

 Karlsruhe Reports in Informatics 2010,2
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Path Schematization for Route
Sketches

Daniel Delling, Andreas Gemsa,
Martin Nöllenburg, Thomas Pajor

 2010

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Path Schematization for Route Sketches

Daniel Delling1, Andreas Gemsa2, Martin Nöllenburg2,3?, and Thomas Pajor2

1 Microsoft Research Silicon Valley, 1065 La Avenida, Mountain View, CA 94043.
dadellin@microsoft.com

2 Karlsruhe Institute of Technology, P.O. Box 6980, 76128 Karlsruhe, Germany.
{gemsa, noellenburg, pajor}@kit.edu

3 Department of Computer Science, University of California, Irvine, CA 92697-3435.

Abstract. Motivated from drawing route sketches, we consider the fol-
lowing path schematization problem. We are given a simple embedded
polygonal path P = (v1, . . . , vn) and a set C of admissible edge orienta-
tions including the coordinate axes. The problem is to redraw P schemat-
ically such that all edges are drawn as line segments that are parallel to
one of the specified orientations. We also require that the path preserves
the orthogonal order and that it remains intersection-free. Finally, we
want the drawing to maximize the number of edges having their pre-
ferred edge direction and to minimize the path length.
In this paper we first present an efficient two-step approach for schema-
tizing monotone paths. It consists of an O(n2)-time algorithm to assign
edge directions optimally and a subsequent linear program to minimize
the path length. In order to schematize non-monotone paths we pro-
pose a heuristic that first splits the input into k monotone subpaths and
then combines the optimal embeddings of the monotone subpaths into a
single, intersection-free embedding of the initial path in O(k2 + n) time.

1 Introduction

Simplification and schematization of map objects are well-known operators in
cartographic generalization, i. e., the process to adapt map content to its scale
and use. Simplification usually reduces unnecessary complexity, e. g., by remov-
ing extraneous vertices of a polygonal line while still maintaining its overall
appearance. Schematization, however, may abstract more drastically from geo-
graphic reality as long as the intended map use allows for it. Public transport
maps are good examples of schematization, where edge orientations are limited
to a small number of slopes and edge lengths are no longer drawn to scale [8].
In spite of all distortions, such maps usually work well.

In this paper we consider a path schematization problem that is motivated
from visualizing routes in road networks. Routes typically begin and end in
residential or commercial areas, where roads are mostly used only for short
distances of a few meters up to a few hundred meters. As soon as the route leaves
the city limits, however, country roads and highways tend to be used for distances

? Supported by grant NO 899/1-1 of the German Research Foundation (DFG).

Path Schematization for Route Sketches 3

(a) Route in Bing Maps. (b) Hand-drawn sketch.

B1

B2

B3

(c) Output of our algorithm.

Fig. 1: Comparison of different methods for drawing a route from Karlsruhe
to Dortmund in Germany. In Figure 1c, different colors indicate different road
categories. Bi indicate the bounding boxes of the monotone subpaths.

ranging from a few up to hundreds of kilometers. Moreover, optimal routes tend
to follow a general driving direction and deviations from this direction are rare.

Commercial route planners typically present driving directions for such routes
as a graphical overview of the route highlighted in a traditional road map (see
Fig. 1a) in combination with a textual step-by-step description. The overview
map is good for giving a general idea of the route, but due to its small scale it
often does not succeed in showing details of the route, in particular for short
roads in the vicinity of start and destination and off the main highways. Textual
descriptions are accurate when used at the right moment but there is a high
risk of loss of context. On the other hand, a manually drawn route sketch often
shows the whole route in a single picture, where each part of the route has
its own appropriate scale: important turning points along the route and short
residential roads are enlarged while long stretches of highways and country roads
are shortened. Edges are often aligned with a small set of orientations rather
than being geographically accurate [10]. Figure 1b gives an example. In spite of
the cartographic error, such route sketches are often easier to read than textual
descriptions and traditional road maps—at least if the user’s mental or cognitive
map, i. e., a rough idea of the geographic reality, is preserved [6, 9].

We formalize the application problem of drawing route sketches as a geo-
metric path schematization problem. Given a plane embedding of a path P , the
goal is to find a short schematic embedding of P that is as similar to the input
embedding as possible but uses only a restricted set C of edge orientations. We
call such an embedding C-oriented. For our application of route sketches, the

4 D. Delling, A. Gemsa, M. Nöllenburg, T. Pajor

path P is given by n important points along the route. These important points
can be turns, important junctions, highway ramps, etc.

Related Work. Similar path schematization problems have been studied before.
Neyer [7] proposed an algorithm to solve the C-oriented line simplification prob-
lem, where a C-oriented simplification Q of a polygonal path P is to be computed
that uses a minimum number of edges. Furthermore, Q must have Fréchet dis-
tance at most ε from P . For a constant-size set C the algorithm has a running
time of O(kn2 log n), where n is the number of vertices of P and k is the number
of vertices of Q.

Merrick and Gudmundsson [5] studied a slightly relaxed version of the same
problem and gave an O(n2|C|3)-time algorithm to compute a C-oriented simpli-
fication of P that is within Hausdorff distance at most ε of P .

Agrawala and Stolte [1] designed a system called LineDrive that uses heuris-
tic methods based on simulated annealing in order to render route maps similar
to hand-drawn sketches. While their system allows distortion of edge lengths and
angles, the resulting paths are neither C-oriented nor can hard quality guaran-
tees be given. They did, however, implement and evaluate the system in a study
that showed that users generally preferred LineDrive route maps over traditional
route maps.

