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Summary:  The presentation deals with recent numerical investigations of the deformation 

and failure behaviour of heterogeneous amorphous polymers. Two classes of materials are 

considered, firstly ABS with rubber particles embedded in a glassy matrix and secondly 

composites with alternating layers of a brittle and a ductile glassy polymer. In both cases the 

overall response strongly depends on the interaction of plastic (shear) yielding and crazing on 

the micro-scale. Detailed finite element analyses are employed to study these interrelations.    

 

 

Introduction 

Amorphous glassy polymers are often given a heterogeneous microstructure in order to 

improve the materials overall ductility and fracture toughness. A typical example is ABS 

(acrylonitrile-butadiene-styrene) where submicron sized rubber particles are finely dispersed 

in a glassy matrix of SAN (styrene-acrylonitrile). While neat SAN subjected to tensile loading 

undergoes brittle failure by uncontrolled crazing at a few percent overall strain, the rubber 

particles in ABS serve to initiate dissipative micro-mechanisms (e.g. crazing) at many sites 

throughout the material (see Fig. 1a) so that much higher strains at failure and a larger amount 

of energy consumption are achieved, e.g. [1],[3],[4]. Though rubber-toughened materials such 

as ABS are well established since several decades, a detailed understanding of the relation 

between microstructure and overall response – necessary for tailoring materials with optimal 

properties – is still lacking. It seems, for instance, not entirely clear (and the reasons not 

understood) under which circumstances either matrix shear yielding or crazing is the 

dominant dissipative mechanism. 
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Figure 1:  a) Microstructure of ABS showing crazes between voids which have formed from cavitated rubber 

particles [10];  b) PC/SAN multilayer composite under tensile loading parallel to layers showing a network of 

(diagonal) shear bands in the ductile PC layers and crazes/microcracks in the brittle SAN layers, c) 

microcracks in SAN layers have grown to holes at large overall strain [5] 

 



Another class of materials where likewise the interplay between microstructure and 

microscopic deformation and damage mechanisms leads to an improved overall performance 

are multilayer composites obtained from co-extrusion a brittle (e.g. SAN) and a ductile 

(typically polycarbonate, PC) glassy polymer. Under tensile loading parallel to the layers 

(Fig. 1b and c), in these materials the unlimited growth of crazes (and subsequent cracks) 

formed in the brittle phase is prevented by the neighboring layers of the ductile phase. In the 

latter, shear bands are initiated which transfer stress concentrations to locations away from the 

initial defects. This leads to a network of crazes and shear bands which may extend over large 

regions of the material and gives rise to an enhanced overall ductility accompanied by a large 

amount of energy dissipation [5],[11].     

A common feature of the two classes of materials is the coexistence of locally large plastic 

deformations (e.g. localized in shear bands) and crazing as two distinctly different micro-

mechanisms. However, the situation is somewhat simpler in case of the PC/SAN multilayer 

composites in that these micro-mechanisms occur separately in the different constituents of 

the material, whereas in ABS they both occur in the SAN matrix around the rubber particles.  

The computational models utilized here in order to gain some deeper understanding of the 

interrelation between microstructure, micro-mechanisms and overall behavior are the same in 

case of both classes of materials, i.e. detailed finite element models of the microstructure in 

conjunction with appropriate constitutive models and special cohesive elements capturing 

local separation processes (e.g. crazing). In view of the number of modeling assumptions and 

material parameters involved, the numerical studies of different materials presented in the 

sequel also provide some means of validation the numerical tools.  

 

 

Constitutive models 

The large strain rate-dependent deformation behavior of glassy polymers (sketched in Fig. 2a) 

is in the present work described using the material model developed in [2]. Beyond the range 

of small (linear) elastic strains the inelastic strain rate is given by 
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where b  σσ -=  denotes the driving stress, (.)� its deviatoric part, and ),( p pss ε=  is the 

athermal yield strength which depends on the accumulated plastic strain ∫ ⋅= dtppp
DDε  

and on the hydrostatic pressure p . The temperature θ  here is taken constant, and 0γ� and A  

are material parameters. In order to describe the initial peak yield stress and the corresponding 

amount of subsequent softening, which depend on the thermal pre-history of the material 

(physical aging), the athermal yield strength s is taken to evolve with plastic strain from an 

initial value so down to a saturation value ss. 

