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Abstract 
 

Aim of the current thesis was the establishment and validation of automated high throughput 

screening (HTS) methods for development and optimization of downstream processing steps. 

Focus was laid on inclusion body protein refolding processes. Although a high demand exists 

for high throughput refolding screening several challenges could not be met up to now which 

are e.g. incompatibility of analytics with automated HTS platforms, the lack of universal 

methods to measure protein folding and an intelligent experimental design to economically 

search for optima in a multi parameter system.  

Basic experimental methods for HTS screening were developed on a commercially available 

pipetting station Tecan Freedom Evo® 200 according to the HTS guidelines: automation, 

parallelization and miniaturization. Lysozyme was used as a model protein. Refolding buffer 

screening was performed in a 96 well plate format by dilution of denatured lysozyme into 

different refolding buffer systems with constant shaking and an additional aspirating and 

dispensing step of the refolding sample. Mixing in this dilution step was optimized to avoid 

high local protein concentration resulting in protein aggregation. A refolding time of 1 hour 

was observed to be sufficient to reach a stable equilibrium between protein aggregates and 

soluble protein species. 

As a reference method for analytical development a standard lysozyme activity assay could be 

automated in a 96 well plate format. Decreasing turbidity of a Micrococcus suspension due to 

lysis of the bacterial cell walls can be easily detected and correlated to native lysozyme 

concentration.  

An interesting finding during screening validation was that constant conditions during 

denaturation of lysozyme feedstock like unfolding time, temperature, concentration of 

reducing component and protein concentration are crucial for comparability of refolding 

results and thus for step wise optimization. Furthermore control of the redox environment by 

addition of oxidizing and reducing reagents was a prerequisite for high refolding yields and a 

systematic improvement of buffer composition. Air oxidation led to a completely non-

systematic distribution of parameter values within the best refolding results.  

An intense literature study revealed protein solubility and tryptophan fluorescence as potential 

non-specific analytical methods to estimate protein refolding success in an automated HTS 

approach. Measurement of protein solubility turned out to be complicated because of complex 

buffer matrices in refolding, low protein concentrations and protein structure variations 

interfering with commonly used techniques. Dye based assays and UV 280 nm absorption 
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revealed to be sensitive to either the presence of different protein folding states or to refolding 

buffer components like oxidizing or reducing reagents. Consequently automated methods for 

buffer exchange like ultrafiltration, size exclusion chromatography and dialysis had to be 

investigated. All approaches turned out to have some serious draw backs. Ultrafiltration led to 

a protein concentration and buffer dependent loss of protein whereas dialysis and size 

exclusion chromatography failed to separate protein from oxidizing reagents in a manageable 

time with robotic compatible equipment. As direct measurement of soluble protein turned out 

to be impossible in HTS refolding screening an indirect method was established determining 

aggregate concentration instead. In the resulting procedure lysozyme aggregates were 

separated by filtration in 96 well filter plates and subsequently resolubilized in denaturing 

buffer for absorption measurement at 280 nm. Soluble protein content could then be 

calculated on the basis of mass balances with the known initial and the assessed aggregated 

protein concentration. Validation with 40 highly divers refolding samples showed mass 

balances close to 100 % and an average standard deviation of 2 % thus qualifying this method 

for high throughput refold screening.  

The correlation between solubility and folding was evaluated intensely. Highly soluble 

samples in refolding do not necessarily show high activity. Nevertheless optimization of 

solubility with a controlled redox environment led to optimum parameter sets overlapping 

with those favoured for protein folding. These observations point out the possibility to use fast 

and easy solubility measurements in a more excessive first screening round to reduce the 

parameter space of interest in later screenings with higher analytical effort. 

As a second non-specific method intrinsic tryptophan fluorescence was validated as a tool to 

estimate refolding success. Emission spectra could be easily measured in a 96 well plate 

format. Due to the rather small red shift of spectra from completely active to completely 

denatured lysozyme an asymmetric Gauss fit was performed to calculate the exact emission 

maximum. In 40 lysozyme refolding systems with random buffer composition all measured 

tryptophan spectra laid in a close range showing no correlation with the specific yield of 

active lysozyme. This observation is likely due to a hydrophobic collapse of lysozyme being 

obligatory for protein solubility. Soluble protein will thus exhibit a rather uniform spectral 

behaviour. Interestingly a larger variation in tryptophan emission spectra is observed in the 

absence of redox components hinting at a higher flexibility of the protein due to the lack of 

disulfide bridges. Summarizing tryptophan fluorescence is a tool to follow extreme changes in 

protein structure like unfolding but unfortunately the resolution at least for lysozyme is too 

low to use it for refolding analytics in optimization experiments. 
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After the technical basis for refolding screening was provided two different methods for 

intelligent experimental design were investigated: a genetic algorithm and a classical factorial 

design. Optimization of up to five parameters (pH, concentration of NaCl, MgSO4, DTT and 

GSSG) could be fully automated with the genetic algorithm including several rounds of 

experimentation, determination of refolding yield and calculation of the next starting 

parameter matrix. A high data density is provided in the parameter range of interest close to 

the optimum. With this stochastic method the average active lysozyme concentration could be 

improved with a factor of f = 8.3 from 0.019 mg/ml to 0.154 mg/ml within 5 generations 

consisting of 40 experiments each. The concentration of soluble lysozyme is improved with a 

factor of f = 2 from 0.195 mg/ml to 0.384 mg/ml including experiments with maximum 

solubility of 0.4 mg/ml within 4 generations.  

A full factorial design in the reduced parameter space close to the optimum is applied to 

confirm or refine the optimization. In our case the genetic algorithm did not lead to a global 

optimum for two of the five parameters investigated which could be revealed by the full 

factorial experiments. The algorithm is caught on a diagonal line between two parameters 

representing the molar ratio of oxidizing to reducing component or in other words the redox 

potential of the solvent. The linear recombination method of the genetic algorithm in 

combination with the chosen mutation rate likely accounts for these undesired effects. This 

knowledge offers the possibility to adapt the GA parameters to the screening objective and 

points out the usefulness of an additional full factorial experiment. 

During refolding screening development protein solubility was revealed to be of major 

importance for the qualified selection of suitable buffer systems. Consequently an available 

HTS tool for the determination of protein precipitation curves was further improved in terms 

of throughput to characterize the effect of pH, temperature and different additives like PEG, 

sorbitol, sucrose or Tween 20 on the solubility behaviour of lysozyme. Measurement of 

lysozyme solubility in additive buffer mixtures resulted in complex solubility surfaces 

demonstrating interdependent effects of both solvent components. As these interdependent 

effects are not simply additive, optimization of such systems should always be performed in 

the presence of both substances. An additional observation was that the pH dependency of 

lysozyme solubility correlated with the calculated net charge of the molecule. Decreasing net 

charge at pH values in proximity to the isoelectic point led to increasing protein interactions. 

Repulsive forces thus seem to play a major role in protein solubility. 

Besides the development of screening methods for dilution refolding, HTS techniques for the 

optimization of solid phase refolding processes were established on the robotic workstation. 
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Batch binding of denatured lysozyme on different cation exchange adsorber resins was 

characterized by measurement of adsorption isotherms and kinetics revealing a significantly 

weaker binding of denatured lysozyme. The disintegration of charged patches by unfolding 

and the stretched molecular structure with solvent exposed hydrophobic residues presumably 

accounts for these observations.  

Refolding was initiated by buffer exchange from denaturing to refolding buffer after transfer 

of loaded adsorber particles to filter plates. Effects of protein loading, incubation time in 

refolding buffer, refolding buffer pH and urea concentration on protein yield could be 

analyzed with the developed automated method. A strong correlation between folding and 

adsorption/desorption processes could be observed with only completely folded active protein 

being amenable to elute with high salt concentrations. Misfolded or aggregated protein could 

only be eluted in denaturing buffer conditions. These results hint at different adsorption 

mechanisms of the different protein species. In summary optimization of on-column refolding 

process parameters like resin type, protein loading and buffer compositions is possible with 

low protein and resin consumption using the developed HTS approach.  
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Zusammenfassung 
 

Ziel der vorliegenden Arbeit war die Etablierung und Validierung von automatisierten 

Hochdurchsatz Screening (HTS) Methoden zur Entwicklung und Optimierung von 

Proteinaufarbeitungsprozessschritten. Hierbei wurde der Schwerpunkt auf Inclusion Body 

Protein Rückfaltungsprozesse gelegt. Obwohl der Bedarf für Hochdurchsatzscreening im 

Bereich der Proteinrückfaltung hoch ist, konnten zahlreiche Probleme bis heute noch nicht 

gelöst werden. Hierzu zählen z.B. die ungenügend auf Automationsstationen angepasste 

Analytik, das Fehlen universeller Methoden zur Bestimmung der Proteinfaltung und das 

Fehlen intelligenter Versuchsplanungsverfahren zur ökonomischen Optimierung von 

Multiparametersystemen.  

Alle experimentellen Methoden für das Hochdurchstzscreening wurden auf einem 

kommerziell erhältlichen Pipettierroboter Tecan Freedom Evo® 200 unter Berücksichtigung 

der HTS Grundsätze: Automation, Parallelisierung und Miniaturisierung entwickelt. 

Rückfaltungspufferscreening wurde in 96 well Platten durch Verdünnung des denaturierten 

Lysozyms in verschiedenen Puffersystemen unter konstantem Schütteln durchgeführt. Das 

Mischen in diesem Verdünnungsschritt wurde optimiert um lokale 

Proteinkonzentrationsspitzen zu vermeiden, die zu Aggregation führen können. Eine 

Inkubationszeit von einer Stunde wurde als auseichend für die stabile 

Gleichgewichtseinstellung zwischen aggregiertem und gelöstem Protein ermittelt. 

Als Referenzmethode für die Entwicklung der Analytik wurde ein Standardlysozymassay in 

einem 96 well Plattenformat automatisiert. Die abnehmende Trübung einer Micrococcus 

Suspension durch Auflösen der Zellwände mittels Lysozym kann leicht in einem Photometer 

gemessen und mit der nativen Lysozymkonzentration korreliert werden. 

Bedingungen zur Herstellung des denaturierten Proteins wie Entfaltungszeit, Temperatur und 

die Konzentration von Protein und Reduktionsmittel wurden als wichtige Einflussgrößen für 

das spätere Rückfaltungsergebnis identifiziert und müssen zur Vergleichbarkeit der 

Ergebnisse und zur gezielten, schrittweisen Optimierung von Rückfaltungsbedingungen 

konstant gehalten werden. Weiterhin wurde festgestellt, dass die Kontrolle der 

Redoxumgebung durch Zugabe von Reduktions- und Oxidationsmittel für hohe 

Rückfaltungsausbeuten und eine systematische Verbesserung der Pufferzusammensetzung 

zwingend notwendig ist. Die reine Luftoxidation führte zu niedrigen Ausbeuten und einer 

unsystematischen Verteilung der Rückfaltungsparameter bei den Experimenten mit der 

höchsten Ausbeute.  
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Eine der wesentlichen Herausforderungen war die Entwicklung der Analytik. Die Korrelation 

von universell, schnell  und automatisiert messbaren Größen wie der Tryptophanfluoreszenz  

und Proteinlöslichkeit mit der Lysozymaktivität wurde untersucht. Die nötige Analytik wurde 

in den Robotikprozess integriert, um manuelle Intervention und off-line Messungen zu 

umgehen. Lysozym wurde für alle Prozesse als Modellprotein verwendet.  

Da übliche Methoden zur Bestimmung der Proteinlöslichkeit wie die Absorption bei 280 nm 

oder der Bradfordassay mit der Anwesenheit verschiedener Proteinstrukturvarianten und 

Lösungsmittelkomponenten nicht kompatibel sind, wurden Möglichkeiten zum 

automatisierten Pufferwechsel validiert. Ultrafiltration, Dialyse und 

Größenausschlusschromatorgaphie wurden auf ihr Potential zur Trennung von GSSG und 

Lysozym untersucht. Auf Grund von Proteinverlusten, langen Prozesszeiten und aufwändiger 

Implementierung in das Robotersystem wurden diese Ansätze zu Gunsten einer indirekten 

Bestimmung des gelösten Proteins aufgegeben. Proteinaggregate wurden über Filterplatten 

abgetrennt, in Denaturierungspuffer gelöst und die Konzentration übe Absorption bei 280 nm 

bestimmt. Gelöstes Protein kann auf Basis der Massenbilanz mit der bekannten 

Anfangskonzentration und der gemessenen Aggregatkonzentration berechnet werden. Die 

Validierung dieser Methode mit 40 Rückfaltungsansätzen bei hoher Puffervariabilität ergab 

Massenbilanzen nahe 100 % und eine mittlere Standardabweichung von 2 % und qualifizieren 

das Verfahren somit für den Einsatz in einem HTS Optimierungsprotokoll. Die Korrelation 

von Proteinlöslichkeit und Faltung zu aktivem Protein wurde intensiv untersucht. Es wurde 

eine Überlappung der Parameteroptima für diese beiden Messgrößen festgestellt, die es 

ermöglicht, Löslichkeit als Zielfunktion in einem exzessiven ersten Screening einzusetzen, 

um den interessanten Parameterbereich für folgende Screenings mit höherem experimentellen 

Aufwand zu reduzieren.  

Als zweite Methode wurde intrinsische Tryptophanfluoreszenz zur universellen Messung von 

Proteinfaltung validiert. Die Wellenlänge im Emissionsmaximum bei Anregung von 

Tryptophan mit 280 nm zeigt bei Denaturierung von Lysozym eine signifikante 

Rotverschiebung, die auf einer höheren Zugänglichkeit des sonst innerhalb des Moleküls 

liegenden Tryptophan für die Lösungsmittelmoleküle beruht. In 

Lysozymrückfaltungsansätzen zeigte die lösliche Proteinfraktion keine Korrelation zwischen 

Wellenlänge im Emissionsspektrum und spezifischer Aktivität. Die Emissionsmaxima lagen 

in einem relativ engen Bereich über dem Wert für natives Lysozym. Ohne Zugabe von 

Redoxreagenzien streuten die Werte stärker. Die beobachteten Effekte beruhen sehr 

wahrscheinlich auf dem Bestreben des Proteins, alle hydrophoben Gruppen bei Verdünnung 
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in Rückfaltungspuffer schlagartig ins Innere zu verlagern, was zu einer Separierung des 

löslichen Proteins mit innen liegenden Tryptophanen und des aggregierenden Proteins mit 

Tryptophan an der Moleküloberfläche führt. Eine höhere Flexibilität des Lysozyms ohne 

Redoxsubstanzen durch die verlangsamte Bildung von Disulfidbrücken hat eine höhere 

Zugänglichkeit der Tryptophane zur Folge, die sich durch stärkere Abweichungen im 

Emissionsspektrum zeigt. Zusammenfassend lässt sich sagen, dass extreme 

Strukturveränderungen, wie Entfaltung, über Tryptophanfluoreszenz gemessen werden 

können. Dennoch ist das Auflösungsvermögen der Tryptophanfluoreszenz in 

Rückfaltungsansätzen zumindest für Lysozym für eine gezielte Optimierung zu niedrig. 

Nach Etablierung der experimentellen Methoden wurden zwei verschiedene 

Versuchsplanungsverfahren untersucht: ein genetischer Algorithmus und ein klassischer 

faktorieller Versuchsplan. Um eine hohe Anzahl an Prozessparametern robust optimieren zu 

können, wurde der genetische Algorithmus in den Roboterprozess integriert. Die Optimierung 

durchläuft vollautomatisch die aufeinander folgenden Zyklen bestehend aus der Durchführung 

der Experimente, der Berechnung der Zielfunktion und der Erstellung des Versuchsplans für 

die nächste Runde. Bis zu fünf Parameter wie pH-Wert und die NaCl, MgSO4, DTT and 

GSSG Konzentration wurden zeitgleich optimiert. Über den stochastischen 

Optimierungsalgorithmus konnte die Konzentration an aktivem Protein um den Faktor 8,3 

von mittleren 0,019 mg/ml auf 0,154 mg/ml in fünf Generationen mit je 40 Experimenten 

erhöht werden. Die mittlere Konzentration an gelöstem Protein wurde in 4 Generationen um 

den Faktor 2 von 0,195 mg/ml auf 0,384 mg/ml verbessert.  

Ein vollfaktorieller Versuchsplan im Optimum wurde genutzt, um Parametereffekte zu 

bestätigen und die Auflösung in diesem reduzierten Parameterraum zu erhöhen. Hierbei 

konnte festgestellt werden, dass das bestimmte Optimum für GSSG und DTT vom globalen 

Optimum abweicht, was auf eine nötige Anpassung des genetischen Algorithmus im Bezug 

auf die gewählte Rekombinationsmethode und die Mutationsrate hinweist. Zusammengefasst 

führt die Kombination eines genetischen Algorithmus zur Verkleinerung des interessanten 

Parameterbereiches und vollfaktorieller Versuchspläne zur Untersuchung der 

Parametereffekte im Optimum neben der Verbesserung der Zielfunktion auch zu einem 

erhöhten Verständnis des Prozess und der Arbeitsweise des genetischen Algorithmus.  

Da die Proteinlöslichkeit bei der Optimierung von Rückfaltungsprozessen eine prominente 

Rolle spielt wurde der Durchsatz in einer bereits vorhandenen automatisierten Methode zur 

Bestimmung von Proteinlöslichkeit erhöht, um den Einfluss komplexerer Puffersysteme 

bestehend aus Additiv und Salz zu messen. Mit der adaptierten Methode konnte der Einfluss 
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der Temperatur und des pH Werts in Übereinstimmung mit der Literatur bestimmt werden. 

Weiterhin konnten komplexe Löslichkeitsflächendiagramme für Lysozym, Salz und Additive, 

wie PEG mit verschiedenen Molekulargewichten, Tween 20, Sorbitol und Sucrose, erstellt 

werden. Beobachtete Wechselwirkungen zwischen Additiv und Salz in verschiedenen 

Konzentrationen lassen sich in einem einfachen Screening mit einer Komponente nicht 

erfassen.  

Neben der Etablierung von HTS Methoden zur Proteinrückfaltung über Verdünnung wurden 

auch Methoden zur Untersuchung von Rückfaltungsprozessen auf Chromatographieadsorbern 

entwickelt. Die Adsorption von denaturiertem Lysozym an Ionenaustauschmaterialien wurde 

im Batchmodus über Isothermen und Kinetiken charakterisiert und eine signifikant niedrigere 

Bindung von denaturiertem im Vergleich zu nativem Lysozym festgestellt. Dies kann durch 

die Zerstörung der geladenen Bindungsstellen auf der Proteinoberfläche bei Denaturierung 

erklärt werden. Die Rückfaltung wurde durch einen Pufferwechsel in Rückfaltungspuffer nach 

dem Transfer der beladenen Adsorberpartikel in Filterplatten durchgeführt. Die Effekte von 

Proteinbeladung, Verweilzeit in Rückfaltungspuffer, Rückfaltungspuffer pH und 

Harnstoffkonzentration auf die Rückfaltungsausbeute konnten mit de entwickelten Methode 

untersucht werden. Eine starke Korrelation zwischen Faltungs- und Adsorptions-, 

Desorptionsprozessen wurde beobachtet. So konnte im Elutionsschritt mit 1 M NaCl 

ausschließlich aktives Lysozym eluiert werden, während mißgefaltetes oder aggregiertes 

Protein nur unter denaturierenden Bedingungen desorbiert werden konnte. Weiterhin wurde 

die verfrühte Elution von Protein in Rückfaltungspuffer durch die Zugabe von Harnstoff und 

kurze Inkubationszeiten verstärkt, was vermutlich auf niedrigere Anteile an aktivem, unter 

diesen Bedingungen stark adsorbierendem Protein zurückzuführen ist. Zusammengefasst 

konnte gezeigt werden, dass Parameter für die Rückfaltung auf Chromatographieadsorber, 

wie Adsorbertyp, Proteinbeladung und Zusammensetzung des Rückfaltungs- und 

Elutionspuffers, mit niedrigem Bedarf an Protein und Adsorber optimiert und komplexe 

Abhängigkeiten zwischen Faltung und Adsorption untersucht werden können.  
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Abbreviations 
ANS    1, anilino-naphthalene 8-sulfonate 
BCA    bicinchoninic acid 
BSA    bovine serum albumin 
CD    circular dichroism 
CPA    cis-parinaric acid 
CV    column volume 
DSC    differential scanning calorimetry 
DLS    dynamic light scattering 
DTT    reduced dithiothreitol 
DWP    deepwell plate 
ELISA    enzyme linked immunosorbent assay 
FP    filter plate 
GA    genetic algorithm 
GSSG    oxidized glutathione 
HIC    hydrophobic interaction chromatography 
HPLC     high performance liquid chromatography 
HTS    high throughput screening 
MTP    microtiter plate 
PEG    polyethylene glycol 
PRODAN   6-propionyl-2-dimethylaminonaphthalene 
pI    isoelectic point 
RP-HPLC   reversed phase high performance liquid chromatography 
RT    room temperature 
SDS-PAGE   sodium dodecylsulfate polyacrylamide gel electrophoresis 
SEC    size exclusion chromatography 
SIC    self-interaction chromatography 
SLS    static light scattering 
SPR    surface plasmon resonance 
Tris    tris(hydroxymethyl)-aminomethan 
UV MTP   UV microtiter plate (UV transparent bottom) 
 
Symbols 
 
c    concentration [M] [mg/ml] 
L    number of parameter levels [-] 
I    intensity of emitted light [-] 
K    BET adsorption coefficient [ml/mg] 
k    velocity constant [min-1] 
KL    Langmuir adsorption coefficient [ml/mg] 
KS    salt specific solubility contant [M-1] 
m    mutation rate [-] 
n    number of parameters [-] 
q    binding capacity [mg/mlads] 
S    protein concentration in the Cohn equation [g/l] 
s    selection pressure [-] 
T    temperature [°C] 
t    time [min] [h] 
V    volume [l] 
Y    yield [mg/ml] 
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Greek Symbols 
 
β    hypothetical maximum solubility without salt [g/l] 
∆    difference (absolute value) [-] 
λ    wavelength lambda [nm] 
 
 
Indices 
 
0 initial value 
ads    adsorber 
prot aggregate   aggregate 
e    end 
sol filtrate   filtered 
i    at time i 
max    maximum value 
min    minimum value 
norm    normalized 
resol    re-solubilized aggregate 
sat    value at saturation 
SN    supernatant 
sol    soluble, solution 
t    value at time t 
total    total 
wash    wash fraction 
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1 Introduction 

1.1 Inclusion Body Protein 

 

Reducing conditions in the cytosol and the absence of chaperones during the expression of 

eukaryotic proteins in E.coli lead to misfolded protein prone to degradation. High expression 

rates overload the cellular degradation machinery and protein aggregates, so called inclusion 

bodies are formed (Carrio and Villaverde 2002).  

An advantage of the inclusion body formation is their high content of recombinant protein up 

to 98 % (Singh and Panda 2005) and the opportunity to easily harvest the protein by 

differential centrifugation of the dense aggregates (Middelberg 2002). On the other hand 

inclusion bodies have to be solubilised in denaturing reducing agents and subsequently 

refolded to gain active, soluble protein. Independent of these pros and cons E.coli is the most 

widely used expression host due to its cheap and easy cultivation in defined media, high 

growth rates, high content of recombinant protein (up to 50 % of the total protein) and a well 

established system for genetic manipulation (Choe, Nian et al. 2006). Biopharmaceutical 

products lacking posttranslational modifications are thus frequently produced in E.coli. In 

Table 1 products produced as inclusion bodies are summarized. 

 
Table 1: Important biopharmaceutical products produced as inclusion bodies 

Protein Medical Indication 

Human Insulin Diabetes 

Human Growth Hormone Growth Failure 

Interferon-β-1b Multiple Sclerosis 

Interferon-α-2a Hepatitis B and C 

Tissue Plasminogen Activator Acute Myocardial Infarction 

Granulocyte Colony-Stimulating Factor Neutropenia 

Interleukin 1 Thrombocytopenia 

Interleukin 2 Renal Cell Carcinoma 

 

Insulin is presumably the best-known product formed as inclusion bodies. Furthermore 

growth hormone and several growth factors, like G-CSF (Granulocyte Colony-Stimulating 

Factor ), interferons and interleukins are produced in E.coli and have to be refolded (Misawa 
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and Kumagai 1999). At this point it should also be mentioned that in huge genomic projects a 

high number of proteins are produced as insoluble protein aggegates in E.coli. A tendency 

towards expression for example of antibody fragments or biosimilars in E. coli in combination 

with renaturation processes is observed and might partially substitute mammalian cell 

expression systems (Farid 2007; Patil, Rudolph et al. 2008; Vanz, Renard et al. 2008).  

 

1.2 Refolding Processes 

 

Refolding implicates the reduction of denaturant by simple dilution, dialysis or in a 

chromatographic column and, for cysteine containing proteins, supply with redox components 

for disulfide bridge formation. 

 

1.2.1 Dilution 

 
Dilution based refolding offers the possibility to investigate different buffer compositions in a 

flexible and simple manner. The main draw back is the complexity of the buffer matrix for 

subsequent analytics. Protein concentrations are typically low, in the range of 0.1 to 1 mg/ml 

to reduce aggregation of hydrophobic folding intermediates. This point will be further 

discussed below and is a general problem in refolding processes leading to low space time 

yields. Serial addition of denatured protein is used to increase the concentration of soluble 

protein and therefore to facilitate subsequent detection methods. Here waiting time between 

pulses can cost several hours of time depending on the folding kinetic of the protein and has 

to be evaluated carefully to reach a stable protein conformation in between addition steps.  

In dilution refolding fast mixing of solubilised protein and refolding buffer is essential to 

reach a homogeneously low protein concentration at the starting point of renaturation. In 

addition with the injection rate of the denatured protein an optimum can be found for high 

process yields (Lee, Buswell et al. 2002; Mannall, Titchener-Hooker et al. 2006). Furthermore 

mixing is the most important process parameter during scale up of refolding by dilution 

(Jungbauer and Kaar 2007). 
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1.2.2 Dialysis 
 

Dialysis is used for slow buffer exchange, but it is for both refolding and subsequent sample 

preparation mostly limited by slow diffusion processes. The protein concentration has to be 

kept low to prevent the protein from aggregating. Precipitation is especially observed if the 

protein folding rate is low and the folding intermediates tend to interact (Tsumoto, Ejima et al. 

2003). Leon and Middelberg (2006) compared dilution refolding and dialysis refolding for 

human Alpha-fetoprotein. Dialysis as a slow process with high buffer consumption led to an 

overall lower refolding yield. One of the reasons was the loss of protein by non-specific 

adsorption at the membrane. A second reason mentioned was increased protein precipitation 

likely caused by a slow buffer exchange and consequently a different folding pathway of the 

protein. 

Time for dialysis depends on diffusion properties of the molecules, the membrane area, 

thickness and composition, temperature, concentration gradient between buffer reservoir and 

sample and mixing on each side of the membrane (Bowen 1993). A step wise dialysis is time-

consuming but offers the possibility for a controlled gradual exchange of buffer compositions. 

 

1.2.3 Matrix-assisted Refolding  
 

Refolding by means of chromatographic resins can be divided into refolding of adsorbed 

protein on ion exchange, hydrophobic interaction or affinity adsorbents and refolding of 

proteins in size exclusion matrices. Chromatographic renaturation methods can combine 

refolding by removal of denaturant and reducing agent and separation of native, misfolded 

and contaminating protein in one process step (Geng and Wang 2007). In size exclusion 

chromatography (SEC) proteins pass the gel matrix equilibrated with refolding buffer faster 

than the denaturing agent and thereby refolding is initiated. Applying a decreasing denaturant 

gradient leads to a slower transfer of the protein to conditions promoting folding. Protein 

aggregates formed during refolding are presumably re-solubilized by the delayed running 

front of the denaturant. Low chromatographic velocities and sample volumes are limiting 

factors in SEC refolding processes. 

Refolding of adsorbed protein uses different binding mechanisms to reduce protein-protein 

interactions by immobilisation. In hydrophobic interaction chromatography (HIC) the 

hydrophobic domains of the protein bind under high salt conditions and intermolecular 

interactions based on hydrophobic patches are thus reduced (Geng, Quan et al. 2004). 
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Solubility problems in solutions with high ionic strength restrict operating conditions in HIC 

refolding. In addition binding might prevent hydrophobic residues to move inside the core of 

the molecule which is a crucial step during folding. Ion exchange chromatography can be 

used for refolding as the binding strength is rather low and therefore does not inhibit the 

formation of secondary and tertiary structures. Reduced mobility of the proteins reduces 

aggregation (Langenhof, Leong et al. 2005). 

Affinity resins can consist of immobilized binding partners, chaperons or, and most 

frequently, of immobilized metal ions like nickel or copper for the binding of His-tagged 

proteins. Binding to affinity matrices is often highly specific and therefore leads to 

concomitant purification of the target protein. Anyway metal affinity resins are prone to 

ligand leakage and sensitive to low pH and frequently used additives like arginine (Cowieson, 

Wensley et al. 2006). Specific ligand coupling to a resin backbone is laborious and not 

feasible in industrial scale (Machold, Schlegl et al. 2005). All matrix assisted refolding 

methods show higher soluble protein concentrations in the refolded eluate in comparison to 

samples refolded by dilution or dialysis. A critical factor is the loading of the column, the 

gradient of denaturant and the flow rate (Langenhof, Leong et al. 2005).  

 

1.3 Parameters in Protein Refolding 

 

Besides technical parameters also buffer composition has to be optimized to provide an 

appropriate environment for folding and disulfide bond formation. For lack of a known 

functional relation between refolding yield and buffer components process design is still 

rather a matter of trail and error. The complexity of the optimization problem is due to a high 

number of parameters and parameter interactions. The development of refolding processes 

takes into account the solubility of the protein during refolding and the formation of native 

disulfide bonds in cysteine containing proteins. Parameters like ionic strength, salt type, pH 

value and several additives listed in Table 2 can contribute to an improved solubility of the 

protein.  
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Table 2: Common additives in refolding processes 

Additive Typical Concentration 

Urea 2 M 

Guanidinium hydrochloride 1 M 

Arginine 0.5 M 

Glycerol 20 - 40 % v/v 

Sucrose 0.4 M 

Lauryl maltoside 0.3 mM 

Polyethylene glycol (3550 MW) 0.05 % w/v 

Tris buffer 0.5 M 

Triton X-100 10 mM 

n-hexanol 5 mM 

Sodium sulfate or potassium sulfate 0.5 M 

Sodium chloride 0.5 M 

Methylurea 1.5 - 2.5 M 

Ethylurea 1.0 - 2.0 M 

Formamide 2.5 - 4.0 M 

Acetamide 1.5 - 2.5 M 

Ethanol up to 25 % 

n-Pentanol 1 - 10 mM 

Cyclohexanol 0.01 - 10 mM 

Sorbitol 20 - 30 % v/v 

α-Cyclodextrin 20 - 100 mM 

CHAPS 10 - 60 mM 

Mixed micelles Depending on compounds used 

Dodecyl maltoside 2 - 5 mM 

 

Nevertheless common guidelines for protein solubility are not always true when refolding 

protein. Although e.g. native protein shows maximum solubility with increasing distance of 

the pH from the isoelectic point for refolding protein an alkaline pH is essential for the 

formation of the thiolate anion and in a second step native disulfide bonds. This example 

shows already the interdependencies of different buffer components. Furthermore native 

protein and protein undergoing refolding might differ strongly in their surface properties 

influencing solubility in different solvent systems. 
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Disulfide bond formation can be promoted by addition of divalent metal ions for improved air 

oxidation and by adaptation of the redox potential with reducing and oxidizing chemicals like 

dithiothreitol (DTT), glutathione (GSSG) and cysteine. As refolding always starts with 

reduced protein in a first step mixed disulfides are built with oxidizing agents. In a second 

step disulfide bonds are formed. Non-native disulfide bonds can be reshuffled by reducing 

agent present in the refolding buffer (Lilie, Schwarz et al. 1998). Consequently the ratio of 

oxidizing and reducing agent is besides the concentrations a significant parameter in 

refolding. In Figure 1 processes in disulfide bond formation are visualized. The ratio of 

oxidizing and reducing agent is also referred to as redox potential of a solution.  
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Figure 1: Mechanism of disulfide bond formation

 

1.4 Thermodynamic and Kinetic Aspects in Protein Refolding 

 

The native structure of a protein is coded in its amino acid sequence (Anfinsen 1972). 

According to the current understanding of folding mechanisms the native structure is the most 

stable structure under physiological conditions (Dill and Chan 1997). Denatured protein has a 

high degree of entropy due to high flexibility of the polypeptide chain. During folding the 

entropy as well as the enthalpy, the driving force for this stochastic search process, are 

decreased frequently, visualized in energy landscape diagrams like in Figure 2. The first step 

in folding is always a hydrophobic collapse of the molecule towards a native like topology. 

Hydrophobic residues are buried inside the molecule and water molecules are excluded for a 

highly compact structure. The pathway a protein takes decides on the formation and stability 

of intermediates and the folding speed (Dobson 2004). 
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Figure 2: Folding funnel showing a reduction in entropy and increase in free energy during 

folding 

 

Folding intermediates are often prone to aggregation for hydrophobic residues exposed on the 

protein surface. Furthermore aggregation shows a second or higher order kinetic being 

favoured at high protein concentrations whereas folding shows a kinetic of first order and is 

independent of the protein concentration (Kiefhaber, Rudolph et al. 1991). In refolding 

processes with slow folding pathways or high protein concentrations aggregation of 

intermediates is one of the main cause for protein loss. In Figure 3 folding and aggregation 

processes are visualized. 
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Figure 3: Aggregation of hydrophobic residues in refolding intermediates 

 

1.5 Analytical Methods in Protein Refolding Process Development  

 

Analytical methods can be split into measurement of soluble protein content and techniques to 

gain structural information. As this aspect will be discussed in detail in the current thesis the 

introduction only contains a short overview. 

 

1.5.1 Solubility 
 

Except for turbidity measurements which show no linear correlation with protein content 

during protein solubility screens the determination of soluble protein concentration in 

refolding buffer systems is limited by inhibitory matrix effects on common protein assays and 

low protein concentrations. Colorimetric assays as well as absorption at 280 nm might be 

incompatible with solvent components like detergents, amino acids and reducing and 

oxidizing agents. Furthermore the signals in dye binging assays are sensitive towards 

structural varieties in protein samples, which leads to problems especially during protein 

refolding and formulation studies taking into account protein stability and solubility. SDS-
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PAGE analysis of the soluble and re-solubilized aggregated protein frequently used for 

quantification of solubility includes manual intervention for complex handling of gel systems 

(Armstrong, De Lencastre et al. 1999; Wang, John et al. 2004; Cowieson, Wensley et al. 

2006; Ejima, Ono et al. 2006; Cowan, Davies et al. 2008). Analytical size exclusion 

chromatography to assess protein molecular weight and soluble aggregate content is time 

consuming for serial sample processing. Finally non-destructive methods like static and 

dynamic light scattering are used to qualitatively measure the monodispersity of a sample and 

an average particle size hinting at protein interactions (Ho, Middelberg et al. 2003; Zhang and 

Liu 2003; Jancarik, Pufan et al. 2004).  

 

1.5.2 Folding 
 

Methods for estimation of protein folding can be divided into specific binding or activity 

assays and measurement of conformational properties.  