Brandes and Pampel [2] studied the path schematization problem in the
presence of orthogonal order constraints [6] in order to preserve the mental map.
They showed that deciding whether a rectilinear schematization of a path P
exists that preserves the orthogonal order of P is NP-hard. They also showed
that schematizing a path using arbitrarily oriented unit-length edges is NP-hard.

Our Contribution. Due to the NP-hardness of rectilinear path schematization [2],
we cannot hope for an algorithm that solves the general C-oriented path schema-
tization problem efficiently. Rather, we present an efficient algorithm to solve the
corresponding monotone path schematization problem, in which the input is re-
stricted to x- or y-monotone paths (Section 3). The algorithm consists of two
steps: First, we compute in quadratic time a C-oriented schematization of the
input path that preserves the orthogonal order of the input and has minimum
schematization cost (to be defined). Next, we use a simple linear program to
minimize the total path length such that the schematization cost remains mini-
mum.

In order to use this algorithm to generate route sketches for non-monotone
input paths, we present a three-step heuristic approach (Section 4): We first split
the path in linear time into a minimum number k of monotone subpaths, then we
use the previous algorithm to optimally schematize each subpath, and finally we
combine the k schematized subpaths into a single intersection-free route sketch
for the non-monotone input path in O(k2 +n) time. Note that routes in practice
tend to follow a general direction given by the straight line connecting start and
destination. Thus if a path is not monotone itself, then it usually consists of
a very small number of monotone subpaths (see the example in Fig. 1c, which
decomposes into three monotone subpaths).

Path Schematization for Route Sketches 5

2 Preliminaries

Let P = (v1, . . . , vn) be a path with edges vivi+1 for 1 ≤ i ≤ n−1. For a vertex v
and an edge e of P we say v ∈ P and e ∈ P . A plane embedding π : P → R2 maps
each vertex vi ∈ P to a point π(vi) = (xπ(vi), yπ(vi)) and each edge uv ∈ P to
the line segment π(uv) = π(u)π(v) such that π is a simple polygonal path with
vertex set {π(v1), . . . , π(vn)}. We denote the length of an edge e in π as |π(e)|.
An embedded path is a pair (P, π) of a path P and a plane embedding π of P .

Let C = {γ1, . . . , γk} be a set of angles w. r. t. the x-axis that represents the
admissible edge orientations. We require that {0◦, 90◦, 180◦, 270◦} ⊆ C. Reason-
able sets of edge directions for route sketches are, e. g., multiples of 30 or 45
degrees. Recall that a plane embedding π of a path is called C-oriented if the
direction of each edge in π corresponds to an angle in C. For an embedding π of P
and an edge e ∈ P we denote by απ(e) the angle of π(e) w. r. t. the x-axis. For
the input embedding π, we similarly denote by ωC(e) the preferred angle γ ∈ C,
i. e., the angle in C that is closest to απ(e). For a C-oriented embedding ρ of P
and an edge e ∈ P there is a direction cost cρ(e) that captures by how much the
angle αρ(e) deviates from ωC(e). The schematization cost c(ρ) is then defined as
c(ρ) =

∑
e∈P cρ(e).

Following Misue et al. [6], we say that an embedding ρ of a path P preserves
the orthogonal order of another embedding π of P if for any two vertices vi and
vj ∈ P we have xπ(vi) ≤ xπ(vj) if and only if xρ(vi) ≤ xρ(vj) and yπ(vi) ≤ yπ(vj)
if and only if yρ(vi) ≤ yρ(vj). In other words, any two vertices keep their above-
below and left-right relationship.

3 Monotone Path Schematization

In this section, we solve the monotone C-oriented path schematization problem,
which is formally defined as follows.

Problem 1. Given an embedded x- or y-monotone path (P, π), a set C of edge
orientations and a minimum length `min(e) for each edge e ∈ P , find a plane
C-oriented embedding ρ of P that

(i) preserves the orthogonal order of the input embedding π,
(ii) minimizes the schematization cost c(ρ),
(iii) respects the individual minimum edge lengths |ρ(e)| ≥ `min(e), and
(iv) minimizes the total path length

∑
e∈P |ρ(e)|.

Note that schematization cost and total path length are two potentially con-
flicting optimization criteria. Primarily, we want to find an embedding that mini-
mizes the schematization cost (see Section 3.1). In a second step, we minimize the
total path length of that embedding without changing the previously assigned
edge directions (see Section 3.2). The rationale for preserving the orthogonal
order of the input is to maintain the user’s mental map [2,4, 6].

6 D. Delling, A. Gemsa, M. Nöllenburg, T. Pajor

3.1 Minimizing the Schematization Cost

The goal in the first step of our algorithm is to find an embedding with minimum
schematization cost. Here we assume that the input path (P, π) is x-monotone;
y-monotone paths are schematized analogously. We assign the preferred angle
ωC(e) = γ to each edge e ∈ P , where γ ∈ C is the angle closest to απ(e). This
takes constant time per edge. It could, however, result in the following conflict.
Consider two subsequent edges e1, e2 with {ωC(e1), (ωC(e2)} = {90◦, 270◦}. As-
signing such preferred angles would result in an overlap of e1 and e2. In this
case, we either set ωC(e1) or ωC(e2) to its next best value, depending on which
edge is closer to it. This neither changes the solution nor creates new conflicts
since in a plane embedding not both edges can have their preferred direction.

