate varsum if we keep track of the sum of the activity vectors of
tasks in a runqueue and of the sum of the vectors, squared per component:

varsum =
n

∑
i=1

⎛
⎝ 1

m

m

∑
j=1

a2
j,i −

(
1
m

m

∑
j=1

a j,i

)2
⎞
⎠ (5.3)

5.5.2 Vector-based co-scheduling

As stated before, the goal of our co-scheduling policies is to run tasks that use mutually
different resources together. Our policies build upon vector balancing as a policy
that distributes tasks to cores according to their characteristics and accomplishes a
heterogeneous collection of tasks on each core.

Although activity vectors provide degrees of resource utilization, this utilization
cannot simply be used to ‘divide’ resources between tasks. For example, two tasks that
both require 50% of the available memory bandwidth are likely to interfere although,
in theory, their combined bandwidth requirements could be satisfied, since memory
bursts of the two tasks can overlap [LVE00].

A similar problem exists for cache utilization. Firstly, we use access frequency as a
proxy for space occupancy, which only correlates to a certain degree. Secondly, even
if we used space occupancy as a metric, we could not preclude interference, since
unless the cache is fully associative, conflict misses cause interference between tasks
whose combined working sets would fit into the available cache space.

105

5 Resource-conscious Scheduling for Energy Efficiency

Hence, our proposed policies do not offer performance guarantees, but are best
effort policies based on the rationale that tasks utilizing the same resources to a high
degree slow down each other, and that we can reduce this slowdown by co-scheduling
tasks that use different resources.

As motivated in Chapter 2, schedulers of today’s general purpose operating sys-
tems make CPU-local, independent decisions. Rather than replacing these CPU-local
schedulers by a global scheduling policy, our approach is to coordinate the deci-
sions of the local scheduling policies. This way, we avoid the performance problems
that global policies introduce, for example synchronization and locking overhead for
shared data structures.

Coordinating CPU-local schedulers requires synchronizing the time of task switches
and the actual choice of tasks to be scheduled. We use shared variables as a low-
overhead mechanism for synchronizing task switches. For coordinating decisions, we
make use of the principle of runqueue sorting introduced in Chapter 4.

We propose two approaches: Sorted co-scheduling is a non-uniform policy that
is applicable if there is one resource known to be the main bottleneck. Sorted co-
scheduling defines an order among tasks in each core’s runqueue according to the
utilization of the resource assumed to be the the bottleneck. Greedy co-scheduling
is a uniform policy applicable if multiple resources cause contention, or if the main
bottleneck is unknown. With greedy co-scheduling, each core can utilize resources
that have been left over by previous scheduling decisions.

5.5.3 Sorted co-scheduling

For the case that there is one resource mainly responsible for contention, it is advanta-
geous to concentrate on the one resource that causes contention instead of considering
all resources. However, this requires knowledge about what resource is most impor-
tant for avoiding contention, for example, that memory contention is more relevant
than cache contention for typical application scenarios on the Intel Core2 processor.
In terms of activity vectors, this means that we need a non-uniform view, being able
to tell what component of the vector represents the most critical resource.

In the following, we present a co-scheduling policy that concentrates on a single
resource. In case of the Core2 we use as an example chip, the most critical resource
is memory bandwidth, but the policy in general is also applicable if any other single
resource is responsible for contention. Without loss of generality, we use memory
bandwidth as an example for the most critical resource.

The idea behind sorted co-scheduling is to use the utilization of a single resource, in
our case memory bandwidth, to sort the tasks in each core’s runqueue. Then we pair
two cores, respectively, and select tasks with complementary demands for memory
bandwidth for execution on the cores (Figure 5.10).

The policy assumes that the system is symmetric in the sense that on each level
of the processor topology, the number of processors is a multiple of two. This as-

106

5.5 Resource-conscious Scheduling

Figure 5.10: Sorted co-scheduling with equal (top) and unequal (bottom) run-
queue lengths. Height of bars correspond to memory intensity.

sumption holds true in most of today’s architectures. For instance, multithreaded Intel
processors offer two logical threads per core (Hyper-Threading), and the Core2 quad-
core we use as our test platform consist of two pairs of cores sharing a common L2
cache. Yet, there are exceptions, for example AMD’s triple core Phenom or the triple
core IBM PowerPC processor included in Microsoft’s Xbox 360 [AB06].

To accomplish our goal of combining tasks with complementary demands for mem-
ory bandwidth, we define an order on the cores of a chip and assign consecutive num-
bers to the cores. We sort the tasks descendingly in runqueues of cores with even
numbers and ascendingly in runqueues of cores with odd numbers. For sorting, we
use the same lazy method described in Chapter 4. We divide the runqueue into an
active and an expired part. For sorting descendingly, we always select the task among
the first c tasks of the active queue that shows the highest value in the component of
the activity vector that represents memory bandwidth utilization, and execute it (c is a
constant). After execution, we queue the task into the expired queue. Eventually, this
leads to a sorted queue, which we switch with the active queue whenever the latter is
empty. Sorting ascendingly works accordingly by selecting the task with the lowest
memory utilization among the first c tasks.

Co-scheduling requires synchronizing scheduling decisions across cores. To ac-
complish this, we divide time into epochs and synchronize the starting points of the
epochs across all cores of a chip. We keep track of epochs by using a shared counter
variable. The counter variable is incremented by core 0, the minimum of the order we
defined on the cores, at the end of each epoch. The other cores read the shared vari-

107

5 Resource-conscious Scheduling for Energy Efficiency

able on each timer interrupt and, upon detecting a change, realize that a new epoch
has started.

For sorted co-scheduling, we choose the epoch length to be m timeslices, where
m is the number of tasks in the runqueue of the core that contains the most tasks.
At the start of an epoch, on each core, we start to process the runqueue. Since the
tasks in the runqueues are sorted in different directions, for cores whose runqueues
contain the same number of tasks, this scheme leads to a constellation where tasks with
complementary memory bandwidth demands are co-scheduled (top of Figure 5.10).

To account for runqueues containing different numbers of tasks, a situation that can
occur despite load balancing if the total number of tasks is not divisible by the number
of cores without remainder, we propose to increase timeslice lengths for runqueues
containing fewer than m tasks. This does not unduly favor tasks in such queues, since
those tasks already have a greater share of processor time than tasks in queues with m
tasks regardless of the timeslice lengths.

During an epoch, the core with the most tasks can process its runqueue exactly
once. To achieve the same property for queues with fewer tasks, we execute each task
in a runqueue with n < m tasks not for one standard timeslice, but for one nth of an
epoch (which corresponds to for m

n standard timeslices), as depicted in the bottom half
of Figure 5.10.

Sorted scheduling requires little synchronization overhead, since synchronization
need only happen after a runqueue is completely processed, and not on each task
switch. If there are more than two cores on a chip, we shift the beginning of the epochs
for each additional pair of cores. This way, situations when the first two cores both
execute tasks with relatively low memory demands in the middle of their epoch can
be used to run a memory-bound task on one of the remaining cores (see Figure 5.11).

This manner of interleaving is only possible if there is a sufficient number of tasks
per core. If the number of tasks per core is smaller than the total number of cores,
overlap cannot be avoided. For example, if there are four cores and two tasks per core,
the most memory intensive task on core 0 will, because of sorting and coordination of
epochs, always run together with the most memory intensive task of core 2.

5.5.4 Greedy co-scheduling

We propose greedy co-scheduling as a vector-based scheduling policy for avoiding
resource contention. With greedy co-scheduling, cores of a CMP chip (or logical
processors of an SMT chip) get to select tasks one after another, making use of the
resources the other cores have left to them. In contrast to sorted co-scheduling, which
focuses on one resource, greedy co-scheduling has a uniform view on activity vectors
and considers all resources equally.

The aim of greedy co-scheduling is to even out the utilization of resources by com-
bining tasks accordingly. The basic principle of greedy co-scheduling is that at each
point in time, for each resource, the average utilization over the tasks co-scheduled on

108

5.5 Resource-conscious Scheduling

Figure 5.11: Sorted co-scheduling for more than two cores. Height of bars corre-
spond to memory intensity.

the cores of a chip should be equal to the average utilization over all (ready-to-run or
running) tasks assigned to the chip. The rationale behind this is that the entirety of
tasks assigned to a chip defines the resource demands to that chip. These demands can
be satisfied with the least contention if, during each timeslice, the same fraction of the
demands is satisfied, or in other words, if the resource utilization is evened out over
time.

As an example, if four memory-bound and four compute-bound tasks are assigned
to a quad-core chip, instead of running four memory-bound tasks during one times-
lice and then four compute-bound tasks during the next, the demand for memory
bandwidth should be evened out over the timeslices and two memory-bound and two
compute-bound tasks be combined each timeslice (see Figure 5.12, in the middle).
Thus, if half of the total workload assigned to a chip is memory-bound, contention can
be reduced if, during each timeslice, also half of the tasks co-scheduled are memory-
bound. If, on the other hand, the workload consisted of two memory-bound and six
compute-bound tasks, each timeslice, only one quarter of the tasks co-scheduled (i.e.,
one task) should be memory-bound (Figure 5.12, on the left). The same holds true for
all other resources.

Greedy co-scheduling is based on the average resource utilization of the tasks as-
signed to a chip. Hence, in order to perform greedy co-scheduling, we introduce the
average vector �A, which we define as the component-wise average of all activity vec-
tors of tasks assigned to a chip:

�A =
1
m

m

∑
i=1

�ai (5.4)

109

5 Resource-conscious Scheduling for Energy Efficiency

mem
comp

comp
comp

comp
comp

mem
comp

core 0

core 3
core 2
core 1

TS1 TS2

6x comp, 2x mem

mem
mem

comp
comp

comp
comp

mem
mem

core 0

core 3
core 2
core 1

TS1 TS2

4x comp, 4x mem

mem
mem

comp
mem

comp
mem

mem
mem

core 0

core 3
core 2
core 1

TS1 TS2

2x comp, 6x mem
workload: workload: workload:

Figure 5.12: Optimal co-scheduling: The optimal number of tasks with a certain
characteristic co-scheduled during a timeslice depends on the entire
workload.

where m is the number of tasks on the chip and �ai with i ∈ {1, . . .m} are the activity
vectors of the tasks assigned to the chip. Since in order to perform vector balanc-
ing, we already keep track of the component-wise sums of activity vectors for each
runqueue (see Section 5.5.1), we can easily compute the average for the entire chip
by doing a component-wise summation of the already aggregated per-runqueue sums,
followed by a division by the total number of tasks in the chip’s runqueues.

As explained above, in order to even out resource utilization over the timeslices,
our goal is that during each timeslice, the average of the activity vectors of the tasks
co-scheduled should be as close as possible to the average vector just defined. Like
for sorted co-scheduling, we use the concept of epochs to synchronize scheduling
decisions. For greedy co-scheduling, we choose the epoch length to be equal to the
length of one standard timeslice, and initiate a task switch on all cores at the start of
each epoch. This way, all task switches are synchronized. If tasks do not block or
terminate, all cores switch tasks at nearly identical points in time, limited by only the
skew of timer interrupts between the cores.

To coordinate the task selections of the individual cores of a chip, the cores get to
choose which task to execute one after another according to an order we define on the
cores analogously to sorted co-scheduling. We use a shared variable denoting which
core is allowed to make its selection.

To keep track of the resources utilized by the tasks that are selected for execution on
the individual cores, we introduce the allocation vector�s. The allocation vector is the
sum of the activity vectors of the tasks selected for execution so far. According to our
aim of evening out resource utilization, on each core, we select the task to be executed
in a way that the allocation vector, divided by the number of cores that have already
made their selection, comes as close to the average vector as possible (Figure 5.13).

110

5.5 Resource-conscious Scheduling

b

s
(s+b)

memory

ca
ch

e

1

1
A

p+1 1

b

s
(s+b)

memory

ca
ch

e

2

A

2
1

p+1

Figure 5.13: Selection process of greedy co-scheduling. Activity vector �b1 (left
graph) is more suitable than �b2 (right side), since it results in a
smaller difference to the average vector �A.

The process of task selection starts with core 0. Since core 0 is the first core to
make a scheduling decision, we consider no resources as occupied yet and need not
select a task having specific characteristics on core 0, but can select any task. Thus,
at the beginning of an epoch, core 0 just selects the task at the head of its runqueue
for execution and initializes the allocation vector �s with the activity vector �a of the
selected task:

�s :=�a

Then core 0 increments the shared variable, denoting that now the next core, core 1
can make its selection. On core 1 and all following cores, the selection process is
the same, thus, in the following, we will speak of core p as the core that is currently
selecting a task.

Again, to limit the overhead for task selection, we only consider the first c tasks
in a runqueue for greedy co-scheduling. Hence, core p looks at the first c tasks in
its runqueue and chooses the one that results in a resource utilization on the chip that
comes as close as possible to the average. Thus, we check how close the average vec-
tor we would get if we added the activity vector�bi of the task under consideration to
the allocation vector�s. We use the Manhattan distance (see Section 4.4.1) between the
average vector �A and the average of the tasks currently selected plus the task consid-
ered for selection. Since at the moment, p cores have already made their selection, and

their activity vectors are contained in�s, we can calculate this average as 1
p+1

(
�s+�bi

)
.

Thus, if �bi with i ∈ {1, . . .c} are the activity vectors of the tasks we consider, n
is the dimension of the activity vectors, and p is the number of the core making the

111

5 Resource-conscious Scheduling for Energy Efficiency

selection, we choose the task with activity vector�b j with

j = arg
c

min
i=1

∣∣∣∣
∣∣∣∣�A− 1

p+1

(
�s+�bi

)∣∣∣∣
∣∣∣∣
manh

(5.5)

Then we add the selected task’s activity vector to the resource vector

�s :=�s+�b j

and increment the shared variable, denoting that core p + 1 can make its selection.
This continues for all cores on the chip.

