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Abstract—The paper describes a dual-polarized antenna array
for Impulse Radio Ultra Wideband (IR-UWB) applications.
Firstly a brief description of the single radiator is given. Next the
prototype is presented and measured data is compared with the
simulated one. The linear array consisting of four components
achieves a very narrow mean 3 dB beam width, which is approx.
15

∘ in the FCC frequency range from 3.1 GHz to 10.6 GHz. The
second main lobe of the array factor and the grating lobes are
suppressed by the radiation pattern of the single element. The
mean cross-polarization suppression in the main beam direction
is larger than 20 dB. Next the simulated and measured time
domain radiation properties of the antenna array are presented.
The array is applicable in the polarimetric, impulse based ultra
wideband systems with high angular selectivity and high range
resolution.

Index Terms—Antennas, Arrays, UWB, polarization diversity.

I. INTRODUCTION

One of the remarkable advantages of the Impulse Radio

Ultra Wideband (IR-UWB) system is a very large bandwidth.

In the regulation defined originally by FCC [1] it covers

the frequencies from 3.1 GHz to 10.6 GHz. Such bandwidth

allows for a very fine resolution in e.g. Radar [3], where

the range resolution increases directly with the increasing

bandwidth. However there is a limited number of the antenna

types, which are able to radiate over the relative bandwidth

of approx. 100 %. Additionaly for the operation in IR-UWB

there are several additional requirements on the antenna, which

have to be fulfilled, when working with very short pulses.

One of them is geometrical constancy of the phase center of

radiation in the considered frequency range. The variation of

the phase center distorts the pulse, what decreases the possible

resolution.

Since many objects scatter the electromagnetic wave differ-

ently for the different polarizations, it is possible to increase

the performance of the radar or imaging system by an ap-

plication of a polarization diversity [5]. For this reason dual-

orthogonaly polarized UWB antennas are needed. The main

requirements for the antennas are the sufficient impedance

matching, the proper radiation pattern for the intended ap-

plication, the phase center of radiation, which is constant

over frequency and is the same for both polarizations. For

a polarimetry a good polarization decoupling in a far-field

is required. In the radar the directive antennas with a small

beamwidth are desired. In the literature there are presented

only few candidates for such antennas [6], [7], [8], so there

exist still a research need on the antennas for IR-UWB. For an
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increase of the angular resolution the antenna arrays introduce

a solution [4]. The array should radiate with one main beam

and low grating lobes over the desired bandwidth. For this

reason small and possibly directive antennas are needed. Since

the literature does not introduce many solutions for the given

task, in this paper the dual-polarized antenna array for the IR-

UWB with small beamwidth and high polarization purity is

presented.

The paper is arranged in the following way. In the section

II the single array element is briefly introduced. In the section

III a simulation model of the radiation from the antenna array

is described. In the section IV the results obtained from the

measurements and simulations are shown for the frequency

and the time domain. Finally the conclusions are given.

II. SINGLE RADIATOR

The dual-polarized antenna element is manufactured in

planar technology. It consists of an array of broadband

monopoles. The elements are surrounded by a ground plane

formed to a circle as shown in Fig. 1. To achieve a single

linear polarization two oppositely placed monopoles have to

be excited simultaneously. In order to excite a desired mode

in the antenna the monopoles have to be excited with out-of-

phase signals. In order to obtain the vertical polarization the

orientation of the electric field vectors at the feeding points has

to be as indicated by the arrows in Fig. 1. For the horizontal

polarization the two orthogonal monopoles have to be excited

analogously to the described scheme.

Due to the symmetry of the antenna around the center point

the eqivalent planes for both polarizations maintain the same

radiation properties. The phase center of radiation for the

both polarizations is in the same geometrical point, which

is the middle of the structure. An equal phase center for

both polarizations is important in order to guarantee the same

radiation conditions for both polarizations. The phase center

of radiation does not change its position over the frequency.

This is vital for the IR-UWB systems.

In one half-space of the antenna the feeding networks are

placed. Both, feeding networks and antenna are etched on the

subtrate Duroid 5880 with the relative permittivity �r = 2.2
and the thickness ℎ=0.79 mm. The input signal is fed to the

microstrip line. Next the signal is split with a 3dB - power

divider. The microstrip lines are tapered to the modified slot

lines which are directly soldered to the feeding points of the

single monopoles. The layouts of the feeding networks are

shown in Fig. 2. The both feeding networks must be crossed

in order to feed orthogonal polarizations. This would result

in an intersection of the power dividers. For this reason a

vertical disalignment of the power dividers must have been
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performed. The feeding networks are soldered perpendicularly

to the antenna surface.