The output embedding ρ must be x-monotone, too, as it preserves the or-
thogonal order of π. So we can assume that P = (v1, . . . , vn) is ordered from left
to right in both embeddings. Let ρ′ be any orthogonal-order preserving embed-
ding of P . We start with the observation that in ρ′ every edge e = vivi+1 with
ωC(e) 6= 0◦ and yρ′(vi) 6= yρ′(vi+1) can be embedded with its preferred direction
αρ′(e) = ωC(e). This is achieved by horizontally shifting the whole embedding
ρ′ right of xρ′(vi+1) (including vi+1) to the left or to the right until the slope
of e satisfies αρ′(e) = ωC(e). Due to the x-monotonicity of P no other edges are
affected by this shift.

We now group all edges e = uv of P into four categories according to their
preferred angle ωC(e):

1. if ωC(e) = 0◦ and yπ(u) 6= yπ(v) then e is called horizontal edge (or h-edge);
2. if yπ(u) = yπ(v) then e is called strictly horizontal edge (or sh-edge);
3. if ωC(e) 6= 0◦ and xπ(u) 6= xπ(v) then e is called vertical edge (or v-edge);
4. if xπ(u) = xπ(v) then e is called strictly vertical edge (or sv-edge).

Using these categories, we define the direction cost as follows. All edges e with
αρ(e) = ωC(e) are drawn according to their preferred angle and we assign the
cost cρ(e) = 0. For all edges e with αρ(e) 6= ωC(e) we assign the cost cρ(e) = 1.
An exception are the sh- and sv-edges, which must be assigned their preferred
angle due to the orthogonal ordering constraints. Consequently, we set cρ(e) =
∞ for any sh- or sv-edge e with αρ(e) 6= ωC(e). Using the above horizontal
shifting argument, the cost cρ(e) of any edge e depends only on the vertical
distance between its endpoints. Hence, the schematization cost of an x-monotone
embedding ρ is already fully determined by assigning y-coordinates yρ(v) to all
vertices v of P . Note that our approach can be easily adapted to alternative cost
definitions.

In order to determine an embedding with minimum schematization cost we
define m ≤ n − 1 closed and vertically bounded horizontal strips s1, . . . , sm
induced by the set {y = yπ(vi) | 1 ≤ i ≤ n} of horizontal lines through the
vertices of (P, π). Let these strips be ordered from top to bottom as shown in
Fig. 2a. Furthermore we define a dummy strip s0 above s1 that is unbounded
on its upper side. We say that an edge e = uv crosses a strip si and conversely
that si affects e if π(u) and π(v) lie on opposite sides of si. In fact, to determine

Path Schematization for Route Sketches 7

v1

v2

v3

v4

v5

v6 v7

v8

s1
s2
s3
s4

s5

s0

} S[3, 5]

S[1, 1]}

(a) Horizontal strips for (P, π).

v1

v2

v3

v4 v5

v6 v7
v8

h(s2) = 1
h(s3) = 1

h(s5) = 1

h(s1) = 0

h(s4) = 0

(b) Strip height assignment and induced
output path (P, ρ).

Fig. 2: Example of (a) an x-monotone embedded input path (P, π) and (b) a
C-oriented orthogonal-order preserving output path (P, ρ), where C contains all
multiples of 45◦.

the cost of an embedding ρ it is enough to know for each strip whether it has a
positive height or not. Our algorithm will assign a symbolic height h(si) ∈ {0, 1}
to each strip si such that the schematization cost is minimum. Note that sh-edges
do not cross any strip but rather coincide with some strip boundary. Hence all
sh-edges are automatically drawn horizontally and have no direction costs. We
can therefore assume that there are no sh-edges in (P, π).

Let S[i, j] =
⋃j
k=i sk be the union of the strips si, . . . , sj and let I(i, j) be

the subinstance of the path schematization problem containing all edges that lie
completely within S[i, j]. Note that I(1,m) corresponds to the original instance
(P, π), whereas in general I(i, j) is no longer a connected path but a collection
of edges. The following lemma is a key to our algorithm.

Lemma 1. Let I(i, j) be a subinstance of the path schematization problem and
let sk ⊆ S[i, j] be a strip for some i ≤ k ≤ j. If we assign h(sk) = 1 then I(i, j)
decomposes into the two independent subinstances I(i, k−1) and I(k+1, j). The
direction costs of all edges affected by sk are determined by setting h(sk) = 1.

Proof. We first show that the cost of any edge e = uv that crosses sk is deter-
mined by setting h(sk) = 1. Since u and v lie on opposite sides of sk we know
that yρ(u) 6= yρ(v). So if e is a v- or sv-edge it can be drawn with its preferred
angle and cρ(e) = 0 regardless of the height of any other strip crossed by e.
Conversely, if e is an h-edge it is impossible to draw e horizontally regardless of
the height of any other strip crossed by e and cρ(e) = 1. Recall that sh-edges do
not cross any strips. Assume that k = 2 in Fig. 2a and we set h(s2) = 1; then
edges v3v4 and v5v6 cross strip s2 and none of them can be drawn horizontally.

