
Institute of Mechanics

On an efficient implementation of
’Solid-Shell’ finite elements with quadratic

shape functions for explicit time integration

October 2009

Steffen Mattern Karl Schweizerhof

Institute of Mechanics
Kaiserstr. 12

D-76131 Karlsruhe
Tel.: +49 (0) 721/ 608-2071
Fax: +49 (0) 721/608-7990

E-Mail: info@ifm.kit.edu
www.ifm.uni-karlsruhe.de

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu



On an efficient implementation of ’Solid-Shell’ finite

elements with quadratic shape functions for explicit

time integration

Steffen Mattern Karl Schweizerhof

Abstract

The main application of explicit time integration algorithms for finite element
simulations – as they are characterized by rather small time steps – are highly
dynamic problems. An implementation of the element routines with a specific view
on efficiency of the algorithms is essential, while the internal force vector has to be
computed extremely often, compared to implicit algorithms. In this contribution,
a specific implementation concept is presented, using automatic generation and
optimization of code for a so-called ’Solid-Shell’ formulation with quadratic shape
functions in membrane direction and linear approximation in thickness direction.
The efficiency of the numerical algorithms is shown and compared to otherwise
programmed and compiled routines.

1 Introduction

In order to realize a continuum-like modeling of a shell structure needed to capture
3D effects as in laminated shells, the so-called ’Solid-Shell’ element class, presented
e.g. in [5], with linear interpolation of geometry and displacements in thickness as
well as in shell surface direction is a suitable alternative to purely 3D analysis. As
the formulation allows independent interpolation for the in-plane and the out-of-
plane direction, a separate higher order interpolation only in the shell-surface plane
as often needed for curved shells is possible.

The most widely-used explicit time integration method is the central difference
scheme, often also called Verlet algorithm ([13]). For lumped mass matrices the
costly solution of linear equations on global level is not necessary; further the usage
of diagonalized mass matrices solely requires vector operations, which leads to low
computational cost per time step. Unfortunately, due to the so-called Courant

criterion ([3]), the time step size is limited to a critical value, which makes the
central difference method mostly attractive for highly dynamic problems like impact,
strong nonlinearities and short duration transient analyses, where small time steps
are required anyway.

In this contribution, a 18-node shell element with bi-quadratic Lagrangian shape
functions as presented in [4] is proposed for explicit time integration. This requires
a special focus on efficient implementation, as most operations on element level
have to be performed for every time step. To achieve this, the numerically ’costly ’
parts of the element routine were implemented using the automatic code generation
tool AceGen, q.v. [9, 7]. The benefits of this approach are shown on the basis of
numerical examples, where generated and optimized code is compared to manually
programmed code, regarding computational cost.

2



2 Explicit Time Integration

For numerical time integration, the well-known central difference method is used
and implemented as proposed in [2] or originally for molecular dynamics by [13].
Here the governing equations are shown briefly. For the current time step n, the
accelerations are computed as

d̈
n = M

−1
(

f
n − Cḋ

n−1/2
)

, (1)

with the diagonalized system mass matrix M, the system load vector f
n, the system

damping matrix C and the velocities ḋ
n−1/2 at time step n − 1/2. The velocity

between two time steps is updated by

ḋ
n+1/2 = ḋ

n−1/2 + ∆tn d̈
n (2)

with ∆tn = (∆tn+∆tn−1)
2 , which leads to the displacements

d
n+1 = d

n + ∆tn ḋ
n+1/2, (3)

with the current time step size ∆tn = tn+1 − tn. The time step size is limited by
the Courant-criterion by

∆t ≤ α∆tcrit = α
2

ωmax
≈ α

(

min
e

le
ce

)

, (4)

where ωmax is the largest eigenfrequency, le represents a characteristic element
length and ce the wave propagation velocity. The Courant-criterion is based on
linear problems, so in order to consider non-linearities, the factor α < 1 is intro-
duced.