Progressive rehardening due to stretching and alignment of the molecular network is 

described by the backstress tensor b computed according to a model from rubber (entropic) 

elasticity that accounts for a finite extensibility of molecular chains. More details along with 

values of the material parameters may be found e.g. in [10].  

The formation of crazes and subsequent cracks in SAN is modeled utilizing a cohesive 

surface methodology developed in [12] and later on modified in [8]. The model represents the 

fibrillated craze matter and its stress-carrying capacity in a “smeared” sense by a separation 



c∆ of the craze-bulk interfaces (craze width) and a cohesive traction T. Upon craze initiation 

according to the criterion of a critical value of the maximum principal tensile stress, craze 

widening takes place at a rate c∆� which depends on the traction T related to the craze 

widening resistance cσ : 
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Here, 0∆� and Ac are material constants and the craze widening resistance cσ  is taken to 

evolve with the craze thickness c∆ as sketched in Fig. 2b. This non-monotonous variation 

reflects the different stages of the craze widening process as discussed in [8]. Finally, at a 

critical craze width cr

c∆ the craze widening resistance (and consequently the cohesive traction 

T ) drops to zero due to rupture of the craze fibrils and the craze (locally) turns into a crack. 

 

                   

 

 

 

 

 

 

 

 

Modeling ABS materials 

The ABS microstructure is approximated here by a stacked hexagonal array of rubber 

particles embedded in the SAN matrix, subjected to loading in terms of macroscopic principal 

stresses along the symmetry axes (Fig. 3a). This morphology can be further approximated by 

a single axisymmetric unit cell (Fig. 3b). Since the rubber particles typically cavitate in the 

a)                                                                                                    b) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  a) Uniaxial response of bulk glassy polymer in absence of crazing,  b) variation of craze widening 

resistance with craze opening displacement (thickness) in cohesive model 
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Figure 3: a) Model microstructure with rubber particles in SAN matrix arranged in stacked hexagonal array, 

b) axisymmetric unit cell model employed in numerical analysis   
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early stage of loading and thereafter have a negligible stiffness they are treated as voids. 

Crazes form as localized zones perpendicular to the direction of maximum principal stress. 

The latter coincides with the 3-direction in the present model by choosing Σ3 > Σ1 = Σ2; hence 

crazing is expected to take place in the ring-shaped equator plane of the rubber particles 

(voids). The crazing process is described by means of the cohesive surface model outlined in 

the previous section. More details on this study may be found in [9]. 

 

 

Numerical results on ABS materials 

Loading of the unit cell is imposed by prescribing velocities on the horizontal and vertical 

boundaries so that overall stress ratio Σ1,2 / Σ3 is kept constant, and the overall axial strain rate 

is ε�  = 1 sec
−1

. 

For uniaxial overall loading Fig. 4 shows the macroscopic response of the unit cell for 

different values of the rubber content (porosity) f0 and for two different values of the matrix 

initial yield strength so. Figure 4a with a value of so = 95 MPa corresponds to a “fresh” matrix 

material under quenched conditions (low stress peak and small amount of softening), whereas 

Fig. 4b with so = 110 MPa corresponds to a material which as experienced physical aging 

during annealing, known to result in a pronounced stress peak and softening. In the latter case 

the initial matrix yield stress is too high (compared to the craze stress) for matrix plasticity to 

take place, and the overall unit cell response reflects the bilinear craze response with an 

intermediate stress drop (at around 5% strain). For the lower initial yield stress underlying the 

results in Fig. 4a, however, matrix yielding takes place in the course of loading as can be seen 

from the nonlinear overall stress-strain response. Interestingly, the variation of failure strain 

with rubber content is contrary in the two cases; a decreasing failure strain with increasing 

rubber content is predicted when pronounced matrix shear yielding takes place (Fig. 4a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modelling PC/SAN multilayer composites 

PC/SAN multilayer composites are modeled here assuming 2D plane strain conditions. A 

sample (of height h) of the material consisting of several layers as sketched in Fig. 5a is 

considered and overall loading parallel to the layers is imposed in terms of a prescribed 

velocity u�  on the upper boundary so that the macroscopic strain rate is hu /�� =ε . Several 

 a)                                                                                        b) 

 

                                                                             

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Effect of rubber content on unit cell response under overall uniaxial tension for matrix material with 

initial yield strength of a) so= 95 MPa (quenched conditions) and b) so = 110 MPa (annealed conditions) 
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equally spaced cohesive surfaces normal to the loading direction are introduced throughout 

the sample as potential locations of failure (Fig. 5a). While failure in the SAN layers starts by 

the formation of crazes at a few per cent of strain, PC fails only after very large stretching of 

its molecular (entanglement) network is attained. This causes an incompatibility of the 

(continuum) deformation in the vicinity of the PC/SAN interface, and Figs. 5b-e illustrate 

how this is handled within the framework of the finite element model. More details on this 

study may be found in [8]. 