The remaining edges of I(i, j) do not cross sk and are either completely
contained in S[i, k − 1] or in S[k + 1, j]. Since the costs of all edges affected
by sk are independent of the heights of the remaining strips in S[i, j] \ {sk},
we can solve the two subinstances I(i, k − 1) and I(k + 1, j) independently, see
Fig. 2a. ut

Our Algorithm. We can now describe our algorithm for assigning symbolic
heights to all strips s1, . . . , sm such that the induced embedding ρ has mini-
mum schematization cost. The main idea is to recursively compute an optimal

8 D. Delling, A. Gemsa, M. Nöllenburg, T. Pajor

solution for each instance I(1, i) by finding the best k ≤ i such that h(sk) = 1
and h(sj) = 0 for j = k + 1, . . . , i. By using dynamic programming we can
compute an optimal solution for I(1,m) = (P, π) in O(n2) time.

Let C(k, i) for 1 ≤ k ≤ i denote the schematization cost of all edges in the
instance I(1, i) that either cross sk or have both endpoints in S[k+1, i] if we set
h(sk) = 1 and h(sj) = 0 for j = k+1, . . . , i. Let C(0, i) denote the schematization
cost of all edges in the instance I(1, i) if h(sj) = 0 for all j = 1, . . . , i. We use
an array T of size m + 2 to store the minimum schematization cost T [i] of the
instance I(1, i). Then T [i] is recursively defined as follows

T [i] =

{
min0≤k≤i(T [k − 1] + C(k, i)) if 1 ≤ i ≤ m
0 if i = 0 or i = −1.

(1)

Together with T [i] we store the index k that achieves the minimum value in the
recursive definition of T [i] as k[i] = k. This allows us to compute the actual strip
heights using backtracking. Note that T [m] < ∞ since, e. g., the solution that
assigns height 1 to every strip induces cost 0 for all sv-edges. Obviously, we need
O(m) time to compute each entry in T assuming that the schematization cost
C(k, i) is available in O(1) time. This yields a total running time of O(m2).

The next step is to precompute the schematization cost C(k, i) for any
0 ≤ k ≤ i ≤ m. This cost is composed of two parts. The first part is the schema-
tization cost of all edges that are affected by sk. As observed in Lemma 1, all
v- and sv-edges crossing sk have no cost. On the other hand, every h-edge that
crosses sk has cost 1. So we need to count all h-edges in I(1, i) that cross sk. The
second part is the cost of all edges that are completely contained in S[k + 1, i].
Since h(sk+1) = . . . = h(si) = 0 we observe that any h-edge in S[k+1, i] is drawn
horizontally at no cost. In contrast, no v- or sv-edge e in S[k + 1, i] attains its
preferred angle ωC(e) 6= 0◦. Hence every v-edge in S[k+1, i] has cost 1 and every
sv-edge has cost ∞. So we need to check whether there is an sv-edge contained
in S[k+ 1, i] and if this is not the case count all v-edges contained in S[k+ 1, i].

In order to efficiently compute the values C(k, i) we assign to each strip si
three sets of edges. Let H(i) (resp. V (i) or SV (i)) be the set of all h-edges
(resp. v-edges or sv-edges) whose lower endpoint lies on the lower boundary of
si. We can compute H(i), V (i), and SV (i) in O(n) time for all strips si. Then
for k ≤ i the number of h-edges in H(i) that cross sk is denoted by σH(k, i)
and the number of v-edges in V (i) that do not cross sk is denoted by σV (k, i).
Finally, let σSV (k, i) be the number of sv-edges in SV (i) that do not cross sk.

This allows us to compute the values C(k, i), 0 ≤ k ≤ i ≤ m, recursively as
follows

C(k, i) =

∞ if σSV (k, i) ≥ 1

C(k, i− 1) + σH(k, i) + σV (k, i) if k ≤ i− 1

σH(k, k) if k = i.

(2)

Since each edge appears in exactly one of the sets H(i), V (i), or SV (i) for some i
it is counted towards at most m values σH(·, i), σV (·, i), or σSV (·, i), respectively.

Path Schematization for Route Sketches 9

Thus for computing all these values we need O(nm) time. The values C(k, i) can
be precomputed in O(m2) time and require a table of size O(m2). This can be
reduced, however, to O(m) space as follows. We compute and store the values
T [i] in the order i = 1, . . . ,m. For computing the entry T [i] we use only the
values C(·, i). To compute the next entry T [i + 1] we first compute the values
C(·, i + 1) from C(·, i) and then discard all C(·, i). This reduces the required
space to O(m). Since m ≤ n we obtain

Theorem 1. Our algorithm to compute the array T of path schematization costs
requires O(n2) time and O(n) space.

It remains to determine the strip height assignments corresponding to the
schematization cost in T [m] and show the optimality of that solution. We initial-
ize all heights h(si) = 0 for i = 1, . . . ,m. Recall that k[i] equals the index k that
minimized the value T [i] in (1). To find all strips with height 1 we initially set
j = m. If k[j] = 0 we stop; otherwise we assign h(sk[j]) = 1, update j = k[j]− 1,
and continue with the next index k[j] until we hit k[j] = 0 for some j encoun-
tered in this process. Let ρ be the C-oriented embedding of P induced by this
strip height assignment, see Fig. 2b. We now show the optimality of ρ in terms
of the schematization cost.

Theorem 2. Given an x-monotone embedded path (P, π) and a set C of edge
orientations, our algorithm computes a plane C-oriented embedding ρ of P that
preserves the orthogonal order of π and has minimum schematization cost c(ρ).

