
Approximate Assertional Reasoning
Over Expressive Ontologies

Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultät für
Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Inform. Tuvshintur Tserendorj

Tag der mündlichen Prüfung: 27. Januar 2010

Referent: Prof. Dr. Rudi Studer

Korreferent: Prof. Dr. Detlef Seese

Prüfer: Prof. Dr. Karl-Heinz Waldmann

Karlsruhe 2010

2

Abstract

In the Semantic Web, ontologies provide the required vocabulary for a meaningful
and machine-understandable interpretation of data. Nowadays, expressive ontolo-
gies are usually written in the W3C standard language called the Web Ontology Lan-
guage (OWL). In order to leverage the full power of OWL for emerging Semantic Web
applications, ontology reasoning holds a key position by allowing access to implicit
knowledge in ontologies. Analyzing the application domain of state-of-the-art OWL
reasoning techniques, an important issue to be considered is the problem of scalable
assertional reasoning over expressive ontologies with large terminological as well as
assertional knowledge – a computationally intractable problem.

In this thesis, we address this issue by means of logical approximation. Subse-
quently, we provide approximate reasoning methods for scalable assertional reason-
ing whose computational properties can be established in a well-understood way,
namely in terms of soundness and completeness, and whose quality can be analyzed
in terms of statistical measurements, namely recall and precision. The basic idea of
these approximate reasoning methods is to speed up reasoning by trading off the
quality of reasoning results against increased speed.

The various aspects of this thesis span the fields of knowledge compilation, query
answering, and resource-bounded reasoning. In the context of knowledge compila-
tion, exploiting the fact that data complexity is polynomial for non-disjunctive dat-
alog, a knowledge compilation technique with different useful approximations has
been created, which allows tractable assertional reasoning. The logical properties,
such as soundness and completeness, of these approximations have been investigated
and a comprehensive evaluation using well-known benchmark ontologies has been
conducted.

Regarding query answering, a fast approximate reasoning system for instance re-
trieval has been developed. A central aspect of this approach is the approximate
semantics for computing the approximate extensions of a complex concept expres-
sion. Based on this semantics, several algorithms have been developed that allow for
scalable instance retrieval. In the context of resource-bounded reasoning, a combi-
nation of approximate reasoning algorithms has been examined by providing solid
formal foundations for the assessment and comparison of approximate reasoning al-
gorithms.

Finally, an approximate ontology reasoning framework has been devised, which
enables scalable assertional reasoning over expressive ontologies by loosely integrat-
ing the approximate reasoning solutions developed in this work.

4

Acknowledgements

Foremost, I would like to express my gratitude to my advisor, Prof. Dr. Rudi Studer
for giving me the opportunity to work in a very fruitful and stimulating working
atmosphere and to do this research. I am also extremely grateful for his commitment
to review this thesis despite his busy schedule.

I would also like to thank Prof. Dr. Detlef Seese without hesitation, accepted
the request to serve on the examination committee as second reviewer and provided
detailed and valuable technical feedback. Many thanks to Prof. Dr. Karl-Heinz Wald-
mann and Prof. Dr. Christian Hipp who served on the examination committee as
examiner and chairman, respectively.

The research reported herein would not have been possible without my supervi-
sors Prof. Dr. Pascal Hitzler and Dr. Stephan Grimm. I warmly thank Pascal for
continuous support over the past years, and Stephan for extensive discussions, in-
sightful comments, and ideas. Hitzler’s tolerance combined with brilliance has been
a major yardstick for me.

Thanks to the “Semantic Karlsruhe Team” that consists of all my colleagues at
the Institute AIFB, the FZI research center and at Ontoprise GmbH, for providing a
very fruitful and stimulating working atmosphere – even after work. In particular
I thankfully mention Andreas Abecker, Sebastian Rudolph, Joachim Kleb, Markus
Krötzsch, Jürgen Bock, Andreas Walter, Jens Wissmann, Mark Hefke and Hans-Jörg
Happel for valuable comments and ideas.

My parents living inMongolia receivemy deepest gratitude and love for themany
years of support and especially for always believing in me. Last, but not least, I thank
my wife Tumee who gave me love and support for realizing this work. I also thank
her for accepting the lost time on all the weekends that we could have spent together
while I was working on this thesis. And my little son who always reminds me that
there is something else to live for...

Karlsruhe, January 2010
Tuvshintur Tserendorj

6

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Research Questions and Goals . 3
1.3 Overall Approach . 4

1.3.1 Knowledge Compilation Method 5
1.3.2 Query Approximation . 5
1.3.3 Anytime Reasoning and Combination 6
1.3.4 Methodology on Benchmarking Approximate Reasoning 6

1.4 Contributions . 7
1.5 Thesis outline . 7
1.6 Publications . 9

I Foundations 11

2 The Semantic Web and Ontologies 13

2.1 The Semantic Web Vision . 13
2.2 Ontology Languages for the Semantic Web 17

2.2.1 Resource Description Framework (RDF) 17
2.2.2 Web Ontology Language (OWL) 18

2.3 Other Ontology Formalisms and Tools 21

3 Description Logics 25

3.1 Basic Notions . 25
3.2 Expressive Description Logic SHOIN 28
3.3 DL Reasoning Problems . 30
3.4 DL Reasoning Complexities . 31

4 Logic Programming, Relational and Deductive databases 33

4.1 Logic Programming . 33
4.2 Relational Databases . 35
4.3 Deductive Databases . 36

ii CONTENTS

II Approximate Reasoning For the Semantic Web 39

5 A Foundation of Approximate Reasoning Research 41

5.1 Motivation . 41
5.2 A Mathematical Framework for the Study of Approximate Reasoning . 43

5.2.1 Comparing Algorithms After Termination 46
5.2.2 Anytime Behaviour . 47

5.3 State-of-the art of Benchmarking . 48
5.4 Benchmarking of Approximate Instance Retrieval Algorithms 49
5.5 Requirements For an Automated Benchmarking Framework 50

5.5.1 Requirements For Measuring Performance 51
5.5.2 Requirements For Measuring Soundness and Completeness . . 52

5.6 Conclusions . 53

6 Knowledge Compilation 55

6.1 Principle Idea of Knowledge Compilation 55
6.2 A Classification of Knowledge Compilation Methods 57

6.2.1 Exact Knowledge Compilation 57
6.2.2 Approximate Knowledge Compilation 58

6.3 Approximate Reasoning with SCREECH 60
6.3.1 The KAON2-Transformation . 60
6.3.2 From Disjunctive Datalog to Horn Clauses 61
6.3.3 A Simple Example . 64

6.4 Variants of Screech . 65
6.5 Experimental Results . 69
6.6 Conclusions . 77

7 Query Approximation 81

7.1 Approximation of Instance Retrieval . 81
7.2 Notion Of Approximate Extension . 82
7.3 Computing Approximate Extensions . 85

7.3.1 System Architecture . 85
7.3.2 Delegation of Computation to Database 87
7.3.3 In-memory Computation . 89
7.3.4 Example of Computing the Approximate Instance Extension . . 91

7.4 Experimental Results . 92
7.4.1 Test Data . 92
7.4.2 Results . 93

7.5 Extensions . 97
7.5.1 Combination with Knowledge Approximation 98
7.5.2 Parallel Computation of Atomic Extensions 98
7.5.3 Incremental Maintance of Materialised Knowledge Bases 100

7.6 Conclusion . 102

CONTENTS iii

8 Composed Anytime Algorithms 105

8.1 Resource-bounded Reasoning and Anytime Algorithms 105
8.2 Concept of Composed Algorithms . 107
8.3 An Example of the Composed Algorithms 109
8.4 Composed Anytime Reasoners . 112

8.4.1 SCREECH-Anytime . 112
8.4.2 AQA-Anytime . 114

8.5 Conclusion . 115

III Implementation and Applications 117

9 Implementation 119
9.1 General Architecture . 119
9.2 Implementation of the SCREECH Approach 121
9.3 Implementation of the AQA Approach 123

9.3.1 Computation Of Approximate Extensions 123
9.3.2 Embedding DL Reasoners and Databases 125
9.3.3 Applying Knowledge Compilation 125

9.4 Anytime Reasoning Component . 127
9.5 Automated Benchmarking . 128

9.5.1 Query Generation . 130
9.5.2 Ontology Population . 132
9.5.3 Histogram Generation . 133

9.6 Conclusion . 135

10 Applications 137

10.1 The THESEUS Project . 137
10.2 Reasoning Brokerage . 138
10.3 Implementation Of Reasoning Brokerage 141

10.3.1 Broker Strategies . 141
10.3.2 User interface . 143
10.3.3 Integration of Anytime Reasoners 147

10.4 Further Potential Applications . 149
10.5 Conclusion . 150

IV Finale 153

11 Related Work 155

11.1 Approximate Reasoning in the Semantic Web 155
11.2 Evaluation of Reasoning Systems . 161

iv CONTENTS

12 Conclusion and Outlook 165

12.1 Summary of the Thesis . 165
12.1.1 State of the Art of Expressive Reasoning Techniques 165
12.1.2 Knowledge Compilation . 166
12.1.3 Approximate Query Answering 167
12.1.4 Evaluating Approximate Reasoning Systems 168
12.1.5 Development of Composed Anytime Algorithms 168

12.2 Further Work . 169

V Appendix 173

13 Appendix A 175
13.1 Used Data Structures . 175

14 Appendix B 177

14.1 Detailed Evaluation Results . 177

List of Figures

6.1 A classification of knowledge compilation methods 57
6.2 KAON2 approach to reasoning . 60
6.3 Example ontology . 65
6.4 Distributions of the performance gain of SCREECH variants compared

to KAON2 and the corresponding cumulative percentages. Test ontol-
ogy: GALEN . 72

6.5 Distributions of the performance gain of SCREECH variants compared
to KAON2 and the corresponding cumulative percentages.Test ontol-
ogy: DOLCE . 74

6.6 Distributions of the performance gain of SCREECH variants compared
to KAON2 and the corresponding cumulative percentages. Test ontol-
ogy: WINE . 75

6.7 Distributions of the performance gain of SCREECH variants compared
to KAON2 and the corresponding cumulative percentages. Test ontol-
ogy: SEMINTEC . 77

6.8 Distributions of the performance gain of SCREECH variants compared
to KAON2 and the corresponding cumulative percentages. Test ontol-
ogy: VICODI . 78

7.1 A hierarchy of the AQA variants for computing approximate extensions 85
7.2 An overview of the AQA system architecture 86
7.3 An example of computing the approximate instance extension in the

variant with offline processing . 91
7.4 Measured performance of KAON2 and AQA with ψincremental over 107

∃-queries . 102

8.1 Defect over time . 111
8.2 A combination of the three SCREECH approximate algorithms 113

9.1 AORW system architecture . 120
9.2 A Class diagram for the SCREECH component 122
9.3 A Class diagram for the AQA component 126
9.4 A Class diagram for the generic anytime reasoning component 128

vi LIST OF FIGURES

9.5 A Class diagram for the automated benchmarking tool 130

10.1 Overview of the HERAKLES plug-in . 139
10.2 The result for the class named Chardonnay obtained by the SCREECH-

Anytime reasoner . 146
10.3 The result for the complex query obtained by the AQA-Anytime reasoner147
10.4 Remote Architecture of the SCREECH-Anytime reasoner within the rea-

soning broker system HERAKLES . 148

List of Tables

2.1 OWL 1.0 species . 19

3.1 Syntax rule in the language AL . 26
3.2 Description logic variants [BCM+03] . 26
3.3 Axioms in SHOIN : αT, αR and αA denote axioms 29
3.4 Model-theoretic semantics for SHOIN descriptions 30
3.5 Complexity of Satisfiability for S languages 31

5.1 Well-known benchmark ontologies used for evaluating ontology rea-
soning systems [Mot06] . 49

6.1 SCREECH variants and their basic properties 67
6.2 Statistics of test ontologies . 70
6.3 Statistics of the disjunctive datalog programs obtained by KAON2-

Transformation and the screeched versions 70
6.4 Summary of the three SCREECH versions on GALEN 71
6.5 Summary of the three SCREECH versions on DOLCE 73
6.6 Summary of the three SCREECH versions on WINE 75
6.7 Summary of SCREECH on SEMINTEC – note that all three versions of

SCREECH coincide, since no disjuntive rules are produced by the trans-
lation . 76

6.8 Summary of SCREECH on VICODI – note that all three versions of
SCREECH coincide, since no disjuntive rules are produced by the trans-
lation . 78

6.9 Overview of SCREECH evaluations. Mark that for due to the complete-
ness of SCREECH-ALL, the recall values are always 100% as well as the
precision values for SCREECH-NONE due to its soundness 79

7.1 Definition of an approximate extension. A stands for atomic classes
while C and D stand for complex (non-atomic) classes. R stands for
roles and n for a natural number . 83

7.2 Mapping of DL concept expressions to relational algebra expressions . 88

viii LIST OF TABLES

7.3 Summary of the performances measured for the offline and database
variants, summarized over all considered queries. tdb gives the runtime
for the database variant, toffline gives the runtime for the offline variant
while tkaon2 gives the runtime of KAON2 – these times are in ms and
are the sums over all considered queries 94

7.4 Summary of the quality of AQA approximation, summarized over all
considered queries . 94

7.5 Overview on the degree of completeness and soundness, summarized over

all considered queries . 96
7.6 Measured performance for quering 100 ⊔ queries over wine ontology

with different TBoxes . 96
7.7 Approximate extensions of complex queries 97
7.8 Running times (ms) obtained for complex queries 97

9.1 The design patterns used for developing the AORW framework 121
9.2 A population algorithm for SHOIN : KB is a SHOIN knowledge

base. KBT , KBR and KBA are the respective TBox, RBox and ABox in
KB. α stands for axioms in KB . 133

9.3 A renaming algorithm for SHOIN : ◦ is a generic concatenate func-
tion. a1 and a2 are individuals. C and D stand for complex concepts
while r, r1 and r2 stand for roles. K stands for a natural number. The
formal syntax of SHOIN is discussed in Chapter 3 134

10.1 The Manchester OWL Syntax for writing class expression 145

14.1 Detailed experimental results for ∃-queries. 178
14.2 Detailed experimental results for ∀-queries. 184
14.3 Detailed experimental results for ⊔-queries. 188
14.4 Detailed experimental results for ⊓-queries. 193

Chapter 1

Introduction

In this chapter we position our work and outline the contents of the thesis. We explain
our motivation, which is to develop approximate solutions for query answering over
expressive ontologies with large terminological and assertional knowledges. We list
the main results of the thesis.

1.1 Motivation

As a worldwide network of information exchange and business transactions, the
World Wide Web (WWW) has drastically changed the availability of electronically
accessible information. Today, with growing contents in various languages and fields
of knowledge, the WWW contains enormous amounts of data which are consumed
by billions of people. However, the web data are not structured in such a way that
machines can understand and process them automatically. As a result, locating and
accessing information or resources on the Web is very difficult, search engines do not
understand the context of the data they are indexing and storing, search results are
often unsatisfactory, and require further human efforts. Thus, in the long run, it is
extremely difficult to make use of data on the Web without explicit meaning.

The Semantic Web is a vision for the future of the Web in which data or infor-
mation is given explicit meaning. This idea refers to metadata making it easier for
machines to automatically process and integrate information available on theWeb. In
contrast to other initiatives towards metadata, the Semantic Web provides a declara-
tive way to present metadata by means of ontologies. With the use of expressive on-
tologies and sophisticated reasoning solutions, intelligent search could be performed.
Search engines become more effective than they are now, and users can find the pre-
cise information they are searching for. For this purpose, the World Wide Web Con-
sortium (W3C) has standardized the Web Ontology Language (OWL).

The logical foundation of OWL is formed by a subset of first-order logic called
Description Logic (DL) – a family of knowledge representation. Due to its nature of

2 INTRODUCTION

decidability, Description Logics (DLs) have proved useful in a wide range of applica-
tions in computer science regarding knowledge representation formalism.

In order to leverage the full power of OWL for emerging Semantic Web applica-
tions, ontology reasoning holds a key position by allowing access to implicit knowl-
edge in ontologies. Ontology reasoning for OWL is supported by DL reasoning ser-
vices, for which there exist two main reasoning approaches for expressive ontologies.
Tableaux-based methods [SSS91] implemented in tools such as Pellet [SPG+07] and
Racer [HM01a, HM01b] have been shown to be efficient for complex terminological
reasoning. Though expressive DLs are supported, they are limited with respect to
their support for large assertional knowledges. In contrast, the reasoning techniques
based on reduction to disjunctive datalog as implemented in KAON2 [MS06, Mot06]
scale well for large assertional knowledge, while at the same time, they support the
rich language fragment DL SHIQ.

Besides these two main reasoning approaches, a common approach to achieving
scalability is to consider lightweight language fragments of the OWL language and
build tractable reasoning procedures. Examples of these approaches are the EL family
of languages [BBL05], DL-Lite [CDL+07b], DLP [GHVD03, Vol04] and OWL-Prime
[KOM05]. Supporting lightweight language fragments limited for practical appli-
cations, such approaches run counter to standardization efforts, namely the recent
proposal to increase the expressive power of the OWL language1. Based on the ob-
servation of application domains of existing approaches to ontology reasoning and
also the research challenge for the DL reasoning field identified in [Hor05], a crucial
issue, which remains to be investigated, is the problem of scalable assertional reason-
ing over expressive ontologies with large terminological and assertional knowledge.
From a theoretical point of view, we know that it is impossible to find any tractable
algorithm for reasoning over expressive ontologies due to the underlying high com-
putational complexities [Tob01]. From the practical point of view, query answering
of the complexities will result in unacceptable performance in large-scale, realistic
semantic web applications.

Thus, in emerging time-critical applications of expressive ontologies, non-classical
reasoning solutions, like approximate reasoning trading expressive power for effi-
ciency, will become more and more important. Approximate reasoning allows ap-
plications of expressive ontologies to deal with their underlying high computational
complexities in a controlled and well-understoodmanner. It is based on controlled al-
terations of inferences in order to achieve lower reasoning complexities at the expense
of unsoundness or incompleteness, but it also allows arriving at correctness estimates
or at algorithms which subsequently correct initially given answers if more time is
available. In particular, approximate reasoning algorithms can be tractable although
the underlying language is not.

1http://www.w3.org/2007/OWL/wiki/OWL_Working_Group [accessed 2009-04-03]

1.2 RESEARCH QUESTIONS AND GOALS 3

1.2 Research Questions and Goals

This thesis addresses the scalability problem of assertional reasoning over expressive
ontologies with large terminological as well as assertional knowledge. Hence, the
overall goal is to provide a better insight into the effect of approximation to expressive
ontology reasoning and to realize an approximate ontology reasoning framework that
enables efficient query answering over existing DL systems of one or more orders of
magnitude.

Towards this end, we have analyzed why this is currently problematic, how the
inherent computational complexities of expressive ontology languages can be effec-
tively handled by using approximation. This analysis results in a number of hypothe-
ses explaining where practical problems lie. These hypotheses are then used to de-
rive concrete approximate reasoning methods. The following hypothesis captures the
main research question of this thesis.

Main Hypothesis: Using approximation, scalable reasoning over expressive ontolo-
gies can be achieved in a controlled and well-understood way.

To increase the scalability of reasoning over expressive ontologies with large ter-
minological and assertional knowledge, one can use other techniques like numerical
approximation and ontology modularization2. These approaches however do not di-
rectly address the underlying complexities of ontology reasoning problems. Towards
achieving scalable ontology reasoning, we are concerned with approximate reason-
ing solutions which allow us to deal with the high computational complexities and
whose characteristics are known in terms of soundness and completeness.

In order to support our main hypothesis, we investigate in this thesis how ap-
proximation can be applied in order to realize scalable ontology reasoning. We split
our main hypothesis into three subordinate hypotheses, while for each of them an
approach how to support the hypothesis is given.

Hypothesis 1: Scalable reasoning in large and expressive knowledge bases of expres-
sive (intractable) ontology languages can be achieved by compiling them into
less expressive ones.

Compiling expressive knowledge bases into less expressive knowledge bases is
well known as knowledge compilation method [SK91] that has been successfully used
in various symbolic Artificial Intelligence (AI) systems. The key motivation behind
knowledge compilation is to push as much of the computational overhead into an
off-line phase, and thus improving the behavior of an inference method at runtime.

The first hypothesis postulates that knowledge compilation techniques can be ap-
plied to large knowledge bases of computationally intractable ontology languages.

2The notion of OntologyModularization refers to a methodological principle for building ontologies
in a modular manner.

4 INTRODUCTION

Hypothesis 2: Scalable reasoning in large and expressive knowledge bases of in-
tractable ontology languages can be also achieved by query approximation.

Instance retrieval is one of the most important reasoning services in many practi-
cal application systems based on DLs, however, it is still one of the major bottlenecks
in reasoning over expressive ontologies, in particular, if the number of instances as
well as the ontology structure becomes large and complex.

The second hypothesis postulates that approximation can be applied to improve
reasoning performance for complex query concepts. Based on the idea of breaking
complex concept queries down to less complex queries, we are going to support this
hypothesis by designing algorithms for instance retrieval of complex query concepts.

Hypothesis 3: Development of approximate reasoning methods needs well-defined
methodological guidelines and tool support to measure correctness and perfor-
mance.

To obtain an insight into the practical applicability of approximate methods and
to compare and contrast them to competing complete and sound reasoning systems,
comprehensive evaluations including performance and a degree of their soundness
and completeness are required. This kind of evaluations should be an integral part
of developing approximate reasoning methods. However, the evaluation of approx-
imate reasoning methods is considered to be a difficult task, in fact, it is not a priori
clear how this should be best done.

To address the issues related to the evaluation of approximate reasoning methods,
the difficulty of evaluating approximate reasoning systems requires a methodology to
advise developers of approximate reasoning systems and help them in designing and
executing benchmarks.

1.3 Overall Approach

To achieve our overall goal stated in the previous section, we focus on the reduction-
based reasoning system, such as KAON2 [MS06, Mot06], and develop various ap-
proximate methods to improve efficiency in query answering.

The reason for this choice is that KAON2 has been shown to be an efficient rea-
soner when reasoning over expressive ontologies with large data sets [MS06, Mot06].
It employs sophisticated algorithms to translate OWL DL ontologies into disjunc-
tive datalog programs. Theoretical investigations of this reasoning technique have
revealed that data complexity3 is lower than the complexity of tableaux based al-
gorithms [Tob01]. Tableaux based algorithms are inherently limited by the need to
build and maintain a model of the whole ontology including all of the instance data
[Hor05, Tob01].

3The complexity of answering queries against a fixed ontology and set of instance data.

1.3 OVERALL APPROACH 5

As indicated by our research questions, in this thesis, various forms of approxi-
mation will be analyzed which result in a comprehensive approximate ontology rea-
soning framework. In the following, we describe this framework in more detail and
discuss its extensions and interplays.

1.3.1 Knowledge Compilation Method

Our approximation method indicated in the first hypothesis is designed to optimize
assertional reasoning (query answering) with the KAON2 ontology reasoning sys-
tem4. Reasoning with this system proceeds in two main stages. First, the given ex-
pressive ontology to be queried is transformed into a (disjunctive) datalog program
which may contain disjunctive rules. We call this process TBox-transformation. Sec-
ond, the resulting program (knowledge base) is used to answer queries. This query
answering process is performed using sophisticated deductive database techniques
specifically designed to reason with large data sets.

In fact, disjunctive rules in the translated knowledge bases lead to a dramatic in-
crease of the computational costs – an increase from polynomial complexity to NP-
hardness, i.e., a problemwhich probably requires exponential time to be solved. Thus,
assertional reasoning remains NP-hard, and thus intractable. To lower this high com-
putational complexity and achieve polynomial data complexity, knowledge compila-
tion can be applied by treating disjunctive rules as if they were non-disjunctive ones.

In order to support the first hypothesis, we develop a knowledge compilation
method with various approximations for replacing disjunctive rules and thereby
show that efficiency of assertional reasoning over expressive ontologies can be im-
proved.

1.3.2 Query Approximation

The idea of our query approximation method – to support the second hypothesis –
deploys the fact that instance retrieval for atomic concepts requires significantly less
effort than that for complex ones. We closely look at the complexity results on DLs.
The worst case time complexity of tableaux algorithms for the most basic reason-
ing problem to which instance retrieval is reduced is NEXPTIME [Tob00]. The worst
case time complexity of query answering with the KAON2 approach including TBox-
transformation is EXPTIME [Mot06]. In case the TBox-transformation is performed in
an offline phase, the worst case time complexity of query answering with KAON2 is
NP; we deal with lowering this complexity in themethod supporting the first hypoth-
esis. In case of complex queries, we cannot push the TBox-translation into an offline
phase, because KAON2 needs to perform it repeatly [Mot06].

With the development of an approximate instance retrieval method for complex
queries, we are concerned with the question, how to lower the worst case time com-
plexity of instance retrieval for complex queries. In this regard, we introduce the

4www.semanti
web.kaon2.org [accessed 2009-06-21]

6 INTRODUCTION

novel notion of the approximate extension5 of DL concepts. Using this notion, we
present an approximate semantics for DL complex concepts based on the model-
theoretic semantics of DLs. Based on the resulting approximate semantics, we are
going to design and implement an approximate instance retrieval method and show
that a significant performance improvement in instance retrieval can be achieved.

1.3.3 Anytime Reasoning and Combination

In many cases, a satisfying answer, which falls within the range of error tolerance and
which is available at a certain point in time, is preferred to correct and best answer re-
quiring arbitrary long time. Anytime algorithms are algorithms designed to conform
to this practical requirement. They gradually improve the quality of their results, as
computation time increases, and end with providing the whole answer when com-
plete computation is required. To this end, we are developing anytime algorithms by
combining our approximate methods. Such a combination can be realized either by
combining only the approximate algorithms or by combining themwith a sound and
complete reasoner. Thereby, our approximate framework includes anytime reasoners
that generates suboptimal answers at a certain point in time and acts a complete and
sound reasoner when time allowed.

1.3.4 Methodology on Benchmarking Approximate Reasoning

Evaluation of approximate reasoning methods is considered to be a difficult task and
different from that of complete and sound DL reasoners. The difficulty is that we do
not only want to measure execution time, but we also need to determine empirically
to what extent the evaluated algorithms are sound and complete in terms of precision
and recall. In order to do this, one needs to create and test a suitable and large enough
sample of queries. However, it is not a priori clear what kind of queries should be con-
sidered. Even when there are enough criteria to generate test queries, our experience
shows that it is non-trivial to conduct the measurements. That is because we have to
test a DL reasoner with reasoning-intensive queries in order to determine precision
and recall for each query. Furthermore, it often involves several iterative rounds in
order to attain predictable, useful conclusions. Interpretation of benchmarking data
is also extraordinarily difficult.

In order to support the third hypothesis, we are going to develop an automated
benchmarking framework.

5Set of individuals belonging to a DL concept.

1.4 CONTRIBUTIONS 7

1.4 Contributions

After having outlined scalable ontology reasoning techniques and discussed theories
for supporting them, we determine the scope, highlight the scientific contribution,
and introduce the structure of this thesis.

With the comprehensive treatment of the question what can be done about the
difficulty of scalable reasoning over expressive ontologies, the main contribution of
this work is the design and realization of an approximate ontology reasoning frame-
work. Within this comprehensive framework a number of individual contributions
were made.

A knowledge compilation technique with different useful approximations was
conceived. Soundness and completeness of these approximations were shown. A
prototypical proof-of-concept implementation was realized and evaluated on well-
known benchmarking ontologies.

In the context of query answering, a novel notion for approximating DL concepts
was introduced. Using this notion, an approximate semantics for DL concepts was
defined. Based on the resulting approximate semantics, an approximate instance re-
trieval reasoner specially designed for querying complex concepts was conceived,
implemented and evaluated.

In the context of benchmarking, methodological guidelines were developed to ad-
vise the testers of approximate ontology reasoning systems. Furthermore, supporting
these guidelines, the first benchmarking framework for approximate reasoning sys-
tems in the Semantic Web was designed and implemented. The evaluation of this
framework showed its suitability for end users.

In the context of anytime reasoning, we devised a novel anytime reasoning frame-
work for instance retrieval that works on top of our approximate reasoners as well as
existing ontology reasoners. The framework is integrated into the Protégé6 ontology
engineering environment.

In a further development, our approximate solutions were integrated into a uni-
fied approximate ontology reasoning framework that can be used either programat-
ically via both popular ontology management APIs such as KAON2 and OWL API
or standalone. Finally, it was systematically analyzed and demonstrated what can be
done using approximation for coping with the high computational complexities of
assertional reasoning problems.

1.5 Thesis outline

Before we move on in the thesis, this section gives the reader a brief overview of
the entire work. The present work consists of four main parts, bracketed by twelve
chapters and enhanced by two appendices and a bibliography.

6http://protege.stanford.edu/ [accessed 2009-07-25]

8 INTRODUCTION

Part I – Foundations — The first part lays the foundations for the thesis, present-
ing preliminaries in the fields of Description Logics, ontologies and the SemanticWeb.
Chapter 2 introduces the notion of ontologies and their role in the Semantic Web vi-
sion. It provides an overview on the ontology language OWL. Chapter 3 introduces
Description Logics formally. Chapter 4 presents elementary fundamentals of logic
programming, relational databases and deductive databases.

Part II – Approximate Reasoning in the Semantic Web — The second part con-
cerns various forms of approximate reasoning methods for query answering as the
main theme of the thesis. Chapter 5 provides a foundation of approximate reasoning
which shall clarify the essentials of approximate reasoning. It contains a discussion
of benchmarking issues relevant to the evaluation of approximate reasoning methods
and motivates the need for methodological guidance and tool support.

Chapter 6 presents the concept of the knowledge compilation method SCREECH

which allows for various Horn transformations of disjunctive datalog. It describes
details of the several variants of the SCREECH approach as well as their soundness
and completeness characteristics. Finally, we report on a comprehensive experimental
analysis conducted with well-known benchmarking ontologies. The chapter contains
an overview of the general concept of addressing the scalability of reasoning in the
context of knowledge compilation.

Chapter 7 presents an approximate method for instance retrieval of complex con-
cept queries. Moreover, it introduces the notion of approximate concept extension
and presents several approximate algorithms to compute approximate extension of
complex concept queries. It also contains a discussion of several optimizations for
these algorithms. Finally, a comprehensive empirical analysis of the algorithms re-
porting positive results will be given.

Chapter 8 presents several combinations of the approximate reasoning methods
introduced in Chapters 6 and 7 which constitute to the development of anytime rea-
soning algorithms.

Part III – Implementations andApplications — This part presents the implemen-
tation of the methods introduced in Chapters 6 through 8 and their applications. It
contains a discussion of the application of approximate reasoning techniques.

Chapter 9 presents the implementation of the SCREECH knowledge compilation
method, the approximate instance retrieval method, the composed anytime reasoning
algorithms, and the benchmarking framework. Furthermore, it presents the approx-
imate ontology reasoning framework in which all the components above are loosely
integrated.

Chapter 10 discusses how the approximate ontology reasoning framework is used
in the THESEUS7 research project.

7THESEUS is a research project initiated by the Federal Ministry of Economy and Technology,
http://theseus-programm.de.

1.6 PUBLICATIONS 9

Part IV – Finale — In the final part, we conclude this thesis and discuss the results
achieved. Furthermore, for future work, we sketch the possible research directions
and extensions of the approximate ontology reasoning framework.

Part V – Appendices — The first appendix gives a full description of the data
structures used to describe the approximate reasoning algorithms developed in this
work. The second appendix presents the detailed experimental results.

1.6 Publications

Most of the works presented in this thesis have been previously published in proceed-
ings of international conferences and workshops. This work is the result of fruitful
cooperations in the German research project THESEUS.

In the following list, we provide references to relevant publications for individual
chapters of this thesis.

The work forming the foundations for the assessment and comparison of approx-
imate reasoning algorithms presented in Chapter 5 was published in [RTH08].

The knowledge compilation method SCREECH described in Chapter 6 and its ap-
proximation strategies were published in [TRKH08]. The results of the experiments
conducted with SCREECH were published in [RTH08, TRKH08].

The AQA approach described in Chapter 7 is under submission in the Semantic
Web community and made available in the technical report [TGH08].

The concept of the composed anytime reasoning algorithms from Chapters 5 was
published in [RTH08], and their implementation and integration into the reasoning
broker system HERAKLES presented in Chapter 10 were published in [BTX+09b,
BTX+09a].

10 INTRODUCTION

Part I

Foundations

Chapter 2

The Semantic Web and Ontologies

Ontologies, as used in information systems, are conceptual yet computational models
of a domain of interest that build on techniques of knowledge representation. They
play a key role in the Semantic Web, where they support the meaningful annotation
of web content and resources.

This chapter gives a brief introduction to ontologies and the Semantic Web to
lay the ground for approximate reasoning over expressive ontologies. Section 2.1
presents the vision of the Semantic Web and the notion of ontologies. Section 2.2
provides an overview on the ontology language OWL. A summary of other ontology
formalisms is given in Section 2.3.

2.1 The Semantic Web Vision

TheWeb can be seen as a success story, both in terms of the amount of available infor-
mation and the number of people using it. TheWeb’s success is owed to the simplicity
of the underlying structures and protocols that ensure easy access to all kinds of re-
sources, i.e. it is characterized by easy access to a huge amount of information. The
Internet helps its users to deal with documents, though unfortunately not with the
accompanying information. As a result of the continuous growth of the Internet, the
search for, location, organization, and maintenance of information and knowledge
(not documents) has become difficult and complex. Web pages are developed and
designed by people for people, and the computer, as a machine, can only present in-
formation understandable to humans. On the other hand, existing technologies used
by common search engines are usually incapable of serving the expectations of the
users, delivering mismatched, irrelevant, or insufficient results, or are unable to de-
liver the hoped-for responses to more complex queries.

In contrast, the SemanticWeb is an evolving extension of the currentWeb in which
Web content can be expressed not only in natural language, but also in a form that can
be read and “understood“ by software agents, thus permitting them to find, share,
and integrate information more easily. The term Semantic Web, which was coined

14 THE SEMANTIC WEB AND ONTOLOGIES

by the inventor of the web, Sir Tim Berners-Lee, in [BLHL01], stands for the idea
of a future Web which aims to increase machine support for the interpretation and
integration of information on the Web. The World Wide Web Consortium (W3C),
which is the standardization body responsible for the Web, defines the term Semantic
Web in its ”Semantic Web Activity Statement“ [BLHL01] as follows:

The Semantic Web is an extension of the current web in which information is given a
well-defined meaning, better enabling computers and people to work in cooperation.

To achieve the vision of the Semantic Web, networked resources, e.g.,websites or web
services, are annotated by structured and machine-understandable metadata, which
are assigned a well-defined meaning and are interpreted by means of ontologies.

Different Views on Ontologies

The term ”Ontology“ (Greek. onto = being, logos = to reason) was first use by Aristotle
to describe ”the science of being qua being“ [Ari08]. Categories of being explain and
classify everything what exists. In the following, we will introduce the main defini-
tions of the term ”ontology“ whose meanings depend on the domain in which the
ontology is to be applied. We also highlight the usage of ontology in the context of
our research within Computer Science.

Philosophical Roots

According to [Flo03], ontology as a branch of philosophy is the science which defines
the kinds and structures of objects, properties, processes, relations, etc. in every area
of reality. According to the definition in the “Encyclopedia Britannica”1, an ontology
is the theory or study of being as such; it is an area of philosophy that deals with the
nature and organization of reality. Traditionally, issues on existence and the state of
being were answered by metaphysics, a discipline which goes back to Aristotle and
refers to fourteen treatises dealing with what he called “first philosophy”. Philosoph-
ical ontology looks for the description (not explanation) of the terms of a classifica-
tion of entities in the universe and can also be called descriptive or realist ontology.
Philosophical ontology describes the categories available inside a given domain of
interest and can be unitized into a formal ontology, which is a formal theory of non
domain-specific entities, attributes, items, or domains, and a material ontology, also
called regional ontology, which is concerned with domain-specific terms, concepts
etc. Generally, the philosopher-ontologist attempts to establish the truth about reality
by finding an answer to the question of existence.

1http://original.britanni
a.
om [accessed 2009-6-27]

2.1 THE SEMANTIC WEB VISION 15

Ontologies in Computer Science

The term ontology has been introduced to Computer Science as a means to formalize
the kinds of things that can be talked about in a system or a context. In the world of
information systems, an ontology is a software or formal language artefact designed
with a specific set of uses and computational environments in mind. In this context,
ontologies aim at capturing domain knowledge in a generic way and provide a com-
monly agreed understanding of a domain, which may be reused and shared across
applications and groups [CJB99]. Ontology is (very largely) qualitative and deals with
relations, including the relations between entities belonging to distinct domains of sci-
ence, as well as between such entities and the entities recognized by common sense.
An ontology is specified by a specific client within a specific context and in relation
to specific practical needs and resources. With applications in fields such as knowl-
edge management, information retrieval, natural language processing, information
integration, and the Semantic Web, ontologies are part of a new approach to building
intelligent information systems [Fen03]. They are intended to provide knowledge en-
gineers with reusable pieces of declarative knowledge, which can be – together with
problem-solving methods and reasoning services – easily assembled into high quality
and cost-effective systems [NFF+91]. A definition of ontology that is much referenced
in the literature is: ”An ontology is an explicit specification of a conceptualization“
[Gru93].