To avoid starvation, all tasks in a runqueue need to be selected at least once before
the same task is eligible again. Like with runqueue sorting and sorted co-scheduling,
we divide the runqueue into an active and an expired part for this purpose. Also similar
to runqueue sorting, our method eventually arranges the runqueues in a fashion that
there is a high probability that a suitable task can be found among the first c tasks in
each queue.

5.5.5 Scalability

As mentioned, sorted co-scheduling requires little synchronization, since not the in-
dividual task switches, but only the epochs need be synchronized, which for sorted
co-scheduling last for a number of timeslices corresponding to the number of tasks in
the longest runqueue.

For greedy co-scheduling, an epoch lasts only one timeslice, and hence, the indi-
vidual task switches need be synchronized. After a new epoch has started, a core must
wait on all its predecessors before it can make the next scheduling decision. Since
timer interrupts need not necessarily arrive at the same time on different cores, in the
worst case, a timer tick passes between the scheduling decisions of two successive
cores. This is tolerable if only a few cores share resources, and timer ticks are short
in comparison to timeslice lengths (for example, 1ms timer ticks and 100ms timeslice
lengths). In addition, cores are not idle while they wait on the other cores to make
their scheduling decisions, but continue executing the task from the preceding epoch.
The only consequence is that for at most x timer ticks, where x is the number of cores
synchronizing scheduling decisions, there can be a sub-optimal combination of tasks
running.

For both policies, synchronization of scheduling decisions needs only be applied to
processors that actually share resources, e.g., cores or logical processors of the same
chip, or, in case of memory bandwidth, processors of the same NUMA node. Typi-
cally, by hardware design, only a limited number of processors are sharing resources,
lest the shared resources become a severe bottleneck. This allows us to accom-
plish scalability by providing the shared variables required for our algorithms (epoch

112

5.6 Frequency Heuristic

counter, resource vector) separately for each set of processors sharing resources, e.g,
for each NUMA node or each chip.

5.6 Frequency Heuristic

In Section 5.3, we have pointed out that the primary lever to achieve energy efficiency
is to combine tasks in a way that avoids resource contention, and that co-scheduling
tasks that profit from frequency scaling is not beneficial. However, for inauspicious
workloads that contain too many memory-bound tasks, our scheduling policy must
co-schedule memory-bound tasks owing to a lack of compute-bound tasks to combine
them with. Thus, situations in which it is beneficial to engage frequency scaling can
still occur. Even though we do not co-schedule memory-bound tasks if this can be
avoided, we use frequency scaling as a fallback solution for cases in which we can-
not prevent contention because of an inauspicious workload that contains too many
memory-bound tasks.

Sorted or greedy co-scheduling, although designed primarily to avoid contention,
also facilitate frequency selection, since the scheduling policy controls the combina-
tion of tasks running at a time. Thus, scheduling decisions do not occur randomly and
independently on the cores, and we can choose a frequency fitting the characteristics
of the currently running tasks.

Heuristics for frequency selection found in the literature that are based on task char-
acteristics have used the metrics of memory intensity and on-chip activity [WB02,
KDG+04, DR07] for deciding about the optimal frequency. Snowdon et al. [SPH07,
SvdLPH07] has shown that the runtime of and the power consumed by a particular
task at a certain frequency can be predicted using several architecture-specific perfor-
mance counter metrics, which in turn can be used to infer the optimal frequency for
running a task.

Since our focus is not on finding a sophisticated heuristic, but rather on the inter-
actions of resource contention and frequency scaling, we use a rather simple heuristic
based solely on the metric of memory intensity. We use the utilization of memory
bandwidth caused by a task to predict how frequency scaling would influence the
EDP. We introduce a measure we call EDP factor. The EDP factor of a task denotes
the factor by which the EDP of the task changes when the task is executed at a certain
frequency f , relative to the EDP at the highest frequency fmax.

Our model to predict the EDP factor factor f (x) of a task with a certain memory
bandwidth utilization x for a given frequency f is based on linear interpolation be-
tween two reference values. factor f (0) is the EDP factor of a completely compute-
bound task (x = 0, no memory bandwidth utilization), and factor f (1) is the EDP factor
of a completely memory-bound task (x = 1, maximum memory bandwidth utiliza-
tion). To obtain factor f (x), we interpolate between these values (see Figure 5.14).
Thus, we calculate the EDP factor of a task with memory bandwidth utilization x at

113

5 Resource-conscious Scheduling for Energy Efficiency

Figure 5.14: Interpolation of the EDP factor

the frequency f the following way:

factor f (x) = x · factor f (1)+(1− x) · factor f (0) (5.6)

We determine the reference values factor f (0) and factor f (1) by measuring EDP
for two microbenchmarks that cause no memory utilization and maximum memory
utilization at the frequencies f and fmax.

Note that using linear interpolation assumes a very simple processor. It does not
account for features that modern processors possess for hiding memory latencies, such
as out-of-order execution with outstanding loads or write buffers. However, with a
small adaption of the reference values (see Section 5.7.3), we found this simple model
to be accurate enough for our purpose of evaluating the interactions of co-scheduling
and a frequency policy.

To apply frequency selection based on the EDP factor, after each scheduling deci-
sion, we check which frequency would yield the lowest EDP factor, averaged over the
tasks currently selected for execution on the cores of a chip, and set the frequency of
the chip accordingly.

Although frequency transitions do not halt execution for a long time on modern
processors, we strive to minimize the number of frequency transitions, since espe-
cially stabilizing the voltage to a new level after a transition can take a considerable
amount of time (up to milliseconds with commonly used off-chip voltage regulators
[KGWB08]). Typically, computation can be performed during the voltage switch, so
this does not diminish performance, but does reduce energy savings.

With greedy co-scheduling, the individual cores select their tasks one after the other.
To avoid unnecessary frequency changes, we only adapt the frequency after the last
core has made its decision. Similarly, for sorted co-scheduling, after a task switch has
taken place on a core, we check whether a timeslice is likely to expire on any core of
the same chip soon, and only change the frequency if this is not the case.

114

5.7 Implementation

5.7 Implementation

We implemented task activity vectors, our proposed scheduling strategies, and the
frequency heuristic for the Intel Core2 architecture and the Linux 2.6.22 kernel.

5.7.1 Activity vectors

In the following, we describe briefly how we determine the utilization of the resources
represented by activity vectors for the Intel Core2 architecture.

Memory bandwidth For determining memory bandwidth utilization, we count the
number of bus transactions initiated by a core during a timer tick (period of time
between two successive timer interrupts) using the event %&'�()*+'�*+,, and divide
that number by the theoretical maximum number of transactions the hardware supports
during this period of time.

The theoretical maximum is determined by the front side bus and the memory and
hence depends not only on the processor, but also on the memory deployed in the sys-
tem. Our test system has a front side bus supporting 1066MT/s (MT/s = millions of
transactions per second) and DDR2 PC-6400 RAM supporting 800MT/s. As a conse-
quence, the transfer rate is limited by the ram and is 800MT/s at most. In practice, we
observed transfer rates of up to 720MT/s using the ������ memory benchmark.

The bus can transfer eight bytes in parallel, but the system always transfers com-
plete cache lines of 64 bytes and the corresponding performance monitoring counter
considers this as one transaction. Therefore, the maximum event rate for bus trans-
actions in our test system is 800MT/s · 8

64 = 100MT/s, amounting to one transaction
every 24 processor cycles, assuming a 2.4GHz processor clock.

L2 Cache On the Core2 architecture, there is a large number of events available for
counting requests to the L2 cache, including loads, stores, invalidations, and prefetch
requests. Since there are not enough counters to cover all events separately, we use
the event -"�).'(', which accumulates all types of requests. However, it is hard
to give a theoretical maximum for this event, since different kinds of requests have
different maximum rates (for example, a transfer from memory to L2 takes longer
than a transfer from L2 to L1).

To get a practical upper limit for L2 activity, we ran the ������ memory bench-
mark, but with the memory size reduced to fit completely into the L2 cache (�������
 ��!, cf. Section 5.3.4). We measured the number of L2 references during the run,
which amounted to one reference every four cycles, so we chose this value as maxi-
mum.

115

5 Resource-conscious Scheduling for Energy Efficiency

Non-shared Rather than counting events for the various chip units (which is diffi-
cult because of a limited number of performance counters in the Core2 architecture),
we use the number of retired instructions (event �+'()�)/(�)/��*+,) as a proxy
for the activity of the non-shared resources. This neglects various aspects, e.g., that
different instructions keep the chip busy for different amounts of time, and that some
instructions do not retire because of misprediction, but cause chip activity nonetheless.

To obtain utilization, we divide the number of retired instructions by the total num-
ber of processor cycles. Since the chip can execute micro-operations in parallel, the
number of retired instructions per cycle can be greater than one, meaning that the
count of retired instructions is greater than the cycle count. We define chip activity to
be at 100% if the number of retired instructions is equal to or greater than the cycle
count.

Overall, this is only a very rough estimation for the utilization of the resources
of a core that are not shared with other cores. Yet, it is sufficient for our purposes:
Typically, memory or cache-bound tasks, which do not utilize other resources heavily,
show a low number of retired instructions per cycle, while tasks that show low memory
and cache utilization and whose speed is bounded by resources not shared between
cores show a higher number of retired instructions per cycle.

Frequency dependency

Each component of an activity vector is defined as the utilization of a particular re-
source, i.e., as the ratio between the number of requests issued to the resource during
a period of time divided by the maximum number of requests the resource supports
during that period of time.

As mentioned in Section 5.4.1, depending on the resource, the maximum number
of requests a resource supports per time can or cannot be dependent on the frequency
the chip is running at. For example, the maximum number of requests memory can
service in a period of time does not depend on the chip frequency, assuming that the
bus frequency is independent from the chip frequency. In contrast, the maximum
number of requests an on-chip cache or an ALU can service per time decreases when
the chip frequency is scaled down. We need to take this into account when calculating
resource utilization, since we always determine resource utilization with respect to the
maximum number of accesses a resource supports during a period of time.

Most processors encompass a timestamp counter (TSC), a special register that
counts processor cycles. On the Core2 architecture, the TSC does not get scaled with
the chip frequency, i.e, when frequency scaling is applied, the TSC keeps counting
cycles at the reference frequency (in our case, 2.4GHz). This makes the TSC usable
for calculating the utilization of resources whose maximum access rate is independent
from the chip frequency.

For counting scaled cycles, we use a performance monitoring counter. We use the
event 0�&�0-1�&+2*-(/��03)/, which counts unhalted core cycles and gets scaled

116

5.7 Implementation

with the chip frequency. In contrast to the time stamp counter, this event only in-
crements when the chip is not idle. However, this is not a problem. An idle core is
typically put into a low-power sleep mode, and no task, or on some operating systems
such as Linux, a specific idle-task is running (depending on whether the operating
system executes the instructions to put an idle chip into low-power mode within task
context). In any case, in the low-power mode, no resources are utilized, so we do not
need to obtain any event counts.

Having counters for scaled and unscaled cycles allows us to correctly calculate the
utilization of resources whose maximum number of requests per time is dependent on
or independent of the chip frequency. For calculating memory bandwidth utilization,
we use the unscaled cycle count as reference, whereas for calculating the utilization
of L2 cache and the non-shared resources, we use the scaled cycle count.

In addition, as described in Section 5.4.1, we apply a correction vector to activ-
ity vectors sampled at 1.6GHz to predict the behavior of the applications at the full
frequency of 2.4GHz.

5.7.2 Vector balancing and co-scheduling

For implementing vector balancing, we modified Linux’s load balancing algorithm
to consider our measure of variance as defined in Section 5.5.1 next to load. The
implementation is the same as for activity balancing described in Section 4.5.3, except
that we use a different metric. Again, we use fixed-point arithmetic for all metrics
involved in vector-based scheduling.

Introducing co-scheduling into the Linux scheduler requires only few modifica-
tions. We introduce an epoch counter as an atomic shared variable. With greedy co-
scheduling, the epoch counter is incremented whenever a number of timer ticks cor-
responding to one standard timeslice has passed. We use a 1000Hz timer and 100ms
timeslices; hence in our case, we increment the epoch counter every 100th timer tick.
With sorted co-scheduling, the epoch counter is incremented whenever a number of
timer ticks corresponding to m standard timeslices has passed, where m is the num-
ber of tasks in the longest runqueue. Thus, we increment the epoch counter every
m ·100th tick. For greedy co-scheduling, we additionally implement a shared variable
for denoting which core is supposed to make its scheduling decision and implement
the average vector and the allocation vector as shared memory buffers.

To apply co-scheduling, we need to replace the logic that checks whether a task’s
timeslice has expired in order to coordinate task switches across cores or siblings. For
greedy co-scheduling, we initiate a task switch whenever an epoch change takes place.
For sorted co-scheduling, we switch tasks whenever one nth of an epoch has passed,
where n is the number of tasks in the respective runqueue.

A special case that needs to be considered are tasks that block or unblock. Tasks that
terminate or are newly started fall into the same category. While our co-scheduling
policies are not specifically tailored to interactive tasks, any implementation of a

117

5 Resource-conscious Scheduling for Energy Efficiency

scheduling policy must be able to handle the case of changes in the set of runnable
tasks.

Whenever a task unblocks or is newly started, the number of tasks in a runqueue
increases. With greedy co-scheduling, this is not a problem. When the next scheduling
decision is made, there is simply one more task eligible. With sorted co-scheduling,
we decrease the amount of time allotted to each task for the remainder of the epoch
in order to be able to execute all tasks within the epoch. Similarly, we increase the
time each task may run with sorted scheduling when a task leaves the runqueue (upon
blocking or termination). With greedy scheduling, we simply choose the next task
of the runqueue when the currently executed tasks blocks or terminates. We do not
specifically consider activity vectors for choosing the next task in this case, since the
focus of our scheduling policies is on CPU-bound tasks.