Proof. Since the path is x-monotone and by construction there are no two ad-
jacent edges with preferred angles 90◦ and 270◦ the embedding ρ is plane. Fur-
thermore, the x-coordinates of the vertices are chosen such that ρ is C-oriented,
see Fig. 2b. The embedding ρ also preserves the orthogonal order of π since ρ
does not alter the x- and y-ordering of the vertices of P .

We show that ρ has minimum schematization cost by structural induction.
For an instance with a single strip s there are only two possible solutions of
which our algorithm chooses the better one. The induction hypothesis is that
our algorithm finds an optimal solution for any instance with at most m strips.
So let’s consider an instance with m+1 strips and let ρ′ be any optimal plane C-
oriented and orthogonal-order preserving solution for this instance. If all strips
s in ρ′ have height h(s) = 0 then by (1) it holds that c(ρ) = T [m + 1] ≤
C(0,m + 1) = c(ρ′). Otherwise, let k be the largest index for which h(sk) = 1
in ρ′. When computing T [m+ 1] our algorithm also considers the case where sk
is the bottommost strip of height 1, which has a cost of T [k − 1] +C(k,m+ 1).
If h(sk) = 1 we can split the instance into two independent subinstances to
both sides of sk by Lemma 1. The schematization cost C(k,m + 1) contains
the cost for all edges that cross sk and this cost is obviously the same as in
ρ′ since h(sk) = 1 in both embeddings. Furthermore, C(k,m + 1) contains the
cost of all edges in the subinstance below sk, for which we have by definition
h(sk+1) = . . . = h(sm+1) = 0. Since k is the largest index with h(sk) = 1 in
ρ′ this is also exactly the same cost that this subinstance has in ρ′. Finally,

10 D. Delling, A. Gemsa, M. Nöllenburg, T. Pajor

the independent subinstance above sk has at most m strips and hence T [k − 1]
is the minimum cost for this subinstance by induction. It follows that c(ρ) =
T [m+ 1] ≤ T [k − 1] + C(k,m+ 1) ≤ c(ρ′). This concludes the proof. ut

3.2 Minimizing the Path Length

In the first step of our algorithm we obtained a C-oriented and orthogonal-order
preserving embedding ρ with minimum schematization cost for an embedded
input path (P, π). The strip heights assigned in that step are either 0 or 1, but
this does not yet take into account the actual edge lengths induced by ρ. So
in the second step, we adjust ρ such that the total path length is minimized
and |ρ(e)| ≥ `min(e) for all e ∈ P . We make sure, however, that the orthogonal
order and all angles αρ(e)—and thus also the schematization cost c(ρ)—remain
unchanged.

Note that we can immediately assign the minimum length `min(e) to every
horizontal edge e in the input (P, ρ) by horizontally shifting the subpaths on both
sides of e. For any non-horizontal edge e = uv the length |ρ(e)| depends only
on the vertical distance ∆y(e) = |yρ(u) − yρ(v)| of its endpoints and the angle
αρ(e). In fact, |ρ(e)| = ∆y(e)/ sinαρ(e). So in order to minimize the path length
we need to find y-coordinates for all strip boundaries such that

∑
e∈P |ρ(e)| is

minimized. These y-coordinates together with the given angles for all edges e ∈ P
(as computed in the previous step) induce the corresponding x-coordinates of
all vertices of P .

So for each strip si (i = 0, . . . ,m) let yi denote the y-coordinate of its lower
boundary. For every edge e ∈ P let t(e) and b(e) denote the index of the top- and
bottommost strip, respectively, that is crossed by e. Then ∆y(e) = yt(e)−1−yb(e).
We propose the following linear program (LP) to minimize the path length of a
given C-oriented embedded path (P, ρ).

Minimize
∑

e∈P, αρ(e)6=0◦

[1

sinαρ(e)
· (yt(e)−1 − yb(e))

]
subject to yt(e)−1 − yb(e) ≥ sinαρ(e) · `min(e) ∀e ∈ P, αρ(e) 6= 0◦

yi−1 − yi ≥ 0 ∀si with h(si) = 1
yi−1 − yi = 0 ∀si with h(si) = 0

We assign to all vertices their corresponding y-coordinates from the solution
of the LP. In a left-to-right pass over P we compute the correct x-coordinates
of each vertex vi from the vertical distance to its predecessor vertex vi−1 and
the angle αρ(vi−1vi). This yields a modified embedding ρ′ that satisfies all our
requirements: the path length is minimized; the orthogonal order is preserved
due to the x-monotonicity of P and the constraints in the LP to maintain the
y-order; by construction the directions of all edges are the same in ρ and ρ′; no
edge e is shorter than its minimum length `min(e). Hence, ρ′ solves Problem 1
and together with Theorems 1 and 2 we obtain

Path Schematization for Route Sketches 11

Theorem 3. The monotone C-oriented path schematization problem (Problem 1)
for a monotone input path of length n can be solved by an O(n2)-time algorithm
to compute an embedding ρ of minimum schematization cost followed by solving
a linear program to minimize the path length of ρ.

Note that our linear program can be solved efficiently in O(n2.5L) time using
a method of Vaidya [11], where n is the length of the path P and L is the number
of input bits.

4 Extension to General Simple Paths

In the last section, we showed how to schematize a monotone path. Unfortu-
nately, some routes in road networks are neither x- nor y-monotone, however,
they can be decomposed into a (very) limited number of x- and y- monotone
subpaths. So, we propose the following three-step heuristic to schematize general
simple paths: We first split the input path (P, π) into a minimum number of x-
or y-monotone subpaths (Pi, πi), where πi equals π restricted to the subpath Pi.
We embed each (Pi, πi) separately according to Section 3. Then, we concatenate
the subpaths such that the resulting path (P ′, ξ) is a simple C-oriented path.
Note that this heuristic does not guarantee to preserve the orthogonal order
between node pairs of different subpaths.