Structural based methods offer the advantage to be potentially applicable to a high number of 

proteins. Circular dichroism is a method frequently used to determine secondary structure 

elements qualitatively by comparison with signals of native protein. This method is restricted 

to pure protein samples free of components absorbing light at 280 nm. Besides these 

incompatibilities secondary structure can be observed already early in refolding and does not 

give any information on tertiary structure. Reversed Phase HPLC and Hydrophobic 

Interaction HPLC is used to measure surface hydrophobicity differences of native and 

misfolded proteins in correlation to retention behaviour on hydrophobic column materials. 

Sample preparation prior to HPLC analysis can alter protein conformations and serial analysis 

is generally time-consuming (Shire, Shahrokh et al. 2004). Surface hydrophobicity can also be 

detected with hydrophobic dyes like ANS (1, anilino-naphthalene 8-sulfonate), PRODAN (6-

propionyl-2-dimethylaminonaphthalene) or CPA (cis-parinaric acid) (Evans and Engelhard 

1996; Lakowicz 2000; Royer 2006). These dyes bind to hydrophobic patches in folding 

intermediates and upon interaction with protein emit light with high intensities. As dye 

binding also depends on solvent characteristics applicability to different buffer systems should 

be carefully evaluated. Characteristics of fluorescent probe and formed hydrophobic surface 

in folding intermediates have to fit to allow for significant binding (Cardamone and Puri 

1992; Alizadeh-Pasdar and Li-Chan 2000). Intrinsic fluorescence spectroscopy is limited to 

proteins with buried tryptophane residues in native conformation to allow for a characteristic 

red shift of fluorescence emission during unfolding due to solvent interaction with the 
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fluorophore. Furthermore fluorescence intensity is sensitive to quenching buffer components 

like disulfides and to temperature shifts. The interpretation of spectra implies knowledge on 

structural properties or the fluorescent behaviour of the native protein (Royer 2006). Another 

non-specific method to investigate structural properties of proteins is limited proteolysis, 

harnessing higher stability of tightly folded native protein structures against proteolytic 

cleavage (Heiring and Muller 2001). A great draw back is the analysis of protein fragments 

performing SDS-PAGE after the digestion reaction and a sometimes low stability of the 

native protein against protease digestion.  

Specific enzyme and cell based activity assays yield reliable information on protein structure 

integrity and are also automatable and easily parallelized. For this reason they are in many 

publication the chosen method for structure determination and quite often absolute enzyme 

activity is the exclusive objective function for optimization of refolding conditions (Ahn, Lee 

et al. 1997; Armstrong, De Lencastre et al. 1999; Sijwali, Brinen et al. 2001; Lange, Patil et 

al. 2005; Willis, Hogan et al. 2005; Rahimpour, Mamo et al. 2007).  

Methods like ELISA and SPR harness specific binding of protein to binding partners like 

substrate molecules, antibodies or receptors and are already applied in high throughput 

refolding approaches although surface design and production and process set up are 

challenging tasks (Jones, Hutchinson et al. 2004; Lange, Patil et al. 2005; Cowan, Davies et 

al. 2008). For functional assays restricted to one protein time for assay development should 

not be underestimated in comparison to just adaptation of universal structure based 

techniques. 

 

1.6 Refolding of Lysozyme 

 

1.6.1 Lysozyme as Model Protein 
 

Lysozyme is a frequently used model protein for refolding studies because of its well 

characterized structure. It is a small globular protein with 14.4 kDa and an isoelectric point 

(pI) at a pH of approximately 11. Furthermore lysozyme is well suited for studies concerning 

oxidative refolding due to its 4 disulfide bonds. Six tryptophan residues of which one is 

completely buried in the hydrophobic core of the molecule offer the possibility to study 

lysozyme folding by tryptophan fluorescence. Many publications describe refolding of 

lysozyme and reveal folding pathways of the protein as well as suitable process conditions.  
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1.6.2 Effects of Unfolding and Refolding Conditions 
 

Published unfolding conditions for native lysozyme vary strongly in protein concentration, 

DTT concentration, unfolding time and temperature, whereas the buffer pH is always kept 

alkaline between pH 8 and 9 and either 8 M urea or 6 M guanidinium hydrochloride is used as 

chaotropic agent (Lin, Ruaan et al. 2007). Unfortunately the unfolded state of the protein is 

seldom characterized which makes comparison of refolding results difficult.   

On the molecular basis two different folding pathways influenced by buffer conditions like 

the ionic strength are described (Bieri, Wildegger et al. 1999; Kulkarni, Ashcroft et al. 1999; 

Dobson 2004). According to these studies lysozyme undergoes a fast hydrophobic collapse 

and than the folding pathway branches into a fast track and a slow track. Both refolding tracks 

lead over a native-like structure to the native state.  

In general a slower refolding kinetic is observed with higher protein concentrations in 

lysozyme refolding (Raman, Ramakrishna et al. 1996). Furthermore aggregation is increased 

with high lysozyme concentrations (Kiefhaber, Rudolph et al. 1991; Hevehan and Clark 1996; 

Clark, Hevehan et al. 1998; Buswell and Middelberg 2002) and can be suppressed by low 

concentrations of urea (~ 2 M) (Lanckriet and Middelberg 2004) and guanidinium 

hydrochloride (~ 1.75 M) (Hevehan and Clark 1996) without inhibiting native lysozyme 

formation. Formed aggregates in lysozyme renaturation with oxidative redox potential in the 

refolding buffer are disulfide linked and can thus only be solubilised in the presence of 

reducing agents (Ho, Middelberg et al. 2003). Lysozyme aggregation contributes to protein 

loss in refolding processes to a high extent but misfolding for example by choice of 

inappropriate redox conditions also plays a role in reduced yields (Roux, Ruoppolo et al. 

1999).  

In general the type of redox agents (Raman, Ramakrishna et al. 1996) and the ratio of 

oxidizing to reducing component (Ho, Middelberg et al. 2003; Lin, Ruaan et al. 2007) are 

significant parameters for refolding success. Air oxidation only leads to low renaturation 

yields due to mass transfer limitations (Clark, Hevehan et al. 1998; Ho, Middelberg et al. 

2003).  

Several publications deal with matrix assisted refolding of lysozyme on ion exchange 

chromatography columns (Li and Su 2002; Li, Zhang et al. 2002) or by size exclusion 

chromatography (Gu, Su et al. 2001; Lanckriet and Middelberg 2004). In ion exchange 

chromatography a dual gradient method with reducing urea concentration and concomitant 

increasing pH is described. With low elution flow rates and column loading refolding yield 
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could be improved. In addition a urea concentration gradient from 6 M and 1 M and a pH 

gradient from pH 6 to pH 10 were found to be suitable for high refolding yields (Li and Su 

2002; Li, Zhang et al. 2002). In size exclusion chromatography the choice of an appropriate 

column material being able to fractionate the target protein from chaotrops and reducing 

agents and the composition of the equilibration buffer which is in this case the refolding 

buffer are mentioned to have a great influence on refolding success. After optimization of a 

batch size exclusion method a continuous chromatographic process is realized by annular 

chromatography. Despite intense optimization the yields in SEC and dilution refolding lie 

close together when comparing on the basis of equal final protein concentrations after 

refolding (Lanckriet and Middelberg 2004). An ascending urea gradient is used to promote re-

solubilisation of aggregates formed during the refolding process in a SEC approach by a 

delayed running front of denaturing buffer. This additional process step increases the activity 

recovery compared to a SEC method without subsequent urea gradient between 20 and 40 % 

depending on the protein load (Gu, Su et al. 2001).  

A comparison between chromatographic refolding methods and dilution refolding is difficult 

due to problems arising when trying to keep influencing parameters constant. Furthermore a 

significant objective function should be defined before making a decision on an appropriate 

refolding process. As a conclusion column based methods are an interesting alternative to 

dilution refolding because of higher space time yields although process development is still 

challenging due to the high complexity of the process. 
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2 Research Proposal 
The introduction already points out the high complexity of protein refolding and its 

dependency on numerous interacting parameters. Nevertheless it becomes evident that a fast 

and efficient development and optimization of refolding processes is relevant for economic 

production of recombinant protein in industry as well as in research projects. 

The empirical optimization of process parameters in manual screenings is the most wide 

spread method to design refolding processes. A major draw back of these empirical 

optimizations is the necessity to restrict the number of experiments by a restriction of the 

analyzed parameter space. As a consequence resulting processes are potentially operated far 

off the real optimum conditions. In the late 1990s scientists tried to gain a more systematic 

understanding of parameter effects on protein folding by the implementation of statistic 

methods for experimental design. For lack of automated screening platforms these studies 

were limited in number of experiments which had to be paid with a reduction of gained 

information. Only in the last few years automated high throughput experimentation was 

applied on the development of protein refolding processes still leaving a lot of challenging 

tasks open. One of the major and mainly unsolved problems in protein refolding screening is 

the automated, parallelized and quantitative measurement of protein folding to evaluate 

refolding success. On this basis one of the main aims of this work was the validation of 

analytical methods meeting the basic requirements of HTS: automation, parallelization and 

miniaturization. Refolding was performed by simple dilution of denatured protein in different 

refolding buffer systems. In this context the applicability of protein solubility as an indicator 

for protein folding was investigated. Due to the huge importance of solvent effects on protein 

solubility in refolding and the sparse data base on systematic characterization of parameters 

influencing protein aggregation this work was extended by an automated high throughput 

screening study on protein solubility behaviour in different buffer systems. Analytical 

development of the refolding screening platform also implied the validation of another more 

universal analytical method, the measurement of tryptophan fluorescence, to reduce time for 

development of specific assay technologies. The compatibility of analytical methods with 

high flexibility in buffer design and appearance of different protein folding states was 

validated. 

Another important objective was the identification of process parameters which have to be 

controlled to guarantee for reproducible refolding results building a precondition for 
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parameter optimization. Besides, knowledge on the significance of process parameters is 

essential for the evaluation of published data.  

The developed platform for high throughput experimentation should be combined with two 

methods for design of experiments: an evolutionary algorithm as a first step and in a second 

step a classic full factorial design. General advantages of an evolutionary algorithm like high 

robustness against experimental error and effective experimentation at a high number of 

parameters in a wide parameter space would thus be harnessed in refolding screening for the 

first time. The full factorial design covering a limited parameter space close to the optimum 

should be used as a tool to validate data from the evolutionary algorithm optimization. In 

summary the development of analytics and the investigation of methods for experimental 

design built the most challenging part for dilution refolding screening.  

In matrix-assisted refolding the focus is laid on the technical transfer of the refolding process 

onto the robotic platform. Adsorption capacities and kinetics of denatured protein on different 

ion exchange resins should be investigated and compared to data gained with active protein. 

The development of an automated method for buffer exchange from denaturing to refolding 

buffer is a precondition for optimization of process parameters like pH, urea concentration 

and refolding time and one of the major challenges in matrix-assisted refolding screening.  
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3 Publications & Manuscripts 
 
1. Automated High Throughput Technologies for Determination of Protein Solubility and 
Refolding Conditions 
 
Annette Berg, Juergen Hubbuch 
 
In this manuscript a review on published methods for protein solubility screening and protein 
refold screening is given and challenges for HTS development in these fields are pointed out. 
HTS compatibility of commonly used analytical methods is in the focus of this literature 
review. 
 
2. Automated Measurement of Protein Solubility to Rapidly Assess Complex Parameter 
Interactions 
 
Annette Berg, Maren Schuetz, Juergen Hubbuch 
 
In this manuscript data from automated lysozyme solubility screenings are summarized and 
the effects of buffer concentration and pH as well as incubation temperature on lysozyme 
solubility are analyzed. Furthermore complex solubility surfaces are determined to investigate 
interdependencies between the concentration of buffer salt and of commonly used additives 
like polyethylene glycols of different molecular weight, Tween 20, sorbitol and sucrose. For 
an improved characterization of the solubility curves gained with the presented automated 
approach a comparison between thermodynamic solubility lines from literature and 
precipitation curves from HTS experiments is given and discussed. 
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3. Development and Characterization of an Automated High Throughput Screening 
Method for Optimization of Protein Refolding Processes 
 
Annette Berg, Joerg Kittelm ann, Juergen Hubbuch 
 
Development of methods for protein refold screening by dilution of denatured protein in 
refolding buffer is described intensely in this manuscript. Besides a miniaturization of the 
refolding process the focus was laid on validation of automatable and parallelized analytics to 
quantitatively m easure refolding success. Furthermore crucial parameters during refolding are 
identified and the necessity of parameter control in refold screening is pointed out. 
 
4. Automated Optimization of Protein Refolding Processes with an Evolutionary Algorithm 
 
Annette Berg, Anna Siudak, Eric  von Lieres, Juergen Hubbuch 
 
This manuscript deals with the implementation of a genetic algorithm for optimization of five 
refolding buffer parameters: buffer pH and the concentrations of NaCl, MgSO 4, GSSG and 
DTT to improve lysozyme solubility and activity. A reasonable combination of this 
evolutionary optimization method with full factorial experimental design in the optimum 
parameter range is shown. Furthermore a correlation between parameter optima for protein 
solubility and activity are evaluated. 
 
5. Solid Phase Refolding 
 
Annette Berg, Joerg Kittelm ann, Juergen Hubbuch 
 
In this manuscript methods for automated high throughput screening of solid phase refolding 
parameters are presented. The adaptation of experimental procedures lik e liqu id handling and 
mixing to highly viscous solutions of denatured protein are described. Adsorption of 
denatured lysozyme is analyzed by automated measurement of binding kinetics and 
isotherms. Furthermore the effect of protein loading, refolding tim e, refolding buffer pH and 
urea concentration are studied to confirm the applicability of the method as a screening tool 
for the automated optimization of solid phase refolding processes. A deeper insight into the 
interplay between protein adsorption/desorp tion and protein folding is gained with the 
performed batch experiments  
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Abstract 
 

High throughput screening (HTS) methods are a powerful tool for fast process development 

and optimization with low material consumption. Both parametes are critical issues 

determining economic success in biopharmaceutical industry due to shorter innovation cycles 

and the need to minimize production costs. Especially if a high number of process parameters 

needs to be considered automated high throughput technologies are the only means to cover 

the respective parameter space. When assessing protein solubility and refolding conditions no 

predictive physical model is known to facilitate optimization and consequently process 

development is based on empirical rules and experimental effort. In this paper high 

throughput screening methods for protein solubility and inclusion body protein refolding are 

reviewed. For all techniques described the focus was laid on a critical validation of published 

approaches according to the three basic guidelines for effective HTS: automation, 

parallelization and miniaturization including not only sample preparation but also analytics.  
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1 Introduction 
 

The most valuable source of solubility data can be gathered from crystallization studies using 

nano-litre scale solution droplets. The needed concentrations of protein and solvent 

components are reached by controlled evaporation. Faster screening processes to evaluate 

precipitating conditions use evaporation in air atmosphere or ultrafiltration in microtiter plate 

formats. A bottleneck in solubility screening is the quantification of protein in solutions 

containing various substances being incompatible with commonly used protein assays. 

Furthermore up to now no method for fast, automatable and parallelizable buffer exchange 

with good and buffer independent protein recoveries is available. Refold and solubility 

screening are linked by high aggregation rates of folding intermediates occurring during 

refolding processes significantly decreasing active protein yields. A lack of universal, non-

specific methods to measure structural integrity with low demands for time, sample volume 

and manual intervention is an obstacle for process optimization. Design of Experiments is 

used to decrease experimental effort. For systems with high number of parameters and 

parameter interdependencies evolutionary algorithms offer the possibility to find a global 

optimum in a wide parameter range.  

 

2 High Throughput Screening 
 

2.1 General Principles 
 

High throughput screening can be characterized according to three basic principles: 

automation, parallelization and miniaturization. The aim lies in achieving a maximum amount 

of experimental data within a minimum time and material consumption.  

While sample generation lies naturally in the heart of any screening process, a special focus 

during any establishment of HTS technologies should be laid on the choice of an appropriate 

analytical method. Analytics which are operated in sequential order, need manual intervention 

or special requirements for sample purity and amount should be circumvented. As described 

in Bensch et al. [1] with most techniques the extend of information gained with a specific 

analytical method can be correctly related to analytical complexity and time needed to 

perform the analysis. Therefore analytics used should be chosen according to the amount of 

 31



 

samples to be analysed. More sophisticated methods should be performed only in advanced 

screening procedures. 

 

2.2 Choice of Measured Function 
 

The famous rule of directed evolution “you get what you screen for” borrowed from You and 

Arnold [2] holds true for every other screening problem addressed. Thus a special interest lies 

in the choice of an appropriate objective function measured during the screening. With the 

restrictions of analytical methods adaptable in HTS formats a solution for this problem will 

often be a compromise between justifiable timeframes for the screening and the information 

gained. In general three different types of objective functions for the optimization of a process 

can be considered: quantitative measurement of the objective function of the process directly 

(for example solubility as mg protein per ml solvent for a solubility screening), qualitative 

classification of the objective function by measurement of a corresponding value (turbidity to 

classify protein samples as soluble or aggregated) and quantitative measurement of a function 

correlating with the objective function concerning favourable parameters (for example the 

concentration of solubilised aggregated protein in mg per ml solvent to calculate the amount 

of soluble protein). Obviously the first possibility is the most comfortable case as 

optimization can be performed on the basis of numerical data and screening towards the 

respective function of interest is performed directly. In the second case a lot of information is 

lost by using a qualitative method providing only a direction of parameter development when 

addressing system changes. The last case implies that the correlation of the true objective 

function of the process and the measured function is validated and thus optimization does not 

run into the wrong direction. The chosen example is trivial as it is based on the accepted rule 

of mass balances but for different functions careful evaluation experiments might be 

indispensable. 

 

2.3 HTS for Solubility and Inclusion Body Refolding Parameter – 

Similarities between the two Screening Tasks 
 

For protein solubility and refolding no predictive model is known to facilitate optimization 

and consequently process development is based on experimental procedures only. For both 

objectives, solubility and refolding, numerous affecting parameters are known which exhibit 
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interdependencies complicating systematic optimization approaches. Besides these 

similarities both processes are closely linked by solubility problems occurring in refolding 

processes. Though solubility screening approaches reviewed here are not related to protein 

during refolding the amount of soluble protein is in many cases used as an objective function 

in refolding screening or at least measured to asses the fraction of active protein gained. 

Problems in the quantitative determination of soluble protein have to be met for both, 

solubility and refolding screening, with even higher sample complexity in renaturation 

processes. 

 

3 Solubility 
 

3.1 Protein Solubility  
 

Solubility of proteins is a major field of investigation during bioprocess development and still 

a challenge for fundamental research for its complexity. Aggregation does not only lead to 

lower yields of active protein but also creates technical problems in production and especially 

purification processes by clogging of filter membranes and chromatographic columns [3]. 

Furthermore solubility is a prerequisite in often highly concentrated biopharmaceutical 

formulations to guarantee for constant quality and accurate dosage [4]. During 

biopharmaceutical profiling in drug discovery the solubility of protein drugs plays a major 

role for bioavailability [5]. In protein structure analysis or in down stream processing by 

crystallization, solubility of proteins at high concentration levels is still one of the greatest 

obstacles [6].  

It is important to discriminate between the two possible solid states of proteins, protein 

crystals and amorphous aggregates, also called precipitates. From the phase diagram in Figure 

1 it becomes obvious that both processes, crystallization and precipitation, occur in 

supersaturated solutions with a protein and precipitant concentration above the 

thermodynamically stable solubility curve.  
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Figure 1: Schematic protein phase diagram (adapted from [7]) 

 

As solid phase formation is kinetically controlled, boundaries between supersaturated regions 

amenable to crystal nucleation, the metastable and labile phase, and the precipitation zone are 

dependent for example on the speed in which supersaturation is created or on particle content 

inside the solution [8, 9].  

It should be taken into account that solubility is only one necessary criterion for buffer design 

despite several effects destabilizing proteins in solution. A review on protein solubility and 

stability is given in [10, 11]. 

Solubility of proteins depends on various parameters like solvent pH, ionic strength, added 

salt types and additives, temperature and of course on protein structure which leads to a high 

number of required experiments for optimization. High throughput screening methods offer 

the possibility to generate a high data density with low demands for material and time by 

automated, miniaturized and parallelized experiments [1]. On this basis a deeper 

understanding of factors affecting protein solubility and their interdependencies becomes 

possible. 

 

3.2 Methods for Solubility Screening  
 

In principle solubility screening parameters should be optimized to either prevent the 

formation of a solid protein state, for example in formulation screenings or in buffer design 
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studies for down stream processing steps, or to drive the protein into a solid and here usually 

crystallized state for structure analysis or preparative crystallization. As in every screening 

method development it first has to be decided what is the objective function and under which 

experimental conditions it can be analyzed. Screening for the formation of crystals will, due 

to the slow crystallization process, be much slower than screening for precipitation which is 

magnitudes faster.  

 

3.2.1 Preparation of Screening Solutions 
 

The first step of every method used is mixing of protein stock solutions or a solid protein 

preparation with the buffer system of interest. Solid protein states such as crystals are used 

when measuring the thermodynamic solubility line in equilibrium between crystal and soluble 

phase. If lyophilized or precipitated protein is used, a phase transition of these solid states into 

the solubilized species implies a stable protein structure in solid and soluble state. Moreover 

stable solid protein species such as crystals are however seldom available and an automated 

handling of solid protein is a quite complex task.  

An important aim in the preparation of protein solutions for solubility screening is to reduce 

the overall material consumption. With a microfluidic formulator device for automated 

mixing of buffer and protein solutions volumes can be reduced to nanolitre scale [12-14]. A 

more wide spread method is the reduction of sample volumes to nanolitre drops in 

crystallization trails [15] or at least to volumes around 350 µl handled in microplates [15-17]. 

Commercially available robotic systems guarantee for accurate liquid handling and allow for 

the establishment of a fully automated screening process.  

 

3.2.2 Screening Methods 
 

It can be differentiated between incubation processes of protein solutions under static 

conditions with no change of protein or buffer concentration and incubation under dynamic 

conditions with increasing concentration of substances in solution. Methods for a 

concentration of protein in dynamic solubility screenings are summarized in Table 1.  
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Table 1: Concentration methods in solubility screening 

Method Limitations HTS 

Compatible 

Reference

Rate Controlled 

Evaporation 

(sitting/hanging 

drop/micro batch) 

Slow due to vapour atmosphere 

or oil layer; all substances are 

concentrated, quantification of 

substances is difficult 

Yes for 

crystallization 

(slow process 

imperative) 

[15, 18] 

Evaporation  Slow but faster than in vapour 

atmosphere; all substances are 

concentrated, quantification of 

substances is difficult 

Yes [16, 17, 

19] 

Ultrafiltration Adsorption and aggregation of 

protein 

Yes [20] 

 

A major draw back of the static approach is the restriction of protein and buffer 

concentrations in screening samples by the maximum solubility in stock solutions. This holds 

true for all approaches where a protein concentration shift from the undersaturated to the 

supersaturated phase has to be performed. This is the case for example in crystallization 

screenings, or if maximum protein solubility in the screening sample is higher than in the 

initial protein stock solution.  

When considering dynamic situations the velocity of concentration should be adapted to the 

screening problem; i.e. in crystallization screening the supersaturated phase should be entered 

slowly to favour slow nucleation of crystals over fast precipitation. Dynamic methods either 

change the concentration of protein or concomitantly the concentration of all substances 

including salts. Quantification of protein in dynamic systems at maximum solubility is a 

problem discussed in the analytic section below. 

All methods used for concentration of protein are compatible with high throughput principles 

as they can be automated and parallelized with the need for low sample volumes. Rate 

controlled evaporation frequently used for crystallization screening is a very slow process 

which is intended to meet long induction times for crystal nucleation. Evaporation in an air 

atmosphere is faster especially if the air-liquid surface is increased for example by shaking 

[16, 17, 21] or by generation of levitated sample drops in an acoustic field [19]. Shear forces 

inducing protein denaturation can be a problem if intense shaking is performed. An approach 
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using centrifugal concentrators to increase concentration velocity by centrifugal forces driving 

liquid through a membrane is presented in [20]. The last study however disregards possible 

protein adsorption at the filtration membrane falsifying the results obtained.  

 

3.2.3 Measurement of Phase Diagrams 
 

Measurements of different curves in phase diagrams differ mainly in the incubation time of 

protein solutions and in the rate of protein concentration. Thermodynamic solubility curve 

determination requires equilibrium between a solid crystal and a clear soluble protein phase 

which usually takes days to months. Generated data are independent from kinetic effects [9]. 

Nevertheless long-term storage to reach equilibrium conditions can only be justified in high 

throughput experimentation if thermodynamic solubility curves are indispensable.  

Precipitation curves are preferentially determined for high speed and ease of detection [13, 14, 

22] as precipitation is magnitudes faster than crystallization. Furthermore precipitation is one 

of the most important reasons for protein loss in downstream processing and formulation. 

Being dependent on the speed with which the supersaturated region of the phase diagram is 

reached kinetics of phase changes during screening should be adapted to the desired outcome. 

A compromise solution is published in [18], were the samples are incubated for 3 weeks to be 

close to equilibrium. A so called supersolubility line is constructed between conditions of 

crystallized or precipitated and clear samples separating the labile zone with spontaneous 

solid phase formation from the metastable or undersaturated zone.  

 

3.3 HTS Analytics for Solubility Screening 
 

3.3.1 Quantification of Soluble Protein 
 
Direct quantification of the protein concentration of the samples obtained is most desirable. 

Measurement of soluble protein concentration however poses several problems in high 

throughput screenings as methods have to meet the needs for a compatibility to a wide range 

of buffers and additives, automation and parallelization or at least fast sample processing and 

low sample volumes. Commonly used methods are summarized in Table 2. 
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Table 2: Methods to quantify the concentration of soluble protein 

Method Principle HTS Compatible Reference 

Colorimetric Assays Protein in soluble 

supernatant after 

equilibration is measured. 

Yes but with low 

flexibility in buffer 

composition 

[23] 

UV Absorption UV absorption of  soluble 

supernatant in equilibrium 

is measusred. 

Yes but with low 

flexibility in buffer 

composition 

[24] 

SDS-PAGE/Native 

PAGE 

Soluble and aggregated 

protein is stained and bands 

are quantified by 

densitometry or online 

detection. 

Yes with capillary 

systems  

No with classical gel 

systems 

[25-27] 

Measurement of 

Sample Volume to 

Calculate 

Concentrations 

Sample volume is measured 

by measurement of a 

corresponding value (liquid 

level, drop diameter). 

Yes at least by 

conductive liquid level 

detection with robotic 

tips in 96 well plates. 

[16, 17, 

19, 21] 

UV 28 0nm of 

Separated and 

Solubilized Aggregate  

Aggregates are separated 

and solubilised with 

denaturant and reducing 

agent and measured at 280 

nm. 

Yes [28] 

 

Colorimetric assays as well as absorption at 280 nm might be incompatible with solvent 

components such as detergents, amino acids and reducing and oxidizing agents leading to low 

flexibility in screening conditions. Furthermore the signals in dye binging assays are sensitive 

towards structural varieties in protein samples, which especially during protein refolding and 

formulation studies has to be taken into account as inhomogeneous protein conformations 

have to be expected. A good overview of colorimetric assay techniques is given in [29]. SDS-

PAGE analysis of soluble and re-solubilized aggregated protein commonly includes manual 

intervention for complex handling of gel or chip systems. Automated solutions for capillary 

electrophoreses are entering the market but are still not widespread. 

An elegant method to assess protein and buffer concentrations is the measurement of sample 

volume at the time point of aggregation. In [19] for example an acoustically levitated sample 
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drop is mixed by a micro dispensing system and light scattering is detected online while water 

is slowly evaporating. Calculation of the sample volume and subsequently of protein and 

buffer concentration is possible by determination of the drop diameter with an imaging system 

in combination with the assumption of rotational symmetry of the droplet. A very similar 

approach is performed in [16, 21] generating protein buffer mixture with a liquid handling 

robot in microtiter plates. Sample volumes are detected over time by the conductive liquid 

level detection with the robotic tips. Turbidity is measured in parallel to identify the point of 

aggregation. The disadvantage of higher total protein and buffer consumption compared to the 

levitated drop system is compensated by low requirements concerning complex instrumental 

equipment and the opportunity for automation and parallelized sample preparation and 

measurement.  

A method to estimate soluble protein content in refolding screening independent of structural 

variety and buffer incompatibilities is the separation of aggregate by filtration or 

centrifugation with subsequent solubilisation in denaturing buffer. The protein concentration 

in solubilized precipitates can thus be measured via absorption at 280 nm or a colorimetric 

assay and soluble protein content calculated from mass balances. 

 

3.3.2 Buffer Exchange 
 

Adaptation of effective methods for buffer exchange to a robotic workstation enlarges the 

applicability of established bioassays to different and even highly complex system 

compositions. Commonly used methods are summarized in Table 3. 

 
Table 3: Methods for buffer exchange 

Method Limitations HTS 

Compatible 

Reference

SEC Slow, high buffer consumption, protein 

dilution, long columns. 

No [30] 

Ultrafiltration Protein adsorption and aggregation. Yes [28, 31] 

Dialysis Slow, high buffer consumption. No [32-36] 

Adsorption  Dependent on sample buffer. Yes [36, 37] 

 

Methods for separation of proteins and low molecular weight compounds include size 

exclusion chromatography, ultrafiltration and dialysis. Also binding of protein or 
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contaminating substances to adsorber matrices leads to purified biological samples. As 

selective precipitation of active proteins is strongly dependent on buffer composition and 

optimization of the process is laborious, this method will not be discussed further. For size 

exclusion chromatography column length, particle size, particle pore size and ratio of sample 

volume to column volume are significant parameters for separation result [38]. Low sample 

loading, high sample dilution and serial buffer exchange are the major draw backs of size 

exclusion chromatography. Nevertheless gentle sample processing under diverse buffer 

conditions is possible using gelfiltration.  

Ultrafiltration and dialysis harness the separation effect of membranes acting as molecular 

sieves. They differ in driving force for compounds able to pass the molecular barrier. In 

ultrafiltration liquid is forced through the membrane .High throughput systems like 96 well 

filter plates are evacuated by centrifugation or vacuum subsequently increasing protein 

concentration in the retentate. Protein solutions with various flow properties complicate flow 

control. Vacuum driven liquid transport strongly depends on equal liquid passing time for 

maintenance of the driving force, whereas the retentate volume in ultrafiltration by 

centrifugation is dependent on well position and applied speed profile [31]. Increased protein 

concentration in close proximity to the membrane often leads to loss of protein by adsorption 

or aggregation [39]. Varying buffer pH, salt composition and initial protein concentration are 

strongly related with loss of protein [28]. Required time for ultrafiltration depends on the 

molecular weight cut off of the membrane and on the parameters chosen for liquid transport 

like centrifugation speed or vacuum pressure. 

In dialysis diffusion of molecules through the membrane leads to an equilibrium 

concentration of passing molecules between the sample compartment and a buffer reservoir of 

much higher volume dimension. Adsorption effects are related to dialysis time whereas 

aggregation of protein does not play a major role in sample loss. Time for dialysis depends on 

diffusion properties of the molecules, membrane area, thickness and composition, 

temperature, concentration gradient between buffer reservoir and sample and mixing on each 

side of the membrane [39].  

Literature on buffer exchange as such but especially on buffer exchange in high throughput 

systems is limited to short notes in method descriptions. Up to now no automatable, 

parallelized system for size exclusion chromatography is described. Size exclusion by loading 

of microliter sample volumes into a low-pressure microfluidic device shows, that high sample 

throughput and good sample resolution are possible even with serial sample processing by 

miniaturisation [30].  
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Ultrafiltration in 96 well plates is evaluated and optimized for the separation of small 

molecule - protein complexes and  small molecules free in solution [31].  

Companies producing 96 well ultrafiltration plates at least provide the costumer with data on 

protein recovery, cross talk between wells and desalting efficiency for model proteins 

(Millipore, Pall). Nevertheless protein loss at the membrane and the depletion of disturbing 

buffer agents should be investigated for every protein. For example for lysozyme and BSA the 

protein yield after ultrafiltration is strongly dependent on buffer pH and protein concentration 

as described in [28].  

Commercially available 96 well plate dialysis devices are used for complete sample desalting 

and removal of glycerol and arginine and show rather long dialysis times between 24 and 48 

hours [35].  

Binding of protein to metal chelate affinity resins offers the possibility for buffer exchange by 

washing the bound protein but is limited to constraints concerning binding and elution buffer 

properties [36, 37] which of course also holds true for all other adsorber materials. 

Although being a prerequisite for many following process steps one can conclude, that 

development and validation of methods for buffer exchange seem to be underestimated or 

scientifically too trivial to be worth publishing. Consequently these problems have to be 

reinvestigated by every scientific group anew costing time and material resources. 

Specifications of commercially available devices are sometimes rare and should be checked 

for applicability to a set problem. Optimization might be necessary concerning protein 

recovery, contaminant depletion and process time. For quantitative buffer exchange gentle 

methods like size exclusion chromatography or binding of protein to affinity matrices or 

mixed mode adsorber resins should be further investigated and adapted to robotic work 

stations. 

 

3.3.3 Classification of Samples According to Their Coordinates in 

Phase Diagrams 
 

The coordinates of a sample in a phase diagram are defined either by measuring the point of 

protein phase transition or by measuring the existence of two phases. In most cases this means 

classification of a sample into soluble and aggregated or crystallized depending on the 

existence of the corresponding phase state of the protein. Most commonly used methods are 

based on changes in optical properties of a protein solution if crystals or aggregates are 
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present. A summary of techniques to classify samples according to their position in phase 

diagrams is given in Table 4. 

 
Table 4: Methods to classify samples according to their position in phase diagrams 

Method Principle HTS 

Compatible 

Reference 

Interferometry  Crystal dissolution is measured. No  [24] 

Turbidity (Absorbance 

at 350 to 600 nm) 

Turbidity is detected by 

absorption of light. 

Yes [40-42] 

Turbidity (Visual) Turbidity is detected by visual 

inspection. 

No  [40] 

DLS Particle size and distribution is 

measured. 

Yes but slow [40, 43] 

SLS Particle size and shape is 

measured.  

Yes  [44] 

Imaging Technology Images of the solution are 

statistically analyzed for 

homogeneity.  

Yes [15, 19] 

SEC-HPLC Monomers and multimers are 

separated. 

No  [45, 46] 

DSC Crystallization or aggregation 

enthalpies are measured. 

No  [45, 47, 

48] 

Analytical 

Centrifugation 

Sedimentation velocity of 

aggregates is measured. 

No  [49, 50] 

 

Interferometry can be used to assess if a crystal in solution is growing, dissolving or if 

equilibrium is reached. Complex instrumentation and the need for crystals are inconsistent 

with HTS applicability. Light scattering of solid particles in solution can also be measured by 

absorption at wavelengths between 350 and 600 nm for visual particles and by dynamic or 

static light scattering for even smaller particles like soluble protein aggregates. Imaging 

technologies substituting visual inspection of samples for turbidity can only distinguish 

between presence and absence of particles, whereas visual inspection is dependent on the 

experimenter. No quantitative information on the amount of aggregates or crystals can be 

gained with the described optical techniques being an obstacle to systematic optimization 
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approaches. SEC is also used to estimate the aggregate to monomer fraction separated in a gel 

matrix. SEC is restricted to soluble aggregates only. Being a serial analytical technique 

including slow flow rates and high buffer consumption SEC is not applicable in automated 

HTS approaches. DSC, a method to measure phase transition enthalpies, is also slow and 

automation is difficult due to complex instrumentation. The same holds true for analytical 

ultrafiltration measuring particle sizes and forms by their sedimentation velocity.  

 

3.3.4 Thermodynamic Classification of Protein in Solution 
 

A systematic approach to measure a proteins tendency to interact under the investigated 

solvent conditions is the determination of the second virial coefficient. Different analytical 

methods used to calculate the second virial coefficient are summarized in Table 5. 