5.7.3 Frequency selection

Under Linux, the processor frequency is controlled by a governor framework which
allows selecting a policy for frequency scaling from user space. The framework is not
suitable for initiating frequency switches from the scheduler; in particular, the func-
tions provided by the device drivers controlling the chip frequency are not intended to
be called from the scheduler, but only from the governors running in task context.

We therefore deactivated the framework and the driver, and implemented our own
prototype method for selecting a suitable frequency. To set the chip frequency accord-
ing to the decisions of our frequency heuristic, we directly program the model specific
registers of the Core 2. Ultimately, it would be beneficial to adapt the device drivers
to support frequency changes initiated by the scheduler.

After a task switch, if no switch is likely to occur on any other core on the same
chip, we check how the EDP of each task currently running on the chip would scale
according to the EDP factor as defined in Section 5.6 and calculate the average of the
EDP factors of all tasks. As explained in Section 5.3.5, we consider two frequencies,
2.4GHz and 1.6GHz. If the average EDP factor is lower for 1.6GHz than for 2.4GHz,
we scale the frequency down to 1.6GHz, otherwise we use the maximum frequency of
2.4GHz.

As mentioned in Section 5.6, we use microbenchmarks to calibrate the two ref-
erence EDP factors. The experiments with the microbenchmarks presented in Sec-
tion 5.3 indicate that for our test chip, on average, the EDP of tasks with memory
utilization of 0% scales by a factor of 1.67 when lowering the frequency, whereas the
EDP of tasks with memory utilization of 100% scales by factor of 0.88 (Table 5.1).
Based on this, we would estimate the scaling of EDP of a task with memory utiliza-
tion x according to Equation 5.6:

factor1.6(x) = x∗0.88+(1− x)∗1.67 = 1.67−0.79x (5.7)

118

5.8 Evaluation

In practice, we observed that using this estimation prevented frequency scaling in
situations where it would have been beneficial.

We mentioned in Section 5.6 that modern processors are able to hide memory la-
tencies to a certain degree and thus can have several memory requests outstanding
and still continue executing instructions not dependent on the results of the memory
references. As a result, the degree of slowdown that results from limited memory
bandwidth depends on the instruction-level parallelism the task exhibits. Our bench-
mark used for calibration, the ������ benchmark, performs loops over arrays, and the
individual iterations are independent from each other, resulting in high instruction-
level parallelism. Real-world applications can show less instruction-level parallelism,
resulting in a lower EDP factor. (They benefit from lower frequencies already at lower
memory utilizations than interpolated from the microbenchmark.)

Considering this effect despite our very simple model requires fine-tuning the model
parameters. Engaging frequency scaling already for tasks with lower memory uti-
lization can be accomplished either by reducing the constant or the proportional part
of Equation 5.7. We performed experiments with several memory-intensive SPEC
benchmarks and found modifying the constant part while only slightly changing the
proportional part to be a viable solution. For our experiments presented in the next
sections, we use the following estimation of the EDP factor:

factor1.6(x) = 1.6−0.8x (5.8)

5.8 Evaluation

We evaluated our implementation on the Intel Core2 Quad described in Section 5.3.1.
For power measurements, we used the measurement infrastructure described in Sec-
tion 5.3.2.

5.8.1 Methodology

On a multicore processor, the runtime of a benchmark depends strongly on the char-
acteristics of the other tasks that are co-scheduled with it. With the standard Linux
scheduler, the combination of tasks running at a time is arbitrary. Therefore, the per-
formance of a benchmark and the amount of energy required to run it can vary con-
siderably between different runs of the benchmark. In addition, different benchmarks
take different amounts of time to complete. To create a constant workload and to be
able to compensate statistical effects, we ran all benchmarks in loops (each benchmark
at least ten times) and used the average runtime and energy consumption sampled over
all runs for evaluation.

119

5 Resource-conscious Scheduling for Energy Efficiency

benchmark standard avector sorted greedy
gamess 1.000 1.001 0.996 1.001
gobmk 1.000 1.002 0.995 0.998
gromacs 1.000 0.997 1.006 1.006
hmmer 1.000 1.002 0.993 9.999
namd 1.000 1.000 1.007 1.001
povray 1.000 1.001 1.003 1.001
sjeng 1.000 0.999 1.000 1.002
tonto 1.000 1.000 0.998 0.998
average 1.000 1.000 1.000 1.001

Table 5.5: Overhead of vector-based scheduling—normalized runtime of
compute-bound benchmarks

5.8.2 Overhead

We evaluated the overhead of our implementation of activity vectors for the Core2
architecture and the overhead of our vector-based co-scheduling policies by running
a workload composed solely of compute-bound SPEC benchmarks. This workload
constitutes a worst-case for our co-scheduling policies, since a compute-bound task’s
runtime does not depend on co-scheduling (cf. Section 5.3.4), and hence no improve-
ments can be achieved by our policies. Thus, any overhead of providing activity vec-
tors and of performing co-scheduling should become apparent.

Table 5.5 shows runtimes of a workload composed of eight compute-bound bench-
marks that showed no interference via shared resources in our analysis in Sec-
tion 5.3.4. We measured the runtime of the benchmarks using a standard Linux
kernel, a kernel that provides activity vectors but does not use them for scheduling, and
kernels that apply sorted and greedy co-scheduling, respectively. The co-scheduling
policies also include vector balancing, but not the frequency heuristic, whose overhead
we will evaluate separately in Section 5.8.6. All benchmark runtimes are normalized
to the runtime of the respective benchmark under standard Linux.

Neither activity vectors nor the co-scheduling policies cause measurable overhead.
The fact that some benchmarks show a slightly reduced runtime in some setups shows
that the overhead lies within the measurement tolerance, i.e., is smaller than the effects
of other factors that influence the benchmarks’ runtime during the measurements. (For
instance, a changed memory layout caused by changed environment variables or ad-
dress space randomization can cause benchmark runtimes to vary [WM08,MDHS09].)

The reason why our implementation of activity vectors for the Core2 architecture,
in contrast to the implementation for the NetBurst architecture (Chapter 4), does not

120

5.8 Evaluation

show significant overhead is that the vectors for the Core2 architecture possess only
three components and involve only four performance monitoring counters and no mul-
tiplexing.

5.8.3 Workload dependence

Ratio of memory-bound to compute-bound tasks

The benefits that our scheduling policies can achieve depend strongly on the composi-
tion of the workload running on the system. To investigate the dependency of vector-
based co-scheduling on the workload, in particular, on the ratio of compute-bound to
memory-bound tasks, we composed different workloads of the microbenchmarks in-
troduced in Section 5.3.4 (the compute-bound ��	��� and the memory-bound ������
microbenchmark). All workloads consist of eight tasks. We varied the number of
memory-bound tasks in the workload between one and eight, while filling the remain-
ing slots with compute-bound tasks. We ran all workloads using the standard Linux
scheduler, using sorted co-scheduling, and using sorted co-scheduling in combination
with the frequency heuristic. We also performed the experiments with greedy co-
scheduling instead of sorted co-scheduling, but since the results are similar, we only
present the results of sorted co-scheduling.

First of all, we noted in our experiment that the runtime of the compute-bound
��	��� benchmark hardly varies for the different workloads and scheduling policies,
which is consistent with our observations from the experiments in Section 5.3.4. In the
following, we only discuss the more interesting results of the memory-bound ������

benchmark.
Figure 5.15 shows the effect our co-scheduling policy has on the runtime of ������.

The figure depicts the runtime of a single instance of ������ for the scenarios under
standard Linux scheduling and sorted scheduling. With standard Linux scheduling,
there is a steady increase in runtime per ������ instance when the number of instances
is increased. Recall that the total number of tasks is constantly eight (the remaining
slots are filled with ��	���), so the increase in runtime stems purely from the memory
contention between the ������ instances.

While sorted scheduling cannot avoid this increase of runtime in general, for cer-
tain workload scenarios, sorting reduces contention and runtime by co-scheduling
instances of ������ with instances of ��	���. The most significant reduction of
runtime (reduction by 20%) is achieved for a workload containing two instances of
stream, since for this scenario, sorted co-scheduling can completely avoid memory
contention by co-scheduling each instance of ������ with three of the six ��	���

instances, while standard Linux schedules both ������ instances at the same time in
many cases.

With more than two instances of ������, runqueue sorting also has to co-schedule
some instances of the memory-bound ������ benchmark, so the improvements over

121

5 Resource-conscious Scheduling for Energy Efficiency

Figure 5.15: Runtime of one stream instance for different workloads

standard Linux scheduling diminish with the number of ������ instances contained in
the workload. However, a significant improvement persists for workloads containing
up to four ������ instances. The reason is that for such workloads, standard Linux
scheduling has the potential of inadvertently wasting memory-bandwidth by running
��	��� on all four cores during some timeslices, which is no longer possible for work-
loads that contain five or more instances of ������ (and thus three or less instances
of ��	���).

Figure 5.16 shows in detail how sorted co-scheduling influences the combination
of memory-bound and compute-bound tasks co-scheduled. For each setup, the cor-
responding diagram displays how often (percentage of time) each combination of
memory-bound and compute-bound tasks occurred. Since our experiment ran on
a quad-core system, the possible combinations range from 0 memory-bound and 4
compute-bound tasks to 4 compute-bound and 0 memory-bound tasks co-scheduled
at a time. With standard Linux scheduling, the occurrence of the respective combi-
nations is distributed probabilistically, while sorted co-scheduling always selects the
combination that leads to minimal contention.

This experiment also shows the margin of the performance improvements our poli-
cies can achieve. The analysis of Section 5.3.4 indicated that resource contention can
degrade performance by up to a factor of four on our quad core. However, we cannot
expect our policies to improve performance on a similar scale. There are two factors
that determine the improvement in performance our policies can yield for a given sce-
nario: (1) the amount of contention that occurs under a resource-oblivious scheduling
policy, and (2) the amount of contention that necessarily occurs, even under an optimal
resource-conscious policy. Our co-scheduling policies yield maximum improvements
if factor (1) is high and factor (2) is low, i.e., if a resource-oblivious policy causes
much contention while a resource-conscious policy yields little contention. Factor (1)
is maximized for workloads containing many memory-bound tasks, while factor (2)

122

5.8 Evaluation

Figure 5.16: Task combinations with standard Linux scheduling and sorted co-
scheduling.
x-axis: combination (#stream/#aluadd) of tasks co-scheduled
y-axis: occurrence

123

5 Resource-conscious Scheduling for Energy Efficiency

Figure 5.17: Normalized EDP of stream for different workloads

is minimized for workloads containing only few or no memory-bound tasks. Thus, no
workload can at the same time maximize factor (1) and minimize factor (2). For the
mixed workloads for which our policies can yield an improvement, neither does re-
source oblivious scheduling cause the maximum possible contention, nor is it possible
to completely avoid contention in all cases, which limits the margin for improvements.

As mentioned, maximum benefits are achievable for the scenario with two memory-
bound and six compute-bound tasks, since this is the only scenario for which a
schedule is possible that completely avoids co-scheduling tasks that would cause con-
tention. However, in this case, the degree of contention introduced by standard Linux
scheduling is still relatively moderate. On the other hand, for the scenarios with more
memory-bound tasks, which cause more contention under standard Linux scheduling,
some memory-bound tasks have to be co-scheduled even under resource-conscious
scheduling.

We also investigated the impact of our scheduling policies on EDP, which considers
both runtime and energy consumption. Figure 5.17 displays the normalized EDP of
a ������ instance under standard Linux scheduling, sorted co-scheduling, and sorted
co-scheduling in combination with the frequency heuristic. The figure confirms again
that vector-based co-scheduling yields improvements for workloads containing two to
four ������ instances.

In addition, the experiment shows that the frequency heuristic is only beneficial if
co-scheduling is not, and vice versa. For one to six instances of ������, the EDPs
for sorted co-scheduling with and without the heuristic are nearly identical. Only for
seven and eight instances of ������, the frequency heuristic yields improvements.
The reason is that workloads with up to six ������ instances include at least two
instances of ��	���, so with eight tasks total and four cores, co-scheduling chooses
an ��	��� instance every timeslice on some core. The huge penalty ��	��� would

124

5.8 Evaluation

Figure 5.18: Normalized runtime of stream for different workloads

experience with frequency scaling prevents the heuristic from engaging it. With seven
instances of ������ and one ��	���, frequency scaling can be engaged every other
timeslice, and, with eight instances of ������, every timeslice.

Scalability with total number of tasks

In a next experiment, we vary not the percentage of memory-bound tasks in the
workload, but the total number of tasks, keeping the ratio of memory-bound to
compute-bound tasks constant at 1:1. Since with equal numbers of memory-bound
and compute-bound tasks, frequency scaling is never invoked and the power con-
sumption of the processor is almost the same for all scenarios, we only measured the
runtimes of the benchmarks. Again, the runtime of ��	��� does not vary between
standard Linux scheduling and runqueue sorting.

Figure 5.18 shows the normalized runtime of ������ for the two scheduling poli-
cies. Starting with eight instances total, sorted scheduling yields a significant benefit.
With eight instances total, two tasks are available on each core and the scheduler has
a choice which tasks to combine.

A smaller benefit is observable for six tasks. In this case, two cores are assigned
one task each, while the remaining two cores are assigned two tasks each. Sorted
scheduling can be applied to the latter cores, but not to the former.

The experiment shows that our scheduling policy scales reasonably well with the
total number of tasks running on a chip, i.e, the benefits of our policy persist with
an increasing number of tasks. We expect this property to hold also if the number of
chips in the system is increased, since our co-scheduling policies are designed to be
applied locally to chips (cf. Section 5.5.5).