Splitting an embedded simple path P = (v1, . . . , vn) into the minimal num-
ber k of subpaths Pi, 1 ≤ i ≤ k with the property that each Pi is an x- or
y-monotone path can be done in straightforward greedy fashion, starting from
v1. We traverse P until we find the last vertices v′ and v′′ which are not violat-
ing the x- and y-monotonicity, respectively. If v′ appears later than v′′ on P , we
set P1 = (v1, . . . , v

′), otherwise P1 = (v1, . . . , v
′′). We continue this procedure

until we reach the end of P . This algorithm runs in O(n) time and returns the
minimal number k of x- or y-monotone subpaths, indicated by Proposition 1.

Proposition 1. The greedy path splitting algorithm divides the input path P
into a minimal number of x- or y-monotone subpaths in linear time.

Proof. Assume (L1, . . . , Ll) is an optimal solution that divides P into l x- or y-
monotone subpaths, and let (P1, . . . , Pk) be the solution obtained by the above
algorithm. Observe that due to the greedy approach the following two statements
hold: (i) the path Li for the smallest i such that Li differs from Pi contains less
vertices than Pi; (ii) there cannot be any path Lm that fully contains some path
Pj = (vp, . . . , vq) and also vq+1 ∈ Lm. This implies that if there is a path Lm that
contains Pj they both share the same last vertex. Combined, we get that there
is no sequence of paths L1, . . . , Li containing more vertices than the sequence
P1, . . . , Pi and hence k ≤ l. ut

After splitting the input path, we schematize each subpath (Pi, πi) according
to Section 3. We obtain a C-oriented and orthogonal-order preserving embedding
ρi with minimum schematization cost and minimum path length for each (Pi, πi).
For concatenating these subpaths, we must solve the following problem.

12 D. Delling, A. Gemsa, M. Nöllenburg, T. Pajor

Problem 2. Given a sequence of k embedded x- or y-monotone paths (Pi, ρi)
with 1 ≤ i ≤ k, find an embedding ξ of P ′ = P1⊕ · · · ⊕Pk, where ⊕ denotes the
concatenation of paths, such that

(i) for each subpath (Pi, ξi), the embedding ξi is a translation of ρi and

(ii) (P ′, ξ) is a simple C-oriented path.

Our approach is based on iteratively embedding the subpaths P1, . . . , Pk. We
ensure that in each iteration i the embedding of P1⊕. . .⊕Pi remains conflict-free,
i. e., it has no self-intersections. We achieve this by adding up to three new path-
link edges between any two adjacent subpaths Pi and Pi+1. For each 1 ≤ i ≤ k let
Bi denote the bounding box of (Pi, ρi). We show how to construct an embedding
ξ of P ′ such that for any i 6= j we have Bi ∩ Bj = ∅. Consequently, since each
individual (Pi, ρi) is conflict-free, (P ′, ξ) is conflict-free as well. A key operation
of the algorithm is shifting a subpath Pi (or equivalently a bounding box Bi) by
an offset ∆ = (∆x, ∆y) ∈ R2. This is done by defining the lower left corner of
each bounding box Bi as its origin oi and storing the coordinates of Pi relative
to oi, i. e., ξ(v) = oi + ρi(v). Note that shifting preserves all local properties of
(Pi, ρi), i. e., the orthogonal order as well as edge lengths and orientations.

Each iteration of our algorithm consists of two steps. First, we attach the
subpath Pi to its predecessor Pi−1. To that end, we initially place (Pi, ξi) such
that the last vertex u of Pi−1 and the first vertex v of Pi coincide. Then we
add either two path-link edges (if the monotonicity directions of Pi−1 and Pi
are orthogonal) or three path-link edges (if Pi−1 runs in the opposite direction
of Pi) between u and v and shift Bi by finding appropriate lengths for the new
edges such that Bi−1∩Bi = ∅. Paths Pi−1 and Pi are now conflict-free, but there
may still exist conflicts between Pi and paths Pj(j < i− 1). These are resolved
in a second step that, roughly speaking, “inflates” Bi starting at v until it has
reached its original size. Any conflicting bounding boxes are “pushed” away from
Bi by stretching some of the path-link edges. In the following, we explain our
procedures for attaching a subpath and resolving conflicts in more detail.

Attaching a Subpath. Without loss of generality, we restrict ourselves to the case
that Pi−1 is an x-monotone path from left to right. Let u be the last vertex of
Pi−1 and v be the first vertex of Pi. If Pi is y-monotone we add a horizontal
edge e1 = uu′ with αξ(e1) = 0◦ connecting u to a new vertex u′. Then we also
add a vertical edge e2 = u′v with αξ(e1) = 90◦ if Pi is upward directed and
αξ(e1) = 270◦ if it is a downward path. Otherwise, if Pi is x-monotone from
right to left, we add two vertices u′ and u′′ and three path-link edges e1 = uu′,
e2 = u′u′′, and e3 = u′′v with αξ(e1) = 0◦, αξ(e2) = 90◦ if Pi is above Pi−1 in π
or αξ(e2) = 270◦ otherwise, and αξ(e3) = 180◦. Note that technically we treat
each path-link edge as having its own bounding box with zero width or height.
It remains to set the lengths of the path-link edges such that Bi ∩ Bj = ∅ by
computing the vertical and horizontal overlap of Bi−1 and Bi. Figure 3 illustrates
both situations.