 
Table 5:  Methods for thermodynamic classification of protein solutions 
Method Principle HTS Compatible Reference

DLS Particle size and distribution is 

measured. 

Yes but slow [40, 43] 

SLS Particle size and shape is measured.  No (sample has to be 

separated on SEC first)  

[44, 51] 

SEC-

HPLC 

Monomers and multimers are 

separated. 

No (not parallelizable with 

appropriate resolution) 

[52] 

SIC Protein is bound to adsorber and 

retention time of the same protein is 

measured. 

Yes but slow [53, 54] 

 

Analytical size exclusion chromatography [4], a standard method to analyse aggregation in 

biopharmaceutical products and formulations, is used in [52] to asses the second virial 

coefficient by a protein concentration dependency of the retention time.   

In self-interaction chromatography (SIC) the protein of interest is covalently bound in a 

statistically random orientation on the adsorber surface. The same sort of protein is diluted in 

a mobile phase and the retention on the column gives qualitative information on the strength 

of the interaction between bound and soluble protein in the eluate buffer [54-56]. The serial 

processing of samples and difficulties in immobilisation of protein in a random orientation 
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keeping  its structural integrity are major pitfalls of that approach. Nevertheless higher flow 

rates in comparison to size exclusion chromatography enhance sample throughput.  

Static light scattering is used as a source to calculate the second virial coefficient in a study on 

aggregation behaviour of proteins during refolding [51].  

In addition dynamic light scattering gives information on the monodispersity and an average 

particle size inside a solution hinting for example at invisible aggregates with a high potential 

to grow overtime [43, 57]. 

These spectroscopic techniques generally offer the possibility of parallelized analysis without 

sample loss in contrast to the demand for an appropriate sample volume and a serial and 

therefore time-consuming column based analytic.  

The opportunity to automate the measurements and to integrate sample preparation and 

analytics in one processing station is strongly dependent on the construction of the analytical 

devices.  

 

3.3.5 Design of Experiments for Solubility Screening 
 

There are basically three approaches to set up solubility screening trials: a random distribution 

of parameter settings based on experience to directly find favourable conditions, a statistic 

and balanced design of experiments to gain insight into parameter effects and 

interdependencies and a design to measure partial or complete phase diagrams with maximum 

information on parameter effects for a reduced parameter number.  

In the most frequently used and also commercially available method buffer systems are 

randomly generated with parameter values based on experience. This approach either yields 

the desired solvent properties or, if the parameters are not chosen correctly, the screening 

fails. Usually no quantitative information on parameter effects is gained or even aspired in 

such screening trails. In a second screening set up favourable parameters are combined or 

parameter concentrations optimized. One of the major draw backs of this method is the 

potential oversight of optimum conditions in unexpected parameter ranges.  

This disadvantage should be met by a statistical design of experiment with a balanced 

fractional factorial design meaning that each parameter level is sampled an equal number of 

times including also binary combinations of parameters [58]. A qualitative score of this 

fractional factorial screening is used to select favourable parameter ranges for an advanced 

screening. This second screening then should yield data that can be fit in a response surface to 

calculate parameter values at the optimum. Success of such response surface optimization 
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protocols is strongly dependent on the reproducibility of the experimental method and on the 

quality of the surface fit which is especially a problem for unexpected or complex surfaces.   

The third screening approach aims at a systematic knowledge of complete or at least partial 

phase diagrams which implies on one hand a higher number of experiments to get a 

reasonable resolution covering the whole parameter range but on the other hand also yields a 

good basis for optimization of buffer conditions. One of the major draw backs is the 

restriction to a low number of varying parameters due to high experimental effort. In [16] 

three parameters: protein, buffer and additive concentration were measured in small sample 

volumes in a single 96 well plate and phase diagrams were constructed as solubility surfaces. 

This approach is not useful for screening of high parameter numbers but the knowledge of 

phase diagrams for example for crystallisation trail design often leads to a huge increase of 

the success rate [13, 22].  

Thermodynamic classification of proteins in solution by measurement of the second virial 

coefficient can help to reduce the parameter range interesting for formulation development 

[54] or crystallization screening (the so called crystallization slot) [56, 59] though being no 

guarantee for success. As methods to measure the virial coefficient are to a large extent 

experimentally complex and material and time consuming the screening usually is restricted 

to smaller parameter ranges and a full factorial experimental design for a small parameter 

number is performed to estimate parameter interactions and effects [56]. 

 

3.4 Conclusion and Outlook 
 

High throughput screening techniques building the basis for high data densities should fulfil 

several requirements. Consumption of protein and buffer components should be minimized in 

combination with fast automated sample processing and analytics. None of the systems 

described fulfils all of these criteria. Microfluidic dispensers and mixers can provide 

automated sample processing with volumes in the nano litre range but measurement of 

maximum solubility of a protein is restricted to systems mixed from stock solutions. Dynamic 

methods with liquid evaporation solve this problem but complicate the estimation of protein 

and buffer concentrations. The measurement of sample volumes is an elegant way to calculate 

the concentrations of all components over time and to correlate these concentrations to 

solubility measured for example by turbidity. First steps into this direction are already 

published and offer a good starting point for further investigations.  
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In design of experiments there is a strong tendency towards more systematic screening 

approaches to gain a better understanding of solubility processes. In combination with 

improvements in molecular simulations, modelling for solubility prediction in different 

solvents should be considered a long-term objective.  

Design of experiments helps to create more efficient screening protocols. Also elucidation of 

complex synergistic effects between solvent additives could be facilitated with statistical 

methods. Nevertheless evolutionary algorithms should be introduced in solubility screenings 

as they are superior to statistical experimental design if the investigated number of parameters 

exceeds three and parameter interdependencies are likely.  

 

4 Inclusion Body Protein Refolding 
 

As expression of eukaryotic proteins in E.coli often leads to formation of intracellular protein 

aggregates so called inclusion bodies subsequent solubilisation and refolding is indispensable 

to obtain active protein in its native conformation. Despite time consuming development of 

renaturation processes, E. coli is still a frequently used host for its simple and cheap 

cultivation and a well established system for genetic modification.  

Refolding implicates the reduction of denaturant by simple dilution, dialysis or in a 

chromatographic column and, for cysteine containing proteins, supply with redox components 

for disulfide bridge formation. Choice of buffer composition is most important for preventing 

aggregation of hydrophobic intermediates and for keeping molecules flexible enough to be 

transformed into a stable native conformation.  

In this field process development is rather dependent on experience and trial and error than on 

a known functional relation between active protein yield and numerous influencing 

parameters like buffer pH, salt concentration, salt type, redox components and various 

additives including poly ethylene glycols, detergents, amino acids, polyoles, sugars, organic 

solvent and ionic liquids in changing concentrations. Furthermore in structural biology a high 

number of different proteins have to be refolded showing great discrepancies in successful 

refolding conditions. Information on refolding process development is given in numerous 

reviews [60-64].  

As aforementioned for solubility studies high throughput screening systems enable to perform 

empirical optimization in a time and material effective way.  
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4.1 Methods for Refold Screening 
 

4.1.1 Preparation of Refold Screening Samples 
 

Published screening approaches cover a wide range of refolding modes to reduce denaturant 

concentration. A summary of methods is given in Table 6. 

 
Table 6: Summary of methods for refold screening sample preparation 

Method HTS Compatible Reference 

Dilution Yes [32-36, 41, 

65-70] 

Repeated Dilution Yes [32, 36] 

Dialysis No (slow, high buffer consumption) [71] 

Matrix-assisted Refolding Yes (except for SEC) [36, 37] 

Dilution on a Chip Yes [69, 70] 

 

Screening for appropriate buffer composition is most frequently performed by dilution [32-36, 

41, 65-70]. Usually a 10 to 100 fold dilution of solubilised protein in refolding buffer is 

accompanied by fast and intense mixing.  

Protein concentrations are typically low, in the range of 0.1 to 1 mg/ml to reduce aggregation 

of hydrophobic folding intermediates. Serial addition of denatured protein is used to increase 

the concentration of soluble protein and therefore to facilitate subsequent detection methods 

[32, 36]. Here waiting time between pulses can use up to several hours of experimental time 

depending on the folding kinetic of the protein and has to be evaluated carefully in order to 

reach a stable protein conformation in between addition steps.  

In addition to rapid dilution dialysis is used for slow buffer exchange, but is for both refolding 

and subsequent sample preparation mostly restricted to manual sample processing and 

dependent on slow diffusion processes [32, 36]. A published step-wise buffer exchange for 

renaturation by dialysis in a 96 well plate format takes 6 to 8 hours equilibration time for each 

step [71].  

Up to now, HTS refolding on adsorber matrices is mainly limited to His-tagged proteins 

bound to metal affinity resins [36, 37]. Adsorption and elution are performed in a batch mode. 

Intense washing of resin material after refolding leads to removal of buffer components 

disturbing protein assays. On the contrary imidazole for protein elution might also interfere 
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with analytical methods. Often used reducing agents in inclusion body solubilisation like DTT 

or low pH, ionic detergents and arginine in refolding buffers are not compatible with metal 

chelate affinity chromatography [37]. A first automated method to characterize effects of 

refolding buffer, resin type and residence time in refolding buffer on ion exchange materials 

in batch experiments is described for lysozyme in [72] using filter plates for easy buffer 

exchange. 

The first attempts towards optimization on microchips by mixing solubilised protein with 

refolding buffer in nano-scale channels are published, but not applicable to protein refolding 

accompanied with high aggregation rates [73, 74]. 

 

4.1.2 Analytics of Refold Screening  
 

Solubility as Objective Function 
 

Analytical methods can be split into measurement of soluble protein content and techniques to 

gain structural information.  

Concentration of soluble protein does not necessarily correlate with high yields of active 

protein but nevertheless minimization of protein aggregation is a necessary objective in a first 

screening [41, 69]. It could be observed in [75] that optimum conditions for lysozyme 

solubility and activity are correlating with closer parameter limits for activity.  

In a variation of refolding by dilution, a reverse screening method investigates the effects of 

various additives on aggregation of native protein during partial unfolding in a basic buffer 

recipe. The suppression of protein aggregation is then correlated with a stabilisation of protein 

in refolding preparations [76]. With its high consumption of native protein the applicability of 

this reverse screening depends on the availability of active protein and produces additional 

costs. It has to be further evaluated if the behaviour of partially unfolded protein and refolding 

protein concerning aggregation can be universally correlated.  

 

Measurement of Structural Integrity 
 

Methods for structure estimation are often linked to sophisticated instrumentation and special 

requirements on sample quality and quantity. An overview of analytical techniques is given in 

Table 7.  
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Table 7: Summary of analytical methods to measure structural integrity of proteins 

Method HTS Compatible Reference 

CD No [33, 35, 37, 69] 

NMR No [77] 

RP-HPLC No [76] 

SEC No [33, 35, 37, 69] 

DLS Yes but slow [78] 

ELISA Yes [79, 80] 

SPR Yes [69, 81] 

Intrinsic Fluorescence Yes [36, 73] 

Fluorescent Dyes Yes [82-84] 

Activity Assays Yes [28, 32, 65-68, 70, 76] 

Limited Proteolysis Yes with SDS-chip system [34] 

 

Serial analysis of protein solutions is time consuming and laborious. Consequently well 

known standard methods like CD (circular dichroism) spectroscopy, NMR (nuclear magnetic 

resonance) spectroscopy, reversed phase HPLC or analytical SEC (size exclusion 

chromatography) and DLS (dynamic light scattering) are not compatible with automated high 

throughput systems although frequently used for lack of more efficient strategies [32, 33, 35, 

37, 69, 76].  

Specific enzyme assays yield reliable information on protein structure integrity and are also 

automatable and easily parallelized. For this reason they are in most publication on high 

throughput screening development the chosen method. Quite often absolute enzyme activity is 

the exclusive objective function for optimization [32, 65-68, 70].  

Methods like ELISA (enzyme linked immunosorbent assay) and SPR (surface plasmon 

resonance) harness specific binding of protein to binding partners like substrate molecules, 

antibodies or receptors and are already applied in high throughput refolding approaches [67, 

69, 79-81]. A major disadvantage is that surface design and process set up are challenging 

tasks. In addition for proteins in genomic projects no function or binding partner is known and 

proteins like antibody fragments and growth factors industrially produced from inclusion 

bodies do not exhibit enzymatic activity. For functional assays restricted to one protein time 

for assay development should not be underestimated in comparison to just adaptation of 

universal structure based techniques.  
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For high throughput measurements intrinsic fluorescence of tryptophane [36, 73] or usage of 

fluorescent hydrophobic dyes like ANS are easy applied methods for structure estimation [82-

84] though rarely used up to date in screening systems. Intrinsic fluorescence spectroscopy is 

limited to proteins with buried tryptophane residues in native conformation to allow for a 

characteristic red shift of fluorescence emission during unfolding due to solvent interaction 

with the fluorophore. Furthermore fluorescence intensity is sensitive to quenching buffer 

components like disulfides and to temperature shifts [82] and interpretation of spectra implies 

knowledge on structural properties or the fluorescent behaviour of native protein. Another 

problem is the hydrophobic collapse of the protein which is often a prerequisite for protein 

solubility when denatured protein is transferred to refolding buffer. As nearly all tryptophan 

residues are buried instantly, no structural variety can be observed in soluble protein 

populations [28].  

Hydrophobic dyes bind to hydrophobic patches in folding intermediates and upon interaction 

with protein emit light with high intensities. As dye binding also depends on solvent 

characteristics applicability to different buffer systems should be carefully evaluated. 

Characteristics of fluorescent probe and formed hydrophobic surface in folding intermediates 

have to fit to allow for significant binding [82, 85]. 

Another non specific method to investigate structural properties of proteins is limited 

proteolysis, harnessing higher stability of tightly folded native protein structures against 

proteolytic cleavage [34]. A great draw back is the analysis of protein fragments performing 

SDS-PAGE after digestion reaction and a sometimes low stability of the native protein against 

protease digestion.  

 

4.3 Design of Experiments for Refold Screening 
 

Statistical design of experiments is up to now the method of choice to handle a high number 

of parameters in refold optimization screening [32, 33, 35, 41, 68, 70]. Sample number can be 

dramatically reduced by setting up a fractional factorial buffer matrix to estimate main effects 

and multifactor interactions [86]. In this connection the basic assumption, that the objective 

function is linearly dependent on the parameters and that the parameters do not interact is a 

simplification which is likely to lead to a suboptimal screening result. Moreover in a 

fractional or full factorial design with sparse data points in a rather wide parameter space the 

calculated optimum might be strongly affected by the experimental error. Only if boundary 

conditions for the considered parameter range are already known experimental design and 
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subsequent approximation of response values by surface response methodology can lead to 

optimized refolding conditions [65].  

Evolutionary algorithms show a high potential to improve robustness of multi parameter 

optimizations despite experimental deviations and parameter interactions. A higher data 

density in the parameter region of interest with good results for the objective function leads to 

a good balance between gained information and experimental effort. In [75] it could be shown 

that a global optimum can be found despite for parameter interdependencies by use of a 

combination of the genetic algorithm with a full factorial in the optimum parameter range. 

The study also points out the need to validate the optimization algorithm itself, here by means 

of additional full factorial experiments, to adapt the algorithm´s parameters to the screening 

task. Frequently performed surface fits to quantify parameter effects showed to be difficult in 

the screened five parameter system due to optima on the parameter boundaries. 

 

4.4 Conclusion and Outlook 
 

Literature on HTS refolding deals in most cases with automated, parallelized refolding 

processes followed by manual or serial analytical techniques inconsistent with the idea of 

fully automated time efficient screening systems. Commercially available Kits (Pro-Matrix 

Protein Refolding Kit, Pierce; Quickfold™ Protein Refolding Kit, AthenaES™; Protein 

Refolding Kit, BioAssay™; FoldIt Screen, Hampton Research) consist of different buffer 

mixes whereas development of analytics is left to the customer. Specific activity or binding 

assays are up to now the only possibility for automated and parallelized estimation of 

structural integrity. 

Investigations should be driven towards methods for high throughput parallel protein 

characterisation for example with structure sensitive probes or parallelized analytical 

chromatography. It should be focussed on non-invasive and universal techniques to 

circumvent protein specific assay development and sample alteration or loss during analytics.  

Measurement of protein solubility in refolding samples offers a good starting point for buffer 

optimization and leads to a reduced number of interesting samples for more elaborate 

analytics. Solubilization and measurement of aggregated protein prevents disturbing effects of 

buffer and protein structure variability and can be fully automated.  

Microfluidic devices for a serial screening of refolding buffer compositions with low sample 

volumes and fast sample processing and analytics are restricted to soluble samples to prevent 

the systems from clogging by protein aggregates.  
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Restrictions of statistic Design of Experiments like low efficiency with a high number of 

parameters and the need for a basic knowledge on the locality of optimum conditions should 

be bypassed. If the system is completely unknown or if optimization should integrate 

“unexpected” parameter values derivative free algorithms like the genetic algorithm are the 

most promising solution.  
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Abstract 
 

Protein solubility is one of the most important objective functions during optimization of 

biopharmaceutical production conditions. The characterization of protein solubility is 

important for either preventing protein aggregation which is the case in downstream 

processing steps like inclusion body refolding, hydrophobic interaction chromatography and 

liquid drug formulation, or to decrease solubility as is aimed for in protein purification by 

precipitation or crystallization.  

In our study we used a high throughput screening method automated on a Tecan liquid 

handling robot to rapidly assess the solubility of lysozyme and its dependence on parameters 

like pH, ionic strength and additives. Combinatorial parameter effects could be measured in a 

reasonable time frame of approximately 1 day yielding a high data basis with low material 

consumption.  

Temperature and distance of pH from the isoelectric point showed a positive coupled 

correlation with solubility. In addition we found an influence of ionic strength on the 

solubility changes induced by additives for all studied systems. Polyethylene glycol (PEG) 

300 and Tween 20 were found to improve lysozyme solubility at higher salt concentrations. 

The addition of sorbitol and sucrose resulted in two distinct solubility maxima at low salt 

concentrations. While an explanation for single parameter effects on protein solubility was 

possible for example for pH by correlation of net charge and solubility at different pH values 

this becomes more and more difficult with an increasing number of parameters. By reducing 

the experimental effort needed it is possible to build a solid data basis to elucidate solvation 

mechanisms. Automated high throughput methods are thus a powerful tool not only for 

process optimization but also for a better understanding of precipitation processes. 
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1 Introduction 
 

Protein solubility plays a major role in bioprocess development when considering aggregation 

of the target but also of the contaminating protein as it not only results in lower yields but also 

due to its possibly disturbing effect on process steps such as clogging of membranes and 

chromatographic columns. Especially in inclusion body refolding processes, aggregation due 

to strong interactions between folding intermediates with higher surface hydrophobicity is one 

of the major obstacles during process design and buffer optimization. In formulation studies 

solvent compounds are investigated for their effect on long term protein solubility to 

guarantee for constant product quality. An overview of protein aggregation and its 

consequences on bioprocess development is given in two recommendable reviews [1, 2].  

Most of the published data deals with solubility in crystallization trails for protein structure 

determination. Although a high interest exists among fundamental researchers and industrial 

process designers, it is up to now not possible to describe parameter effects on protein 

solubility behaviour by a simple model. Therefore optimization has to be performed 

empirically with some guidelines based on experience. With an increasing number of 

parameters high throughput methods have to be established to reduce costs emerging from 

high material and time consumption during experimentation.  

In Figure 1 a schematic protein phase diagrams is given. Screening of solubility is often 

performed in an equilibrium between aggregated and soluble protein in order to gain 

information on the thermodynamic solubility curve below which the protein shows no 

tendency to build a solid [3]. For relatively fast processes with rapid changes in buffer 

composition or protein concentration, the protein will be presumably far off the equilibrium. 

As the nucleation kinetics of crystals in the supersaturated region is dependent on the rate at 

which supersaturation is created, precipitation is more likely than crystal formation due to 

longer induction times for nucleation in comparison to usually fast precipitation processes [3, 

4]. Therefore knowledge of the precipitation curve is generally sufficient for appropriate 

experimental design in bioprocess development. Even for studies on long-term storage 

stability the precipitation curve describes the upper border of a potentially suitable parameter 

space and should be assessed as a starting point due to simplicity and speed of its estimation. 

Knowledge of the phase diagram including the precipitation zone is a prerequisite for a 

rational screening design [5-7] to optimize crystallization of proteins for structure 

determination. In purification processes like chromatography, protein concentration and 

solvent composition change faster, and as a consequence no solubility equilibrium in solution 
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is reached. After a fast shift of the protein into the supersaturated phase, e.g. by addition of 

highly concentrated precipitants, formation of crystals or aggregates might not occur directly 

as it is dependent on the kinetics of the aggregation process. Nevertheless protein solutions in 

the supersaturated phase show a limited storage stability of the solution which has to be taken 

into account for example if the protein solution has to be stored between two process steps 

[3]. 

 
Figure 1: Schematic protein phase diagram (adapted from [3]) 

 

For the optimization of protein solubility numerous parameters have to be considered which 

can be divided into physical parameters and the chemical environment of the protein, i.e. the 

“solvent composition”. Important physical parameters affecting protein solubility are 

mechanical stress induced for example by intense mixing, surface or interface adsorption and 

temperature. Important chemical parameters are solvent pH, ionic strength and salt type. As 

proteins display differences in net charge at different pH values according to their isoelectric 

point (pI) the optimum pH for high protein solubility is protein specific. Effects of ionic 

strength and salt type on solubility are complex and strongly dependent on the solution pH 

[8]. An empirical hierarchy of salt types being based on their effect on protein solubility was 

first published by Hofmeister et al. [9] and since then frequently verified by other researchers 

though pH was not adjusted in his studies, since the concept of pH values had not been 

established at that time yet. Ionic strength dependencies can be roughly divided into a region 

with rather low salt concentrations where salting-in of proteins dominates and a region with 

higher salt molarities where a higher tendency of the proteins to precipitate is observed, called 
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salting-out effect. Solubility curves describing the salting-out effect can be empirically fitted 

according the Cohn equation (equation 1) [10] with S as protein and c as salt concentration.  

 

     (1) 

 

A hypothetical maximum protein solubility β in the absence of salt is induced in which the 

salting-in effect of some salt protein systems is not considered. The slope of the straight line 

resulting from plotting the logarithmic protein concentration and the salt concentration can be 

interpreted as the salt specific constant KBsB which is dependent on the protein salt system but 

independent of pH and temperature. In contrast to KBsB, β is a function of both temperature and 

pH. 

Another parameter to be mentioned are additives which frequently are added for example in 

biopharmaceutical formulations and inclusion body protein refolding processes to improve 

solubility, but also in protein precipitation approaches to reduce solubility. These additives 

belong to different groups of molecules and their effect on protein solubility is not well 

understood up to now. Additives can roughly be divided into at least the following types of 

substances: sugars and polyols (like sucrose or sorbitol), amino acids (like arginine), polymers 

(like PEG) and surfactants (like Tween 20). Sometimes they are also called osmolytes due to 

their high abundance in organisms viable under environmental stresses like high temperature 

or ionic strength [11]. The interdependencies of the effect on protein solubility between 

additive concentrations and other important parameters like pH and ionic strength have to our 

knowledge not been characterized in literature before. 

Protein stability and solubility are strongly linked, as for example proteins during unfolding 

tend to aggregate due to a higher degree of hydrophobic residues accessible at the molecular 

surface. Thus protein structure can also be used as another important parameter for the 

optimization of solubility, restricting the parameter space to a range preserving comparable 

protein structure properties. Furthermore, one has to deal with a mixture of folding 

intermediates and the active structure when optimizing protein solubility for inclusion body 

protein refolding processes, which potentially complicates the search for favourable buffer 

systems. 

In this study we show data resulting from an automated high throughput screening method 

using evaporation of water to concentrate protein and buffer over time. Since time and 

material can be reduced, the measurement of precipitation curves can be performed in one 

day. We compared the location of our precipitation curve with that of published 

cKS S ⋅−= βln
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thermodynamic solubility curves to show the difference between both approaches. It is 

demonstrated that even complex parameter interdependencies for example between buffer 

salts and detergents can be assessed within short timeframes.  

 

2 Material and Methods 
 

2.1 Material 

 

2.1.1 Robotic Work Station 

 

A Freedom Evo 200 (Tecan Crailsheim, Germany) equipped with one liquid handling arm 

and one gripper was used as an automated pipetting station. Pipetting was performed with 8 

fixed standard tips. A H+P Thermoshake with one position and a shaking diameter of 2 mm 

(Inheco Munich, Germany) and a spectrophotometer InfiniTe 200 (Tecan Crailsheim, 

Germany) were integrated into the robotic platform. A temperature-controlled microplate 

carrier with three positions was connected to a F12-ED refrigerated/heating circulator (Julabo, 

Seelbach, Germany). 

 

2.1.2 Disposables 

 

Microtiter plates with a well volume of 360 µl were purchased from Greiner (Frickenhausen, 

Germany).  

 

2.1.3 Chemicals and Proteins 

 

All chemicals had analytical grade and were purchased from Sigma Aldrich (St. Louis, USA) 

as well as hen egg white lysozyme (L-6876) with ≥ 90 % protein content.  
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2.2 Methods 

 

2.2.1 Preparation of Stock Solutions 

 

Buffer pH was adjusted by titration of acidic and basic components. Sodium chloride 

solutions were titrated with HCl. Lysozyme solution was prepared by solubilization of 

lysozyme in Milli-Q water by stirring at 300 rpm on a magnetic MR 2000 stirrer (Heidolph, 

Kehlheim, Germany). The composition of additive stock solutions is given in Table 1 and the 

composition of salt stock solutions is given in Table 2. 

 

Table 1: Composition of additive stock solutions 
 

Additive 
Concentration  

Stock Solution 

PEG 300 0.067 M 

PEG 3000 0.067 M 

PEG 8000 0.067 M 

Sorbitol 4 M 

Sucrose 2 M 

Tween 20 0.6 % 

 

Table 2: Composition of buffer salt solutions 

 

Buffer Salt pH  Composition 
Concentration  

Stock Solution 

Potassium phosphate 

Buffer (KPi) 

5.0 / 6.0 / 7.0 / 8.0 

/ 9.0 / 10.0 
KH2PO4 / K2HPO4 1.5 M 

Sodium chloride 4.3, 6.0, 6.5, 8.4 NaCl / HCl 0.5 M 
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2.2.2 Automated Determination of Precipitation Curves 

 

A modification of the method described in Wiendahl et al. [12] was used. A flow scheme of 

the robotic process is given in Figure 2 showing steps for sample preparation, concentration of 

protein and solvent components by liquid evaporation and analytical steps like measurement 

of turbidity and sample volume.  

  
Figure 2: Flow scheme of the automated solubility screening process 

 

Initial solution conditions were generated by preparing a mixture of Milli-Q water, buffer or 

salt, additive and lysozyme stock solutions in the given order in a microtiter plate. The sample 

volume was 300 µl. Mixing of samples was performed by aspirating and re-dispensing of 100 

µl and shaking on the thermoshaker at 1020 rpm for 10 minutes. The absorption at 595 nm 

was measured and the volume of the samples was determined by conductive liquid level 

detection with the robotic tips. After incubation of the microtiter plate for 2 h on a 
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temperature controlled carrier the samples were transferred onto a thermoshaker for 

homogenization by 10 minutes of shaking. In the following, absorption measurements at 595 

nm and liquid level detection were performed. The cycle is repeated 8 times to reach a sample 

volume of around 100 µl and resulting in an increase in protein and buffer concentration by a 

factor of approximately 3. Three 96 well microtiter plates can be processed in parallel. A 

general scheme for solubility determination is shown in Figure 3 A. For the measurement of 

additive effects 16 buffer protein systems close to the maximum solubility without additives 

are generated as given in Figure 3 B. Six of these 16 identical buffer and protein solutions are 

generated and supplemented with different additive starting concentrations including one set 

without additive addition.  

With measurement of eight evaporation cycles a total of 768 or, for experiments with 

additives, 128 different conditions are analyzed using turbidity measurements.   

 

 
Figure 3: A Experimental starting conditions for the determination of solubility curves with different buffer or 

salt systems and lysozyme. B Experimental buffer and lysozyme starting concentrations for the determination of 

solubility curves with addition of additives. 
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2.2.3 Data Evaluation 

 

For every measuring cycle the concentration of buffer, salt, additive and protein is calculated 

from the starting concentrations and the determined volume according to equation 2 with c (t) 

as concentration at time t, cB0B as initial concentration, V (t) as the liquid volume at time t and 

VB0B as initial liquid volume. 

 

      (2) 

 

 

Samples are classified as insoluble if their absorption at 595 nm exceeds a static threshold 

value of 0.08 or if the absorption increment between two cycles exceeds 0.006. The center of 

the last soluble and the first precipitated condition is used as a data point. A curve fit 

according to the empirical Cohn equation [10] was calculated from the collection of data 

points for each condition. Equation 3 depicts the Cohn equation with c as salt concentration, S 

as protein concentration, β as hypothetical maximum solubility without salt and KBSB as a salt 

specific constant.  

 

     (3) 

 

Solubility data with addition of additives are visualized in surface plots respectively. 

 

3 Results and Discussion 
 

3.1 Comparison of Precipitation and Thermodynamic Solubility 

 

To compare thermodynamic solubility curves for lysozyme and results gained with the robotic 

approach we used data published by Rettailleau et al. [13]. In [13], samples had to be stored 

for weeks to months to reach thermodynamic equilibrium between protein in solution and 

protein crystals. In the contrary, the time frame needed to gain the solubility data applying the 

robotic approach was approximately 22 hours which with a high probability is too short to 

reach thermodynamic equilibrium. Furthermore the experiments to estimate the 
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thermodynamic solubility curves started from a solution containing crystals in contrast to the 

robotic approach where undersaturated solutions were used as starting points. 

The data for lysozyme solubility curves from literature and from our robotic experiments in 

NaCl at pH 4.3, 6.5 and 8.4 at 18 °C are plotted in Figure 4 A to C. All precipitation curves 

show a declining asymptotic behavior of lysozyme solubility with increasing salt 

concentration. This observation is also referred to as salting out effect which was for the first 

time published by Hofmeister in [9] and up to now no simple theory is able to account for it 

[18]. No curve crossing of the solubility curves from literature and from the robotic solubility 

measurements is observed. At all pH values the solubility curve from literature has a stronger 

curvature and exhibits a steeper decline in the supernatant with increasing salt concentration 

in comparison to the data obtained with the robotic system.  
 

Figure 4: A Comparison of the thermodynamic solubility curve from literature [13] and the solubility curve 

determined with the robotic experiments incubated at 18 °C for NaCl at pH 4.3; B for NaCl at pH 6.5; C for 

NaCl at pH 8.4. 
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These differences are also represented by the fit parameter β, a measure for the curvature and 

the KBsB value, a measure for the slope of the solubility curve. The fit parameters are 

summarized in Table 3 according to the empirical Cohn equation. The standard error of the 

parameter fit lies between 4 and 17 % for values from [13] and between 4 and 13 % for our 

results pointing out that a curve fit with the Cohn equation can be applied to data from both 

experimental approaches.  

An average standard deviation was determined for fitted parameters from the automated 

measurements discussed. The experimental error was calculated for Cohn parameters from 

three different microtiter plates in a single experimental run and from three experiments 

performed completely independent from each other. In the case of fit parameters from one 

experimental run with three different microtiter plates for the determination of β an 

experimental error between 6 and 16 % was obtained and for the determination of KBsB an 

experimental error between 6 and 17 %. For independent experiments an experimental error 

of 20 % is calculated for β and an error of 14 % for KBsB hinting at a huge impact of slight 

differences in prepared stock solutions on β. Based on these observations we only compared 

data from experiments which were performed in a single experiment. Despite the lack of 

information on the experimental error of the published results used in this section, the Cohn 

parameters are compared in the following section. 

The KBsB value from [13] are 203 % (pH 6), 92 % (pH 7) and 262 % (pH 8) higher than the KBsB 

value from our experiments. A higher value of the salt specific constant KBsB is physically 

related to a stronger decrease of the protein concentration in the supernatant with increasing 

salt concentration. Thus the published solubility curves show a higher dependency of protein 

solubility on salt content. This discrepancy between the KBsB values indicates differences 

between the measured phase transitions in the compared approaches.  

Furthermore β values from [13] are a magnitude of 8 % (pH 6), 47 % (pH 7) and 52 % (pH 8) 

smaller in comparison to our results. This can also be observed in Figure 4 as a stronger 

curvature of the curves from literature data being strongest at pH 8. 

No correlation between pH and the KBsB values can observed in equations derived from HTS 

data whereas equations in [13] show an increase of KBsB values with increasing pH. A 

dependency of KBsB on pH is in contrast to the definition of KBsB as a salt-protein-system specific 

constant independent from temperature and pH.  

The parameter β only shows a dependency from pH for the literature data set which is in 

agreement with the definition in the Cohn equation. With increasing pH the β value decreases. 

As β represents the theoretical maximum solubility in the absence of salt an increase in β at 
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lower pH can be explained by a higher net charge of lysozyme with higher distance of the pH 

from the isoelectric point lying approximately at pH 11. Data gained by means of automation 

are not capable of resolving this effect. 

 

Table 3: Cohn curve fit parameters for the solubility curves of lysozyme from [13] and from robotic 

experiments in NaCl at pH 4.3, pH 6.5 and pH 8.4 

Parameters Error 
System 

β [g/L] KBSB [MP

-1
P] β [g/L] -KBSB [MP

-1
P] 

lysozyme in NaCl, pH 4.3 [13] 386.07 8.23 ± 14.275 ± 0.36 

lysozyme in NaCl, pH 4.3 420.23 2.72 ± 54.72 ± 0.29 

lysozyme in NaCl, pH 6.5 [13] 370.44 10.88 ± 25.394 ± 0.80 

lysozyme in NaCl, pH 6.5 705.26 5.66 ± 53.36 ± 0.24 

lysozyme in NaCl, pH 8.4 

[13] 
173.98 16.61 ± 23.137 ± 2.75 

lysozyme in NaCl, pH 8.4 363.17 4.59 ± 20.08 ± 0.23 

 

The observed significant discrepancies between calculated solubility curves from the different 

experimental systems led to the assumption that the solubility line, or more generally spoken 

the phase transition measured with the robotic system does not correspond to the solubility 

line obtained with the experiments described in [13]. The solubility measured with the robotic 

approach is significantly higher and less dependent on pH and salt concentration. Protein and 

salt concentration increased much faster in the automated experiments than in [13] taking 

hours instead of days or weeks. In this case the protein solution undergoes a fast transition 

from the undersaturated to the supersaturated region of the phase diagram without reaching 

equilibrium. The formation of crystals or aggregates in this region is kinetically controlled. As 

a consequence of the short holding time no precipitate which can be detected at 595 nm is 

formed although the solution is supersaturated [3]. Another important difference between the 

solubility curves measured by Retailleau et al. and those determined with our experiments is 

the quality of the solid phase Retailleau analyzes the formation of crystals in the equilibrium 

experiments whereas in the fast robotic experiments the formation of amorphous aggregates is 

observed. Here again the kinetic control of solid phase transition plays an important role as 

crystallization is significantly slower than precipitation. In the light of these findings it would 

be more adequate to call the solubility curves from the automated measurements precipitation 

curves. 
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In cases where short time stability of protein solutions is sufficient, for example in protein 

purification processes, precipitation curves can offer the required information. This should be 

confirmed by a storage stability study of systems prepared closely below the measured 

precipitation curve. Eight solutions at pH 4.3, 6.5 and 8.4 were mixed manually from NaCl 

and protein stock solutions and stored with shaking for 23 hours at 18 °C. The turbidity at 595 

nm was measured directly after sample preparation, after 6.5 hours and after 23 hours storage. 