125

5 Resource-conscious Scheduling for Energy Efficiency

Figure 5.19: Effect of sorted co-scheduling on runtime and EDP—scenario with
two memory-bound and six compute-bound benchmarks

5.8.4 Sorted co-scheduling

In the following, we evaluate sorted co-scheduling with the SPEC CPU 2006 bench-
marks. We evaluate two scenarios: a scenario with two memory-bound and six
compute-bound benchmarks, which is the combination that showed the most poten-
tial in our preliminary tests with the microbenchmarks, and a combination of four
memory-bound and four compute-bound benchmarks.

For the scenario with two memory-bound tasks, we chose ��� and ���$	���	�

as two memory-bound benchmarks affected heavily by memory contention (cf. Sec-
tion 5.3.4), and ������, �
���, ��
��
�, �����, ����, and �
���� as six compute-
bound benchmarks hardly affected by contention.

Figure 5.19 shows the runtimes and EDPs of the benchmarks when sorted co-
scheduling is applied, relative to standard Linux scheduling. While the compute-
bound benchmarks’ runtimes hardly change in comparison to standard Linux schedul-
ing, the runtimes and EDPs of both memory-bound benchmarks decrease signifi-
cantly, as could be expected from the preliminary experiments. For the memory-bound
benchmarks, we achieve a reduction of runtime of 15% and a reduction of EDP of 28%
on average.

The reduction of EDP observable for the memory-bound benchmarks stems almost
completely from the reduction of runtime, since the power consumption stays almost
the same with sorted co-scheduling. (Frequency scaling is never invoked, since at any
point in time, three compute-bound benchmarks are running.)

Next, we ran four compute-bound benchmarks (������, ��
��
�, �����, ����)
together with four memory-bound benchmarks (���, ���$	���	�, �
 , �
����).
Figure 5.20 shows the runtimes and EDPs of the benchmarks when sorted co-
scheduling is applied, relative to standard Linux scheduling.

126

5.8 Evaluation

Figure 5.20: Effect of sorted co-scheduling on runtime and EDP—scenario with
four memory-bound and four compute-bound benchmarks

Two things are worth noting: Firstly, the reduction of runtime and EDP for the
memory-bound benchmarks is not as big as in the previous experiment, since in a
scenario with four cores and a workload where half of the tasks are memory-bound,
even with runqueue sorting, two memory-bound tasks have to share the memory bus
at a time. (Note that the y-axis in Figure 5.20 has a different scale than the one in
Figure 5.19).

Secondly, ���$	���	�, though memory bound, shows only a slight reduction of
runtime (and, as a consequence, EDP). This is also a result of the fact that, ow-
ing to the workload, we cannot avoid co-scheduling two memory-bound tasks at
a time. These tasks have to share memory bandwidth. Depending on the tasks’
memory access patterns, the memory controller can distribute bandwidth in an un-
fair way [MM07], which accounts for ���$	���	� being at a disadvantage compared
to the other memory-bound benchmarks.

Like in the previous scenario, the reduction of EDP observable for the memory-
bound benchmarks stems almost completely from the reduction of runtime, since
again, no frequency scaling is engaged.

5.8.5 Greedy co-scheduling

We ran the same scenarios as in the last section, but applied greedy co-scheduling
instead of sorted co-scheduling. Since both co-scheduling policies do not influence
the compute-bound benchmarks, we only compare the behavior of the memory-bound
benchmarks under the two policies.

Since again, frequency scaling is never invoked for the given scenarios, the ef-
fects of our policies on energy and EDP only depend on runtime. Figure 5.8.5 com-

127

5 Resource-conscious Scheduling for Energy Efficiency

Figure 5.21: Comparison of greedy co-scheduling and sorted co-scheduling—
scenario with two memory-bound benchmarks (top) and four
memory-bound benchmarks (bottom)

pares the runtimes for the scenario with two memory-bound and six compute-bound
benchmarks (top) and the scenario with four memory-bound and four compute-bound
benchmarks (bottom). Two points are remarkable:

• When looking at the average, greedy co-scheduling achieves worse perfor-
mance than sorted co-scheduling for the scenario with two memory-bound
benchmarks, but slightly better performance for the scenario with four memory-
bound benchmarks. The reason is that, depending on the situation, the policies
choose different combinations of tasks to schedule. Since both policies are
heuristics, neither one is guaranteed to select the best combination of tasks in
all situations.

• Especially for the scenario with four memory-bound benchmarks, the two co-
scheduling policies distribute performance improvements differently among the
memory bound tasks, since they choose different combinations of tasks for co-
scheduling.

128

5.8 Evaluation

Figure 5.22: Comparison of greedy co-scheduling and sorted co-scheduling—
normalized runtime of cache-bound tasks

While for the SPEC scenarios, overall, both co-scheduling policies showed compa-
rable results, greedy co-scheduling is more advantageous than sorted co-scheduling
for scenarios where memory is not the resource for which there is the heaviest con-
tention. Greedy co-scheduling is more versatile owing to its uniform view on activity
vectors, in contrast to sorted co-scheduling, which is fixed to one particular resource.

We ran four instances of the ��	��� microbenchmark (no cache utilization) and
four instances of ������� ��" (heavy cache utilization, cf. Section 5.3.4) on two
cores sharing L2 cache. We also repeated the test with ������� ��! in lieu of
������� ��". Figure 5.22 depicts the runtime of the cache-intensive tasks using stan-
dard Linux scheduling, sorted co-scheduling, and greedy co-scheduling, normalized
to the runtime under standard Linux scheduling.

In both cases, greedy co-scheduling is more successful in finding an optimal sched-
ule than sorted co-scheduling for memory bandwidth. The reason why sorted co-
scheduling achieves an improvement at all is that whenever two cache-intensive tasks
are scheduled together, the resulting cache misses cause utilization of memory band-
width, which sorted scheduling can use to improve its schedule. However, the im-
proved schedule results in less cache misses and memory bus activity, reducing sorted
scheduling’s future chances of finding the right schedule, and so forth.

Overall, the improvements that can be achieved for ������� ��! are much greater
than those for ������� ��", since ������� ��!’s working set fits into the cache
only once, so co-scheduling two instances causes much more slowdown than this is
the case with ������� ��!.

129

5 Resource-conscious Scheduling for Energy Efficiency

Scenario Benchmarks (c = compute-bound, m = memory-bound)
1 ������ (c), �
��� (c), ��
��
� (c), ����� (c), ���� (c),

�
���� (c), �4��� (c), �
��
 (c)
2 ������ (c), ��
��
� (c), ����� (c), ���� (c), ��� (m), ���$	���	�

(m), �
 (m), �
���� (m)
3 ����� (c), 5���6�(� (m), ��� (m), ���$	���	� (m), �
 (m), ���

(m),
������ (m), �
���� (m)
4 5���6�(� (m), ��� (m), ���$	���	� (m), �
 (m), ���
 (m),

������ (m), �
���� (m), ������� (m)

Table 5.6: SPEC scenarios used for evaluating the frequency heuristic

5.8.6 Frequency heuristic

Our proposed frequency heuristic engages frequency scaling as a fallback to conserve
energy in situations when co-scheduling cannot avoid resource contention. For the
experiments with SPEC scenarios presented in the preceding sections, our frequency
heuristic never invoked frequency scaling, because we selected scenarios containing
enough compute-bound tasks for co-scheduling to be effective and reduce resource
contention.

For evaluating the frequency heuristic, we choose four different SPEC scenar-
ios. Scenario 1 contains only compute-bound benchmarks. Scenario 2 contains four
compute-bound and four memory-bound benchmarks. For these two scenarios, fre-
quency scaling should not be invoked; they are intended for revealing the overhead
of our heuristic. Scenario 3 contains one compute-bound and seven memory-bound
benchmarks, and scenario 4 contains only memory-bound benchmarks. Scenarios 3
and 4 represent the two configurations in which frequency scaling is beneficial, as in-
dicated by our preliminary tests with the microbenchmarks (Section 5.8.3). Table 5.6
shows the individual SPEC benchmarks used for the scenarios.

We compare three configurations: Standard Linux scheduling, sorted co-scheduling,
and sorted co-scheduling in combination with the frequency heuristic. Figure 5.23
depicts the average EDP for the SPEC benchmarks of our four scenarios, normalized
to the EDP achieved by standard Linux.

For scenario 1, all three policies achieve the same EDP. The reason is that with eight
compute-bound tasks, there is no contention that can be improved by co-scheduling,
neither is there any opportunity to conserve energy by frequency scaling.

For scenario 2, there is contention that co-scheduling manages to reduce, since
the workload contains four compute-bound and four memory-bound tasks. Engaging
frequency scaling, however, is not beneficial because of the four compute-bound tasks.
Therefore, the frequency heuristic yields no additional benefits over co-scheduling.

130

5.8 Evaluation

Figure 5.23: Effect of frequency heuristic for different SPEC scenarios—
averaged normalized EDP of the benchmarks

Scenario 3 contains one compute-bound and seven memory-bound tasks. As a re-
sult, there is considerable memory contention, which co-scheduling cannot reduce
since there are too few compute-bound tasks. In this situation, the heuristic can miti-
gate the effects of the memory contention on EDP by engaging frequency scaling. Yet,
owing to the one compute-bound benchmark, frequency scaling cannot be invoked all
of the time.

For scenario 4, which contains only memory-bound tasks, co-scheduling can, like
in scenario 3, not avoid resource contention. The benefit of the frequency heuristic
is even bigger for this scenario, since without any compute-bound tasks, the heuristic
can lower the frequency all of the time.

As these experiments show, the frequency heuristic is able to detect situations in
which frequency scaling can mitigate the waste of energy induced by resource con-
tention without introducing additional energy inefficiency by prolonging the runtime
of compute-bound tasks. The real advantage of our frequency heuristic over a static
frequency setting appears for dynamic scenarios where the workload changes over
time, and engaging frequency scaling is sometimes beneficial and sometimes not. We
created such a workload by executing four instances of the memory-bound �
 in par-
allel on the four cores of our test chip, and after their termination, four instances of
�����, and so on. Figure 5.24 shows the EDP achieved under the two static frequency
settings of 2.4GHz and 1.6GHz, as well as under the frequency heuristic, relative to
the EDP achieved at 2.4GHz. While ����� runs more efficiently at 2.4GHz and �

runs more efficiently at 1.6GHz, only the heuristic can choose the best frequency in
each situation.

131

5 Resource-conscious Scheduling for Energy Efficiency

Figure 5.24: Effect of frequency heuristic for a dynamic workload

Overall, our experiments indicate that the frequency heuristic is capable of selecting
the frequency that achieves or comes close to a minimal overall EDP, and is able to
mitigate the effects of resource contention when our co-scheduling policies cannot
avoid the contention owing to inauspicious workloads.

5.8.7 Application of co-scheduling to the NetBurst architecture

Since greedy co-scheduling is a policy that uses activity vectors in a uniform way, it
can be applied without any adaption to any architecture that shares resources between
processors, provided that there is an implementation of activity vectors representing
the utilization of the resources. In particular, greedy scheduling should also lead to
performance improvements for an SMT processor, since the logical processors share
resources, and greedy scheduling avoids co-scheduling tasks that utilize the same re-
sources.

For evaluating greedy co-scheduling on an SMT architecture, we applied it on top
of our implementation of activity vectors for the Intel NetBurst architecture (see Chap-
ter 4) and ran it on the IBM x440 system described in Section 4.6.

We ran the same scenario as described at the end of Section 4.6.5 (one physical pro-
cessor enabled, Hyper-Threading enabled, six randomly selected SPEC benchmarks
running in parallel). On average, greedy co-scheduling yielded a reduction of the
benchmarks’ runtime of 4.5% compared to standard Linux scheduling. This result un-
derlines the versatility of vector-based scheduling policies. The improvement achiev-
able with greedy co-scheduling is better than what activity unbalancing as described
in Section 4.4.3 achieves (3.3% average reduction of runtimes). The reason is that
greedy co-scheduling is focused explicitly on avoiding resource contention, in con-

132

5.9 Summary

trast to activity unbalancing, which was designed for avoiding hotspots and provided
performance improvements as a byproduct.

5.9 Summary

In this chapter, we have investigated how energy efficiency can be improved by
resource-conscious scheduling. We have considered the aspect of contention for
shared resources and the aspect of selecting an optimal processor frequency based on
workload characteristics. We have found that scheduling for reducing contention and
scheduling for optimal frequency selection are oppositional goals if multiple cores
have to run at the same frequency owing to hardware constraints. An analysis of the
Intel Core2 Quad processor has revealed that, on this platform, co-scheduling tasks
that utilize mutually different resources is more important than co-scheduling tasks
that share a common optimal frequency. Depending on the workload, frequency scal-
ing can lead to energy savings, but combining tasks that run best at a certain frequency
does not pay off if it leads to resource contention.

We have shown that the information provided by activity vectors is suitable to guide
resource conscious co-scheduling of tasks. Based on activity vectors, we have de-
signed two policies that avoid contention and, as a consequence, reduce the energy
delay product. Sorted co-scheduling is tailored to avoid contention for a single re-
source and is applicable if one resource is known to be the main bottleneck. We
found memory bandwidth to be such a critical resource on the Core2 Quad. Greedy
co-scheduling is suited to avoid contention for multiple resources and is applicable if
there is no single bottleneck or if the most critical resource is unknown. Both policies
rely on tasks with different characteristics being present on each core. We accomplish
such a heterogeneous distribution of tasks to cores with vector balancing, a modified
load balancing policy.

We supplement our scheduling policies with a heuristic for frequency scaling that
yields an additional reduction of EDP in situations when our co-scheduling policies
cannot avoid memory contention because of an inauspicious workload that contains
too many memory-bound tasks.

Our evaluation has shown that our scheduling policies are able to reduce EDP for
mixed scenarios containing compute-bound and memory-bound tasks. If the workload
contains to many memory-bound tasks and contention cannot be avoided by schedul-
ing, our frequency heuristic mitigates the effects of contention and as a consequence
reduces EDP.