 

 

 

 

 

 

 

 

 

 

Numerical results on multilayer composites 

Two different multilayer composites, one with a PC/SAN composition (i.e. relative layer 

thickness) of 3/1 (“PC-rich”) and one with a composition of 1/3 (“SAN-rich”) are considered 

here, both under uniaxial overall loading. A spatially random distribution of initial defects is 

modelled by some scatter (±10%) of the local craze initiation stress in the SAN. Numerical 

results in terms of contours of the local plastic strain are shown for the PC-rich composite at 

two successive levels of overall deformation in Figs. 6a and b and for the SAN-rich composite 

in Fig. 6c. Plastic deformation starts by the formation of shear bands in the PC due to local 

stress concentrations induced by crazes in the SAN layers. When the shear bands impinge the 

neighboring PC/SAN interface, which in turn leads to a stress concentration in the SAN, new 

crazes are initiated there as can be seen from Figs. 6a and b. In a PC-rich composite this 

results in a network of interacting crazes and shear band extending uniformly throughout 

large regions of a test specimen (Figs. 6a and b). Even large holes in the SAN layers grown 

from former crazes with continued overall straining in this case are stabilized by the 

intermediate regions of ductile PC (Fig. 6b).  

When the PC content (relative layer thickness) is low as in case of the PC/SAN (1/3) 

composite no such stable craze–shear band network is predicted from the simulations, rather a 

localisation of plastic deformation and damage is observed (Fig. 6c) leading to failure of the 

composite at low overall strain. 

 

Figure 5:  Micromechanical modeling of PC/SAN multilayer composites 



 

 

 

 

 

 

 

The overall response of the PC-rich and the SAN-rich composite is depicted in Fig.7 in terms 

of the macroscopic stress (loading of the sample) versus macroscopic strain. Here, results of 

several simulations with different, yet statistically equivalent, realisations of the initial defect 

distribution are included. Corresponding to the spatial extension of a network of interacting 

crazes and shear bands visible in Figs. 6a and b the PC-rich composites display a ductile 

overall behaviour. The SAN-rich composites, in contrast, undergo overall failure at small 

macroscopic strains due to the localisation of inelastic deformation shown in Fig. 6c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Patterns of local plastic deformation and damage in PC-rich composite (PC/SAN = 3/1) at  a) 7 % 

and  b) 20 % overall strain and in SAN-rich composite (PC/SAN = 1/3) at 7 % overall strain (c)  

Figure 7:  Overall response of PC-rich (3/1) and SAN-rich (1/3) composites under uniaxial tension; (a), (b), (c) 

correspond to contour plots in Fig. 6 
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Discussion and conclusions 

In the present study employing an axisymmetric unit cell model of the microstructure of ABS 

materials and in an earlier study considering corresponding 2D plane strain models [7] the 

influence of some key material and microstructural parameters on the interaction between 

crazing and matrix yielding in rubber-toughened glassy polymers has been investigated. It 

turns out that, depending on the combination of these parameters, the overall response of the 

material (e.g. failure strain) may differ significantly. For instance, the dependence of the 

overall strain at failure on the rubber content may be strongly affected by the matrix yield 

behavior, as can be seen in Fig. 4. These observations have to be taken with some caution; 

they are partly artefacts of the simplified morphology considered so far. More realistic 3D 

microstructures, allowing for more complex void/craze interaction such as mutual shielding, 

therefore need to be investigated and are subject of ongoing research. 

In case of PC/SAN multilayer composites the numerical results show a good qualitative 

agreement with experimental findings in [5] and [11]. This holds for the micro-scale 

deformation and damage mechanisms (craze-shear band network; see, e.g., Figs. 1b and 6a) as 

well as for the reproduction of the macroscopic brittle-to-ductile transition with increasing PC 

content. Quite similar results have recently been obtained from a more involved 3D study in 

[6]. 
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