A conceptualization refers to the way knowledge is represented. It is encoded in an
abstract manner using concepts and relations between concepts. Abstractness refers
to the fact that ontologies try to cover as many situations as possible, instead of fo-
cusing on particular individuals [Gua98]. An explicit specification refers to the fact that
the concepts and the constraints on their use are explicitly defined in an ontology and
thus accessible for machines. This definition is extended by requiring a ”formal spec-
ification“ and a ”shared conceptualization“ [Bor06]. In this context, formality refers to
the type of knowledge representation language used for specifying the ontology. This
language has to provide formal semantics in a sense that the domain knowledge can
be interpreted by machines in an unambiguous and well-defined way.

In addition, the vocabulary formally defined by this language should represent a
consensus between the members of a community. By committing to such a common
ontology, community members (or more precisely their software agents) can make
assertions or ask queries that are understood by the other members. Finally, an ontol-
ogy always covers knowledge about a certain ”domain of interest“. Therefore, many
applications use a set of ontology modules that model different aspects of the appli-
cation.

In recent years, ontologies became an important technology for knowledge shar-
ing in distributed, heterogeneous environments, particularly in the context of the Se-
mantic Web. Relying on the defintions above, Studer et al. [SBF98] give the following
definition which is predominantly used within the Semantic Web community.

16 THE SEMANTIC WEB AND ONTOLOGIES

Definition 2.1 (Ontology). An ontology is a formal explicit specification of a shared concep-
tualization of a domain of interest.

Ontologies are targeted to provide the means to formally specify a commonly
agreed upon understanding of a domain of interest in terms of concepts, relation-
ships, and axioms, as well as a common vocabulary of an area, and to define – with
different levels of formality – the meaning of the terms and of the relations between
them [Gru93]. While, according to [Hep08], in computer science, researchers assume
that they can define the conceptual entities in ontologies mainly by formal means,
in information systems, researchers discussing ontologies are more concerned with
understanding conceptual elements and their relationships, and often specify their
ontologies using only informal means.

One of the central ideas behind ontologies is the possibility of reusing existing on-
tologies and thus reducing the modeling effort. However, it has turned out that dif-
ferent types of ontologies are more suitable for reuse than others. In this context, the
generality of the ontologies is important: general ontologies can be reused in many
different contexts, whereas very specific ontologies are rarely reused. Thus, the fol-
lowing categorization of ontologies can be applied [Gua97]:

Generic Ontology (core or upper ontology): Generic ontologies describe general
concepts, such as object, event, action, etc. that may be present or occur in many
(or even all) different domains and applications. Therefore, these concepts are
independent from a concrete usage scenario and can be shared by a large com-
munity of users. Generic ontologies are also often called foundational, top-level
or upper level ontologies. Since they are easily reused, it is worth devoting effort
into building philosophically sound and highly axiomatized top-level ontolo-
gies, which unambiguously describe the vocabulary. A prominent example of
generic ontologies is DOLCE2 [MBG+02].

Domain ontology: A domain ontology models a specific domain, or part of the
world. It represents the particular meanings of terms as they apply to that do-
main. For example, the word ”golf“ has many different meanings. An ontology
about the domain of automobiles would model the ”kind of car“ meaning of the
word, an ontology about the domain of sports would model the ”kind of game“
meaning to the word, while an ontology about the domain of geography would
model the ”geographical location“ meanings. An example of domain ontolo-
gies is the ”Wine ontology“3 which is about the most appropriate combination
of wine and meals.

Application Ontology: These ontologies contain all the necessary knowledge for
modeling a particular domain (usually a combination of domain and method
ontologies that provide terms specific to a particular problem-solving method).

2http://www.loa-
nr.it/DOLCE.html [accessed 2009-5-11]

3http://www.w3.org/TR/owl-guide/wine.rdf [accessed 2009-07-22]

2.2 ONTOLOGY LANGUAGES FOR THE SEMANTIC WEB 17

Usually they can be rarely reused for other application contexts (see e.g.,
[SBF98]). An example of application ontologies is the CCO ontology4 which
presents the cell cycle knowledge by extending existing ontologies.

Representational ontology: These ontologies do not commit to any particular do-
main. Such ontologies provide representational entities without stating what
specifically should be represented. A well-known representational ontology is
the frame ontology, which defines concepts such as frames, slots, and slot con-
straints that allow the expression of knowledge in an object-oriented or frame-
based way [Gru93].

Task Ontology: A task ontology provides terms specific to particular tasks (e.g.,
hypotheses belong to the diagnosis task ontology).

Note that other categorization dimensions have been proposed in literature. For
example, ontologies can be classified according to the level of formality or with re-
spect to the ontology language used.

2.2 Ontology Languages for the Semantic Web

Ontologies are a pillar of the Semantic Web. They are used to capture background
knowledge about some domain of interest by providing relevant concepts and rela-
tions. Moreover, their role is to provide intensional knowledge in a machine pro-
cessable way, and thus enable automatic aggregation and the proactive use of web
resources. This section introduces the ontology languages that are used for repre-
senting and querying knowledge within the Semantic Web. such as the Resource
Description Framework (RDF), its extension RDFS and the Web Ontology Language
(OWL).

2.2.1 Resource Description Framework (RDF)

RDF [KC04, MM04] allows for the description of resources and how they relate to
each other. RDF specifies a data model for publishing metadata as well as data on
the Web and utilizes XML as serialization syntax for data transmission. It provides
a consistent, standardized way of describing and querying Web resources, from text
pages and graphics to audio files and video clips. It is a model and syntax for anno-
tating web resources designed for the exchange of information over the Web. RDF
provides (with the other standards like RDFS and OWL) syntactic interoperability
between applications on the Web as well as a base layer for building the Semantic
Web.

The underlying structure of any expression in RDF is a collection of triples, each
consisting of a subject, a predicate and an object. A set of such triples is called an RDF

4http://www.
ell
y
leontology.org/ [accessed 2009-11-29]

18 THE SEMANTIC WEB AND ONTOLOGIES

graph. The assertion of an RDF triple says that some relationship, indicated by the
predicate, holds between the things denoted by subject and object of the triple. The
assertion of an RDF graph amounts to asserting all the triples in it, so the meaning of
an RDF graph is the conjunction (logical AND) of the statements corresponding to all
the triples it contains. Ontologies written in RDF are not in the focus of this thesis,
so the interested readers might refer to for a formal account of the meaning of RDF
graphs [Hay04, MM04].

The RDF vocabulary description language (RDF Schema [RDFS]) [BG04] defines
a simple modeling language on top of RDF. RDFS is intended to provide the prim-
itives that are required to describe the vocabulary used in particular RDF models.
This description is achieved by expressing set membership of objects in property and
class extensions. Therefore RDFS uses classes, subsumption relationships on both
classes and properties, and global domain and range restrictions for properties as
modeling primitives. However, RDFS is too weak to describe resources in sufficient
detail. Moreover, it does not allow to define localised range and domain constraints,
existence/cardinality constraints and more expressive properties such as transitive,
inverse and symmetrical.

2.2.2 Web Ontology Language (OWL)

It is desirable in the SemanticWeb to extendRDFSwith awell-designed, well-defined,
and web-compatible ontology language with supporting reasoning tools. The syntax
of this language should be both intuitive to human users and compatible with exist-
ing web standards such as XML, RDF, and RDFS. Its semantics should be formally
specified since otherwise it could not be machine-interpretable.

To come forward with such a language, the Web Ontology Working Group of
W3C defined OWL, the language that is standardized and broadly accepted ontol-
ogy language of the Semantic Web [PSHH03, HEPS03]. Historically, OWL emerged
from several former knowledge representation and description languages, like SHOE
[Hef01] and DAML+OIL [MFHS02].

OWL facilitates greater machine interpretability of Web content than that sup-
ported by XML(S) and RDFS by providing additional vocabulary along with a formal
semantics. It has a richer set of operators – e.g., intersection, union and negation.
Complex concepts, also called classes, can therefore be built up in definitions out of
simpler concepts by using such logical operators. Furthermore, its formal semantics
allows the use of a reasoner which can check whether or not all of the statements and
definitions in the ontology are mutually consistent.

Several subsets (species) of OWL were defined in the standard to accommodate
various interest groups and allow to safely ignore language features that are not
needed for certain applications. In OWL 1.0, there are three species such as OWL-Lite,
OWL-DL, and OWL-Full. Table 2.1 describes these species. OWL-DL is much more
expressive than OWL-Lite and is based on Description Logics that are a decidable
fragment of First Order Logic and are therefore amenable to automated reasoning.

2.2 ONTOLOGY LANGUAGES FOR THE SEMANTIC WEB 19

OWL-Lite

OWL-Lite is the smallest standardized subset. In OWL-Lite, there
are limitations on how a class can be asserted and the restrictions
that can be placed on a class. Hence, it is mainly to support the
design of classification hierarchies and simple constraints.

OWL-DL

OWL-DL allows full use of the core OWL language, but with some
limitations on class restrictions. Those limitations in contrast to
OWL-Full ease the development of tools and allow complete infer-
ence. For OWL-DL, practical reasoning algorithms are known, and
increasingly more tools support this or slightly less expressive lan-
guages.

OWL-Full
OWL-Full is the most expressive of the three, allowing expressions
of higher order predicate that classes can be also properties and in-
stances.

Table 2.1: OWL 1.0 species

Note that we will give a comprehensive detail of the description logic SHOIN
which forms the formal foundations of OWL-DL in Section 3.2, Chapter 3.

Contrary to OWL-Lite and OWL-DL which impose restrictions on the use of
the vocabulary, OWL-Full supports the full syntactic freedom of RDF. Moreover,
OWL-Full is intended to be used in situations where very high expressiveness is more
important than being able to guarantee the decidability or computational complete-
ness of the language. It is therefore not possible to perform automated reasoning on
OWL-Full ontologies.

The syntax of the OWL language is layered on that of the RDF language. There-
fore, the official syntax of OWL is the syntax of the RDF language. However, OWL
extends RDF with additional vocabulary. In the following, we will describe the basic
elements of OWL such as classes, properties, and individuals in detail.

Class Description

Classes are the basic building blocks of an OWL ontology and defined usingowl:Class element. There are two kinds of classes to represent concepts in a do-
main: defined classes and primitive class. A class is a defined class if it has at least one
set of necessary and sufficient conditions. Such classes have a definition, and any in-
dividual that satisfies the definition will belong to the class. Classes that do not have
any sets of necessary and sufficient conditions (only have necessary conditions) are
known as primitive classes or named classes.

OWL comes with two predefined classes: owl:Thing and owl:Nothing. Each on-
tology has the unique class owl:Thing that is the class that represents the set con-
taining all individuals. Since OWL classes are interpreted as sets of individuals, all

20 THE SEMANTIC WEB AND ONTOLOGIES

classes are subclasses of owl:Thing. owl:Nothing is an empty class, and thus every
class is a superclass of owl:Nothing. OWL supports six main ways of describing
classes. The simplest of these is a named class. The other types are: intersection
classes, union classes, complement classes, restrictions, enumerated classes. Intersec-
tion classes are formed by combining two ormore classes with the intersection (AND)
operator. Union classes are formed using the union (OR) operator with two or more
classes. A complement class is specified by negating another class. It will contain the
individuals that are not in the negated class.

Relationship Description

A property is a binary relation that specifies class characteristics. They are attributes
of instances and sometimes act as data values or link to other instances. In OWL
there are two kinds of properties: Object properties and Datatype properties. Object
properties relate individuals to other individuals. Object properties are expressed us-
ing owl:Obje
tProperty. Datatype properties relate individuals to datatype values,
such as integers, floats, and strings. OWL makes use of XML Schema for defining
datatypes. Datatype properties are expressed using owl:DatatypeProperty. A prop-
erty can have a domain and range associated with it. Each property can be put into
one of the following categories:

• Functional: For a given object, the property takes only one value. Examples
include a person’s age, height, or weight. Functional properties are expressed
using owl:Fun
tionalProperty.

• Inverse functional: The property defines that two different individuals cannot
have the same value. For example, the bankNumber or SSN properties are
unique for each person. Inverse functional properties are expressed usingowl:InverseFun
tionalProperty.

• Symmetric: The property defines a symmetric property such that if a property
links A to B, then one can infer that it links B to A. Examples of symmetric prop-
erties includes "is sibling of" or "is same as". Symmetric properties are expressed
using owl:Symmetri
Property.

• Transitive: The property defines a transitive property, such as if a property links
A to B and B to C, then one can infer that it links A to C. For example, if A is
taller than B and B is taller than C, then A is taller than C. Transitive properties
are expressed using owl:TransitiveProperty.

Furthermore, OWL allows one to apply various restrictions to classes and proper-
ties. Restrictions describe a class of individuals based on the type and possibly num-
ber of relationships that they participate in. Restrictions can be grouped into three
main categories: quantifier restrictions such as existential and universal, cardinal-
ity restrictions, has-value restriction. The existential restriction means ”some values

2.3 OTHER ONTOLOGY FORMALISMS AND TOOLS 21

from“, or at least one. An existential restriction describes the class of individuals that
have at least one kind of relationship along a specified property to an individual that
is a member of a specified class. Cardinality restrictions allow us to talk about the
number of relationships that a class of individuals participate in. Has-value restric-
tions specifies that class of individuals that participate in a specified relationship with
a specific individual. An enumeration class is specified by explicitly and exhaustively
listing the individuals that are members of the enumeration class. To specify an enu-
merated class, the individuals that are members of the class are listed inside curly
brackets.

Individuals

Individuals are instances of classes, and properties can relate one individual to an-
other. For example, one might describe an individual named Smith as an instance
of the class Person, and might use the property hasEmployer to relate Smith to the
individual Webify Solutions, signifying that Smith is an employee of Webify Solutions.

The Next Step for OWL

OWL 25 is the recent extension to and revision of the OWL language. It extends
the OWL language with a small but useful set of features that have been requested
by vendors and implementers. The new features include increased expressive power
for properties, extended support for datatypes, simple metamodeling capabilities, ex-
tended annotation capabilities, and keys. OWL 2 also defines several profiles – OWL 2
language subsets that may better meet certain performance requirements or may be
easier to implement.

The interested reader may refer to [GHM+08, MPSG09] for additional material
on the recent proposal of OWL 2. For this work, OWL-DL would be most useful
as it is the OWL dialect which is mostly used in practice as it is decidable although
still very expressive. For a comprehensive overview of the current status and future
prospectives of the field of ontologies, the interested reader might refer to [SS09].

2.3 Other Ontology Formalisms and Tools

A expressive formalism for representing formal ontologies in the Semantic Web is
Frame Logic (F-Logic), that is a deductive, object-oriented and frame-based language.
Originally, the language was developed for deductive and object-oriented databases.
Later on, however, it has been applied for the implementation of ontologies. F-Logic
provides constructs for defining declarative rules which infer new information from
the available information. Furthermore, queries can be asked that directly use parts
of the ontology. From a syntactic point of view, F-Logic is a superset of first-order

5http://www.w3.org/2007/OWL/wiki/Do
ument_Overview [accessed 2009-07-22]

22 THE SEMANTIC WEB AND ONTOLOGIES

logic. Currently a new version of FLogic is defined as a community process taking
current developments from the semantic web area into account. Readers interested in
a more thorough treatment of F-logic might refer to [KLW95].

API and Software Support

There are a number of ontology management tools and APIs. Several of them, in
particular, such APIs with reasoning capabilities and some DL reasoning systems are
briefly introduced in the following.

OWL API

The OWL API [BVL03] (the current version OWL 1.1 [HBN07]) is designed to facili-
tate the manipulation of OWL 1.1 ontologies at a high level of abstraction for use by
editors, reasoners and other tools. The API is based on the OWL 1.1 specification.
Furthermore, it provides general reasoner interfaces to describe different reasoner
functionality, ranging from consistency checkers through to class based reasoning. A
salient feature of the OWLAPI is to subscribe to the axiom centric view of an ontology.

Jena

Jena [McB01] is a Java framework for building Semantic Web applications. The lat-
est version of Jena provides a programmatic environment for RDF, RDFS and OWL6,
including a rule-based inference engine. Jena grew out of work in the HP Labs7 Se-
mantic Web Programme. The Jena framework includes an RDF API and an OWL
API. Jena takes an RDF-centric view, which treats RDF triples as the core of RDFS and
OWL. Among other things, it includes several rule engines.

Pellet

For the time being, Pellet8 [SPG+07] is the only reasoner fully conforming OWL 2 DL,
currently in version 2.0 RC7. Its implementation is based on the tableau decision
procedure, however, it also implements special support for the OWL 2 EL profile.
Pellet is tightly integrated with the OWL API and implements all of its reasoning
methods.

FaCT++

Available in its version 1.3.0, FaCT++9 [TH06] is a reasoner fully conforming
OWL 2 DL except for some datatypes. It implements optimised tableau decision pro-

6http://jena.sour
eforge.net [accessed 2009-06-20]

7http://www.hp.
om [accessed 2009-06-20]

8http://
larkparsia.
om/pellet [accessed 2009-06-20]

9http://owl.man.a
.uk/fa
tplusplus [accessed 2009-06-20]

2.3 OTHER ONTOLOGY FORMALISMS AND TOOLS 23

cedures. Since FaCT++ is implemented in C++, it needs JNI10 to be accessible from
the Java™ based OWL API. However, not all of the OWL API’s reasoning methods
have been implemented for FaCT++.

RacerPro

The RacerPro system [HM01b] is an optimized tableau reasoner for SHIQ(D). For
concrete domains, it supports integers and real numbers, as well as various polyno-
mial equations over those, and strings with equality checks. It can handle several
TBoxes and several ABoxes and treats individuals under the unique name assump-
tion. Besides basic reasoning tasks, such as satisfiability and subsumption, it offers
ABox querying based on the nRQL optimizations. It is implemented in the Common
Lisp programming language. Recently, RacerPro has been turned into the commercial
(free trials and research licenses available) RacerPro system 11.

KAON2

KAON2 [Mot06] is an infrastructure12 for managing OWL-DL ontologies. It also sup-
ports SemanticWebRule language (SWRL)13 and F-Logic. KAON2 provides a built-in
reasoner for the SHIQ(D) subset of OWL-DL. This includes all features of OWL-DL
apart from nominals (also known as enumerated classes). KAON2 also supports the
so-called DL-safe subset of SWRL to achieve decidable reasoning [MSS04]. Reason-
ing is based on algorithms, which reduce an OWL ontology to a (disjunctive) datalog
program. Its performance with large ABoxes compares favourably with other state-
of-the-art OWL DL reasoners [Mot06].

We have discussed the APIs for OWL ontologies that are widely used within the
Semantic Web community. Reasoners, such as FaCT ++ and Pellet, are the reasoners
that implement the tableaux-based reasoning algorithms, while KAON2 applies dis-
junctive datalog techniques, especially for providing scalable assertional reasoning.

10http://en.wikipedia.org/wiki/JNI [accessed 2009-06-20]

11http://www.Ra
erPro-systems.
om/ [accessed 2009-11-29]

12http://kaon2.semanti
web.org [accessed 2009-06-20]

13It extends OWL with Horn-like rules that are interpreted according to first-order semantics.

24 THE SEMANTIC WEB AND ONTOLOGIES

Chapter 3

Description Logics

This chapter introduces the basic concepts and notations of description logics that
are relevant for this thesis. The fundamentals of description logics are mainly taken
from [BCM+03]. Starting from the simplest Description logicAL, Section 3.1 presents
the basic terminology of description logics. The formal syntax and semantics of a
more expressive language SHOIN is presented in Section 3.2. Standard inference
(reasoning) services in DLs are described in Section 3.3.

3.1 Basic Notions

Description Logics1 (DLs) [BCM+03] have initially been designed to fit object-centric
knowledge representation formalisms like semantic networks and frame systems
with a formal and declarative semantics. During the 25 years of research in this
field of knowledge representation a family of logics has evolved, which can be distin-
guished from each other by the constructors and axioms available in each language.
Generally, the particular selection of constructors and axioms is made such that infer-
encing with the logic is decidable.

In DLs, the terminological knowledge of an application domain is represented in
terms of concepts (unary predicates) such as Human and Woman, and roles (binary
predicates) such as hasChild. Concepts denote sets of individuals and roles denote bi-
nary relations between individuals. Based on basic concept and role names, complex
concept descriptions are built inductively using concept constructors.

Typically, DLs provide the boolean concept constructors, namely conjunction (⊔),
disjunction (⊓), and negation (¬); DLs usually support constructors to restrict the
quantification of roles, specifically universal (∀) and existential (∃) restrictions. Fur-
thermore, complex concept descriptions are built inductively using concept construc-
tors.

The language AL is a minimal attributive language [BCM+03] in which complex
concept descriptions are built according the syntax rule show in Table 3.1. In that

1http://dl.kr.org [accessed 2009-06-20]

26 DESCRIPTION LOGICS

C, D −→ A atomic concept
⊤ universal (top) concept
⊥ bottom concept
¬ A atomic negation

C⊓D intersection
∀R.C value restriction
∃R.⊤ limited existential quantification

Table 3.1: Syntax rule in the language AL

abstract notation, A and B denote atomic concepts, R denotes an atomic role, and
C and D denote concept descriptions. Hence, the following AL-concept description
represents all women that have at least one human child, i.e., who are a mother:Woman ⊓ ∃hasChild.Human.

Additional constructors including cardinality restrictions on roles and more ex-
pressive roles (e.g., inverse and transitive roles) are provided in some DLs. The ex-
pressive power of a description logic depends on the provided constructors from
which concepts and relations can be composed, and the kinds of axiom supported.

Symbol Available Constructs

AL conjunction, universal value restriction
and limited existential quantification

C disjunct and full existential quantification with full negation
R+ transitive role
S shortcut for ALCR+

H role hierarchy
I inverse role
F functional role
O nominals, i.e. enumeration of classes or data values
Q qualified number restrictions
N unqualified number restrictions
D concrete domains

Table 3.2: Description logic variants [BCM+03]

Table 3.1 gives a short overview of the constructs available in a particular de-
scription logic. The first column indicates an informal naming convention, roughly
describing the constructors allowed.

As an example, ALC is a centrally important description logic from which com-
parisonswith other varieties can bemade. ALC extendsAL by general concept nega-
tion (¬C) and unlimited existential restriction (∃R.C), and is thus the most basic DL

3.1 BASIC NOTIONS 27

closed under Boolean operators. A further example, the description logic SHIQ
is the logic ALC plus extended cardinality restrictions, and transitive and inverse
roles. Note that the naming conventions are not purely systematic so that the logic
ALCOIN might be referred to asALCNIO and abbreviations are made where pos-
sible, ALC is used instead of the equivalent ALUE .

DL Knowledge Base

A description logic knowledge base usually consists of a set of axioms, which can be
distinguished into terminological axioms and assertional axioms. The terminological
axioms are called TBox and it introduces the terminology, i.e., the vocabulary of an
application domain. The assertional axioms are called ABox and it contains assertions
about named individuals in terms of the vocabulary.

Terminologies (TBox)

The TBox contains intensional knowledge (axioms about concepts) in the form of a
terminology. Terminological axioms are introduced, which make statements about
how concepts or roles are related to each other. Terminologies are composed of ter-
minological axioms which can be definitions and inclusion assertions.

The axioms in the TBox can be built using the previously mentioned concept con-
structors, as well as concept inclusion axioms (⊑), which state inclusion relations be-
tween DL concepts. For example, one can state that any technology company is a
company via the following axiom: Te
hnologyCompany ⊑ Company.

In contrast, definitions allow to give a meaningful name (concept name or sym-
bolic name) to concept descriptions, e.g., to define that a mother is a woman that has
at least one human child one can write:Mother ≡Woman ⊓ ∃hasChild.Human(3.1)

Here,Mother is the concept name that identifies the concept description (on the
right-hand side of the equivalent symbol). Woman and Human are atomic concepts.
If in a terminology an atomic concept appears only on the right-hand side of a concept
description, then it is called a primitive concept, otherwise it is a defined concept.

Note that there has been substantial work on determining the computational im-
pact of allowing various constructs in DLs (see [BCM+03, Tob01] for an overview).
Much of this work has focussed on determining decidability and complexity results
when different constructors and restrictions are supported or imposed on the partic-
ular DL. For example, one such restriction is to only allow definitorial TBoxes; more
specifically, only inclusion axioms of the form A ⊑ C and A ≡ C (note that A ⊑ C is
an abbreviation for A ⊑ Cand C ⊑ A) are allowed, such that A is an atomic concept
and the definitions are unique and acyclic (i.e., the right hand side of an axiom cannot
directly or indirectly refer to the concept on its left hand side). It has been shown that
this greatly simplifies reasoning complexity [Tob01]. If the T contains an axiom of the

28 DESCRIPTION LOGICS

form C ⊑ D where C is a complex concept, then this axiom is referred to as a general
concept inclusion axiom (GCI) and the T is referred to as a general TBox.

World Descriptions (ABox)

The second component of a DL-knowledge base is the world description or ABox. In
the ABox, one introduces individuals by giving them names, and one asserts proper-
ties of these individuals. There are two kinds of basic assertions: concept assertions
and role assertions. By a concept assertion, one states that a certain individual a be-
longs to a concept C, written C(a). By a role assertion, one states that an individual c
is a filler of the role R for an individual b, written R(b, c). For instance, to denote that
Tumee is a mother, and Khangal is a man who is the son of Tumee, we write:Mother(Tumee) Man(Khangal) hasChild(Tumee, Khangal)

where the first two are concept assertions, and the third is a role assertion. Fur-
thermore, expressive DLs provide equality and inequality assertations.

3.2 Expressive Description Logic SHOIN

In this section, we introduce a more expressive description logic SHOIN which pro-
vides the formal underpinning for OWL-DL.

Formal Syntax and Semantics

The countably infinite setsNI , NC and Nr of individual names, concept names and role
names, respectively, form the basis to construct the syntactic elements of SHOIN
according to the following grammar:

C −→ A | ⊥ | ⊤ | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∃ r .C | ∀ r .C
| ≥ n r | ≤ n r | {a1, . . . , an}

r −→ s | s−

, where A ∈ NC denotes an atomic concept, C,Ci denote complex concepts, s ∈ Nr

denotes an atomic role, r denotes a possibly inverse role, ai ∈ NI denote individuals
and n denotes a natural number.

A SHOIN knowledge base KB is a set of axioms that are formed by concepts,
roles and individuals according to the rules illustrated in Table 3.3 on page 29.

A concept inclusion is an axiom of the form C1 ⊑ C2 that states the subsumption
of the concept C1 by the concept C2, while a role inclusion is an axiom of the form
r1 ⊑ r2 that states the subsumption of the role r1 by the role r2. An equivalence axiom
of the form C1 ≡ C2 for concepts or r1 ≡ r2 for roles is a shortcut for two inclusions
C1 ⊑ C2 and C2 ⊑ C1 or r1 ⊑ r2 and r2 ⊑ r1. A role transitivity statement is an
axiom of the form Trans(r) that states transitivity for the role r. A concept assertion

3.2 EXPRESSIVE DESCRIPTION LOGIC SHOIN 29

αT −→ C1 ⊑ C2 | concept inclusion
C1 ≡ C2 | concept equivalence

αR −→ r1 ⊑ r2 | role inclusion
r1 ≡ r2 | role equivalence
Trans(r) role transitivity

αA −→ C(a) | concept assertion
r(a1, a2) | role assertion
a1 ≈ a2 | individual equality
a1 6≈ a2 individual inequality

Table 3.3: Axioms in SHOIN : αT, αR and αA denote axioms

is an axiom of the form C(a) that assigns the membership of an individual a to a
concept C. A role assertion is an axiom of the form r(a1, a2) that assigns a directed
relation between two individuals a1, a2 by the role r. The axioms in KB are partitioned
into a T , an R-Box and an A and take the forms αT, αR and αA, respectively. The T
and R-Box describe terminological knowledge in terms of general statements about
the domain, whereas the A describes assertional knowledge in terms of particular
instance situations. By σ(KB) we denote the signature of the knowledge base KB,
which is the set of all concept, role and individual names that occur in the axioms of
KB.

The semantics of the syntactic elements of SHOIN is defined in terms of an in-
terpretation I = (∆I , ·I) with a non-empty set ∆I as the interpretation domain and
an interpretation function ·I that maps each individual a ∈ NI to a distinct element
aI ∈ ∆I and that interprets (possibly) complex concepts and roles as indicated in
Table 3.4 on page 30.

An interpretation I satisfies a concept inclusion C1 ⊑ C2 if C
I
1 ⊆ CI2 and a concept

equivalence C1 ≡ C2 if C
I
1 = CI2 . Similarly, it satisfies a role inclusion r1 ⊑ r2 if r

I
1 ⊆ rI2

and a role equivalence r1 ≡ r2 if r
I
1 = rI2 . A transitivity axiom Trans(r) is satisfied in

I if for all a1, a2, a3 ∈ ∆I (aI1 , a
I
2) ∈ rI and (aI2 , a

I
3) ∈ rI together imply (aI1 , a

I
3) ∈ rI .

Moreover, I satisfies a concept assertion C(a) if aI ∈ CI , a role assertion r(a1, a2) if
(aI1 , a

I
2) ∈ rI , an individual equality a1 ≈ a2 if a

I
1 = aI2 and an individual inequality

a1 6≈ a2 if aI1 6= aI2 . An interpretation that satisfies all axioms of a knowledge base
KB is called a model of KB, and we denote by M(KB) the set of all models of KB.
Reasoning with a description logic knowledge base is defined in terms of this notion
of a model.

Note that the general semantics of DLs as given in Table 3.4 includes (in)equality
between individuals, a feature also supported by OWL. However, in applications in-
dividuals are often treated as uniquely named such that no two named individuals
coincide in the interpretation domain, which is known as the unique name assumption
[BCM+03]. The unique name assumption can be axiomatised in OWL by including

30 DESCRIPTION LOGICS

⊤I = ∆I , ⊥I = ∅

AI ⊆ ∆I , rI ⊆ ∆I × ∆I

(C1 ⊓ C2)I = CI1 ∩ CI2
(C1 ⊔ C2)I = CI1 ∪ CI2

(¬C)I = ∆I \ CI

(∀ r .C)I = {a ∈ ∆I | ∀b.(a, b) ∈ rI → b ∈ CI}
(∃ r .C)I = {a ∈ ∆I | ∃b.(a, b) ∈ rI ∧ b ∈ CI}
(≥ n r.)I = {a ∈ ∆I | #{b | (a, b) ∈ rI} ≥ n}
(≤ n r.)I = {a ∈ ∆I | #{b | (a, b) ∈ rI} ≤ n}

{a1, . . . , an}I = {aI1 , . . . , a
I
n}

(r−)I = {(b, a) | (a, b) ∈ rI}

Table 3.4: Model-theoretic semantics for SHOIN descriptions

inequality axioms of the form a1 6≈ a2 for any pair a1, a2 of known individuals.

3.3 DL Reasoning Problems

For DLs various reasoning tasks are usually considered. These tasks allow to draw
new conclusions about the knowledge base or check its consistency. In this section
standard reasoning problems are introduced. The interested reader may refer to
[BCM+03] for more details.

Concept Satisfiability. Given a concept C, checking if C is satisfiable with respect to
knowledge base KB is the task of determining if there exists an interpretation I
ofKB such that the interpretation of C is not equal to the empty set (i.e. CI 6= ∅).

Concept Subsumption . Given concepts C, D, checking if C is subsumed by D rela-
tive to KB, denoted KB |= C ⊑ D, is the process of determining if for all inter-
pretations I of KB, CI ⊆ DI .

Instance checking. Instance checking ensures whether or not an individual a is an
instance of a concept C with respect to KB. It is denoted by KB |= C(a), if
aI ∈ CI holds for all models I of KB.

Instance Retrieval. An extended form of instance checking is the so called retrieval
problem. It is stated as follows. Given a concept C, find all individuals a such
that KB |= C(a).

Note that all reasoning tasks can be reduced to ABox consistency checking [BN03].
This is exemplified by the following example: suppose that we want to check if an
individual a instantiates a concept C with respect to a knowledge base KB; this is
accomplished by checking the consistency of KB ∪ {¬C(a)}. If this is not consistent,

3.4 DL REASONING COMPLEXITIES 31

then it must be the case that there does not exist an interpretation which satisfies
¬C(a), therefore all interpretations must satisfy C(a).

3.4 DL Reasoning Complexities

This section briefly introduces various complexity results on DLs. This introduction
shall also clarify the usefullness of approximate logic reasoning methods which aim
to lower worst the case complexity of exponentional algorithms.

Description logic Complexity

S PSPACE-complete (without TBox)
SI PSPACE-complete
SH EXPTIME-complete
SHIF EXPTIME-complete
SHIQ EXPTIME-complete
SHOIQ NEXPTIME-hard

Table 3.5: Complexity of Satisfiability for S languages

For description logics without full negation, e.g.,AL, all inferences can be reduced
to subsumption. For example, a class C is unsatisfiable iff C is subsumed by ⊥. If, a
description logic offers both intersection and full complement, satisfiability becomes
the key inference of terminologies, since all other inferences can be reduced to satis-
fiability [AKPS94]. Consequently, algorithms for checking satisfiability are sufficient
to obtain decision procedures for any of the inference problems discussed in Section
3.3. Moreover, this observation gave rise to the research on specialized tableau calculi
which are used in the current generation of DL systems.

Naturally, the question arises how difficult it is to deal with the reasoning prob-
lems introduced in Section 3.3. Traditionally, the complexity of reasoning has been
one of the major issues in the development of description logics. While studies about
the complexity of reasoning problems initially were focused to polynomial-time ver-
sus intractable [BL84], the focus nowadays has shifted to very expressive logics such
as SHIQ whose reasoning problems are EXPTIME-hard or worse.

One can see that exponential-time behavior of some description logics is due to
two independent origins: an AND source which corresponds to the size of a single
model candidate and an OR source which is constituted by the number of model
candidates that have to be checked. An example OR source is disjunction, where we
can alternatively assign an element of a model to several classes and we have to check
every alternative. No OR source therefore means that we can check the validity of a
single model. However, if an AND source such as the existential restriction is present,
wemay have to expand themodel with new elements. The complexity of the S family
of languages that are relevant for the Semantic Web is listed in Table 3.5.

32 DESCRIPTION LOGICS

The presence of a cyclic TBox can increase the complexity of reasoning problems.
Even for AL, presence of a general TBox leads to EXPTIME-hardness [Neb90], which
also effects description logics like SH, which allow the internalization2 of general in-
clusion axioms. An extension with datatypes also effects the complexity. Given that
we distinguish datatype properties, satisfiability is decidable if the inference prob-
lems for the concrete domain are decidable [HS01]. Complexity results also give mo-
tivation why no other property constructors have been presented here. For example,
adding role composition toAL already leads to undecidability of the description logic
[BCM+03].

2A process of transforming axioms into concept expressions.

Chapter 4

Logic Programming, Relational and
Deductive databases

This chapter is divided into three sections. Section 4.1 contains elementary funda-
mentals of logic programming. The basic concepts presented in Section 4.1 are used
in Section 6.3, Chapter 6 where knowledge compilation methods are considered. The
reader may therefore have a look at this section if some considerations of Section
6.3 are not clear enough. Section 4.2 provides elementary fundamentals of relational
databases which are used in Section 7.3, Chapter 7. A brief introduction to deductive
databases is presented in Section 4.3.

4.1 Logic Programming

Logic programming (LP) is a well-known declarative of knowledge representation
and programming based on the idea that the language of first order logic is well-
suited for both representing data and describing desired outputs [Llo87]. LP was
developed in the early 1970’s based on work in automated theorem proving [BG01,
DP01], in particular, on Robinson’s resolution principle [Rob65]. In the following we
give some basic concepts of logic programming and refer the reader to [Llo87] for a
more detailed treatment. We use letters p, q, . . . for predicate symbols, X,Y,Z . . . for
variables, f , g, h, . . . for function symbols, and a, b, c, . . . for constants.

Basic Notions

Logic programms are formulated in a language L of predicates and functions of non-
negative arity; 0-ary functions are constants. A languageL is function-free if it contains
no function symbols of arity greater than 0.

A term is inductively defined as follows: each variable X and constant c is a term,
and if f is a n-ary function symbols and t1, ..., tn are terms, then f (t1, ..., tn) is a term.
A term is a ground term, if no variable occurs in it. An atom is a formula p(t1, ..., tn),

34 LOGIC PROGRAMMING, RELATIONAL AND DEDUCTIVE DATABASES

where p is a predicate symbol of arity n and each ti is a term. An atom is ground, if all
ti are ground.

A logic program consists of a set of rules, also called Horn clauses of the form:

A0 ← A1, ..., Am (m ≥ 0)

where each Ai is a atomic formula and all variables occurring in a formula are (im-
plicitly) universally quantified over the whole formula. The formulas of this form are
called definite clauses, also called rules. The atomic formula A0 is called the head of the
clause whereas A1, ..., Am is called its body. A rule r of the form A0 ←, i.e.,whose body
is empty, is called a fact, and if A0 is a ground atom, then r is called a ground fact. A
clause or logic program is ground, if all terms in it are ground.