The absorption of all samples at all measured time points was below 0.1 AU showing no 

visual turbidity. Consequently the determined precipitation curves give a good indication for 

the preparation of soluble protein solutions stable for at least 1 day. 

 

3.2 Effect of Temperature on Lysozyme Solubility in Potassium 

Phosphate Buffer 

 

For the investigation of temperature effects on lysozyme solubility and potential 

interdependencies with the solution pH lysozyme precipitation curves were determined for 

potassium phosphate buffer (KPi) at pH 6, pH 7 and pH 8 at 18 °C, 25 °C and 30 °C. In 

Figure 5 A to C precipitation curves are depicted separately for all three buffer pH values. As 

observed for the sodium chloride systems the obtained curves show an exponential decrease 

of lysozyme solubility with increasing buffer concentration. For all pH values a ranking from 

the highest to the lowest temperature is possible exhibiting increasing soluble protein content 

with increasing temperature at a defined salt concentration.  
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Figure 5: Temperature effect on lysozyme solubility in potassium phosphate buffer (KPi) at A pH 6, B at pH 7, 

C at pH 8 

 

The fit parameters in Table 4 to Table 6 confirm this observation. A significant correlation of 

β with the incubation temperature indicates an improved maximum lysozyme solubility at 

higher temperatures. At pH 6 the fitted β value at 18 °C is only 57 % in proportion to β at 30 

°C. At 25 °C β is 68 % high compared to the parameter value at 30 °C. At pH 7 a β of 77 % 

and 88 % is reached at 18 °C and 25 °C in comparison to the 30 °C parameter value. For pH 8 

the temperature effect on β is smallest with 86 % at 18 °C and 93 % at 25 °C. These findings 

are consistent with effects described for lysozyme crystal growth in [14-16]. A negative 

enthalpy for the formation of the solid phase which is dependent on the buffer conditions is 

responsible for an increase of solubility with higher temperature, also called normal solubility 

[17].  

In general the highest maximum solubility over the entire range is obtained at pH 6 whereas 

differences between values at pH 7 and pH 8 lie within the experimental error. The influence 
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of higher repulsive forces between lysozyme molecules at lower pH values due to an 

isoelectric point at pH 11 hints at an important role of charged residues in intermolecular 

interactions. Moreover the effect of temperature is higher at low salt concentrations. This 

interdependency between pH value, salt concentration and temperature is also mentioned in 

[15] for formation of orthorhombic and tetragonal lysozyme crystals with a temperature and 

solvent dependent change in crystal structure [16]. 

According to the empirical finding of Cohn the incubation temperature has no influence on 

the KBsB values. 

 

Table 4: Cohn curve fit parameters for the solubility curves of lysozyme in potassium phosphate buffer (KPi) at 

pH 6, pH 7 and pH 8 at 18 °C 

Parameters Error 
System 

β [g/L] -KBSB [MP

-1
P] β [g/L] -KBSB [MP

-1
P] 

lysozyme in KPi, pH 6 276.07 1.85 ± 10.43 ± 0.06 

lysozyme in KPi, pH 7 195.36 1.78 ± 7.403 ± 0.068 

lysozyme in KPi, pH 8 246.62 2.30 ± 14.473 ± 0.11 

 

Table 5: Cohn curve fit parameters for the solubility curves of lysozyme in potassium phosphate buffer (KPi) at 

pH 6, pH 7 and pH 8 at 25 °C 

Parameters Error 
System 

β [g/L] -KBSB [MP

-1
P] β [g/L] -KBSB [MP

-1
P] 

lysozyme in KPi, pH 6 330.99 1.81 ± 13.634 ± 0.06 

lysozyme in KPi, pH 7 223.28 1.84 ± 10.02 ± 0.08 

lysozyme in KPi, pH 8 267.89 2.30 ± 19.754 ± 0.13 

 

Table 6: Cohn curve fit parameters for the solubility curves of lysozyme in potassium phosphate buffer (KPi) at 

pH 6, pH 7 and pH 8 at 30 °C 
 

Parameters Error 
System 

β [g/L] -KBSB [MP

-1
P] β [g/L] -KBSB [MP

-1
P] 

lysozyme in KPi, pH 6 483.9 2.08 ± 36.221 ± 0.13 

lysozyme in KPi, pH 7 255.23 1.86 ± 9.818 ± 0.07 

lysozyme in KPi, pH 8 286.82 2.25 ± 14.516 ± 0.10 
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3.3 Effect of pH on Lysozyme Solubility 

 

The influence of pH on lysozyme solubility was determined in potassium phosphate buffer 

systems. Precipitation was examined at pH 5 to 10 in steps of one unit at 25 °C. In Figure 6 

the precipitation curves of lysozyme in potassium phosphate buffer at different pH values are 

depicted. Precipitation curves obtained from experiments performed at pH 7 to pH 9 lie close 

together and cross each other at low buffer concentrations. The precipitation curve determined 

at pH 5 shows by far the highest lysozyme solubility at all buffer concentrations. Lysozyme 

solubility decreases with higher pH values and the precipitation curves show a higher 

curvature. This is also mirrored by the Cohn fit parameters summarized in Table 7. The β 

values decrease from pH 5 to pH 7 representing an increase in curvature and then stay 

constant for all used higher pH values except for pH 9 which seems to be an outlier. An 

interesting point is a 100 % increase in KBsB values for systems measured above pH 8 though 

this parameter should stay constant with changing pH. An explanation might be the absence 

of buffer capacity of the potassium phosphate system in this pH range. As a consequence 

lysozyme might have a stronger influence on the solvent properties as it also changes pH to a 

value of 3.9 being dissolved in Milli-Q water.   

 
Figure 6: Dependence of lysozyme solubility in potassium phosphate buffer (KPi) on pH at 25 °C 
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Table 7: Cohn curve fit parameters for the solubility curves of lysozyme in potassium phosphate buffer (KPi) at 

pH 5 to pH 10 in steps of 1 at 25 °C 

Parameters Error 
System 

β [g/L] -KBSB [MP

-1
P] β [g/L] -KBSB [MP

-1
P] 

lysozyme in KPi, pH 5 1005.29 2.09 ± 148.6 ± 0.12 

lysozyme in KPi, pH 6 370.58 2.13 ± 20.09 ± 0.08 

lysozyme in KPi, pH 7 275.88 2.35 ± 14.90 ± 0.10 

lysozyme in KPi, pH 8 280.52 2.35 ± 18.16 ± 0.12 

lysozyme in KPi, pH 9 554.1 3.83 ± 59.45 ± 0.18 

lysozyme in KPi, pH 10 309.08 4.19 ± 53.66 ± 0.43 

 

As a conclusion, lysozyme maximum solubility is higher at pH values far from its isoelectric 

point (pH 11). Figure 7 gives a deeper insight into the correlation of net charge and solubility 

at a constant ionic strength of 1 M potassium phosphate. It can be observed that a saddle point 

at pH 7 and 8 is found for the net charge (calculated according to [19]) and for lysozyme 

solubility respectively. Our data are confirmed by published results for example for rhGCSF 

(recombinant human Granulocyte-Colony-Stimulating-Factor) and hemoglobin showing 

higher solubility at a pH far from the isoelectric point and at lower salt concentrations [20, 

21]. These results show a positive correlation of net charge and solubility. Repulsive forces at 

a higher net charge seem to prevent protein interactions.  

 
Figure 7: Correlation of lysozyme solubility and calculated net charge at different pH values in 1 M potassium 

phosphate buffer (KPi) at 25 °C 
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3.4 Effect of Additives on Lysozyme Solubility  

 

3.4.1 Effect of Polyethylene Glycol (PEG) 

 

Already in 1981 [22] a correlation between precipitating effect and molecular weight of PEGs 

was observed. The ability of PEG to promote protein aggregation is due to a steric exclusion 

of proteins from the liquid phase by PEG molecules and thus a local increase in protein 

concentration. On the other hand PEG is also used as additive in protein refolding processes 

to prevent the protein from precipitating [23]. Moreover the combination of salt and PEG does 

not necessarily lead to a simple addition of effects and is still not well understood [18].  

Thus we investigated the concentration of a potassium phosphate buffer and the 

concentrations of PEGs of different molecular weight in respect to possible combinatorial 

effects. For the evaluation of PEG 300, PEG 3000 and PEG 8000 the PEG starting 

concentrations in the 96 well plates were set to values between 5 and 15 mM in steps of 2.5 

mM. In Figure 8 three solubility surfaces of lysozyme in potassium phosphate buffer at pH 8 

with addition of polyethylene glycols of different molecular weights are plotted.  
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Figure 8: Solubility surface of lysozyme in potassium phosphate buffer at pH 8 and 25 °C with A PEG 300, B 
PEG 3000, C PEG 8000. 
 

All surfaces show a decrease in lysozyme solubility with increasing ionic strength. This was 

already observed without additives. For PEG 300 and PEG 3000 the surfaces show a plateau 

at a buffer concentration of 0.6 M and PEG concentrations of 0.015 M for PEG 300 and 0.01 

M for PEG 3000. On the other hand PEG 300 improves solubility at salt and PEG 

concentrations above these values and has no effect in the lower concentration range. PEG 

3000 decreases lysozyme solubility especially in concentrations above 0.01 M at high salt 

contents. PEG 8000 acts as a strong precipitant for all investigated buffer concentrations. This 

precipitating effect is increased at higher PEG and salt concentrations as was already observed 

for PEG 3000.  

The dependency of the precipitating effect on the PEGs` molecular weight and concentration 

was also observed in Atha et al. [22]. A decrease of human serum albumin solubility with 

PEG molecular weights above 400 described confirms our data for PEG 3000 and 8000. An 

improvement of protein solubility with addition of a lower molecular PEG, PEG 200, was 

observed during refolding of an interferon [24]. Though parameter effects on protein 

solubility in refolding processes might differ from effects on active protein solubility the 
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stabilizing effect of low molecular weight PEG is also observed in our experiments with the 

addition of PEG 300 at salt concentrations above 0.6 M.  

 

3.4.2 Effect of Tween 20 

 

As Tween 20 is one of the most frequently used non-ionic surfactants to prevent protein 

aggregation induced by shaking or on surfaces [8], we investigated the influence of Tween 20 

on lysozyme solubility in combination with different concentrations of potassium phosphate 

buffer. Tween 20 was added in starting concentrations between 0.12 mM and 0.6 mM in steps 

of 0.12 mM. 

Tween 20 increases solubility of lysozyme especially at high salt concentrations as can be 

seen in the solubility surface of lysozyme in a potassium phosphate buffer at pH 8 and Tween 

20 in Figure 9. 

 

 
Figure 9: Lysozyme solubility in potassium phosphate pH 8, Tween 20, 25 °C 

 

Tween 20 at concentrations above 0.8 M counteracts the decrease in lysozyme solubility 

induced at increasing potassium phosphate concentrations. The positive impact on lysozyme 

solubility becomes stronger with increasing salt concentrations. In respect to the 

interdependency between salt concentration and Tween 20 concentration, Tween 20 behaves 

similar to PEG 300 but with an even stronger positive influence on solubility over the whole 

salt concentration range. In literature [25] Tween 20 is also described to completely suppress 
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aggregation of 10 mg/ml human factor VII in 10 mM Tris buffer induced by shaking at 

Tween 20 concentrations above 120 µM. The proposed mechanism of the surfactant Tween 

20 on protein aggregation is completely different from that described for PEG 300. A 

competition between Tween 20 and the protein for the air-water interface leads to improved 

solubility as stress-induced protein aggregation at the interphase is reduced [25]. To our 

knowledge no description of salt and Tween 20 interdependencies can be found in literature 

until today.  

 

3.4.3 Effect of Sorbitol 

 

As sorbitol is an additive frequently used to stabilize the native protein structure and to 

suppress aggregation in protein formulation [26] as well as in refolding processes [27] we 

were interested in its effect on lysozyme solubility in combination with varying salt 

concentrations.  

Sorbitol was used in starting concentrations between 0.15 M and 0.75 M in steps of 0.15 M. 

Lysozyme solubility with addition of sorbitol can be estimated from Figure 10 where the 

solubility surface for lysozyme in potassium phosphate buffer at pH 8 and sorbitol is given.  

 
Figure 10: Solubility surface of lysozyme in potassium phosphate buffer at pH 8 and sorbitol at 25 °C 
 

A plateau with maximum solubility is reached for low potassium phosphate concentrations 

below 0.7 M and sorbitol concentration above 0.3 M. At potassium phosphate concentrations 

above 0.7 M, lysozyme solubility is improved by sorbitol at concentrations above 1 M. A 
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further increase in sorbitol concentration does not result in a further improved lysozyme 

solubility. Between these two regions a slightly lower solubility is observed. Sorbitol is said 

to lead to a preferential hydration of protein molecules. Furthermore a specific binding of 

sorbitol to lysozyme is known to stabilize the protein structure [28]. In [29] these findings are 

discussed controversially pointing out that solubility is still a field leaving a lot of questions 

open. The observed solubility behaviour can only be explained by two distinct effects, one at 

lower buffer concentrations where sorbitol does not influence lysozyme solubility and one at 

high buffer concentrations where lysozyme solubility is dependent on sorbitol concentration. 

  

3.4.4 Effect of Sucrose 

 

Investigations on sucrose and salt concentration interdependencies on lysozyme solubility 

were carried out to gain a deeper inside into the impact of sucrose which is frequently used to 

prevent aggregation in formulation and refolding processes [8]. 

Sucrose was used in starting concentrations between 0.15 and 0.55 M in steps of 0.1 M. A 

second experiment using sucrose was performed for starting values between 0.02 M and 0.06 

M with an increment of 0.01 in oder to obtain a better data resolution. For sucrose the most 

complex solubility diagram of the three examined additives resulted (Figure 11). 

 
Figure 11: Solubility surface of lysozyme in potassium phosphate buffer at pH 8 and sucrose at 25 °C 
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Sucrose shows two peaks at buffer concentrations > 0.6 M with highly improved lysozyme 

solubility for sucrose concentrations below 0.5 M and above 1.0 M. The lower concentration 

optimum of sucrose shows a strong dependence on the salt concentration with maximum 

solubility at up to 0.5 M. The two peaks could be found for both experiments carried out with 

sucrose. Binding of sucrose to lysozyme is discussed in literature as preferential hydration 

caused by exclusion of sucrose from the protein surface [26, 29]. Buffer and additive 

concentration dependencies of lysozyme solubility are very similar for sucrose and sorbitol. 

These observations are also confirmed by similar proposed mechanisms for the additive effect 

on protein solubility. A major difference between both additives is a solubility minimum 

observed for sucrose which is not present in sorbitol data. 

 

4 Conclusions 

 

The combination of many potential interactions between different solvent and protein 

molecules makes an interpretation of solubility data a difficult task. Changing properties of all 

involved molecules including concentration dependencies further complicate modelling of 

solubility processes. All molecules in solution show interdependent properties which makes 

modelling of protein solubility a difficult task. Screening parameters cannot be investigated 

separately but have to be examined simultaneously, which increases the experimental effort. 

Our method opens the possibility to generate a high data density within a short time as a basis 

for a deeper understanding of salvation processes. Combinatorial effects between the 

concentration of buffer and additive can be investigated. Furthermore the influence of 

temperature, buffer concentration and pH on lysozyme solubility can be easily studied. We 

could show that pH, salt concentration and the concentration of different additives have 

interdependent effects on lysozyme solubility which to a high degree cannot be explained by 

simple precipitation mechanisms reported in literature. The results are in good agreement with 

published data from manual laboratory investigations showing validity of the automated high 

throughput method used. A high data density combined with thermodynamic and kinetic 

solubility principles and especially molecular modelling might be the only way to a better 

understanding of the protein precipitation process [30].   
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Abstract 

 

Optimization of protein refolding parameters by automated, miniaturized and parallelized 

high throughput screening (HTS) is a powerful approach to meet the demand for fast process 

development with low material consumption. In this study we validated methods applicable 

on a standard liquid handling robot for screening of refolding process parameters by dilution 

of denatured lysozyme in refolding buffer systems. One of the major challenges was the 

implementation of fast and automatable analytics. Different approaches for the estimation of 

protein solubility and folding were validated concerning resolution and compatibility with the 

robotic system and with the complex buffer and protein structure composition. We established 

an indirect method to assess soluble lysozyme concentration independent of matrix effects 

and protein structure varieties by automated separation of aggregated protein, resolubilization 

and measurement of absorption at 280 nm. Soluble lysozyme content was calculated on the 

basis of mass balances. Furthermore resolution of tryptophan fluorescence for estimation of 

protein structure was validated with a lysozyme activity assay implemented in the automated 

process. The resolution in refolding samples was too low to serve as function for 

optimization. As solubility can be measured with non-specific assays the correlation between 

favourable parameters for high active and soluble lysozyme yields were evaluated. An overlap 

of good refolding buffer compositions was found provided that the redox environment is 

controlled with redox reagents. In addition the need to control unfolding conditions like time, 

temperature, lysozyme and DTT concentration is pointed out as different feed stocks resulted 

in different refolding yields.  

 

 90



 

1 Introduction 
 

E. coli is still one of the most frequently used expression hosts for the production of 

biopharmaceutical products. High expression titers in fully synthetic media and established 

systems for genetic modification do not only decrease time for development of expression 

strains and fermentation strategies but also drive down production costs. Unfortunately high 

expression levels and reducing conditions in the bacterial cytosol often lead to formation of 

aggregated recombinant proteins, so called inclusion bodies, which have to be solubilized 

with denaturing reagents and subsequently refolded to gain active protein. An overview of 

basic principles in inclusion body protein refolding is given in numerous reviews [1-5].  

As development and optimization of refolding processes is mainly based on experience and 

trial and error, a high number of experiments have to be conducted to find favorable 

conditions for each protein. Furthermore protein renaturation can be improved with control of 

various process parameters like buffer salt and pH, ionic strength, reducing and oxidizing 

substances for disulfide bond formation and several additives promoting folding and 

solubility. There are some approaches published to solve this complex problem of refolding 

process development on the basis of high throughput screening technologies with refolding of 

denatured protein by dilution in different buffer systems [6-12]. The major hurdle when 

introducing HTS (high throughput screening) technologies lies in the use of adequate 

analytical methods. This has, however, so far not been addressed. Sample analysis performed 

manually or the usage of time consuming serial sample handling spoils positive effects on 

time for development decreased by parallelized and frequently automated sample generation 

in most published studies. For instance SDS-PAGE analysis, sample preparation by dialysis, 

CD spectroscopy, RP-HPLC or analytical SEC and DLS are time-consuming and need human 

intervention for handling of sophisticated instrumentation or complex operations. Enzymatic 

and specific binding assays are often the methods of choice, but have to be set up individually 

for every protein [13-17]. Commercially available refolding Kits (Pro-Matrix Protein 

Refolding Kit, Pierce; Quickfold™ Protein Refolding Kit, AthenaES™; Protein Refolding 

Kit, BioAssay™; FoldIt Screen, Hampton Research) provide potential refolding buffer 

systems whereas the development of analytics remains to the customer. Especially refolding 

buffers containing a diverse set of additives are incompatible with commonly used protein 

assays. Moreover structural diversity of the samples often leads to significant varieties in 
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signal height. All these points massively complicate development of automated high 

throughput screening methods for protein refolding.  

In this study we developed a protein refolding screening system that fulfils the requirements 

of parallelization and automation for sample generation and subsequent analytics. A method 

for measurement of soluble protein concentration is presented that lacks the mentioned 

disadvantages of manual and time-consuming buffer exchange, incompatibility with 

disturbing reagents or influence of structural diversities.  

As protein solubility represents one of the critical objective functions in renaturation process 

optimization and an important parameter in the course of process development this paper 

elucidates different methods of measuring this parameter in the light of requirements of HTS 

based applications and investigates process parameter correlations of solubility and folding. 

Moreover tryptophan fluorescence is validated as a marker for structural integrity. Lysozyme 

is taken as an ideal model protein with 4 disulfide bonds and 1 of 6 tryptophan residues fully 

buried in the interior of the molecule. An enzymatic assay is adapted to the robotic platform 

for fast and automated analysis of activity. Finally our results provide a deeper insight into the 

necessity of parameter control during refolding process development concerning quality of 

starting protein material and redox potential. 

To guarantee for high sample variability during validation of the presented HTS method, 

buffer composition follows a random distribution of process parameters within a wide 

parameter space. A fractional factorial design was not used in this study because in this case a 

restriction of the parameter space or of the number of parameters would have been obligatory 

to reduce experimental effort. Furthermore the presented model system should show the 

validity of measured functions and their relevance for refolding buffer design rather than the 

final optimization of the refolding buffer system.  
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2 Materials and Methods 
 

2.1 Materials 
 

2.1.1 Robotic Workstation 
 

For this study, the automated pipetting station Freedom Evo 200® (Tecan Crailsheim, 

Germany) equipped with one liquid handling arm and two grippers was used. Liquid handling 

on this platform was performed with 8 fixed standard tips. A centrifuge Rotanta RSC46 

(Hettich Kirchenlengern, Germany), a magnetic orbital shaker with four positions and a 

shaking diameter of 2 mm (Inheco Munich, Germany) and a spectrophotometer InfiniTe 200 

(Tecan Crailsheim, Germany) were integrated into the robotic platform.  

 

2.1.2 Technical Laboratory Equipment  
 
The used water bath was the MC-4 heating circulator from Julabo (Seelbach, Germany) and 

the thermomixer compact from Eppendorf (Hamburg, Germany). Size exclusion 

chromatography validation was performed on an AKTA HPLC system with Tricorn 5/50 

columns purchased from GE Healthcare (Uppsala, Sweden). 

 

2.1.3 Disposables 
 

96 well microtiter plates and UV microtiter plates with a well volume of 360 µl were 

purchased from Greiner (Frickenhausen, Germany). Deep well plates with a well volume of 

2.2 ml were obtained from TreffLab (Degersheim, Switzerland). 350 µl AcroPrep 96 filter 

plates with a pore size of 0.2 µm and a Bio-Inert membrane, AcroPrep 96 well ultrafiltration 

plates with a 3 kDa cut off and an Omega membrane were purchased from Pall (Dreieich, 

Germany). Greiner tubes were purchased from Greiner bio-one GmbH (Frickenhausen, 

Germany) and Eppendorf cups from Eppendorf (Hamburg, Germany). 96-Well 

DispoDIALYZER plates with a molecular weight cut off of 2000 Da from Havard Apparatus 

(Kent, Great Britain) were used for high throughput dialysis. 
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2.1.4 Chemicals and Proteins 
 

All chemicals (analytical grade), Bradford reagent and hen egg white lysozyme (L-6876) with 

≥ 90 % protein content were purchased from Sigma Aldrich (St. Louis, USA). Sephadex G25 

superfine gelfiltration resin was purchased from GR Healthcare (Uppsala, Sweden). 

 

2.2 Methods 
 

2.2.1 Preparation of Stock Solutions 
 

Buffer Solution, Salt and Redox Components 

 
All buffer stock solutions had a concentration of 0.5 M. The pH of the respective buffer 

solutions was adjusted by titration of the acidic and basic components. Glycine buffer was 

used for pH 3, sodium acetate buffer for pH 4 and pH 5, potassium phosphate buffer for pH 6, 

pH 7 and pH 8 and bicine buffer for pH 9.  

Salt containing stock solutions such as MgSO4 and NaCl were prepared with a concentration 

of 1.5 M.  

Denaturation buffer used to unfold lysozyme contained 8 M urea and 50 mM potassium 

phosphate buffer at pH 8. The unfolding or denaturation buffer was prepared without DTT 

and stored for at most two weeks. Immediately before use DTT was added from a frozen 1 M 

stock solution in a concentration of 5 mM. 

DTT stock solution for refolding was solubilized in a concentration of 50 mM in water. GSSG 

was prepared in a concentration of 35 mM in water. The pH of the GSSG solution had to be 

adjusted to pH 7 by addition of 1 M NaOH. Both redox component solutions were prepared 

directly before start of the experiment. 

 

Native and Denatured Lysozyme 
 

Solutions of native lysozyme were prepared directly before use by dissolving lysozyme in 

Milli-Q water in the following concentrations: 1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.125 mg/ml, 

0.063 mg/ml, 0.031 mg/ml and 0.016 mg/ml. Mixing was performed by short vortexing of the 

solution.  
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Lysozyme in a concentration of 2 mg/ml, 4 mg/ml or 8 mg/ml was dissolved in denaturation 

buffer by either gently stirring in Greiner tubes on a magnetic stirrer or by vortexing in small 

scale validation experiments in Eppendorf cups. In large scale experiments with several 

milliliters the solution is incubated at the specified temperature either in a water bath (37 °C), 

at room temperature or in the fridge (4 °C). For small scale validation experiments of one to 

two milliliters the Eppendorf cups were incubated in a thermomixer with a set temperature of 

4 °C, 25 °C or 37 °C without shaking. Validation samples were measured at different time 

points from the start up to 46 h. In larger scale denaturation at room temperature was 

performed for 3 h and denaturation at 37 °C for 1.5 h.   

 

Micrococcus lysodeikticus Suspension 

 
Micrococcus lysodeikticus was suspended in 100 mM potassium phosphate buffer at pH 6 in a 

concentration of 0.65 mg/ml. Mixing was performed by intense vortexing. The stability of the 

suspension was investigated over time by measuring 12 calibration curves of the same native 

lysozyme preparation (1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.125 mg/ml, 0.063 mg/ml, 0.031 

mg/ml and 0.016 mg/ml) at different time points from 0 min to 125 min. When assaying 

refolded lysozyme the suspension was prepared 30 minutes before use.  

 

2.2.2 Automated Sample Preparation for High Throughput 

Refolding Screening 
 
Volumes of stock solutions for generation of refolding buffers were imported into the robotic 

control software as variables from Excel files. Pipetting with the robotic system was 

calibrated for the different solutions used by adapting liquid handling parameters like 

aspirating and dispensing speed and location of the tips in relation to the liquid level or the 

labware bottom. 
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Automated Preparation of Refolding Systems 

 
The automated generation of refolding systems is depicted in Figure 1. Prior to the procedure 

developed for screening of refolding conditions, unfolded protein was prepared as described 

above. The actual screening procedure is than initiated by mixing of a set of refolding 

systems. The refold systems contained several additives summing up to a volume of 900 µl 

and were prepared by using stock solutions of 0.5 M buffer, 1.5 M NaCl, 1.5 M MgSO4, 35 

mM glutathione (GSSG) at pH 7 as oxidizing and 50 mM dithiothreitol (DTT) as reducing 

agent and Milli-Q water as fill to reach the final volume. Each system was initially mixed by 

applying one aspiration-dispensing step with a volume of 900 µl. After the preparation of all 

systems continuous mixing was ensured by orbital shaking of the deep well plate at 1500 rpm.  

Without interruption of shaking, 100 µl of denatured protein were added to the refold systems 

resulting in a protein concentration of 0.4 mg/ml. This procedure led to a fast reduction of 

denaturant concentration with a dilution factor of 10 of denatured, reduced lysozyme in 

refolding buffer. Concomitant shaking on the orbital shaker and one aspirating-dispensing 

step of 900 µl were performed for fast homogeneous distribution of the protein. Effects of 

local protein concentration maxima on protein aggregation should thus be minimized. 

Incubation for refolding was performed at room temperature with constant shaking at 1500 

rpm for 1 h, to gain a stable protein solution with aggregated and soluble protein in 

equilibrium. 
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Figure 1: Flow scheme of the automated refolding process 

 
 

Evaluation of Parameter Relevance and Experimental Error 

 
When evaluating the relevance of the various additives and the experimental error 

accompanying the screening approach 40 random experiments were performed prior to the 

actual screening procedures. Buffer concentration, protein concentration and dilution factor of 

denatured protein into refolding buffer were kept constant. The pH is varied in steps of one 

between pH 3 and pH 9 whereas the salts (NaCl, MgSO4) and the redox components were 

handled as indiscrete parameters varying between 0 and 150 mM for salts, between 0 and 20 

mM for the oxidizing component GSSG and between 0 and 10 mM for the reducing 

component DTT.  
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2.2.3 Sample Preparation Prior to Analysis 
 
After a 1 h incubation period, the refolding suspension is directly transferred into the 

analytical pathway vizualized in Figure 2. The flow scheme also shows the samples measured 

during method validation.  

In the standard procedure 300 µl of the refold suspension were transferred to a 0.2 µm Bio-

Inert membrane plate. This aliquot of the refold suspension was further processed starting 

with a solid-liquid separation step. The filter plates set on top of a UV microtiter plate were 

centrifuged at 4754 RCF for 10 min at room temperature. This procedure led to a separation 

of liquid containing soluble protein and aggregates. For validation purposes the remaining 

suspension in the deep well plate was centrifuged at 1500 rpm for 10 min at room temperature 

and 300 µl of the aggregate free supernatant were then transferred to a UV plate and protein 

content measured using UV 280 nm.  

The filtrate was than used for structural analysis using tryptophane fluorescence, biological 

activity using the described enzymatic assay and protein content using UV 280 nm. 

The aggregate containing retentate in the filter plate was washed once with 300 µl of Milli-Q 

water to remove residual buffer components using the above described centrifugal procedure. 

The filtrate resulting from the washing step was analyzed for protein content using UV 280 

nm. Remaining aggregates in the filtration plate are then resolubilized using 300 µl of 

denaturation buffer. DTT is added to reduce intermolecular disulfide bonds stabilizing 

aggregates and thus preventing solubilization. To ensure quantitative solubilization of 

aggregates - including potentially adhering aggregates to the filter membrane - the solution 

was finally passed through the filter using centrifugation at 1500 rpm for 10 min at room 

temperature. The filtrated solution is than assayed for protein content using UV 280 nm. 
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Figure 2: Flow scheme of the automated analytics including steps for method validation 
 

 

2.2.4 Analytical Assays 
 

Protein Content 

 

a) Direct Analysis of Soluble Protein Using UV 280 nm 

 
The absorption at 280 nm of 300 µl protein solution was measured in microtiter plates with a 

UV transparent bottom. Measurement was conducted three times in each well of the 

microtiter plate in the middle of the well and an average value was calculated. For validation 

purposes native lysozyme was solubilized in 50 mM potassium phosphate buffer at pH 8 by 

vortexing. Different protein concentrations up to 0.5 mg/ml and a buffer blank were processed 

in parallel. The calibration is fitted with a linear regression curve. To measure denatured and 
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reduced lysozyme during validation experiments lysozyme concentrations between 0 and 0.5 

mg/ml are incubated for 3 h at 25 °C in denaturing buffer.  
 

b) Direct Analysis of Soluble Protein Using a Bradford Assay 
 

The Bradford assay used was performed according to [18]. In short, 200 µl of Bradford 

reagent were pipetted into each well of a standard microtiter plate. After addition of 40 µl of 

the protein containing sample mixing was performed by two repeated aspiration-dispensing 

steps with a volume of 200 µl. Following this the absorption was measured at 595 nm.   

 

c) Determination of Aggregates 
 

The determination of protein aggregates in refolding samples is performed by separation of 

aggregates from 300 µl refolding sample in 0.2 µm Bioinert filter plates. Aggregates were 

separated by centrifugation for 10 minutes at 1500 rpm, washed with Milli-Q water and 

resolubilized in 300 µl denaturing buffer.. The absorption at 280 nm of the solubilized 

aggregates is measured in UV microtiter plates. A buffer blank is processed in parallel. A 

native lysozyme calibration was used to calculate the protein concentration of resolubilized 

aggregates.  

 

d) Turbidity 
 

Turbidity was measured to validate the quantification of aggregated protein by re-

solubilisation and UV 280 nm. Refolding samples with 1 mL total volume were re-suspended 

by one aspirating and re-dispensing step of 900 µl before a 300 µl sample volume is 

transferred to a microtiter plate for a threefold measurement of absorption at 410 nm in the 

middle of each well. As blank an average absorption value of 8 different native, and 

completely soluble lysozyme concentrations between 0 and 1 mg/ml in water is used. 

 

e) Analysis of Lysozyme Activity 
 

Lysozyme activity was measured by a decrease in absorption of a Micrococcus lysodeikticus 

suspension at 595 nm when subjected to lysozyme enzymatic activity. 200 µl of a 0.65 mg/ml 

Micrococcus suspension are distributed in each well of a 96 well microtiter plate. 30 µl 
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aliquots from the sample preparation scheme outlined above and a calibration standard 

containing 8 different concentrations of native lysozyme from 0 to 1 mg/ml were diluted in 20 

mM potassium phosphate buffer at pH 6 with a dilution factor of 30 to bring samples into the 

linear range of the assay. The samples were mixed by orbital shaking at 1500 rpm and by one 

aspirating and re-dispensing step of 900 µl. 40 µl of each diluted sample were transferred into 

the bacterial suspension. The resulting assay solution was mixed by two repeated aspiration-

dispensing step with a volume of 170 µl. Prior to any pipetting step the liquid handling tips 

were washed with 800 µl of 1 M NaOH and subsequently 20 mL Milli-Q water to avoid false 

positive results due to liquid carry-over. Directly after the sample solution was mixed into the 

Micrococcus suspension the absorption was measured five times in 31 s intervals to be able to 

measure the starting velocity of the reaction and a linear decrease of turbidity. Because liquid 

handling was performed with an eight tip liquid handling arm only eight samples could be 

processed in parallel which leads to a longer holding time for samples measured at later time 

points.  

 

f) Measurement of Tryptophan Fluorescence  
 

After removal of aggregated protein 300 µl of the soluble lysozyme filtrate in the UV 

microtiter plate were used for tryptophan fluorescence measurements. Tryptophan emission 

spectra were measured by excitation at 280 nm between 300 and 400 nm in intervals of 2 nm. 

An asymmetric Gauss fit of the obtained spectra was performed. The value assayed for was 

the emission wavelength at peak maximum λ (Imax).  

 

2.2.5 Buffer Exchange on a HTS Platform 
 

Ultrafiltration 
 

Lysozyme and BSA were used at concentrations between 60 and 200 µg/ml. The initial buffer 

for lysozyme was 50 mM sodium acetate buffer at pH 4 and 50 mM bicine buffer at pH 9 and 

for BSA 50 mM sodium acetate buffer at pH 4 and 50 mM potassium phosphate buffer at pH 

8. A change to 50 mM potassium phosphate buffer at pH 8 is performed in three steps 

consisting of sample volume reduction to approximately 50 µl by centrifugation of the 

ultrafiltration plate for 45 min at 4754 RCF and addition of 300 µl potassium phosphate 

buffer. A liquid level detection with the robotic tips was performed to assess the sample 
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volume inside the ultrafiltration plate after addition of 200 µl potassium phosphate elution 

buffer. The retentate was then homogenously mixed by aspirating and re-dispensing of 200 µl 

for three times inside the ultrafiltration plate prior to transfer in a UV microtiter plate. The 

protein concentration was measured by absorption at 280 nm. 