Our research has shown that on today’s processors, contention for memory band-
width is of paramount importance. It is an open question whether memory band-
width will remain the most critical resource for future processors and future applica-
tions. However, our proposed policies are flexible; sorted co-scheduling can easily
be adapted to consider any single resource, and greedy co-scheduling is not fixed on

133

5 Resource-conscious Scheduling for Energy Efficiency

a particular resource by design. No matter what future processors will be like, for
economical reasons, chip resources will always be limited, and shared resources must
be assigned carefully in order to avoid contention. Vector-based co-scheduling offers
a system-software approach that accomplishes this goal by steering the utilization of
scarce resources in a coordinated fashion.

134

6 Conclusion

6.1 Recapitulation

Developments in processor technology over the past decades have introduced new
challenges, the most prominent being thermal problems, the need for energy effi-
ciency, and explicit on-chip parallelism.

All three phenomena are strongly connected to the characteristics of individual
tasks. Task characteristics determine chip temperature and temperature distribution,
and task characteristics decide how efficiently mechanisms for conserving energy can
be put to use. The characteristics of tasks executed in parallel influence the degree of
contention for shared resources, affecting performance and energy efficiency.

Since the scheduler decides which tasks are executed at what time and in which
combination, it is the scheduler who has control over these effects. It is our convic-
tion that, on recent processors, scheduling in terms of optimal temperature, energy
efficiency, and performance can only succeed if we provide the scheduler with infor-
mation about individual tasks that goes beyond the task state that today’s operating
systems maintain.

In this thesis, we have introduced the abstraction of activity vectors. An activity
vector characterizes a task by the utilization of processor-related resources the task
causes when executed. This allows the scheduler to assess the implications a particular
schedule has on temperature, energy consumption, and performance.

We have proposed several scheduling policies based on activity vectors. For im-
proving on-chip temperature distribution and avoiding hotspots, we schedule tasks
that use different chip resources successively (runqueue sorting). On multithreaded
processors, we achieve the same effect by scheduling tasks using different resources
in parallel. We also propose a policy for distributing tasks to chips in a way that tasks
using different resources are available on each chip to enable the other two policies.

For improving energy efficiency and performance, we co-schedule tasks using dif-
ferent resources. We propose sorted co-scheduling, a specialized policy that is focused
on a single bottleneck resource, and greedy co-scheduling, a generic policy that works
if multiple resources cause contention. For situations in which contention for off-chip
resources like memory bandwidth cannot be avoided, we propose to engage power
saving mechanisms like frequency scaling to increase energy efficiency.

135

6 Conclusion

(a) Runqueue sorting for avoiding hotspots: tasks with complementary characteristics
are scheduled in succession; combination of co-scheduled tasks is arbitrary

(b) Greedy co-scheduling: tasks with complementary characteristics are co-
scheduled; temporal order of tasks is arbitrary

(c) Sorted co-scheduling: tasks are sorted according to utilization of a resource; im-
plicit co-scheduling via reversed sorting direction of different queues

Figure 6.1: Comparison of thermal runqueue sorting, greedy co-scheduling, and
sorted co-scheduling

6.2 Comparison of the Proposed Scheduling Policies

For comparison, Figure 6.1 depicts the policy of thermal runqueue sorting we in-
troduced in Chapter 4 and the two co-scheduling policies introduced in Chapter 5
schematically.

Runqueue sorting for avoiding hotspots defines a temporal order on the tasks in
a runqueue by selecting tasks with different characteristics for successive execution.
Since co-scheduling is not performed, the combination of tasks running at a time is
arbitrary. Greedy co-scheduling, on the other hand, applies the principle of select-
ing tasks with complementary characteristics across cores, but the temporal order in
which the tasks run on each core is undefined. Finally, sorted co-scheduling defines
a temporal order on the tasks in each runqueue, and implicitly co-schedules tasks by
applying diametrical sorting directions.

136

6.3 Achievements

Since thermal runqueue sorting does not depend on a specific combination of tasks
running on different processors or cores at a time, whereas greedy co-scheduling does
not depend on a specific order of the tasks executed in succession, we can combine
the two policies for achieving both, reducing contention and improving temperature
distribution. Sorted co-scheduling, on the other hand, defines its own order on the
tasks in the runqueues; therefore, we cannot combine this co-scheduling policy with
a policy for reducing hotspots. However, sorting by memory intensity is intended for
systems where memory bandwidth is the most critical resource, for instance, CMP
systems. For CMPs, overall energy efficiency is considered more important than lo-
calized heating [YSBZ05]: Localized heating occurs when there is a high activity in
certain key structures, for example the register files of SMT processors that are utilized
by multiple logical threads, whereas for CMPs, the main problem is that the aggregate
power of several cores causes the entire package to heat up.

6.3 Achievements

Our thesis has introduced the concept of task activity vectors to represent a task’s
resource utilization and has shown that activity vectors provide a valuable metric for
temperature and energy-aware, performance-oriented scheduling policies.

Activity vectors are an abstraction for representing resource utilization in general.
While information about processor resource utilization has been used before to guide
scheduling, the scheduling policies proposed in the literature have been hardwired to
fixed architecture or micro-architecture specific metrics. To the best of our knowl-
edge, our thesis is the first to abstract from the actual resources by introducing activity
vectors whose components can represent any resource. This decouples the scheduling
policy from the mechanism of determining resource utilization. As a consequence,
activity vectors allow to formulate more general, versatile, and portable scheduling
policies.

Furthermore, we have proposed temperature-aware scheduling and migration poli-
cies that make use of activity vectors. We have shown that scheduling guided by
information about chip utilization can be used to attain a more balanced tempera-
ture distribution on the chip. Especially the idea of using the order in which tasks are
scheduled for influencing temperature constitutes a new concept that is not to be found
in the literature. Our experiments have shown that vector-based, temperature-aware
scheduling succeeds in reducing hotspots.

We have also applied the concept of task activity vectors to achieve better energy
efficiency via co-scheduling. To our knowledge, our work is the first to investigate
co-scheduling in connection with both resource contention and frequency scaling at
the same time. We have found that co-scheduling tasks in a way that avoids resource
contention is more important for improving energy efficiency than co-scheduling tasks
that profit from a common optimal chip frequency. Based on this knowledge, we have

137

6 Conclusion

proposed vector-based co-scheduling policies that reduce the energy delay product.
Our experiments show that on a multicore chip, the energy delay product of memory-
bound tasks can be reduced by up to 28% compared to standard Linux scheduling just
by avoiding contention.

6.4 Limitations and Future Work

Obtaining activity vectors

Activity vectors, as proposed in our thesis, represent the utilization of processor-
related resources. In our implementation, we have used performance monitoring coun-
ters to obtain information about resource utilization. While the approach of (ab)using
performance monitoring counters for on-line task characterization has already proven
viable in the past, it still has some drawbacks.

Performance monitoring counters are intended for monitoring events related to ap-
plication performance, hence the selection of events made by the hardware designers
does not necessarily serve the purpose of revealing the utilization of chip resources.
As a result, for some resources, calculations involving multiple events must be ap-
plied [IM03]. Also, some performance events only allow a rough estimation of re-
source utilization. The limited number of suitable counters may necessitate multi-
plexing, which causes overhead for frequent reading and re-loading of performance
counters and control registers. Multiplexing also requires a high timer interrupt fre-
quency to deliver acceptable results. Last, if performance monitoring counters are
used by the operating system for supporting scheduling, they are not available for
their original purpose of performance analysis.

We have shown that information about resource utilization is a valuable information
that can be used to improve temperature, performance, and energy efficiency. There-
fore, we argue that it would be beneficial to include counters directly tailored to re-
source utilization in future hardware. This would eliminate the drawbacks mentioned
above.

Vector-based scheduling

The main limitation of almost all of our proposed scheduling policies lies in their
dependence on the workload. Our policies for improving temperature distribution
or energy efficiency make use of the heterogeneity of the workload by controlling
the combination of tasks that run simultaneously or successively on a processor. For
workloads consisting only of tasks with similar characteristics (that means, tasks uti-
lizing the same chip resources), our proposed scheduling policies are not beneficial.
In addition, policies that change the order in which tasks are scheduled (e.g., runqueue
sorting) are only applicable for runqueues consisting of multiple tasks.

138

6.4 Limitations and Future Work

While these conditions are certainly not present in every system, recent trends
like virtualization and server consolidation combine more, potentially heterogeneous
workloads in a single system. For future work, it would be beneficial to explore to
what extent these techniques can be used in connection with vector-based scheduling.
Especially the concept of virtual machine migration is interesting, since it allows to
change the workload in a system.

In this thesis, we have deliberately neglected the aspect of multithreaded appli-
cations. The question what kind of characterization is most suitable and useful to
describe the characteristics of multithreaded tasks (e.g., one activity vector for the en-
tire task, one activity vector for each thread, or a combination of both) remains for
future research. In addition, multithreaded tasks add further challenges for the design
of vector-based scheduling policies. Next to the tasks’ and threads’ characteristics, re-
lations between the threads, defined, for example, by communication or data sharing
have to be considered for optimal scheduling.

The design of our scheduling policies has concentrated on non-interactive work-
loads. While we have not explored the space of interactive workloads, we believe
that vector-based scheduling policies can be devised for such workloads, too. Owing
to the volatile nature of interactive tasks, such scheduling policies should focus on
the placement of newly starting or de-blocking tasks instead of arranging runqueues.
Information about the characteristics of tasks running only for a short time could be
provided using cached information from previous runs; we have described a compa-
rable approach in previous work [Mer05].

An issue we have not explicitly addressed is the aspect of fairness. While with our
policies, task characteristics do not influence the amount of processor time allotted to
a task, changing the assignment of tasks to processors, as we do with our balancing
policies, can have implications on fairness. For example, a task that, owing to its char-
acteristics, is always scheduled in time-sharing fashion on the same CPU with a task
with a large cache footprint, is penalized compared to a random assignment of tasks
to processors. Similarly, while our co-scheduling policies are designed in a way that
avoids resource contention, which is generally advantageous in terms of performance,
situations in which co-scheduling penalizes a task with moderate resource demands
by combining it with a resource intensive task are not precluded. Investigating the
implications of vector-based scheduling policies on fairness is a topic for future work.

Interaction with future hardware

Future processors are likely to have built-in mechanisms and policies for avoiding
hotspots. For instance, chips that feature spare resources and perform activity mi-
gration in hardware have been proposed [HBA03, SSH+03]. Another example are
multithreaded chips that favor certain logical processors when allocating resources
depending on the characteristics of the tasks they run and on the current temperature
distribution [DM05].

139

6 Conclusion

We believe that both hardware and software should cooperate to attain the goal
of effective temperature management best. If the hardware exposes information to
the operating system about internal features like multiple register files or adaptive
fetch policies, and about the actions actually taken to prevent thermal emergencies, the
operating system can provide the circumstances in which the hardware’s mechanisms
are most effective, for example by migrating tasks between CPUs or ordering the tasks
in the runqueues accordingly.

Another promising approach is allowing the software greater control over the hard-
ware. Cazorla et al. [CKS+04] proposes to include a feature in SMT processors that
allows the operating system to set the ratio at which the processor fetches instructions
for the different logical processors. Cazorla et al. investigates this mechanism under
the objective of providing quality of service. We believe that such a mechanism could
also be used for regulating chip temperature based on information about the utilization
of chip units as provided by activity vectors.

Our scheduling policies are based on the assumption that all processors are iden-
tical. Future multicore systems might contain cores that show different maximum
frequencies and different power consumptions. This offers new possibilities and
new challenges for scheduling [TT08]. A further modification we might see in fu-
ture systems are cores that differ in their microarchitecture residing on one chip. In
such systems, the assignment of tasks to cores has great implications on energy ef-
ficiency [CJ08]. Especially the issue of resource contention, which still persists for
such heterogeneous architectures, has, to our knowledge, not been investigated yet.

140

List of Figures

1.1 Impact of scheduling on temperature distribution 3
1.2 Impact of scheduling on resource contention 5

2.1 Floorplan of the Intel Pentium 4 Northwood processor 12
2.2 Dependence of temperature from power 13

3.1 Structure of the activity vector framework 22
3.2 Phases of the astar benchmark . 25

4.1 Example for runqueue sorting . 41
4.2 Angles between activity vectors . 42
4.3 Manhattan length and Euclidean length of a two-dimensional vector . 44
4.4 Thermal model of a simple chip with four units 46
4.5 Active and expired array of the Linux O(1)-Scheduler 54
4.6 Temperature of the floating point registers with and without runqueue

sorting . 58
4.7 Temperature of floating point registers (hmmer + namd) 59
4.8 Temperature of floating point registers (hmmer + namd, combination

of the histograms from Figure 4.7) 60
4.9 Temperature of DTLB (gobmk + leslie3d) 61
4.10 Temperature of floating point registers (calculix + milc) 62
4.11 Temperature of floating point registers (8 processors) 63
4.12 Temperature of floating point registers (Hyper-Threading) 64
4.13 Course of temperature for floating point registers (Hyper-Threading) . 65
4.14 Temperature of the floating point registers with different timeslice

lengths and scheduling policies . 67

5.1 Two mutually exclusive ways for achieving energy efficiency 74
5.2 Architecture of the Intel Core2 Quad 83
5.3 Normalized runtime of microbenchmarks 87
5.4 Normalized runtime of SPEC benchmarks 88
5.5 Combinations of memory-bound and compute-bound benchmarks . . 90
5.6 Effects of frequency scaling on aluadd and stream 91
5.7 Relative runtime, energy, and EDP for the SPEC benchmarks 93

141

List of Figures

5.8 Resource utilization caused by the SPEC benchmarks at 2.4GHz com-
pared to 1.6GHz . 99

5.9 Sub-optimal and optimal co-scheduling of tasks 103
5.10 Sorted co-scheduling with equal and unequal runqueue lengths 107
5.11 Sorted co-scheduling for more than two cores 109
5.12 Optimal co-scheduling . 110
5.13 Selection process of greedy co-scheduling 111
5.14 Interpolation of the EDP factor . 114
5.15 Runtime of one stream instance for different workloads 122
5.16 Task combinations with standard Linux scheduling and sorted co-

scheduling . 123
5.17 Normalized EDP of stream for different workloads 124
5.18 Normalized runtime of stream for different workloads 125
5.19 Effect of sorted co-scheduling on runtime and EDP—scenario with

two memory-bound and six compute-bound benchmarks 126
5.20 Effect of sorted co-scheduling on runtime and EDP—scenario with

four memory-bound and four compute-bound benchmarks 127
5.21 Comparison of greedy co-scheduling and sorted co-scheduling 128
5.22 Comparison of greedy co-scheduling and sorted co-scheduling—

cache-bound tasks . 129
5.23 Effect of frequency heuristic for different SPEC scenarios 131
5.24 Effect of frequency heuristic for a dynamic workload 132

6.1 Comparison of thermal runqueue sorting, greedy co-scheduling, and
sorted co-scheduling . 136

142

List of Tables

4.1 Effects of different timeslice lengths in combination with runqueue
sorting . 66

5.1 Relative runtime, energy, and EDP of benchmark combinations 92
5.2 Combinations of memory-bound benchmarks 93
5.3 Combinations of memory-bound and compute-bound benchmarks . . 94
5.4 Impact of different schedules and frequency settings 96
5.5 Overhead of vector-based scheduling 120
5.6 SPEC scenarios used for evaluating the frequency heuristic 130

143

List of Tables

144

Bibliography

[AB06] Jeff Andrews and Nick Baker. Xbox 360 system architecture. IEEE
Micro, 26(2), 2006.