The Herbrand Universe of a program P, denoted by UP , is the set of all ground
terms that can be formed from the constants and function symbols in P. TheHerbrand
Base of a logic program P, denoted by BP , is defined as the set of all ground atoms that
can be formed by using predicates from Pwith terms from the Herbrand UniverseUP
as arguments [Llo87]. AHerbrand interpretation I for P is a subset of theHerbrand Base
of P. A Herbrand model of P is a Herbrand interpretation of P such that for each rule
A0 ← A1, ..., Am in P, this interpretation satisfies the logical formula ∀X(A1 ∧ ... ∧
Am)⇒ A0), where X is a list of the variables in the rule and⇒ is logical implication.

So far a restricted form of clauses is concerned. In order to allow more suiteable
knowledge representation and to increase expressiveness, other forms of clauses are
required. A clause containing disjunction is called disjunctive rule and is of the form:

A1 ∨ ...∨ An ← B1 ∧ ...∧ Bm

where n ≥ 0, m ≥ 0, and Ai and Bi are atomic formulas. Furthermore, each rule must
be safe; that is, each variable occurring in a head literal must occur in a body literal
as well. For a disjunctive rule r, the set of atoms head(r) = {Ai | 1 ≤ i ≤ n} is called
the rule head, whereas the set of atoms body(r) = {Bi | 1 ≤ i ≤ m} is called the rule
body. A rule with an empty body is called a fact. A finite set of such clauses is called
a disjunctive datalog program. A clause with the empty head and a non-empty body
is called an integrity constraint. A program containing no disjunctive clauses is called
a Horn logic program, and especially a Horn logic program containing no integrity
constraint is called a definite logic program. For more materials on disjunctive logic
programming, the reader might refer to [EGM97].

SLD-Resolution

In traditional (imperative) programming languages, a program is a procedural spec-
ification of how a problem needs to be solved. In contrast, a logic program concen-
trates on a declarative specification of what the problem is. Rather than viewing a
computer program as a step-by-step description of an algorithm, a logic program is
conceived as a logical theory (knowledge base), and a procedure call is viewed as

4.2 RELATIONAL DATABASES 35

a theorem of which the truth needs to be established. Thus, executing a program
means searching for a proof by applying inference rules. SLD resolution (Selective
Linear Definite clause resolution) is the basic inference rule used in logic program-
ming. It is a refinement of resolution1, which is both sound and refutation complete
for Horn clauses.

Roughly, SLD-resolution can be described as follows. A goal is a conjunction of
atoms. A substitution is a function θ that maps variables v1, ..., vn to terms t1, ..., tn.
The result of simultaneous replacement of variables vi by terms ti in an expression E
is denoted by Eθ. For a given goal G and P , SLD-resolution tries to find a substition
Eθ such that logically follows from P .

The initial goal is repeatedly transformed until the empty goal is obtained. Each
transformation step is based on the application of the resolution rule to a selected
atom B from the goal B1, ..., Bm and a clause A0 ← A1, ..., An from P . SLD-resolution
tries to unify Bi with the head A0 i.e., to find a substition θ such that A0θ = Biθ. If
such a unifier θ is found, the goal is transformed into

(B1,, Bi−1, A1, ..., An, Bi+1, ..., Bm)θ.

Although SLD-Resolution is complete and sound [Llo87], its implementation in
Prolog2 is not sound in general [O’K90]. Readers interested in a more thorough treat-
ment of the SLD-resolution might refer to [Rob65].

4.2 Relational Databases

There are many similarities between relational databases and logic programming in
that they are both used to describe relations between objects.

Relational Algebra is the formal underpinning of modern relational database sys-
tems and is used to formalise database operations on the relational model originally
introduced by Codd [Cod83]. The main construct for representing data in the rela-
tional model is a relation.

Let D1,D2, . . . ,Dn be collections of symbols called domains. In the context of
database theory the domains are usually assumed to be finite although, for practical
reasons, they normally include an infinite domain of numerals. In addition, the mem-
bers of the domains are normally assumed to be atomic or indivisible – that is, it is
not possible to access a proper part of a member.

A database relation R over the domains D1, . . . ,Dn is a subset of D1×· · · ×Dn

and represents a database table with attributes a1 to an and rows that instantiate the
columns as tuples of values. A relational database is a finite number of such (finite)
relations. R is in this case said to be n-ary and denoted by R(a1, . . . , an),

1In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a
refutation theorem-proving technique for sentences in propositional logic and first-order logic.

2A general purpose logic programming language.

36 LOGIC PROGRAMMING, RELATIONAL AND DEDUCTIVE DATABASES

Relational algebra expressions are used to formulate queries on the thus repre-
sented database tables and result themselves in relations, such that expressions can
be nested. Attributes in a relation can be referred to by means of path expressions of
the form R . ai, e.g., within conditions. The primitive operations of relational algebra
are union, set difference, cartesian product, projection and selection.

Given two n-ary relations over the same domains, the union of the two relations,
R1 and R2 (denoted R1 ∪ R2), is the set:

{〈x1, . . . , xn〉 | 〈x1, . . . , xn〉 ∈ R1 ∨ 〈x1, . . . , xn〉 ∈ R2}

The difference R1 \ R2 of two relations R1 and R2 over the same domains yields
the new relation:

{〈x1, . . . , xn〉 ∈ R1 | 〈x1, . . . , xn〉 6∈ R2}

The cartesian (cross) product of two relations R1 and R2 (denoted R1 × R2) yields
the new relation:

{〈x1, . . . , xm, y1, . . . , yn〉 | 〈x1, . . . , xm〉 ∈ R1 ∧ 〈y1, . . . , yn〉 ∈ R2}

Note that R1 and R2 may have both different domains and different arities. More-
over, if R1 and R2 contain disjoint sets of attributes they are carried over to the re-
sulting relation. However, if the original relations contain some joint attribute the
attribute of the two columns in the new relation must be renamed into distinct ones.
This can be done e.g., by prefixing the joint attributes in the new relation by the re-
lation where they came from. For instance, in the relation R(A, B)× S(B,C) the at-
tributes are, from left to right, A, R.B, S.B and C. Obviously, it is possible to achieve
the same effect in other ways.

A projection π[a1,...,am](R(a1, . . . , an)) restricts the columns of the resulting relation
to the attributes a1, . . . , am for m < n.

The selection of a relation R is denoted σ[F](R) (where F is a formula) and is the set
of all tuples 〈x1, . . . , xm〉 ∈ R such that F is true for (x1, . . . , xm).

Some other operations (like natural join and composition) are sometimes encoun-
tered in relational algebra but they are usually all defined in terms of the mentioned,
primitive ones and are therefore not discussed here. For a detailed description of
relational algebra, the reader might refer to [Cod83].

4.3 Deductive Databases

Since conventional database systems suffer from the limited power of their query
languages, there has been a growing interest in the database community to use logic
programs as a language for representing data, integrity constraints, views and queries
in a single uniform framework. Deductive databases grown out of this interest to
combine logic programming with relational databases to construct systems that sup-
port a powerful formalism and are still fast and able to deal with very large datasets.

4.3 DEDUCTIVE DATABASES 37

They provide a declarative, logic-based language for expressing queries, reasoning,
and complex applications on databases.

Datalog is a restricted version of logic programs without functional symbols and is
the language typically used to specify facts, rules and queries in deductive databases.
Over database languages such as relational algebra or SQL3, datalog has the advan-
tage of being able to express recursive queries. In datalog, relations that are are phys-
ically stored in the database are called extensional database (EDB) relations and are
identical to relations in the relational data model. The main difference between dat-
alog and relational model is that it also allows relations which are defined by logical
rules, called intensional database (IDB) relations. Datalog also has a number of built-
in predicates for standard arithmetic comparison. Any predicate that is not built-in is
called ordinary.

A salient feature of deductive databases is the development of efficient query eval-
uation algorithms for handling cycles of recursive rules. This is a most useful feature
since cyclic graphs are often stored in database relations, and derived relations can
also be circular.

The standard methods for evaluating queries in logic are backward-chaining (or
top-down) and forward-chaining (or bottom-up). In backward-chaining, the system
uses the query as a goal and creates more goals by expanding each head into its body.
This approach ensures that only potentially relevant goals are explored but can result
in infinite loops. Forward-chaining starts with the EDB and repeatedly uses the rules
to infer more facts. As such, it avoids the problems of looping, but may infer many
irrelevant facts. An important result from deductive databases is the magic sets tech-
nique [CFGL04], which rewrites rules so that a forward-chaining evaluation will only
consider potentially relevant goals similar to those explored by backward-chaining.

For comprehensive materials on deductive databases, the interested reader might
refer to [ABW88]. For query evaluation techniques, please refer to [CFGL04].

3http://en.wikipedia.org/wiki/SQL [accessed 2009-07-22]

38 LOGIC PROGRAMMING, RELATIONAL AND DEDUCTIVE DATABASES

Part II

Approximate Reasoning For the
Semantic Web

Chapter 5

A Foundation of Approximate
Reasoning Research

Approximate reasoning for the Semantic Web is based on the idea of sacrificing
soundness or completeness for a significant speed-up of reasoning. This is to be done
in such a way that the number of introduced mistakes is at least outweighed by the
obtained speed-up. When pursuing such approximate reasoning approaches, how-
ever, it is important to be critical not only about appropriate application domains, but
also about the quality of the resulting approximate reasoning procedures. With dif-
ferent approximate reasoning algorithms discussed and developed in the literature, it
needs to be clarified how these approaches can be compared, i.e., what it means that
one approximate reasoning approach is better than some other.

This chapter provides a foundation for approximate reasoning research. We will
clarify – by means of notions from statistics – how different approximate algorithms
can be compared, and ground the most fundamental notions in the field formally.

5.1 Motivation

In different application areas of Semantic Technologies, the requirements for reason-
ing services may be quite distinct; while in certain fields (as in safety-critical technical
descriptions) soundness and completeness are to be rated as crucial constraints, in
other fields less precise answers could be acceptable if this would result in a faster
response behaviour.

Introducing approximate reasoning in the Semantic Web field is motivated by the
following observation: most nowadays’ specification languages for ontologies are
quite expressive, reasoning tasks are supposed to be very costly with respect to time
and other resources – this being a crucial problem in the presence of large-scale data.
As a prominent example, note that reasoning in most description logics which include
general concept inclusion axioms (which is simply standard today, and e.g., the case
in OWL DL) is at least EXPTIME complete, and if nominals are involved (as for OWL

42 A FOUNDATION OF APPROXIMATE REASONING RESEARCH

DL) even NEXPTIME complete. Although those worst case time complexities are not
likely to be thoroughly relevant for the average behaviour on real-life problems, this
indicates that not every specifiable problem can be solved with moderate effort.

In many cases, however, the time costs will be the most critical ones, as a user
will not be willing to wait arbitrarily long for an answer. More likely, she would be
prone to accept “controlled inaccuracies” as a tradeoff for quicker response behaviour.
However, the current standard reasoning tools (though highly optimized for accurate,
i.e., sound and complete reasoning) do not comply with this kind of approach: in
an all-or-nothing manner, they provide the whole answer to the problem after the
complete computation. It would be desirable, however, to have reasoning systems
at hand which can generate good approximate answers in less time, or even provide
“anytime behaviour”, which means the capability of yielding approximate answers
to reasoning queries during ongoing computation: as time proceeds, the answer will
be continuously refined to a more and more accurate state until finally the precise
result is reached. Clearly, one has to define this kind of behaviour (and especially the
notion of the intermediate inaccuracy) more formally.

These ideas of approximate reasoning are currently cause for controversial dis-
cussions. On the one hand, it is argued that soundness and completeness of Semantic
Web reasoning is not to be sacrificed at all, in order to stay within the precise bounds
of the specified formal semantics. On the other hand, it is argued that the nature
of many emerging Semantic Web applications involves data which is not necessarily
entirely accurate, and at the same time is critical in terms of response time, so that
sacrificing reasoning precision appears natural [FH07].

Another way of achieving scalable reasoning is to restrict knowledge representa-
tion to so-called tractable fragments that allow for fast sound and complete reasoning.
Although this might be useful in scenarios where all essential knowledge can bemod-
elled within the restricted fragment, in general there are strong arguments in favor of
the usage of expressive formalisms:

• Real and comprehensive declarative modelling should be possible. A content
expert wanting to describe a domain as comprehensive and as precisely as pos-
sible will not want to worry about limiting scalability or computability effects.

• As research proceeds, more efficient reasoning algorithms might become avail-
able that could be able to more efficiently deal with expressive specification for-
malisms. Having elaborated specifications at hand enables to reuse the knowl-
edge in a more advanced way.

• Finally, elaborated knowledge specifications using expressive logics can reduce
engineering effort by horizontal reuse: Knowledge bases could then be em-
ployed for different purposes because the knowledge is already there. However,
if only shallow modelling is used, updates would require overhead effort.

From our perspective, it depends on the specifics of the problem at hand whether
approximate reasoning solutions can or should be used. We see clear potential in

5.2 A MATHEMATICAL FRAMEWORK FOR THE STUDY OF APPROXIMATE REASONING43

the fields of information retrieval, semantic search, as well as ontology engineering
support, to name just a few examples.

At the same time, however, we would like to advocate that allowing for unsound
and/or incomplete reasoning procedures in such applications must not lead to arbi-
trary “guessing” or to deduction algorithms which are not well-understood. Quite
on the contrary, we argue that in particular for approximate reasoning, it is of utmost
importance to provide ways of determining how feasible the approximations are, i.e.,
of what quality the answers given by such algorithms can be expected to be.

Obviously, soundness and completeness with respect to the given formal seman-
tics of the underlying knowledge representation languages cannot be used as a mea-
sure for assessing the quality of approximate reasoning procedures. Instead, they
must be evaluated experimentally, and analysed by statistical means.

5.2 AMathematical Framework for the Study of Approximate

Reasoning

In this section, we lay the foundations for a statistical approach to evaluating approxi-
mate reasoning algorithms. We will do this in an abstract manner, which can be made
concrete in different ways, depending on the considered use case. At the same time,
we use this statistical perspective to precisely define approximate reasoning notions.

First, let us stipulate some abbreviations which we will use in the sequel: let
R

+ = {x ∈ R : x ≥ 0} and R
+
∞ = {x ∈ R : x ≥ 0} ∪ {+∞}.

First of all, we have to come up with a general and generic formalization of the
notion of a reasoning task. Intuitively, this is just a question (or query) posed to a sys-
tem that manages a knowledge base, which is supposed to deliver an answer after
some processing time. The (maybe gradual) validity of the given answer can be eval-
uated by investigating its compliance with an abstract semantics. We will extend this
classical conceptualisation in the following way: we allow an algorithm to – roughly
spoken – change or refine its output as time proceeds, thus capturing the notion of
anytime behaviour, as a central concept in approximate reasoning. Yet in doing so, we
have to take care not to lose the possibility of formalizing “classical” termination. We
solve this by stipulating that every output of the system shall be accompanied by the
information, whether this output is the ultimate one.

In the sequel we will formalize those intuitions. By the term INPUT SPACE we de-
note the set of possible concrete reasoning tasks. Formally, we define the input space
as a probability space (Ω, P), where Ω is some set (of inputs) and P is a probability
measure on Ω. The probability P(ω) encodes how often a specific input (knowl-
edge base, query) ω occurs in practice i.e., how relevant it is for practical purposes.
Naturally, information about the probability distribution of inputs will be difficult to
obtain in practice (since, e.g., in general there can be infinitely many different inputs).
So rules of thumb, like giving short queries a higher probability than long ones, or us-

44 A FOUNDATION OF APPROXIMATE REASONING RESEARCH

ing some kind of established benchmarks, will have to be used until more systematic
data is available.

The use of having a probability on the set of inputs is quite obvious: as already
stated before, correctness of results cannot be guaranteed in the approximate case.
So in order to estimate how good an algorithm performs in practice, it is not only
important, how much the given answer to a specific input deviates from the correct
one, but also how likely (or: how often) that particular input will be given to the
system. Certainly, a wrong (or strongly deviant) answer to an input will be more
tolerable if it occurs less often.

For actual evaluations, one will often use a discrete probability space. For the gen-
eral case – for developing the theory in the sequel – we will assume that all occurring
functions are measurable (i.e., integrals over them exist), which is obviously a very
mild assumption from a computer science perspective.

The OUTPUT SPACE comprises all possible answers to any of the problems from
the input space. In our abstract framework, we define it simply as a set X. A function
e : X × X → R

+ – which we call error function – gives a quantitative measure as to
what extent an output deviates from the desired output (as given by a sound and
complete algorithm). More precisely, the real number e(x, y) stands for the error in
the answer x, assuming that y would be the correct answer. For all x ∈ X we assume
e(x, x) = 0, but we place no further constraints on e. It will be determined by the
problem under investigation, though a suitable example could be 1− f , where f is
the f-measure as known from information retrieval. In cases, it might be also useful to
put more constraints on the error function, one could e.g., require it to be a metric,1 if
the output space has a structure where this seems reasonable.

We will assess the usefulness of an approximate reasoning algorithm mainly by
looking at two aspects: Runtime and error when computing an answer. By introduc-
ing the error function, we are able to formalize the fact that out of two wrong answers
one might still be better than the other since it is “closer” to the correct result. While
this might not seem to make much sense in some cases (e.g., when considering the
output set {true, false} or other nominal scales2), it might by quite valuable in others:
When we consider an instance retrieval task, the outputs will be sets of domain in-
dividuals. Obviously, one would be more satisfied with an answer where just one
element out of hundred is missing (compared to the correct answer) than with a set
containing, say, only non-instances.

We assume X to contain a distinguished element ⊥ which denotes no output. This
is an issue of “backward compatibility”, since classical algorithms – and also many
approximate reasoning algorithms – usually do not display any output until termi-
nation. So, to include them into our framework, we define them to deliver ⊥ before
giving the ultimate result. ⊥ will also be used as output value in case the algorithm
does not terminate on the given input.

1A distance function as used in the mathematical theory of metric spaces.
2Although also these cases can seamlessly be covered by choosing a discrete error function.

5.2 A MATHEMATICAL FRAMEWORK FOR THE STUDY OF APPROXIMATE REASONING45

Since by this definition,⊥ contains no real information, one could argue about ad-
ditional constraints for the error function with respect to this distinguished element,
e.g., e(⊥, y) ≥ supx∈X{e(x, y)} or even e(⊥, y) ≥ supx,z∈X{e(x, z)}. We do not need
to impose these in general, however.

After having formalized inputs and outputs for problems, we now come to the
actual algorithms. In order not to unnecessarily overcomplicate our formal consider-
ations, wemake some additional assumptions: We assume that hardware etc. is fixed,
i.e., in our abstraction, an algorithm is always considered to include the hard- and soft-
ware environment it is run in. I.e., we can, for example, assign any algorithm-input
pair an exact runtime (which may be infinite). This assumption basically corresponds
to a “laboratory” setting for experiments, which abstracts from variables currently
not under investigation.

So, let A be a set of algorithms. To every algorithm a ∈ A we assign an IO-
FUNCTION fa : Ω×R

+ → X × 2 with 2 := {0, 1}. Hereby, fa(ω, t) = (x, b) means
that the algorithm a applied to the input (task, problem, . . .) ω yields the result x
after running time t together with the information whether the algorithm has already
reached its final output (b = 1) or not yet (b = 0). As a natural constraint, we require
fa to additionally satisfy the condition that for all t2 ≥ t1 we have that

fa(ω, t1) = (x, 1) implies fa(ω, t2) = (x, 1),

i.e., after having indicated termination, the output of the algorithm (including the ter-
mination statement) will not change anymore. For convenience we write f resa (ω, t) =
x and f terma (ω, t) = b, if fa(ω, t) = (x, b).

By f0 : Ω → X we denote the CORRECT OUTPUT FUNCTION, which is determined
by some external specification or formal semantics of the problem. This enables us to
verify the (level of) correctness of an answer x ∈ X with respect to a particular input
ω by determining e(x, f0(ω)) – the smaller the respective value, the better the answer.
By our standing condition on e, e(x, f0(ω)) = 0 ensures f0(ω) = x coinciding with
the intuition.

To any algorithm a, we assign a RUNTIME FUNCTION ̺a : Ω→ R
+
∞ by setting

̺a(ω) = inf{t | f terma (ω, t) = 1},

being the smallest time, at which the algorithm a applied to input ω indicates its
termination.3 Note that this implies ̺a(ω) = ∞ whenever we have f terma (ω, t) = 0
for all t ∈ R

+. Algorithms, for which for all ω ∈ Ω we have that ̺a(ω) < ∞ and
f resa (ω, t) = ⊥ for all t < ̺a(ω) are called ONE-ANSWER ALGORITHMS: They give
only one output which is not ⊥, and are guaranteed to terminate4 in finite time.

Clearly, for a given time t, the expression e(f resa (ω, t), f0(ω)) provides a measure
of how much the current result provided by the algorithm diverges from the correct

3We make the reasonable assumption that f resa is right-continuous.
4We impose termination here because our main interest is in reasoning with description logics for

the Semantic Web. The same notion without imposing termination would also be reasonable, for other
settings.

46 A FOUNDATION OF APPROXIMATE REASONING RESEARCH

solution. Moreover, it is quite straightforward to extend this notion to thewhole input
space (by taking into account the occurrence probability of the single inputs). This is
done by the next definition.

The DEFECT δ(a, t) ASSOCIATED WITH AN ALGORITHM a ∈ A AT A TIME POINT t
is given by

δ : A×R
+ → R

+
∞ : δ(a, t) = E(e(f resa (ω, t), f0(ω))) = ∑

ω∈Ω

e(f resa (ω, t), f0(ω))P(ω).

Note that E denotes the expected value, which is calculated by the rightmost for-
mula.5 Furthermore, one can even abstract from the time and take the results after
waiting “arbitrarily long”: The (ULTIMATE) DEFECT of an algorithm a ∈ A is given by

δ : A → R
+
∞ : δ(a) = lim sup

t→∞

δ(a, t).

By the constraint put on the IO-function we get

δ(a) = E(e(f resa (ω, ̺a(ω)), f0(ω))) = ∑
ω∈Ω

e(f resa (ω, ̺a(ω)), f0(ω))P(ω).

if an algorithm a terminates for every input.

5.2.1 Comparing Algorithms After Termination

For a, b ∈ A, we say that a is MORE PRECISE THAN b if it has smaller ultimate defect,
i.e., if

δ(a) ≤ δ(b).

Furthermore, it is often interesting to have an estimate on the runtime of an algorithm.
Again it is reasonable to incorporate the problems’ probabilities into this considera-
tion. So we define the AVERAGE RUNTIME6 of algorithm a by

α(a) = E(̺a(ω)) = ∑
ω∈Ω

̺a(ω)P(ω).

This justifies to say that a is QUICKER THAN b if

α(a) ≤ α(b).

Note that this does not mean that a terminates earlier than b on every input. Instead,
it says that when calling the algorithm very often, the overall time when using a will
be smaller than when using b – weighted by the importance of the input as measured
by P.

5The sum could easily be generalised to an integral – with P being a probability measure –, however
it is reasonable to expect that Ω is discrete, and hence the sum suffices.

6We are aware that in some cases, it might be more informative to estimate the runtime behaviour
via other statistical measures as e.g., the median.

5.2 A MATHEMATICAL FRAMEWORK FOR THE STUDY OF APPROXIMATE REASONING47

Throughout the considerations made until here, it has become clear that there are
two dimensions along which approximate reasoning algorithms can be assessed or
compared: runtime behaviour and accuracy of the result. Clearly, an algorithm will
be deemed better, if it outperforms another one with respect to the following criterion:

Definition 5.1. For a, b ∈ A, we say that a IS STRONGLY BETTER THAN b if a is more
precise than b and a is quicker than b.

The just given definition is very strict; a more flexible one will be given below,
when we introduce the notion that an algorithm a is better than an algorithm b.

Note, however, that this definition puts strong constraints on the compared algo-
rithms’ termination behaviour. A more sensitive notion would be the following:

We define the ...WHATEVER...FUNCTION

θa : R
+ → R

+ : θa(e) = inf
t∈R+
{t | ∀t′ ≥ t : δ(a, t′) ≤ e}.

5.2.2 Anytime Behaviour

The definitions just given in Section 5.2.1 compare algorithms after termination, i.e.,
anytime behaviour of the algorithms is not considered. In order to look at anytime
aspects, we need to consider the continuum of time points from initiating the anytime
algorithm to its termination.

For a, b ∈ A, we say that a is MORE PRECISE THAN b AT TIME POINT t if it has
smaller defect wrt. a and t, i.e., if

δ(a, t) ≤ δ(b, t).

We say that a ∈ A REALISES A DEFECTLESS APPROXIMATION if

lim
t→∞

δ(a, t) = 0.

Note that δ(a) = 0 in this case.

Definition 5.2. We say that an algorithm a ∈ A is an ANYTIME ALGORITHM if it realizes a
defectless approximation. We say that it is a MONOTONIC ANYTIME ALGORITHM if it is an
anytime algorithm and furthermore δ(a, t) is monotonically decreasing in t, i.e., if δ(a, ·)ց 0.

Obviously, is reasonable to say about two algorithms a and b – be they anytime or
not –, that (1) a is better than b if a is more precise than b at any time point. A less strict
– and apparently more reasonable – requirement accumulates the difference between
a and b over the entire runtime, stating that (2) a is better than b if

∑
ω∈Ω

P(ω)
∫ max{̺a(ω),̺b(ω)}

t=0
(e(f resa (ω, t), f0(ω))− e(f resb (ω, t), f0(ω))dt ≤ 0.

48 A FOUNDATION OF APPROXIMATE REASONING RESEARCH

We find formula (2) still not satisfactory as it ignores the reasonable assumption
that some time points might be more important than others, i.e., they need to be
weighted more strongly. Formally, this is done by using a different measure for the
integral or – equivalently – a density function f̄ : R

+ → R
+, which modifies the in-

tegral. Summarizing, we now define for two (not necessarily anytime) algorithms a
and b that (3) a IS BETTER THAN b (wrt. a given density function f̄) if

∑
ω∈Ω

P(ω)
∫ max{̺a(ω),̺b(ω)}

t=0

(
e(f resa (ω, t), f0(ω))− e(f resb (ω, t), f0(ω))

)
f̄ (t)dt ≤ 0.

Our definition (3) specialises to the case in (2) for the constant density function
f̄ ≡ 1. We cannot capture (1) with our definition by one specific choice of f̄ , so in the
case of (1) we simply say that a is more precise than b at any time point.7

Clearly, the choice of the density function depends on the considered scenario. In
cases where only a fixed time ttimeout can be waited before a decision has to be made
based on the results acquired so far, the value f̄ (t) of density function would be set to
zero for all t ≥ ttimeout. Usually earlier results are preferred to later ones which would
justify the choice of an f̄ that is monotonically decreasing.

5.3 State-of-the art of Benchmarking

The previous section provided a mathematical framework for measuring the perfor-
mance and quality of approximate reasoning algorithms. This section discusses state-
of-the art of benchmarking of ontology reasoning systems. In the area of ontology
reasoning, benchmarking is often used to evaluate and compare performance of nu-
merous implementations of reasoning algorithms. Systemantic benchmarking can
reveal performance bottlenecks and bad design decisions as well as implementation
errors. Benchmark results are regularly used both by the entire community, to explore
strengths and weaknesses of reasoning systems, running on different benchmarks,
and by the reasoning tool developers, to evaluate the performance of their tools on
critical knowledge bases, to assess implementation changes that may have an impcat
on performance, and to determine the extend of such impact.

Similar to benchmarking conventional software systems, the main goal of bench-
marking a complete and sound reasoning system is to measure various performances
such as loading, preprocessing and query response time, assuming that the system
has correctly implemented its underlying reasoning algorithm.

The main concern of designing such a benchmark is to develop a complex ontol-
ogy populated with a large set of instance data, and handpick some queries based on
certain criteria. In this regard, a typical benchmark on complete and sound ontology
reasoning systems comes with one or more test ontologies and a relatively small set

7However, (1) could be formulated in terms of (3) as a being better than b for all Dirac delta functions
that have their singularity at a nonnegative place.

5.4 BENCHMARKING OF APPROXIMATE INSTANCE RETRIEVAL ALGORITHMS 49

of test queries. There are already several well-known benchmarks and benchmarking
frameworks for evaluating DL reasoning systems. An overview of the well-known
benchmarks is shown in Table 5.1.

Table 5.1: Well-known benchmark ontologies used for evaluating ontology reasoning
systems [Mot06]

ontology expressivity test queries
vicodi ALHI 2

semintec ALCOIF 2
lubm ALEHI(D) 14
wine SHOIN 0
dolce SHIN(D) 0
galen ALEHIF+ 0

It shows some statistics of the benchmark ontologies which indicate their expres-
sivity and the number of the test queries used to evaluate DL reasoning systems
[Mot06]. There are two main reasons that these benchmarks are not well-suited for
the evalutaton of approximate reasoning methods. One reason is that they include
relatively few test queries which are not sufficient to measure the quality of approxi-
mate reasoning methods. The other reason is that these benchmark ontologies are not
expressive enough to show the advantage of approximate reasoning systems can be
shown.

In summary, existing ontology reasoning benchmarks focus on measuring perfor-
mances while measuring soundness and completeness has been limited to occasional
measurement and comparison. Automated, thorough, soundness and completeness
benchmarking has been neglected in most of the benchmarks available in the area of
ontology reasoning.

5.4 Benchmarking of Approximate Instance Retrieval Algo-

rithms

Clearly, the ultimate goal of approximate reasoning research is to develop approx-
imate reasoning systems that are both effective and efficient. The performance of
an approximate reasoning algorithm can be easily evaluated by measuring response
times. Evaluating the quality of an approximate reasoning algorithm, however, is a
highly complex issue. This section analyses the issues which make the evaluation of
approximate reasoning methods difficult.

1. Creation of benchmarks

The first difficulty is that we do not only want to measure query response time,
but we also need to determine empirically to what extent the evaluated algo-

50 A FOUNDATION OF APPROXIMATE REASONING RESEARCH

rithms are sound and complete statistically. In order to do this, we need to test a
suitable and large enough sample of queries while for comparing complete and
sound reasoning systems usually a few complex queries suffice. This poses the
question, however, which of the potentially infinitely many queries should be
used for the testing. Obviously, we have to restrict our attention to a finite set,
but two general problems arise: It is not possible to do unbiased random selec-
tions from an infinite set, and many randomly generated queries would simply
result in no answer at all.

2. Execution of benchmarks

Even when there is enough resources to create a benchmark, our experience
shows that it is non-trivial to conduct the actual measurements and conduct
them repeatedly. The problem is caused by the fact that the benchmark suite
can contain several thousands of test queries and reasoning intensive complex
ontologies. So its execution takes hours, days or weeks of running time to com-
plete. The amount of collected data can easily reach the order of gigabytes, e.g.,
. approximate intance retrieval would make a large set of new facts explicit in
case of ontologies with a large set of instance data. Without a mechanism for
automated execution and collection of benchmark data, the task is on the verge
of possibility.

3. Evaluation of benchmarks

The data collected during the automated execution of a benchmark suite are
mostly raw numbers, in amount, which prevents direct human analysis. The
data must be first processed by a machine and the size and detail reduced to
a manageable level. An important requirement during the development of ap-
proximate reasoning systems is automated evaluation of the data with respect
to previous runs of the benchmark, which should be able to detect changes and
alert the developers to pay extra attention to the results. Without automated
processing facilities, the benchmark results are merely gigabytes of useless data.

To address these issues, the difficulty of evaluating approximate reasoning algo-
rithms calls for an automated benchmarking framework to help developers in design-
ing and executing benchmarks.

5.5 Requirements For an Automated Benchmarking Frame-

work

This section examines some requirements suggested in [WLLB06, GQPH07,
MYQ+06] for designing benchmarks for the evaluation of sound and complete on-
tology reasoning systems which can be also considered for the evaluation of approx-
imate reasoning systems. In selecting these requirements, we focus on those require-

5.5 REQUIREMENTS FOR AN AUTOMATED BENCHMARKING FRAMEWORK 51

ments which are important to develop an automated, scalable benchmarking frame-
work. We extend these requirements by identifying several specific requirements
which an automated evaluation framework has to meet for the evaluation of approx-
imate reasoning algorithms.

5.5.1 Requirements For Measuring Performance

In [WLLB06, WLL+07], creating OWL benchmarks for ABox-related ontology reason-
ing services have been discussed and several requirements are suggested. Given the
focus of this thesis, the following two requirements are relavent.

(A1) The benchmark should also pinpoint the influence of TBox complexity on ABox
reasoning. Thus TBox complexity should gradually be increased. In one setting
this increase in complexity should influence the ABox reasoning task while in
a separate setting TBox axioms which are unrelated to the actual benchmark
should be added. The second setting is to trick the reasoner into switching off
optimizations even if this would not have been necessary for the actual reason-
ing task. Awell implemented reasoner should thus continue with optimizations
whereas other systems might show a significant decrease in performance.

(A1) Include benchmarks, that comprise TBoxes modeled in a way such that adding
explicit knowledge to the ABox also adds large quantities of implicit knowledge
(e.g., transitive properties). This is to reveal the possibly negative influences of
materialization approaches or maintenance of index structures.

In [GQPH07], a collection of requirements for benchmarking have been proposed.
Most of them are borrowed from the requirements used in the field of benchmark-
ing database systems. Analysing the common characteristics between both database
systems and knowledge representation systems, the authors identify the following
requirements which we have to consider for deriving our requirements.

(B1) The benchmark infrastructure should make it easy to add a system under test
(SUT). This involves providing hooks to the benchmkark infrastructure so that
one can incorporate new SUTs with the least amount of additional work.

(B2) It should provide meaningful metrics. A variety of metrics are needed in order
to capture every aspect of system performance. Furthermore, this requirement
involves supplementing the benchmark with guidelines and reproducible man-
ner.

(B3) The metrics should be able to capture the extent to which the SUTs return the
expected results to a query.

In addition to the above requirements mainly concerning performance measure-
ment, measuring soundness and completeness poses demands that are not answered

52 A FOUNDATION OF APPROXIMATE REASONING RESEARCH

by conventional benchmarking frameworks, and thus leading to the need for addi-
tional requirements. In order to derive these requirements, we analysed the difficulty
in depth, particularly, in case of benchmarks with expressive ontologies with large
data sets.

5.5.2 Requirements For Measuring Soundness and Completeness

The principal goals of an automated benchmarking execution framework are (1) to
provide an infrastructure for accumulating challenging benchmarks, (2) to facilitate
executing OWL reasoners and approximate reasoners under the same conditions,
guaranteeing reproducible and reliable performance results, and (3) to measure query
soundness and completeness. We suggest the following requirements for designing
an automated benchmarking framework.

(R1) In some cases, existing benchmark ontologies are not sufficient to highlight the
strengths and weaknesses of approximate reasoning systems; therefore vari-
ous ontology generation methods for artificial ontologies as well as population
methods tomake TBoxesmore complex are needed. Suchmethods help tomake
a better study on the performance gain and effectiveness of approximate reason-
ing systems.

(R2) Various ABox population tools are required to generate realistic data sets as well
as random and repeatable data.

(R3) It is important to automatically generate test queries needed for measuring com-
pleteness and soundness, and store them in a proprietary format.

(R4) A well-defined benchmark suite allow reducing the cost of the experimentation
and the comparison of the results obtained by different groups of people. It
may include various tools involved in benchmarking. It can also include other
benchmarks that are to be executed consecutively, and thus becoming more and
more complex. To create a complex benchmark suite and control its workflow,
a configuration describing the workflow is required.

(R5) In benchmarking approximate reasoning systems, a very large amount of data
such as inferred ABox assertions and other experimental results are produced.
In order tomanage such experimental data, a flexible storage solution is needed.

(R6) A benchmark may fail for various reasons, e.g., when the benchmarked appli-
cation crashes due to a lack of memory or other resources. In such cases, a
benchmark framework ought to make it possible to recover previous computed
experimental results and to continue performing the benchmark from the in-
terruptted point, in order to run a benchmark with test queries which require
intensive computation.

5.6 CONCLUSIONS 53

(R7) The characteristics of the ontology under test is important to explain the effect of
an approximate reasoning algorithm. Therefore, it is valuable to have anmetrics
tool which enables to inspect the structure of benchmark ontologies.

(R8) An experiment report provides technical details on the experimental data and
results on the experimentation while the benchmarking report is intended to
provide an understandable summary of the benchmarking process carried out.
The benchmarking report must be written taking into account that the docu-
ment can show different perspectives of the results by presenting in appropriate
formats like in graphics or table sheets. It is in general not clear how to present
the evaluated data the most. It is desireable to make the reporting process auto-
mated as much as possible.

(R9) A frequent question related to measuring the degree of soundness and com-
pleteness is to explore and explain why the answer of an approximate reason-
ing algorithm differs from the correct one. In case of dealing with large and
complex knowledge bases, this inspection task is extremely difficult and time-
consuming, yet, in many cases, it is impossible to derive the right information
to explain an approximate answer. Therefore, tool support is valuable for ex-
planing approximate answers.