 

Dialysis 
 

The removal of 20 mM GSSG from BSA and lysozyme solutions should be analyzed and the 

protein recovery evaluated. BSA and lysozyme were used in 8 different concentrations 

between 0 and 1 mg/ml. Both proteins were dissolved in 50 mM potassium phosphate buffer 

at pH 8 with and without 20 mM GSSG. Furthermore a BSA solution in 50 mM sodium 

acetate buffer at pH 4 was prepared. Buffer exchange was performed against 50 mM 

potassium phosphate buffer at pH 8. A volume of 300 µl of each sample was distributed into 

the wells of a DispoDIALYZER plate with a cut off of 2 kDa pre-equillibrated with 200 µl 

dialysis buffer. The dialysis plate was directly set on the liquid surface of the dialysis 

reservoir filled with 3 L of potassium phosphate buffer. Incubation was performed at ambient 

temperature with stirring of the dialysis buffer using a magnetic stirrer. After 5 h of 

incubation the dialysis buffer was changed and the dialysis proceeded overnight. A liquid 

level detection is performed with the sensor system of the robotic tips to calculate the sample 

volume after dialysis. Afterwards 200 µl sample was transferred to a UV microtiter plate and 

the absorption at 280 nm is measured. Unprocessed control samples without GSSG were used 

as 100 % recovery standard.  

 

Size Exclusion Chromatography (SEC) 
 

The separation of 0.1 mg/mL lysozyme (14000 Da) from 20 mM GSSG (612 Da) was 

investigated on different gelfiltrations resins (Superose 12, Sephadex G25, Sephadex G50, 

Sephacryl S100) starting with a column length of 20 cm and a sample load of 8 % CV. As 

only Sephadex G25 showed potential baseline separation with optimization of column load, 

this approach was used to perform experiments with 5 cm column length applicable on the 

robotic platform. A sample load of 2 % CV was chosen. Lysozyme and GSSG were also 

loaded separately onto the column to see possible interactions between protein and oxidizing 

agent.  
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3 Results and Discussion 
 

3.1 Analytical Procedures 
 

A necessary prerequisite for HTS compatible analytical procedure in the field of inclusion 

body refold screening lies in a maximum flexibility of the operator when considering buffer 

design including redox components for disulfide bond formation, additives such as detergents 

and amino acids as well as added salt components. Moreover diversities in protein structure 

developing during protein folding lead to an additional increase in sample complexity and 

directly influence all assays exploiting interactions with specific amino acids. Low 

concentrations of soluble protein typically occurring during refold screens applying a dilution 

based method complicate the requirements by the need for high sensitivity. In general when 

evaluating the effect of different process parameters quantitative data are preferred against 

qualitative data as a basis for rational experimental design and optimization. In addition all 

these challenges posed by complex buffer systems, low protein concentration and the need for 

quantification of objective functions should be met in a fully automated, miniaturized and 

parallelized screening set up. Up to our knowledge these criteria are not met by any published 

or commercially available high throughput screening approach for the optimization of protein 

refolding. 

 

3.1.1 Quantification of Soluble Protein Content 
 

UV 280 Based Measurements 
 

Protein concentration measurements based on the absorption at UV 280 rely on the absorption 

of radiation in the near UV mainly by the amino acids tyrosine and tryptophan and to a small 

extend phenylalanine and disulfide bonds. In theory higher protein structures also may absorb 

UV light or modify the molar absorptivities of tyrosine and tryptophan. Finally any additive 

present in the sample which is a chromophore will interfere with the measurements.  

Figure 3 compares UV 280 measurements for native and denatured BSA and lysozyme 

respectively. The good congruence of the respective calibration curves indicates that there is 

no significant sensitivity against changes in protein structure. Though the extinction 
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coefficients being represented by the slope of the calibration curves are six times lower for 

BSA compared to lysozyme due to different contents of absorbing amino acids like 

tryptophan and tyrosine no differences can be observed for completely denatured and active 

protein.  

 
Figure 3: Calibration curves measured at 280 nm for BSA and lysozyme. Active lysozyme and BSA are 

solubilized in 50 mM potassium phosphate buffer at pH 8 and denatured lysozyme and BSA are solubilized for 

3 hours in 8 M urea, 50 mM potassium phosphate buffer and 5 mM DTT at 25°C 

 

On the other hand oxidizing components in refolding buffer systems show high absorption at 

280 nm being an obstacle to UV 280 nm based protein determination. Furthermore changes in 

the UV absorption of redox components are observed due to pH dependent redox reactions 

between redox couples and also air. This has to be addressed additionally for every type of 

sample. The absorption at 280 nm was measured during incubation of 8 M urea buffer at pH 8 

with 5 and 10 mM DTT in an uncovered microtiter plate with shaking. In Figure 4 an 

exponential increase in absorption at 280 nm over time is shown with an equal initial slopes 

of 0.002 min-1 for both DTT concentrations and a saturation absorption value being 

proportional with DTT concentration.  
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Figure 4: Measurement of absorption at 280 nm of a 5 mM and a 10 mM DTT solution in 8 M urea and 50 mM 

potassium phosphate buffer at pH 8 over time. The solution was incubated with shaking in a non-covered 

microtiter plate 

 

This increase in absorption can be explained by fast oxidation of DTT with air at pH 8. As the 

initial slope of the absorption over time is equal for both DTT concentrations the mass 

transfer of oxygen seems to be the limiting factor. Direct protein quantification by absorption 

measurement at 280 nm is therefore difficult as the buffer absorption changes overtime and is 

dependent on all factors influencing the redox environment.  

 

Dye Based Methods 
 

The most commonly used methods for direct quantification of soluble protein content are 

colorimetric assays such as Bradford or BCA (bicinchoninic acid). However due to a number 

of reasons pinpointed below both methods can not be applied during a refold screening.  

The Bradford assay is based on the non-covalent bond between the hydrophobic patches of an 

unfolded protein and the non-polar region of the dye via van-der-Waals forces, positioning the 

positive amine groups in proximity with the negative charge of the dye. The electrostatic 

interaction arising from this coordination strengthens this bond. This protein dye complex 

leads to a stabilization of the blue form of Coomassie dye, and thus the amount of complex 

formation is a direct measure of protein concentration. 
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The BCA assay is based on the reduction of Cu2+ to Cu1+ by protein peptide bonds followed 

by a chelating complex of two molecules of bicinchoninic acid and the reduced copper. This 

complex expresses a purple color and is measured at a wavelength of 562 nm.  

It becomes immediately clear that reducing components being indispensable in disulfide bond 

reshuffling and also being carried over into the refold with the denatured protein strongly 

interfere with the BCA assay and lead to a high background signal [19]. Next to a number of 

additives not compatible with both, the BCA and the Bradford assay, Triton or Tween, which 

are used in refolding to enhance protein solubility, cannot be used in combination with these 

assays. Arginine, also one of the most frequently used additives for stabilization of protein 

during folding leads to high signals with Bradford reagent [19].  

Besides these substance incompatibilities a major problem we observed in our studies is the 

dependence on protein structure when fully denatured and active lysozyme and BSA were 

measured in a calibration experiment with the Bradford assay. The result can be seen in 

Figure 5. 
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Figure 5: Calibration curves measured at 595 nm for the Bradford assay of 40 µl protein sample with 200 µl 

assay solution for A) BSA and B) lysozyme. Active lysozyme and BSA are solubilized in 50 mM potassium 

phosphate buffer at pH 8 and denatured lysozyme and BSA are solubilized for 3 hours in 8 M urea, 50 mM 

potassium phosphate buffer and 5 mM DTT at 25°C 

 

A clear difference in the concentration measurement between native and denatured protein 

can be seen in both cases. In general BSA shows higher signals than lysozyme and a broader 

linear range pinpointing the signal dependency on the actual protein present. Furthermore the 

signals of the denatured species were consistently higher when compared to those of the 

native species. However, as the Bradford assay is based on Coomassie Blue binding to 

protonated arginine and lysine residues, it is not surprising that a difference in accessibility of 

these residues by denaturation leads to signal changes. This seems to be the case although an 

at least partial denaturation of proteins with Bradford reagent should be reached. 
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Buffer Exchange 
 

As direct quantification by absorption at 280 nm is disturbed by absorbing buffer components 

like glutathione or oxidized DTT, methods for high throughput buffer exchange were 

validated to remove these substances prior to analysis. The most obvious candidates 

investigated in this study were ultrafiltration, dialysis and size exclusion chromatography.  

 

a) Ultrafiltration 
 

Ultrafiltration harnesses the separation effect of membranes acting as molecular sieves. 

Liquids and compounds able to pass the pores are forced through the membrane by 

centrifugation or vacuum subsequently increasing protein concentration in the retentate.  

For high throughput applications 96 well ultrafiltration plates are available which can be 

operated either by vacuum or centrifugation. Vacuum driven liquid transport strongly depends 

on a homogenous flow of liquid throughout the 96 wells. As this is not always given, 

especially when using buffer systems with high viscosities, centrifugation was used 

throughout the study. Nevertheless, in both methods increased protein concentration in close 

proximity to the membrane might lead to loss of protein by aggregation often combined with 

non-specific adsorption at the membrane.  

Figure 6 shows the recovery of lysozyme and BSA at different initial concentrations after 

automated 96 well plate ultrafiltration. Lysozyme and BSA were used at concentrations 

between 60 and 200 µg/ml. The initial buffer systems for lysozyme was sodium acetate buffer 

at pH 4 and bicine buffer at pH 9 while for BSA sodium acetate buffer at pH 4 and potassium 

phosphate buffer at pH 8. The final buffer system was potassium phosphate buffer at pH 8. 

The three consecutive ultrafiltration steps consisted each of a sample volume reduction to 

approximately 50 µl followed by an addition of 300 µl potassium phosphate buffer. This 

dilution strategy enabled a near quantitative removal of 20 mM GSSG present in the initial 

buffer systems.  
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Figure 6: Yield after ultrafiltration for buffer exchange into 50 mM potassium phosphate buffer (pH 8). 

Lysozyme is initially in 50 mM potassium phosphate buffer (pH 8) or in 50 mM bicine buffer (pH 9). BSA is 

initially in 50 mM potassium phosphate buffer (pH 8) or in 50 mM sodium acetate buffer (pH 4) 

 

 

For lysozyme protein recovery for all samples was below 50 % with decreasing yields at 

lower protein concentration and higher initial pH. The effect of pH can be explained by lower 

distance to the isoelectric point (pI) which in the case of lysozyme lies around (pI) pH 11. The 

overall lower net charge leads to a higher tendency to aggregate or to adsorb to hydrophobic 

surfaces. As aggregation would increase with increasing protein concentration presumably 

adsorption accounts for loss of lysozyme. For BSA with a pI around pH 5.5 higher recoveries 

were observed for pH 8 when compared to pH 4. The latter is clearly influenced by the fact 

that the samples at an initial pH of 4 have to cross the pI of the protein during buffer exchange 

procedure. In contrast to lysozyme recovery of BSA led for all samples between 50 % and 

100 %. The yield reached was decreasing with increasing initial protein concentration 

proposing strong aggregation effects. The strong relation between pH, protein type and 

concentration with loss of protein is confirmed by [20]. Thus a quantitative buffer exchange to 

subsequently measure protein concentration in refolding screening is not possible with 

automated ultrafiltration.  
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b) Dialysis 
 

For investigation of HTS compatible dialysis the performance of 96 well dialysis plates with a 

membrane bottom was examined. The accumulated sample volume inside all wells of the 

dialysis plate was 24 mL. With a total dialysis buffer volume of 6 L a theoretical dilution 

factor of 250 is calculated which would lead to an appropriate removal of 20 mM GSSG with 

absorption at 280 nm on the level of buffer. We dialyzed eight different concentrations of 

BSA and lysozyme between 0 and 0.5 mg/mL in potassium phosphate buffer at pH 8 with and 

without addition of 20 mM GSSG. In addition BSA was also dissolved in sodium acetate 

buffer at pH 4. As dialysis buffer potassium phosphate buffer at pH 8 was chosen. The first 

dialysis step was performed with 3 L dialysis buffer for 5 h. In a second step the dialysis 

buffer was exchanged and dialysis proceeded overnight. The absorption at 280 nm was 

measured after the sample volume in the dialysis plate was measured by liquid level detection 

with the robotic tips. The blank samples without protein showed clear differences in UV 

signals for buffer systems with and without GSSG. An absorption of 0.303 ± 0.02 was gained 

for buffer systems with GSSG after dialysis. The residual concentration of GSSG was 

calculated with a GSSG calibration curve and laid at approximately 7.24 mM which refers to 

a dilution factor of 2.76 instead of the theoretical value of 250. Overnight incubation with 

stirring seems to be insufficient for complete removal of 20 mM GSSG. A crucial factor when 

considering HTS applications is processing time. Dialysis process time depends on the 

diffusion properties of the molecules, the membrane area, thickness and composition, 

temperature, concentration gradient between buffer reservoir and sample and mixing on each 

side of the membrane [21]. Commercially available 96 well plate dialysis devices like the 

ones we used in our study are marketed towards complete sample desalting and removal of 

glycerol and arginine and recommended dialysis time lies between 24 and 48 hours [7]. Vink 

et al. [22] optimized a 96 well dialysis block to remove detergent and achieved 100 % 

removal after approximately 250 h with frequent buffer exchange. This is not unusual for 

dialysis and correlates with non-automated processes using membrane tubes or dialysis 

chambers [10, 12, 23, 24]. In comparison to ultrafiltration adsorption effects are related to 

dialysis time whereas aggregation of protein does not play a major role in sample loss. We 

investigated protein loss in our dialysis experiments after overnight incubation. Protein 

concentration was measured by UV 280 nm. The yields after dialysis are depicted in Figure 7 

for lysozyme and BSA in potassium phosphate buffer at pH 8 and for BSA in sodium acetate 

buffer at pH 4. High protein recovery between 95 and 160 % is gained for BSA and lysozyme 
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in 50 mM potassium phosphate buffer at pH 8. Lysozyme shows nearly no recovery at protein 

concentrations below 0.016 mg/mL. A good explanation for this would be membrane 

adsorption of lysozyme as already observed in ultrafiltration and thus a complete loss of 

lysozyme in low concentrated solutions. Yields above 100 % result from experimental error 

during liquid handling steps and measurement of liquid level and UV absorption. BSA 

initially dissolved at pH 4 has to be shifted across its isoelectric point at pH 5.5 leading to 

high losses of protein with a recovery between 18 and 41 % for protein concentrations 

between 0.063 and 0.5 mg/mL and a complete loss of BSA for protein concentrations below 

0.0625 mg/mL. As increasing BSA concentration improves yield the observed effect is rather 

due to membrane adsorption than to aggregation corresponding to theory.  

 
Figure 7: Protein yield after dialysis plotted versus initial protein concentration in the sample for BSA and 

lysozyme initially dissolved in 50 mM potassium phosphate buffer (KPi) at pH 8 and for BSA initially dissolved 

in 50 mM Na-acetate buffer at pH 4. Dialysis was performed versus 50 mM potassium phosphate buffer (KPi) at 

pH 8 overnight at room temperature 

 
c) SEC 
 

After investigation of different gelfiltration resins Sephadex G25 was chosen for further 

experiments being the most promising candidate. Nevertheless a column length of 5 cm 

applicable on the robotic platform was not sufficient for baseline separation of lysozyme and 

GSSG though column load was low with 2 % CV. The chromatogram for a solution 

containing 0.1 mg/ml lysozyme and 20 mM GSSG is shown in Figure 8. Both peaks are 

overlapping. To exclude an interaction between GSSG and lysozyme preventing separation 
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both molecules were injected separately and show the same retention behaviour as in the 

mixture (Figure 8). Consequently this approach was not pursued. 

 
Figure 8: Chromatogram of size exclusion chromatography on a Sephadex G25 column with 0.5 cm diameter 

and 5 cm length. The injection volume was 2 % CV and the concentration of lysozyme 0.1 mg/mL and of GSSG 

20 mM. 

 
When operating size exclusion chromatography column length, particle size, pore size and the 

ratio of sample volume to column volume are significant parameters for separation results 

[25]. Low sample loading, high sample dilution and serial processing are major draw backs of 

SEC. The applicability of SEC on robotic workstations is thus restricted even though 

solutions for parallelized robotic chromatography are published for ion exchange 

chromatography in [26].   

 

Quantification of Aggregated Protein 
 

As a conclusion of the above studies no analytical method for a direct protein concentration 

could be found. We thus developed an indirect quantification method to elucidate soluble 

protein content. The method is based on the recovery of aggregates, solubilization with the 

above described denaturation buffer followed by a simple UV 280 nm analysis. Mass 

balancing enables the determination of soluble protein as depicted in equation 1 where mtotal 

describes the total mass of protein introduced initially, mprot aggregate aggregated protein and msol 

the amount of soluble protein. 
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The advantage of this method lies in constant buffer conditions, comparable protein structure 

throughout all samples and most important the absence of all interfering substances. For 

method validation 40 refolding samples were generated using random buffer systems with a 

buffer concentration of 50 mM, varying pH values between 3 and 9 and varying NaCl and 

MgSO4 concentrations between 0 and 150 mM. No redox components were added to allow 

for UV 280 nm measurement of soluble protein and the wash fraction. After a ten fold 

dilution of denatured protein into the refolding buffer systems the total protein concentration 

was 0.4 mg/ml. Following a one hour incubation with constant shaking the aggregates of 300 

µl refolding sample were separated as described above.  

In order to close all mass balances, the recovery of soluble protein in the filtrate had to be 

assessed. The recovery of soluble protein in the filtrate Ysol filtrate was calculated according to 

equation 2 with the mass of soluble protein in the filtrate msol filtrate and the mass of soluble 

protein msol measured after aggregate removal by centrifugation of the initial sample plate.  
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The total recovery of protein Ytotal was calculated according to equation 3 with the mass of 

protein mtotal initially introduced, soluble protein in the filtrate msol filtrate , the mass of protein 

in the wash fraction mwash, which was 0 mg for all measured fractions, and the mass of protein 

determined by re-solubilizing aggregates mprot aggregate. 
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The recovery of soluble protein in the filtration step and the total recovery of protein using 

this approach are depicted in Figure 9 for all 40 experiments with error bars for dublicates. 

Mass balances closed for all samples reaching close to 100 % (for Ytotal 106 % ± 4 % and for 

Ysol.filtrate 102 % ± 6 %) with a mean error of 2 %.  
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Figure 9: Recovery after filtration and total recovery calculated from protein in filtrate and resolubilized 

aggregates 

 

Mass balances above 100 % are to a certain extent caused by a carry-over of 0.5 mM DTT 

with the denatured protein stock solution increasing 280 nm absorption values of the soluble 

protein and the wash fraction. In the case of complete DTT oxidation the absorption at 280 

nm would be 0.075 which corresponds to a lysozyme concentration of 0.017 mg/ml or a yield 

of 4.35 %.  

Hevehan et al. [27] used an approach similar to the one presented in our study to quantify 

lysozyme aggregates in refolding samples with added glutathione as oxidizing component by 

absorption at 280 nm. Lysozyme aggregates were separated by centrifugation, washed with 

TE buffer (0.05 M Tris-HCl, 1 mM EDTA, pH 8) and resolubilized in denaturing and 

reducing buffer containing 8 M guanidinium chloride and 32 mM DTT. Their findings 

regarding the potential of aggregate quantification after resolubilization support our results.  

The method developed – based on aggregate separation by filtration – is to our knowledge the 

first published fully automated method for indirect measurement of protein solubility 

compatible with protein structure and buffer variabilities.   

In [28] aggregates formed during refolding are analyzed on a reducing and non-reducing 

SDS-PAGE . Lysozyme dimers and trimers stabilized by disulfide bonds were detected when 

oxidizing substances including air were present during refolding. This observation is 

consistent with data obtained by the above described approach. Protein aggregates could only 

be solubilized in the presence of reducing components.  
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Turbidity measurements prior to aggregate separation used to assess aggregation might be 

applied but cannot be classified as a reliable methodology. In Figure 10 A and B turbidity 

measured at 410 nm and the concentration of resolubilized aggregates is plottes versus the 

concentration of soluble protein. Data were collected from 40 refolding experiments witht 0.4 

mg/ml lysozyme in random buffer compositions. For both functions, turbidity and 

concentration of aggregates, a linear correlation with soluble lysozyme concentration is 

observed. The calculated correlation coefficient is better for the data set including 

resolubilized aggregates with R² = 0.96 in comparison to the one with 410 nm absorption (R² 

= 0.91). This reveals that the described resolubilization method is clearly superior to turbidity 

measurement for the quantification of solubility. Furthermore it should be mentioned that the 

linear correlation of turbidity with soluble protein content is worse at higher levels of 

precipitation. 

The scatter observed in turbidity measurements is confirmed by Wang [9] who describes a 

great influence of aggregate dissolution on the measured absorption values and only limited 

linearity of turbidity with protein solubility. Therefore turbidimetric measurements are not 

applicable in a screening approach where quantitative rather than qualitative data are needed 

for optimization of process parameters. Nevertheless turbidity was used as an objective 

function in [29]. A threshold value for sample absorption at 410 nm was introduced and 

samples separated into two groups - soluble samples exhibiting absorption below the 

threshold value and precipitated samples showing absorption above the threshold value. As 

samples from these two classes are not further characterized, solubility differences within 

these classes are not resolved which leads to a great loss of information on parameter effects. 

In contrast the quantitative measurement of aggregated resolubilized protein allows for a 

differentiation of precipitated samples and thus increases the information on parameter effects 

for further optimization. 
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Figure 10:  Correlation of soluble lysozyme concentration with A absorption at 410 nm of refolding suspension 

or B concentration of resolubilized aggregates (40 randomly mixed buffer systems with 0.4 mg/ml lysozyme) 

 

3.1.2 Structure and Function 
 

Well known methods for protein structure estimation including circular dichroism, RP-HPLC 

or analytical size exclusion chromatography are not applicable on robotic workstations due to 

the need for manual intervention and sophisticated instrumentation. Special requirements on 

sample quality and quantity of homogeneous material cannot be met in a high throughput 

approach with miniaturized process volumes and the problems mentioned above concerning 

automated sample preparation. Additionally sample analysis in a serial mode is not consistent 

with the principle of parallelization used in HTS and consequently leads to analytical bottle 

necks.  

Protein specific techniques to assess structural integrity and activity are binding assays like 

ELISAs or enzymatic assays which are automatable and easily parallelized. Non-specific 

methods harnessing changes in intrinsic tryptophan fluorescence or the binding of 
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hydrophobic fluorescent dyes show the advantage of a more universal applicability and thus 

reduce time needed for method development if a new protein has to be analyzed. 

 
Enzymatic Activity 

 
The enzymatic assay used to determine lysozyme activity is based on the lysis of Micrococcus 

cells leading to a linear decrease in turbidity of a Micrococcus suspension. This approach is 

used as a standard lysozyme assay since the early 60s and was first described by Jolles [30]. 

However, when used on the HTS platform settle down of the bacteria before distribution from 

a storage trough into the assay plates and partial lysis of the suspension during storage was 

observed. As assay times for the individual samples differ these effects lead to a general 

decrease in turbidity and thus the applicability of the assay and the stability of the 

Micrococcus suspension had to be investigated to guarantee for comparable assay results 

during the robotic run time. The absorption at 595 nm of different Micrococcus 

concentrations was measured at different time points of storage in a 96 well plate. In Figure 

11 A the absorption values for all measured Micrococcus concentrations are depicted for 

storage times between 0 and 125 min. A decrease of absorption at 595 nm is measured for all 

concentrations leading to a shift of the linear correlation between absorption at 595 nm and 

the Micrococcus concentration mainly in the y-axis intercept with a rather constant slope. 

This effect is due to a lysis of the Micrococcus cells over time, as the suspension was 

distributed into the microtiter plate wells at the beginning of the experiment and as usual 

mixed before absorption measurement. A settle down of particles was observed to be a 

problem if the Micrococcus suspension is stored longer than 30 minutes in a storage trough 

before distribution.  
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Figure 11: A Absorption 595 nm of Micrococcus assay suspensions over time. The linear range is marked by 

fitted lines. B The linear decrease of absorption at 595 nm of a Micrococcus assay suspension (∆ absorption 595 

nm) after addition of different lysozyme concentrations (■). The relative standard deviation of ∆ absorption 595 

nm for 12 replicates (∆) 

 

 

All linear fit parameters are summarized in Table 1. A linear absorption range after storage of 

the Micrococcus suspension for more than 21 min requires a minimum Micrococcus 

concentration of 0.42 mg/ml. At 84 min incubation time the minimum Micrococcus 

concentration increases to 0.52 mg/ml. As a consequence of the decreasing linear range of the 

absorption of the Micrococcus suspension the suspension was always prepared 30 min before 

start of the distribution in the 96 well plate for the subsequent enzyme assay. A calibration 

curve of eight different native lysozyme concentrations including a buffer blank is always run 

in parallel.   
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Table 1: Overview of the linear curve fit parameters and the upper and lower Micrococcus concentration limit of 

the linear range (cmin, cmax) for the decrease of absorption at 595 nm of different Micrococcus concentrations at 

different time points of storage 

Time 0 min 21 min 42 min 63 min 84 min 104 min 125 min 

Slope 0.950 0.942 1.019 1.085 1.209 1.275 1.281 

Y0 0.158 0.128 0.026 -0.071 -0.220 -0.324 -0.387 

R2 0.992 0.992 0.989 0.989 0.977 0.971 0.990 

cmin 0.22 0.43 0.43 0.43 0.52 0.52 0.52 

cmax 0.87 0.87 0.87 0.87 0.87 0.87 0.87 

 

In our setting eight samples were measured in parallel within a time span of 4 minutes. The 

standard deviation of the applied assay was determined using 12 experimental cycles 

including 96 samples of native lysozyme. In Figure 11 B the decrease in 595 nm absorption 

and the relative standard deviation of of the 12 cycles are summarized. The data reveal a 

relative standard deviation between 7 and 8 % for all lysozyme concentrations above 0.5 

µg/ml. In the actual refold screenings one standard calibration curve per 40 refolding 

experiments was introduced in the experimental set-up to be on the safe side.  

Despite for the rather poor storage stability of a Micrococcus assay suspension automated 

measurement of lysozyme activity is possible during HTS applications. In Lee et al. [31] the 

Micrococcus based lysozyme assay is presented in a microplate format with faster sample 

processsing and measurement of 96 samples in 7 min resulting in a standard deviation of only 

4.8 %. As details on the devices used for sample processing are not available in this 

publication an evaluation of the reasons for this reduced standard deviation could not be 

undertaken.  

 

Tryptophan Fluorescence 
 

The measurement of intrinsic tryptophan fluorescence emission spectra by excitation at 280 

nm provides information on the direct environment of hydrophobic tryptophan residues. In 

correctly folded, active proteins most tryptophans are buried inside the hydrophobic core of 

the molecule. During unfolding or in misfolded protein intermediates tryptophan can be 

exposed to polar solvent molecules leading to a shift in the emission spectrum towards higher 

wavelengths due to an energy transfer from tryptophan to solvent. The method is restricted to 

proteins with at least one buried tryptophan. Typical emission spectra are shown in Figure 12 
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for 4 mg/ml active and correctly folded lysozyme with a maximum emission intensity at 330 

nm and lysozyme denatured and reduced with 8 M urea and 5 mM DTT at 25 °C for 24 h and 

maximum emission intensity at 341 nm. It is important to note that a native tryptophan 

spectrum does not necessarily correlate with 100 % activity but gives only a hint at the 

integrity of the tertiary structure and the position of hydrophobic tryptophan.  

 
Figure 12: Tryptophan emission spectra of active lysozyme in 50 mM potassium phosphate buffer (pH 8) and 

of denatured lysozyme incubated for 24 h at 25 °C in 8 M urea, 50 mM potassium phosphate buffer (pH 8) and 

5 mM DTT. The samples are excited at 280 nm 

 

To quantify the rather small spectral shifts all spectra were fitted with an asymmetric 

Gaussian curve. The wavelength obtained at the maximum intensity of the fitted spectra – λ 

(Imax) – was used as a basis for structure estimation and as a measure for the ratio of active to 

denatured protein. The comparison of tryptophan spectry of lysozyme after refolding and of a 

native lysozyme standard is one of the frequently used methods to measure structural integrity 

of refolded protein [32]. Kinetic measurements to assess the progress of refolding [33] or 

unfolding [34] are performed by measurement of tryptophan fluorescence changes over time. 

A shift of 9 to 12 nm is confirmed for unfolding of lysozyme by Lin et al. [34] however with 

differing wavelengths for the maximum intensities of active (341 nm) and denatured 

lysozyme (352 nm) due to different spectroscopic equipment. 

Measurement of single emission intensities in general also yields information on protein 

concentration but is strongly dependent on the folding state of the protein and the buffer 

composition [35]. The addition of GSSG for example quenches tryptophan emission by an 

energy transfer to the disulfide bond leading to an exponential decrease of emission intensity 
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with increasing GSSG concentration as depicted in Figure 13 for tryptophan and active 

lysozyme.  

 
Figure 13: Ratio of emission intensity at 340 nm of lysozyme and tryptophan in 50 mM potassium phosphate 

buffer (pH 8) with different concentrations of GSSG to the emission intensity of samples in the same solution 

without added GSSG. Tryptophan was excited at 280 nm 

 

In order to assess the potential of tryptophan spectra to estimate protein structure integrity in 

refolding samples refolding experiments with and without added redox system components 

were performed. Lysozyme was denatured for 4 h in 8 M urea, 50 mM potassium phosphate 

buffer at pH 8 and 5 mM DTT. Refolding was performed using a randomly distributed set of 

160 different refolding buffer systems with and without addition of redox components. The 

parameter space for the random sample preparation is summarized in Table 2.  

 
Table 2: Overview of the used parameter design space 

Parameter Design Space 

buffer pH 3 - 9, discrete, step size of 1 

NaCl concentration 0 - 150 mM 

MgSO4 concentration 0 - 150 mM 

GSSG concentration 0 - 20 mM 

DTT concentration 0 - 10 mM 

 

Tryptophan emission spectra are measured between 300 and 400 nm in the fraction of soluble 

protein after removal of aggregates with excitation at 280 nm. The wavelength at maximum 

emission intensity is calculated from curve fits. Concentration of soluble and active lysozyme 
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was measured as described above to calculate the ratio of active to total soluble lysozyme. In 

Figure 14 the wavelength values in the emission maximum, λ (Imax), and the fraction of active 

to soluble lysozyme for all experiments are summarized to assess, if the position of 

fluorescence spectra can be used as a measure of specific activity.  

 
Figure 14: Correlation of active lysozyme fraction with the wavelength in the emission maximum (λ(Imax)) for 

refolding samples in different buffer systems containing either GSSG and DTT as redox system or no redox 

components and 0,4 mg/ml lysozyme. Lysozyme was denatured for 4 h at 25°C. Tryptophan was excited in the 

soluble protein fraction at 280 nm after 1 h refolding 

 

It becomes obvious that measured soluble lysozyme samples show a narrow range of emission 

maxima between 330 and 336 nm. As native lysozyme has its emission maximum at 330.9 ± 

0.4, spectra of refold samples are red shifted, indicating a higher tryptophan accessibility for 

polar buffer molecules. In the investigated design space no correlation of high specific 

activity to native spectral behavior is observed. It is likely that hydrophobic tryptophan 

residues have to be buried to a certain extent to allow for lysozyme solubility. This is in high 

correspondence with a described hydrophobic collapse of the protein as a first step in 

refolding for higher thermodynamic stability [36]. Interestingly samples without added redox 

reagents show a wider distribution of spectral maxima, which might be due to a higher 

flexibility of the protein without stabilizing disulfide bonds. As described in literature the 

specific activity after refolding without addition of substances promoting disulfide bond 

formation is rather low although the protein is soluble and shows similar secondary structure 

and amount of buried tryptophan residues than the native lysozyme [37]. The importance of 

redox system control will be discussed in detail below. Summarizing from the data presented 
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above it is not possible to resolve lysozyme structure with the needed resolution by 

measurement of tryptophan fluorescence spectra in refolding screening.  

 

3.2 Control of Refolding Parameters  
 

3.2.1 Solubilization of Protein 
 

The characterization of the unfolded state of a protein is essential for a comparison of data 

concerning optimum refolding conditions as well as refolding yields of active protein. Various 

unfolding conditions are used in literature for lysozyme, e.g. unfolding with different protein 

and DTT concentrations, different incubation time and buffer pH as summarized in Lin et al. 

[34]. Examples for different unfolding conditions are given in Table 3. In addition to varieties 

in solvent conditions the reaction temperature represents another variable factor in lysozyme 

refolding publications. While in Middelberg et al. [38] 37 °C is used during denaturation, Lin 

et al. performed denaturation at 25 °C [34]. In general a complete specification of the 

unfolding state of the protein is often missing and therefore comparability of published results 

is complicated. Additionally optimization of refolding parameters is only possible if the 

starting material including the unfolded protein feed stock is kept at constant quality.  
 
Table 3: Different unfolding conditions as summarized by Lin et al. [34] 

Lysozyme 

[mg/ml] 

Denaturant DTT 

[mM] 

Buffer Unfolding Time 

[h] 

5 8 M urea 10 0.1 M Tris, pH 8.6 24 

5 – 35 8 M urea 10 0.1 M Tris, pH 8.5 2 

30 – 80 8 M urea 30 0.1 M Tris, pH 8.5 1,33 

50 8 M urea 30 0.1 M Tris, pH 8.6 3 

3 – 25 8 M urea 32 0.05 M Tris, pH 8.0 1 

10 6 M Gnd/HCl 150 0.1 M Tris, pH 8.6 3 

20 6 M Gnd/HCl 150 0.1 M Tris, pH 8.6 15 

10 – 80 8 M urea 150 0.1 M Tris, pH 8.6 2 

2.6 – 30 8 M urea 200 0.1 M Tris, pH 8.7 4 - 5 

 

In order to obtain a high reproducibility of feedstocks we initially evaluated lysozyme 

unfolding kinetics for three different protein concentrations at three different temperatures in 
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a constant denaturing buffer (8 M urea, 50 mM potassium phosphate and 5 mM DTT) by 

measurement of tryptophan fluorescence. This method was earlier described in studies on 

lysozyme unfolding behavior [34].  

 

Temperature 
 

In Figure 15 the kinetic of lysozyme unfolding using a 4 mg/ml lysozyme solution at 4 °C, 25 

°C and 37 °C is depicted as an increase in the wavelength at the maximum emission intensity 

of tryptophan excited at 280 nm.  

 
Figure 15: Effect of temperature on the unfolding kinetics of 4 mg/ml lysozyme in 8 M urea, 50 mM potassium 

phosphate buffer at pH 8 and 5 mM DTT measured by a shift of wavelength at maximum emission intensity (λ 

(Imax)) with tryptophan excitation at 280 nm. The data points are fitted exponentially 

 

Data was fitted using the following exponential function  
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where y0 represents the wavelength at the maximum emission shift. The initial slope of the 

shift over time A1/t1 is a measure for the reaction velocity.  

With increasing temperature an increase in the initial reaction velocity represented by the 

initial slope of the fit curve occurs. For all three temperatures the final λ (Imax) was found to 

lie in the range of 340 nm to 342 nm. The wavelength characterizing native lysozyme was 

determined to be 331 nm with a relative standard deviation of 0.15 % calculated from 
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triplicate measurement of active lysozyme. Measured differences at maximum shift of the 

spectrum represented by y0 are significant with a deviation of 0.25 % hinting at an influence 

of temperature on unfolded protein quality also at steady state unfolding. In Table 4 the data 

calculated for unfolding at the three different temperatures are summarized. This finding is 

consistent with published literature where the temperature effect on lysozyme unfolding is 

explained by a decrease in stability of the folded lysozyme with increasing temperature [39]. 