The implementation of the central difference method requires no solution of
linear equations, only vector operations are performed on global level if diagonal
mass matrices are used. This leads to very little CPU-time requirements per time
step, compared to implicit methods. The limitation of the time step by Equation 4
makes this method especially appropriate for highly dynamic applications such as
crash or impact. For long-term dynamic problems, a very large number of time
steps is required, which may lead to a long simulation time, however it is a purely
time marching scheme. Efficiency depends mainly on the evaluation of the internal
forces, the main topic of the following sections.

3 The ’Solid-Shell’ Concept

In this section, a very short introduction into the ’Solid-Shell’ concept is given.
For more detailed information, it is referred to the comprehensive literature, e.g.
[11, 5]. The ’Solid-Shell’ concept provides a shell formulation with displacement
degrees of freedom only. Under the assumption of the degenerated shell concept
that the normals to the mid-surface remain straight, following the notation given in
Figure 1, the initial geometry is given by

X(ξ, η, ζ) =
1

2
((1 + ζ)Xu(ξ, η) + (1 − ζ)Xl(ξ, η)) , (5)

Linear interpolation of the displacements of the upper and the lower surface leads
to

u(ξ, η, ζ) =
1

2
((1 + ζ)uu(ξ, η) + (1 − ζ)ul(ξ, η)) . (6)

3



ξ

η

ζ

e
e

e X

3

2

1 l

uX

Figure 1: geometry of a solid shell

In this contribution, quadratic, isoparametric ’Solid-Shell’ elements are used with bi-
quadratic interpolation in membrane and linear interpolation in thickness direction
as presented in [4]. For the discretization of the initial and geometry, this leads to

X
el(ξ, η, ζ) =

9
∑

i=1

(

1

2
Ni(ξ, η)Θ(ζ)Xi

)

, (7)

with the vector of upper and lower nodal displacements Xi =
[

Xiu Xil

]T
, the

linear thickness interpolation matrix

Θ(ζ) =





1 + ζ 0 0 1 − ζ 0 0
0 1 + ζ 0 0 1 − ζ 0
0 0 1 + ζ 0 0 1 − ζ



 (8)

and the bi-quadratic Lagrangian shape functions.
As mentioned in section 2, an efficient usage of the central difference method

implies diagonalized mass matrices. The entries of the consistent element mass
matrix M

el

Mel
ij =

∫

V
ρ

1

4
(1 + ζ ζi)Ni(ξ, η) (1 + ζ ζj)Nj(ξ, η) dV (9)

with Ni(ξ, η) for in-plane interpolation, are therefore summed up row by row, in
order to achieve the diagonalized form

Mel,d
ij =







∑ndof
k=1 Mel

ik i = j

0 i 6= j
(10)

Other methods to achieve diagonalized mass matrices are described e.g. in [6] and
will be discussed for different numerical examples.

A very important issue concerning the implementation of finite elements is the
activation of artificial stresses for different loading situations, the so-called ’locking’.
Though not as distinctive as in elements with linear displacement interpolation,
the effects can be reduced – or even canceled – by several corrections within the
element formulation. Proposals for locking-free ’Solid-Shell’ elements, can be found
besides the cited literature also in [1, 12]. The numerical examples in section 5 are
performed, however, for simplicity reasons with a fully integrated element without
any modifications against locking.

4



4 Efficient Implementation of the Internal Force

Vector

4.1 Operations on Element Level

As the time integration scheme is characterized by rather small time steps, the
right-hand side vector f = f

ext − f
int from Equation 1 containing the external f

ext

and the internal forces f
int has to be formed very often. The internal forces are

integrated on element level and assembled to the global force vector, which leads to

f = f
ext −

∫

V

(

B
T σ

)

detJ dV (11)

where B represents the derivation of the strains with respect to the nodal displace-
ments and σ contains the stresses. The integration is performed numerically e.g. by
a Gauss-Legendre-rule, which leads to 18 operations B

T σ for each element with
a ’full’ 3 x 3 x 2-point integration.

In test examples with the own code Feap-MeKa, proportions of more than 90%
of the total CPU-time for a simulation could be measured for the above operations
on element level.

4.2 ’Automatic’ Code Generation

In order to reach an efficient and comfortable implementation of the subroutines on
element level, the improved – so-called ’automatic’ – code generation and optimiza-
tion tool Acegen, a plug-in for the computer algebra software Mathematica is
used. The program is developed by the group of Korelc, see [7, 10, 8].