(R10) The architecture of a benchmarking framework should not be tied to any spe-
cific benchmark or reasoning system. It should be modular, extendable and
capable of embedding extern tools which contribute to a benchmark.

It has been revealed that the existing approaches above mentioned mainly focus
on the design of benchmarks. We recognise the difficulty in executing benchmarks for
OWL reasoners as well as approximate reasoners with the respect to soundness and
completeness measurement, and thus our focus is not only the design of benchmarks,
but also the execution of benchmarks and the analysis of experimental results. A con-
crete benchmarking framework, which shall meet the requirements outlined above,
is described in Section 9.5, Chapter 9.

5.6 Conclusions

Approaches to approximate reasoning tackle the problem of scalability of deducing
implicit knowledge. Especially if this is done on the basis of large-scale knowledge
bases or even the whole Web, often the restriction to 100% correctness has to be aban-
doned for complexity reasons, in particular if quick answers to posed questions are
required. Anytime algorithms try to fulfill both needs (speed and correctness) by
providing intermediate results during runtime and continually refining them.

This chapter has provided solid mathematical foundations for the assessment and
comparison of approximate reasoning algorithms with respect to correctness, run-
time and anytime behaviour. We are confident that this general framework can serve

54 A FOUNDATION OF APPROXIMATE REASONING RESEARCH

as a means to classify algorithms with respect to their respective characteristics and
help in deciding which algorithm best matches the demands of a concrete reasoning
scenario.

In most practical cases, it will be unfeasible or even impossible to measure the
whole input space as it will be too large or even infinite. That is where statistical con-
siderations come into play: one has to identify and measure representative samples
of the input space. The first part of this is far from trivial: for fixed settings with
frequently queried knowledge bases, such a sample could be determined by proto-
colling the actually posed queries over a certain period of time. Another way would
be to very roughly estimate a distribution based on plausible arguments. Respective
heuristics would be: (1) the more complex a query the more unlikely, (2) queries of
similar structure are similarly frequent resp. likely, (3) due to some bias in human con-
ceptual thinking, certain logical connectives (e.g., conjunction) are preferred to others
(e.g., disjunction, negation) which also gives an opportunity to estimate a query’s fre-
quency based on the connectives it contains. Admittedly, those heuristics are still
rather vague and more thorough research is needed to improve reliability of such
estimates.

In general, intelligent combination of several approximate algorithms with differ-
ent soundness/completenessproperties (as well as being specialised to certain logical
fragments) can increase speed andmight help avoid heavy-weight reasoning in cases.
We are confident, that this idea can be easily generalised to reasoning tasks other than
instance retrieval. Obviously, this strategy comes with an immediate opportunity of
parallelisation even if the single algorithms have to be treated as black boxes. Hence,
this approach could also be conceived as a somewhat exotic approach to distributed
reasoning.

Towards a concrete implementation of the present abstract framework, a num-
ber of requirements have been derived which are essential to develop an automated
benchmarking framework for approximate instance retrieval algorithms. The imple-
mentation of this concrete framework will be described in Chapter 9.

Chapter 6

Knowledge Compilation

Due to the inherent computational complexity of reasoning with expressive ontolo-
gies with a large data set, it is to be expected that some application settings will defy
even the most sophisticated approaches for achieving sound and complete scalable
algorithms. Recently, there has been a growing trendency towards addressing the in-
herent computational complexity of many reasoning problems by compiling knowl-
edge bases and/or queries into restricted forms where query answering is easier than
in the original language. Such methods are very useful in practice when a knowledge
base does not change over time.

This chapter presents the concept of a knowledge compilation method SCREECH

which allows for various Horn transformations of disjunctive datalog. This chapter
is structured as follows: Section 6.1 introduces the general concept of addressing the
scalability of reasoning in the context of knowledge compilation. Section 6.3 details
the SCREECH approach while Section 6.4 describes its variants and their character-
istics. Section 6.5 presents a comprehensive experimental analysis conducted with
well-known benchmarking ontologies.

6.1 Principle Idea of Knowledge Compilation

Logic has been used to formalize knowledge representation and reasoning in several
areas of Artificial Intelligence, such as planning, model-based diagnosis, belief revi-
sion and reasoning about actions. The main argument against the use of logic has
always been the high computational complexity involved. For instance, solving a
problem using a sound and complete procedure for logical entailment even within
propositional logic is a NP-complete problem. The data complexity of satisfiability
checking in SHIQ(D) is NP-complete [HMS05].

Computational efficiency is a central concern in the design of knowledge represen-
tation systems. In order to obtain computationally efficient representation systems it
has been suggested that one should restrict the expressive power of the knowledge
representation language or use an incomplete inference mechanism. In the first ap-

56 KNOWLEDGE COMPILATION

proach, decreasing the expressive power usually renders the language too limited
for practical applications, and leaves unanswered the question of what to do with
information that cannot be represented in the restricted form. The second approach
involves either resource-bounded reasoning or the introduction of a non-traditional
semantics. Resource-bounded reasoning is concerned with the construction of in-
telligent systems that can operate in real-time environments under uncertainty and
limited computational resources such as time, memory, or information. That is, in
resource-bounded reasoning, inference is limited by bounding the number of infer-
ence steps performed by the inference procedure. It therefore becomes difficult to
characterize exactly what can and cannot be inferred, that is, the approach lacks a
“real” semantics. Moreover, no information is provided if a proof cannot be found
within the time bound.

Knowledge compilation (KC) [SK91, SK96] is a family of approaches for addressing
the intractability of reasoning problems in logic-based formalisms. In contrast to the
approaches restricting the expressive power, it allows the knowledge base to be spec-
ified in a general, unrestricted knowledge representation language. The central idea
of Knowledge compilation is to transform a knowledge base with respect to which
reasoning is intractable into one or more approximate or equivalent knowledge bases
with respect to which reasoning can be tractable, or at least more efficient. The central
idea is to invest time and space in an extra preprocessing effort which will later sub-
stantially speed up query answering at runtime. In particular, a KC method is useful
for applications of expressive knowledge bases where the knowledge base remains
unchanged over a long period of time and is used to answer many queries.

Knowledge compilation is like pre-processing that is quite common in computer
science. For example, compilers usually optimize object code or a graph can be pre-
processed to obtain a data structure that allows for a fast node reachability. While pre-
processing techniques in computer science are usually implemented for problems,
that are already solvable in polynomial time, knowledge compilation deals with rea-
soning problems that are often NP-hard. In knowledge compilation query answering
is divided into two phases:

• In the first phase the knowledge base is preprocessed by translating it into an
appropriate data structure, which allows for more efficient query answering.
This phase is also called off-line reasoning.

• In the second phase, the data structure, which results from the previous phase,
is used to answer the query. This phase is also called on-line reasoning.

The challenge here is to minimize the size of the compiled knowledge base and
compilation time, while still ensuring that every query of interest can be answered
in polynomial time. However it is not always possible to develop a method to make
online-reasoning more efficient without giving up the soundness and completeness.
KC may be exact or approximate, depending on whether all queries can be answered

6.2 A CLASSIFICATION OF KNOWLEDGE COMPILATION METHODS 57

Figure 6.1: A classification of knowledge compilation methods

tractably, or only a subset thereof. In this regard, an important aspect in the devel-
opment of a knowledge compilation is to study its characateristics, i.e., to ensure
whether a transformation causes breaking the soundness and completeness of the
original knowledge base.

6.2 A Classification of Knowledge Compilation Methods

In the context of our work, we will only be able to discuss a small fraction of the
wide variety of knowledge compilation techniques [CD97, DM02]. Before digging
any deeper into the matter, we will attempt to provide a classification of knowledge
compilation methods as overview.

Over the past years, a number of knowledge compilation methods have been
intvestigated. Figure 6.1 sketches a rough taxonomy of knowledge compilation meth-
ods. Generally, knowledge compilation methods can be divided in two basic classes
such as exact compilation and approximate compilation.

6.2.1 Exact Knowledge Compilation

Exact knowledge compilation (EKC) refers to methods that exactly translate a knowl-
edge base into another form in such a way that the reasoning later provides the same
answers as reasoning in the original knowledge base, i.e., the knowledge bases are
logically equivalent.

58 KNOWLEDGE COMPILATION

Cadoli in [SC95] proposed exact knowledge compilation in three main methods:
(1) use of prime implicants1 or prime implicates2; (2) add to the knowledge base only
those prime implicates that make any deduction possible by unit resolution; (3) use
prime implicates with respect to a tractable theory. We do not elaborate on this subject
as the focus of this thesis is on approximation. Interested reader may refer to [CD97].

6.2.2 Approximate Knowledge Compilation

Approximate knowledge compilation (AKC) refers to methods that translate a knowledge
base into a form that approximates the original knowledge base. For some important
reasoning problems, it is not always possible to develop exact compilation techniques.
Furthermore, it is not always possible to make on-line reasoning more efficient in all
cases without approximation. As approximate knowledge compilation, two classi-
cal approaches have been developed for addressing the computational hardness of
reasoning problems, which are language restriction and theory approximation.

Language Weakening. The expressive power of the language used to represent
knowledge may be restricted by neglecting some expensive language constructors.
The resulting language cannot allow for all problems in a domain of interest, but,
once a problem is presented using such a language, it shall be possible to solve the
problem more efficiently. In general, in order to obtain a computationally efficient
representation system one either restricts the expressive power of the knowledge rep-
resentation language or one uses an incomplete inference mechanism.

In the first approach, the representation language is often too limited for prac-
tical applications [CD97]. In both the description logic and semantic web commu-
nity, it is common to build tractable reasoning procedures for certain fragments of
description logics or the OWL language, i.e., to identify certain fragments with poly-
nomial data complexity at least. As an example of language weakening, the descrip-
tion logic EL++ constitutes a tractable knowledge representation formalism [BBL05].
Neglecting some expressive concept constructors such as disjunction and universal
restriction and number restriction, the description logic EL++ is an important DL
fragment in which reasoning can be performed in polynomial time. Moreover, rea-
soning over EL TBoxes with arbitrary (possibly cyclic) GCIs is polynomial (even with
additional constructs), while this is not the case for AL (the basic description logic),
for which the same problem is EXPTIME-complete. Another example of language
weakening is to eliminate the nominal constructor in the OWL language. The nomi-
nal constructor allows to define a concept by finite enumeration of its elements. For
example, the atomic concept WineColor can be defined, using nominals, as follows:
WineColor = {red,white} where the elements of the enumeration are individuals in
the knowledge base. From a logical point of view, the nominal constructor transforms
the individual name i into the concept description {I}, which is evaluated, by every

1Logically weakest terms implying a formula.
2Logically strongest clausel consequences of a formula.

6.2 A CLASSIFICATION OF KNOWLEDGE COMPILATION METHODS 59

model-theoretic interpretation, to a singleton set with i as its only element. In other
words, ABox assertions can affect concept satisfiability and TBox classification.

As a consequence, ontologies with nominals in the TBox and large number of in-
stances in the ABox are likely to compromise the performance of DL reasoners. To
provide praticable reasoning with large ABoxes, nominals have been partially ap-
proximated in DL reasoners by treating them as pair-wise disjoint atomic concepts,
commonly called pseudo-nominals. For instance, KAON2 cannot currently handle on-
tologies with nominals; thereofore such ontologies are processed by removing nomi-
nals before reasoning with KAON2. This technique of removing nominals is known
to lead to incorrect inferences in some cases, and thus one can consider it as a lan-
guage weakening technique.

Theory approximation. One can give up the soundness or completeness in the an-
swer to the original reasoning problem. This is means that either certain information
is lost in the off-line reasoning phase, or that the theory is compiled into an equiva-
lent theory and the soundness or incompletenes in the answer is lost in the on-line
reasoning phase.

Horn approximation proposed by Selman and Kautz [SK91] is a method to ap-
proximate knowledge bases. It shows how a propositional theory can be com-
piled into a tractable form – consisting of a set of Horn clauses – that guarantees
polynomial-time inference. As a logically equivalent set of Horn clauses does not al-
ways exist, the basic idea of this method is to bound a set of models of the original
theory from below (i.e., complete) and from above (i.e., sound). For this, they pro-
posed to use Horn lower-bound and Horn upper-bound to approximate the original
theory.

Let Σ be a set of clauses (the original theory), the sets Σlb and Σub of Horn clauses
are respectively a Horn lower-bound and a Horn upper-bound of Σ iff M(Σlb) ⊆
M(Σ) ⊆M(Σub), or, equivalently, Σlb |= Σ |= Σub. This says the Horn lower-bound
is logically stronger than the original theory and the Horn upper-bound is logically
weaker than it. Instead of using any pair of bounds to characterize the original theory,
the best possible bounds are used. This leads to a greatest Horn lower bound and a
least Horn upper bound.

A Horn lower-boundM(Σglb) is a greatest Horn lower-bound iff there is no set Σ
′

of Horn clauses such thatM(Σlb) ⊂M(Σ
′
) ⊆M(Σ). A Horn upper-boundM(Σlub)

is a least Horn upper-bound iff there is no set Σ of Horn clauses such that M(Σ)
⊆ M(Σ

′
) ⊂ M(Σlub). It is shown that each theory has a unique LUB (up to logical

equivalence), but can have many different GLBs. In this way, inference can be approx-
imated by using the Horn GLBs and Horn LUBs. The inference could be unsound or
incomplete, but it is always possible to spend more time and use a general inference
procedure on the original theory.

60 KNOWLEDGE COMPILATION

Figure 6.2: KAON2 approach to reasoning

6.3 Approximate Reasoning with SCREECH

In the previous section, we have given an overview of knowledge compilation meth-
ods, which can be used to address the high computational complexity of logical in-
ference. The central idea behind knowledge compilation is to tranform an expres-
sive knowledge base into a restricted form with respect to which reasoning can be
tractable, or at least more efficient. Furthermore, we have briefly introduced the un-
derlying ideas of several knowledge compilation methods.

In this section, we present our approximate knowledge compilation method,
called Screech. The SCREECH approach for instance retrieval is based on the fact
that data complexity is polynomial for non-disjunctive datalog, while for SHOIN
it is coNP complete even in the absence of nominals [HMS05]. SCREECH utilises the
KAON2 algorithms, but rather than doing (expensive) exact reasoning over the re-
sulting disjunctive datalog knowledge base, it does approximate reasoning by treat-
ing disjunctive rules as if they were non-disjunctive ones, i.e., the disjunctive rules
are approximated by Horn rules. In the rest of this section the SCREECH approach is
described in full detail. We start introducing the underlying system KAON2.

6.3.1 The KAON2-Transformation

Reasoning with KAON2 is based on special-purpose algorithms which have been de-
signed for dealing with large ABoxes. They are detailed in [Mot06] and we present a
birds’ eyes perspective here, which suffices for our purposes. The underlying ratio-
nale of the algorithms is that algorithms for deductive databases have proven to be
efficient in dealing with large numbers of facts. The KAON2 approach utilises this
by transforming OWL-DL ontologies to disjunctive datalog, and by the subsequent
application of the mentioned and established algorithms for dealing with disjunctive
datalog.

6.3 APPROXIMATE REASONING WITH SCREECH 61

A birds’ eyes perspective on the KAON2 approach is depicted in Figure 6.2.
KAON2 can handle SHIQ(D) ontologies. The TBox, together with a query are pro-
cessed by the sophisticated KAON2-transformation algorithm which returns a dis-
junctive datalog program. This, together with an ABox, is then fed into a disjunctive
datalog reasoner which eventually returns an answer to the query.

In some cases, e.g., when querying for instances of named classes, the query does
not need to be fed into the transformation algorithm but instead needs to be taken into
account only by the datalog reasoner. This allows to compute the disjunctive datalog
program offline, such that only the disjunctive datalog engine needs to be invoked for
answering the query. All experiments we report on have been performed this way,
i.e., they assume an offline transformation of the TBox prior to the experiments.

The program returned by the transformation algorithm is in general not logically
equivalent to the input TBox. The exact relationship is given below in Theorem 6.1
due to [Mot06]. Note that statement (b) suffices for our purposes. It also shows that
the KAON2 datalog reasoning engine can in principle be replaced by other (sound
and complete) reasoning engines without changing the results of the inference pro-
cess.

Theorem 6.1. Let KB be a SHIQ(D) TBox andD(KB) be the datalog output of the KAON2
transformation algorithm on input KB. Then the following claims hold.

(a) KB is unsatisfiable if and only if D(KB) is unsatisfiable.

(b) KB |= α if and only if D(KB) |= α, where α is of the form A(a) or R(a, b), for A a
named concept and R a simple role.

(c) KB |= C(a) for a nonatomic concept C if and only if, for Q a new atomic concept,
D(KB∪ {C ⊑ Q}) |= Q(a).

6.3.2 From Disjunctive Datalog to Horn Clauses

Wewill first describe the basic variant of SCREECH, which was introduced in [HV05],
and which we call SCREECH-ALL here. SCREECH-ALL is complete, but may be un-
sound in cases. Its data complexity is polynomial. Two other variants of SCREECH,
SCHREECH-NONE and SCREECH-ONE, will be described in Section 6.4.

SCREECH-ALL uses a modified notion of split program [SI94] in order to deal with
the disjunctive datalog. Given a disjuctive rule

H1 ∨ · · · ∨ Hm ← A1, . . . , Ak

as an output of the KAON2 transformation algorithm, the derived split rules are de-
fined as:

H1 ← A1, . . . , Ak . . . Hm ← A1, . . . , Ak.

For a given disjunctive program P its split program P′ is defined as the collection of all
split rules derived from rules in P.

62 KNOWLEDGE COMPILATION

It can be easily shown that for instance retrieval tasks, the result obtained by using
the split program instead of the original one is complete but may be unsound. As the
following proposition shows, this is even the case if all integrity constraints, i.e., rules
of the form

← B1, . . . , Bn

are removed from the split program.

Proposition 6.2. Consider a SHIQ(D) knowledge base KB that is logically consistent, letD(KB) denote a disjunctive datalog program obtained by applying KAON2 to KB, and let P
be the logic program obtained from D(KB) by SCREECH-ALL. Then P has a least Herbrand
model which satisfies any atomic formula that is true in some minimal Herbrand model ofD(KB).

Especially, P entails all atomic formulae that are true in all (minimal) models of D(KB),
i.e., SCREECH-ALL is complete for instance retrieval on consistent SHIQ(D) knowledge
bases.

Proof. First, note that we can restrict to propositional programs obtained as the (finite)
ground instantiations of the relevant datalog programs. Hence it suffices to consider
propositional models.

The fact that P has a least Herbrand model is a standard conclusion from the fact
that P is a definite logic program. To show the rest of the claim, consider any minimal
Herbrand model M of the ground instantiation of D(KB) (note that KB has some
Herbrand model by consistency, and that some of those must be minial since only
finitely many ground interpretations exist). Define a ground program QM as follows:

QM = {Hi ← B1 ∧ . . . ∧ Bm ∈ P | M |= B1 ∧ . . . ∧ Bm andM |= Hi, 1 ≤ i ≤ n)}.

We claim that QM is a definite program with least Herbrand modelM. Clearly
QM is definite (thus has some least Herbrand model), and has M as a Herbrand
model. But obviously any Herbrand model of QM that is strictly smaller thanM
would also satisfy all rules of D(KB), thus contradicting the assumed minimality of
M. Now clearly QM is a subset of the screeched program P, and hence any Herbrand
model of Pmust be greater or equal to the least Herbrand modelM of QM. SinceM
was arbitrary, this shows the claim.

In the following we intruduce the algorithms for the SCREECH approach. Split
function defined in Algorithm 1 derives split rules from each disjuctive rule. Here, a
disjunctive rule is given as a pair of two lists and is denoted 〈H, B〉. H is a list of neg-
ative literals while B is a list of possitive literals. The algorithm accepts a disjunctive
rule 〈H, B〉 and generates a list of Horn rules.

Horn rules are generated from a disjunctive rule in such a way that each literal
in the list of H is combined with the body of the given disjunctive rule, as shown in
lines 4 to 7. In the algorithm a temporary list and its access function addListItem are
used to collect the Horn rules are used. Refer to Appendix 13.1 for specific details of
abstract data type list and its access functions.

6.3 APPROXIMATE REASONING WITH SCREECH 63

Algorithm 1: split(〈H, B〉)

Input: 〈H, B〉: a disjunctive rule as a pair where H is a list of negative literals
and B is a list of positive literals
Result: PHorn: a list of Horn rules
Data: i: counter variable

begin1

i ←− len(H)− 1;2

PHorn ←− nil;3

while i > 0 do4

addListItem(PHorn , 〈H[i], B〉);5

i ←− i− 1;6

return PHorn;7

end8

SCREECH-ALL which generates a split program from D(KB) is defined in Algo-
rithm 2 using the split function. The algorithm assumes that a Horn program is a list
of Horn clauses and a disjunctive program is a list of (disjunctive) clauses. The algo-
rithm generates a Horn program from a given disjunctive program as follows. First,
an empty list PHorn is created as in line 3. Then, it applies the algorithm 1 to each dis-
junctive rule in D(KB), and adds the corresponding split clauses to PHorn. As given in
lines 9 to 10, the ground Horn clauses contained in the original program are inserted
into PHorn, except for integrity constrains.

In practice, the SCREECH-ALL approach can be applied for approximate ABox rea-
soning for SHIQ as follows:

1. Apply transformations as in the KAON2 system in order to obtain a negation-
free disjunctive program.

2. Obtain the split program by applying the Algorithm 2.

3. Do reasoning with the split program, e.g. using the KAON2 datalog engine.

Given a TBox KB, the split program obtained from KB by steps 1 and 2 is called the
screeched version of KB. The first two steps can be considered to be preprocessing steps
for setting up the intensional part of the database. ABox reasoning is then done in
step 3. The resulting approach is complete with respect to OWL-DL semantics and
data complexity is polynomial.

Since our approach is based on KAON2, we have so far described the SCREECH

approach for SHIQ which covers a significant portion of OWL-DL. However, it is
possible to apply the SCREECH approach for expressive OWL-DL knowledge bases
by removing nominals.

64 KNOWLEDGE COMPILATION

Algorithm 2: screech_All(D(KB))

Input: D(KB): a disjunctive datalog program
Data: i: counter variable
Result: PHorn: a Horn program

begin1

i ←− len(D(KB))− 1;2

PHorn ←− nil;3

while i ≥ 0 do4

rule ←− D(KB)[i];5

if isDisjuctiveRule(rule) then6

Hsplit ←− split(rule);7

appendList(PHorn ,Hsplit);8

else if ¬(isIntegrityConstraint(rule)) then9

addListItem(PHorn , rule);10

i ←− i− 1;11

return PHorn;12

end13

6.3.3 A Simple Example

We demonstrate the approach on a simple OWL-DL ontology. It contains only a class
hierarchy and an ABox, and no roles, but this will suffice to display the main issues.

The ontology is shown in Figure 6.3, and its intendedmeaning is self-explanatory.
Note that the axiom in line 4 is translated into the four clauses:luxembourgian(x) ∨ dut
h(x) ∨ belgian(x)← beneluxian(x),(6.1) beneluxian(x)← luxembourgian(x),beneluxian(x)← dut
h(x),

and beneluxian(x)← belgian(x).
Thus, our approach changes the ontology by treating the disjunctions in line (6.1)

as conjunctions. Effectively, this means that the rule (6.1) is replaced by the three rulesluxembourgian(x)← beneluxian(x),dut
h(x)← beneluxian(x),
and belgian(x)← beneluxian(x).

This change affects the soundness of the reasoning procedure. However, in the ex-
ample most of the ABox consequences which can be derived by the approxima-
tion are still correct. Indeed, there are only two derivable facts which do not fol-
low from the knowledge base by classical reasoning, namely dutch(saartje) and
luxemburgian(saartje). All other derivable facts are correct.

6.4 VARIANTS OF SCREECH 65

serbian⊔ croatian ⊑ european

eucitizen ⊑ european

german⊔ french ⊔ beneluxian ⊑ eucitizen

beneluxian ≡ luxembourgian ⊔ dutch⊔ belgian

serbian(ljiljana) serbian(nenad) german(philipp) french(julien)

chinese(yue) german(peter) german(stephan) mongolian(tuvshintur)

indian(anupriya) belgian(saartje) german(raphael) chinese(guilin)

Figure 6.3: Example ontology

6.4 Variants of Screech

In SCREECH-ALL, we consider all split clauses of each disjunctive rule. As a result,
SCREECH-ALL is complete, but unsound. That means that we will find more individ-
uals which should not belong to a named class when performing instance retrieval.
In order to reduce finding wrong individuals, one might think to restrict the set of
split clauses derived from a disjunctive rule. In the following we will deal with such
restrictions which lead to two other approximations; we here call SCREECH-ONE and
SCREECH-NONE.

SCREECH-ONE is defined by replacing each disjuntive rules by exactly one of the
split rules. This selection can be done randomly, but will be most useful if the system
has some knowledge – probably of statistical nature – on the size of the extensions of
the named classes. For our example from Section 6.3.3, when considering rule (6.1)
we can use the additional knowledge that there are more dutch people than belgians
or luxenbourgians, thus this rule is replaced by the single ruledut
h(x)← beneluxian(x).

Following this idea, SCREECH-ONE is defined in Algorithm 4, in such a way that
only one Horn rule is selected from the split rule of a disjunctive rule whose head
has the most extension. The extractHornRule function, which – as the name says –
extract a Horn rule, is defined in Algorithm 3. The algorithm uses two variables,
maxInd and maxExt, which are initially assigned to 0 as well as the extension of the
first disjunction of the given disjunctive rule. Note that H is assumed to be a list of
disjunctions, the extension of each H[i], (i > 0) (denoted as |H[i]|) is compared with
maxExt. In case |H[i]| is more than maxExt, both variables will be modified by the
assignment to i and |H[i]|, as given in lines 7 and 8.

The algorithm for SCREECH-ONE is defined in the analogous way as for SCREECH-
ALL. The only difference is that the extractHornRule function instead of the split func-
tion is used. Note that all integrity constraints after the translation are also removed.
The resulting reasoning procedure is neither sound nor complete.

66 KNOWLEDGE COMPILATION

Algorithm 3: extractHornRule(〈H, B〉)

Input: 〈H, B〉: a disjunctive rule as a pair where H is a list of negative literals
and B is a list of positive literals
Data: i: counter variable
Result: A list of Horn rules (clauses)

begin1

maxInd ←− 0;2

maxExt ←− |H[0]|;3

i ←− 1;4

while i < len(H) do5

if |H[i]| > maxExt then6

maxExt ←− |H[i]|;7

maxInd ←− i;8

i ←− i + 1;9

return (H[maxInd], B);10

end11

Algorithm 4: Screech_One(D(KB))

Input: D(KB): a disjunctive program
Data: i: counter variable
Result: PHorn: a Horn program

begin1

i ←− len(D(KB))− 1;2

PHorn ←− nil;3

while i ≥ 0 do4

rule ←− D(KB)[i];5

if isDisjuctiveRule(rule) then6

h←− extractHornRule(rule);7

addListItem(PHorn , h);8

else if ¬(isIntegrityConstraint(rule)) then9

addListItem(PHorn , rule);10

i ←− i− 1;11

return PHorn;12

end13

6.4 VARIANTS OF SCREECH 67

SCREECH-NONE is defined in Algorithm 5 by simply removing all disjunctive
rules (and all integrity constraints) after the transformation by the KAON2-algorithm.
For the example from Section 6.3.3, this means that rule (6.1) is simply deleted. The
resulting reasoning procedure is sound, but incomplete, on SHIQ knowledge bases.
We thus obtain the following result.

Algorithm 5: Screech_None(D(KB))

Input: D(KB): a disjunctive program
Data: i: counter variable
Result: PHorn: a Horn program

begin1

i ←− len(D(KB))− 1;2

PHorn ←− nil;3

while i ≥ 0 do4

rule ←− D(KB)[i];5

if ¬(isDisjuctiveRule(rule) ∨ isIntegrityConstraint(rule)) then6

addListItem(PHorn , rule);7

i ←− i− 1;8

return PHorn;9

end10

Proposition 6.3. Instance retrieval with SCHREECH-NONE is sound but incomplete. In-
stance retrieval with SCHREECH-ONE in general is neither sound nor complete.

Proof. Soundness of SCHREECH-NONE is immediate from the fact that calculations are
performed on a subset of the computed clauses, together with monotonicity of the
employed datalog variant. For all other claims it is easy to find counterexamples.

Table 6.1: SCREECH variants and their basic properties

variant description sound complete

SCREECH-ALL use all of the split rules no yes
SCREECH-ONE use one of the split rules no no
SCREECH-NONE use none of the split rules yes no

The properties of SCREECH are summarised in Table 6.1. From a theoretical point
of view, it would be satisfying to characterize the described approximations in terms
of extremal bounds in certain logical fragments. However, we remark that the un-
sound screech variants do not yield greatest Horn lower bounds in the sense of [SK91]

68 KNOWLEDGE COMPILATION

w.r.t. the disjunctive datalog program, not even if we modify the definition to allow
only definite Horn rules. As a counterexample for SCREECH-ALL, consider the pro-
gram {← C(a),C(a) ∨ C(b) ←}. Its screeched version is {C(a) ←,C(b) ←}, but its
greatest lower bound in the sense of [SK91] would be {C(b)←}.

Analogously, we note that SCREECH-ONE yields no greatest lower bound, even
if integrity constraints are included (which obviously makes the procedure complete
while still being unsound). To see this, consider the program

{C(a)←,C(b)←,← A(a),← B(b), A(x) ∨ B(x)← C(x)}.

Its (extended) SCREECH-ONE versions are

{C(a)←,C(b)←,← A(a),← B(b), A(x)← C(x)}

and
{C(a) ←,C(b)←,← A(a),← B(b), B(x)← C(x)}

, but its greatest lower bound would be {C(a) ←,C(b)←, B(a)←, A(b)←}.
Combining the three variants SCREECH-ALL, SCREECH-ONE and SCREECH-NONE,

we define the overall SCREECH approach in Algorithm 6.

Algorithm 6: Screech(KB,C, t)

Input: KB: a SHIQ knowledge base
Input: C: a named class
Input: t: the required SCREECH approximation
Result: Inv: a set of individuals

begin1 D(KB)←− tboxTranslation(KB);2

PHorn ←− 0;3

switch t ∈ {screech_one, screech_one, screech_all} do4

case t is SCREECH-ALL5

PHorn ←− SCREECH-ALL(D(KB));6

case t is SCREECH-ONE7

PHorn ←− SCREECH-ONE(D(KB));8

case t is SCREECH-NONE9

PHorn ←− SCREECH-NONE(D(KB));10

11

return Inv←− {x | PHorn ⊢datalog C(x)};12

end13

As given in line 2, the given knowledge base KB is transformed into a disjunc-
tive datalog program D(KB) by the tboxTranslation function3. Then, according to

3This is the KAON2 TBox transformation.

6.5 EXPERIMENTAL RESULTS 69

a given approximation variant t ∈ {screech_one, screech_one, screech_all}, the algo-
rithm compiles D(KB) into a split program. Finally, it runs a datalog engine, namely
the KAON2-datalog, on the resulting split program to compute the approximate ex-
tension of a named class C from a SHIQ knowledge base KB.

Expected results

Prior to performing our experiments – which we will report in Section 6.5 – we for-
mulated the expected outcome from the different variants of SCREECH.

• SCREECH-ONE – assuming the mentioned knowledge about the size of the ex-
tensions of atomic classes – compared to SCREECH-ALL should show overall less
errors for some suitable knowledge bases. We also expected SCREECH-ONE to
be quicker than SCREECH-ALL.

• SCREECH-NONE should be quicker than SCREECH-ALL and SCREECH-ONE. We
expected that the number of errors should be comparable with SCREECH-ALL,
but more severe than SCREECH-ONE.

We furthermore expected, that the parallel execution of the two variants
SCREECH-ALL and SCREECH-NONE should help to determine exact answers in some
cases quicker than using the KAON2 datalog reasoner. This expectation is based on
the following fact: If the extensions of some class C as computed by SCREECH-ALL

and SCREECH-NONE are of the same size, then the computed extensions are actually
correct (sound and complete) with respect to the original knowledge base.

6.5 Experimental Results

An approximate reasoning procedure needs to be evaluated on real data from practi-
cal applications. Handcrafted examples are of only limited use as the applicability of
approximate methods depends on the structure inherent in the experimental data.

So we based our tests on some popular publicly available ontologies used for the
performance evaluation of KAON2. The information about the structure of the on-
tologies we used is summarized in Table 6.2.

In some cases we had to cautiously modify them in order to enable KAON2 to
perform reasoning tasks on them, but the general approach was to first use KAON2
for transforming the TBoxes to disjunctive datalog. Also offline, a screeched version
of the TBox was produced. We then invoked the KAON2 disjunctive datalog engine
on both the resulting disjunctive datalog program and on the screeched version, to
obtain a comparison of performance. For all our experiments, we used a T60p IBM
Thinkpad with 1.9GB of RAM, with the Java 2 Runtime Environment, Standard Edi-
tion (build 1.5.0_09-b03). The maximum memory amount allowed to Java was set to
512MB for each experiment.

70 KNOWLEDGE COMPILATION

Table 6.2: Statistics of test ontologies

ontology C ⊑ D C ≡ D C ⊓D ⊑ ⊥ functional domain range expressivity C(a) R(a, b)
DOLCE 203 27 42 2 253 253 SHIN(D) 0 0
GALEN 3237 699 0 133 0 0 ALEHIF 0 0
WINE 126 61 1 6 6 9 SHOIN 10127 10086
VICODI 193 0 0 0 10 10 ALHI 84710 183555

SEMINTEC 55 0 113 16 16 16 ALCOIF 89705 236240

Table 6.3: Statistics of the disjunctive datalog programs obtained by KAON2-
Transformation and the screeched versions

ontology variant integrity constraints disjunctive rules split rules split program

SCREECH-ALL 149 52 105 1737
GALEN SCREECH-ONE 149 52 52 1684

SCREECH-NONE 149 52 0 1632

SCREECH-ALL 189 71 178 1692
DOLCE SCREECH-ONE 189 71 71 1585

SCREECH-NONE 189 71 0 1515

SCREECH-ALL 3 24 48 575
WINE SCREECH-ONE 3 24 24 551

SCREECH-NONE 3 24 0 527

SEMINTEC SCREECH * 113 0 0 104

VICODI SCREECH * 0 0 0 223

Results in a nutshell

We performed comprehensive experiments with GALEN, WINE, DOLCE, and SEM-
INTEC. Before we report in more detail, we list a summary of the results.

• SCREECH-ALL shows an average speedup in the range between 8% and 67%,
depending on the queried class and the ontology under consideration, while
38% to 100% of the computed answers are correct. Most interestingly, a higher
speedup usually seemed to correlate with less errors.

• SCREECH-ONE compared to SCREECH-ALL has overall less errors. In most cases,
all correct class members are retrieved. Runtime is similar to SCREECH-ALL.

• SCREECH-NONE compared to SCREECH-ALL shows similar run-time. In most
cases, the extensions are computed correctly – with the exception of WINE, for
which we get 2% missing answers.

6.5 EXPERIMENTAL RESULTS 71

• Running SCREECH-ALL and SCREECH-NONE in parallel and comparing the re-
sults, allows the following: If the computed extensions are of the same size, then
we know that all (and only correct) class members have been found. This is the
case for more than 62.1% of all classes we computed.

GALEN

We first report on our experiments with the OWL DL version of the GALEN Upper
Ontology.4 As it is a TBox ontology only, GALEN’s 175 classes were randomly popu-
lated with 500 individuals. GALEN does not contain nominals or concrete domains.
GALEN has 673 axioms (the population added another 500).

As shown in Table 6.3 on page 70, the disjunctive datalog program obtained by
the TBox transformation contained ca. 1781 disjunctive datalog rules, 52 of which
contained disjunctions. The split program for SCREECH-ALL resulted in a knowledge
base with 1737 rules by removing all 149 integrity constraints and complying the 52
disjunctive rules into 105 Horn rules. The split program for SCREECH-ONE resulted
in a knowledge base with 1684 rules while the split program for SCREECH-NONE re-
sulted in a knowledge base with 1632 rules. Note that the exact numbers of the rules
obtained by the TBox transformation differ slightly on different runs, as the KAON2
translation algorithm is non-deterministic. Finally, the knowledge bases (split pro-
grams) compiled by SCREECH-ALL, SCREECH-ONE and SCREECH-NONE were used
to query all named classes for their extensions by running the KAON2 datalog en-
gine. Furthermore, the original knowledge base was used to query the same queries
by running the KAON2 datalog engine. The purpose of this experiment is to measure
the running times required to answer the queries and their extensions.