 
Table 4: Parameters of the exponential curve fit of the unfolding of 4 mg/ml lysozyme in 8 M urea, 50 mM 

potassium phosphate and 5 mM DTT measured as a shift in tryptophan fluorescence spectra for three different 

temperatures 

Unfolding Temperatur 4 °C 25 °C 37 °C 

Initial slope m [nm/h] 0.33 4.75 27.00 

y0 [nm] 339.95 341.22 341.60 

R2 0.92 0.97 0.98 

 

Protein Concentration 
 

In Figure 16 kinetic data for lysozyme unfolding at 25 °C with 2 mg/ml, 4 mg/ml and 8 

mg/ml lysozyme are depicted.  

  
Figure 16: Effect of lysozyme concentration on unfolding kinetics at 25 °C in 8 M urea, 50 mM potassium 

phosphate buffer at pH8 and 5 mM DTT measured by a shift of wavelength at maximum emission intensity (λ 

(Imax)) with tryptophan excitation at 280 nm. 
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An exponential increase of λ (Imax) converging towards a maximum value is measured for all 

protein concentrations. The initial reaction velocity – m – decreases with increasing protein 

concentration by a factor of 1.2 from 2 mg/ml to 8 mg/ml. The maximum shift of the emission 

spectrum y0 lies for all three protein concentrations between 341 nm and 342 nm with only a 

small deviation of 0.13 %. Thus an effect of protein concentrations on unfolding is not 

resolved by tryptophan spectroscopy. In Table 5 data from the corresponding curve fits are 

summarized.  

 
Table 5: Parameters of the exponential curve fit of the unfolding of lysozyme in 8 M urea, 50 mM potassium 

phosphate and 5 mM DTT at 25 °C measured as a shift in tryptophan fluorescence spectra for three different 

protein concentrations 

Lysozyme Concentration  2 mg/ml 4 mg/ml 8 mg/ml 

initial slope m [nm/h] 4.90 4.75 4.03 

y0 [nm] 341.80 341.22 340.90 

R2 0.97 0.97 0.99 

 

The small differences observed for the unfolding of different protein concentrations might be 

due to a different ratio of reducing component DTT to lysozyme. The molar ratio of DTT to 

lysozyme changes from 36 at 2 mg/ml protein to 18 for 4 mg/ml and finally to 9 for 8 mg/ml 

lysozyme. For all lysozyme concentrations DTT is theoretically present in excess even if all 

four disulfide bonds have to be reduced. In practice lack of DTT for complete reduction of 

lysozyme at higher concentrations can be due to competitive oxidation by air.  

 

DTT Concentration 
 

To address possible limitations of the reducing reagent DTT during denaturation we added 8 

mM, 20 mM and 100 mM DTT to three samples already exhibiting steady state unfolding 

after addition of 5 mM DTT. This experiment is performed with each of the above analyzed 

lysozyme concentrations. The molar ratios of total DTT to lysozyme for all combinations 

were 57 (8 mM DTT), 143 (20 mM DTT) and 716 (100 mM DTT) for 2 mg/ml; 29 (8 mM 

DTT), 72 (20 mM DTT) and 358 (100 mM DTT) for 4 mg/ml and 14 (8 mM DTT), 36 (20 

mM DTT) and 179 (100 mM DTT) for 8 mg/ml. The λ (Imax) value was measured after 

unfolding at 25 °C for 40 hours. In Figure 17 λ (Imax) at steady state is plotted versus the 

molar DTT to protein ratio for all performed unfolding experiments. With an increasing ratio 
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of DTT to lysozyme an exponential increase of λ (Imax) is observed. As no saturation is 

reached within the experimental range DTT seems to be still limiting for lysozyme unfolding 

at least at 25 °C.  

  
Figure 17: Wavelength at maximum emission intensity (λ (Imax)) with tryptophan excitation at 280 nm for 

different molar ratios of DTT to lysozyme. Protein was unfolded for 40 h in 8 M urea, 50 mM potassium 

phosphate buffer (pH 8). A molar ratio of DTT to lysozyme of 29 is marked as a star representing the transition 

point from one- to two-phase unfolding in literature. 

 

In Lin et al. [34] a second phase during unfolding was observed for molar DTT to lysozyme 

ratios above 29 with a maximum emission shift λ (Imax) of 12 nm whereas samples with lower 

DTT to lysozyme ratios show only the plateau of the first unfolding phase with an emission 

shift of 10 nm. Data points in Figure 17 exhibit a steeper slope of λ (Imax) with increasing 

ratios of DTT to lysozyme below 29 (marked with a star) and an asymptotic convergence of λ 

(Imax) values at DTT to lysozyme ratios above 29. The first curve segment thus represents a 

stronger limitation of DTT during unfolding whereas systems in the second curve segment are 

close to DTT saturation. In comparison to the data in [34] we see a shift of λ (Imax) with an 

increment between 9.9 and 10.8 nm for DTT to lysozyme ratios below 29 and a λ (Imax) shift 

with an increment between 10.8 and 11.8 for DTT to lysozyme ratios above 29. As a 

conclusion in the analyzed range a transition between one-phase and two-phase unfolding is 

observed. For our refolding experiments denaturation was performed at a DTT to lysozyme 

ratio of 18 which, with an emission shift of 10.2 nm, represents only partial unfolding of 

lysozyme. 
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3.2.2 Combined Parameter Effect on Refold Data 

o further elucidate the effect of denaturation conditions on refold screening data we used 4 

nt refolding experiments randomly 

ed in the 40 refold systems for 

 

T

mg/ml lysozyme solution denatured for 4 hours at 25 °C and lysozyme denatured for 1.5 

hours at 37 °C. The respective values for λ (Imax) were measured to be 339.3 nm and 341.3 nm 

respectively. The difference in the λ (Imax) value of 0.42 % between these two unfolding states 

lies above the experimental error and is thus significant.  

Both solutions were subsequently used for 40 differe

covering the parameter space summarized in Table 2 above.  

In Figure 18 the ratios of active and soluble lysozyme obtain

both denaturing conditions are summarized.  

 
Figure 18: Ratio of active and soluble lysozyme yields for lysozyme denatured for 1.5 h at 37 °C c pared to 

ata points describing the amount of soluble lysozyme obtained for the systems denatured at 

om

lysozyme denatured for 4 h at 25 °C. Refolding is performed in 40 different buffer systems with additions of 

GSSG and DTT. The average of all 40 experiments is depicted as solid line for the yield ratio of active 

lysozyme and as broken line for the yield ratio of soluble lysozyme 

 

D

37 °C scatter around a value of 61 % when compared to data obtained for systems denatured 

at 25 °C. A similar result was achieved when assaying for active lysozyme. Here data 

scattered around an average value of 8 % when comparing the systems denatured at 37 °C and 

25°C. This equates to concentrations of active lysozyme between 0 mg/ml and 0.08 mg/ml for 

the systems denatured at 37 °C and 0.12 mg/ml and 0.3 mg/ml for systems denatured at 25 °C.  
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The concentration of active lysozyme was thus significantly lower than the soluble amount for 

both systems. Furthermore the ratio of active to soluble lysozyme obtained during refolding 

showed no consistent pattern between and within both systems. As data variation can not be 

explained by a consistent pattern both denaturation protocols seem to lead to significantly 

different initial feedstock characteristics. This also corresponds to the detected variance of the 

fluorescence spectra described above. These results point out that defined and constant 

denaturation conditions are indispensable when comparing performance and yield of refolding 

processes.  

Furthermore tryptophan fluorescence has shown to be a good methodology to measure 

unfolding kinetics. The obtained spectra have to be evaluated carefully in order not to 

misinterpret information on structural properties of a protein due to low resolution of the 

method.  

When comparing active and soluble amounts of lysozyme resulting from the two different 

feedstock qualities, it becomes clear that solubility is by far less sensitive towards this 

parameter than activity. Lin et al. [34] investigated the refolding of different preparations of 

denatured lysozyme which differ in tryptophan fluorescence emission maxima. A clear 

dependency of refolding kinetics for differently denatured lysozyme was observed. Relatively 

mild unfolding conditions with lower ratios of DTT to lysozyme and shorter unfolding times 

showed faster refolding kinetics leading to higher refolding yields in a given timeframe.  

In Figure 19 average parameter values with corresponding standard deviations for the 5 

experiments with the highest gained yield of active lysozyme (A) and soluble lysozyme (B) 

are visualized for both denaturation conditions.  
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Figure 19: Average parameter values of the 5 best refolding experiments of 40 in respect to A active lysozyme 

yield and B soluble lysozyme yield with differently denatured lysozyme feed stocks (8 M urea, 50 mM 

potassium phosphate buffer (pH 8), 5 mM DTT) and the standard deviation 

 

The most intriguing finding is that the best parameter sets regarding optimal solubility and 

lysozyme activity yield cover a similar parameter space regarding all five parameters 

investigated. Besides, this observation is independent of the differences encountered due to 

the variations in the unfolded feedstocks. The only and moderate differences were found in 

changes concerning the concentration of NaCl and MgSO4 present in the refolding buffer.  

Following the above results, differences in feedstock quality might not be prone to change 

favorable refolding conditions significantly.  

As a conclusion suitable conditions identified during two individual screenings each 

performed with constant conditions for protein denaturation might correspond to each other. 

Nevertheless gained yields will likely differ due to a strong influence of protein starting 

material on yield of active protein. As a consequence automated optimization including 
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multiple screening runs requires a constant feedstock preparation in order to perform 

parameter optimization on the basis of the highest reproducibility possible.  

Furthermore the results gained demonstrate that the conditions for storage such as storage 

time and temperature have to be considered in addition to the composition of the denaturing 

feedstock preparation. This is especially true for automated optimization processes, as all 

solutions need to be placed on the robotic platform prior to the start of the screening process. 

When using unstable solutions these preparations have to be performed prior to every 

experimental run with a detailed protocol in terms of preparation time, storage and usage of 

the solutions. 

 

3.3 Redox Systems during Refolding 
 

Despite the control of unfolding conditions to guarantee for initial feedstock reproducibility 

the control of the redox potential in the refolding buffer plays a major role during 

optimization of refolding buffer conditions. Besides different combinations of reducing and 

oxidizing reagents like DTT, GSSG, cysteine, cystine and air oxidation often assisted by 

metal ions is frequently used during refolding of disulfide bridged proteins. The main 

advantage of air oxidation is the saving of expensive redox components which have to be 

removed afterwards. These advantages are compromised by the low mass transfer rate of 

oxygen in buffer solutions resulting in significantly lower refolding yields or even no 

refolding at all as observed for lysozyme. This is set in comparison to the samples including 

GSH/GSSG as a low molecular weight redox couple with refolding yields above 70 % [40, 

41]. Ho et al. [28] published a value of 10 % active lysozyme yield by refolding without 

added disulfide components with a high loss of protein due to precipitation in contrast to 50 % 

yield with added GSSG. Other disadvantages of refolding with sole oxidation by air are slow 

refolding rates and a low reproducibility of refolding results due to insufficient control of 

aeration [42]. An influence of different types of redox couples is observed by Raman et al. 

[40]. In refolding of lysozyme between 20 and 50 % higher yields are gained for a 

cysteine/cystine couple compared to a GSH/GSSG couple. Interestingly this effect seems to 

be dependent on protein concentration because it was only observed for protein 

concentrations above 50 µg/ml.  

In order to shed some light into these issues in regard to HTS strategies two times 40 refold 

systems with a concentration of 0.4 mg/ml lysozyme denatured for 4 h at 25 °C were 

generated. The two groups represented systems missing any redox component besides 
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introduced air and a combination of DTT/GSSG. Variations were further introduced by 

randomly distributed changes in buffer pH and concentrations of NaCl and MgSO4. The data 

was initially used to assess whether differences can be observed between air oxidation and a 

controlled redox environment consisting of low molecular weight redox substances. 

Furthermore trends in buffer parameter effects and yields in a typical first screening were 

evaluated. The experimental space is summarized in Table 2. In Table 6 yields of active and 

soluble lysozyme are shown for the best 5 experiments in respect to active lysozyme yield 

with and without the addition of redox reagents and the corresponding parameter values. 

Corresponding data for the 5 best experiments in respect to soluble lysozyme yield are shown 

in Table 7. 

 
Table 6: Parameters and yields of active and soluble protein for the best 5 of 40 experiments in respect to active 

lysozyme yield with and without DTT and GSSG addition. The refolding samples contained 0.4 mg/ml lysozyme 

and were incubated for 1 hour at room temperature 

Best 5 Experiments of 40 with Added Redox Components 

c (NaCl) 

[mM] 

pH c (MgSO4) 

[mM] 

c (GSSG) 

[mM] 

c (DTT) 

[mM] 

yield active lysozyme 

[%] 

yield soluble lysozyme 

[%] 

62 8 10 9 5 74 96 

30 7 34 4 3 73 90 

122 8 77 17 7 64 96 

119 7 2 13 5 63 94 

134 8 26 15 6 63 94 

Best 5 Experiments of 40 without Added Redox Components 

c (NaCl) 

[mM] 

pH c (MgSO4) 

[mM] 

c (GSSG) 

[mM] 

c (DTT) 

[mM] 

yield active lysozyme 

[%] 

yield soluble lysozyme 

[%] 

114 6 147 - - 50 66 

35 3 144 - - 50 55 

67 4 111 - - 48 53 

73 5 132 - - 48 62 

3 6 38 - - 46 66 
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Table 7: Parameters and yields of active and soluble protein for the best 5 of 40 experiments in respect to 

soluble lysozyme yield with and without DTT and GSSG addition. The refolding samples contained 0.4 mg/ml 

lysozyme and were incubated for 1 hour at room temperature 

Best 5 Experiments of 40 with Added Redox Components 

c (NaCl) 

[mM] 

pH c (MgSO4) 

[mM] 

c (GSSG) 

[mM] 

c (DTT) 

[mM] 

yield active lysozyme 

[%] 

yield soluble lysozyme 

[%] 

122 8 77 17 7 64 96 

62 8 10 9 5 74 96 

2 7 31 9 2 61 94 

134 8 26 15 6 63 94 

119 7 2 13 5 63 94 

Best 5 Experiments of 40 without Added Redox Components 

c (NaCl) 

[mM] 

pH c (MgSO4) 

[mM] 

c (GSSG) 

[mM] 

c (DTT) 

[mM] 

yield active lysozyme 

[%] 

yield soluble lysozyme 

[%] 

92 4 20 - - 39 73 

53 8 64 - - 36 73 

134 8 26 - - 38 73 

101 7 8 - - 40 72 

30 7 34 - - 38 71 

 

Clearly the addition of redox components showed a positive effect on the yield of active 

lysozyme with an average of 67 % for the best five experiments in contrast to 48 % with air 

oxidation (Table 6) and on the yield of soluble lysozyme with an average of 95 % compared 

to 73 % (Table 7). 

In Figure 20 average parameter values with corresponding standard deviations for the best 5 

experiments are visualized for both oxidation with addition of GSSG and DTT and sole air 

oxidation in respect to the yield of active lysozyme in A and soluble lysozyme in B. Despite 

the overall lower yield in soluble protein content in the absence of controlled redox 

conditions, parameter values leading to high solubility achievable in the two groups are rather 

similar (Figure 20 B). This underlines the above findings that conditions to achieve soluble 

protein are less critical to sample history or process parameter variations. In contrast to this 

parameter settings for high yields of active lysozyme differed significantly for both groups 

(Figure 20 A). Again clear changes in the concentration of NaCl and MgSO4 but also in pH 

were observed. . 
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Figure 20: Average parameter values of 5 best refolding experiments of 40 in respect to A active lysozyme and 

B soluble lysozyme yield with addition of GSSG and DTT and without (air oxidation) and the standard 

deviation. Lysozyme was denatured 4 h at 25°C in 8 M urea, 50 mM potassium phosphate buffer (pH 8), 5 mM 

DTT 

 

Furthermore, while for the redox controlled systems four out of the best five systems 

corresponded for high solubility and activity, the systems with only air as redox system 

leading to high solubility did not lead to high activity and vice versa. As a consequence 

optimization of lysozyme solubility will only lead to an optimized lysozyme folding with high 

yields of active protein with a controlled redox environment. Screening approaches with air as 

oxidizing environment will most likely not lead to any meaningful result when considering 

the post screening step where lab or pilot scale is investigated under controlled redox 

environment.  
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Data analysis revealed that in order to achieve high active lysozyme yields the best systems – 

with controlled redox environment – were characterized by a pH of 7 and 8 whereas in 

samples without redox control pH showed no effect on the refolding yield. In literature 

alkaline pH is reported to be crucial for disulfide bond formation, as the reaction is driven by 

formation of the thiolate anions [5]. Thus the pH plays a major role in samples with redox 

reagents due to the potentially strong influence of the redox components on the folding 

process whereas air oxidation with its restricted refolding rate does not lead to pH dependent 

refolding.  

The favorable salt concentrations of NaCl and MgSO4 showed a slight tendency towards 3 to 

4 times higher concentrations of NaCl when compared to MgSO4 for samples with added 

redox system. However a broad distribution of salt concentrations between 30 and 134 mM 

was observed. There is no systematic investigation of salt effects on refolding yields 

published despite their key function in protein solubility. The well-known Hofmeister series 

[43] is not only used to assess the influence of salts on the solubility of native but also on that 

of refolding protein [44]. The tendency to lower salt concentrations for MgSO4 in comparison 

to NaCl fits with a higher salting-out effect of MgSO4. Additionally the ionic strength of 

MgSO4 is four times higher at the same concentration than for NaCl. In general solubility is 

improved with low ionic strength as is observed in our results as well.   

In contrast without redox components high concentrations of MgSO4 above 100 mM seem to 

be favorable for high yields of active lysozyme. This might arise from the salting-out effect of 

MgSO4 which promotes folding just by reducing the amount of soluble protein competing for 

air oxidation. This assumption is further supported by the results for the best experiments 

concerning soluble lysozyme yield showing lower MgSO4 concentrations between 8 and 64 

mM. The best parameter sets for lysozyme solubility in return lead to decreased yields of 

active lysozyme from 50 to 40 % compared to the best conditions for active lysozyme yields 

with lower solubility. Furthermore a slowdown of folding is described in Raman et al. [40] for 

samples with higher protein concentration in lysozyme refolding with at least 1 mM GSSG. It 

might thus well be that we see a kinetic effect where low refolding rates due to higher protein 

concentrations lead to low yields of active lysozyme after a given refolding time of 1 h. As no 

refolding kinetics were measured in this study it might be that high concentrations of soluble 

lysozyme lead to high yields of active lysozyme at steady state. 

The optimal ratio of DTT and GSSG lies between 1.8 and 2.6 are observed regarding the best 

active lysozyme yields. A ratio of oxidizing to reducing agent around 2.5 with excessive 
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oxidizing component is reported for good refolding results [27], [34], [38] and thereby 

confirms our data. 

 

In summary we could observe in a random parameter screening of up to five parameters with 

the presented high throughput screening method good refolding results at buffer pH, salt 

concentration and redox systems confirmed by literature. The control of the redox 

environment has shown to be a prerequisite for high refolding yields and rates. Furthermore 

we investigated if an optimization of solubility leads to a concomitant optimization of folding 

towards active protein. This could only be confirmed for systems with added redox 

components and was not possible with air oxidation. 

 

4 Conclusions 
 

In this study a completely automated strategy for a screening procedure towards optimal 

refolding conditions was established. It became clear that conventional methods for the 

determination of protein concentration fail with the task given. In this context a new method 

was developed which bases on the recovery and resolubilization of aggregated protein 

followed by a subsequent concentration analysis of the now unfolded protein using UV 280. 

This method was successfully validated by closure of the overall mass balance. When 

assaying for structural integrity, two methods were investigated, emission of tryptophan 

fluorescence and enzyme activity. While tryptophan fluorescence showed to be useful to 

characterize process parameters it did not help to elucidate structural integrity. Unfortunately 

soluble lysozyme shows no spectral diversity correlating with specific activity. This effect is 

likely originating from the absolute need for buried tryptophan residues to prevent protein 

from aggregation and consequently a uniform distribution of tryptophans in all soluble 

lysozyme species. Nevertheless this observation might not be true for other protein species 

and should be evaluated as a potential marker for protein folding by measurement of spectral 

variety in refolding samples. Thus structural integrity was assayed by an automated enzymatic 

assay. 

In respect to the actual screening strategy it has been shown that one of the most crucial 

aspects lies in the controlled and reproducible preparation of the unfolded sample solutions. In 

addition storage conditions and holding times on the HTS platform have to be kept constant. 

The denatured state of the starting protein material was investigated by tryptophan emission 
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measurements and was identified as a parameter tremendously influencing screening results. 

For a better comparability of refolding yields and parameter optima, unfolding conditions 

should therefore be kept constant and protein concentration, unfolding time, temperature and 

buffer compositions should be mentioned.  

As suitable refolding parameter values were similar for different feedstock qualities results 

can be transferred even if denaturing conditions change. 

Finally it became clear that the approach using air as redox controlling system does not lead 

to meaningful results. For systems with no controlled redox environment system parameters 

leading to improved yields of soluble lysozyme seemed to be unfavorable for the folding to 

active lysozyme.  

In contrast it was observed in screening with addition of a redox system that protein solubility 

is increased in the same parameter range than protein folding assessed by activity 

measurements. Consequently this overlap of good parameter values with controlled redox 

environment qualifies protein solubility as a good objective function during refolding 

screening. A universal analytical method can be used in a first screening for improved 

solubility and subsequently a much closer parameter space can be screened for folding using 

specific assays or sophisticated analytics. 

This work thus acts as a fundament for further studies on refold condition screening as it 

tackles critical system parameters both in respect to the actual screening process but also to 

potential parameter ranges for lysozyme refolding.  
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Abstract 
 

Inclusion body protein refolding is an optimization task including a high number of 

potentially interdependent variables like buffer pH, salt types and ionic strength, type of redox 

components and their concentrations and ratio and numerous additives used to improve 

solubility and folding. As no model is known to describe parameter effects on the refolding 

yield a high number of experiments has to be performed during process development driving 

up costs. We show in our study that an evolutionary algorithm can successfully be used to 

optimize five refolding buffer parameters: pH, concentration of NaCl and MgSO4 and of 

oxidizing and reducing components at the same time. Concentration of soluble and active 

lysozyme could thus be improved on a more robust data basis than provided by fractional 

factorial screening designs. We were furthermore able to define the correlation of parameter 

optima for lysozyme solubility and activity by analysing the development of both functions 

during convergence of parameters with one function as “driving force” for the genetic 

algorithm. In the investigated parameter matrix the conditions for high yields of active 

lysozyme are restricted to a much closer parameter range than for high yields of soluble 

lysozyme but show a complete overlap.  

Restriction of the parameter range of interest by the evolutionary algorithm leads to the 

possibility to perform full factorial experiments within the optimum with reasonable 

experimental effort. With results from full factorial experiments the predicted optima on basis 

of data from the genetic algorithm optimization could be confirmed and refined. Additionally 

the performance of five replicates of the full factorial experiments was used to estimate the 

experimental error and its distribution in the design space. We found an average relative 

standard deviation of 15 % with an equal distribution in the investigated parameter range. As 

the concentrations of active lysozyme with different parameter values even in the case of 15 

% error show differences of 28 % of the highest compared to the lowest concentration of 

active lysozyme parameter effects are identified to be significant for the lysozyme refolding 

process. 
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1 Introduction 
 

The use of so called platform processes to express and especially purify biologics is the 

current aim when developing novel production processes. The most prominent example is the 

expression and purification of monoclonal antibodies where the overwhelming majority of 

purification processes is based on a sequence of two to three chromatographic steps – Protein 

A affinity chromatography followed by ion exchange and hydrophobic interaction 

chromatography or hydroxy apatite chromatography [1-3]. For a long time the production of 

biologics via inclusion body formation in Escherichia coli has also been considered to act as a 

novel platform process. The major drawback, however, lies in finding the optimal refolding 

conditions to reach high yields of correctly refolded protein in the first step. A number of 

systems to aid this has been developed. Their realization, however, is mostly connected with 

considerably higher costs [4-6]. 

While most refolding processes base on the experience of the respective biochemical engineer 

being responsible for the development, screening tools to aid the development are only 

considered within the last couple of years [7-16]. The major drawback of these systems is, 

however, the lack of appropriate analytics to cope with the number of samples and the failure 

to adequately control all relevant screening process parameters [17]. In addition to this the 

number of relevant process parameters is considerably high. When designing refold buffer 

systems the decision for appropriate buffer pH, types of salts, ionic strength, types and 

concentration of reducing and oxidizing agents is imperative. Complexity is further increased 

by combinatorial effects of parameters on refolding success. A material and time effective 

strategy for process development is thus one of the main requirements in the 

biopharmaceutical industry. Optimization of a multi parameter system such as protein refold 

systems can only be performed when combining adequate HTS approaches  with 

experimental design based on mathematical and statistical methodologies in order to gather 

maximum information with minimum experimental effort.  

In order to tackle the experimental challenge we have previously developed a fully automated 

high throughput method for screening of refolding buffer composition which is described in 

[18]. Even with automated HTS strategies the number of experiments in a brute force 

screening approach with a high number of parameters will increase to such an extent that the 

experimental effort is not manageable when considering time and costs.  

Nevertheless a non-systematic brute force screening is performed for example in [19] to 

screen different additives at one level. No information on the effects of additive concentration 
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or synergistic effects of additives is gained. A similar approach is presented in [9] where in a 

first screening aggregation suppression of different detergents in refolding was estimated and 

in a second screening one favourable detergent was combined with a second additive. This 

step by step optimization leads to an oversight of potential positive or negative parameter 

interactions leading to suboptimal screening results.  

 

In contrast to this, full factorial screening approaches offer the possibility to gain systematic 

insight into parameter effects and interactions but require a high number of experiments as 

described by equation 1 with e as number of experiments, p the number of parameters and L 

the .number of parameter levels.   

          (1) 

In Figure 1 this functional relation between the number of experiments and the number of 

parameters is visualized for two parameter levels.  

 
Figure 1: Number of experiments vs. number of parameters at two levels 
  

This said, the number of experiments can be reduced when performing fractional factorial 

screenings. The use of such approaches which in the first instance provide an experimental 

plan is however not always fully exploited reducing its informational content to a minimum. 

In [11, 14, 20] for example data from fractional factorial experiments were not analyzed by 

statistical means. Insight into favourable refolding conditions is gained by a rather intuitive 

comparison of refolding results and a qualitative interpretation of positive and negative 

parameter effects. The best experiments from the screening were then directly chosen for 

refolding. Consequently the statistical approach is harnessed for the generation of a reduced 

experimental set up but not for data validation. In [8, 15] data from fractional factorial 

refolding screening were statistically analyzed to identify main parameter effects increasing 

pLe =
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process understanding. Following the identification of important refolding parameters a 

second full factorial screening is performed for only two parameters to identify parameter 

interactions. An optimization on refolding buffer systems by a systematic fit of the screening 

results is not performed and thus the best experiment from the screening might still be far of 

the global optimum.  

Furthermore all of these statistical evaluations are based on the underlying assumption that the 

objective function is linearly dependent on the parameters. This, however, is a simplification 

which is likely to lead to a suboptimal screening result. The latter especially holds true when 

considering a large parameter space. This is clearly shown by a study of [7, 13] where a 

response surface is used to predict optimum refolding parameters. The optimization of a 

matrix comprising five factors was shown to be possible leading to a good refolding 

performance verified by additional experiments. This, however, is only the front page of the 

complete effort. Parameter effecting refolding yield and an appropriate parameter space for 

improvement of surface fit with the chosen model were already investigated experimentally 

before starting experimental design for the response surface fit. Thus the presented results 

only represent part of the experimental effort required for optimization with response surface 

analysis. In [7] it was further mentioned that parameter space was reduced in previous 

experiments to a range close to an expected optimum. This approach was chosen to increase 

the likelihood of a realistic response surface fit covering the main optimum avoiding a 

complex surface with multiple optima. Furthermore data density can be chosen high enough 

to be less dependent on experimental error which is usually a problem if sparse data points are 

used for response surface fit.  

We apply an evolutionary algorithm to improve the robustness of the optimization process 

and to make simultaneous optimization of five parameters in a wide parameter space possible 

despite potential parameter interactions or non-linear dependencies of the objective function. 

The genetic algorithm chosen for this study is a population based algorithm thus harnessing 

the advantage of the parallelized experimental screening method. Its high robustness is based 

on an iterative search mechanism with repetitive measurements in close proximity. 

Nevertheless the genetic algorithm is highly efficient because data density is increasing close 

to the optimum while experiments in less interesting regions with low refolding yield are 

reduced to a minimum.  

During improvement of an objective function with the genetic algorithm aiming at lysozyme 

activity, a second function, in our case lysozyme solubility, was measured and analysed. Thus 

a correlation of parameter effects on both measured function values can be observed. A 
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correlation of parameter optima offers the potential to use the function measured with higher 

accuracy or lower experimental effort for future optimization experiments.   

After optimization with a genetic algorithm a factorial screening was performed close to the 

optimum. In our study factorial experiments are used for estimation of experimental errors 

and to control the result of the evolutionary optimization in the optimum parameter range. 

With this combination of the genetic algorithm to screen a wide parameter range followed by 

a classical full factorial approach in a reduced design space close to the optimum we reach a 

good balance between experimental input and process optimization and understanding.  

 

2 Materials and Methods 
 

2.1 Automated Liquid Handling Platform 

 

For all studies the automated liquid handling platform Freedom Evo 200 (Tecan Crailsheim, 

Germany) equipped with one liquid handling arm and two grippers was used. Pipetting was 

performed with 8 fixed standard tips. A centrifuge Rotanta RSC46 (Hettich Kirchenlengern, 

Germany), a magnetic orbital shaker with four positions and a shaking diameter of 2 mm 

(Inheco Munich, Germany) and a spectrophotometer InfiniTe 200 (Tecan Crailsheim, 

Germany) were integrated into the robotic platform. The software Evoware (Tecan 

Crailsheim, Germany) was used to control the robotic work station. 

96 well microtiter plates and UV microtiter plates with a well volume of 360 µl were 

purchased from Greiner (Frickenhausen, Germany). Deep well plates with a well volume of 

2.2 ml were from TreffLab (Degersheim, Switzerland). 350 µl AcroPrep 96 filter plates with a 

pore size of 0.2 µm and a Bio-Inert membrane were produced by Pall (Dreieich, 

Deutschland). 

All chemicals had analytical grade and were purchased from Sigma Aldrich (St. Louis, USA) 

as well as hen egg white lysozyme (L-6876) with ≥ 90 % protein content.  
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2.2 Sample Preparation and Analytics 

 

Methods for the preparation of refolding samples and measurement of soluble protein content 

and lysozyme activity on the robotic platform are described in detail in [18].  

Protein denaturation was performed according to the following protocol. 4 mg/ml lysoyme 

was incubated for 1.5 h in 50 mM potassium phosphate buffer containing 8 M urea and 5 mM 

DTT at pH 8 at 37 °C.  

Buffer systems for protein refolding were prepared by mixing Milli-Q water with buffer stock 

solutions (glycine at pH 3, sodium acetate at pH 4 and pH 5, potassium phosphate at pH 6, pH 

7 and pH 8, bicine at pH 9) to a buffer concentration of 50 mM. In the given order NaCl, 

MgSO4, GSSG and DTT were added. A constant protein dilution factor of 10 in a total 

volume of 1 ml was maintained. Protein refolding was initiated by adding 0.4 mg/ml 

denatured protein into the respective refolding buffer systems followed by mixing the solution 

by aspirating and re-dispensing of 900 µl sample volume. The refolding process was 

terminated after an incubation period of 1 h at 25 °C. Mixing conditions were maintained 

throughout the incubation period by constant orbital shaking at 1500 rpm. Aggregated and 

soluble protein content were analyzed by the separation of protein aggregates using filtration, 

their re-solubilization and subsequent protein determination using UV 280 measurements. 

Concentration of active lysozyme was measured via an automated lysozyme assay.   

 

2.3 Experimental Parameter Space  

 

The experimental matrix investigated in this study included five parameters: concentration of 

NaCl, MgSO4, GSSG and DTT and buffer pH (see Table 1). 

  

Table 1: Overview of the parameter design space for the genetic algorithm 

Parameter Design Space 

Buffer pH 3 - 9, discrete, step size of 1 

NaCl concentration 0 - 150 mM 

MgSO4 concentration 0 - 150 mM 

GSSG concentration 0 - 20 mM 

DTT concentration 0 - 10 mM 
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2.3 Genetic Algorithm 

 

The process optimization method applied in this study had been described in detail by Susanto 

et al. [21] for the optimization of chromatographic protein separation.  

An overview of the framework behind the optimization procedure using the genetic algorithm 

as a control tool for high throughput experimentation and the respective software tools is 

given in Figure 2. For the automated optimization circle three software tools were combined: 

Evoware (Tecan, Crailsheim, Germany) for control of the liquid handling station, MATLAB 

(MathWorks, Natick, MA, USA) for data management and the included GEATbx v1.95 [22] 

for performance of the genetic optimization algorithm and Excel (Microsoft, Redmond, WA, 

USA) as an easy user interface connecting Evoware and MATLAB. Excel offered the 

possibility to observe the produced data coming from automated experiments and also from 

the genetic algorithm optimization tool online and allowed to take corrective actions during 

the process. Furthermore the Excel interface was a prerequisite for the communication 

between MATLAB and Evoware and acted as a user interface where the parameters affecting 

the performance of the genetic algorithm such as the number of experiments, the selection 

method and pressure, the method of recombination and the rate of mutation could be set.  
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Figure 2: Overview of the evolutionary optimization cycle 

 

 

The genetic algorithm was initialized by a first generation of experiments with randomly 

distributed experimental parameter values.   

Two different objective functions, the concentration of soluble lysozyme and the 

concentration of active lysozyme in the refold samples were applied. 

The performance of the genetic algorithm is dependent on algorithm parameters which 

include the number of experiments in a population, the selection pressure and the mutation 

rate. For our studies we chose a population size of 40 experiments, a selection pressure of 

11.4 and a mutation rate of 0.2 [22, 23]. The optimization cycle was stopped when no further 

convergence of experimental parameter values could be observed represented by a constant or 

increasing mean standard deviation of the parameter values for the next generation.  

 

2.4 Full Factorials 

 

A full factorial comprising 88 experiments close to the optimum determined by the genetic 

algorithm was performed. For all experiments we kept the pH value constant at pH 9 as this 

pH showed to be invariably most favourable for refolding. The chosen parameter matrix is 

shown in Table 2. The full factorial experiments were performed five times on different days 
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with all solutions freshly prepared. Generation of the experimental matrix as well as statistic 

validations were performed with the Software Modde (Umetrics, Malmö, Sweden). 

 

Table 2: Overview of the parameter design matrix for the full factorial experiments 

Parameter Design Space 

Buffer pH 9 

NaCl concentration 115 mM, 135 mM, 155 mM 

MgSO4 concentration 20 mM, 25 mM, 30 mM 

GSSG concentration 15 mM, 16.5 mM, 18 mM 

DTT concentration 4 mM, 5 mM, 6 mM 

 

3 Results and Discussion 
 

In a first screening with randomly distributed parameter settings in the applied experimental 

matrix we observed an overlap of parameter values between samples with a high content of 

active lysozyme and a high content of soluble lysozyme given that the redox environment was 

controlled by addition of reducing and oxidizing components [18]. Even though such a result 

was expected the observation gave rise to a more structured investigation into the 

interdependency of both objective functions.   

 

3.1 Genetic Algorithm  

 

The genetic algorithm was applied twice for the above described system with two independent 

objective functions aiming at the maximization of solubility and activity respectively. The aim 

of this investigation was centred around the question on data analysis as well as size, ease of 

reach and interdependency of the global optimum regions of solubility and activity.  

 

3.1.1 Objective Function in Protein Refolding Optimization 

 

When considering protein refolding processes one immediately highlights the necessity of 

correctly refolded protein, soluble protein and the specific activity of the obtained protein. 