For the numerical integration of Equation 11, the operation

f
int
GP = B

T (ξi, ηj , ζk)σ(ξi, ηj , ζk) detJ(ξi, ηj , ζk) (12)

has to be evaluated at each Gauss-point, multiplied with the weights and then
summed up. Acegen allows the usage of Mathematicas symbolic capabilities,
so implemented functions can be used to perform matrix operations or differenti-
ations. This increases the convenience of programming and decreases the number
of programming errors considerably. Also the computational speed is increased by
using automatic code generation, which is shown in the following section. For im-
plementation, the following steps – together with the used commands – have to be
carried out:

Initialization: The subroutine as well as the input (geometry, current displace-
ments, coordinates and weight of the current Gauss-point and material param-
eters) and output variables (internal force vector, evaluated at the current inte-
gration point) are defined. The used Acegen commands are SMSInitialize and
SMSModule.

Element matrices: After the import of the element data, the necessary matri-
ces – Jacobian, convective base vectors, elasticity tensor, etc. – can be evaluated by
using Mathematica’s symbolic capabilities as the tensor multiplication. Differen-
tiation with respect to variables or tensors is also possible (SMSD), which is used i.e.
to evaluate the B-Matrix (ε,de

), defined in Equation 11.

Export internal force vector: The internal force vector at the current inte-
gration point – as given in Equation 12 – has to be exported, to be available outside
the subroutine. The command SMSExport is used with the option "AddIn"=True in
order to automatically sum the results for all Gauss-points to the global memory
field.

5



[...]

v(1061)=v(1624)*v(616)

v(1062)=v(1625)*v(616)

v(1063)=v(1626)*v(616)

v(1064)=v(1624)*v(572)+v(1621)*v(599)

v(1065)=v(1625)*v(572)+v(1622)*v(599)

v(1066)=v(1626)*v(572)+v(1623)*v(599)

[...]

Figure 2: exemplary section of automatically generated and optimized Fortran code

F (t)

d

R

• properties

E = 1.0 · 1010

ν = 0.0
ρ = 10, 000
R = 10.0
d = 0.1
F0 = 1.2 · 106

• load curve

[time]

[f
or

ce
]

0.0
0.0 5 10−3 1.0

F0

Figure 3: example – bended curved beam

Code generation: In the last step, Fortran-code is generated and automat-
ically optimized, using the command SMSWrite. The language (Fortran, C, etc.)
and the level of optimization depend on options, given in SMSInitialize. Figure 2
shows a portion of this automatically generated Fortran-code.

The only disadvantage of this procedure is, that the automatically generated
and optimized code is not longer readable and any change in the program requires
a complete re-generation of the subroutine with Acegen

5 Numerical Example

The numerical example – a bended curved beam, depicted in Figure 3 – is chosen
to compare the numerical effort of the manually programmed element subroutine
with the automatically generated code. The results in this example are only checked
concerning plausibility, no further investigations concerning convergence and locking
are performed here. Geometry and material parameters are given in Figure 3, the
used material law is based on linear elasticity.

The simulation of the problem was carried out with three different implementa-
tion types:

- ’regular’ – manually programmed routines without adaption of matrix multipli-
cations

6



0.00

0.04

0.08

0.12

0.0 0.2 0.4 0.6 0.8 1.0

node 545

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.2 0.4 0.6 0.8 1.0

node 605

[time]

[time]

[d
is

p
la

ce
m

en
t]

[d
is

p
la

ce
m

en
t]

@Inode 545

�	
node 605

Figure 4: discretization and results at two different nodes

regular man. opt. Acegen

time steps 13, 470 13, 470 13, 470

∅ ∆ t 7.424 · 10−5 7.424 · 10−5 7.424 · 10−5

wall time 12 h 49 min11 s 6 h 10 min 55 s 10 min 19 s

Table 1: statistics – w/o optimization by compiler

regular man. opt. Acegen

time steps 13, 470 13, 470 13, 470

∅ ∆ t 7.424 · 10−5 7.424 · 10−5 7.424 · 10−5

wall time 2 h 03 min57 s 2 h 11 min 33 s 10 min 36 s

Table 2: statistics – highest optimization by compiler

- ’manually optimized’ – manually programmed routines avoiding unnecessary op-
erations