[ABD+97] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghe-
mawat, Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites,
Mark T. Vandevoorde, Carl A. Waldspurger, and William E. Weihl.
Continuous profiling: where have all the cycles gone? In Proceedings
of the 16th Symposium on Operating Systems Principles (SOSP’97).
ACM, October 1997.

[ACD06] James H. Anderson, John M. Calandrino, and Uma Maheswari C. Devi.
Real-time scheduling on multicore platforms. In RTAS ’06: Proceed-
ings of the 12th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium. IEEE Computer Society, April 2006.

[AHH89] Amant Agarwal, Mark Horowitz, and John Hennessy. An analytical
cache model. ACM Transactions on Computer Systems, 7(2), 1989.

[BB95] Thomas D. Burd and Robert W. Brodersen. Energy efficient CMOS
microprocessor design. In HICSS ’95: Proceedings of the 28th Hawaii
International Conference on System Sciences. IEEE Computer Society,
1995.

[Bel97a] Frank Bellosa. Follow-on scheduling: Using TLB information to re-
duce cache misses. In: Sixteenth Symposium on Operating Systems
Principles (SOSP ’97), Work in Progress Session, October 1997.

[Bel97b] Frank Bellosa. Process cruise control: Throttling memory access in a
soft real-time environement. Technical Report TR-I4-97-2, University
of Erlangen, Department of Computer Science, July 1997.

[BH04] Erik Berg and Erik Hagersten. StatCache: a probabilistic approach to
efficient and accurate data locality analysis. In ISPASS ’04: Proceed-
ings of the 2004 IEEE International Symposium on Performance Anal-
ysis of Systems and Software. IEEE Computer Society, March 2004.

145

Bibliography

[BM01] David Brooks and Margaret Martonosi. Dynamic thermal management
for high-performance microprocessors. In Proceedings of the Seventh
International Symposium on High-Performance Computer Architecture
(HPCA’01). IEEE Computer Society, January 2001.

[BP04] James R. Bulpin and Ian A. Pratt. Multiprogramming performance of
the Pentium 4 with Hyper-Threading. In Third Annual Workshop on
Duplicating, Deconstruction and Debunking, June 2004.

[BP05] James R. Bulpin and Ian A. Pratt. Hyper-threading aware process
scheduling heuristics. In ATEC ’05: Proceedings of the USENIX An-
nual Technical Conference. USENIX Association, April 2005.

[BPA08] Mohammad Banikazemi, Dan Poff, and Bulent Abali. PAM: a novel
performance/power aware meta-scheduler for multi-core systems. In
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing
(SC’08). IEEE Computer Society, November 2008.

[BPJ+07] Sarah Bird, Aashish Phansalkar, Lizy K. John, Alex Mercas, and Ra-
jeev Idukuru. Performance characterization of SPEC CPU benchmarks
on Intel’s Core microarchitecture based processor. In SPEC Benchmark
Workshop, January 2007.

[BS96] Frank Bellosa and Martin Steckermeier. The performance implications
of locality information usage in shared-memory multiprocessors. Jour-
nal of Parallel and Distributed Computing, 37(1), 1996.

[BWWK03] Frank Bellosa, Andreas Weissel, Martin Waitz, and Simon Kellner.
Event-driven energy accounting for dynamic thermal management. In
Proceedings of the Workshop on Compilers and Operating Systems for
Low Power (COLP’03), September 2003.

[CCF+07] Jeonghwan Choi, Chen-Yong Cher, Hubertus Franke, Hendrik
Hamann, Alan Weger, and Pradip Bose. Thermal-aware task schedul-
ing at the system software level. In Proceedings of the 2007 Interna-
tional Symposium on Low-Power Electronics and Design (ISLPED’07).
ACM, 2007.

[CGKS05] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predict-
ing inter-thread cache contention on a chip multi-processor architec-
ture. In HPCA ’05: Proceedings of the 11th International Symposium
on High-Performance Computer Architecture. IEEE Computer Society,
February 2005.

146

Bibliography

[CJ08] Jian Chen and Lizy K. John. Energy-aware application scheduling on a
heterogeneous multi-core system. In Proceedings of the IEEE Interna-
tional Symposium on Workload Characterization (IISWC’08), Septem-
ber 2008.

[CKS+04] Francisco J. Cazorla, Peter M.W. Knijnenburg, Rizos Sakellariou, En-
rique Fernández, Alex Ramirez, and Mateo Valero. Predictable perfor-
mance in SMT processors. In CF ’04: Proceedings of the 1st confer-
ence on Computing frontiers. ACM, April 2004.

[CMSB+08] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S.
Nikolopoulos, Bronis R. de Supinski, and Martin Schulz. Predic-
tion models for multi-dimensional power-performance optimization on
many cores. In Proceedings of the Seventeenth Conference on Parallel
Architectures and Compilation Techniques (PACT’08). ACM, October
2008.

[CRW07] Ayse Kivilcim Coskun, Tajana Simunic Rosing, and Keith Whisnant.
Temperature aware task scheduling in MPSoCs. In Proceedings of the
Conference on Design Automation and Test in Europe (DATE’07). EDA
Consortium, April 2007.

[CSP04] Kihwan Choi, Ramakrishna Soma, and Massoud Pedram. Dynamic
voltage and frequency scaling based on workload decomposition. In
Proceedings of the 2004 International Symposium on Low-Power Elec-
tronics and Design (ISLPED’04). ACM, August 2004.

[DM05] James Donald and Margaret Martonosi. Leveraging simultaneous mul-
tithreading for adaptive thermal control. In Second Workshop on
Temperature-Aware Computer Systems (TACS’05), June 2005.

[DM06] James Donald and Margaret Martonosi. Techniques for multicore ther-
mal management: Classification and new exploration. SIGARCH Com-
puter Architecture News, 34(2), 2006.

[DR07] Gaurav Dhiman and Tajana Simunic Rosing. Dynamic voltage fre-
quency scaling for multi-tasking systems using online learning. In Pro-
ceedings of the 2007 International Symposium on Low-Power Electron-
ics and Design (ISLPED’07). ACM, August 2007.

[EMGAD06] Ali El-Moursy, Rajeev Garg, David H. Albonesi, and Sandhya
Dwarkadas. Compatible phase co-scheduling on a CMP of multi-
threaded processors. In 20th IEEE International Parallel and Dis-
tributed Processing Symposium, 2006 (IPDPS 2006). IEEE Computer
Society, April 2006.

147

Bibliography

[Fed06] Alexandra Fedorova. Operating System Scheduling for Chip Multi-
threaded Processors. PhD thesis, Harvard University, September 2006.

[FEL03] Xiaobo Fan, Carla Ellis, and Alvin Lebeck. Interaction of power-aware
memory systems and processor voltage scaling. In Proceedings of the
Workshop on Power-Aware Computer Systems (PACS’03), December
2003.

[Fle01] Marc Fleischmann. Longrun power management. White Paper, Trans-
meta Corporation, January 2001.

[FPL+07] Vincent W. Freeh, Feng Pan, David K. Lowenthal, Nandini Kappiah,
Rob Springer, Barry L. Rountree, and Mark E. Femal. Analyzing
the energy-time tradeoff in high-performance computing applications.
IEEE Transactions on Parallel and Distributed Systems, 18(6), 2007.

[FR92] Dror G. Feitelson and Larry Rudolph. Gang scheduling performance
benefits for finegrained synchronization. Journal of Parallel and Dis-
tributed Computing, 16(4), 1992.

[FSNS04] Alexandra Fedorova, Christopher Small, Daniel Nussbaum, and Margo
Seltzer. Chip multithreading systems need a new operating system
scheduler. In EW11: Proceedings of the 11th ACM SIGOPS European
workshop. ACM, September 2004.

[FSSN05] Alexandra Fedorova, Margo Seltzer, Christoper Small, and Daniel
Nussbaum. Performance of multithreaded chip multiprocessors and im-
plications for operating system design. In ATEC ’05: Proceedings of
the annual USENIX Annual Technical Conference. USENIX Associa-
tion, April 2005.

[GBCH01] Stephen H. Gunther, Frank Binns, Douglas M. Carmean, and
Jonathan C. Hall. Managing the impact of increasing microprocessor
power consumption. Intel Technology Journal, 2001. Q1 issue.

[GH96] Ricardo Gonzalez and Mark Horowitz. Energy dissipation in general
purpose microprocessors. IEEE Journal of Solid-State Circuits, 31(9),
September 1996.

[GPV04] Mohamed Gomaa, Michael D. Powell, and T. N. Vijaykumar. Heat-
and-run: leveraging SMT and CMP to manage power density through
the operating system. In ASPLOS-XI: Proceedings of the 11th interna-
tional conference on Architectural support for programming languages
and operating systems. ACM, October 2004.

148

Bibliography

[HBA03] Seongmoo Heo, Kenneth Barr, and Krste Asanovi. Reducing power
density through activity migration. In Proceedings of the International
Symposium on Low Power Electronics and Design (ISPLED’03). ACM,
August 2003.

[Hen06] John L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH
Computer Architecture News, 34(4), 2006.

[HF04] Chung-Hsing Hsu and Wu-Chun Feng. Effective dynamic voltage scal-
ing through CPU-boundedness detection. In Proceedings of the Work-
shop on Power-Aware Computer Systems (PACS’04), December 2004.

[HF05] Chung-Hsing Hsu and Wu-Chun Feng. A power-aware run-time sys-
tem for high-performance computing. In Proceedings of the ACM/IEEE
Conference on Supercomputing (SC’05). IEEE Computer Society,
November 2005.

[HIG94] Mark Horowitz, Thomas Indermaur, and Ricardo Gonzalez. Low-
power digital design. In IEEE Symposium on Low Power Electronics.
IEEE Computer Society, October 1994.

[HII+09] Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Don Newell, Vi-
neet Chadha, and Jaideep Moses. Rate-based QoS techniques for
cache/memory in CMP platforms. In ICS ’09: Proceedings of the 23rd
international conference on Supercomputing. ACM, June 2009.

[HKK06] Yongkui Han, Israel Koren, and C. M. Krishna. Temptor: A lightweight
runtime temperature monitoring tool using performance counters. In
Proceedings of the Third Workshop on Temperature-Aware Computer
Systems (TACS’06), June 2006.

[HKS+07] Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, Doug Burger,
and Stephen W. Keckler. A NUCA substrate for flexible CMP cache
sharing. IEEE Transactions on Parallel and Distributed Systems, 18(8),
2007.

[HM07] Sebastian Herbert and Diana Marculescu. Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors. In Proceedings of the
2007 International Symposium on Low-Power Electronics and Design
(ISLPED’07). ACM, August 2007.

[HNR68] Peter E. Hart, Nils N. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions
on Systems Science and Cybernetics, 4(2), July 1968.

149

Bibliography

[HRIM06] Lisa R. Hsu, Steven K. Reinhardt, Ravishankar Iyer, and Srihari Maki-
neni. Communist, utilitarian, and capitalist cache policies on CMPs:
caches as a shared resource. In PACT ’06: Proceedings of the 15th in-
ternational conference on Parallel architectures and compilation tech-
niques. ACM, September 2006.

[HSS+04] Wei Huang, Mircea R. Stan, Kevin Skadron, Karthik Sankara-
narayanan, Shougata Ghosh, and Sivakumar Velusamy. Compact ther-
mal modeling for temperature aware design. In Proceedings of the 41st
Design Automation Conference (DAC’04). ACM, September 2004.

[HWW02] Jim Hoskins, Bill Wilson, and Ray Winkel. Exploring IBM EServer
XSeries: The Instant Insider’s Guide to IBM’s Intel-Based Servers and
Workstations. Maximum Press, 2002.

[IBC+06] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose,
and Margaret Martonosi. An analysis of efficient multi-core global
power management policies: Maximizing performance for a given
power budget. In Proceedings of the 39th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MIRCO’06). IEEE Computer
Society, December 2006.

[IM03] Canturk Isci and Margaret Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. In Proceedings
of the 36th Annual IEEE/ACM International Symposium on Microar-
chitecture (MIRCO’03). IEEE Computer Society, December 2003.