Table 6.4: Summary of the three SCREECH versions on GALEN

variant (vi) miss corr more time (vi) time (KAON2) f-meas corr.class
tscreech
tkaon2

SCREECH-ALL 0 5187 465 255132 1007527 0.957 0.78 0.25

SCREECH-ONE 5 5182 134 277009 1007527 0.987 0.98 0.27

SCREECH-NONE 10 5177 0 244994 1007527 0.999 0.78 0.24

A summary of the results can be seen in Table 6.4. Here, miss indicates the ele-
ments of the extensions which were not found by the approximation, corr indicates
those which were correctly found, and more indicates those which were incorrectly
computed to be part of the extension. time gives the runtime (in ms) for the respective
SCREECH version, while time(KAON2) gives the runtime (in ms) using the disjunc-
tive rules. f-meas is the f-measure known from information retrieval, computed as
(2 · precision · recall)/(precision + recall) with precision = corr/(corr + more) and
recall = corr/number of actual instances, corr.class gives the fraction of classes for

4http://www.
s.man.a
.uk/\simre
tor/ontologies/simple-top-bio/ [accessed 2009-5-11]

72 KNOWLEDGE COMPILATION

which the extension was computed correctly, and time/KAON2 is the ratio between
time and KAON2.

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-All

number of named classes

0 0

3

0
2

0
1

7
9

5

10

7
9

11 11

40

23

11

8
7

6

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-One

number of named classes

0
2 2

3
2

3
2

6
5 5

4

9

12

8

11

17

33

16

8
7

8

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-None

number of named classes

0
2 2

4

1

4
5 5

6
5

3

11

3

7
9

18

33

21

13

10
8

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

performance gains in percent

Cumulative Percentages of the performance gains

screech-all
screech-one

screech-none

Figure 6.4: Distributions of the performance gain of SCREECH variants compared to
KAON2 and the corresponding cumulative percentages. Test ontology: GALEN

For 137 of the 175 classes (i.e., 78%), the computed extensions under SCREECH-ALL

and SCREECH-NONE had the same number of elements, which allows to conclude –
without using the disjunctive rules – that for those classes the extensions were com-
puted correctly. For some classes, so for the class Physi
al-o

urrent-entity, com-
puting the extension under SCREECH-ALL saved 99% of the runtime.

While the different versions of SCREECH have about the same runtime, the dif-
ferences in the number of introduced errors is remarkable. Indeed, SCREECH-NONE

makes almost no mistakes. The parallel execution of SCREECH-NONE and SCREECH-
ALL, as mentioned, allows to compute the correct extensions of 78% of the classes –
and to know that the computations are correct – in less than a quarter of the time
needed by using the unmodified knowledge base.

Examining the frequency distribution of the performance gain of SCREECH vari-
ants for each query: Going from left to right, top to bottom, four graphs are plot-
ted in Figure 6.4. The first three graphs illustrate the frequency distributions of the

6.5 EXPERIMENTAL RESULTS 73

performance gain of the SCREECH variants compared to KAON2. To compare and
contrast these cumulative percentages of the respective performance gain, the graph
in the lower right displays them combined. For instance, the distribution graph for
SCREECH-ALL reveals that there is a time saving of 75 % for 40 queries. Furthermore,
it has been explored that 75 % of all the queries tested dispose of a performance gain
up to 80%.

DOLCE

DOLCE5 (a Descriptive Ontology for Linguistic and Cognitive Engineering) is a foun-
dational ontology, developed by the Laboratory for Applied Ontology in the Institute
of Cognitive Sciences and Technology of the Italian National Research Council. In full,
it exceeds the reasoning capabilities of current reasoners, hence we used a fraction for
our experiments consisting of 1552 axioms. Since DOLCE is a pure TBox-Ontology,
we randomly populated it with 502 individuals to be able to carry out instance re-
trieval. As given in Table 6.3 on page 70, the conversion into disjunctive datalog
yielded ca. 1774 rules of which ca. 71 are disjunctive. The SCREECH-ALL split resulted
in 178 new rules, replacing the disjunctive ones. We also removed ca. 189 integrity
constraints. The knowledge bases compiled by SCREECH-ALL, SCREECH-ONE and
SCREECH-NONE had 1692, 1585 and 1515 rules, respectively. As before, all named
classes were queried for their extensions using the KAON2 datalog engine, both for
processing the disjunctive datalog program and for the various splits.

Table 6.5: Summary of the three SCREECH versions on DOLCE

variant (vi) miss corr more time (vi) time (KAON2) f-meas corr.class
tscreech
tkaon2

SCREECH-ALL 0 3697 2256 365889 516064 0.766 0.76 0.70
SCREECH-ONE 0 3697 512 425748 516064 0.935 1.0 0.82
SCREECH-NONE 0 3697 0 397260 516064 1.0 1.0 0.77

Table 6.5 summarizes. In SCREECH-ALL, 93 of the 123 classes (i.e., 76%) are cor-
rectly queried, while in SCREECH-ONE 100 classes are correctly queried.

Remarkable under DOLCE is that SCREECH-NONE makes no mistakes, while the
runtime improvement is rather mild. Figure 6.5 on page 74 shows the distribution of
the performance gain of each variant along with their cumulative percentages. For
instance, there is a time saving of 50 % for 18 classes in SCREECH-ONE while there is
a time saving of 70 % for 16 classes in SCREECH-NONE.

5http://www.loa-
nr.it/DOLCE.html [accessed 2009-5-11]

74 KNOWLEDGE COMPILATION

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-All

number of named classes

0

8 8
6

8
10

5 5

2 2
1

0
1

0
1

0 0 0 0 0 0 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-One

number of named classes

0
2

5

2

8

11

6
4

10

4

18

12

6

9

4

1
0

1
0 0 0

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-None

number of named classes

0

8

4
2

6
8

7
6

9

2

5 5

14

4

16

6

1
0 0 0 0 0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

performance gains in percent

Cumulative Percentages of the performance gains

screech-all
screech-one

screech-none

Figure 6.5: Distributions of the performance gain of SCREECH variants compared to
KAON2 and the corresponding cumulative percentages.Test ontology: DOLCE

WINE

The next ontology tested was the WINE ontology.6 It is a well-known ontology con-
taining a classification of wines. Moreover, it is one of the rare ontologies with both
an ABox and a nontrivial TBox. It also contains nominals, which we removed in
an approximate way following [HV05]. Note that the TBox after that processing is
used as baseline, since we are interested in the comparion of the different versions
of SCREECH. The resulting ontology contains 582 axioms, including functionality,
disjunctions, and existential quantifiers. The corresponding ABox contains 22386 ax-
ioms.

As given in Table 6.3 page 70, the translation procedure into disjunctive datalog
produces altogether ca. 554 rules, among them 24 disjunctive rules. The split program
for SCREECH-ALL resulted in a knowledge base with 575 rules by removing 3 integrity
constraints and complying the 24 disjunctive rules into 48 Horn rules. As before, all

6http://www.s
hemaweb.info/s
hema/S
hemaDetails.aspx?id=62 [accessed 2009-5-11]

6.5 EXPERIMENTAL RESULTS 75

named classes were queried for their extensions using the KAON2 datalog engine,
both for processing the disjunctive datalog program and for the various splits.

A summary of the results can be seen in Table 6.6. For 130 of the 140 classes
under SCREECH-ALL we obtained 1353 incorrect extensions, while under SCREECH-
ONE 132 classes are correct queried. Under SCREECH-NONE, the number of the classes
correctly queried is 126, and totally 697 extensions were missing.

variant (vi) miss corr more time (vi) time (KAON2) f-meas corr.class
tscreech
tkaon2

SCREECH-ALL 0 30627 1353 463396 707476 0.978 0.93 0.65
SCREECH-ONE 0 30627 615 494456 707476 0.990 0.94 0.70
SCREECH-NONE 697 29930 0 504914 707476 0.988 0.90 0.71

Table 6.6: Summary of the three SCREECH versions on WINE

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-All

number of named classes

0

5

24

34

7
5

18

9

0 0 0 0 0 0 0 0

3
5

0 0
1

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-One

number of named classes

0

17

5

0

10

14

20

6

28

13

2
0 0 0 0 0

3
5

0 0
1

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-None

number of named classes

0
2

4 4
5

7

16
18

24

4

22

2
1 1

0 0 0

13

4

0

3

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

performance gains in percent

Cumulative Percentages of the performance gains

screech-all
screech-one

screech-none

Figure 6.6: Distributions of the performance gain of SCREECH variants compared to
KAON2 and the corresponding cumulative percentages. Test ontology: WINE

76 KNOWLEDGE COMPILATION

WINE is the only ontology we tested for which SCREECH-NONE resulted in a
mildly significant number of mistakes. However, recall is still at 0.977, i.e., very good.
Please examine Table 6.9 on page 79 for considering recall and precision results for
Wine. Considering the fact that WINE was created to show the expressiveness of
OWL DL, it is remarkable that all three SCREECH versions show a very low amount
of errors, while runtime decreases by 29–35% as illustrated in Table 6.9 on page 79. For
some classes – e.g. for Chianti, over 91% of the runtime was saved using SCREECH-
ALL. Figure 6.6 shows the performance gains obtained in all the variants in more
detail.

SEMINTEC

Table 6.7: Summary of SCREECH on SEMINTEC – note that all three versions of
SCREECH coincide, since no disjuntive rules are produced by the translation

variant (vi) miss corr more time (vi) time (KAON2) f-meas corr.class
tscreech
tkaon2

SCREECH-ALL 0 51184 0 31353 94981 1.0 1.0 0.33
SCREECH-ONE 0 51184 0 32200 94981 1.0 1.0 0.33
SCREECH-NONE 0 51184 0 32032 94981 1.0 1.0 0.33

We also considered an ontology, the translation of which turned out to not contain
proper disjunctive rules. Nevertheless, removing integrity constraints is supposed
to result in improving runtime behaviour (while in this case even preserving sound-
ness). So, the last ontology we considered is from the SEMINTEC project7 at the uni-
versity of Poznan and concerns financial services. Its TBox contains 130702 axioms of
comparably simple structure, apart from some functionality constraintswhich require
equality reasoning. The ABox contains 71764 axioms. The TBox translation generated
217 rules, all of them being Horn, among which were 113 integrity constraints. As
before, all named classes were queried for their extensions using the KAON2 datalog
engine, both for processing the disjunctive datalog program and for the various splits.

A summary of the results can be seen in Table 6.7. As in the case of absence of
disjunctive rules all three variants of SCREECH coincide, for all of the 60 classes, the
extensions were computed correctly. For SEMINTEC, a performance improvement of
67% has been achieved while the computation remains correct. Figure 6.7 on page
77 shows the distributions of the performance gains of all variants. For some classes
– in particular for some with very small extensions, computing the extension under
SCREECH-ALL saved about 95% of the runtime. For some classes with larger extension
– like Leasing, 92% of runtime was saved.

7http://www.
s.put.poznan.pl/alawrynowi
z/seminte
.htm [accessed 2009-5-11]

6.6 CONCLUSIONS 77

Figure 6.7: Distributions of the performance gain of SCREECH variants compared to
KAON2 and the corresponding cumulative percentages. Test ontology: SEMINTEC

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-All

number of named classes

0 0
1

0
1

0
1

0
2 2

3 3
1

0
2

0

5
4

3

7

19

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-One

number of named classes

0 0
1 1 1

0
2

1
0 0

2 2
1

0
2 2

3

6
4

7

19

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-None

number of named classes

0 0 0 0
1

0
1 1 1

2 2 2 2
0

1
2

4 4 4

8

18

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

performance gains in percent

Cumulative Percentages of the performance gains

screech-all
screech-one

screech-none

VICODI

Another ontology containing no disjunctive rules is the VICODI ontology. But it has
a large ABox. It also has no integrity constraints. Hence, the knowledge bases gener-
ated are the same; as given in Table 6.3 on page 70, they resulted in a datalog program
with 223 Horn rules. A summary of the results can be seen in Table 6.8 on page 78.
Like SEMINTEC, for all of the 194 classes, the extensions were computed correctly in
each SCREECH variant. The performance gain for SCREECH-ALL, SCREECH-ONE and
SCREECH-NONE is 55%, 54% and 53%, respectively. Table 6.8 and Figure 6.8 on page
78 show the performance gain in more detail.

6.6 Conclusions

Motivated by the obvious need for techniques enhancing the scalability of reason-
ing related tasks, we have investigated three variants of the SCREECH approach to

78 KNOWLEDGE COMPILATION

Table 6.8: Summary of SCREECH on VICODI – note that all three versions of SCREECH

coincide, since no disjuntive rules are produced by the translation

variant (vi) miss corr more time (vi) time (KAON2) f-meas corr.class
tscreech
tkaon2

SCREECH-ALL 0 282564 0 3228 7192 1.0 1.0 0.45
SCREECH-ONE 0 282564 0 3295 7192 1.0 1.0 0.46
SCREECH-NONE 0 282564 0 3346 7192 1.0 1.0 0.47

Figure 6.8: Distributions of the performance gain of SCREECH variants compared to
KAON2 and the corresponding cumulative percentages. Test ontology: VICODI

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-All

number of named classes

0
1 1 1

2 2 2 2
4

1

42

2

23

7

38

17

8

3

7

15

8

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-One

number of named classes

0
1

2
1 1 1

0

4

7

3

40

2

24

8

31

15

7

4

10

14

9

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

am
ed

 c
la

ss
es

performance gains in percent

Frequency distribution of the performance gains of Screech-None

number of named classes

0 0
1

2
3

1 1

7
9

3

46

3

24

7

35

7 7 7
6

10
9

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

pe
rc

en
ta

ge

performance gains in percent

Cumulative Percentages of the performance gains

screech-all
screech-one

screech-none

approximate reasoning in OWL ontologies. On the theoretical side, we gave the com-
pleteness result for SCREECH-ALL and the soundness result for SCREECH-NONE, yet a
desirable characterisation of the approximations in terms of extremal bounds follow-
ing the theory of Horn-approximations was shown not to hold by providing coun-
terexamples.

However, on the practical side the obtained results were promising: the perfor-
mance improvement is stable over all ontologies which we included in our exper-

6.6 CONCLUSIONS 79

iments. The performance gain varied between 17.5 and 76%, while the amount of
correctly retrieved classes was above 62% for all but one of the ontologies – see Ta-
ble 6.9. It is encouraging to see that the approach appears to be feasible even for the
sophisticated WINE ontology, and also for the SEMINTEC ontology, although in the
latter case we only remove integrity constraints.

Table 6.9: Overview of SCREECH evaluations. Mark that for due to the completeness
of SCREECH-ALL, the recall values are always 100% as well as the precision values for
SCREECH-NONE due to its soundness

SCREECH-ALL SCREECH-ONE SCREECH-NONE

ontology
time
saved prec recall

time
saved prec recall

time
saved prec recall

GALEN 75% 91.7% 100% 73% 97.4% 99.9% 76% 100% 99.8%

DOLCE 30% 62.1% 100% 17.5% 87.8% 100% 23.0% 100% 100%

WINE 35% 95.8% 100% 30% 98.0% 100% 29% 100% 97.7%

SEMINTEC 67% 100% 100% 67% 100% 100% 67% 100% 100%

VICODI 55% 100% 100% 54% 100% 100% 53% 100% 100%

Concerning the comparatively bad results on DOLCE, we note that the results are
quite counterintuitive. One would naively expect that performance improvements
go hand-in-hand with loss of precision. However, for DOLCE we measured both
the least runtime improvement and the worst performance in terms of correctness.
Concerning correctness, we suspect that the comparatively large number of incorrect
answers is caused by the fact that DOLCE uses a large number of complete partitions
of the form A ≡ A1 ⊔ · · · ⊔ An, where all the Ai are also specified to be mutually
disjoint. It is intuitively clear that this kind of axioms introduces disjunctive (non-
Horn-style and therefore harder to approximate) information on the one hand and
integrity constraints (those being neglected in our approximation) on the other. How-
ever, this does not in itself explain why we did not observe a higher speedup. This
indicates that the properties of ontologies, which lead to performance improvement
through the translation of SCREECH, are obviously less straightforward than initially
expected. For a clarification, more evaluations taking into account a wider range of
ontologies with differing characteristics w.r.t. expressivity, used language features, or
statistical measures like degree of population will lead to more substantial hypothe-
ses.

In general, we see a great potential in the strategy to combine various (possibly ap-
proximate) algorithms having known properties as soundness and/or completeness
maybe with respect to differing types of queries. For instance, the proposed “sand-
wich technique” can be used to solve instance retrieval tasks in some cases even with-
out calling the more costly sound and complete reasoners. If the sets of individuals
IS and IC retrieved by two algorithms—one of those being sound and the other one
complete—coincide, the result is known to be exact. But even if not, the result is at

80 KNOWLEDGE COMPILATION

least partly determined (as all elements of IS are definitely instances and all individu-
als not in IC are not) and it might be beneficial to query a sound and complete reasoner
for class membership only for individuals of the set IC \ IS of individuals for which
class membership is still undecided. Clearly, the strategy to combine several approx-
imate algorithms will be especially reasonable if parallel computation architectures
are available.

Chapter 7

Query Approximation

This chapter discusses the development of an approximate method for instance re-
trieval of complex concept queries. Instance retrieval is one of the most important
inference services in many practical application systems based on DLs, however, it is
still one of the major bottlenecks in reasoning over expressive ontologies, in partic-
ular, when the number of instances as well as the ontology structure becomes large
and complex.

This chapter is structured as follows: Section 7.2 introduces the notion of approx-
imate concept extension. Based on this notion, Section 7.3 provides several approx-
imate algorithms to compute approximate extensions of complex concept queries.
Furthermore, a comprehensive empirical analysis of our approach reporting positive
results is presented in Section 7.4. Section 7.5 discusses several optimizations to max-
imize the utility of the approximate algorithms.

7.1 Approximation of Instance Retrieval

Instance retrieval is concerned with finding all the named individuals that are in-
stances of a named class or complex description in a DL knowledge base. The pre-
vious chapter demonstrated how to approximate instance retrieval for named classes
within the KAON2 approach. This chapter now argues how instance retrieval for
complex concept queries can be approximated by reducing it to instance retrieval for
named classes.

In most modern DL systems, instance retrieval is tackled by tableaux algorithms.
These algorithms work by trying to construct a model of the concept, starting from
an individual instance. Tableaux expansion rules constituting to a tableaux algorithm
decompose concept expressions, add new individuals and merge existing individu-
als. Non-determinism resulting from the expansion of disjunctions is dealt with by
searching the various possible models. For an unsatisfiable concept, all possible ex-
pansions will lead to the discovery of an obvious contradiction known as a clash. For
a satisfiable concept, a complete and clash-free model will be constructed.

82 QUERY APPROXIMATION

Adding inverse properties makes practical implementations more problematical
as several important optimisation techniques become much less effective. It is well
known that basic class consistency/subsumption reasoning problem is EXPTIME-
complet for SHIQ, and for SHOIN this jumps to NExpTime-complete [Tob01].

Coping with the large volumes of instance data that will be required by many ap-
plications (i.e.,millions of individuals) will be extremely challenging. It seems doubt-
ful that, in the case of instance data, the necessary improvement in performance can
be achieved by optimising tableaux based algorithms, which are inherently limited
by the need to build and maintain a model of the whole ontology including all of the
instance data.

To address this issue related to tableaux algorithms, a significant effort has been
investigated which is not based on tableaux algorithms. The main idea in this effort
is to apply efficient disjunctive datalog (optimisation) techniques in order to speed
up reasoning with large volumes of instance data. Theoretical investigations of this
technique have revealed that the data complexity of satisfiability checking against a
fixed ontology and set of instance data in SHIQ(D) is NP-complete. That is, the
complexity of answering queries based on this approach is significantly lower than
the EXPTIME combined complexity of class consistency reasoning (assuming NP ⊂
ExpTime1). However, this technique has to perform an expensive translation process
which compiles a SHIQ DL knowledge base into a disjunctive datalog program.
The resulting disjunctive datalog program is in turn to be queried using a disjunctive
reasoning engine. The complexity of the translation algorithms is EXPTIME which
means that it would be very time-consuming in case of reasoning over ontologies
with a large TBox [Mot06].

This approach to query answering has shown itself to be practical and effective
in cases where the TBox is rather simple but the ABox contains large amounts of
data. From this result, it poses the question, how query answering can be improved
over expressive ontologies with a large TBox as well as ABox. More concretely, how
such an expensive TBox-translation for instance retrieval of complex concepts can be
properly handled.

In this chapter, we are concernedwith these questions and present an approximate
reasoning method for scalable query answering of ontologies with a large TBox as
well as ABox. Moreover, our approxmate reasoning technique relies on a combination
of DL reasoning and database techniques in order to speed up instance retrieval of
complex queries.

7.2 Notion Of Approximate Extension

Our approach for the approximation of instance retrieval queries is based on the no-
tion of the approximate extension 〈C〉 of a concept C with respect to a knowledge base
KB. Intuitively, 〈C〉 is the set of instances that are obtained through interpreting com-

1http://en.wikipedia.org/wiki/Computational_
omplexity [accessed 2009-07-11]

7.2 NOTION OF APPROXIMATE EXTENSION 83

Table 7.1: Definition of an approximate extension. A stands for atomic classes while
C and D stand for complex (non-atomic) classes. R stands for roles and n for a natural
number

Approximate Extensions

〈⊤〉 = |⊤|
〈⊥〉 = ∅

〈A〉 = |A|
〈¬A〉 = |¬A|
〈R〉 = {(x, y) | KB |= r(x, y)}
〈R−〉 = {(x, y) | KB |= r(y, x)}

〈C ⊓ D〉 = 〈C〉 ∩ 〈D〉
〈C ⊔ D〉 = 〈C〉 ∪ 〈D〉
〈¬C〉 = 〈⊤〉 \ 〈C〉
〈∃R.C〉 = {x ∈ 〈⊤〉 | ∃y : (x, y) ∈ 〈r〉 ∧ y ∈ 〈C〉}
〈∀R.C〉 = {x ∈ 〈⊤〉 | ∀y : (x, y) ∈ 〈r〉 → y ∈ 〈C〉}

〈≤ n R.C〉 = {x ∈ 〈⊤〉 | #{y | (x, y) ∈ 〈r〉 ∧ y ∈ 〈C〉} ≤ n}
〈≥ n R.C〉 = {x ∈ 〈⊤〉 | #{y | (x, y) ∈ 〈r〉 ∧ y ∈ 〈C〉} ≥ n}

plex concept constructors in C as set operations on the individuals known to KB,
starting from the atomic extensions of concepts and roles that occur in C. In this way,
the model-theoretic semantics of DLs is approximated by a combination of results for
atomic queries that requires less effort to compute than the reasoning process for com-
plex instance retrieval queries in DLs does. The exact definition of an approximate
extension is given in Table 7.1 recursively for all language constructs. For an exam-
ple, consider the knowledge base KB = {C ⊑ A ⊔ B, A(a1),C(a2)} and the instance
retrieval query A ⊔ B. The conventional extension of the concept A ⊔ B contains both
individuals a1 and a2, i.e., |A ⊔ B| = {a1, a2}. However, the approximate extension of
A ⊔ B contains only a1, i.e., 〈A ⊔ B〉 = {a1}.

We will exemplarily explain the computation of the apprximate exteions in case
of ∃R.C. As defined in Table 7.1, the intention of computing this extension is to deter-
mine those individuals that are related to other individuals, which in turn are to be
found in the approximate extension of C, i.e., 〈C〉.

The more complex the query concept C is, the more the approximate extension
deviates from the conventional extension. For the simplest queries, such as atomic
concepts, the two types of extensions coincide and no errors are made in instance
retrieval. This characteristics is captured by the following proposition.

Proposition 7.1 (soundness and completeness of simple approximate extensions). For
a knowledge base KB and a concept C of the form C = A1 ⊓ · · · ⊓ Am ⊓ ¬B1 ⊓ . . .¬Bn,
with all Ai and Bj atomic, the approximate extension of C is equivalent to its conventional
extension, i.e., 〈C〉 = |C|.

84 QUERY APPROXIMATION

Proof sketch. Considering Table 7.1 the only difficulty is with conjunction. So let A and
B be two atomic concepts (if they are negated atomic concepts, the proof is analogous).
Then it suffices to show that 〈A ⊓ B〉 = |A ⊓ B|. Now 〈A ⊓ B〉 = 〈A〉 ∩ 〈B〉 = |A| ∩
|B| = {x ∈ σ(KB) | x ∈ |A| and x ∈ |B|}. By definition of the standard description
logic semantics, this set contains all x ∈ σ(KB) for which in all models M of KB we have
both xM ∈ AM and xM ∈ BM. But this is equivalent to saying that the set contains all
x ∈ σ(KB) for which in all models of M we have xM ∈ AM ∩ BM = (A ⊓ B)M, i.e., for
which x ∈ |A ⊓ B|, which was required to show.

Proposition 7.1 states that, for queries that have the form of conjunctions of pos-
sibly negated named concepts, the approximate and conventional extensions have
exactly the same instances. In other words, computing the approximate extension is
sound and complete with respect to the conventional extension.

For more complex queries, however, the approximation might deviate signifi-
cantly from the correct answer in both that it might miss instances as well as show
improper instances. In particular the approximation of the complement constructor
is supposed to cause significant deviation as it interprets negation in a closed-world
sense, potentially including improper instances in an answer. Hence, we aim at elimi-
nating general complements by means of normalisation, avoiding this source of error.

For standard reasoning in DLs a query concept can be expressed in various nor-
mal forms and semantics-preserving transformations do not affect the result of in-
stance retrieval. For the calculation of approximate extensions, however, the result
depends on the form of the concept, and different semantically equivalent concept
expressions can have different approximate extensions. We can exploit this charac-
teristics by choosing a normal form for query concepts that fits best the process of
approximation in terms of both error rate and ease of computation. In this light, we
consider the negation normal form [SSS91] of concept expressions for queries, de-
noted by NNF(C) for a concept C, in which negation symbols are pushed inside to
occur only in front of atomic concepts. This eliminates the case of considering the
approximation for general complements with its rather drastic closed-world inter-
pretation. Besides the lower expected error rate this also avoids the computationally
costly handling of large sets of individuals in case of large ABoxes by an algorithm
that computes approximate extensions. The positive effect that elimination of com-
plement approximation has on the error rate in instance retrieval can be expressed
by the following property, which ensures that approximation of concepts in negation
formal form only gives up completeness but preserves soundness at least for a certain
class of queries.

Proposition 7.2 (soundness of limited approximate instance retrieval). Let KB be a
knowledge base and C be a concept such that NNF(C) contains no ∀- and no ≤- and ≥-
constructs. The approximate extension of NNF(C) only contains instances that are also con-
tained in the conventional extension of C with respect to KB, i.e., 〈NNF(C)〉 ⊆ |C|.

Proof sketch. The proof is by structural induction over C with the base cases A and
¬A, using model-theoretic arguments as for Proposition 7.1.

7.3 COMPUTING APPROXIMATE EXTENSIONS 85

Proposition 7.2 states that, for queries that do not make use of the ∀,≥ and≤ con-
structs (after normalisation), the approach of approximating concepts in their nega-
tion normal form yields an extension that might miss some instances but has no im-
proper instances in it. In other words, computing the approximate extension is sound
with respect to the conventional extension.

7.3 Computing Approximate Extensions

In this section, we will design algorithms for computing the approximate extension
of a complex concept query. We will also lay out the architecture of a system for
approximate instance retrieval. The resulting system is called AQA which stands for
ApproximateQuery Answering.

Figure 7.1: A hierarchy of the AQA variants for computing approximate extensions

7.3.1 System Architecture

The core of the AQA system is to compute 〈Q〉 for a complex query Q. The prin-
ciple behind this computation is always to start from the individuals in the conven-
tional extensions of (possibly negated) atomic concepts and (possibly inverse) roles
that occur in Q and to recursively combine these according to the structure of concept
constructors in Q, reflecting the set operations from Table 7.1. According to Proposi-
tions 7.1 and 7.2, this results in an answer that is sound and complete for some cases,

86 QUERY APPROXIMATION

Figure 7.2: An overview of the AQA system architecture

only sound for others, or neither sound nor complete, depending on the language
constructs used in the query.

The algorithms for computing the approximate extension can be implemented in
several variants. Figure 7.1 on page 85 shows a hierarchy of the variants we have
implemented in AQA. First, we distinguish between database and in-memory compu-
tation: in the first case computation is delegated to underlying database operations,
whereas in the second case it is performed in main memory. While for the database
variant the atomic extensions are pre-computed prior to query-time and materialised
in the database using a sound and complete reasoner, the in-memory variant allows
for two possibilities to access the atomic extensions: in online processing a sound and
complete DL reasoner is invoked at query-time to compute atomic extensions, while
in offline processing they are again pre-computed and materialised either in a database
or in memory if possible. Database computation and offline processing are very use-
ful when dealing with a large data sets, whereas online processing is intended to be
used in such cases where amaterialisation is hardly manageable or subject to frequent
changes.

These variants have been implemented into the AQA systemwhose system archi-
tecture is illlustrated in Figure 7.2. AQA takes a SHIQ knowledge base KB and a
complex query concept Q as input to compute the approximate extension of Q as a
set of individuals with respect to KB.

The initial step for the AQA variants is to break down the complex query Q into
atomic queries which is performed by the Approximate Query Engine component.
Depending on the AQA variant chosen by the respective user, this component com-

7.3 COMPUTING APPROXIMATE EXTENSIONS 87

putes the approximate extension 〈Q〉 starting with the conventional extensions of the
atomic concepts.

For online processing, we utilize the efficient KAON2 reasoner, as illustrated in
Figure 7.2. The reason for this choice is that KAON2 was shown to be an efficient
ABox reasoner on knowledge bases with large ABoxes and simple TBoxes in com-
parison to other state-of-the art DL reasoners, which perform better on knowledge
bases with large (or complex) TBoxes and small ABoxes. As depicted on the left-hand
side of Figure 7.2, KAON2 transforms the TBox together with complex queries into
a disjunctive datalog program in a first step, to perform ABox reasoning in a second
step based on the result of this transformation. Hence, for every complex ABox query
KAON2 needs to repeatedly perform the TBox transformation, which is computa-
tionally costly. For ABox queries that have the form of atomic concepts, however, this
transformation is not necessary and can be bypassed. For the variant with online pro-
cessing we can take advantage of this because for computing atomic extensions with
KAON2 the costly TBox translation is saved.

In contrast to the variant that incorporates online processing, both offline and
database variants require the availability of conventional extensions of the atomic
concepts and roles in KB. Regarding this, a materialization ought to be performed
beforehand e.g., in an offline phase. As depicted in Figure 7.2, the KnowledgeMateri-
alizer component invokes KAON2 and computes the atomic extensions of the atomic
concepts and roles of KB as well as stores them into a database.

7.3.2 Delegation of Computation to Database

The variant that performs database computation is a presumably efficient implemen-
tation of approximate instance retrieval as the pre-computed atomic extensions are
materialised and approximate extensions are computed by making use of highly op-
timised database operations. This variant is essential in practice for handling ontolo-
gies with large ABoxes that cannot be processed efficiently in memory. Here, the
recursive combination of atomic extensions in terms of set operations as defined in
Table 7.1 is completely delegated to the underlying database, which is very useful in
practice when dealing with very large ontologies that can hardly be loaded into main
memory.

As a basis for this form of computation we use a database schema that con-
sists of two Relations, namely ExtC(ind, class) for storing concept extensions andExtr(ind1, role, ind2) for storing role extensions. In their schema, the attribute ind(i)

stands for individual names, class for names of possibly negated concepts and role
for names of possibly inverse roles. Starting from a knowledge base KB, these two
relations are initialised as follows.ExtC(ind, class) = {(a,C) | KB |= C(a)}, for C = A | ¬A with A ∈ σ(KB)Extr(ind1, role, ind2) = {(a, r, b) | KB |= r(a, b)}, for r = p | p− with p ∈ σ(KB)

88 QUERY APPROXIMATION

Concept Expression Relational Algebra Expression

τdb(A) π[ind](σ[class=A](ExtC))

τdb(¬A) π[ind](σ[class=¬A](ExtC))

τdb(∃r.C) EC := τdb(C)

Er := σ[role=r](Extr)
π[ind1](σ[ind=ind2](EC × Er))

τdb(∀r.C) EC := τdb(C)

Er := σ[role=r](Extr)
E_ := π[ind1](σ[ind 6=ind2](EC × Er))

π[ind1](ExtC) \ E_

τdb(≤ n R.C) EC := τdb(C)

Er := σ[role=r](Extr)
π[ind](σ[count(ind2)≤n∧ ind=ind2](EC × Er))

τdb(≥ n R.C) EC := τdb(C)

Er := σ[role=r](Extr)
π[ind](σ[count(ind2)≥n∧ ind=ind2](EC × Er))

τdb(C0 ⊓ C1 ⊓ · · · ⊓ Cn) τdb(C0) ∩ τdb(C1) ∩ · · · ∩ τdb(Cn)

τdb(C0 ⊔ C1 ⊔ · · · ⊔ Cn) τdb(C0) ∪ τdb(C1) ∪ · · · ∪ τdb(Cn)

Table 7.2: Mapping of DL concept expressions to relational algebra expressions

Notice that, for the purpose of approximate instance retrieval, ExtC and Extr form a
complete representation of the original knowledge base KB.

A complex query conceptQ is answered by transforming its negation normal form
into a relational algebra expression according to a mapping τdb posed as a query to
the underlying database system. The complete mapping definition for τdb is given in
Table 7.2. The left-hand side shows the concept constructors that can occur in NNF(Q)
and the right-hand side shows their respective relational algebra expression. Recur-
sive application of τdb ultimately produces a single database query τdb(NNF(Q)) that
is used for computing 〈Q〉.

In the following, we will explain the mapping τdb for ∃r.C, which is defined in
the third row of Table 7.2. According to the definition given on the right side, τdb
is recursively applied to the concept C, which can be a complex class expression.
EC denotes the resulting set, e.g., the approximate extension of C. In case C is an
atomic concept, the extension of C is determined by querying the database table ExtC,
as defined in the first row of Table 7.2. In case C is a negated atomic concept, it is

7.3 COMPUTING APPROXIMATE EXTENSIONS 89

determined as defined in the second row of Table 7.2.
Returning to the definition of the mapping τdb for ∃r.C, the second step now is to

determine those individuals, which are related by role r. Er denotes the set of those
individuals and is determined by querying the database table Extr on condition that
[role = r]. This means that the execution of statement σ[role=r](Extr) accesses the rows
of the database table Extr. It then filters those rows whose columns contain role r.

The final step is to determine only those individuals from Er, which are related
to individuals that are in EC. Those are instances of the approximate extension of
∃r.C and are determined by the expression π[ind1](σ[ind=ind2](EC × Er)), which uses a
selection of the cross product of EC and Er and projects the resulting set to ind1.

For an example consider the query Q = A ⊓ ∃r.¬B. The mapping τdb produces
the following nested relational algebra expression.

τdb(Q) = π[ind](σ[class=A](ExtC)) ∩

π[ind1](σ[ind=ind2](σ[role=r](Extr)× π[ind](σ[class=¬B](ExtC))))

When posed to the underlying database, this rather large expression is subject to
efficient internal query optimisation strategies as they are typically employed by
database systems.

7.3.3 In-memory Computation

Both the variants with online and offline processing share the same implementation of
the approximate algorithm of which the pseudocode is described in Algorithm 7. The
difference is the handling of atomic extensions which is presented by the functionCompute_Ext. This function takes as parameters a knowledge base and an atomic
concept or atomic role for which the atomic extension is to be computed using a DL
reasoner. The algorithm ψ accepts the knowledge base and a complex concept query
for which the approximate extension is to be computed.

For the computation of the atomic extension, depending on the chosen variant,Compute_Ext invokes either a complete and sound reasoner or retrieves the atomic
extension from the database. In the following, we exemplarily describe the most com-
mon part of the algorithm. For concepts being of the form ∃r.C, it first computes the
atomic extension of the role r, represented byR. Next, it recursively calculates the ap-
proximate extension of the concept C, which is assigned to a temporary set C. Then, it
determines such role assertions in R whose the second component belongs to C and
returns the set of their first components. A similar procedure is used in the calculation
of ∀r.C and cardinality restrictions. However, for cardinality restrictions the number
of explicit role fillers is taken into account and for ∀r.C the set difference of 〈⊤〉 and
B.