Since the radiation of the antenna is symmetrical to the

antenna surface, the feeding network is directly illuminated by

the radiated signal. It results in a reflection and scattering of

the signal, which generate contributions in an uncontrollable

polarization. In order to overcome the problem the part of

the energy radiated in the direction of the feeding network is

absorbed. A photo of the resulting antenna is shown in Fig.

3, where four elements are arranged in an array.

In order to evaluate the antenna properties the transfer

function HAnt(t, �,  ) of the device must be measured. For

this purpose the transmission S21(f, �,  ) from the antenna

under test AUT to the reference antenna in an anechoic

chamber was measured with a VNA. The network analyser was

calibrated with the reference points beeing the inputs of the

AUT and the reference antenna. The measured transmission

factor S21(f, �,  ) is a product of the transfer function of

the antenna under test HAnt(f, �,  ),j!, free space propa-

gation and of the transfer function of the reference antenna

Href (f, �,  ).

S21(f, �,  ) = HAnt(f, �,  ) ⋅
j!e−

j!r

c0

2�rc0
⋅Href (f, �,  ) (1)

With the formula HAnt(f, �,  ) can be obtained. From

the complex transfer function all radiation properties of the

antenna can be derived. The gain G(f, �,  ) is calculated with

the following formula [9], [10]

G(f, �,  ) =
4�f2

c2
∣H(f, �,  )∣2 (2)

The radiation pattern C(f, �,  ) is calculated as follows

C(f0, �,  ) =
H(f0, �,  )

Hmax(f0, �,  )
(3)

The gain G in the H-plane over frequency f is shown in

Fig. 4(b). The radiation pattern of the antenna is very stable

over the frequency and is directive. No sidelobes are present.

The characteristic is nerly symmetrical w.r.t. the main beam

direction.

For the IR-UWB systems the impulse response ℎ(t, �,  ) is

a quantity that described the transient behavior of the antenna.

It is expected that is as short as possible and shows no

oscillations after the main pulse. The impulse response can

be obtained by the Fourier transform of the transfer function

H(f, �,  ) [11].

ℎ(t, �,  ) = ℱ−1 {H(f, �,  )} (4)

The impulse response of the antenna ℎAnt(f, �,  ) is shown

in Fig. 7(a). The length of the impulse response is very short,

which yields the small distortion of the radiatied signal. Short

length of the pulse is a result of the high stability of the phase

center of radiation over the frequency. Some weak ringing

after the main pulse is present. It is a result of the reflection

of the signal from the feeding network, which could not be

absorbed. The delay caused by the antenna is very stable over

Fig. 1. Photo of the radiating section of the dual-polarized UWB antenna.

Fig. 2. Layout of the feeding networks for both polarizations. (up - top and
bottom view of the feeding network for vertical polarization; down - top and
bottom view of the feeding network for horizontal polarization)

the angle �, which confirms the high stability of the phase

center of radiation over the geometrical dimensions.

The measurements for the orthogonal polarization show

very similar behavior. The only differences are in the slightly

different gain, due to the different arrangement of the feeding

network for both polarizations. For this reason in the following

the results only for one polarization are introduced.

III. RADIATION PATTERN OF AN UWB ANTENNA ARRAY

The arrays, that are considered here are linear arrays with

equal excitation at each element. In order to calculate the

radiation pattern of an array the following input data must

be specified:

∙ transfer function of the single element HAnt(f, �,  )
∙ number of elements in the array N
∙ distance between the elements d
∙ complex transfer function of the feeding network (power

divider and connecting cables) Hfeed(f)

A. Array Factor

The complex normalized array factor is calculated by the

following formula [2]:

Fig. 3. Photo of the UWB 4x1 Antenna array with power divider.
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AF (f, �,  ) =

N−1

2∑
i=−

N−1

2

1√
N

⋅ e−j�0(ri−r0)

=

N−1

2∑
i=−

N−1

2

1√
N

⋅ e−j�0idcos(�)sin( ),

(5)

where ri is the distance of the ith element to the observation

point in the far field, r0 is the distance of the center of the array

to the same observation point in the far field, N is number of

elements in the array, d is the distance between the elements,

�0 = 2�/�0 = 2�f/c0, �0 is the free space wavelength, f is

the frequency and �,  are the azimuth and elevation angles,

respectively.