[IM06] Canturk Isci and Margaret Martonosi. Phase characterization for
power: Evaluating control-flow-based and event-counter-based tech-
niques. In Proceedings of the Twelfth International Symposium on
High-Performance Computer Architecture (HPCA’06). IEEE Com-
puter Society, February 2006.

[IMB05] Canturk Isci, Margaret Martonosi, and Alper Buyuktosunoglu. Long-
term workload phases: Duration predictions and applications to DVFS.
IEEE Micro, 25(5), September 2005.

[Int02] Intel Corporation. Intel® Pentium® 4 Processor with 512-KB L2 Cache
on 0.13 Micron Process Thermal Design Guidelines, November 2002.

[Int06] Intel Corporation. IA-32 Intel Architecture Software Developer’s Man-
ual Volume 3A: System Programming Guide, Part 1. 2006.

150

Bibliography

[JED08] JEDEC Solid State Technology Association. Failure mechanisms and
models for semiconductor devices. JEDEC Publication, JEP122D, Oc-
tober 2008.

[Jon06] M. Tim Jones. Inside the Linux scheduler. IBM Developer Works, 2006.

[JSCT08] Yunlian Jiang, Xipeng Shen, Jie Chen, and Rahul Tripathi. Analysis
and approximation of optimal co-scheduling on chip multiprocessors.
In PACT ’08: Proceedings of the 17th international conference on Par-
allel architectures and compilation techniques. ACM, October 2008.

[JWP+05] Philo Juang, Qiang Wu, Li-Shiuan Peh, Margaret Martonosi, and Dou-
glas W. Clark. Coordinated, distributed, formal energy management of
chip multiprocessors. In Proceedings of the 2005 International Sympo-
sium on Low-Power Electronics and Design (ISLPED’05). ACM, Au-
gust 2005.

[KCBB06] Eren Kursun, Chen-Yong Cher, Alper Buyuktosunoglu, and Pradip
Bose. Investigating the effects of task scheduling on thermal behav-
ior. In Proceedings of the Third Workshop on Temperature-Aware Com-
puter Systems (TACS’06), June 2006.

[KCCC08] Joonho Kong, Jinhang Choi, Lynn Choi, and Sung Woo Chung. Low-
cost application-aware DVFS for multi-core architecture. In Inter-
national Conference on Convergence Information Technology (IC-
CIT’08). IEEE Computer Society, November 2008.

[KDG+04] Ramakrishna Kotla, Anirudh Devgan, Soraya Ghiasi, Tom Keller, and
Freeman Rawson. Characterizing the impact of different memory-
intensity levels. In Proceedings of the Seventh IEEE International
Workshop on Workload Characterization (WWC-7), October 2004.

[KGKR05] Ramakrishna Kotla, Soraya Ghiasi, Tom Keller, and Freeman Rawson.
Scheduling processor voltage and frequency in server and cluster sys-
tems. In IPDPS ’05: Proceedings of the 19th IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS’05) - Workshop 11.
IEEE Computer Society, April 2005.

[KGWB08] Wonyoung Kim, Meeta S. Gupta, Gu-Yeon Wei, and David Brooks.
System level analysis of fast, per-core DVFS using on-chip switch-
ing regulators. In Proceedings of the 14th IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA’08), Febru-
ary 2008.

151

Bibliography

[KK06] Evangelos Koukis and Nectarios Koziris. Memory and network band-
width aware scheduling of multiprogrammed workloads on clusters of
SMPs. In ICPADS ’06: Proceedings of the 12th International Con-
ference on Parallel and Distributed Systems. IEEE Computer Society,
2006.

[KSN07] Masaaki Kondo, Hiroshi Sasaki, and Hiroshi Nakamura. Improving
fairness, throughput and energy-efficiency on a chip multiprocessor
through DVFS. SIGARCH Computer Architecture News, 35(1), 2007.

[KSPJ06] Amit Kumar, Li Shang, Li-Shiuan Peh, and Niraj K. Jha. HybDTM:
a coordinated hardware-software approach for dynamic thermal man-
agement. In Proceedings of the 43rd Design Automation Conference
(DAC’06). ACM, July 2006.

[KST04] Ron Kalla, Balaram Sinharoy, and Joel M. Tendler. IBM Power5 chip:
a dual-core multithreaded processor. IEEE Micro, 24(2), March 2004.

[KZT05] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnections
in multi-core architectures: Understanding mechanisms, overheads and
scaling. SIGARCH Computer Architecture News, 33(2), 2005.

[LCCF08] Wen-Yew Liang, Shih-Chang Chen, Yang-Lang Chang, and Jyh-Perng
Fang. Memory-aware dynamic voltage and frequency prediction for
portable devices. In Proceedings of the Fourteenth IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA’08), August 2008.

[Lee06] Benjamin C. Lee. An architectural assessment of SPEC CPU bench-
mark relevance. Technical Report TR-02-06, Harvard University, Jan-
uary 2006.

[LFZE00] Alvin Lebeck, Xiaobo Fan, Heng Zeng, and Carla Ellis. Power aware
page allocation. In Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’00). ACM, November 2000.

[LM06] Jian Li and José F. Martínez. Dynamic power-performance adaptation
of parallel computation on chip multiprocessors. In Proceedings of
the Twelfth International Symposium on High-Performance Computer
Architecture (HPCA’06). IEEE Computer Society, February 2006.

[LS05] Kyeong-Jae Lee and Kevin Skadron. Using performance counters for
runtime temperature sensing in high-performance processors. In Pro-
ceedings of the 19th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS’05) - Workshop 11, April 2005.

152

Bibliography

[LSK04] Chun Liu, Anand Sivasubramaniam, and Mahmut Kandemir. Organiz-
ing the last line of defense before hitting the memory wall for CMPs. In
HPCA ’04: Proceedings of the 10th International Symposium on High
Performance Computer Architecture. IEEE Computer Society, Febru-
ary 2004.

[LVE00] Jochen Liedtke, Marcus Völp, and Kevin Elphinstone. Preliminary
thoughts on memory-bus scheduling. In EW 9: Proceedings of the 9th
ACM SIGOPS European workshop. ACM, September 2000.

[MAN05] Robert L. McGregor, Christos D. Antonopoulos, and Dimitrios S.
Nikolopoulos. Scheduling algorithms for effective thread pairing on
hybrid multiprocessors. In IPDPS ’05: Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Papers. IEEE Computer Society, April 2005.

[MB06] Andreas Merkel and Frank Bellosa. Balancing power consumption in
multiprocessor systems. In Proceedings of the First ACM SIGOPS Eu-
roSys Conference. ACM, April 2006.

[MB08a] Andreas Merkel and Frank Bellosa. Memory-aware scheduling for en-
ergy efficiency on multicore processors. In Proceedings of the Work-
shop on Power Aware Computing and Systems (HotPower’08), Decem-
ber 2008.

[MB08b] Andreas Merkel and Frank Bellosa. Task activity vectors: A new metric
for temperature-aware scheduling. In Proceedings of the Third ACM
SIGOPS EuroSys Conference. ACM, March 2008.

[MBH+02] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A.
Kofaty, J. Alan Miller, and Michael Upton. Hyper-Threading technol-
ogy architecture and microarchitecture. Intel Technology Journal, 2002.
Q1 issue.

[McC95] John D. McCalpin. Sustainable memory bandwidth in current high per-
formance computers, October 1995.

[MDHS09] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. Producing wrong data without doing anything obviously
wrong! In ASPLOS ’09: Proceeding of the 14th international con-
ference on Architectural support for programming languages and op-
erating systems. ACM, March 2009.

153

Bibliography

[Mer05] Andreas Merkel. Balancing power consumption in multiprocessor sys-
tems. Diploma Thesis, Universität Karlsruhe (TH), System Architec-
ture Group, September 2005.

[MM07] Thomas Moscibroda and Onur Mutlu. Memory performance attacks:
denial of memory service in multi-core systems. In SS’07: Proceedings
of 16th USENIX Security Symposium. USENIX Association, August
2007.

[MS06] Pierre Michaud and Yiannakis Sazeides. Scheduling issues on
thermally-constrained processors. Technical report, Institut de
Recherche en Informatique et Systèmes Aléatoires, October 2006.

[Mud01] Trevor Mudge. Power: A first-class architectural design constraint.
IEEE Computer, 34(4), April 2001.

[NP02] Jun Nakajima and Venkatesh Pallipadi. Enhancements for Hyper-
Threading technology in the operating system: seeking the optimal
scheduling. In WIESS’02: Proceedings of the 2nd Workshop on In-
dustrial Experiences with Systems Software. USENIX Association, De-
cember 2002.

[NRM+06] Alon Naveh, Efraim Rotem, Avi Mendelson, Simcha Gochman, Ra-
jshree Chabukswar, Karthik Krishnan, and Arun Kumar. Power and
thermal management in the Intel Core Duo processor. Intel Technology
Journal, 10(2), 2006.

[ONH+96] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and
Kunyung Chang. The case for a single-chip multiprocessor. SIGPLAN
Notices, 31(9), 1996.

[Ous82] John K. Ousterhout. Scheduling techniques for concurrent systems. In
Proceedings of the 3rd International Conference on Distributed Com-
puting Systems. IEEE Computer Society, October 1982.

[PELL00] Sujay Parekh, Susan Eggers, Henry Levy, and Jack Lo. Thread-
sensitive scheduling for SMT processors. Technical report, University
of Washington, May 2000.

[RHAH06] Efraim Rothem, Jim Hermerding, Cohen Aviad, and Cain Harel. Tem-
perature measurement in the Intel Core Duo processor. In Proceedings
of the Twelfth International Workshop on Thermal Investigations of ICs
(THERMINIC’06), August 2006.

154

Bibliography

[RLA07] Mohan Rajagopalan, Brian T. Lewis, and Todd A. Anderson. Thread
scheduling for multi-core platforms. In HOTOS’07: Proceedings of the
11th USENIX workshop on Hot topics in operating systems. USENIX
Association, May 2007.

[RLT06] Nauman Rafique, Won-Taek Lim, and Mithuna Thottethodi. Architec-
tural support for operating system-driven CMP cache management. In
PACT ’06: Proceedings of the 15th international conference on Parallel
architectures and compilation techniques. ACM, September 2006.

[RWB09] Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. Thread motion:
fine-grained power management for multi-core systems. In Proceed-
ings of the 36th International Symposium on Computer Architecture
(ISCA’09). ACM, June 2009.

[SABR04] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers.
The case for lifetime reliability-aware microprocessors. SIGARCH
Computer Architecture News, 32(2), 2004.

[SBB07] Joseph Sharkey, Alper Buyuktosunoglu, and Pradip Bose. Evaluating
design tradeoffs in on-chip power management for CMPs. In Proceed-
ings of the 2007 International Symposium on Low-Power Electronics
and Design (ISLPED’07). ACM, August 2007.

[SDR02] G. Edward Suh, Srinivas Devadas, and Larry Rudolph. A new memory
monitoring scheme for memory-aware scheduling and partitioning. In
HPCA ’02: Proceedings of the 8th International Symposium on High-
Performance Computer Architecture. IEEE Computer Society, Febru-
ary 2002.

[SF91] Gurindar S. Sohi and Manoj Franklin. High-bandwidth data memory
systems for superscalar processors. SIGPLAN Notices, 26(4), 1991.

[SL93] Mark Steven Squillante and Edward D. Lazowska. Using processor-
cache affinity information in shared-memory multiprocessor schedul-
ing. IEEE Transactions on Parallel and Distributed Systems, 4(2),
1993.

[SLSPH09] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot
Heiser. Koala: a platform for OS-level power management. In Eu-
roSys ’09: Proceedings of the 4th ACM European Conference on Com-
puter Systems. ACM, March 2009.

[SPH07] David C. Snowdon, Stefan M. Petters, and Gernot Heiser. Accurate on-
line prediction of processor and memory energy usage under voltage

155

Bibliography

scaling. In Proceedings of the Seventh ACM International Conference
on Embedded Software (EMSOFT’07). ACM, October 2007.

[SPM07] Suresh Siddha, Venkatesh Pallipadi, and Asit Mallick. Process schedul-
ing challenges in the era of multi-core processors. Intel Technology
Journal, 11(4), 2007.

[SSH+03] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy,
Karthik Sankaranarayanan, and David Tarjan. Temperature-aware mi-
croarchitecture. In Proceedings of the 30th International Symposium
on Computer Architecture (ISCA’03). ACM, June 2003.

[ST00] Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreaded processor. In ASPLOS-IX: Proceedings of
the 9th international conference on Architectural support for program-
ming languages and operating systems. ACM, November 2000.

[ST07] Kyriakos Stavrou and Pedro Trancoso. Thermal-aware scheduling for
future chip multiprocessors. EURASIP Journal on Embedded Systems,
2007(1), 2007.

[SvdLPH07] David C. Snowdon, Godfrey van der Linden, Stefan M. Petters, and
Gernot Heiser. Accurate run-time prediction of performance degrada-
tion under frequency scaling. In 3rd Workshop on Operating System
Platforms for Embedded Real-Time Applications, July 2007.

[SW95] Patrick Sobalvarro and William E. Weihl. Demand-based coscheduling
of parallel jobs on multiprogrammed multiprocessors. In IPPS ’95:
Proceedings of the Workshop on Job Scheduling Strategies for Parallel
Processing. Springer-Verlag, April 1995.

[TAS07] David Tam, Reza Azimi, and Michael Stumm. Thread clustering:
sharing-aware scheduling on SMP-CMP-SMT multiprocessors. In Eu-
roSys ’07: Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007. ACM, March 2007.

[TE94] Radhika Thekkath and Susan J. Eggers. Impact of sharing-based thread
placement on multithreaded architectures. In ISCA ’94: Proceedings of
the 21st Annual International Symposium on Computer Architecture.
IEEE Computer Society, April 1994.