90 QUERY APPROXIMATION

Algorithm 7: ψ(KB,Q)

Data: SHIQ knowledge base KB and a complex query concept Q in NNF
Result: The approximate extension of Q
if Q is of the form A or ¬A then

return Compute_Ext(KB,Q)

else if Q is of the form ∃r.C then
T := ∅;R := Compute_Ext(KB, r); C := ψ(KB,C);
for (x, y) ∈ R do

if y ∈ C then
T := T ∪ {x}

return T
else if Q is of the form ∀r.C then
T := |⊤|; B := ∅;R := Compute_Ext(KB, r); C := ψ(KB,C);
for (x, y) ∈ R do

if y /∈ C then
B := B ∪ {x}

return T \B;

else if Q is of the form ≥ n r.C or ≤ n r.C then
T := ∅; K := ∅;R := Compute_Ext(KB, r); C := ψ(KB,C);
for (x, y) ∈ R do

if y ∈ C then
K := K ∪ {(x, y)}

if ≥ n r.C then
we determine such x holding the property
{x ∈ |⊤| | #{y | (x, y) ∈ K} ≥ n} and put it into T

else if ≤ n r.C then
we determine such x holding the property
{x ∈ |⊤| | #{y | (x, y) ∈ K} ≤ n} and put it into T

return T
else if Q is of the form C0 ⊓ C1 · · · ⊓ Cn then

return ψ(KB,C0) ∩ ψ(KB,C1) ∩ · · · ∩ ψ(KB,Cn);

else if C is of the form C0 ⊔ C1 · · · ⊔ Cn then
return ψ(KB,C0) ∪ ψ(KB,C1) ∪ · · · ∪ ψ(KB,Cn);

return ∅;

7.3 COMPUTING APPROXIMATE EXTENSIONS 91

Figure 7.3: An example of computing the approximate instance extension in the vari-
ant with offline processing

7.3.4 Example of Computing the Approximate Instance Extension

In order to better appreciate the difference between the various variants, we consider
a complex query:

∀hasSugar.Dry ⊓ ∃lo
atedIn.USRegion.
In the first step, the complex query is splitted in AQA so we get the concept tree

illustrated in Figure 7.3. The leaves are labelled with the atomic roles hasSugar andlo
atedIn and the atomic classes Dry and USRegion. The interior nodes are labelled
with the subconcepts ∀hasSugar.Dry and ∃lo
atedIn.USRegion.

In the second step, the conventional extensions of the atomic classes and roles will
be determined in two ways. We can compute the extensions either by querying the
atomic classes and roles with a DL reasoner which is the variant with online process-
ing or by retrieving the database in which the extensions are already stored, i.e., offline

92 QUERY APPROXIMATION

processing. In the upper part of the Figure 7.3, two database schema are given which
contain the corresponding extensions of the atomic classes and roles of the query we
consider. Having determined the atomic extensions, the approximation extension of
the query will be computed as defined in Algorithm 7.

In contrast to these variants with online as well as offline processing, the database-
based variant makes use of the mapping τdb, defined in Table 7.2, produces the fol-
lowing nested relational algebra expression which will be posed to the underlying
database:

τdb(∀hasSugar.Dry ⊓ ∃lo
atedIn.USRegion) = τdb(∀hasSugar.Dry) ∩

τdb(∃lo
atedIn.USRegion)

, where

τdb(∀hasSugar.Dry) = π[ind1](ExtC) \

π[ind1](σ[ind 6=ind2](σ[role=hasSugar](Extr)× π[ind](σ[class=Dry](ExtC))))

and

τdb(∃lo
atedIn.USRegion) =
π[ind1](σ[ind=ind2](σ[role=lo
atedIn](Extr)× π[ind](σ[class=USRegion](ExtC)))).

7.4 Experimental Results

We have conducted experiments to determine how effective our approach is at in-
stance retrieval for complex concept queries. In this section, we present the exper-
imental results obtained from the execution of online and offline processing in the
in-memory variant as well as the database variant. The primary metrics we have
considered are response time and correctness of the computed extensions in terms of
precision and recall.

7.4.1 Test Data

There are already several well-known benchmarks for evaluating DL reasoning sys-
tems. However, objectively comparing the performance of approximate reasoning
systems with that of complete and sound DL reasoners is different, and in fact it is
not a priori clear how this should best be done. So currently, there exist no generally
accepted benchmarks. The point of difficulty is that we do not only want to mea-
sure execution time, but we also need to determine empirically to what extent the
evaluated algorithms are sound and complete – in terms of precision and recall. In
order to do this, we need to test a suitable and large enough sample of queries whilst
for comparing complete and sound reasoning systems usually a few complex queries
suffice.

7.4 EXPERIMENTAL RESULTS 93

This poses the question, however, which of the potentially infinitely many queries
should be used for the testing. Obviously, we want to restrict our attention to a finite
set, but two general problems arise: It is not possible to do unbiased random selec-
tions from an infinite set, and many randomly generated queries would simply result
in no answer at all. For our experiments, we thus confine our attention to relatively
simple queries such that we have only a finite set to choose from, and we furthermore
restrict our attention to those queries which actually produce non-empty answers us-
ing a sound and complete DL reasoner. The queries which we use for testing are of
the forms A⊓ B (we call them ⊓-queries), A⊔ B (⊔-queries) and ∃R.A(∃-queries) where
A and B are named classes. Queries of this form suffice to show how our approach
performs on queries involving these class constructors, which can obviously also be
used to construct more complex queries.

Another issue is to choose appropriate test ontologies. Not all well-known bench-
marking ontologies are suitable for highlighting the performance of our approximate
algorithms. A particular difficulty is to find realistic ontologies which are of sufficient
expressivity in terms of TBox constructors, and at the same time have a reasonably
sized ABox. Since we consider scalable reasoning over expressive ontologies with
large TBoxes and ABoxes, we decided to use the WINE ontology for our evaluation.WINE has originally been designed as a showcase for the expressivity of OWL, and
thus is a hard enough task to tackle using reasoning. WINE has 140 named classes,
10 object properties, 123 subconcept relations, 61 concept equivalences, 10127 concept
assertions and 10086 role assertions. As queries, we considered about 9876 queries of
the forms A⊓ B as well as A⊔ B, 107 queries of the forms ∃R.A as well as≥ n R.A and
57 queries of the form ∀R.A. We refer to these test queries as the basic queries. The
approximate algorithms are implemented in Java 6.0 using the KAON2 API. Com-
putation times are reported in milliseconds. All tests were performed on a Lenovo
laptop with dual 2.40 GHz Intel(R) Core(TM)2 Duo processors, 2GB of RAM ((with
1024M heap space allocated to JVM)), Ubuntu 8.04, Kernel Linux 2.6.24- 21-generic.

7.4.2 Results

In our experiments, we compared our algorithms with KAON2. The results are sum-
marised in Tables 7.3 through 7.5.

Table 7.3 on page 94 shows the performance of reasoning measured for running
the AQA variants and the KAON2 reasoner on basic queries. For ∃-queries, we first
had to identify a meaningful set of such queries, as randomly generated ones very of-
ten had empty extensions. We thus considered only such queries for which KAON2
computed non-empty extensions. This way, we identified 107 ∃-queries for testing.
Running the approximation algorithm in the database variant, we obtained a signif-
icant performance improvement for each ∃-query, about 90%. The mean time con-
sumed to answer the queries was 274 ms while it was 2789 ms for KAON2. Running
the algorithm in offline processing where the approximation is computated in mem-

94 QUERY APPROXIMATION

ory, we obtained another significant performance gain, indeed about 99% compared
to KAON2.

Table 7.3: Summary of the performances measured for the offline and database vari-
ants, summarized over all considered queries. tdb gives the runtime for the database
variant, toffline gives the runtime for the offline variant while tkaon2 gives the runtime
of KAON2 – these times are in ms and are the sums over all considered queries

query (C) to f f line tdb tkaon2
toffline
tkaon2

tdb
tkaon2

∃R.A 3187 29331 298472 0.01 0.098

≥ n R.A 404 4524 71031 0.005 0.063

∀R.A 545 13847 173088 0.003 0.080

A ⊔ B 552 11681 312677 0.001 0.037

A ⊓ B 2801 5432 278805 0.01 0.019

In addition to measuring the performance of AQA variants, we have determined
the quality of AQA compared with that of KAON2. Table 7.4 on page 94 shows the
quality of the AQA approximation for the basic queries we have tested. By compar-
ing the approximate extensions provided by AQA with the conventional extensions
provided by KAON2, for each query, we have determined the missing as well as the
incorrect individuals, which might appear in the approximate extensions provided
by AQA.

Please note that Table 7.4 displays the sum of the missed, incorrect individuals
and the correct individuals provided by AQA for the basic queries. miss indicates
the elements of the conventional extensions which were not found by the approxima-
tion, corr indicates those which were correctly found, and more indicates those which
were incorrectly computed to be part of the extension. 〈C〉 indicates the sum of the
sizes of the approximate extensions while |C| indicates the sum of the sizes of the
conventional extensions.

Table 7.4: Summary of the quality of AQA approximation, summarized over all con-
sidered queries

query (C) miss corr more 〈C〉 |C|
∃R.A 35752 68347 0 68347 104099

≥ n R.A 872 1667 0 1667 2539

∀R.A 0 3730 5109 8839 3730

A ⊔ B 0 43050 0 43050 43050

A ⊓ B 0 1476 0 1476 1476

7.4 EXPERIMENTAL RESULTS 95

Considering the rather drastic speed-up by one respectively two orders of mag-
nitude, as illustrated in Table 7.3, the introduced error for the ∃-queries appears to
be rather mild, namely with a recall of 0.66 and a precision of 1.0, resulting in an f-
measure of 0.79 as illustrated in Table 7.4 on page 94. Note also that we considered
only queries which do have a non-empty extension: Obviously, queries with no an-
swers are also sometimes used. If we would add such queries to our sample set, then
recall would be even better, while precision would be unaffected.

For the ⊓-queries we obtained even more favourable results. The performance
gain for each query was above 95% while recall, precision and f-measure are 100% as
expected by Proposion 7.1. For the database variant the overall time gain was 98 %,
while it was 99% for the offline variant.

For the ⊔-queries we find it remarkable that recall turns out to be 100%, which is
coincidental.2 At the same time, we obtained reasonable speed-up for the database
variant, namely 99%, and remarkable 99.9%, i.e., three orders of magnitude, for the
offline variant. Turning to the online variant, we obviously obtain the same values for
precision and recall as for the offline and database variants. As for computation time,
we expect an improvement over KAON2 if the TBox translation is time-consuming
(since the approximate algorithm does not need it) compared to the ABox reasoning
part performed with the datalog reasoner. For WINE, the effect is rather small, so we
would need an ontology with a TBox translation with is very expensive compared
to the datalog reasoning part. However, we did not find any real ontology with this
property.

Applying the measurements conducted in Table 7.4 on page 94, we have deter-
mined the corresponding recall, precision and f-measure for each form of the basic
queries that are illustrated in Table 7.5 on page 96. The notions used in Table 7.5 are
the following: f-meas is the f-measure known from information retrieval, computed as

(2 · precision · recall)

(precision + recall)

with
precision =

corr

(corr + more)
and recall =

corr

number of actual instances

, where values are taken from Table 7.4. Note that precision shows the measure of
exactness, whereas recall gives the measure of completeness.

In order to show that for some ontologies we would get the desired effect, we thus
modifiedWINE bymultiplying the TBox, i.e.,we used n renamed copies of the original
TBox together with the original ontology (including the ABox). Table 7.6 shows the
results for the original WINE, for WINE with additional 4 copies of the TBox, and forWINEwith additional 9 copies of the TBox. Indeed the TBox translation took 2629 ms
for WINE, 6674 ms forWINE with 4 TBox copies, and 18223 ms for WINE with 9 TBox

2The experiments performed in [TRKH08] show that disjunction cannot in general be ignored inWINE without loss of precision or recall.

96 QUERY APPROXIMATION

Table 7.5: Overview on the degree of completeness and soundness, summarized over all
considered queries

query recall precision f-meas

∃R.C 0.66 1 0.79

≥ n R.A 0.66 1 0.79

∀R.A 1 0.42 0.59

A ⊔ B 1 1 1

A ⊓ B 1 1 1

copies, showing – as expected – a worse than linear development. When takingWINE
with 10 TBox copies, KAON2 in fact was no longer able to translate the TBox.

Table 7.6: Measured performance for quering 100 ⊔ queries over wine ontology with
different TBoxes

ontology tonline tkaon2
tonline
tkaon2

WINE 243808 277714 0.88

WINE + 4 TBoxes 551101 922626 0.60

WINE + 9 TBoxes 1055881 2058829 0.51

Let us discuss the matter of complex queries, i.e., of queries involving more than
one class constructor. Generally speaking, answering complex queries with KAON2
is not more expensive than answering simple queries of the form we have discussed
so far. For our approximate approach, however, any additional class constructor in
the query causes additional computation, namely the retrieval of one or several ap-
proximate extensions, and the combination of these with the result of the remaining
query. The effect of this can be expected to be roughly linear in the number of class
constructors. In the end, this means that our approach yields less speed-up for more
complex queries, but we also see from the figures in Table 7.3 that the approximation
can still be worthwhile, in particular for the in-memory offline variant.

In order to investigate the effects of error compensation for complex queries, we
consider some complex concepts presented in Table 7.7. Consider first the complex
concept C1. The conventional extension of C1 contains 37 individuals. In contrast,
the approximate extension 〈C1〉 only contains 36 individuals; one individual is not
found by the algorithm due to its incompleteness for ⊔ and ∃-queries. If we combine
this query with a more specific conceptWhiteWine as in C2, the missing individual
disappears, i.e., the error is being compensated for and we have that 〈C2〉 = |C2|.

7.5 EXTENSIONS 97

Table 7.7: Approximate extensions of complex queries

query (Ci) miss corr more 〈Ci〉 |Ci|

C1 = ∃lo
atedIn.(ItalianRegion ⊔USRegion) 1 36 0 36 37
C2 = C1 ⊓WhiteWine 0 7 0 7 7

C3 = ∀hasSugar.Dry 0 47 109 156 47
C4 = ∀hasSugar.Dry ⊓WhiteWine 0 18 2 20 18

C5 = ∀hasSugar.Dry ⊓ C1 ⊓WhiteWine 0 6 0 6 6

As for unsoundness, we consider the query C3 and its approximate extension.
There are many (109) individuals that are computed incorrectly. Note that we have
had relatively low precision for ∀-queries, in Table 7.7. If we further constrain this
query by a conjunction with the named concept WhiteWine as in C4, then the
amount of the individuals computed incorrectly for the query C3 drastically reduces
from 109 to 2. This shows that also an error due to unsoundness can be compensated
for by a combination of constructs in complex queries.

Table 7.8: Running times (ms) obtained for complex queries

query (Ci) toffline tdb tkaon2

C1 = ∃lo
atedIn.(ItalianRegion ⊔USRegion) 11 123 1900
C2 = C1 ⊓WhiteWine 15 137 1583

C3 = ∀hasSugar.Dry 5 104 1219
C4 = ∀hasSugar.Dry ⊓WhiteWine 9 129 1500

C5 = ∀hasSugar.Dry ⊓ C1 ⊓WhiteWine 23 161 1564

As a final example, we consider the intersection of all the query constructs used
above in the query C5. Here we have full compensation of both kinds of errors as
its approximate extension is equal to its conventional one, i.e., 〈C5〉 = |C5|. This
suggests that for many practical complex queries our approximation approach yields
less errors than indicated for the basic queries in Table 7.3 on page 94 due to the effect
of compensation, while speed-up in computation is still significant as given Table 7.8.

7.5 Extensions

Several variants in the AQA system that rely on the Algorithm 7 and the mapping
algorithm defined in Table 7.2 have been introduced. This section now explores the
weaknesses of each variant and proposes several improvements. The next subsection
introduces an approach which aims to improve performance in online processing.
The basic idea is here tomake use of an approximate knowledge base with better com-
putational properties, instead of the original knowledge base. Subsection 7.5.3 dis-

98 QUERY APPROXIMATION

cusses the need of an incremental materialization in offline processing and presents
an algorithm which enables incremental computation of a materialisation depending
on queries to be posed. Subsection 7.5.2 discusses parallel computation of atomic
extensions in online processing.

7.5.1 Combination with Knowledge Approximation

It has been described in Section 7.3 that online processing requires a sound and com-
plete DL reasoner to compute atomic extensions on a given knowledge base. In order
to improve the efficiency of this computation, one can make use of a knowledge base
pre-compiled by the SCREECH algorithms, instead of the original knowledge base.

Please recall the computational characteristics of the SCREECH variants from Sec-
tion 6.4, Chapter 6. According to Table 6.1 on page 67, for instance, SCREECH-NONE

is a sound and but incomplete approximation. However, it should be noted that the
actual completeness of this approximation depends on a particular query and knowl-
edge base. For instance, consider the experimental results from the evaluation of the
Semintec ontology illustrated in Figure 6.7. There is 50 % performance gain for 80 % of
the queries tested; at the same time, all the SCREECH variants compute the extensions
correctly and completely (see Table 6.9).

This suggests to apply SCREECH approximations to knowledge bases handled by
the AQA algorithm in online processing. In an ideal case, like for Semintec ontol-
ogy, soundness and completeness of the extensions of named classes are preserved in
online processing and at the same time it will be possible to improve performance.

Another motivation to combine SCREECH and AQA systems is to avoid an expen-
sive TBox translation required for answering complex queries in case of invoking the
KAON2 reasoner. Algorithm 8 defines this combination. In lines 2 to 10, the given
knowledge base is compiled into a Horn program PHorn by a SCREECH-approximation
which is parameterized through variable t. Finally, Algorithm 7 is applied to PHorn in
order to compute the approximate extension of the complex query Q.

7.5.2 Parallel Computation of Atomic Extensions

As already stated, ABox reasoning problems are often computational intense. Up to
now, only the structure and functionality of approximate instance retrieval algorithms
have been explored without paying attention to their potential of parallelization. In
general parallelization3 means to search for pieces of code that can potentially run
concurrently and having them executed by different processors.

It has been revealed that AQA does not provide a satisfying performance in online
processing. The reason for this is that it computes atomic extensions of a complex
query only sequentially. The more complex the query, the longer it takes to compute
atomic extensions in online processing.

3http://en.wikipedia.org/wiki/Parallelization [accessed 2009-07-03]

7.5 EXTENSIONS 99

Algorithm 8: ψscreech(KB,Q, t)

Input: KB: a SHIQ knowledge base
Input: Q: a complex query concept in NNF
Input: t: the required SCREECH approximation
Result: the approximate extension of Q

begin1 D(KB)←− tboxTranslation(KB);2

PHorn ←− 0;3

switch t ∈ {screech_one, screech_one, screech_all} do4

case t is SCREECH-ALL5

PHorn ←− SCREECH-ALL(D(KB));6

case t is SCREECH-ONE7

PHorn ←− SCREECH-ONE(D(KB));8

case t is SCREECH-NONE9

PHorn ←− SCREECH-NONE(D(KB));10

11

return ψ(PHorn,Q);12

end13

This issue is illustrated by the following simple example. Given a complex query
C of the form ∃.r.C1 ⊓ C2, we denote the time needed by the approximate extension
method in online processing as tonline(C). This time is estimated by the following
equation:

tonline(C) = tonline(r) + tonline(C1) + tonline(C2)
︸ ︷︷ ︸

t

+tonline(op)

where tonline(op) is the time needed for computing the resulting approximate exten-
sion and tonline(Ai), Ai ∈ {r,C1,C2} is the time need for computing an atomic exten-
sion. In fact, computations of atomic extensions can run parallel as they are indepen-
dent of one another. By parallelizing these computations, we can speedup the overal
computation in online processing.

Obviously, parallel computation of atomic extension comes with some overheads
such as forking and joining threads and thread synchronization. The overhead of such
a parallel computation should be insignificant as it is a simple parallelization without
complex thread synchronization. In an ideal situation, we might obtain a better time
t(C) such that

t = sup{tonline(Ai) | Ai ∈ {r,C1,C2}}
︸ ︷︷ ︸

t||

+toverhead + tonline(op)

100 QUERY APPROXIMATION

where toverhead is the time introduced by some overhead and t|| is the execution time
spent in the parallelised computation of atomic extensions.

This approach is defined in Algorithm 9. In line 3 to 4, we parallelise the computa-
tion of atomic classes and roles in which the parallelization is presented by an abstract
function ‖. This function runs each computation of atomic extensions in parallel and
joins the resulting extensions.

Algorithm 9: ψparallel(KB,ExtC,Extr,Q)

Input: KB: SHIQ knowledge base
Input: Q: a complex query concept in NNF
Input: ExtC: the materialised atomic concept extensions
Input: Extr: the materialised atomic role extensions
Result: approximate extension of Q
//determine all atomic concepts and roles occuring in Q1

(C, R)←− f indAtomics(Q)2

EC ←−‖ci∈C Compute_Ext(KB, ci)3

ER ←−‖ri∈R Compute_Ext(KB, ri)4

return ψincremental(KB,ExtC ∪ EC,Extr ∪ ER,Q);5

7.5.3 Incremental Maintance of Materialised Knowledge Bases

The database and offline variants require the whole materialisation of atomic exten-
sions. We have shown that materialisation has been successfully applied in these vari-
ants to increase performance in computation of approximate extension at query time.
The main aim of materialisation was to avoid computations of atomic extensions.

In general, materialisation has been applied successfully in many applications
where reading access to data is predominant. For example, data warehouses usually
apply materialisation techniques to make online analytical processing possible. Simi-
larly, most web portals maintain cached web pages to offer fast access to dynamically
generatedweb pages. We conjecture that reading access to ontologies is predominant
in the Semantic Web and other ontology-based applications, hence materialisation
seems to be a promising technique for fast query processing.

However, a materialisation process is time-consuming. Hence, the central prob-
lem that arises regarding materialisation is the maintenance of a materialisation when
dealing with relatively large ontologies. As the computation of the materialisation is
often complex and time consuming, it is desirable to apply more efficient techniques
in practice, i.e., to incrementally maintain a materialisation.

In order to effectively maintain a materialisation of an ontology and maximize the
utility of the offline variant, we extend Algorithm 7 on page 90. The extended algo-
rithm will be able to incrementally compute the materialisation of atomic extensions
depending on queries being posed. In practice, this optimisation is important, as it

7.5 EXTENSIONS 101

is a particular necessity for handling ontologies having thousands of atomic classes
and roles where the whole materialisation is impracticable. To realise this incremental
approach, we extend the function Compute_Ext and Algorithm 7; however we pose
the following two requirements:

• Amaterialisation should be only performed depending on queries being posed.

• A instance retrieval algorithm should have the effect that whenever the same
query is repeated – it should not be evaluated and instead the previously com-
puted answers should be returned.

To meet requirement 2, we adapt Algorithm 7 and denote it as ψincremental. The
incremental approach is then defined in Algorithm 10. In order tomeet requirement 1,
we need to adapt the function Compute_Ext and the resulting (incremental extension)
function Compute_Extincr is defined in Algorithm 11. The main idea realised in this
algorithm is first to retrieve the extension of an atomic class or role from the database.
If the retrieval fails which means that there is no corresponding extension available,
a DL reasoner is needed to compute it, as given in line 5 and 9.

Algorithm 10: ψincremental(KB,ExtC,Extr,Q)

Input: KB: SHIQ knowledge base
Input: Q: a complex query concept in NNF
Input: t: a type indicating which Screech variant is to be used
Input: ExtC: the materialised atomic concept extensions
Input: Extr: the materialised atomic role extensions
Result: approximate extension of Q
//check if the approximate extension of Q is already computed.1

〈Q〉 ←− π[ind](σ[class=Q](ExtC))2

if 〈Q〉 = ∅ then3

return ψmod(KB,ExtC,Extr,Q) // this function is the modified version of ψ defined in4

Algorithm 7. It invokes Compute_Extincr instead of Compute_Ext
else5

return 〈Q〉 //this yields the previously computed extension of Q and thus meets the requirement 2.6

return ∅;7

To examine the effect of incremental materialisation, we run KAON2 and Algo-
rithm 10 along with the function Compute_Extincr to compute the approximate exten-
sions of the 107 ∃-queries. The performance comparison is shown in Figure 7.4. As
can be seen in this graphic, the algorithm is much slower than KAON2 at the first 15
queries because there is no materialisation for those queries available and a DL rea-
soner is to be invoked. The algorithm then starts running faster than KAON2 since
from the 77th query onwards, the performance of the algorithm is much better than
that of KAON2.

102 QUERY APPROXIMATION

Algorithm 11: Compute_Extincr (ExtC,Extr,C)
Input: KB: SHIQ knowledge base
Input: C: an atomic class or role
Input: ExtC: the materialised atomic concept extensions
Input: Extr: the materialised atomic role extensions
Result: conventional extension of C
E←− ∅1

if C is an atomic class then2

E ←− π[ind](σ[class=C](ExtC))3

if E = ∅ then4 Compute_Ext(KB,C)5

else if C is an atomic role then6

E ←− σ[role=C](Extr)7

if E = ∅ then8 Compute_Ext(KB,C)9

return E;10

100

101

102

103

104

 0 20 40 60 80 100

re
sp

on
se

 ti
m

e(
m

s)

queries

KAON2
AQA with incremental maintance

Figure 7.4: Measured performance of KAON2 and AQA with ψincremental over 107 ∃-
queries

7.6 Conclusion

In this chapter, an approach to approximate instance retrieval based on the notion of
approximate concept extension has been introduced. This approach with its several

7.6 CONCLUSION 103

variants such as online and offline in-memory and database variants is realised in
a system called AQA. Furthermore, several optimisations have been developed to
speed up performace in online and offline in-memory variants.

Performing a comprehensive experiment using the well-known, expressive
benchmarking ontology WINE, all the variants in the AQA system have been eval-
uated. The purpose of this experiment was on the one hand to reveal how fast the ap-
proximate instance retrieval method is in comparison to the efficient ABox reasoner
KAON2. On the other hand, it had to be determined the degree of soundness and
completeness of the approximate method. The benchmark suite used for the evalua-
tion contains over several thousand test queries. These queries were repeated at least
10 times in order to obtain proper experimental results. This evaluation has demon-
strated that it is possible to achieve a significant performance improvement for ABox
reasoning over expressive ontologies with large ABoxes and TBoxes. Moreover, the
evaluation has shown that a significant speed-up of around 90% can be obtained. It
has also been shown that for many practical complex queries the approximation ap-
proach yields fewer errors than indicated for the simple queries while speed-up in
computation is still significant.

We conjecture that the approximate instance retrieval method as presented in this
chapter will help to effectively reason over expressive ontologies with a large volume
of instance data.

104 QUERY APPROXIMATION

Chapter 8

Composed Anytime Algorithms

Chapter 2 provided a basis for analyzing the effects of approximate reasoning. In this
chapter, this research will be further developed by analyzing how to construct any-
time algorithms through the composition of approximate reasoning algorithms. Sec-
tion 8.1 presents the concept of anytime algorithms, whereas Section 8.2 introduces
the concept of oracle algorithms as a composition of approximate algorithms. Section
8.4 presents an anytime algorithm composed of the SCREECH approximations intro-
duced in Chapter 6 and an anytime algorithm for AQA, which has been presented in
Section 7.

8.1 Resource-bounded Reasoning and Anytime Algorithms

Resource-bounded reasoning [Zil96a] is an emerging field within artificial intelli-
gence that is concerned with the construction of intelligent systems that can operate
in real–time environments under uncertainty and limited computational resources.
The need to employ resource-bounded reasoning techniques is based on a simple,
but general, observation. In many complex domains, the computational resources re-
quired to reach an optimal decision reduce the overall utility of the result. This obser-
vation covers a wide range of applications such as medical diagnosis and treatment,
combinatorial optimization, probabilistic inference, mobile robot navigation, and in-
formation gathering. What is common to all these problems is that it is not feasible
(computationally) or desirable (economically) to compute the optimal answer.

For developing resource-bounded reasoning techniques, there have been pro-
posed a number of approaches, the most popular one amongst others, is anytime
algorithms. The term “anytime algorithm” was coined by TomDean in the late 1980’s
in the context of his work on time-dependent planning [BD89, DB88]. In many cases,
a satisfying answer, which falls within the range of error tolerance and which is avail-
able at a certain point in time, is preferred to correct and best answer requiring arbi-
trary long time. Anytime algorithms are algorithms designed to conform to this prac-
tical requirement. They gradually improve the quality of their results, as computation

106 COMPOSED ANYTIME ALGORITHMS

time increases, and end with providing the whole answer when complete computa-
tion is required. Since the work of Dean and Boddy, the context in which anytime
algorithms have been applied has broadened from planning and decision making to
include problems from sensor interpretation to database manipulation, and the meth-
ods for utilising anytime techniques have become more powerful.

Based on anytime algorithms, Zilberstein has introduced a new programming
paradigm to construct modular real-time system in artificial intelligence and demon-
strated a number of applications[Zil96b, ZR96]. In this paradigm, a modular system
is constructed by more flexible anytime algorithms, instead of standard algorithms
that are typically implemented by a simple call-return mechanishm and have a fixed
quality of the output. The core issue is to determine an optimal composition of any-
time algorithms. This is solved by an offline compilation process in which the optimal
allocation of time to the anytime components for any given total allocation and a run-
timemonitoring component that together generate a performance-maximizing profile
for the complete system. However, a declarative characterisation of such algorithms
is often lacking [Gtv04].

In the setting of logic and knowledge representation, the idea of applying anytime
computation, is to define a family of entailment relations that approximate classi-
cal entailment, by relaxing soundness or completeness of reasoning. The knowledge
base can provide partial solutions even if stopped prematurely; the accuracy of the
solution improves with the time used in computing the solution and may eventu-
ally converge to the exact answer. From this point of view, anytime reasoning offers
a compromise between the time complexity needed to compute answers by means
of approximate entailment relations and the quality of these answers. Based on this
paradigm, Schaerf and Cadoli [SC95] present a general technique for approximat-
ing deduction problems. Their framework includes a set of atomic propositions as
a parameter, which captures the quality of approximation. Based on this parameter,
the authors define two dual families of entailment relations, which are respectively
sound but incomplete and complete but unsoundwith respect to classical entailment.
Inspired by this idea, several extensions to approximating deduction problems have
been proposed in the literature, including notably default logic and circumscription
[CS96], modal logics [Mas98] and first-order logic [Kor01].

Anytime algorithms are important for the Semantic Web for two reasons. First,
although many problems require a lot of resources (e.g., time) to solve them, many
systems can already produce good approximate solutions in a short amount of time.
A system that can reason about howmuch time is needed to obtain an adequate result
may be more adaptive in complex and changing environments. Second, a technique
for reasoning about allocating time need not be restricted to the internals of a sys-
tem. Web intelligent agents must be able to reason about how fast they and other
agents can manipulate and respond to their environment. In realistic Semantic Web
applications of expressive ontologies, the user may have to stop the execution of the
algorithm, because there is no more time left for continuing the computation. More-
over, the time constraints may be unknown in advance, they can vary from seconds

8.2 CONCEPT OF COMPOSED ALGORITHMS 107

to hours or days in large-scale knowledge applications. In both cases, one may be
interested to find a good, but not necessarily the optimal, set of approximate answers
as quickly as possible. In this respect, the most important characteristics of anytime
algorithms are outlined as follows as given in [GZ96]:

• Measurable quality: The quality of an approximate result can be determined
precisely.

• Predictability: Anytime algorithms also contain statistical information about
the output quality given in a certain amount of time as well as information about
the data it receives. This information can be used for meta-reasoning about
computational resources to eventually construct an anytime algorithm.

• Recognisable quality: The quality of an approximate result can easily be deter-
mined at run time.

• Interruptibility and Continuation: Anytime algorithms can be interrupted and
return the partial results they have computed so far. Additionally, they can be
continued beyond the contract time they are given.

• Monotonicity: Anytime algorithms always improve the output quality of the
data they work on as soon as they are granted more time.

8.2 Concept of Composed Algorithms

Our focus is to develop anytime algorithms by combining the approximate algo-
rithms introduced in Chapters 6 and 7 in a way that it gradually improves the quality
of results by increasing the computation time.

Unlike standard algorithms that grant a fixed quality of output and completion
time, anytime algorithms are meant to be interruptible at any time. In practice, par-
ticularly in the context of reasoning, it would not always be beneficial to develop algo-
rithms that continuously generate intermediate answers whose quality is unknown.
It would be more beneficial if the quality of the answers were known.

A composed anytime algorithm in this regard cannot be interrupted at any time,
however, it can be interrupted at the point of time when one approximate algorithm
involved in the composition finishes its computation. The advantage of such compo-
sitions is that one can be aware of the quality of intermediate answers, since sound-
ness and completeness of the composed approximate algorithms are known. In the
following, the formal definition of such a composed anytime algorithm is given.

Approximate reasoning systems do not have often anytime behaviour. However,
it is possible to obtain anytime behaviour by composing approximate reasoning al-
gorithms. Assume that a number of algorithms ai (i = 1, . . . , n) is given. Fur-
thermore, assume there is an ORACLE ALGORITHM c whose behaviour can be de-
scribed by a function c : (X × 2)n → X × 2 which combines a vector of outputs

108 COMPOSED ANYTIME ALGORITHMS

(a1(ω, t), . . . , an(ω, t)) of the algorithms ai and yields a single output. Given an input
ω, the invocation of all ai in parallel and the subsequent call of the oracle algorithm
yield a new algorithm ca1 ,...,an with IO-function

fca1,...,an (ω, t) = c(a1(ω, t), . . . , an(ω, t)).

The definition just given is very general in order to allow for a very free combina-
tion, depending on the algorithms which are being combined. For the general setting,
we impose only the very general constraint that for all x1, . . . , xn ∈ X we have

c((x1, 1), . . . , (xn, 1)) = (x, 1)

for some x, and also that the natural constraint discussed on page 45 on the cor-
responding IO-function fca1,...,an is satisfied. This is just to ensure ̺ca1,...,an (ω) ≤
max{̺a1 , . . . , ̺an}, i.e. the “combiner” indicates termination at the latest whenever
all of the single input algorithms ai do so.

It is more interesting to look at more concrete instances of oracles. Assume now
that a1, . . . , an−1 are one-answer algorithms and that an is an (always terminating)
sound and complete algorithm. Let c be such that

c(a1(ω, ̺an(ω)), . . . , an−1(ω, ̺an(ω)), an(ω, ̺an(ω))) = (f resan (ω), 1).

Then it is easy to see that ca1,...,an is anytime.
If we know about soundness or completeness properties of the algorithms

a1, . . . , an−1, then it is also possible to guarantee that ca1,...,an is monotonic anytime.
This can be achieved in several ways, and we give one specific example based on
ABox reasoning in description logics.

Assume that each input consists of a class description C over some description
logic L, and each output consists of a set of (named) individuals. For constructing an
oracle from such algorithms, we will actually consider as outputs pairs (A, B) of sets
of individuals. Intuitively, A contains only individuals which are known to belong to
the extension of C, while B constitutes an individual set which is known to contain all
individuals in the extension of C. A single output (set) A can be equated with the out-
put pair (A, A). Now let a1, . . . , an be sound

1 but incomplete2 one-answer algorithms
over L, let b1, . . . , bm be complete but unsound one-answer algorithms over L and let
a be a sound, complete and terminating algorithm over L, i.e. f resa (C, ̺a) – which we
denote by Ca – contains exactly all named individuals that are in the extension of C
as a logical consequence of the given knowledge base. Under this assumption, we
know that f resai

(C, ̺ai) = (Cai , I) and f resbj
(C, ̺bj) = (∅,Cbj) for some sets Cai and Cbj,

where I stands for the set of all (known) individuals, and furthermore we know that
Cai ⊆ Ca ⊆ Cbj for all i, j.

1We mean soundness in the following sense: If the set I of individuals is the correct answer, then the
algorithms yields as output a pair (A, A) of sets with A ⊆ I.

2We mean completeness in the following sense: If the set I of individuals is the correct answer, then
the algorithms yields as output a pair (A, A) of sets with I ⊆ A.

8.3 AN EXAMPLE OF THE COMPOSED ALGORITHMS 109

The oracle c is now defined as follows.

c(a1(C, t), . . . , an(C, t), b1(C, t), . . . , bm(C, t), a(C, t))

=







((f resa (C, t), f resa (C, t)), 1) for t ≥ ̺a(C),

((upper, lower), term) for t < ̺a(C)

where lower =
⋃

(Ai,Bi,1)= fai(C,t)
Ai,

upper =
⋂

(Aj,Bj,1)= fbj(C,t)
Bj,

term = 1 if lower = upper, otherwise 0.

Note that the empty set union is by definition the empty set, while the empty set
intersection is by definition I.

Intuitively, the oracle realizes the following behavior: If the sound and complete
sub-algorithm has terminated, display its result. Beforehand, use the lower resp. up-
per bounds delivered by the sound resp. complete algorithms to calculate one inter-
mediate lower and one intermediate upper bound. If those two happen to coincide,
the correct result has been found and may terminate without waiting for a’s termina-
tion. This squeezing in of the correct result now also explains why we have chosen to
work with pairs of sets as outputs.

As error function, we might use the sum of the symmetric difference between A
and A0, respectively between B and A0, i.e.

e((A, B), (A0, A0)) = |A0 \ A|+ |B \ A0|.

We could also use a value constructed from similar intuitions like precision and recall
in information retrieval, but for our simple example, this error function suffices. It is
indeed now straightforward to see that ca1,...,an,b1,...,bm,a is monotonic anytime. It is also
clear that ca1,...,an,b1,...,bm,a is more precise than any of the ai and bj, at all time points.

8.3 An Example of the Composed Algorithms

In this section, we will instantiate the very general framework established in the pre-
ceding sections. We will use the presented techniques to compare three approximate
reasoning algorithms and compose a (simple) anytime algorithm following the exam-
ple at the end of Section 8.2.