While the maximum concentration of correctly refolded protein clearly defines the yield of 

the refolding process and should thus have highest priority, maximizing the specific activity 
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might gain importance if incorrectly refolded protein is difficult to separate from correctly 

refolded protein and thus leads to a high loss of correctly folded protein in subsequent steps 

and an overall lower yield. When put into an order with the other two functions screening for 

solubility might mislead the optimization procedure, especially when the region for maximum 

solubility and activity do not coincide (see below). However, solubility screens – if applicable 

for the respective system – offer a rapid tool for a first screen as the accompanied assay is 

rapid and HTS compatible. This absolute necessary prerequisite for a screen with a high 

number of samples is not given for most structural or activity related assays. 

 

3.1.2 Potential Interdependency of Solubility and Activity  

 

In the light of the necessity of an adequate analytical scheme for a first screen one needs to be 

aware of the potential settings when using an indirect screening objective such as solubility. 

Figure 3 depicts a scheme of potential settings of both regions – activity and solubility – 

within the investigated parameter space. At first sight one might expect these two values to 

coincide with the region for activity smaller than solubility accounting for soluble but 

incorrectly folded protein (Figure 3 A). However, in protein refolding it is often seen that 

incorrectly folded and thus inactive species contribute to soluble protein content to a much 

higher degree than correctly and thus active protein. The most unlikely event in this context 

might be that the amount of incorrectly folded protein leads to a solubility peak within the 

optimal region for active protein (Figure 3 B). More likely scenarios are that these regions 

overlap (Figure 3 C) or lead to a complete separation of the global optima (Figure 3 D).  

Data obtained by the genetic algorithm can now be analysed by various approaches. 
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Figure 3:.Four alternatives for the positioning of parameter optima in a two parameter space for two potentially 

interdependent objective functions the concentration of active protein (activity) and the concentration of soluble 

protein (solubility) in refold systems. A both optima coincide with a smaller optimum region for activity B both 

optima coincide with a smaller optimum region for solubility C both optima partially overlap D optima are 

completely separated 

 

3.1.1 Development of the Objective Function in Time 

 

Given that the event shown in Figure 3 A is by far more likely than that shown in Figure 3 B 

most information will be gained when analysing a screening procedure aiming at maximum 

activity. The development of the optimization performance over the respective generations 

and the interdependency of activity and solubility are shown in Figure 4. Figure 4 A 

summarizes the average values of active lysozyme concentration and the corresponding 

values for soluble lysozyme concentration over five generations of an optimization procedure 

with the objective function aiming at maximum activity. The average specific activity or the 

fraction of active to soluble lysozyme are calculated and depicted in Figure 4 B for all 

generations. Concentrations of active and soluble lysozyme both increase in subsequent 

generations. The average active lysozyme concentration obtained changed with a factor of 8.3 

from 0.019 mg/ml to 0.154 mg/ml. The concentration of soluble lysozyme improved with a 
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factor of 2 from 0.195 mg/ml to 0.384 mg/ml including samples with maximum solubility of 

0.4 mg/ml. From generation 2 to generation 3 the concentration of active lysozyme stayed 

constant whereas the concentration of soluble lysozyme showed a slight increase. 

Subsequently a slight decrease in specific activity was observed. In this stage of the 

optimization procedure the experimental points used are probably situated on a plateau 

regarding protein activity while values for solubility experience a slope upwards. 

Subsequently this scheme is reversed showing a steady increase of protein activity while 

protein solubility reaches a plateau expressing maximum solubility in generation 4 and 5. The 

most plausible explanation for this behaviour lies in a scheme depicted in Figure 3 A where 

the protein activity peak is situated in a plateau describing maximum protein solubility.  
 

Figure 4: Average results of all genetic algorithm generations from an optimization aiming at maximum 

lysozyme activity showing A the development of active and soluble lysozyme concentration and B the fraction 

of active to soluble lysozyme concentration 

 

  

A more detailed picture is obtained when comparing the outcome of both optimization 

procedures next to each other. In Figure 5 the concentration of soluble protein is plotted over 

the concentration of active protein. Figure 5 A, C represent data from the systems optimized 

towards maximum activity and Figure 5 B, D represent the corresponding data from systems 

obtained when optimizing towards maximum solubility.  
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Figure 5: Comparison of experimental results from all generations of a genetic algorithm optimizations aiming 

at maximum active lysozyme concentration versus aiming at maximum soluble lysozyme concentration. In A 

concentrations of active and soluble lysozyme are depicted with active lysozyme concentration as objective 

function. C shows the corresponding linear fit for all generations for a better orientation. In B concentrations of 

active and soluble lysozyme are depicted with soluble lysozyme concentration as objective function. D shows 

the corresponding linear fit for all generations for a better orientation. 

 

 

Based on two different initial populations the first generations show a slight variation 

expressing a broader solubility range for system 5 A while system 5 B shows a broader 

distribution for protein activity. The ‘better’ distribution of experimental points in the first 

generation concerning protein solubility might be responsible for a more rapid approach of the 

plateau region expressing maximum solubility, even though the objective function aimed at 

maximum activity. The rapid optimization towards maximum solubility in both systems and 

further improvement of protein activity in generation 5 indicates a setting according to Figure 

3 A. Both systems describe a stagnant (system 5 A) and decreasing (system 5 B) phase in the 
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third generation indicating a plateau or slight downhill region regarding the investigated 

parameter. In conclusion it can be stated that for the given system, an initial rough screen 

towards maximum solubility followed by a more detailed investigation into the obtained 

solubility plateau region towards high protein activity might be justified. 

 

3.1.2 Objective Function Values over the Experimental Space 

 

Figure 6 shows surface plots describing the dependency of a parameter set onto the objective 

function. Column one represents data obtained when screening for optimal activity while 

column two presents the respective data for the solubility screen. For comparability of the two 

sets, concentration of soluble and active lysozyme, eight contour levels divide the range 

between the maximum and the minimum z-value achieved in the fit. The final optimum is 

marked with a grey arrow.  

Focussing on the salt levels it becomes obvious that the high yield value regions at low 

concentrations of MgSO4 and high concentrations of NaCl (Figure 6 E and F). The latter 

finding indicates that the parameter ranges for NaCl might be too narrow for the optimization 

of the given system and especially when screening for optimal solubility higher 

concentrations of NaCl should be investigated. However, both regions are found at 

approximately the same coordinates. This also holds true for the relationship of GSSG and 

DTT (Figure 6 A and B). Here GSSG offered a wider spectrum where optimal values are 

obtained (~ 8mM – 18 mM) while DTT restricted the combinations to a narrow band of ~ 

4mM to 6 mM. The optimum pH region (Figure 6 C and D) lies for solubility and activity at 

the upper border of the analyzed parameter space at pH 9 indicting that the screened 

parameter space for this parameter should be enlarged. 
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Figure 6: Contour plots for the optimization of lysozyme activity (column on the right: A, C, E) and the 

optimization of lysozyme solubility (column on the left: B, D, F) for the parameter combinations concentration 

of DTT and GSSG, pH and concentration of MgSO4 and concentration of NaCl and MgSO4. The objective 

function value in mg/ml is depicted as 8 contour levels between the maximum value in black and the minimum 

value of the fit surface in white. An arrow marks the position of the optimum. 
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In Figure 7 we compared the frequency of parameter settings in the final generations. The 

parameters can be sorted into three sets. In the first set describing salt dependency the optimal 

salt concentration for protein activity is less stringently defined than that for protein solubility 

where a single concentration was highlighted. This coincides with the finding that the optimal 

NaCl concentration for solubility lies on the edge of the experimental parameter space 

suggesting higher values for NaCl when screening for optimum solubility. When considering 

the redox environment both attributes, optimum solubility and activity are described by a 

single value namely 15 mM GSSG and 5.5 mM DTT. This is a quite surprising result when 

compared to the overall findings presented in Figure 6 and highlights the need to plot the 

overall performance rather than focussing on the final generation only. In the third set 

describing pH dependence we see a narrow concentration for protein activity (pH 9) and a 

wider range for solubility (pH 8 – pH 9).This coincides again with data from the overall run 

suggesting that the optimal pH value found is situated on the edge of the experimental 

parameter space.  
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Figure 7: Fraction of experiments performed in the final generation of the genetic algorithm for active 

lysozyme optimization (black bars) and soluble lysozyme optimization (grey bars) for the parameters: A NaCl 

concentration, B MgSO4 concentration, C GSSG concentration, D DTT concentration and E pH. 
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3.2 Full Factorial Analysis of the Optimum Region 

 

In a second approach we analysed the optimal parameter regions using a full factorial screen. 

Five independent full factorial sets with 88 parameter combinations are performed close to the 

potential optimum for active lysozyme found with the genetic algorithm. Variable parameters 

were the concentration of MgSO4, NaCl, GSSG and DTT. As the optimal pH was found to be 

situated on the edge of the experimental space pH 9 was set constant in this procedure. The 

optimum region of the surface plots shown in Figure 6 are depicted in a zoomed version in 

Figure 8 A and 9 A. The grey arrows mark the three optimal systems obtained during the GA 

screen.  

 

For GSSG and DTT the best three results lie on a diagonal line with GSSG to DTT ratios of 

2.6 ± 0.006 and between GSSG concentrations of 14 and 16 mM and DTT concentrations of 5 

to 6 mM with better yields of active lysozyme at lower GSSG  and DTT concentrations 

(Figure 8 A).  

Only few data points are measured in the parameter range above 16 mM GSSG and below 5 

mM DTT also resulting in a maximum after the empirical fit of the data. The full factorial 

covers this parameter range with reliable experimental data from arithmetic means of five 

replicates. The results of a surface fit including not only the data from the genetic algorithm 

but also an average of the five measurements of the full factorial experiments are shown in a 

second contour plot (Figure 8 B). Interestingly the optimum parameter range underdeterimed 

in the genetic algorithm optimization is confirmed to yield the highest concentrations of active 

lysozyme. The genetic algorithm seems to miss this part of the parameter matrix due to an 

optimization along the diagonal line with initially favourable GSSG to DTT ratios due to the 

extended line recombination method chosen. Higher mutation rates would in this case prevent 

the genetic algorithm from being caught at parameter values in proximity to but not within the 

optimum. 
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Figure 8: A Zoom plot of the optimum parameter range of GSSG and DTT concentration for the GA 

optimization of active lysozyme concentration. Contour levels show concentration of active lysozyme in mg/ml. 

Grey triangles mark the best three concentrations of active lysozyme measured including corresponding 

concentration values. B Zoom plot of optimum parameter range including full factorial experiments marked as 

white triangles. Best full factorial experiments and best experiments gained with the GA are marked including 

concentration values. 
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For the salt concentrations the zoomed surface plot (Figure 9 A) from the genetic algorithm 

experiments shows the best yields of active lysozyme between 115 and 140 mM NaCl and 

between 25 and 40 mM MgSO4 with improved yields at the lowest concentrations of both 

salts.  

The parameter range below 25 mM MgSO4 and above 140 mM NaCl is not well validated and 

therefore included in the full factorial experiments (Figure 9 B). For these two parameters no 

change in the resulting surface plot can be observed when average full factorial data are 

included as can be seen in Figure 9 B. An even higher maximum objective function is reached 

by combination of all parameters close to the optimum, indicating parameter 

interdependencies. 
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Figure 9: A Zoom plot of the optimum parameter range of NaCl and MgSO4 concentration for GA optimization 

of active lysozyme concentration. Contour levels show the concentration of active lysozyme in mg/ml. Grey 

triangles mark the best three concentrations of active lysozyme measured including corresponding 

concentration values. B Zoom plot of optimum parameter range including full factorial experiments marked as 

white triangles. Best full factorial experiments and best GA experiments are marked including concentration 

values. 
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3.3 Experimental Error Estimation by Full Factorial Experiments 

 

A restriction of the parameter range to the optimum increases the ability to describe the 

parameter effects with a lower amount of experiments. Nevertheless the experimental error is 

a crucial factor which has to be determined to estimate the significance of the gained 

correlations. If three levels of a parameter are investigated for its effect on an objective 

function an error in the centre point might make the difference in the correlation curve 

between a hill, a plateau or even a valley. Another possibility which has to be taken into 

consideration is the correlation of the experimental error with experimental parameter levels. 

In this case one can expect to find differences in the measured objective function values with 

higher errors in a range where the analytical method produces higher standard deviations for 

example at very low absorption values or in the non-linear range of a calibration curve. Thus 

knowledge on the distribution of the experimental error can be used to assess the quality of 

the process in a specified experimental matrix. Therefore the three level full factorial 

experiments were performed five times with a completely new set of solutions at different 

days to get information on the worst case experimental error of independent experiments. 

The relative standard deviation was found to be 15 % with a normal distribution of errors and 

thus lies in a typical range for complex high throughput experiments on a TECAN 

workstation [24]. A dependency of the experimental error on the combination of different 

parameter levels was validated by calculation of the correlation factor of all experimental 

parameter settings with the gained standard deviation. An R² of 0.1901 (calculated with 

Modde) indicates the absence of any influence of the set parameters on the experimental error 

meaning that observed parameter effects are significant.  

 

3.4 Response Surface Fit  

 

A more systematic method to calculate the global maximum value of the objective function 

and to numerically specify parameter effects and interactions is the fit of the data in the 

optimum to a response surface represented by a polynomial of degree 2. 

This polynomial has 21 unknown coefficients, which have to be estimated by using our 

experimental data. The coefficients belonging to the quadratic terms provide information 
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about the importance or in other words the effect of the considered parameters, the 

coefficients belonging to the mixed terms describe combined effects of two parameters.  

The performance of the polynomial fit in our case however was quite poor, not only because 

of the parameter uncertainty caused by the lack of enough data to estimate 21 coefficients but 

also because of two special data structure problems, explained in the following. 

The complexity of the “multidimensional” data space determined by our refolding data could 

only be examined by looking at 3-dimensional subspaces (Figure 8, 9). In our case the 3 

dimensional case of GSSG and DTT concentrations and the concentration of active lysozyme 

we get a stretched non symmetrical surface building a diagonal line with a fixed ratio of 

GSSG to DTT representing the redox potential created in the buffer system (Figure 6 A). This 

can hardly be fitted to a symmetrical response surface. 

The second point is concerned with the fact that some of the analyses optima are not in the 

middle of our space but at or on the border of it. Naturally you cannot fit these optima to a 

polynomial of degree 2 properly. The approximation of a hill will not represent the shape of 

an ascending surface. In our case this holds true for nearly all parameters: pH (Figure 6 C), 

NaCl and MgSO4 concentration (Figure 6 E) and also GSSG concentration (figure 6 A) 

showed such behaviour at the borders.  

 

4 Conclusions  
 

With the genetic algorithm for a robuste detection of the parameter space of intrest with a low 

data density in less important regions and a subsequent full factorial in the now reduced 

parameter space for further refinement of results, the optimum parameters for a five parameter 

system are verified with high resolution and low experimental effort compared to a full 

factorial approach covering the whole design space. The optimum conditions for lysozyme 

refolding qualitatively agree with published results generally favouring alkaline pH for 

disulfide bond formation and oxidizing agent in excess [17, 25, 26]. NaCl is mentioned to 

stabilize lysozyme folding intermediates which correlates with our observations [27]. Low 

concentrations of MgSO4 can be explained by a 4 times higher ionic strength compared with 

the same NaCl concentration and a stronger salting-out effect according to the Hofmeister 

series decreasing solubility [28]. One might say that our results are supported by generally 

accepted principles for lysozyme refolding but are for the first time determined in a robust 

multi parameter optimization approach excluding imprecise assumptions on parameter 

dependencies or oversight of the optimum by parameter space reduction. Furthermore 
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solubility is identified as a good objective function for first optimization cycles according to 

an optimum parameter space overlapping with the optimum found for lysozyme activity. The 

experimental error detected was equally distributed over the parameter range. As no 

correlation of experimental parameter sets with the standard deviation of protein activity was 

found the influence of the investigated parameters can be considered significant. In addition 

we found out that the chosen parameter matrix can have a great influence on the ability to fit a 

response surface with a polynomial of degree two.  

 

5. References 
 

1. Shukla, A.A., B. Hubbard, T. Tressel, S. Guhan, and L. D., Downstream processing of 

monoclonal antibodies - Application of platform approaches. Journal of 

Chromatography B, 2007. 848(1): p. 28-39. 

2. Gottschalk, U., Bioseparation in antibody manufacturing: The good, the bad and the 

ugly. Biotechnology Progress, 2008. 24: p. 496-503. 

3. Kelley, B., Very large scale monoclonal antibody purification : The case for 

conventional unit operations. Biotechnology Progress, 2007. 23: p. 995-1008. 

4. Goto, M., Y. Hashimoto, T. Fujita, T. Ono, and S. Furusaki, Important parameters 

affecting efficiency of protein refolding by reversed micelles. Biotechnology Progress, 

2000. 16: p. 1079-1085. 

5. Mishra, R., R. Seckler, and R. Bhat, Efficient refolding of aggregation-prone citrate 

synthase by polyol osmolytes. The Journal of Biological Chemistry, 2005. 280(16): p. 

15553-155560. 

6. van den Berg, B., E.W. Chung, C.V. Robinson, P.L. Mateo, and C.M. Dobson, The 

oxidative refolding of hen lysozyme and its catalysis by protein disulfide isomerase. 

The EMBO Journal, 1999. 18(17): p. 4794-4803. 

7. Ahn, J.H., Y.P. Lee, and J.S. Rhee, Investigation of refolding condition for 

Pseudomonas fluorescens lipase by response surface methodology. Journal of 

Biotechnology, 1997. 54(3): p. 151-160. 



 

 168 

8. Armstrong, N., A. De Lencastre, and E. Gouaux, A new protein folding screen: 

Application to the ligand binding domains of a glutamate and kainate receptor and to 

lysozyme and carbonic anhydrase. Protein Science, 1999. 8(7): p. 1475-1483. 

9. Ejima, D., K. Ono, K. Tsumoto, T. Arakawa, and Y. Eto, A novel "reverse screening" 

to identify refolding additives for activin-A. Protein Expression and Purification, 2006. 

47(1): p. 45-51. 

10. Jones, D.B., M.H. Hutchinson, and A.P.J. Middelberg, Screening protein refolding 

using surface plasmon resonance. Proteomics, 2004. 4(4): p. 1007-1013. 

11. Lin, L., J. Seehra, and M.L. Stahl, High-throughput identification of refolding 

conditions for LXR beta without a functional assay. Protein Expression and 

Purification, 2006. 47(2): p. 355-366. 

12. Qoronfleh, M.W., L.K. Hesterberg, and M.B. Seefeldt, Confronting high-throughput 

protein refolding using high pressure and solution screens. Protein Expression and 

Purification, 2007. 55(2): p. 209-224. 

13. Rahimpour, F., G. Mamo, F. Feyzi, S. Maghsoudi, and R. Hatti-Kaul, Optimizing 

refolding and recovery of active recombinant Bacillus halodurans xylanase in 

polymer-salt aqueous two-phase system using surface response analysis. Journal of 

Chromatography A, 2007. 1141(1): p. 32-40. 

14. Vincentelli, R., S. Canaan, V. Campanacci, C. Valencia, D. Maurin, F. Frassinetti, L. 

Scappucini-Calvo, Y. Bourne, C. Cambillau, and C. Bignon, High-throughput 

automated refolding screening of inclusion bodies. Protein Science, 2004. 13(10): p. 

2782-2792. 

15. Willis, M.S., J.K. Hogan, P. Prabhakar, X. Liu, K. Tsai, Y.Y. Wei, and T. Fox, 

Investigation of protein refolding using a fractional factorial screen: A study of 

reagent effects and interactions. Protein Science, 2005. 14(7): p. 1818-1826. 

16. Tobbell , D.A., B.J. Middletona , S. Rainesb, M.R.C. Needhamb, I.W.F. Taylora, J.Y. 

Beveridgea, and W.M. Abbott, Identification of in vitro folding conditions for 

Procathepsin S and Cathepsin S using fractional factorial screens. Protein Expression 

and Purification, 2002. 24(2): p. 242-254. 



 

 169 

17. Lin, J.L., R.C. Ruaan, and H.J. Hsieh, Refolding of partially and fully denatured 

lysozymes. Biotechnology Letters, 2007. 29(5): p. 723-729. 

18. Berg, A., J. Kittelmann, and J. Hubbuch, Development and characterization of an 

automated high throughput screening method for optimization of protein refolding 

processes in preparation, 2008. 

19. Scheich, C., F.H. Niesen, R. Seckler, and K. Bussow, An automated in vitro protein 

folding screen applied to a human dynactin subunit. Protein Science, 2004. 13(2): p. 

370-380. 

20. Chen, G.Q. and E. Gouaux, Overexpression of a glutamate receptor (GluR2) ligand 

binding domain in Escherichia coli: Application of a novel protein folding screen. 

Proceedings of the National Academy of Sciences of the United States of America, 

1997. 94(25): p. 13431-13436. 

21. Susanto, A., K. Treier, E. Knieps-Gruenhagen, and J. Hubbuch, High throughput 

screening for the design and optimization of chromatographic processes: Automated 

optimization of chromatographic phase systems. Chemical Engineering and 

Technology, 2007. 32(1): p. 140-154. 

22. Pohlheim, H., Evolutionäre Algorithmen. 2000, Berlin, Heidelberg, New York: 

Springer Verlag. 

23. Hansen, N., On self-adaption in evolutionary strategies. Studies in computational 

intelligence. Vol. 136. 2006, Berlin / Heidelberg: Springer Verlag. 31-57. 

24. Bensch, M., B. Selbach, and J. Hubbuch, High throughput screening techniques in 

downstream processing: Preparation, characterization and optimization of aqueous 

two-phase systems. Chemical Engineering Science, 2007. 62(7): p. 2011-2021. 

25. Buswell, A.M., M. Ebtinger, A.A. Vertes, and A.P.J. Middelberg, Effect of operating 

variables on the yield of recombinant trypsinogen for a pulse-fed dilution-refolding 

reactor. Biotechnology and Bioengineering, 2002. 77(4): p. 435-444. 

26. Hevehan, D.L. and E.D. Clark, Oxidative renaturation of lysozyme at high 

concentrations. Biotechnology and Bioengineering, 1997. 54(3): p. 221-230. 



 

 170 

27. Bieri, O., G. Wildegger, A. Bachmann, C. Wagner, and T. Kiefhaber, A salt-induced 

kinetic intermediate is on a new parallel pathway of lysozyme folding. Biochemistry, 

1999. 38(38): p. 12460-12470. 

28. Hofmeister, F., Zur Lehre von der Wirkung der Salze. Arch. Exp.Pathol.Pharmakol., 

1888. 24: p. 1 - 16. 

 

 



 

___________________________________________________________________________ 

 

Solid Phase Refolding 
 

Annette Berg, Joerg Kittelmann, Juergen Hubbuch* 
 

 

 

___________________________________________________________________________ 

 

Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Science, 

University of Karlsruhe (TH), 76131 Karlsruhe, Germany 

 

*Corresponding author. Tel.: +049 721 608-2557; fax: +049 721 608-6240. Email-adress: 

juergen.hubbuch@kit.edu 

 
 

 

 171



 

Abstract 
 

Inclusion body protein refolding on chromatographic columns is described to be superior to 

refolding by simple dilution in refolding buffer concerning yields of soluble and active 

protein. Nevertheless these processes are rarely used for their high complexity being an 

obstacle to process optimization. Besides an appropriate buffer design for the folding as for 

the chromatographic process, parameters like protein loading, resin type and velocity of 

buffer exchange from denaturing to renaturing conditions have to be evaluated. In this 

publication automated methods for the investigation and optimization of process parameters 

during protein refolding on chromatographic resins are described. Adsorption and refolding 

was performed in a batch chromatography approach resulting in low resin and protein 

consumption. We focused on ion-exchange resins and lysozyme as model protein. Binding of 

denatured lysozyme was investigated by automated measurement of isotherms and kinetics. 

Significantly lower binding capacities of the denatured compared to native lysozyme were 

calculated from isotherm data with similar binding kinetics. Lower binding strength of the 

denatured species on ion-exchange materials could be explained by the disintegration of 

charged patches on the protein surface during denaturation. After resin screening a material 

with high binding capacity was chosen for refold screening. Refolding buffer pH between 6 

and 9 and urea concentrations between 0 and 2 M were analyzed for their effect on soluble 

protein yield. Lysozyme was desorbed from the ion-exchange resin under two different 

conditions: at low ionic strength during refolding and during the high salt elution step which 

hints at two different lysozyme species formed during the process. The yield of both eluted 

species was not affected by refolding pH or urea concentration. In contrast elongation of the 

refolding step reduced preliminary eluted protein at low ionic strength hinting at a higher 

content of completely folded lysozyme with improved binding at low salt concentrations. 

These results show that the automated method is not only a useful tool to screen for on-

column refolding parameters but in addition can be used to qualitatively elucidate 

interdependencies between protein folding and adsorption/desorption processes.  
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1 Introduction 
 

The development of matrix assisted refolding processes is complex due to a high number of 

process parameters such as sample loading, composition of mobile phase including gradient 

characteristics during denaturant reduction, elution flow rate and of course properties of the 

solid phase [1]. In general, adsorption of proteins should inhibit intermolecular interactions 

leading to protein loss via aggregation in dilution refolding processes. Thus a higher 

concentration of refolded and concomitantly purified target protein should be reached [2]. 

Refolding of adsorbed protein on chromatographic resins is described for affinity resins with 

immobilized folding catalysts or artificial chaperons and of course also with immobilized 

metal ions like nickel or copper. Furthermore refolding on hydrophobic interaction and ion 

exchange resins is proved to be a potential approach [3].  

There are numerous reports on the use of different chromatographic techniques each having 

its pros and cons [4-7]. In size exclusion chromatography (SEC) protein is not adsorbed to the 

column material, thus this technology does not fulfil the prerequisite of preventing 

intermolecular interactions. Affinity interaction chromatography is generally restricted to 

modified proteins or dependent on costly specific chromatographic material [2]. In 

hydrophobic interaction chromatography (HIC) refolding high salt concentrations during 

sample loading might lead to solubility problems [8] and an observed tendency of 

denaturation with binding to HIC materials might also prevent protein from folding [9]. Ion 

exchange chromatography is one of the most frequently used methods in protein purification 

due to high binding capacities, low salt concentrations during sample loading and a lower 

tendency of proteins to denature as interacting molecular residues are on the protein surface.  

Fundamental characterization of adsorption processes is done in batch mode by measuring 

adsorption isotherms to asses the protein binding affinity and the static binding capacity of a 

protein resin combination under certain buffer conditions in equilibrium. Measurement of 

uptake kinetics yields insight into the velocity of the adsorption process. In dynamic 

experiments column capacity is assessed for a chosen residence time by means of protein 

break through studies. The resulting data provide information on dynamic and total binding 

capacity. The total binding capacity correlates with data from batch binding experimentation. 

During normal protein separation studies using chromatographic processes gradient elution is 

used to exploit different binding strengths of different protein species present. In protein 

refolding studies gradient elution can be used to separate differently folded proteins. In this 
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integrated approach refolding and separation of refolded species are carried out within a 

single process step.  

Refolding on ion exchange resins and its optimization concerning protein loading, pH and 

urea concentration of the refolding buffer and residence time of adsorbed protein in refolding 

buffer is extensively described in literature. Common to all reports is that buffer composition 

has to be adapted to every protein individually with the general rule to use low residual urea 

concentrations and alkaline pH. Low sample loading is also described to be favourable for 

higher refolding yields. Sample loss on the column by aggregation or strong non specific 

binding is still a hurdle to be taken [2, 8, 10, 11]. 

In this study an automated high throughput method is established to characterize these effects 

on the yield of active lysozyme during matrix assisted refolding on ion exchange adsorber 

materials. As experimental tool batch adsorption studies were used due to their simplicity, 

speed and low material consumption of native and denatured protein. To do so liquid handling 

of viscous high molar urea solutions had to be optimized prior to the actual studies to assure 

good reproducibility. The overall aim was to define a strategy allowing the optimization of 

multiple parameters with low amounts of protein, buffer and adsorber resin in a rational time 

frame. 

 

2 Materials and Methods 
 

2.1 Materials  
 

2.1.1 Robotic Work Station 
 
For all studies we used an automated pipetting station Freedom Evo 200 (Tecan Crailsheim, 

Germany) equipped with one liquid handling arm and two grippers. Pipetting was performed 

with 8 fixed standard tips. A centrifuge Rotanta RSC46 (Hettich Kirchenlengern, Germany), a 

magnetic orbital shaker with four positions and a shaking diameter of 2 mm (Inheco Munich, 

Germany) and a spectrophotometer Genios Pro (Tecan Crailsheim, Germany) were integrated 

into the robotic platform. The software Evoware (Tecan Crailsheim, Germany) was used to 

control the robotic workstation. 
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2.1.2 Disposables 
 

96 well microtiter plates and UV microtiter plates with a well volume of 360 µl were 

purchased from Greiner (Frickenhausen, Germany). Deep well plates with a well volume of 

1200 µl were from ABgene (Surrey, UK). 1000 µl AcroPrep 96 well filter plates with a pore 

size of 0.45 µm and a GHP membrane were produced by Pall (Dreieich, Deutschland). 

 

2.1.3 Chemicals and Proteins 
 

All chemicals had analytical grade and were purchased from Sigma Aldrich (St. Louis, USA) 

as well as hen egg white lysozyme (L-6876) with ≥ 90% protein content.  

SP Sepharose FF and CM Sepharose FF were from GE Healthcare (Freiburg), Toyopearl 650 

SP from Tosoh (Tokyo, Japan) and EMD Fractogel SO3 (M) from Merck (Darmstadt). 

 

2.2 Methods 
 

2.2.1 Preparation of Stock Solutions and Adsorbent Material 
 

Buffer and Salt Solutions 
 

Buffer pH was adjusted by titration of acidic and basic components. Buffer for denaturation of 

lysozyme (8 M urea, 50 mM potassium phosphate buffer, pH 8) was prepared without DTT. 

DTT was added from a frozen 1 M stock solution in a concentration of 5 mM directly before 

use. 

 

Lysozyme Containing Solutions 
 

A stock solution of denatured lysozyme was prepared by solubilization of 10 mg/mL 

lysozyme in denaturing buffer (8 M urea, 50 mM potassium phosphate buffer, pH 8, 5 mM 

DTT). Miximg was performed by short vortexing. The solution was incubated in an overhead 

shaker at room temperature for 16 hours. 
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Solutions of native lysozyme were prepared by solubilization of lysozyme in concentrations 

between 1 and 0.016 mg/ml for calibration purposes and in a concentration of 10 mg/ml as 

stock solution in Milli-Q water by short vortexing directly before use.  

 

Micrococcus lysodeiktikus Suspension 
 

Micrococcus lysodeitikus was suspended by intense vortexing in 100 mM potassium 

phosphate buffer at pH 6 using a concentration of 0.65 mg/ml. The preparation of the 

Micrococcus suspension was carried out 30 minutes before use. 

 

Aliquotation of Adsorber Material 
 

Adsorber material was aliquoted in a device presented in [12]. A commercially available 

solution, the MediaScout® ResiQuot (Atoll, Weinheim) was used to fill adsorber particles 

into small cylindrical cavities with a defined volume of 7.8 ± 0.3 µl by an applied vacuum. 

The particles were washed twice with Milli-Q water and twice with the loading buffer of the 

subsequent experiment for equilibration. Chromatographic resin aliquots were stored in 100 

µl of equilibration buffer. 

 

2.2.3 Automated Measurement of Adsorption Isotherms  
 

In Figure 1 three different approaches for the determination of adsorption isotherms are 

summarized. Because method development performed on the measurement of isotherms also 

builds the basis for measurement of binding kinetics as well as for refolding experiments with 

adsorbed protein the validation of liquid handling is described in this section. Automated 

measurement of adsorption isotherms for native protein was already published by Bensch et 

al. [13] and corresponds to the method A in Figure 1. Stock solutions of protein, buffer and 

Milli-Q water are directly transferred into a deepwell plate with a total transfer volume of 500 

µl. The deepwell plate was pre-filled with 15 µl adsorber wetted with 100 µl of sample buffer. 

Mixing of solvent components as well as re-suspension of adsorber particles is performed by 

orbital shaking of the plate for two hours at 1500 rpm. Subsequently adsorber material was 

sedimented by centrifugation at 760 RCF for 4 minutes and 300 µl of the supernatant were 

analysed for total protein content both undiluted and in a 1/5 dilution in UV microtiter plates 

at 280 nm. Samples without added adsorber resin were used for calibration curves. In this 
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approach buffer exchange to initiate refolding can only be performed quantitatively after a 

transfer of adsorber particles into a filter plate. In a second method shown in Figure 1 B water, 

protein and buffer stock solutions were pre-mixed to a total volume of 800 µl in a separate 

deepwell plate by a three times aspirating and re-dispensing step with 700 µl liquid volume. 

Following 500 µl of the pre-mixed protein solution was added to the resin particles in a 

second deepwell plate for a 2 hours incubation step with orbital shaking at 1500 rpm. To 

facilitate this procedure adsorption isotherms were directly prepared in filter plates as 

visualized in Figure 1 C. During shaking for resuspension of adsorber particles liquid loss 

from the membrane bottom of the plate could only be prevented by a sealing of the plate with 

an adhesive foil. All isotherms were measured in triplicates.  

 177



 

   
Figure 1: Flow scheme of protein loading on resin particles for isotherms/kinetics and for refolding processes. 

A Method transfer from [13] with direct mixing of all solvent components together with resin particles in a 

single deep well plate. B Pre-mixing of all solvent components in a separate plate by aspirating and re-

dispensing of solvent and transfer of the solution into the resin containing deep well plate. C Pre-mixing of all 

solvent components in a separate plate by aspirating and re-dispensing of solvent and transfer of the solution 

into a sealed filter plate containing resin particles to facilitate buffer exchange in the refolding process. 
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The protein capacity in equilibrium q* was calculated from the known protein concentration 

c0 at the beginning, the measured protein concentration in equilibrium c* after adsorption and 

the volume of the protein solution Vsol and the adsorber Vads aliquots according to equation 1. 

 

        (1) 
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The data were fitted either to a Langmuir shaped isotherm for native protein (equation 2) with 

the Langmuir adsorption coefficient KL and the maximum capacity qmax  
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or to a BET shaped isotherm (equation 3) with the BET adsorption coefficient K and the 

maximum solubility of the protein csat for denatured protein. 
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2.2.4 Automated Measurement of Adsorption Kinetics 
 

The experimental set up for the measurement of binding kinetics is very similar to that used to 

determine adsorption isotherms (see Figure 1). In the optimized procedure 500 µl of a pre-

mixed protein solution is added to 15 µl adsorber at defined time points (Figure 1 C). The 

protein concentration used were 5.25 mg/ml and 2.19 mg/ml at the beginning of the 

experiment. All samples were incubated on an orbital shaker with a shaking frequency of 

1500 rpm. The adsorption process is stopped by sedimentation of the adsorber particles using 

centrifugation at 3040 RCF for one minute. Evaluation of protein content is performed by 

measurements of the absorption at 280 nm in UV microtiter plates as described above. For 

comparability of kinetic curves the protein concentrations cI were normalized with the end 

concentration ce and the initial concentration c0 according to equation 4. 

         (4) 
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The curve is empirically fitted with equation 5 with t as time and k as velocity constant. 
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2.2.5 Automated Screening of Solid Phase Refolding Conditions 

 process flow scheme is given in Figure 2. As described for the isotherms and kinetics deep 

o facilitate buffer exchange steps for washing and refolding the loaded adsorber resin was 

enaturation buffer systems (50 mM potassium phosphate buffer with the indicated pH and 

efolded protein was eluted with 300 µl refolding buffer containing 1 M NaCl. This fraction 

performed and the concentration measured according to the first elution step. 