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In ISCA ’95: Pro-
ceedings of the 22nd Annual International Symposium on Computer
Architecture. IEEE Computer Society, June 1995.

156

Bibliography

[TT08] Radu Teodorescu and Josep Torrellas. Variation-aware application
scheduling and power management for chip multiprocessors. In Pro-
ceedings of the 35th International Symposium on Computer Architec-
ture (ISCA’08). IEEE Computer Society, June 2008.

[VKT06] Matthew De Vuyst, Rakesh Kumar, and Dean M. Tullsen. Exploiting
unbalanced thread scheduling for energy and performance on a CMP of
SMT processors. In Proceedings of the 20th IEEE International Par-
allel and Distributed Processing Symposium (IPDPS’06). IEEE Com-
puter Society, April 2006.

[VWWL00] Ram Viswanath, Vijay Wakharkar, Abhay Watwe, and Vassou Lebon-
heur. Thermal performance challenges from silicon to systems. Intel
Technology Journal, 2000. Q3 issue.

[WA08] Jonathan A. Winter and David H. Albonesi. Addressing thermal
nonuniformity in SMT workloads. ACM Transactions on Architecture
and Code Optimimizations, 5(1), 2008.

[WB02] Andreas Weissel and Frank Bellosa. Process cruise control: Event-
driven clock scaling for dynamic power management. In Proceedings of
the International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES’02). ACM, October 2002.

[Wec06] Ofri Wechsler. Inside Intel Core Microarchitecture. Intel Corporation,
2006.

[WM08] Vincent M. Weaver and Sally A. McKee. Can hardware performance
counters be trusted? In Proceedings of the IEEE International Sympo-
sium on Workload Characterization (IISWC’08). IEEE Computer Soci-
ety, September 2008.

[YC01] Lian-Tuu Yeh and Richard C. Chu. Thermal Management of Microelec-
tronic Equipment. American Society of Mechanical Engineers, 2001.

[YSBZ05] Li Yingmin, Kevin Skadron, David Brooks, and Hu Zhigang. Per-
formance, energy, and thermal considerations for SMT and CMP ar-
chitectures. In Proceedings of the Eleventh International Symposium
on High-Performance Computer Architecture (HPCA’05). IEEE Com-
puter Society, February 2005.

[ZDFS07] Xiao Zhang, Sandhya Dwarkadas, Girts Folkmanis, and Kai Shen. Pro-
cessor hardware counter statistics as a first-class system resource. In
HOTOS’07: Proceedings of the 11th USENIX workshop on hot topics
in operating systems. USENIX Association, May 2007.

157

Bibliography

[ZII+07] Li Zhao, Ravi Iyer, Ramesh Illikkal, Jaideep Moses, Srihari Maki-
neni, and Don Newell. CacheScouts: Fine-grain monitoring of shared
caches in CMP platforms. In PACT’07: Proceedings of the 16th In-
ternational Conference on Parallel Architecture and Compilation Tech-
niques. IEEE Computer Society, September 2007.

158

A The SPEC CPU 2006 Benchmarks

For the evaluation of our scheduling policies, we use workloads composed of SPEC
CPU 2006 benchmarks [Hen06]. SPEC CPU is a benchmark suite designed by the
Standard Performance Evaluation Corporation (SPEC) and, according to the descrip-
tion provided by SPEC, is supposed “to provide a comparative measure of compute-
intensive performance across the widest practical range of hardware using workloads
developed from real user applications”. The benchmarks fall into the two broad cate-
gories of integer benchmarks and floating point benchmarks.

Though designed to compare the performance of CPU hardware, because of its wide
coverage of application domains, SPEC CPU is suitable to evaluate operating system
policies. This appendix gives a brief overview of the benchmarks.

Integer benchmarks

name programming description
language

perlbench C PERL programming language
bzip2 C compression
gcc C C compiler
mcf C combinatorial optimization
gobmk C artificial intelligence: go
hmmer C search gene sequence
sjeng C artificial intelligence: chess
libquantum C physics: quantum computing
h264ref C video compression
omnetpp C++ discrete event simulation
astar C++ path-finding algorithms
xalancbmk C++ XML processing

159

A The SPEC CPU 2006 Benchmarks

Floating point benchmarks

name programming description
language

bwaves Fortran fluid dynamics
gamess Fortran quantum chemistry
milc C physics: quantum chromodynamics
zeusmp Fortran physics: CFD
gromacs C/Fortran biochemistry: molecular dynamics
cactusADM C/Fortran physics: general relativity
leslie3d Fortran fluid dynamics
namd C++ biology: molecular dynamics
dealII C++ finite element analysis
soplex C++ linear programming, optimization
povray C++ image ray-tracing
calculix C/Fortran structural mechanics
GemsFDTD Fortran computational electromagnetics
tonto Fortran quantum chemistry
lbm C fluid dynamics
wrf C/Fortran weather prediction
sphinx3 C speech recognition

160

B Deutschsprachige Kurzfassung

Moderne Mikroprozessoren – eine Herausforderung
für die Ablaufplanung

In den vergangenen Jahrzehnten kam es zu einem ständigen Anstieg der Integrations-
dichte und der Leistungsaufnahme von Mikroprozessoren. Dies führte zu einer Reihe
von Problemen, mit denen wir uns heute konfrontiert sehen.

Aufgrund der gestiegenen Leistungsaufnahme pro Fläche ist die Abfuhr der in den
Schaltkreisen freigesetzten Wärme zum Problem geworden. Es muss beträchtlicher
Aufwand betrieben werden, um ein Überhitzen des Prozessors zu verhindern. Thermi-
sche Probleme, aber auch steigende Energiekosten sowie die zunehmende Verbreitung
von mobilen Systemen mit begrenztem Energievorrat führen dazu, dass Energieeffizi-
enz im Bereich der Mikroprozessoren zunehmend an Bedeutung gewinnt.

Für die heutigen Prozessoren sind Steigerungen der Prozessortaktfrequenz und der
Prozessorkomplexität nicht mehr wirtschaftlich. Statt dessen finden wir in zunehmen-
dem Maße expliziten Parallelismus in Form mehrerer Ausführungseinheiten auf einem
Chip. Damit verbunden sind Abhängigkeiten zwischen den Ausführungseinheiten, die
zum Beispiel durch gemeinsam genutzte Ressourcen oder gemeinsame Energiever-
waltung entstehen.

Alle drei Aspekte – Temperatur, Energieeffizienz und Abhängigkeiten zwischen
Ausführungseinheiten – weisen einen starken Bezug zur vom Prozessor ausgeführ-
ten Anwendung (Task) auf. Die Charakteristiken der ausgeführten Anwendungen be-
stimmen, wo auf dem Chip Wärme freigesetzt wird, wie effizient Maßnahmen zur
Energieverwaltung wie das Skalieren der Frequenz sind und in welchem Maße sich
Ausführungseinheiten durch die nebenläufige Nutzung gemeinsamer Ressourcen wie
zum Beispiel des Speicherbuses gegenseitig beeinflussen.

Aus diesem Grunde fällt dem Ablaufplaner als der Komponente eines Betriebs-
systems, die entscheidet, zu welchem Zeitpunkt und in welcher Kombination welche
Anwendungen ausgeführt werden, eine zentrale Rolle im Hinblick auf die oben ge-
nannten Probleme zu. In heutigen Betriebssystemen verwendete Strategien zur Ab-
laufplanung werden dieser Rolle nicht gerecht, da sie die Charakteristiken der von
ihnen eingeplanten Anwendungen weder kennen, noch berücksichtigen und so subop-
timale Entscheidungen treffen.

161

B Deutschsprachige Kurzfassung

Task-Aktivitätsvektoren und vektorbasiertes Einplanen

Diese Arbeit führt das Konzept der Task-Aktivitätsvektoren zur Charakterisierung von
Anwendungen ein. Ein Aktivitätsvektor ist Teil des Laufzeitkontextes einer Anwen-
dung und charakterisiert die Anwendung über die von ihr verursachten Ressourcen-
nutzung. Dabei entspricht jede Komponente des Vektors einer bestimmten Ressour-
ce und nimmt Werte entsprechend des Nutzungsgrades der Ressource an. Betrachtet
werden in der Arbeit Prozessorressourcen wie arithmetisch-logische Einheiten, Gleit-
kommaeinheiten oder Caches, sowie der Speicherbus.

Der in dieser Arbeit vorgeschlagene Mechanismus ermittelt die Auslastung der
Prozessorressourcen zur Laufzeit unter Verwendung von Ereigniszählern. Diese sind
spezielle Prozessorregister, welche prozessorinterne Ereignisse zu zählen vermögen
und ursprünglich zur Leistungsanalyse und -optimierung eingeführt wurden. So ist es
möglich, den Auslastungsgrad der verschiedenen Ressourcen während der Ausführ-
ung einer Anwendung zu ermitteln und damit den Aktivitätsvektor der Anwendung zu
bestimmen.

Aufbauend auf Aktivitätsvektoren schlägt diese Arbeit mehrere vektorbasierte Ein-
planstrategien vor. Diese nutzen die durch die Aktivitätsvektoren bereitgestellten In-
formationen, um eine ausgeglichenere Temperaturverteilung auf dem Chip bzw. eine
Verringerung der Konkurrenz um gemeinsam genutzte Ressourcen – und damit höhere
Performanz und gleichzeitig bessere Energieeffizienz – zu erreichen.

Zur Vermeidung von Hotspots, besonders heißen Stellen auf dem Chip, plant die
entsprechende Strategie Anwendungen nacheinander ein, die jeweils verschiedene
funktionale Einheiten des Prozessors nutzen. So tritt an keiner Stelle des Prozessors
permanente Aktivität auf und die den funktionalen Einheiten entsprechenden Schalt-
kreise können in den Perioden der Inaktivität abkühlen.

Zur energieeffizienten Nutzung gemeinsamer Ressourcen plant die entsprechen-
de Strategie Anwendungen dergestalt auf verschiedenen Ausführungseinheiten (d.h.
Prozessorkernen oder Hardware-Kontrollfäden) ein, dass gleichzeitig ausgeführte An-
wendungen verschiedene Ressourcen nutzen. So kann vermieden werden, dass Aus-
führungseinheiten auf die Freigabe einer schon belegten Ressource warten und Ener-
gie umsetzen, ohne dass die ausgeführte Anwendung Fortschritt machte.

Beide genannten Strategien erreichen ihr Ziel durch gezielte Sortierung von pro-
zessorlokalen Listen laufbereiter Anwendungen. Die Strategien werden ergänzt durch
eine Migrationsstrategie, welche die Anwendungen so auf die Prozessoren verteilt,
dass auf jedem Prozessor Anwendungen mit unterschiedlichen Charakteristiken vor-
handen sind.

162

Ergebnisse

Die Arbeit beinhaltet die Umsetzung des vorgeschlagenen Konzeptes der Task-
Aktivitätsvektoren sowie der darauf aufbauenden Einplanstrategien für den Linux-
Kern. Die Auswertung erfolgt auf einem IBM xSeries 440–Serversystem mit acht
Intel P4-Xeon-Prozessoren sowie auf einem Desktopsystem mit einem Intel Core2
Quad–Prozessor.

Da sich die Temperaturverteilung in den Prozessoren mit den zur Verfügung ste-
henden Mitteln nicht feststellen lässt, erfolgt die Auswertung der vorgeschlagenen
Strategien hinsichtlich der Temperaturverteilung mit dem an der University of Vir-
ginia entwickelten Temperatursimulator HotSpot. Die Auswirkungen der Strategien
hinsichtlich der Performanz und der Energieeffizienz werden am tatsächlichen Sys-
tem gemessen.

Die Auswertung ergibt, dass sich durch vektorbasiertes Einplanen Hotspots si-
gnifikant reduzieren lassen. So lässt sich für ein Szenario aus SPEC CPU 2006–
Benchmarks, für das unter dem Standard-Linux-Ablaufplaner während 25% der
Laufzeit eine maximale Temperatur von mehr als 80◦C auf dem Chip herrscht, die-
ser Anteil durch vektorbasiertes Einplanen auf 6% reduzieren. Dem gegenüber steht
eine Erhöhung der Laufzeit im Bereich von 1%, hauptsächlich verursacht durch das
häufige Auslesen der Ereigniszähler zum Bestimmen der Aktivitätsvektoren. Dieser
Mehraufwand resultiert aus der beschränkten Zahl und Konfigurationsmöglichkeit der
Ereigniszähler für die untersuchte Architektur und ließe sich durch geeignetere Zähler
in der Hardware noch deutlich verringern.

Auch die Energieeffizienz lässt sich durch vektorbasiertes Einplanen deutlich ver-
bessern. Für die untersuchte Architektur und die SPEC CPU 2006–Benchmarks stellt
sich die Speicherbandbreite als die kritische Ressource heraus, deren Verwendung
die größten Auswirkungen auf Performanz und Energieeffizienz hat. Für gemischte
Szenarien bestehend aus speicherintensiven und rechenintensiven Benchmarks ergibt
sich das größte Verbesserungspotential; durch vektorbasiertes Einplanen ist hier für
die speicherintensiven Benchmarks eine Verbesserung des Produktes aus Laufzeit und
aufgewandter Energie (Energy Delay Product, EDP) um bis zu 28% möglich.

Zusammenfassend lässt sich als Ergebnis der Arbeit festhalten, dass die Charakteri-
sierung von Anwendungen über ihre Nutzung von Prozessorressourcen eine wertvol-
le Information darstellt, deren Berücksichtigung es entsprechenden Einplanstrategien
erlaubt, die auf heutigen Prozessoren auftretenden Probleme der Temperatur, Energie-
effizienz und der Konkurrenz um gemeinsame Ressourcen abzumildern.

163

B Deutschsprachige Kurzfassung

164