Consider the three algorithms SCREECH-ALL, SCREECH-NONE and KAON2, as
discussed in Section 6.3 on page 60 and Section 6.4 on page 65. It was introduced
that SCREECH-ALL is complete but unsound, SCREECH-NONE is sound but incom-
plete, and KAON2 is sound and complete. Following the general framework, we first
have to stipulate the probability space (Ω, P) for our case. Here we introduce the
first simplifying assumptions, which are admittedly arguable, but will suffice for the
example:

• The task considered here is instance retrieval for named classes.

110 COMPOSED ANYTIME ALGORITHMS

• The knowledge base is the Wine ontology. For more detailed evaluation data on
this knowledge base, consider Table 6.6 on page 75 and Table 6.9 on page 79.

• As queries, we consider only instance retrieval tasks, i.e. given an atomic class
description, we query for the set of individuals which can be inferred to be
instances of that class. Hence Ω – the query space – consists of named classes
C of the Wine ontology the instances of which are to be retrieved: Ω = C.
Examples for named classes in this ontology are e.g., Chardonnay, StEmilion orGrape.

• All those instance retrieval queries ω ∈ Ω are assumed to be equally probable
to be asked to the system, hence

P(ω) =
1

|C|
for all ω ∈ Ω.

Obviously, the probability of a query could also be assumed differently, e.g.,
correlating with the number of instances the respective class has. Nevertheless,
for the sake of simplicity we will stick to the equidistributional approach.

Obviously, the output space X consists of subsets of the set of individuals I from
the Wine ontology together with the no-output symbol ⊥: X = 2I ∪ {⊥}. As the
error function e comparing an algorithm’s output I with the correct one I0, we use the
inverted value of the common f-measure, i.e.

e(I, I0) := 1−
2 · precision · recall

precision + recall

where (as usual)

precision :=
|I ∩ I0|

|I|
and recall :=

|I ∩ I0|

|I0|
.

According to the proposed handling of ⊥, we stipulate the overall “worst-case
distance”: e(⊥, I0) = 1 for all I ⊆ I.

As mentioned before, the setA of considered algorithms comprises three items:

A = {KAON2, SCREECH-ALL, SCREECH-NONE}

For each of these algorithms, we carried out comprehensive evaluations: we queried
for the class extensions of each named class and stored the results as well as the time
needed. By their nature none of the considered algorithms exhibits a genuine anytime
behavior, however, instead of displaying the “honest” ⊥ during their calculation pe-
riod, they could be made to display an arbitrary intermediate result. It is straightfor-
ward to choose the empty set in order to obtain better results: most class extensions
will be by far smaller than half of the individual set, hence the distance of the correct
result to the empty set will be a rather good guess.

8.3 AN EXAMPLE OF THE COMPOSED ALGORITHMS 111

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0..8

0.9

1

0 5000 10000 15000 20000
t/ms

(a
,t
)

KAON2

SCREECH-ALL

SCREECH-NONE

Figure 8.1: Defect over time

Hence, for any algorithm a of the above three and any class name C let IC denote
be the set of retrieved instances and tC denote the measured runtime for accomplish-
ing this task. Then we can define the IO-function as

fa(C, t) =

{
(∅, 0) if t < tC
(IC, 1) otherwise.

The values of the correct output function f0 can be found via KAON2, as this
algorithm is known to be sound and complete. Moreover, the runtime functions ρa(C)
of course coincide in our case with the runtimes tC measured in the first place. Since
all of the considered algorithms are known to terminate, no ρa will ever take the value
∞.

After this preconsiderations, we are ready to carry out some calculations estimat-
ing the quality of the considered algorithms. Figure 8.1 shows a plot depicting the
decrease of the defect for all the three algorithms. As expected, there is an ultimate
defect for the two Screech variants, namely 0.013 for SCREECH-NONE and 0.015 for
SCREECH-ALL, i.e. with respect to the terminology introduced earlier, we can say
that SCREECH-NONE is more precise than SCREECH-ALL. While the defect of KAON2
is initially greater than those of the Screech variants, it becomes better than them at
about 6 seconds and decreases to zero defect after about 7 seconds. In other words,
SCREECH-ALL is more precise than KAON2 at all time points less than 6 seconds. A

112 COMPOSED ANYTIME ALGORITHMS

first conclusion from this would be: if a user is willing to wait for 7 seconds for an
answer (which then would be guaranteed to be correct) KAON2 would be the best
choice, otherwise (if time is crucial and precision not), SCREECH-ALL might be a bet-
ter choice as it shows the quickest defect decrease. If we now assume a time-critical
application where responses coming in later than, say, 5 seconds are ignored, we can
describe this by the fact that SCREECH-ALL is better than KAON2 with respect to the
density function

f̄ (x) =

{

1 0 ≤ x ≤ 5,

0 otherwise.

Considering the fact that SCREECH-ALL is complete, SCREECH-NONE is sound,
and KAON2 is both, we can now utilise a variant of the oracle given in Section 8.2
in the example. The behaviour of the combined algorithm can in this simple case be
described as follows. It indicates termination whenever one of the following occurs:

• KAON2 has terminated. Then the KAON2 result is displayed as solution.

• Both SCREECH-ALL and SCREECH-NONE have terminated with the same result.
In this case, the common result will be displayed as the final one.

If none of above is the case, the experimental findings suggest to choose the SCREECH-
NONE result as intermediate figure. The algorithm obtained that way is anytime and
more (or equally) precise than any of the single algorithms at all time points.

8.4 Composed Anytime Reasoners

This section presents the underlying concept of two anytime reasoners composed of
the approximate algorithms developed in Chapters 6 and 7.

8.4.1 SCREECH-Anytime

This section presents a composed anytime reasoner by using the SCREECH variants
introduced in Chapter 6 and will show how to improve quality of approximation
while preserving completeness.

Before the composed algorithm will be discussed, please recall the properties of
the SCREECH variants to be combined. SCREECH-ALL is the approximation that may
be unsound, but complete, while SCREECH-NONE is sound, but may be incomplete.
In the composed algorithm, two instances of SCREECH-NONE and one instance of
SCREECH-ALL are combined. The resulting anytime algorithm will produce answers
at three discrete times, and end up with building a complete answer set. In general,
this composed algorithm is a non-monotonic anytime algorithm. One cannot pre-
dict which variant will terminate at first because it critically depends on the types of
knowledge bases and queries. To better understand this idea, let us consider a Venn
diagram illustrated in Figure 8.2. This diagram depicts the answer sets that will be

8.4 COMPOSED ANYTIME REASONERS 113

Figure 8.2: A combination of the three SCREECH approximate algorithms

obtained from three SCREECH instances. Here, the rectangle represents the universal
set, i.e., the set of all individuals defined in the ABox of the ontology under consider-
ation. The answer set obtained by the first instance of SCREECH-NONE for querying
a named class C is denoted C1

none. The answer set obtained by the other instance of
SCREECH-NONE for querying ¬C is denoted C2

none, whereas the set obtained by the
instance of SCREECH-ALL is denoted Call. Note that the composed algorithm is not
interruptible at any time, but they are interruptible at the time when one approxi-
mate algorithm involved in the composition finishes its computation and is able to
continue.

Assume that the first instance of SCREECH-NONE is faster than the others. Due
to the soundness of SCREECH-NONE, the first instance always provides the correct
individuals for C, but, its answer set is incomplete. The question that arises is then
how to determine other correct individuals that cannot be computed by the above
approximation. Assuming that the instance of SCREECH-ALL is the next fast one, it
will provide an answer set, which contains all the individuals belonging to the exten-
sion of C. The answer set is complete, but can contain more individuals, e.g., incorrect
individuals, due to the unsoundness. Furthermore, by excluding the correct individ-
uals from this set, one can determine at that time which elements can be potentially
incorrect individuals. The resulting set is denoted Cunknown, thus:

Cunknown = Call \ C
1
none.

Now, the main issue is how to determine the remaining correct individuals. In
fact, one cannot determine all the correct individuals, so the aim is to compute an
answer set with as few incorrect individuals as possible. To achieve this, we have

114 COMPOSED ANYTIME ALGORITHMS

made use of the fact that the complement of a class includes all the individuals that
are not members of that class. This means, by using the second instance of SCREECH-
NONE for querying ¬C, one can determine some of the incorrect individuals, so the
anytime algorithm improves its quality by excluding those incorrect individuals from
Cunknown. The final answer set C f inal contains all the individuals that are known to
belong the extension of C, thus:

C f inal = Cunknown \ C
2
none.

This final answer set denotes the consolidated answer of the anytime algorithm after
the composed approximate algorithms have finished their computations.

8.4.2 AQA-Anytime

In the previous section, it has been discussed how to construct a composed anytime
algorithm without involving a sound and complete reasoner. This has been demon-
strated by combining the SCREECH variants. In the following, we discuss the de-
velopment of an anytime reasoner called AQA-Anytime, which combines an AQA
reasoner with a sound and complete DL reasoner. Consider the soundness and com-
pleteness properties of AQA from Section 7.2, Chapter 7. It has been revealed that
AQA is fast and its soundness and completeness depends on the type of queries.
Moreover, Proposition 7.2 on page 84 states that, for queries that do not make use
of the ∀, ≥ and ≤ constructs (after normalisation 3), the AQA approach of approxi-
mating concepts in their negation normal form yields an extension that might miss
some instances but has no improper instances in it. In other words, computing the
approximate extension is soundwith respect to the conventional extension.

Regarding this, we introduce a function isSound, which determines whether or
not a concept in the negation normal form is built from the ∀, ≥ and ≤ constructs.
This function assigns a Boolean value of {F,T} to each concept expression and is
recursively defined as follows:

isSound(C⊓D) = isSound(C) ∧ isSound(C) isSound(∀R.C) = F

isSound(C⊔D) = isSound(C) ∧ isSound(C) isSound(⊤) = T

isSound(∃R.C) = isSound(C) isSound(⊥) = T

isSound(≥ n R.C) = F isSound(A) = T
isSound(≤ n R.C) = F isSound(¬A) = T

The AQA-Anytime reasoner is composed of two reasoners, so there is only one
point in time to interrupt it when the AQA reasoner responds faster than a DL rea-
soner. Here, we consider an intermediate result of the AQA-Anytime reasoner. As-
suming that an AQA reasoner first responds at time Taqa, one can determine the log-
ical property of AQA by applying isSound to the negation normal form NNF(Q) of a

3Concept expressions are assumed to be negated normal form (NNF) before processing them with
AQA

8.5 CONCLUSION 115

given query Q. If isSound(NNF(Q)) = T, all the individuals in the answer set pro-
vided by AQA will be correct due to its soundness. However, the answer set may
not contain all the individuals known to be correct due to the incompleteness. Since
a sound and complete DL reasoner is utilized in the AQA-Anytime reasoner, pos-
sibly missing individuals can be found, so the AQA-Anytime reasoner results in a
sound and complete answer set. In case the query has been built from the ∀, ≥ and
≤ constructs, however, we cannot determine at the time Taqa which individuals are
incorrect ones due to the unsoundness of AQA. Hence, in general, the AQA-Anytime
is, like SCREECH-Anytime, a non-monotonic anytime reasoner as well. The imple-
mentation of the AQA reasoner and its integration into the reasoner broker system
will be further discussed in Chapters 9 and 10.

8.5 Conclusion

Applying anytime computation is an important aspect in the Semantic Web as it is
connected with the field of resource-bounded reasoning. In this chapter, we ana-
lyzed how to construct anytime algorithms by composing approximate reasoning al-
gorithms. With regard to this, it has been studied how to combine the approximate
reasoning approaches presented in Chapters 6 and 7. The main goal of this study has
been to investigate the synergy effects of these approximate approaches with different
computational characteristics.

Unlike standard algorithms that grant a fixed quality of output and completion
time, anytime algorithms are meant to be interruptible at any time. In practice, par-
ticularly in the context of reasoning, it would not always be beneficial to develop algo-
rithms that continuously generate intermediate answers whose quality is unknown.
It would be more beneficial if the quality of the answers were known. The composed
algorithms discussed in this chapter are not interruptible at any time, but they are in-
terruptible at the time when one approximate algorithm involved in the composition
finishes its computation and is able to continue. The advantage of such compositions
is that one can be aware of the quality of intermediate answers, since soundness and
completeness of the composed approximate algorithms are known. The development
of composed anytime algorithms requires correct synchronization and maintenance
of intermediate answers, and thus, a commonly useful anytime reasoning patternwill
be designed and discussed in Chapter 9.

116 COMPOSED ANYTIME ALGORITHMS

Part III

Implementation and Applications

Chapter 9

Implementation

Having introduced the approximate reasoning algorithms for instance retrieval in the
previous chapters, in this chapter, their implementations are presented. Firstly, the
general architecture of the framework, which interconnects the approximate reason-
ing components in a flexible environment, is introduced in Section 9.1. Subsequently,
the individual components of the framework are discussed: Section 9.2 describes the
design and implementation of the SCREECH knowledge compilation component. Sec-
tion 9.3 presents the design and implementation of the AQA reasoning component.
In Section 9.4, the design and implementation of the anytime reasoners are described.
Finally, Section 9.5 introduces the implementation of the framework for the evalua-
tion of approximate reasoning systems.

9.1 General Architecture

The approximate reasoning algorithms for instance retrieval of expressive ontolo-
gies described in this work have been implemented in the Approximate Ontol-
ogy Reasoning Workbench (AORW). AORW is an open source tool and hosted at
http://sourceforge.net/projects/aorw. Figure 9.1 shows the overall architecture of
AORW. The SCREECH component implements the knowledge compilation algo-
rithms from Chapter 6 whereas AQA implements the instance retrieval algorithms
from Chapter 7. Furthermore, AORW includes an automated benchmarking tool,
which is a concrete implementation of the framework to evaluate approximate rea-
soning systems discussed in Chapter 5.

As a combination of approaches, two anytime reasoners have been implemented,
namely SCREECH-Anytime and AQA-Anytime. They provide an implementation of
the composed anytime algorithms discussed in Chapter 8. Composing the SCREECH

approximation variants, SCREECH-Anytime reasoner enables anytime instance re-
trieval for named classes. In contrast, an AQA-Anytime reasoner combines the AQA
variants with a DL reasoner, enabling anytime instance retrieval for complex classes.

120 IMPLEMENTATION

Figure 9.1: AORW system architecture

AORW has been completely implemented in Java and has made use of the
KAON2 API to access OWL ontologies and to invoke the reasoning procedures pro-
vided by KAON2. The commonly used OWLAPI has been also used by AQA to han-
dle expressive ontologies, which cannot be processed by KAON2. Its primary goal,
however, is to invoke other DL reasoners for the materialization of atomic extensions,
which is required by AQA.

A thorough design and implementation is important for developing an approxi-
mate reasoning system, since a bad design and its incorrect implementation could af-
fect reasoning performance as well as approximation quality. To ensure a certain level
of quality, the whole implementation has been guided by the well-acknowledged de-
sign pattern1 from Software Engineering [Gam08]. Regarding this, we have made use
of several well-known design patterns to develop the present framework, which are
shown in Table 9.1. They help improving the quality of the software in terms of the
software being reusable, maintainable and extensible. In the next sections, we will
describe the individual components of AORW in detail and use those design patterns
to describe their implementation.

1Design pattern are recurring solutions to problems that arise during the life of a software applica-
tion.

9.2 IMPLEMENTATION OF THE SCREECH APPROACH 121

Pattern Name Description

Abstract Factory

Allows the creation of an instance of a class from a suite
of related classes without having a client object to spec-
ify the actual concrete class to be instantiated.

Bridge

Allows the separation of an abstract interface from its
implementation. This eliminates the dependency be-
tween the two, allowing them to be modified indepen-
dently.

Composite
Allows both individual objects and composite objects to
be treated uniformly.

Strategy
Allows each of a family of related algorithms to be en-
capsulated into a set of different subclasses (strategy ob-
jects) of a common superclass. For an object to use an al-
gorithm, the object needs to be configured with the cor-
responding strategy object. With this arrangement, al-
gortithm implementation can vary without affecting its
clients.

Visitor

Allows an operation to be defined across a collection of
different objects without changing the class of objects on
which it operates.

Table 9.1: The design patterns used for developing the AORW framework

9.2 Implementation of the SCREECH Approach

Figure 9.2 shows a UML class diagram of the Screech component’s layout in terms of
Java classes and interfaces. The SCREECH component implements three algorithms,
which correspond to the three SCREECH approximation variants. The algorithms for
these approximations were discussed in Section 6.3 on page 60 and Section 6.4 on
page 65.

The implementation of these algorithms follows the Strategy pattern. This pattern
suggests keeping the implementation of each of the algorithms in a separate class,
which is often referred to as a strategy class. In the SCREECH component, three strat-
egy classes, namely S
ree
hAll, S
ree
hOne, S
ree
hNone, were designed, which
implement Algorithm 2, Algorithm 4, and Algorithm 5 described in Section 6.3 and
Section 6.4, respectively. The S
ree
h class is the main reasoner class implementing
the S
ree
hApproximateReasoner interface. Due to the Strategy pattern, changing
the behavior of a reasoner is simply a matter of changing its Strategy object to the one
that implements the required algorithm. To enable a S
ree
h object to access different
Strategy objects in a seamless manner, all Strategy classes have been designed to offer
the same interface named S
ree
hApproximation. Selecting and instantiating an ap-
propriate S
ree
hApproximation class and configurating it with the selected instance

122 IMPLEMENTATION

Figure 9.2: A Class diagram for the SCREECH component

can alter the behavior of a S
ree
h object.
This type of arrangement completely separates the implementation of a SCREECH

approximation algorithm from the SCREECH reasoner that uses it. As a result, when
an existing algorithm implementation is changed or a new approximation algorithm
is added, the S
ree
h object remains unaffected.

Among the SCREECH approximations, the SCREECH-ONE is the most complex
one, which, in general, can apply various heuristics to produce a subset of the split
program derived from a disjunctive rule. According to Algorithm 4 on page 66, it
chooses only one Horn rule from a split program whose head has a greater extension
than the other heads of the Horn rules. To let SCREECH be extendable, an abstract
class Heuristi
 has been introduced, which contains the most common code to select
Horn rules. To implement more complex algorithms for selecting Horn rules, other
resources might be required to read heuristic information. For instance, heuristic in-
formation can be read from a file or a database system.

SCREECH component serves two purposes. One is to use it as a knowledge compi-
lation method for other DL reasoners, the other is to use it as an approximate reasoner
for instance retrieval. As reasoner, it makes use of the KAON2 reasoner and performs
the following tasks to compute approximate extensions of named classes: creating
an instance of a strategy class, creating a S
ree
h object and configuring it with the
object of the selected strategy class, and invoking the getApproximateExtension on
the reasoner object. As knowledge compilation, it performs the following tasks to
compile the given ontology into a Horn knowledge base: creating an instance of a

9.3 IMPLEMENTATION OF THE AQA APPROACH 123

strategy class and invoking
reateHornKnowledgeBase and getHornKnowledgeBase.
The getHornKnowledgeBasemethod provides an ontology object which can be further
serialized as an OWL ontology.

Note that the UML diagram only illustrates some important classes and interfaces,
which constitute the SCREECH component. The underlying API includes a number of
functionalities for accessing ontologies and a database system.

9.3 Implementation of the AQA Approach

This section presents the AQA implementation details. AQA is an approximate rea-
soner designed to provide efficient instance retrieval for DL complex concepts. The
core functionality of this system is to compute approximate extensions, which has
been implemented in several variants according to the algorithms defined in Sec-
tion 7.3, Chapter 7. Figure 9.3 illustrates a UML class diagram of the AQA com-
ponent’s layout in terms of Java classes and interfaces.

9.3.1 Computation Of Approximate Extensions

In AQA, as discussed in Section 7.3 on page 85, there are two distinguished vari-
ants, namely database and in-memory computation, to compute approximate exten-
sions. In the first case, computation is delegated to underlying database operations,
whereas in the second case, it is performed in computer memory. The algorithms for
these computations were defined in Table 7.2 on page 88 and Algorithm 7 on page 90.
The first operation of these algorithms is to break down a given complex query to
the atomic concepts and roles occurring in it. KAON2 API2 already provides a class
hierarchy of DL concept expressions, so it is used to implement AQA. From the im-
plementation point of view, breaking a complex concept down to atomic ones means
to design an operation across a heterogeneous collection of objects of the class hier-
archy. The Visitor pattern is a commonly useful pattern to model such an operation.
KAON2 API offers a KAON2Visitor interface to traverse the class hierarchy. More-
over, it implements that every DL object (a DL axiom or expression) has a methoda

ept(KAON2Visitor), which makes a call to the respective visit method, passing
itself as an argument.

The KAON2Visitor interface is used to design two classes, DatabaseMapping
and InMemoryComputation, for computing approximate extensions in the database
variant as well as in-memory variant. This interface provides them with the
means to perform the required computation on every concept. The KAON2Visitor
interface, however, declares several methods, which are not required by these
classes. In order to improve readibility and to provide a better design, an abstractAbstra
tDLCon
eptVisitor class has been designed to separate the unnecessary

2Its current release supports the SHIQ DL language.

124 IMPLEMENTATION

methods declared in the KAON2Visitor interface. Moreover, the common functional-
ity for both the InMemoryComputation and DatabaseMapping classes is placed in this
class. Although these classes share the KAON2Visitor interface, their implementation
is quite different from each other. According to the algorithm defined in Table 7.2, a
DL expression ismapped to a SQL expression. In case of a complexDL expression, the
corresponding SQL expressionwould become verbose, and thusmake testing and de-
bugging more difficult. Another issue is that the execution time for evaluating a long
SQL expression could cause bad performance. Hence, an efficient implementation
had to be undertaken. As a result, it has been decided to design the DatabaseMapping
class such that it yields a list of SQL expressions, instead of generating just one long
SQL expression. Each expression in that list corresponds to each sub-concept of the
query being processed. The actual approximate extension will be then computed by
sequentially evaluating each SQL expression from that list.

Note that SQL expressions are generated such that the result of its evaluation is
stored in a temporary database table, and an evaluation reads the result of its previous
evaluation accessing the corresponding database table. This implementation has been
testedwith a number of JUnit3 tests. Another test strategy for this implementation has
been to compare it with the other variants.

In contrast to the implementation of the DatabaseMapping class, the visit meth-
ods in the InMemoryComputation class implement Algorithm 7, returning a Set ob-
ject, which represents the approximate extensions of the sub-concepts. For atomic
concepts and roles, the InMemoryComputation class requires the computation of their
extensions. As discussed in Section 7.3, there are two variants for this computation
– offline and online. In the offline variant, an atomic extension is calculated by re-
trieving the database, which stores the materialized knowledge whereas in the online
variant, it is calculated by invoking a DL reasoner.

It has been decided to implement this process of computing atomic extensions,
i.e., the separation between the online and offline variants, in another class outside theInMemoryComputation class. The advantage of this design-related decision is that theInMemoryComputation class only contains the computation of approximate extensions
without dealing with the case analysis of AQA variants. For such an implementation,
the Bridge pattern is a commonly useful pattern. Applying this pattern, an interface
named ExtensionManagerInf and its implementer class ExtensionManager have been
designed. The advantage of providing this interface is that one can implement an-
other complex extension manager without affecting the InMemoryComputation class.
The ExtensionManager class controls the variant for computing atomic extensions
chosen in AQA. The design has been developed in such a way to make the choice
dependent on the given query. Certainly, the variant of AQA can be changed at run-
time, moreover, it can be changed depending on individual queries, which allows
more flexibility in a sophisticated application of expressive reasoning. For this pur-
pose, the ExtensionManager couples a DLReasoner as well as an ExternalDatabase

3http://www.junit.org/ [accessed 2009-8-13]

9.3 IMPLEMENTATION OF THE AQA APPROACH 125

object in a seamlessmanner and also provides functionalities for materializing knowl-
edge bases.

The design has been developed in such a way that an AQA reasoner is
configured with a DL reasoner and an external database encaplused into anExtensionManager object. Furthermore, it has been designed that an AQA reasoner
can switch its processing variant depending on queries. That means, invoking thegetApproximateExtensionmethod, the user can specify in which variant the approx-
imate extension ought be computed, without instantiating a new AQA reasoner. To
distinguish the different variants in AQA, different types of constant data are used.

In order to compute the approximate extension of a given complex query,
a client program can perform the following tasks: creating an instance of theExtensionManager by passing a DLReasoner object as well as an ExternalDatabase
object, creating an AQAReasoner and configuring it with the ExtensionManager
object created above and invoking the getApproximateExtension method on theAQAReasoner object by specifying in which variant the approximate extension is to
be computed.

9.3.2 Embedding DL Reasoners and Databases

A DL reasoner is required in the online variant to compute atomic extensions at
query-time. Furthermore, in the offline variant as well as in the database-based vari-
ant, the materialization of atomic extensions has to be achieved using a DL reasoner.
KAON2 is the standard DL reasoner integrated in AQA. It is, however, practical,
to integrate other efficient reasoners like Pellet. In order to make this possible, the
common methods for instance retrieval offered by different DL reasoners have been
abstracted and declared as a separate interface named DLReasoner. In case of using
another DL reasoner, this interface can be used by a concrete reasoner class. This
enables AQA to use different types of DL reasoner objects in a seamless manner with-
out requiring any changes, so the ExtensionManager class does not need to be altered
even when integrating a new DL reasoner.

Except for the online variant, other variants require a database system to store
atomic extensions as well as experimental results. The relational database system
MySQL is used as the default storage system. In order to have other efficient database
systems integrated in AQA, an interface named ExternalDatabase has been de-
signed, which offers the functionalities required by an ExtensionManager object. An
implementer object of the ExternalDatabase interface can be configured with an ob-
ject, which contains information, such as how to access the database as well as to store
extensions.

9.3.3 Applying Knowledge Compilation

In Section 6.5, Chapter 6, we have discussed that SCREECH speeds up reasoning sig-
nificantly while preserving soundness and completeness. That has been the case of

126
IM

P
L
E
M

E
N
T
A
T
IO

N

DatabaseMapp ing

+DatabaseMapping(manager:ExtensionManagerInf)

Extens ionManager

+ExtensionManager(database:ExternalDatabase,
 reasoner:DLReasoner)

<<interface>>

DLReasoner

+getConceptExtension(name:String): Set

+getRoleExtension(name:String): Set

+createNewReasoner(): void

+loadOntology(ontologyUri:String)

AQAReasoner

+AQAReasoner(manager:ExtensionManagerInf)

+getApproximateExtension(query:String,variant:int): Set<String>

<<abstract>>

AbstractDLConceptVisi tor

+manager: ExtensionManagerInf

I nMemoryComputa t ion

+InMemoryComputation(manager:ExtensionManagerInf)

<<interface>>

Externa lDatabase

+getConceptExtension(name:String): Set

+getRoleExtension(name:String): Set

+write(extension:RoleExtension): void

+write(extension:ConceptExtension): void

<<interface>>

Extens ionManager In f

+getConceptExtension(name:String): Set

+getRoleExtension(name:String): Set

+setAQAType(type:int)

+getAQAType(): int

+materialization()

+execute(sqlstatement:String): voidF
ig
u
re

9.3:
A

C
lass

d
iag

ram
fo
r
th
e
A
Q
A

co
m
p
o
n
en

t

9.4 ANYTIME REASONING COMPONENT 127

querying the ontologies such as SEMINTEC and VICODI, the corresponding exper-
imental results are shown in Tables 6.7 and 6.8 on pages 76 and 78, respectively.
SCREECH can be used as either a preprocessor or an approximate reasoner on top
of the KAON2 reasoner. As preprocessor defined in Algorithm 8 in Chapter 7 on
page 99, one applies a SCREECH-approximation to the ontology to be processed by
AQA. The resulting knowledge is approximate with respect to the original ontology.
After having been serialized as an OWL ontology using the XML/RDF syntax by
the SCREECH component, the compiled ontology can be processed by AQA. As ap-
proximate reasoner, implementing the DLReasoner interface like other DL reasoners
illustrated in Figure 9.3, SCREECH can be invoked in the online variant of AQA.

9.4 Anytime Reasoning Component

In an anytime reasoning system, several reasoning components have to run simulta-
neously. Although the behavior of a single component can usually be specified and
analyzed relatively easily, the behavior of the system as a whole is often too complex
to be specified or analyzed thoroughly. This is primarily due (and inherent) to the
parallelism between the system’s components.

This leads to the development of a common anytime reasoning pattern, which is
general enough to implement the kind of anytime reasoning based on the compo-
sition of approximate reasoning algorithms or systems. This section presents such a
pattern used to implement the anytime reasoning algorithms described in Section 8.1,
Chapter 8. The anytime reasoning pattern enables the creation of a composed any-
time reasoner, which may involve various approximate reasoners as well as sound
and complete DL reasoners running simultaneously. Recall from Section 8.1 that the
term anytime reasoningwas originally coined to design a reasoning algorithm in such
a way that it provides intermediate results computed continuously, and refines them
as time increases. In contrast, the idea of developing an anytime reasoning algorithm
here relies on a combination of approximate reasoning algorithms, in some cases com-
bined with a DL reasoner. Hence, this kind of anytime reasoning system does not
function like a classical anytime reasoning system that is assumed to be interrupted
at any given time. Instead, it is interruptible at the completion time of the individual
reasoning component involved.

Figure 9.4 shows a UML class diagram of the generic anytime reasoning pattern.
This pattern supports an easy creation of anytime reasoning system that shall be
based on a combination of multiple reasoning systems.

The main idea of this pattern is, independent from any specific reasoner, to con-
trol reasoners using a shared AnytimeResult object. Regarding with this, an inter-
face ComposedReasoner has been introduced which can be implemented by a specific
reasoner. This interface provides methods for reading queries, and performing rea-
soning task. A specific reasoner should implement the querying method for own
reasoning task. An AnytimeReasoningManager object runs the involved reasoners in

128 IMPLEMENTATION

Anyt imeResul t

+writeResult()

+readResult()

+getStatus()

Synchronizat ion

+getReadLock()

+getWriteLock()

Anyt imeReasoningManager

+run()

+querying(query:String)

+loadOntology(ontology:String)

<<interface>>

ComposedReasoner

+run()

+querying(query:String)

+loadOntology(ontology:String)

ScreechAnyt ime

+run()

+querying(query:String)

+loadOntology(ontology:String)

AQAAnyt ime

+run()

+querying(query:String)

+loadOntology(ontology:String)

11

1

Figure 9.4: A Class diagram for the generic anytime reasoning component

paralell, and forwards the knoweldge base to be queried to each reasoner. The in-
volved reasoners in turn load the knowledge base and wait for queries. Once a query
is posed by users, the AnytimeReasoningManager object forwards it to the reason-
ers so they will start performing the reasoning task implemented in the querying
method. After performing the required reasoning task for the query, each reasoner
puts its answer in the shared AnytimeResult object using the writeResult method.
The AnytimeReasoningManager object reads the current answer when available, and
forwards it to a client’s program. The Syn
hronization class is responsible for a
proper synchronization between reasoner objects and a AnytimeReasoningManager
object.

Implementing the ComposedReasoner interface for AQA and Screech, two anytime
reasoners have been implemented, namely SCREECH-Anytime and AQA-Anytime
reasoners, the underlying concepts of these reasoners have been discussed in Sec-
tion 8.4, Chapter 8. The S
ree
hAnyTime class encapsulates the SCREECH-Anytime
algorithm in which the three Screech approximations are composed. The AQAAnyTime
encapsulates the AQA-Anytime algorithm, which combines an AQA reasoner with
an DL reasoner.

9.5 Automated Benchmarking

Providing a foundation of approximate reasoning for the Semantic Web, Chapter 5
presented an abstract framework for evaluating approximate reasoning algorithms.
This section discusses the implementation of this framework. In Chapter 5, several
functional requirements derived from analyzing the difficulties in benchmarking of
reasoning systems were also suggested, which a concrete benchmarking tool has to
meet.

9.5 AUTOMATED BENCHMARKING 129

In essence, it has been assumed that, due to a very large set of test queries, the
tasks of measuring the performance as well as the quality of an approximate reason-
ing algorithm need to be automated.

The present automated benchmarking tool has been specifically designed to en-
able full-automated execution for complex benchmarks. Hence, it allows designing a
composite benchmark, called benchmark suite, which can be made up of other com-
posite benchmarks, simple benchmarks, or by embedding external tools. In contrast,
a (simple) benchmark cannot contain any other simple or composite benchmarks. It
contains external tools that will be executed in a sequential manner. In order to pro-
vide a flexible design for such hierarchical, composite objects, the Composite pattern
has been used. Applying the Composite pattern, the resulting class hierarchy con-
tains classes, such as Abstra
tBen
hmark, Ben
hmarkSuite, and Ben
hmark shown in
Figure 9.5.

The Abstra
tBen
hmark class declares and implements methods that are common
for benchmarks, external tools as well as benchmark suites. Due to the Composite pat-
tern, one can view Abstra
tBen
hmark objects uniformly and recursively call meth-
ods over them. The exe
 method iterates over the collection of Abstra
tBen
hmark
objects it contains, in a recursive manner, and invokes their exe
 methods. ThesetParameter configures an Abstra
tBen
hmark object with required parameters.

The Ben
hmarkSuite class represents a benchmark suite, implementing methods,
such as addBen
hmark and getBen
hmark, to deal with the components it contains.
The addBen
hmarkmethod is used to add different Ben
hmark objects to a benchmark
suite object. The Ben
hmarkSuite stores the other Ben
hmark objects inside a list. ThegetBen
hmark is used to retrieve one such object stored in the specified location. In
contrast, the Ben
hmark class represents a benchmark and implements methods for
loading test queries and ontologies as well as adding and executing external tools.
Moreover, the runTest method loads an ontology and test queries from a file, runs
the embedded reasoners for each query on the given ontology and stores the run
times as well as the answers using the TimeLogger class. To design this tool extend-
able and generic as possible for embedding external tools, an abstract class namedExternalTool has been provided.

In order to programmatically use the present benchmarking tool, a typical
client program would first create a set of Abstra
tBen
hmark objects. Using theaddBen
hmark method and adding those to a Ben
hmarkSuite object, a composite
benchmark object can be created. When the client program wants to run the com-
posite benchmark, it can simply invoke the exe
method, which iterates over the col-
lection of Abstra
tBen
hmark objects in a recursive manner, and invokes their exe

methods. An alternative way is to load a composite benchmark from a XML file
by using the loadBen
hmark method implemented in the Ben
hmarkFa
tory abstract
class.

As part of the implementation of this benchmarking tool, several tools have been
developed to support the evaluation of approximation reasoning algorithms. These

130 IMPLEMENTATION

BenchmarkSui te

+benchmarks: List<BenchmarkInf>

<<abstract>>

ExternalTool

<<abstract>>

AbstractBenchmark

+exec(): void

+setParameter(parameters:HashMap): void

+addBenchmark(benchmark:Benchmark)

+getBenchmark(index:int): Benchmark

1..*

Benchmark

+runTest(uri:String)

His togram

+exec(): void

QueryGenera tor

+exec(): void

OntologyPopulator

+exec(): void

+populateABox(uri:String,size:int)

+populateTBox(uri:String,size:int)

+populateRBox(uri:String,size:int)

<<abstract>>

BenchmarkFactory

+loadBenchmark(file:String): void

<<abstract>>

TimeLogger

+setStartTime(t:long): void

+setEndTime(t:long): void

creates

uses

1..*

Figure 9.5: A Class diagram for the automated benchmarking tool

include tools for generating query as well as populating ontologies regarding their
ABox and TBox.

9.5.1 Query Generation

The evaluation of the approximate reasoning systems developed in this thesis has
required various kinds of test queries. The QueryGenerator class provides several
algorithms for generating complex concept expressions, which are needed for the
evaluation. Several criteria had to be met to generate such queries. In the following,
we will first define two basic sets of test queries and then describe the corresponding
algorithms that generate them. For the sake of compactness, we will make use of the
notation of primitive function.

The simplest query generation algorithm is to generate concepts of depth 2 from
a given set Nc of (atomic) concepts using concept connectives such as ⊔ and ⊓. There
are two requirements for the definition of this query generation function: (1) to avoid
generating concepts, such as A ⊔ A for a concept A, and (2) to generate only one
combination A ⊔ B from concepts A and B, while the alternative combination B ⊔ A
is apparently without any sense. The resulting algorithm is defined as follows:

9.5 AUTOMATED BENCHMARKING 131

genConceptQuery(op,Nc) =







genConcept(op, c1 ,Nc)

∪ genConceptQuery(op,Nc \ {c1}) if Nc 6= ∅

∅ otherwise

, where op ∈ {⊔,⊓} and Nc is a set of concepts. The function genConcept is defined
to be

genConcept(op, c1 ,Nc) =







{(c1 op c2)}

∪ genConcept(op, c1 ,Nc \ {c2}) if Nc 6= ∅

∅ otherwise.

A further basic query generation function is to generate role concepts from a given
set R of roles and a set Nc of concepts that are disjoint. This function is defined as
follows:

genRoleQuery(◦, R,Nc) =







genRoleConcept(◦, r,Nc)

∪ genRoleQuery(◦, R \ {r},Nc) if R 6= ∅

∅ otherwise

, where ◦ ∈ {∀, ∃}, Nc is a set of concepts and Nc is a set of roles. The function
genRoleConcept is defined to be

genRoleConcept(◦, r,Nc) =







{(◦ r c)} ∪ genRoleConcept(◦, r,Nc \ {c})

if Nc 6= ∅

∅ otherwise.