The here considered antenna array is a one dimensional

linear antenna array and for this reason only one dimensional

array factor will be considered ( = 90∘). The amplitude

distribution of the array factor AF (f, �,  = 90∘) over

frequency is shown in Fig. 4(b). The four element array and

the distance d between the elements of 40 mm is assumed. The

distance d is equal to the transversal dimension of the single

antenna and is mandatory the minimal distance between the

elements in the array.

The resulting transfer function of the array Har(f, �,  ) is a

multiplication of the array factor AF (f, �,  ) and the transfer

function of the single element HAnt(f, �,  ). If the antenna

has a directive radiation pattern it is possible to supress the

main lobe in the direction 180∘ and the grating lobes. This

allows for the operation with single, narrow lobe. The resulting

radiation pattern includung the effects of the feeding network

is shown in Fig. 4(c) and discussed in the next section.

B. Transfer function of the feeding network

The here considered feeding network consist of the 4x1

power divider and the connecting cables. The signal propa-

gating through the feeding network experiences a delay and

attenuation. The losses and the delay can be included in the

simulation by the capturing of the complex Sx1(f) parameters,

where x(= 2, 3, 4, 5) stands for the one of the four outputs of

the feeding network and x = 1 is the input of the power

divider.

The transfer function of the feeding network Hfeed(f) is

Hfeed(f) = Sx1 ∗
√
N, (6)

where Sx1 stands for the S-parameter between the input and

xth output, N stands for the number of outputs. It describes

the overall available amplitude and phase at the outputs of the

feeding network. It models the losses in the feeding network,

as well as the delay caused by it. In the simulation the

reflections at the interface feeding network - antennas are

neglected.

C. Transfer function of the array

The transfer function of the antenna array is calculated with

the following formula:

Har(f, �,  = 90∘) =

HAnt(f, �,  = 90∘) ⋅AF (f, �,  = 90∘) ⋅Hfeed(f).
(7)

Har(f, �,  = 90∘) is complex and characterizes fully the

radiation from the antenna array in the considered frequency

range for the specified direction. From this parameter both the

frequency as well as time domain radiation parameters can be

derived (see sectionII.

The power divider was etched on the subtrate Duroid 5880,

thickness ℎ=0.78 mm, relative dielectric constant �r=2.2 . The

connecting cables are Sucoform 86 cables with the propagation

velocity vr beeing 71 % of the velocity of light. To prevent

a radiation from the power divider, it was covered with an

absorber and metallic sheet. The photo of the prototype is

shown in Fig. 3.

IV. RESULTS

A. Frequency domain

The simulated and measured frequency domain results of

the antenna array are presented in this section. In Fig. 4(a) the

measured gain of the single element is presented. In the Fig.

4(b) the array factor calculated accordingly to the formula (5)

is shown. The Fig. 4(c) shows the simulated gain of the array

calculated with (7). For the comparison the measured gain of

the array is presented in Fig. 4(d).

The array radiates with a narrow beam. The beamwidth

gets narrower with the increasing frequency. The mean 3 dB

beamwidth is approx. 15∘. The gain in the main beam direction

is relatively constant. The second main lobe was suppressed

by the pattern of the single element. The grating lobes are

also attenuated and only at higher frequencies some stronger

radiation outside the main beam is present.

In the polarimetric systems a polarization decoupling is

crucial. It is expected, that the polarization decupling in the far-

field of the antenna is as high as possible. The antenna array

has very low cross-polarization components, which are pre-

sented in Fig. 5. Comparing to Fig. 4(d) it can be noticed that

the cross-polarization is suppressed w.r.t. to the co-polarization

by approx. 20 dB (note the scale). Only at higher frequencies

some stronger unsymmetrical radiation occurs. It is due to the

stronger cross-polarized radiation of the single element in this

region. However since in the IR-UWB the whole bandwith

is occupied by the pulse at the same time during radiation,

this does not introduce an important drawback for the array

characteristics.

For pulse radiating antennas a one single value characteriz-

ing an amplitude for the given direction is advantageous. Such

quantity is e.g. the mean gain Gm. It is an arithmetical mean

of the gain over the given frequency range in the specified

direction.

Gm(�,  ) =
1

f2 − f1

∫ f2

f1

G(f, �,  )df (8)

The measured and simulated mean gain Gm for the co

and cross-polarization in the H-Plane is shown in Fig. 6. The

maximal value of the mean gain reaches approx. 7.2 dBi. This
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(a) Measured gain G of the single array element over angle � and
frequency f.

(b) Array factor AF(f,�) of the 4x1 antenna array with distance between
the elements of 40 mm over angle � and frequency f.

(c) Modeled gain G(f,�) of the 4x1 antenna array in Fig. 3 over angle
� and frequency f.

