KIT | KIT-Bibliothek | Impressum | Datenschutz

Invariants of complex and p-adic origami-curves

Kremer, Karsten

Abstract:

Origamis (also known as square-tiled surfaces) are Riemann surfaces which are constructed by glueing together finitely many unit squares. By varying the complex structure of these squares one obtains easily accessible examples of Teichmüller curves in the moduli space of Riemann surfaces.
Different Teichmüller curves can be distinguished by several invariants, which are explicitly computed. The results are then compared to a p-adic analogue where Riemann surfaces are replaced by Mumford curves.


Volltext §
DOI: 10.5445/KSP/1000015949
Die gedruckte Version dieser Publikation können Sie hier kaufen.
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Hochschulschrift
Publikationsjahr 2010
Sprache Englisch
Identifikator ISBN: 978-3-86644-482-9
urn:nbn:de:0072-159499
KITopen-ID: 1000015949
Verlag KIT Scientific Publishing
Umfang VI, 74 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Algebra und Geometrie (IAG)
Prüfungsdaten 22.07.2009
Schlagwörter translation surfaces, moduli space, Teichmüller curves, Mumford curves, p-adic Schottky groups
Relationen in KITopen
Referent/Betreuer Herrlich, F.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page