Path Schematization for Route Sketches 13

Pi−1
e1

Pi

v

e2
u

(a) Paths with orthogonal directions

Pi−1

Pi

e3

e2

e1

v

u

(b) Oppositely directed paths

Fig. 3: Two examples for attaching Pi to Pi−1 by inserting path-link edges.

Resolving Conflicts. After adding Pi we have Bi−1 ∩ Bi = ∅. However, there
may still exist conflicts with any Bj , 1 ≤ j < i − 1. In order to free up the
space required to actually place Bi without overlapping any other bounding
box, we push away all conflicting boxes in three steps. For illustration, let Pi be
x-monotone from left to right, and let v be the first vertex of Pi.

Each bounding boxB is defined by its lower left corner ll(B) = (llx(B), lly(B))
and its upper right corner ur(B) = (urx(B), ury(B)). In the first step we identify
the leftmost box B′ (if any) that is intersected by a line segment that extends
from ξ(v) to the right with length equal to the width of Bi. For this box B′ we
have lly(B′) ≤ yξ(v) ≤ ury(B′) and llx(Bi) ≤ llx(B′) ≤ urx(Bi). If there is such
a B′ let the offset be ∆x = urx(Bi)− llx(B′).

Now we shift all bounding boxes B that lie completely to the right of llx(B′)
to the right by ∆x. All horizontal path-link edges (which are also considered
bounding boxes by themselves) that connect a shifted with a non-shifted path
are stretched by ∆x to keep the two paths connected. Note that there is always
a horizontal path-link edge between any two subsequent paths.

Next, we inflate Bi, which is currently a horizontal line segment, downwards:
we first determine the topmost conflicting box B′′ (if any) below a horizontal
line through ξ(v), i. e., a box B′′ whose x-range intersects the x-range of Bi and
for which lly(Bi) ≤ ury(B′′) ≤ yξ(v). If we find such a B′′ we define the vertical
offset ∆y1 = ury(B′′)−lly(Bi). We shift all bounding boxes B that lie completely
below ury(B′′) downwards by ∆y1. All vertical path-link edges that connect a
shifted with a non-shifted box are stretched by ∆y1 in order to keep the two
boxes connected. Again, there is always a vertical path-link edge between any
two subsequent paths. Finally, we inflate Bi upwards, which is analogous to the
downward inflation. Figure 4 shows an example.

The approach explained above first inflates the box to the right, then down-
wards, and finally upwards. Of course, we could use any strategy of inflating the
box. In fact, since different strategies yield different results, we could test a fixed
number of strategies and keep the result that minimizes the overall increase in
edge lengths.

In the following, we show that our algorithm indeed solves Problem 2.

14 D. Delling, A. Gemsa, M. Nöllenburg, T. Pajor

Lemma 2. Our algorithm computes a conflict-free embedding ξ of P ′ = P1 ⊕
· · · ⊕ Pk.

Proof. We prove the theorem by induction. By definition, fhe first path P1 has a
conflict-free embedding. Now, assume that P1⊕ · · ·⊕Pi−1 is already embedded
conflict-free. We attach Pi to Pi−1, such that Bi ∩Bi−1 = ∅ holds. Thus, Pi and
Pi−1 do not have a conflict. Next, we shift all Bj with j < i such that Bi∩Bj = ∅
in the end.

What remains to be shown is that our shifting-operation does not create new
conflicts between any two boxes Bj and Bj′ with j, j′ < i. Consider, e. g., a shift
to the right and assume that after the shift Bj and Bj′ intersect, while they did
not intersect before the shift. Clearly, if none of the boxes has been moved, they
cannot intersect. So either the shift moved both boxes by the same offset ∆x,
or it moved only the rightmost of the two boxes to the right by ∆x. There is no
vertical movement. So in both cases the horizontal distance of the boxes does
not decrease and it is impossible that Bj and Bj′ intersect after the shift. The
same observation holds for the vertical shifts. ut
Theorem 4. Our algorithm computes a solution (P ′, ξ) to Problem 2 by adding
at most 3(k−1) path-link edges to P . It can be implemented with a running time
of O(k2 + n).

Proof. The correctness of the algorithm follows from Lemma 2 and due to the
fact that the embeddings (Pi, ρi) within the bounding boxes Bi remain un-
changed. Clearly, we add at most three edges between any two subsequent paths,
which shows the bound on the number of path-link edges.

It remains to show the running time of O(k2 + n). For the position of each
bounding box we maintain the coordinates of its lower left and upper right cor-
ners. In each iteration, attaching a new subpath, requires constant time since it

∆x∆y1

∆y2

Bi

B1

B2

v

Lx

Ly1

Ly2

(a) Before resolving the conflict

∆y2

Bi

B2

v

∆y1

∆y1

∆x

∆x

B1

B2

(b) After resolving the conflict

Fig. 4: Example for iteratively resolving conflicts induced by attaching Pi. First,
we shift everything right of Lx to the right by ∆x. Then, we shift everything
below Ly1 by ∆y1 downward, and finally, we shift everything above Ly2 upward.