(d) Measured gain G(f,�) (Co-Pol) of the 4x1 antenna array in Fig. 3
over angle � and frequency f.

Fig. 4. Modeled and measured data of the frequency domain parameters.

Fig. 5. Measured gain G(f,�) (X-Pol) of the 4x1 antenna array in Fig. 3 over
angle � and frequency f.

is more than 3 dBi more than the mean gain of the single

element. From the array theory, by the application of four

elements, the gain of the array should be 6 dB higher than

of the single element. Here it is not the case because of the

additional losses in the feeding network (power divider and

50 cm long cables). These losses are included in the modeled

data.

The side lobes occur near the main lobe and are suppressed

by approx. 15 dB. The mean cross-polarized gain in the main

beam direction is decoupled from the co-polarized one by

more than 20 dB, which is sufficient for an UWB polarimetry.

The additional measurement showed, that the coupling

between the elements in the array is in the average lower than

20 dB. This explains a good agreement between the simulated

and measured data. Merely for the cross-polarization some

differences can be seen. This can be explained by the fact, that

in the model all elements are assumed to be exactly the same.

In the reality the elements differ slightly from each other.

B. Time domain

The impulse response can be derived from the frequency

domain measurements in the way described in section II.

The result obtained for the single array element for vertical

polarization (Co-Pol) in the H-Plane is shown in Fig. 7(a).



INTERNATIONAL CONFERENCE ON ULTRA WIDEBAND 2009 5

−150 −100 −50 0 50 100 150
−30

−25

−20

−15

−10

−5

0

5

10

angle θ in deg

m
e

a
n

 g
a

in
 G

m
 i

n
 d

B
i

 

 

Co−Pol (Sim)

X−Pol (Sim)

Co−Pol (Meas)

X−Pol (Meas)

Fig. 6. Mean gain Gm(�) (Co and X-Pol) of the 4x1 antenna array in Fig.
3 over angle �.

The impulse response of the 4x1 linear array for the same

plane calculated accordingly to the model in section III is

presented in Fig. 7(b). A significant improvement of the an-

gular resolution can be noticed. The maximum of the impulse

response is exactly in direction 0∘ and equals 0.32 m/ns. Aside

from the 0 degree direction four paths in each direction can

be observed. They come from the radiations from the single

antenna elements. It can be noticed that for the linear array

with directive array elements there exist only one direction

of coherent radiation (0∘). In all other angles the pulses from

the single array elements can be resolved. It means that for

the signals, of which bandwidth is large enough, there is no

grating lobes effect. However the increasing distance between

the elements causes a spread of the radiated pulse over the

time. The spread is maximal for the direction +/− 90∘. It can

be shortened by the filtering of the array impulse response by

the impulse response of the single element. Remarkable is the

delay difference caused by the single antenna and the array.

The additional delay of approx. 3 ns is due to the delay of

the signal in the feeding network (cf. Fig. 3). The physical

length of the feeding network is more than 60 cm. The signal

is additionaly delayed by the lower propagation velocity in the

medium.

The measured UWB array impulse response is presented

in the Fig. 7(c). The amplitude of the measured impulse

response differs only slightly from the simulated one. The

effect of resolving of the single pulse from the array elements

was predicted correctly. Also the additional delay due to the

feeding network complies with the measurements.

V. CONCLUSIONS

In this paper a dual-orthogonal polarized, linear antenna

array consisting of four elements for the IR-UWB applications

is described. The gain of the array in the main beam direction

is relatively constant and its mean value is 7.2 dBi. The mean

3 dB beamwidth of the main lobe is approx. 15∘. The second

main lobe and the grating lobes are extensively suppressed

by the directive radiation pattern of the single array element.

The polarization purity of the signal radiated from the array

is very high. The mean decoupling of the polarizations in the

far field is higher than 20 dB. The antenna has a very short

impulse response, with high angular selectivity. The maximal

peak value of the impulse response is 0.32m/ns. With its

very good performance, the presented dual-polarized UWB

antenna array introduces a solution for fully polarimetric IR-

UWB systems, where a high angular resolution is needed, e.g.

Radar.
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(a) Measured impulse response h(t,�) (Co-Pol) of the single array
element over angle � and time t.

(b) Modeled impulse response har(t,�) (Co-Pol) of the 4x1 antenna
array in Fig. 3 over angle � and time t.

(c) Measured impulse response har(t,�) (Co-Pol) of the 4x1 antenna
array in Fig. 3 over angle � and time t.

Fig. 7. Modeled and measured data of the time domain properties.