 

A

well plates were pre-filled with 15 µl resin. 500 µl of denatured lysozyme solution previously 

mixed from stock solutions were added to the adsorber material and incubated for 2 hours 

with shaking at 1500 rpm. 

 
T

transferred to a filter plate with the fixed tips of the liquid handling system. The resin particles 

were re-suspended by three times repeated aspirating and dispensing steps with 450 µl 

volume. 600 µl adsorber suspension was aspirated after the tips were filled with 100 µl 

denaturing buffer without DTT for complete removal of resin particles after pipetting. A total 

volume of 700 µl was transferred to a filter plate and the deep well plate was washed in a 

second pipetting step with 700 µl denaturing buffer without DTT. This wash fraction was also 

transferred to the filter plate after evacuation of the filter by centrifugation at 3040 RCF for 1 

minute. DTT was thus removed from the adsorber in a second centrifugation step. 

 
R

urea concentration) were mixed from stock solutions in a deep well plate. Refolding is 

initiated by addition of 300 µl refolding buffer with different compositions. The filter plate 

was incubated for 20 minutes with orbital shaking at 1500 rpm if not indicated differently. 

Subsequently the refolding buffer is removed by centrifugation at 3040 RCF for 1 minute and 

the concentration of lysozyme in the solvent is measured by UV absorption in a UV microtiter 

plate. This fraction of lysozyme is later called “preliminary eluted protein” or “eluate during 

refolding”, as lysozyme measured here does not bind to the ion-exchange resin under 

refolding conditions. 

 
R

is called “eluted protein” as desorption occurs at high salt concentrations. The adsorber was 

incubated in elution buffer for 20 minutes with shaking at 1500 rpm before the eluted fraction 

is transferred to a UV microtiter plate by centrifugation at 3040 RCF for 1 minute. Protein 

concentration is measured by absorption at 280 nm. To remove aggregated or non-specifically 

bound protein from the adsorbent a second elution step with denaturation urea buffer is 
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Figure 2: Flow scheme of the automated refolding process starting with loaded adsorber  
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2.2.6 Analytics  

otein Concentration 

rmed in UV microtiter plates with a sample 

olume of 300 µl. In parallel to the process samples a seven point calibration curve consisting 

 DTT.  

rease in absorption of a Micrococcus lysodeikticus 

uspension at 595 nm. 200 µl of a 0.65 mg/ml Micrococcus suspension were distributed in 

 

Measurement of Pr
 

Absorption measurements at 280 nm were perfo

v

of different native lysozyme concentrations is prepared to calculate the slope of the calibration 

curve. In denatured protein samples including DTT a time and process dependent oxidation of 

DTT leads to absorption at 280 nm which corresponds to a shift of the y-axis intercept of the 

calibration curve. Therefore a parallel processing of a buffer blank is crucial. Samples from 

protein loading, refolding and elution steps can thus be measured.  

Measurement of protein loss in the washing step after adsorption of denatured protein is 

impossible due to an undefined residual volume of buffer containing

 

Measurement of Lysozyme Activity 
 

Lysozyme activity was measured by a dec

s

each well of a 96 well microtiter plate. Refold samples and a calibration standard with native 

lysozyme were diluted in 20 mM potassium phosphate buffer at pH 6 to bring the samples 

into the linear range of the assay. 40 µl of each diluted sample was transferred into the 

bacterial suspension. The assay solution was mixed by aspirating and re-dispensing of 170 µl. 

Afterwards the absorption at 595 nm was measured five times in 31 s intervals. The liquid 

handling tips have to be washed with 800 µl 1 M NaOH each before pipetting Micrococcus 

suspension or protein samples to avoid false positive results by a carry-over of lysozyme from 

inside the tubes.  
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3 Results and Discussion 

.1 Automated Measurement of Adsorption Isotherms under 

ata on the adsorption of denatured protein on the adsorbent surface can be used to assess the 

.1.1 Preparation of Protein Solutions 

ue to the high viscosity of solutions used for denaturation like 8 M urea, sufficient mixing 

P 

 

3

Denaturing Conditions 
 
D

suitability of different adsorbents for the given process and helps to elucidate process 

economics. An automated method to measure adsorption isotherms for native protein was 

published by Bensch et al. [13]. In the course of this work this approach was adapted to the 

distinct parameters of a denaturing buffer system, i.e. high viscosity. A scheme of the 

different automated processes validated in this study to measure isotherms is given in Figure 

1. Details are described in the following sections on method development.  

 

3
 

D

represents a critical process parameter. For the determination of different points on the 

adsorption isotherm protein solutions with different concentration should be mixed from a 

stock solution of 10 mg/ml denatured protein and denaturing buffer (8 M urea, 50 mM 

potassium phosphate pH 8, 5 mM DTT). It should be evaluated if a dilution of denatured 

protein stock solution with denaturing buffer can be mixed to homogeneity just by orbital 

shaking during the incubation period in the deepwell plate containing the resin (Figure 1 A). 

This approach was known to be possible for native protein if a deepwell plate with a round 

well geometry is used for the isotherm. In an alternative approach it should be validated if a 

pre-mixing of different protein solutions in a separate plate by aspirating and re-dispensing 

has to be performed prior to addition into the resin containing deepwell plate (Figure 1 B).  

Isotherms measured by both methods are shown exemplarily for denatured lysozyme on S

Sepharose FF in Figure 3. For both experiments a BET shaped isotherm was fitted.  

 

 183



 

Figure 3: Isotherm on 15 µl SP Sepharose FF with denatured protein. Protein solutions were mixed from 10 

mg/ml denatured lysozyme and denaturing buffer (8M urea, 50 mM potassium phosphate pH 8, 5 mM DTT) A 

by orbital shaking during incubation with the adsorber particles in a deepwell plate with round well geometry 

and B by aspirating and re-dispensing before addition to the adsorber particles in a separate deepwell plate 

 

The most striking difference using both methods lies in the significantly different standard 

deviations as a result of the differences in solution handling. The average standard deviation 

for the process performing mixing of protein and buffer stock solutions by shaking together 

with the resin was 12 % for the protein concentration in equilibrium and 42 % for the capacity 

compared to 5 % and 6 % for the same values measured with intense pre-mixing by aspirating 

and re-dispensing steps in a separate plate. These results show that orbital shaking only leads 

to limited or slow mixing of protein and buffer stock solutions because 8 M urea buffer has a 

higher viscosity than water or buffer solutions with lower concentration. A critical rpm for 

mixing of resin particles in solution is defined in [13] but seems to be not sufficient for 

mixing with high urea content. This problem with liquid handling in highly concentrated urea 

solutions is also described in [3]. In contrary the preparation and mixing of stock solutions by 

aspiration and dispensing steps clearly leads to more precise data. A similar approach is also 

described for mixing of aqueous two phase systems with a highly viscous PEG phase in [14]. 

For isotherms under native buffer conditions with low concentrations of salt pre-mixing is not 

mandatory.  
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3.1.2 Influence of Plate Type on Resuspension of Resin 
 

The screening process is highly dependent on a simple handling of different liquids and the 

respective buffer exchange and incubation of the adsorbent particles. An obvious solution to 

facilitate this would lie in the use of filter plates. For the measurement of adsorption isotherms 

two plate types were compared concerning their impact on resuspension of resin particles, 

deep well plates with a round bottom profile which were commonly used for native protein 

and filter plates with a flat filter bottom. In Figure 4 the results for both plate types and EMD 

Fractogel SO3 are given.  

 

 
Figure 4: Isotherm on EMD Fractogel SO3 with denatured lysozyme in 8 M urea, 50 mM potassium phosphate 

pH 8 and 5 mM DTT after A incubation and shaking in 96 well deep well plates with round bottom profile and 

B after incubation and shaking in 96 well filter plates with flat bottom profile 

 

In general mixing in filter plates with a flat bottom leads to higher standard deviations of 23 

% for the protein concentration in equilibrium and 7 % for the capacity compared to 5 % and 

2 % for the same values measured in deep well plates. In deep well plates with a round bottom 

the development of a vortex is promoted and increases mixing and particle dispersion. This is 

unfortunately not given for the filter plates used. Besides filter plates have to be sealed 

manually to prevent fluid loss throughout the membrane bottom during shaking which is a 

great limitation in automated processes.  

As a conclusion performing mixing of stock solutions and resuspension of particles by 

shaking in a deepwell plate yields the worst reproducibility. This is likely due to local 

differences in protein concentration by insufficient homogenization of protein in urea buffer.  
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3.1.3 Comparison of Adsorption Isotherms of Denatured and 

Native Protein 
 
With the optimized conditions described above adsorption studies of native and denatured 

lysozyme on four different resins were performed. The selected adsorber materials included 

one weak cation exchange resin, CM Sepharose FF, and three strong cation exchange resins, 

SP Sepharose FF with the same backbone as CM Sepharose FF, Toyopearl SP 650 and the 

grafted adsorber EMD Fractogel SO3. 

In Figure 5 adsorption isotherms for the four different adsorber matrices with denatured and 

native lysozyme are depicted.  

 

 
Figure 5: Isotherms of native (■) and denatured (□) lysozyme on A CM Sepharose FF; B EMD Fractogel SO3 

(M); C SP Sepharose FF; D Toyopearl SP 650. Lysozyme was denatured in 8 M urea, 50 mM potassium 

phosphate pH 8 and 5 mM DTT. Native lysozyme was solubilized in 50 mM potassium phosphate buffer pH 8. 

 

Native lysozyme shows a nearly rectangular isotherm which could be fitted according to 

Langmuir (equation 2). Whereas denatured lysozyme reaches no saturation due to a curve 
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progression according to a BET isotherm (equation 3) hinting at a multilayer binding 

mechanism. This observation is also described in [15]. The parameters of the fit curves are 

given in Table 1.  

 
Table 1: Fit parameters for isotherms of denatured and native lysozyme 

Fit Parameters for Native Lysozyme (Langmuir) 

Adsorber KL [ml*mg-1] qmax [mg/mlads]  

CM Sepharose FF 4.23 66.5  

EMD Fractogel SO3 39.95 83.2  

SP Sepharose FF 162.2 97.3  

Toyopearl SP 650 5.5 35.6  

 

Fit Parameters for Denatured Lysozyme (BET) 

Adsorber K [ml*mg-1] qmax [mg/mlads] csat [mg/ml] 

CM Sepharose FF 15.84 5 8.4 

EMD Fractogel SO3 89.04 44.4 10.51 

SP Sepharose FF 25.35 42.9 15.7 

Toyopearl SP 650 52.58 28.3 8.8 

 

For native lysozyme higher capacities and affinities on nearly all adsorber materials are 

observed except for Toyopearl SP650 which shows low binding for both folding states of 

lysozyme. The main reason for lower binding capacity and affinity of denatured lysozyme is a 

lack of distinct charged patches on the proteins surface. Hydrophobic residues previously 

buried inside the molecule and oppositely charged residues might modulate binding on the 

adsorber surface. These observations are supported by results from [7] showing shorter 

retention times of unfolded lysozyme compared to native lysozyme on ion exchange 

materials.  

For native lysozyme capacity increases in the order Toyopearl SP 650 with 35.6 mg/ml, CM 

Sepharose FF with 66.5 mg/ml, EMD Fractogel SO3 with 83.2 mg/ml and SP Sepharose FF 

with 97.3 mg/ml. Low capacity on Toyopearl SP 650 compared to SP Sepharose FF can be 

explained by a lower ligand density of Toyopearl [13]. CM Sepharose FF is superiour to 

Toyopearl SP 650 though being a weak cation exchange resin. The grafted adsorber Fractogel 

does not lead to improved capacities compared to Sepharose FF. As tentacle gels are usually 

favourable due to higher accessibility of protein binding sites, this factor seems to be less 
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important in lysozyme binding than other differences like backbone chemistry or pore size. In 

[16] lower capacities for lysozyme on EMD Fractogel SO3 are also measured compared to SP 

Sepharose FF which confirms our results.  

For denatured lysozyme Fractogel shows the highest affinity and a slightly higher capacity 

(44.4 mg/ml) than Sepharose FF (42.9 mg/ml) supporting the hypothesis of a wider 

distribution of charged binding sites due to random protein structure. Higher ligand densities 

of SP Sepharose FF lead to higher capacities compared to Toyopearl (28.3 mg/ml).  

In the following SP Sepharose FF is used for refolding experiments due to its high binding 

capacity and broad industrial usage.  

 

3.1.4 Comparison of Binding Kinetics of Denatured and Native 

Protein on SP Sepharose FF 
 

The observed discrepancies between the adsorption behaviour of denatured and native 

lysozyme could also be explained by diffusional limitation and slower equilibrium adsorption 

kinetics of denatured lysozym within the 2 hours incubation period chosen.  

In Figure 6 data on binding kinetics for 5.25 mg/ml and 2.19 mg/ml lysozyme in denatured 

and native conformation are shown by plotting capacity versus time.  

 

  
Figure 6: Adsorption kinetics of native (■) and denatured (□) lysozyme with A 2.19 mg/ml protein in added 

solution; B 5.25 mg/ml protein in added solution. Lysozyme was denatured in 8 M urea, 50 mM potassium 

phosphate pH 8 and 5 mM DTT. Native lysozyme was solubilized in 50 mM potassium phosphate buffer pH 8. 
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For both protein concentrations no difference in binding kinetics can be observed between 

denatured and native protein. After approximately 20 minutes near complete adsorption could 

be observed.  

 

3.2 Parameter Effects during Solid Phase Refolding  
 

In the following batch chromatography was validated towards its applicability as a tool to 

investigate important parameters such as protein loading, refolding buffer pH, urea 

concentration and residence time in refolding buffer. To facilitate protein concentration 

measurement no redox components or other substances absorbing light at 280 nm were used 

despite the high probability of low refolding yield already observed in refolding by dilution 

[17]. In contrast to common on-column strategies applying a gradient of refolding buffer a 

one step strategy was chosen with a 100 % shift from denaturing to renaturing buffer 

conditions. Protein elution was performed in a first elution step using high ionic strength 

followed by a second elution step applying denaturing buffer to elute aggregated or non-

specifically bound protein. A detailed description and flow scheme (Figure 2) of the complete 

refolding process starting with the transfer of the loaded particles into the filter plates is given 

in the Materials and Method section.  

 

3.2.1 Specific Activity Obtained during Solid Phase Refolding  
 

In order to assess refold performance eluted protein needs to be analysed towards its activity. 

As refolding intermediates and aggregates tend to bind tightly to the resin material [18] it 

might well be possible, that only native and thus active protein is eluted in the high salt 

elution step, namely in the absence of high urea concentrations. After refolding of bound 

lysozyme with  50 mM potassium phosphate buffer at pH 8 and three different urea 

concentrations (0, 1 and 2 M) the first elution step containing 1 M NaCl was monitored 

towards lysozyme content and activity. Figure 7 shows a linear correlation of total soluble 

lysozyme and active lysozyme observed during this study. This supports the assumption that 

eluted protein is completely folded.  
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Figure 7: Active lysozyme concentration versus total lysozyme recovered. Refolding of bound lysozyme on SP 

Sepharose FF was performed with 50 mM potassium phosphate buffer pH 8 and different urea concentrations 

(0, 1, 2 M). 1 M NaCl was added for elution. 

 

3.2.2 Protein Aggregation during Solid Phase Refolding and the 

Effect of Urea 
 

Simple dilution of high denatured protein concentrations into refolding buffer might lead to 

low yields due to aggregation of folding intermediates [19]. The corresponding parameter in 

solid phase refolding describing the proximity of two proteins during refolding is the protein 

load realized on the adsorbent. We thus compared the influence of different adsorbent 

loadings on protein recovery. Next to a reduction in protein concentration to avoid 

aggregation, one might add various additives having a positive influence on protein solubility. 

A common method is the addition of low amounts of urea to the refolding buffer. It was 

shown in [20] that the addition of urea improves the solubility of the protein to be refolded.  

Next to varying adsorbent load (approximately 10 to 105 mg/mlads) the refolding buffer used 

was varied by adding 0 M, 1 M and 2 M urea.  

In Figure 8 the effect of protein loading on lysozyme yield after the two elution steps with 1 

M NaCl and with denaturing buffer is shown.  
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Figure 8: Effect of protein loading and urea concentration in refolding buffer on summed yields after elution 

with refolding buffer (50 mM potassium phosphate buffer, pH 8) and 1 M NaCl (grey symbols) and on yield 

after additional elution with 8 M urea, 50 mM potassium phosphate buffer, pH 8 and 5 mM DTT (white 

symbols). Refolding was performed on SP Sepharose FF. 

 

An increase of protein loading from 10 to 105 mg/mlads leads to an exponential decay of 

eluted lysozyme yield to approximately 71 % eluted without elution of non-specifically bound 

protein by urea. Additional elution with denaturing buffer leads to a twofold higher total yield 

but shows a higher dependency on adsorber loading with an exponential decrease to 

approximately 24 % in the investigated range. The observations are independent from the 

used urea concentrations in refolding buffer. First of all the fact that further elution is possible 

with denaturing buffer corroborates the assumption of protein aggregation and non-specific 

binding on the column material. This corresponds to findings by [2] for the refolding of 

bovine serum albumin. Furthermore a stronger impact of protein loading on the yield gained 

with additional urea elution can be explained by an increase in aggregation. At very high 

protein loading a single elution step with urea buffer seems to be not suffiecient to re-

solubilize protein on the adsorber surface. It is likely that pores are blocked by aggregates and 

thus aggregated protein inside the pores is not accessible.  

The observations concerning the impact of protein loading on recovery in matrix assisted 

refolding are consistent with effects described in literature [2, 11]. The maximum yield of 

eluted lysozyme ranging from 10 to 30 % is relatively low which is typical for on column 

refolding processes [2, 8, 10, 11].  

An effect of varying urea concentration in the refolding buffer on lysozyme yield could not be 

observed in our study even though an improvement of protein solubility during dilution 
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refolding was observed earlier with addition of low concentrations of urea or guanidinium 

hydrochloride [21, 22]. This might be due to non-specific interactions of refolding 

intermediates with the chromatographic resin preventing solubilisation effects normally 

occurring in free solution. Furthermore higher concentrations of urea lead to a slower 

refolding kinetic [8] which compensates for potential positive effects as the refolding process 

has to be elongated for improved yields. Analysis of lysozyme amount eluting preliminary in 

the refolding step at low ionic strength showed significantly increased elution with higher 

urea concentrations in the refolding buffer as depicted in Figure 9. Eluted lysozyme mass 

plotted in relation to the adsorber volume is approximately three fold higher at 2 M urea 

concentration than with 1 M urea. This effect is independent of the protein loading on the 

resin particles. The difference between 1 M urea and the absence of urea lies within the 

experimental error.  

 
Figure 9: Effect of urea concentration on the amount of preliminary eluted lysozyme in refolding buffer 

without NaCl addition. Refolding was performed on SP Sepharose FF with 50 mM potassium phosphate buffer, 

pH 8.  

 

Lower affinity of lysozyme and as a consequence desorption at low ionic strength can be 

explained by incomplete folding of the protein as already observed for isotherms from 

denatured protein. On the other hand we saw a correlation of active and soluble protein eluted 

with high salt conditions without urea which was explained by aggregation and non-specific 

binding of incompletely folded or misfolded protein. The results in this section show a 

combination of lower binding affinity of folding intermediates and an improvement of their 

solubility by addition of low urea concentrations. Protein elutes during refolding without high 

 192



 

ionic strength due to lower binding affinity of folding intermediates. These intermediates are 

not soluble without urea and as a consequence can not be eluted. As a conclusion also the 

analysis of protein folding effects on adsorption/desorption properties is possible in the 

developed batch matrix-assisted refolding process. 

 

3.2.3 Effect of Incubation Time during Solid Phase Refolding 

 
A critical parameter when designing refolding processes is the incubation time of denatured 

protein in refolding buffer systems. In order to elucidate this parameter dependency different 

incubation times of denatured protein in refolding buffer were assessed and protein eluted 

during the refolding step and total protein eluted in the refolding and elution step analysed.  

In figure 10 A the fraction of preliminary eluted lysozyme during the refolding step is plotted 

versus the incubation time in refolding buffer for two load concentrations 4 mg/ml and 2 

mg/ml.  

 
Figure 10: Effect of incubation time in refolding buffer for 2 mg/ml (■) and 4 mg/ml (□) load on A the protein 

fraction eluted during refolding without high ionic strength and on B the total eluted fraction during refolding at 

low and elution at high ionic strength . Refolding was performed on SP Sepharose FF with 50 mM potassium 

phosphate buffer, pH 8. Elution was performed with 50 mM potassium phosphate buffer, pH 8 and 1 M NaCl.  
 

The incubation time had an influence on the loss of protein in the refolding step decreasing 

with a factor of around 2 from 1 minute to 26 minutes for 4 mg/ml load and with a factor of 

3.4 for 2 mg/ml load. For the higher protein loading around 40 % higher fractions of 

lysozyme eluted during refolding in comparison to the lower protein load analyzed. In Figure 

10 B the overall fraction of eluted protein including the refolding and the elution step are 

plotted versus the time needed for the complete process until elution is completed. The first 
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time point in this figure corresponds to the first time point in Figure 10 A. As the loss during 

refolding for all incubation times was below 2.5 % no effect on the overall yield of refolded 

protein can be observed.  

An improved binding with longer incubation time in refolding buffer can be explained by a 

stronger binding affinity of completely refolded lysozyme in comparison to denatured 

lysozyme and an increasing fraction of the refolded species with time. As folding kinetics is 

described to be slower with higher protein concentrations the observed effect is stronger for 

higher protein loading. For BSA an increase in protein recovery and folding yield is observed 

with longer incubation times on an ion-exchange column supporting our results [2]. 

 

3.2.4 Effect of Buffer pH during Solid Phase Refolding 
 
The pH set during a refolding reaction mainly influences refolding performance. When the 

refolding process is performed in solid phase refolding mode, the pH also plays a major role 

determining the binding strength. To elucidate potential effects binding of denatured protein 

and refolding was performed in a pH range from pH 6 to pH 9 using 50 mM potassium 

phosphate.  

In Figure 11 average yields of eluted protein are depicted for every pH value for loadings 

between 2.5 and 22.5 mg/mlads.  

 
Figure 11: Effect of pH on the average yield of lysozyme eluted after refolding on SP Sepharose FF at loadings 

between 2.5 and 22.5 mg/mlads). The standard deviation for different loadings is given as error bars.  
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No significant difference could be observed for the yield of refolded protein at the four pH 

values. An effect of the net charge of lysozyme is possibly to small as lysozymes net charge 

only changes from 7.7 for pH 6 to 5.5 for pH 9 [23]. This finding agrees with our 

investigation on dilution refolding without addition of redox components where no 

dependency of yield on buffer pH could be found [17].  

 

4 Conclusions  
 

Protein binding of denatured protein on different ion exchange resins was characterized by 

automated measurement of adsorption isotherms and kinetics. Lower maximum capacities 

were observed for denatured lysozyme in comparison to native lysozyme and a BET shaped 

isotherm describing the obtained data points was used hinting at multilayer binding. 

Adsorption kinetics showed no significant difference for both species excluding a kinetic 

effect during isotherm assessment.  

The resin with the highest binding capacity, SP Sepharose FF, was used to establish an 

automated refolding process including a single step shift to refolding buffer and a subsequent 

elution with high ionic strength. Protein amenable to elute with high salt concentrations was 

identified to be completely folded by an integrated enzyme assay.  

It could be shown that lower protein loading leads to an increase in refolding yields. This 

corresponds to a correlation of high soluble protein yield and low initial protein 

concentrations in dilution refolding.  

Refolding buffer pH had no influence on the refolding yield in the investigated pH range 

between 6 and 9 which is consistent with refolding results in the dilution mode in the absence 

of redox components. Besides no significant shift in the net charge of lysozyme occurs in the 

analyzed pH range and consequently adsorption properties should stay constant. 

Interestingly even complex interactions between folding and adsorption/desorption processes 

became obvious during the screening of different incubation times in refolding buffer and 

different urea concentrations during refolding.  

Incubation time in refolding buffer was analyzed for its effect on overall yield of soluble 

lysozyme and lysozyme eluted early in the refolding step. Longer incubation decreased 

elution in refolding buffer assumedly due to a re-adsorption of native lysozyme with higher 

binding affinity after complete folding. 

Low urea concentrations of 1 and 2 M in refolding buffer did not lead to an improvement of 

overall soluble protein yield which is in contrast to described positive effects in dilution 
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refolding. Desorption of protein in refolding buffer was increased by increasing urea 

concentration hinting at slower folding kinetics in the presence of urea already described in 

literature.  
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4 Conclusions & Outlook 
 

Although a high demand exists for the development of automated high throughput methods 

for protein refold screening several challenges could not be met up to now which are in few 

words insufficient HTS compatibility of analytics and the use of protein specific methods to 

measure folding. As a result the most prominent objective was the validation of non-specific 

methods to quantitatively estimate refolding success and the implementation of these methods 

in the robotic workstation. Two approaches were identified to potentially meet the above 

criteria which were protein solubility and tryphtophan fluorescence. 

The development of analytical methods to measure protein solubility turned out to be 

complicated because of complex buffer matrices, low protein concentrations and protein 

structure variations interfering with commonly used techniques. Dye based assays and UV 

280 nm absorption revealed to be sensitive to either the presence of different protein folding 

states or to refolding buffer components like oxidizing or reducing reagents. Consequently 

automation of methods for buffer exchange like ultrafiltration, size exclusion chromatography 

and dialysis had to be validated. All approaches turned out to have some serious draw backs. 

Ultrafiltration led to a protein concentration and buffer dependent loss of protein whereas 

dialysis and size exclusion chromatography failed to separate protein from oxidizing reagents 

in a manageable time with robotic compatible equipment. As a conclusion soluble protein 

content in refolding screening samples could not be measured directly. Protein aggregates 

were measured instead to calculate the soluble protein concentration on the basis of mass 

balances. Aggregates were separated by filtration in 96 well filter plates and were afterwards 

resolubilized in denaturing buffer for absorption measurements at 280 nm. Measured samples 

exhibit no variations in protein structure and buffer composition which minimizes the number 

of blank and calibration samples. Besides the achieved automation and parallelization of the 

process it is completely independent of the refolding buffer systems screened which offers 

maximum flexibility in buffer design. 

Tryptophan fluorescence was chosen as second alternative to measure protein refolding 

success. Spectra of lysozyme could be easily measured in a 96 well plate photometer. As the 

red shift in fluorescence emission maximum from completely active to completely denatured 

protein is small an asymmetric Gauss fit had to be performed to calculate the exact emission 

intensity maximum. Single point measurements of tryptophan fluorescent showed a high 

sensitivity towards oxidizing reagents due to quenching by disulfide bonds and are thus not 

recommended for refolding screening.  
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A validation of protein solubility and tryptophan fluorescence to evaluate protein refolding 

systems is only possible if a reference method is available. In this study structural integrity 

was determined by means of a lysozyme activity assay. This standard assay detects a decrease 

in 595 nm absorption of a Micrococcus suspension up on lysis of the cell walls by lysozyme. 

Automation and parallelization could be performed in a 96 well plate format to provide the 

data basis for tryptophan fluorescence and solubility validation in a HTS approach.  

A process for protein refolding by dilution in different buffer systems was completely 

automated on a commercially available robotic pipetting station including preparation of 

refolding buffer from stock solutions. Instantaneous intense mixing of denatured protein in 

renaturation buffer was reached by shaking during addition and aspirating and re-dispensing 

of the sample. Incubation time was set at 1 h to obtain equilibrium of aggregates and soluble 

protein for analytics.  

In a validation screening 40 random refolding buffer systems were used consisting of buffer 

salts between pH 3 and pH 9, NaCl and MgSO4 between 0 and 150 mM, DTT as reducing 

agent between 0 and 10 mM and GSSG as oxidizing agent between 0 and 20 mM. Tryptophan 

fluorescence spectra, protein solubility and enzymatic activity were determined according to 

the above described procedures. The screening revealed a good correlation between buffer 

parameters resulting in high soluble and high active lysozyme yields. On the other hand 

tryptophan emission spectra in lysozyme refolding samples only covered a close range. This 

observation is likely due to a hydrophobic collapse of lysozyme being obligatory for protein 

solubility. Soluble protein will thus exhibit a rather uniform spectral behaviour corresponding 

to this kind of conformation. As a conclusion tryptophan fluorescence does not offer the 

needed resolution to estimate refolding success at least in the case of lysozyme. 

To guarantee for maximum reproducibility of refolding screening results significant 

parameters showing an effect on refolding yields have to be controlled. During validation runs 

the impact of differently denatured protein feedstocks on refolding yield and on favourable 

buffer composition for refolding was analyzed. Tryptophan fluorescence revealed to be a 

useful tool to measure unfolding kinetics during lysozyme feedstock preparation. The shift in 

emission maximum gives a quantitative measure of the denatured feedstock quality. 

Unfolding temperature, protein concentration and the molar ratio of reducing reagent and 

protein showed to have a detectable impact on denaturation kinetics.  

Two different denaturation protocols were used to prepared feedstock exhibiting differences 

in tryptophan fluorescence spectra. Both denatured protein species were applied in an equally 

designed refolding screening including 40 experiments. The denatured protein stock solution 
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showing a higher red shift in fluorescence emission resulted in lower yields of active and of 

soluble lysozyme. This discrepancy between the two different feedstocks was not due to 

residual active lysozyme after unfolding as it was not represented by a constant factor. 

Interestingly solubility is less affected from differences in protein denaturation than activity 

and the best experiments of both screening runs show a very similar parameter range. 

Consequently the formation of soluble lysozyme is less sensitive towards starting protein 

quality than is the formation of active lysozyme. Optimized parameters found by a screening 

with constant feedstock quality seem to be most suitable also if the feedstock preparation 

changes.   

The impact of a controlled redox environment was a second parameter investigated during 

screening validation. Screening runs were performed with and without addition of DTT and 

GSSG consisting each of 40 experiments. The addition of redox components was observed to 

be superior to air oxidation as higher refolding yields could be achieved in all measured buffer 

systems. Additionally the absence of a controlled redox environment led to a completely non-

systematic distribution of parameter values within the best refolding results. Without a 

correlation of screened parameter values and refolding yield a systematic optimization is 

impossible. The main reason for these unsatisfying results lies in slow oxygen transfer rates 

and the lack of HTS methods to control or at least measure dissolved oxygen in microtiter 

plates. Interestingly refolding samples without added redox components exhibited a higher 

variation in tryptophan fluorescence spectra which already hints at a higher molecular 

flexibility due to the lack of native disulfide bonds.  

After the technical basis for refolding screening was provided two different methods for 

intelligent experimental design were investigated: a genetic algorithm and a classical factorial 

design. Optimization of up to five parameters (pH, concentration of NaCl, MgSO4, DTT and 

GSSG) could be fully automated with the genetic algorithm including several rounds of 

experimentation, calculation of refolding yield and calculation of the next starting parameter 

matrix. A high data density is provided in the parameter range of interest close to the 

optimum. A full factorial design in the reduced parameter space close to the optimum is 

applied to confirm or refine the optimization. In our case the genetic algorithm did not lead to 

a global optimum for all parameters which could be revealed by the full factorial experiments. 

The algorithm is caught on a diagonal line between two parameters representing the molar 

ratio of oxidizing to reducing component or simply spoken the redox potential of the solvent. 

The linear recombination method of the genetic algorithm in combination with the chosen 

mutation rate likely accounts for these undesired effects. This knowledge offers the possibility 
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to adapt the GA parameters to the screening objective and points out the usefulness of an 

additional full factorial experiment.  

During the development of refolding screening methods the importance of protein solubility 

in refolding processes became prominent. Consequently an available HTS tool for the 

determination of protein precipitation curves was further improved in terms of throughput to 

characterize the effect of pH, temperature and different additives like PEG, sorbitol, sucrose 

or Tween 20 on the solubility behaviour of lysozyme. Measurement of lysozyme solubility in 

additive buffer mixtures resulted in complex solubility surfaces demonstrating interdependent 

effects of both solvent components. As these interdependent effects are not simply additive, 

optimization of such systems should always be performed in the presence of both substances. 

An additional observation was that the pH dependency of lysozyme solubility correlated with 

the calculated net charge of the molecule. Decreasing net charge at pH values in proximity to 

the isoelectic point led to increasing protein interactions. Repulsive forces thus seem to play a 

major role in protein solubility. 

A last part of this work dealt with the development of methods for optimization of solid phase 

refolding processes. An automated method for characterization of denatured lysozyme 

adsorption by isotherms and kinetics was established for resin screening in matrix-assisted 

refolding process development. A major problem was the liquid handling and mixing of 

viscous urea solutions, the resuspension of resin particles and the performance of a buffer 

exchange from denaturing to renaturing conditions. Different concentrations of denatured 

protein representing different points on the isotherm had to be mixed by pipetting the solution 

up and down several time. Mixing to homogeneity was not possible by orbital shaking only. 

Another problem is the resuspension of resin particles during adsorber loading which is only 

possible by orbital shaking in deepweel plates with a round bottom profile whereas flat 

bottom filter plates facilitate buffer exchange. As a consequence loaded adsorber particles had 

to be transferred to a filter plate with the tips of the liquid handling robot. Refolding is then 

initiated by a buffer exchange in the filter plates. The developed system allows for screening 

of refolding parameters like protein loading, residence time in refolding buffer and refolding 

and elution buffer composition.  

Binding of denatured lysozyme on ion exchange resins turned out to be weaker than binding 

of native lysozyme and exhibited a BET shaped isotherm hinting at multilayer binding. The 

disintegration of charged patches by unfolding and the stretched molecular structure with 

solvent exposed hydrophobic residues presumably accounts for these observations.  
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An additional discovery was that refolded lysozyme amenable to elute from a strong cation 

exchange adsorber at high ionic strength is completely active whereas misfolded or 

aggregated protein can only be eluted in denaturing buffer conditions. These results hint at 

different adsorption mechanisms of the different protein species.  

 

Future work should focus on the validation of the established high throughput screening 

method with a real inclusion body system. Inclusion body solubilisation parameters could be 

additionally performed and optimized on the robotic workstation. 

Scale-up studies for the optimization of dilution refolding process parameters like the 

injection rate of denatured protein and mixing could be performed in a second development 

step.  

An additional screening task for evolutionary optimization would include the addition of 

frequently used additives to improve solubility and folding in protein refolding. 

Combinatorial effects between additive concentration and other solvent components could be 

revealed and optimized up to our knowledge for the first time in parallel.  

As redox components are expensive, relatively instable at room temperature and have to be 

removed, air oxidation is still an interesting alternative for refolding of disulfide bonded 

proteins though control of the redox potential is difficult. The concentration of divalent ions is 

as important for air oxidation as mass transfer from the gas to the liquid phase and the 

temperature. Process optimization on this field would give a deeper insight into the effects of 

these parameters and might lead to faster process design of economically superior processes 

without added disulfide components.  

On behalf of on column refolding optimization on the robotic platform robotic column 

systems could be used to screen for parameters like urea gradient slope and elution flow 

velocity.  

The automated determination of precipitation curves could be improved by acceleration and 

control of liquid evaporation and temperature using a vacuum evaporator. The detection of 

soluble aggregates could be performed by dynamic light scattering measurements already 

hinting at potential aggregation at early time points. This would improve the stability of 

solutions subsequently prepared below the solubility curve.  
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