Path Schematization for Route Sketches 15

depends only on the overlap of the new bounding box and its immediate pre-
decessor. Resolving all conflicts requires O(k) time per iteration: When adding
path Pi we need to check for each box Bj (j < i − 1) and the boxes of their
respective path-link edges if and how they conflict with Bi. Once the required
offset is computed, we shift O(k) boxes by updating their lower left and upper
right corners, as well as their origins. This is done in constant time per box and
O(k) time in total per iteration. So for all k iterations the running time is O(k2).
Finally, we obtain the embedding ξ of P ′ by computing the absolute coordinates
of all vertices in O(n) time. ut

Note that we can improve the running time if the number I of occurring
conflicts and shifts is small. More precisely, if I < k2/ log2 k we can use dynamic
interval trees and dynamic binary search trees to store the segments and coordi-
nates of all bounding boxes [3]. In this case, obtaining the bounding boxes that
define the offsets for all shift operations can be done in O(k log2 k+I) total time.
Each stretch or shift of a box requires an update in these data structures, which
can be done in O(log2 k) time. Hence, for I updates and k queries we obtain a
total running time of O((I + k) log2 k + n) instead.

5 Conclusion

We presented a novel two-step approach to schematize monotone paths moti-
vated from drawing route sketches. We embed the path in a C-oriented way
such that the orthogonal ordering is preserved followed by optimizing the edge
lengths. Our approach has polynomial running time and is dominated by the
optimization of the edge lengths using linear programming. In order to use our
approach for general simple paths we proposed a three-step heuristic that first
decomposes the path (of length n) into k monotone subpaths, embeds all of them
independently, and finally reconcatenates them in such a way that the resulting
embedding is C-oriented and crossing-free. Preliminary results from an imple-
mentation of our approach (see Fig. 1c) indicate that typically n ≤ 100 for the
road network of Germany, making our approach very efficient for drawing route
sketches in practice. Moreover, our experiments also indicate that k tends to be
no larger than 3.

However, for usage in a real-world application, some problems remain. We
need to label the edges, indicate turns, etc.; we plan to tackle all these problems.
Moreover, it would be interesting to optimize the routes for simplicity in terms
of driving and visualization rather than solely for travel time, i. e., a slightly
longer route with less road changes might be preferable as it lowers the chance
of making mistakes. The running time of our approach is currently dominated
by the time required for solving the LP that optimizes the edge lengths. It
would be interesting to find an algorithm solving this problem faster. Apart
from schematizing a single route, it is another interesting problem to draw a
whole set of alternative routes in a single sketch.

16 D. Delling, A. Gemsa, M. Nöllenburg, T. Pajor

Acknowledgments

We thank David Eppstein, Bastian Katz, Maarten Löffler, Ignaz Rutter, and
Markus Völker for discussions on the edge-length minimization problem.

References

1. M. Agrawala and C. Stolte. Rendering effective route maps: Improving usability
through generalization. In E. Fiume, editor, Proc. 28th Ann. Conf. Computer
Graphics and Interactive Techniques (SIGGRAPH’01), pages 241–249. ACM, 2001.

2. U. Brandes and B. Pampel. On the hardness of orthogonal-order preserving graph
drawing. In I. G. Tollis and M. Patrignani, editors, Proc. 16th Internat. Symp.
Graph Drawing (GD’08), volume 5417 of Lecture Notes Comput. Sci., pages 266–
277. Springer-Verlag, 2009.

3. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Ge-
ometry: Algorithms and Applications. Springer-Verlag, third edition, 2008.

4. T. Dwyer, Y. Koren, and K. Marriott. Stress majorization with orthogonal ordering
constraints. In P. Healy and N. S. Nikolov, editors, Proc. 13th Internat. Symp.
Graph Drawing (GD’05), volume 3843 of Lecture Notes Comput. Sci., pages 141–
152. Springer-Verlag, 2006.

5. D. Merrick and J. Gudmundsson. Path simplification for metro map layout. In
M. Kaufmann and D. Wagner, editors, Proc. 14th Internat. Symp. Graph Drawing
(GD’06), volume 4372 of Lecture Notes Comput. Sci., pages 258–269. Springer-
Verlag, 2007.

6. K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental
map. J. Visual Languages and Computing, 6(2):183–210, 1995.

7. G. Neyer. Line simplification with restricted orientations. In F. K. Dehne,
A. Gupta, J.-R. Sack, and R. Tamassia, editors, Proc. 6th Int. Workshop on Al-
gorithms and Data Structures (WADS’99), volume 1663 of Lecture Notes Comput.
Sci., pages 13–24. Springer-Verlag, 1999.

8. M. Ovenden. Metro Maps of the World. Capital Transport Publishing, 2003.
9. B. Tversky. Cognitive maps, cognitive collages, and spatial mental models. In

Proc. 1st Conference on Spatial Information Theory (COSIT’93), volume 716 of
Lecture Notes Comput. Sci., pages 14–24. Springer-Verlag, 1993.

10. B. Tversky and P. U. Lee. Pictorial and verbal tools for conveying routes. In
Proc. 4th Conference on Spatial Information Theory (COSIT’99), volume 1661 of
Lecture Notes Comput. Sci., pages 51–64. Springer-Verlag, 1999.

11. P. Vaidya. Speeding-up linear programming using fast matrix multiplication. In
Proc. 30th Annual Symposium on Foundations of Computer Science (FOCS’89),
pages 332–337, 1989.

	2010,2_Titelbl.pdf
	2010,2_Bericht.pdf
	20010,2.pdf
	path-schem-11_pdfa