- ’automatically optimized’ – generation and optimization of routines with Acegen

All three implementations lead to the same results, depicted in Figure 4 with the
chosen FE-mesh. First, the code was compiled without any optimization flags,
provided by the compiler. As given in Table 5, the simulation time can be reduced
by 50% by manual optimization; the automatic generated code only requires 2.8%
of the time, compared to the regular implementation. The highest optimization level
of the compiler cancels the effect of manual optimization completely, see Table 1.
Still the generated code is much faster, it requires only 8.55% of the time compared
to the manually programmed but compiler optimized code. Optimization by the
compiler has no effect on the simulation time with the Acegen generated code.

6 Conclusions and Outlook

In order to save computational cost within an explicit time integration algorithm,
especially the integration of the nodal force vector on element level has to be imple-
mented with focus on efficiency. A manual implementation of the routines with min-
imization of operations can be cumbersome and error-prone. Efficient programming,

7



together with a minimization of mistakes during programming can be achieved, us-
ing an automatic code generator like Acegen. In the presented contribution, the
implementation was carried out for a ’Solid-Shell’ finite element with quadratic in-
plane interpolation, which lead to a considerable reduction of CPU-time without
changes in the element formulation. Further implementations of improved ’Solid-
Shell’ and so-called degenerated shell elements may lead to similar improvements,
concerning efficiency, which will be a major part of the future work in the project.

References

[1] R.J. Alves de Sousa, R.P.R. Cardoso, R.A. Fontes Valente, J.W. Yoon, R.M.
Natal Jorge, and J.J. Gracio. A new one-point quadrature enhanced assumed
strain (EAS) solid-shell element with multiple integration points along thick-
ness: Part I – geometrically linear applications. Int. J. Num. Meth. Eng.,
62:952–977, 2005.

[2] T. Belytschko, W.K. Liu, and B. Moran. Nonlinear finite elements for continua

and structures. Wiley, 2004.

[3] R. Courant, K.O. Friedrichs, and H. Lewy. Über die partiellen Differenzen-
gleichungen der mathematischen Physik. Mathematische Annalen, 100:32–74,
1928.

[4] R. Hauptmann, S. Doll, M. Harnau, and K. Schweizerhof. ‘solid-shell’ elements
with linear and quadratic shape functions at large deformations with nearly
incompressible materials. Computers & Structures, 79(18):1671–1685, 2001.

[5] R. Hauptmann and K. Schweizerhof. A systematic development of ‘solid-shell’
element formulations for linear and non-linear analyses employing only dis-
placement degrees of freedom. Int. J. Num. Meth. Eng., 42(1):49–69, 1998.

[6] Thomas J. R. Hughes. The finite element method. Dover Publ., dover ed., 1.
publ. edition, 2000.

[7] J. Korelc. Automatic generation of finite-element code by simultaneous opti-
mization of expressions. Theoretical Computer Science, 187(1-2):231–248, 1997.

[8] J. Korelc. Multi-language and multi-environment generation of nonlinear finite
element codes. Engineering with Computers, 18(4):312–327, 2002.

[9] J. Korelc. http://www.fgg.uni-lj.si/symech/, 2008.

[10] J. Korelc and P. Wriggers. Computer algebra and automatic differentiation in
derivation of finite element code. ZAMM, 79:811–812, 1999.

[11] H. Parisch. A continuum-based shell theory for non-linear applications. Int. J.

Num. Meth. Eng., 38:1855–1883, 1995.

[12] S. Reese. A large deformation solid-shell concept based on reduced integration
with hourglass stabilization. Int. J. Num. Meth. Eng., 69(8):1671–1716, 2007.

[13] L. Verlet. ”Experiments” on classical fluids I. Thermomechanical properties of
Lennard-Jones molecules. Physical Review, 159:98–103, 1967.

8