Up to this point, we have considered the generation of basic queries that are built
from using the DL concept connectives ⊔ and ⊓ as well as concepts with roles. Par-
ticularly when dealing with large knowledge bases, such basic queries as considered
above could be even larger, so it is impracticable to test all the queries. In the fol-
lowing, we introduce several query generation algorithms that can be used to restrict
those basic queries in some way.

Sound selection. Especially for testing sound reasoning algorithms, it is adequate
to take into account only those queries, for which a sound and complete DL reasoner
provides answers, i.e., a non-empty set. Hence, for any set Q of basic queries, the
following function determines a subset of queries, for which a sound and complete
DL reasoner provides a non-empty set:

132 IMPLEMENTATION

soundQuery(KB,Q) =







soundQuery(KB,Q \ {q})

if Resdl(KB, q) = ∅∧Q 6= ∅

{q} ∪ soundQuery(KB, Resdl ,Q \ {q})

if Resdl(KB, q) 6= ∅ ∧Q 6= ∅

∅ otherwise.

, where KB is a knowledge base and Resdl is a DL reasoner.

Random selection. Another way of restricting basic queries is to randomly select
some queries. Assuming a random function rand, the following function randomSel
generates the set of randomly selected queries of a certain size n from a given set:

randomSel(Q) =

{

{q} ∪ randomSel(Q \ {q}) if Q 6= ∅, where q = rand(Q)

∅ otherwise.

Timed selection. In some cases, it is useful to avoid testing certain queries, for
which a sound and complete DL reasoner under test needs much time. Assuming
a function time for measuring run time, the following function timedQuery generates
certain queries from a given set of queries, to which a sound and complete DL rea-
soner responds in a specified time t:

timedQuery(KB, Resdl ,Q, t) =







∅ if Q = ∅

{q} ∪ timedQuery(KB, Resdl ,Q \ {q}, t)

if time(Resdl(KB, q) ≤ t)

timedQuery(KB, Resdl ,Q \ {q}, t)

otherwise.

In the previous sections, we have discussed various kinds of test queries that were
utilized for the evaluation of the approximate instance retrieval methods developed
in this thesis.

9.5.2 Ontology Population

In addition to defining test queries, an important aspect of testing approximate rea-
soning algorithms with regard to performance is to construct artificial ontologies that
can be used for exploring the strengths and weaknesses of an approximate reasoning
algorithm. For this purpose, we have devised several algorithms that can be used to
populate OWL-DL ontologies.

9.5 AUTOMATED BENCHMARKING 133

Table 9.2: A population algorithm for SHOIN : KB is a SHOIN knowledge base.
KBT , KBR and KBA are the respective TBox, RBox and ABox in KB. α stands for
axioms in KB

Populating SHOIN KB

pop(α,K) =
⋃

0<i<K{rn(α, i)} ∪ { α}
pop(KBR,K) =

⋃

α∈KBR pop(α,K)
pop(KBT ,K) =

⋃

α∈KBT pop(α,K)
pop(KBA,K) =

⋃

α∈KBA pop(α,K)
pop(KB,K) = pop(KBR,K)

⋃
pop(KBT ,K)

⋃
pop(KBA)

Note that populating OWL ontologies regarding the TBox as well as the ABox is
not the primary focus of this thesis, so an in-depth treatment of this topic goes beyond
its scope. However, in order to compare and contrast the performance of the approx-
imate reasoning systems presented in this thesis with other sound and complete DL
reasoners, several algorithms have had to be developed. These algorithms are encap-
sulated in the OntologyPopulator class, as illustrated in Figure 9.5. The class provides
three populateTBox, populateRBox and populateABoxmethods for populating TBox,
RBox and TBox in a knowledge base, taking as arguments the URI of the ontology
to be populated as well as its population size regarding how many copies should be
generated. The corresponding algorithms are presented as a recursive function pop
in Table 9.2.

The function pop takes two variables, K and KB, as arguments, with K referring
to the number of copies for populating the knowledge base KB. Starting with K, the
general idea of this population function is to recursively traverse the axioms in KBT ,
KBR and KBA as well as all concept expressions until atomic concepts and roles are
reached. Moreover, the function pop is defined by being applied to TBox, RBox, and
ABox, respectively. It is defined by being applied to each of their axioms. Subse-
quently, K copies of each axiom are generated. All the copies are renamed using the
function rn according to the current value of K, as given in the first row of Table 9.2.

In Table 9.3, the function rn is recursively defined for TBox, RBox and ABox ax-
ioms. For RBox and ABox axioms, it changes atomic concept, role, and individual
names by concatenating the current value of K to them. For TBox axioms, rn is recur-
sively applied to axioms of ⊑ and ≡ as well as complex concept expressions.

9.5.3 Histogram Generation

To work with a large set of test queries, and to illustrate their corresponding results
graphically, an illustration of displaying all results becomes easily unclear. In this
case, advanced methods of data summary, such as histogram, is practicable. A his-
togram is a summary graph showing distribution of data points measured that falls

134 IMPLEMENTATION

Table 9.3: A renaming algorithm for SHOIN : ◦ is a generic concatenate function. a1
and a2 are individuals. C and D stand for complex concepts while r, r1 and r2 stand
for roles. K stands for a natural number. The formal syntax of SHOIN is discussed
in Chapter 3

Renaming Concepts

rn(⊤,K) = ⊤
rn(⊥,K) = ⊥
rn(A,K) = A ◦ K

rn(¬C,K) = ¬rn(C,K)
rn(C ⊓ D,K) = rn(C,K)⊓ rn(D,K)
rn(C ⊔ D,K) = rn(C,K)⊔ rn(D,K)
rn(∀ r .C,K) = ∀ r ◦ K .rn(C,K)
rn(∃ r .C,K) = ∃ r ◦ K .rn(C,K)

rn((≥ n r.),K) = ≥ n r ◦ K.
rn((≤ n r.),K) = ≤ n r ◦ K.
Renaming TBox, RBox, and ABox Axioms

rn(C ⊑ D,K) = rn(C,K) ⊑ rn(D,K)
rn(C ≡ D,K) = rn(C,K) ≡ rn(D,K)
rn(r1 ⊑ r2,K) = r1 ◦ K ⊑ r2 ◦ K
rn(r1 ≡ r2,K) = r1 ◦ K ≡ r2 ◦ K

rn(Trans(r),K) = Trans(r ◦ K)
rn(C(a),K) = C ◦ K(a ◦ K)

rn(R(a1, a2),K) = R ◦ K(a ◦ K, b ◦ K)
rn(a1 ≈ a2,K) = a1 ◦ K ≈ a2 ◦ K
rn(a1 6≈ a2,K) = a1 ◦ K 6≈ a2 ◦ K

within various class-intervals. A class interval (also called bin) is a division of a range
of values into sets of non-overlapping intervals for plotting a histogram.

In our work, histograms are used to compare and contrast performances between
approximate reasoning systems und DL reasoning systems. They illustrate the distri-
bution of performance gains for test queries. The Histogram class provides functional-
ities for generating histograms for analyzing performances. A Histogram object reads
its configurations from the parameters object and experimental data, performs statis-
tic calculations on them, such as frequency distribution and cumulative percentage,
and yields a series of gnuplot4 scripts. The generation of scripts can be customized
by using an predefined template. It also enables the automatic detection of the appro-
priate number of bins in experimental data. Sometimes, the shape of the histogram
is particularly sensitive to the number of bins. If the bins are too wide, important

4It is a popular comprehensive tool for plotting data in various forms.

9.6 CONCLUSION 135

information might get omitted. For example, the data may be bimodal, but this char-
acteristic may not be evident if the bins are too wide. On the other hand, if the bins
are too narrow, what may appear to be meaningful information really may be due to
random variations that appear because of the small number of data points in a bin.
To determine whether the bin width is set to an appropriate size, different bin widths
should be used and the results ought to be compared to determine the sensitivity of
the histogram shape with respect to bin size. Generating meaningful histograms aims
at the automatic detection of the number of bins, analyzing the distribution of results.
It can be also configured with a certain number of bins.

9.6 Conclusion

This chapter has described the implementation details of the approximate reason-
ing algorithms having been presented in this thesis. The resulting system, AORW,
includes the individual components for approximate instance retrieval for OWL on-
tologies as well as the automated benchmarking tool.

To provide an efficient implementation for this system, a careful design has been
conducted and a number of implementation tests have been carried out to ensure
the correctness of the implementation. Such a careful development was required,
since a bad design and its incorrect implementation could affect the performance of
reasoning as well as the quality of approximation.

Applying the Bridge pattern and Visitor pattern, a comprehensive design for AQA
has been realized. This design allows a flexible implementation so that AQA can
switch between its variants at runtime without creating any new reasoner object. It
furthermore makes testing and debugging easier, which is very important for the
development of an approximate reasoning algorithm. The mainteance of the materi-
alization for ABox assertions and accessing them as well as invoking DL reasoners is
completely separated from computing approximate extensions.

SCREECH has been implemented by applying the strategy pattern due to its dif-
ferent knowledge compilation strategies. A functional requirement for the develop-
ment of SCREECH has been to design it such that it can be used for two purposes:
as a knowledge compiler or as an approximate reasoner. This has been achieved by
separating the functionalities required by a SCREECH approximation from the func-
tionalities required from an approximate reasoner for instance retrieval. The Strategy
pattern allows to access different SCREECH approximation strategies in a seamless
manner and enables an easy extensionwhen implementing other new approximation
strategies.

Applying the Strategy pattern, the benchmarking tool has been developed, since
there was no special tool available to automate benchmarking of approximate rea-
soning systems. The resulting tool is generic for automated benchmarking, which
supports the comparison of system performance as well as measuring the degree of
soundness and completeness for over several thousands of complex concept queries.

136 IMPLEMENTATION

Its generic architecture allows integrating external tools under a common interface.
The tool takes care of the time-consuming details of the execution, management of
experimental results, and their visual interpretation. Script-based editing of bench-
marks and the ability to integrate external tools makes the benchmarking tool inher-
ently extendable and allows it to run more complex benchmarks fully automatically.

Chapter 10

Applications

This chapter presents how the approximate reasoning solutions developed in this
work and presented in the previous chapters have been used in a concrete setting
given by the research project we have been involved in. First, the research project
THESEUS will be introduced in Section 10.1. Section 10.2 then presents the main
concept of the reasoning broker having been developed in THESEUS,whereas Section
10.3 describes its implementation, and the integration of the anytime reasoners, which
have been presented in Chapter 8, into the reasoning broker. Finally, in Section 10.4,
we will discuss possible applications of approximate reasoning.

10.1 The THESEUS Project

Currently, Semantic Web technologies are maturing and moving out from academic
applications into the industrial sector. This is demonstrated by the strong and grow-
ing interest of various business sectors like human resources and employment, health
care and life sciences, transport and logistics, and on the other hand, public insti-
tutions like the European Commission, which has supported the development and
transfer of these technologies into the business world in various European projects
like Knowledge Web1, NEON2 and LarKC3. A common goal of these projects is to
develop practicable, scalable ontology reasoning systems for emerging Semantic Web
applications of expressive ontologies based on various reasoning paradigms and tech-
nologies. Apart from these European projects, other national projects, like the Ger-
man project THESEUS,4 aim at bridging the gap of pure research and practical appli-
cation of semantic technologies.

The focus of THESEUS lies on semantic technologies for the next generation In-
ternet, which will recognize the meaning and content of information and will be able

1http://knowledgeweb.semanti
web.org [accessed 2009-9-12]

2http://www.neon-proje
t.org [accessed 2009-9-12]

3http://www.lark
.eu/ [accessed 2009-9-12]

4Supported by the German Federal Ministry of Economics and Technology.

138 APPLICATIONS

to classify it – irrespective of whether it be words, photos, sounds, 2D or 3D image
data. With these technologies, computer programs will be able to intelligently under-
stand in which context data should be stored as well as draw logical conclusions and
establish correlations.

Reasoning Objectives in the THESEUS Project

The THESEUSproject consists of several cases and a cross cutting Content Technology
Cluster (CTC). CTC aims at solving the most fundamental scientific and technolog-
ical challenges in the THESEUS project. Moreover, the core working group within
CTC, which we have been involved in, focuses on the development of an ontology
management system which is supposed to lay the basis for advanced Semantic Web
technologies to be developed in the THESEUS Use Cases. Having analyzed the func-
tional and non-functional requirements posed by the THESEUSUse Cases, it has been
identified that the scalable ontology reasoning systemwill be a key component in the
expected ontologymanagement system. In the following, we will present some of the
identified objectives, which are directly related to the work presented in this thesis.

Size and scale of semantic data: The use of ontologies and semantic data can vary in
size and scale regarding the amount of accessed and processed data. In some cases,
the knowledge involved in an application can be rather restricted in terms of quantity
providing only supplementary support to use case solutions. In other cases, both
ontologies and semantic data pools can be very large in size. A (typical) special case
occurs when manually created ontologies have a maintainable size, while semantic
(meta) data formulated with respect to these ontologies comes in great amounts.

Expressivity of ontology language: Ontologies can vary in their expressivity. While
simple (light-weight) ontologies may include subsumption hierarchies of concepts or
properties, higher axiomatized (heavy-weight) ontologies include the use of Boolean
concept expressions, existential and universal property restrictions, cardinality re-
strictions, etc. Use Cases may need ontologies of different expressivity, depending
on the ontology-based functionality they exploit. This again depends on the model-
ing capabilities of users and support by provided tools, e.g., for providing semantic
annotation, as well as the added value expected from exploiting semantic features by
the system, e.g., in assisting semantic search or browsing, consistency checking, or
explanation.

10.2 Reasoning Brokerage

This section presents a reasoning broker system, which aims at providing scalable
ontology reasoning services for the advanced Semantic Web applications being de-
veloped in the THESEUS Use Cases.

The main idea behind the reasoning broker system HERAKLES is to provide a
unifying platform for various specific reasoners, and to act as an abstract reasoning
service that hides the concrete type of reasoning used for a particular request from

10.2 REASONING BROKERAGE 139

Figure 10.1: Overview of the HERAKLES plug-in

the client. Behind this facade, different types of reasoners serve as components for
answering the request next to components for supplementary tasks like normalisa-
tion or modularisation of ontologies and strategies for caching and other forms of
optimisation on top of these. In the best case, a specific reasoning task might be split
in several parts that are independently evaluated by different reasoners in parallel
according to the nature of the query and ontology modules involved. HERAKLES
implements the reasoner interface provided by the OWL API and can thus be used
as an ordinary OWL reasoner by any semantic application. However, behind the
scenes HERAKLES manages several external remote reasoners, which can again be any
reasoner that is accessible via the OWL API’s reasoner interface. Currently there are
connections to the standard reasoners Pellet5, FaCT++6, and HermiT7, as well as to
KAON28 via a newly developed adapter bridging the KAON2API and the OWLAPI.

Figure 10.1 illustrates the general architecture of HERAKLES and its integration
with Protégé. Apart from using HERAKLES as a reasoner via the OWL API, it can
also be monitored and configured via tabs and views added to Protégé. The external
remote reasoners are connected to HERAKLES via a remote interface, and can hence
be located on different servers. The centralised control of various external remote rea-
soners enables the implementation and combination of different features that provide
added value compared to traditional reasoner systems. The following list of features
can be implemented by the use of a strategy concept, which controls the behaviour
of the reasoning broker system. However, not all of those features have been imple-

5http://
larkparsia.
om/pellet
6http://owl.man.a
.uk/fa
tplusplus/
7http://www.hermit-reasoner.
om/
8http://kaon2.semanti
web.org/

140 APPLICATIONS

mented yet. Concrete strategies that are in fact implemented are mentioned at the end
of this section.

Parallel Reasoner Invocation. Predicting the exact run-time of reasoning systems
for a given ontology and a given query is hardly possible in practise. Even predic-
tion of the first reasoner to finish a given query is not possible in many cases, which
motivates the parallel execution of reasoning tasks on a set of reasoning systems. The
reasoner which finishes first can then propagate the results of the query, assuming
correctness of all reasoners invoked.

Reasoner Selection. Due to benchmarks and knowledge about the implementations
of different reasoning systems, some of the available reasoners can be selected prior to
actually executing the reasoning tasks. This selection will keep reasoners unsuitable
for a given ontology/query combination idle and available for other reasoning tasks
they are more appropriate for.

Query Decomposition. Queries containing complex class or property expressions
can be analysed if those expressions decompose into several subexpressions which
can be answered by different reasoners in parallel. It must be ensured, though, that
the combination of the results delivered by different reasoners does not bear an unac-
ceptable overhead compared to the performance gained by parallel computation. A
naive example of such a decomposition is to split a conjunctive class expression into
its operands and answer each subexpression by different reasoners in parallel. The
answer in this simple case would be the intersection of the answers delivered by the
different reasoners.

Partitioning of Ontologies. The notions of conservative extensions and locality pro-
vide means to partition an ontology into several semantically independent mod-
ules [GHKS07]. Executing a query on such a module instead of the whole ontology
can result in run-time performance improvements for reasoning requests. Moreover,
in combination with intelligent query decomposition more complex queries can be
executed by different reasoners on different ontology modules in parallel.

Load Balancing and Scheduling. In a scenario where a sequence of queries is to
be answered, or multiple applications are using the same instantiation of a reasoning
broker, it is necessary to balance the workload of each remote reasoner in order to
provide optimal overall run-time performance. To this end an asynchronous reasoner
interface would allow for acceptance of more than a single query at once from an
application. Query answering can then be scheduled to be processed by the different
remote reasoners according to their strengths and language conformance, in order to
ensure maximum throughput of queries.

10.3 IMPLEMENTATION OF REASONING BROKERAGE 141

Real-time Benchmarking. Assuming that the reasoning systems have been cor-
rectly implemented, existing benchmarks for ontology reasoning basically focus on
performance measurements. It is also important to perform correctness tests for the
implementation of the reasoning systems [GHT06, GTH06], in particular, the evalu-
ation of emerging approximate reasoning systems requies measuring the quality of
answers which is a special case of correctness tests. The reasoning broker provides an
ideal infrastructure for both performance and correctness tests.

10.3 Implementation Of Reasoning Brokerage

The previous section described the underlying concept of the reasoning broker sys-
tem. This section presents its current implementation.

The reasoning broker has been implemented as the HERAKLES system9 in the
Java™ programming language in accordance with the OWL API [HBN07]. HER-
AKLES is implemented in a client/server architecture to ensure modular decoupling
of remote reasoners, i.e., the HERAKLES server, and the broker layer, i.e., the HER-
AKLES client. The HERAKLES client implements the OWLReasoner interface of the
OWL API and can thus be used like any standard reasoner from within an OWL API
based application. The HERAKLES client furthermore maintains a reasoner registry
to record attached remote reasoners that can be used by the broker. Remote reasoners
are wrapped into a remote reasoner adapter, which allows them to be run as reason-
ing servers connected to the HERAKLES client. This adaptation has not only been
realised for OWL API compliant reasoners, but also for the KAON2 reasoner with its
own API, and the KAON2 based approximate reasoning systems SCREECH andAQA.
The communication between client and servers has been realised using Java™ RMI10.
Hence reasoning servers can be run on remote machines, which allows for exclusive
provision of computational resources for each reasoner.

10.3.1 Broker Strategies

The behaviour of the broker and thus the implementation of the features discussed in
Section 10.2 is controlled by exchangeable broker strategies. More precisely there is a
load strategy to control the loading of ontologies into the different remote reasoners,
and an execution strategy to control the execution of reasoning tasks by those rea-
soners. The strategy concept allows for easy substitution of both load and execution
strategy by different implementations depending on the usage scenario of the rea-
soning broker. Furthermore the strategy concept allows for the implementation and
use of customised strategies for specific use cases. Implementation of strategies in
HERAKLES is simplified by several strategy components, which encapsulate core bro-
ker tasks such as parallelisation, reasoner selection, partitioning, or ontology analysis.

9http://herakles.sour
eforge.net [accessed 2009-9-12]

10Remote Method Invocation.

142 APPLICATIONS

These strategy components can then be used and combined to assemble new broker
strategies. The following paragraphs describe interfaces and currently available im-
plementations of strategy components and strategies for HERAKLES.

Paralleliser. This component invokes the execution of a reasoning task on a selec-
tion of reasoners in parallel. It will most likely be the final component involved in
a strategy, possibly after some partitioning and selection steps. Currently there are
two implementations: a competing paralleliser, which delivers the result of the rea-
soner that finishes first, and a blocking paralleliser, which waits until all reasoners
have finished. The former will most likely be the default implementation in order to
gain the best run-time performance of the broker, while the latter could be used for
benchmarking tasks.

Selector. This component selects a set of reasoners out of the ones registered by the
broker. Different implementations can apply different selection criteria, such as ontol-
ogy properties, reasoning task to be executed, or query properties11. Currently there
are two implementations: an ontology selector, which selects reasoners according to
properties of the ontology, and a task selector, which selects reasoners according to the
reasoning task to be performed. Selection of reasoners in this way requires knowledge
about the capabilities of the different reasoners, which are currently recorded by the
remote reasoner adapters.

Modulariser. This component provides means to partition an ontology into several
modules, which can ideally be processed by different reasoners concurrently. There is
currently no implementation available, but there are plans for realising partitioning
as discussed in Section 10.2.

Analyser. This component is supposed to be used in load strategies which perform
an analysis of the ontologies to be loaded. The information gained by this analysis
can then be used e.g., by selectors in the execution phase.

Basic/Analysing Load Strategy. This load strategy loads the ontology into all avail-
able remote reasoners. The analysing load strategy extends the basic load strategy by
additionally analysing the ontologies and recording their properties.

Basic/Fault-tolerant Parallelisation Strategy. This execution strategy performs a
reasoning request on all available (idling) remote reasoners, which have loaded the
ontologies. A fault-tolerant parallelisation strategy extends the basic parallelisation
strategy by being insensitive to failing remote reasoners. In case of a failure, it waits

11Query properties could be for instance the language features used in a class description in an in-
stance query.

10.3 IMPLEMENTATION OF REASONING BROKERAGE 143

for more reasoners to become available and fails on a particular query only if all re-
mote reasoners fail.

(Fault-tolerant) Task Selection Strategy. This execution strategy selects remote rea-
soners according to the reasoning task requested. Selection is carried out by a task
selector strategy component, which can be configured in order to map reasoning tasks
to reasoners having certain characteristics. Selected reasoners are then invoked in
parallel using the competing paralleliser strategy component. A fault-tolerant task selec-
tion strategy extends the task selection strategy by being insensitive to failing remote
reasoners. In the case all selected reasoners fail on a particular query, it also selects
reasoners not matching the selection criteria in order to try and have the query suc-
ceed12.

Anytime Strategy. This execution strategy simulates anytime reasoning behaviour
by using approximate reasoning systems developed in this thesis. It selects distinct
sets of remote reasoners respecting soundness, completeness, and both soundness
and completeness. All reasoners are invoked in parallel using the competing paralleliser
strategy component, where each set of reasoners is invoked by a different paralleliser.
Results are delivered from the fastest reasoner of each set, characterising results as
sound, complete, or sound/complete rsp. Anytime behaviour arises from the faster run-
times of the approximate reasoners and thus from the early delivery of (potentially)
unsound or incomplete answers.

Benchmark Strategy. This execution strategy can be used for simple run-time per-
formance benchmarking of reasoners. It invokes all available remote reasoners in
parallel without any prior selection. The strategy component for parallel execution is
the blocking paralleliser to enable time measurement of each reasoner for each reason-
ing task. The blocking characteristic of this strategy component ensures availability
of all reasoners for each reasoning task out of a test series.

10.3.2 User interface

Access to the HERAKLES system via the OWL API reasoner interface is primarily
useful when it is supposed to serve as a reasoner in an application that needs support
for ontology reasoning. Another aspect is to integrate an ontology reasoner in an
ontology editor to help knowledge engineers detect erroneous modeling. Since there
are already a number of sophisticated ontology-editing tools available, our aim is to
incorporate our developed reasoning solutions into an existing ontology editing tool.

Among others, Protégé13 is a popular, open-source ontology engineering environ-
ment with a large community. It provides functionality for editing and reasoning

12This behaviour assumes that the selection in the first place was only based on expected run-time
performance and not due to language conformance.

13http://protege.stanford.edu/ [accessed 2009-9-9]

144 APPLICATIONS

OWL ontologies, and is highly extensible and customizable. Originally, it is a frame-
based knowledge model with support for metaclasses. The latest version, namely
Protégé 4.0 is now built on top of the OWL API, providing more flexible develop-
ment and a straightforward migration path for OWL-based applications. Hence, our
decision is to use Protégé as a general purpose ontology engineering tool as well as a
general reasoning frontend.

In what follows, we will describe it briefly as far as we need for our purpose, in
particular, for the use of our approximate reasoning methods. Protégé’s user interface
consists of several screens, called tabs, each of which displays a different aspect of the
ontology in a specialized view. Each of the tabs can include arbitrary Java compo-
nents. Most of the existing tabs provide an explorerstyle view of the model, with a
tree on the left hand side and details of the selected node on the right hand side. The
details of the selected object are typically displayed by means of forms. The forms
consist of configurable components, called widgets. Typically, each widget displays
one property of the selected object. There are standard widgets for the most com-
mon property types, but ontology developers are free to replace the default widget
Protégé’s architecture makes it possible to add and activate plugins dynamically, so
that the default system’s appearance and behavior can be completely adapted to a
project’s needs.

Protégé is a flexible, configurable platform for the development of arbitrary
model-driven applications and components. Protégé has an open architecture that
allows programmers to integrate plug-ins, which can appear as separate tabs, spe-
cific user interface components, or perform any other task on the current model. The
Protégé-OWL editor provides many editing and browsing facilities for OWL models,
and therefore can serve as an attractive starting point for rapid application develop-
ment.

Writing class expression

Our anytime solutions require class expressions. The syntax of the OWL specification
for modeling ontologies is clearly not convenient for writing OWL class expressions
for query answering. The OWL Abstract Syntax14 is much more user-friendly, how-
ever, rather verbose. Hence, a new Anytime Query plug-in has been implemented
based on the DL Query plugin, which allows writing class expressions in the Manch-
ester OWL Syntax [HDG+06].

This syntax is a new syntax which borrows ideas from the OWL Abstract Syn-
tax and the DL style syntax. Special logical symbols such as ∃, ∀, ¬ and have been
replaced by keywords such as “some”, “only”, and “not”. Furthermore, the Manch-
ester OWL Syntax uses an infix notation rather than a prefix notation for keywords.
All these features make the syntax quicker to write and easier to read and understand
even for non-logicians. An overview of the Manchester OWL Syntax for using the

14http://www.w3.org/TR/owl-semanti
s/ [accessed 2009-9-9]

10.3 IMPLEMENTATION OF REASONING BROKERAGE 145

Table 10.1: The Manchester OWL Syntax for writing class expression

OWL DL Syntax Example

Symbols Keyword

someValuesFrom ∃ some hasChild some Man
allValuesFrom ∀ only hasSibling onlyWoman
hasValue ∋ value hasCountryOfOrigin valueMongolia
minCardinality ≥ min hasChild min 3
cardinality = exactly hasChild exactly 3
maxCardinality ≤ max hasChild max 3

intersectionOf ⊓ and Doctor and Female
unionOf ⊔ or Man orWoman
complementOf ¬ not not Child

Anytime Query plug-in is given in Table 10.1. Readers interested in the full descrip-
tion of the syntax might refer to [HDG+06].

Displaying Anytime Results

AReasoning Result plug-in provided in Protégé is used to display the results returned
by a DL reasoner. Yet, the results obtained by an approximate reasoning system re-
quire a different interpretation compared to those obtained by a DL reasoner. Hence,
a newAnytime Result plug-in has been implemented by extending the Reasoning Re-
sult plug-in. In order to differentiate the results with respect to the reasoners involved
in an anytime reasoner, the Anytime Result plug-in allows displaying the results in
different colors.

Recall from Section 8.4.1, Chapter 8 that the SCREECH-Anytime reasoner consists
of three reasoners, namely two instantiations of SCREECH-NONE and one instantia-
tion of SCREECH-ALL. It has been designed that one instantiation of SCREECH-NONE

is executed on the negation of a given query in order to determine possibly incorrect
individuals. The SCREECH-Anytime reasoner informs the Anytime Result plug-in
which of the three reasoners provides its result. The Anytime Result plug-in then
displays the obtained result in different colors depending on the soundness and com-
pleteness characteristics of the reasoner that provided it.

This means, when the instantiation of SCREECH-ALL provides the result at first,
the Anytime Result plug-in displays it in gray, since it might contain some possibly
incorrect individuals, that cannot be determined regarding which specific one is cor-
rect or incorrect at that time. Consequently, when the first instantiation of SCREECH-
NONE provides the result, due to its soundness, it is clear that the result contains
only correct individuals, but may contain not all of the correct ones. In this case, the
Anytime Result plug-in displays results of the first instantiation of SCREECH-NONE

146 APPLICATIONS

Figure 10.2: The result for the class named Chardonnay obtained by the SCREECH-
Anytime reasoner

in black indicating that they are definitely correct ones. Individuals obtained from
the second instantiation of SCREECH-NONE are crossed out, since they are definitely
incorrect individuals.

Recalling from Section 8.4.1, Chapter 8 that soundness and completeness of AQA
algorithms depend on the type of queries, AQA algorithms are sound for those
queries, in which no universal quantifier occurs. The Anytime Result plug-in dis-
plays the correct individuals obtained from AQA algorithms in black, whereas those
obtained from a DL reasoner are displayed in green so that one can examine which
ones have been obtained either from a DL reasoner or an AQA reasoner.

Consider, for instance, a complex concept expression RedWine ⊓
∃lo
atedIn.(ItalianRegion ⊔ USRegion) to query all red wines, which are
produced in the USA or Italy. Figure 10.3 illustrates the final results obtained
from the AQA-Anytime reasoner, displaying the individuals obtained by the AQA
reasoner in black and those from a DL reasoner in green. In the case of queries
with the universal quantifier, the AQA algorithms are unsound so the incorrect
individuals obtained from an AQA reasoner are crossed out, as it is the case for
SCREECH-Anytime.

10.3 IMPLEMENTATION OF REASONING BROKERAGE 147

Figure 10.3: The result for the complex query obtained by the AQA-Anytime reasoner

10.3.3 Integration of Anytime Reasoners

In the previous sections, we have introduced the underlying concept of HERAKLES
system and the integration of the anytime reasoners developed in this work. This
section describes how these anytime reasoners, namely the SCREECH-Anytime and
AQA-Anytime reasoners, work in HERAKLES. In particular, we demonstrate this
with the SCREECH-Anytime reasoner, as the AQA-Anytime reasoner follows the same
design. The underlying concepts of these anytime reasoners have been described in
Section 8.4, Chapter 8.

In the previous sections, we have argued that HERAKLES allows running reason-
ers in the remote mode using the JAVA RMI technology. RMI enables a client object
to access remote objects and invoke methods on them as if they were local objects.
Figure 10.4 illustrates the different SCREECH reasoners working together to enable
anytime reasoning for approximate instance retrieval with named classes.

Suppose that the SCREECH reasoners composed in the SCREECH-Anytime rea-
soner are located on different servers. The RMI registry on each server stores the

148 APPLICATIONS

Figure 10.4: Remote Architecture of the SCREECH-Anytime reasoner within the rea-
soning broker system HERAKLES

remote reasoner along with a name reference for HERAKLES to be able to access it.
When setting up, HERAKLES reads the connection details from a configuration file
and searches for the required remote reasoners using their name references in the
corresponding RMI registry and then attempts to connect to them. The configura-
tion file includes communication details about which reasoners need to be invoked,
on which server they are located as well as which ports have to be used to commu-
nicate with them. When the user invokes HERAKLES within Protégé, according to
the selected loading strategy, HERAKLES loads the ontology being edited to the con-
nected remote reasoners. This task is performed by the Screech Anytime Strategy. In
the context of SCREECH-Anytime, each remote SCREECH reasoner loads the ontology
and transforms it into a Horn program, invoking the TBox-translation of KAON2.
When a query in the Anytime Query plug-in is posed, it is parsed, checked for syntax
errors and finally sent to HERAKLES. Consequently, the Screech Anytime Strategy
component receives the query and retrieves the remote reasoner references from the
RMI registry using the reference names. Once the remote reasoner references are re-
trieved from the registry, the component implements the anytime-functionality and
can invoke operations on the remote reasoner references.

The Screech Anytime Strategy component forwards the query to the Screech Any-
time Manager, which in turn forwards it to the remote reasoners and waits for their

10.4 FURTHER POTENTIAL APPLICATIONS 149

response. Note that the Screech AnytimeManager is integrated into the Screech Any-
time Strategy component and at the same time responsible for synchronizing the re-
mote Screech reasoners. Each remote reasoner receives the query and performs the
instance retrieval-reasoning task for the query. When a remote reasoner responds,
its result will then be stored in the Anytime Result Repository. The Screech Anytime
Manager analyzes each intermediate result from the repository and determines its
quality due to the soundness and completeness characteristics of the remote reasoner
that provided it. Finally, the Screech Anytime Strategy sends the analyzed result to
the Anytime Result plug-in, which displays it according to the color-principle dis-
cussed in the previous section.

10.4 Further Potential Applications

A broader application area, for which approximation reasoning methods can be ben-
eficial, is Information Retrieval (IR). This is the science of (full-text) searching for doc-
uments, for information within documents, and for metadata about documents. In
order to improve the effectiveness of purely text-based search, several issues have
to be considered such as semantic relations and handling vaguely defined abstract
concepts and time specifications.

Regarding these issues, most of the present IR systems can successfully handle
various inflection forms of words using stemming algorithms, it seems that a lot of
heuristics and ranking formulas using text-based statistics that were developed in the
course of classical IR research during the last decades [BYRN99] cannot master the
issues mentioned above [Nag07]. One of the reasons is that term co-occurrence that
is used by most statistical methods to measure the strength of the semantic relation
between words, is not valid from a linguistic-semantical point of view [Kur05].

Besides term co-occurrence-based statistics another way to improve search effec-
tiveness is to incorporate background knowledge into the search process. The IR com-
munity concentrated so far on using background knowledge expressed in the form
of thesauri. Thesauri define a set of standard terms that can be used to index and
search a document collection (controlled vocabulary) and a set of linguistic relations
between those terms, thus promise a solution for the vagueness of natural language,
and partially for the problem of high-level concepts. Unfortunately, while intuitively
one would expect to see significant gains in retrieval effectiveness with the use of
thesauri, experience shows that this is usually not true [Sal86, Nag07]. One of the
major cause is the “noise” of thesaurus relations between thesaurus terms. Linguistic
relations, such as synonyms are normally valid only between a specific meaning of
two words, but thesauri represent those relations on a syntactic level, which usually
results in false positives in the search result.

To improve search quality, modern approaches, namely ontology-based informa-
tion systems, make use of a more sophisticated representation of background knowl-
edge than classical thesauri. Particularly, in recent years, ontology languages, such

150 APPLICATIONS

as RDF and OWL, are of great interest for IR researchers. Using a more expressive
language like OWL can improve search quality, however, search efficiency can de-
crease due to its high computational complexity. Another issue is that the perfor-
mance of state-of-the-art ontology reasoning systems is not comparable with other
well-established technologies, such as relational databases and full-text search en-
gines. Therefore, it is a very challenging task in the development of ontology-based
information systems to maintain the good efficiency of current IR systems, while im-
proving their effectiveness at the same time by using expressive ontologies.

Hence, it is very unlikely that solutions using solely sound and complete ontology
reasoning for information retrieval will scale so well that they can be used in large
web information systemsdue to theworst case time complexity of ontology reasoning
[Nag07]. As the approximation instance retrieval methods developed in this work
deal with lowering the worst case time complexity, it would be useful to apply such
methods for ontology-based information systems.

In order to illustrate the usefulness of approximate reasoning on information re-
trieval, consider, for instance, the VICODI system, which was developed within the
EU IST VICODI project15. The mission of VICODI is to enhance people’s understand-
ing of the digital content on the Internet. This is achieved by introducing a novel set
of contextualization mechanisms for digital content. The main idea of visual contex-
tualization is to visualize the spatial and temporal aspects of the document context to
make the document contentmore comprehensible for users. The context visualization
was based on semantic metadata, which had been semi-automatically generated for
the documents, using an ontology of European history, namely the VICODI ontology.

In Section 6.5, Chapter 6, we have evaluated the knowledge compilation method
SCREECH using the VICODI ontology revealing that a significant reasoning speed
can be achieved. Moreover, there has been a time saving of 50% for all named classes
with 100% precision and recall. This fact indicates that approximate reasoning solu-
tions can be useful for ontology-based information retrieval systems like the VICODI
system.

10.5 Conclusion

This chapter has discussed the application of the approximate reasoning solutions
developed in this work in the context of the research project THESEUS. Addressing
the reasoning objectives based on the requirements posed by the THESEUSUseCases,
the role of scalable reasoning of expressive ontologies has been highlighted.

The variety of language features available in the W3C standard for OWL 2 and its
profiles as well as the multitude of available OWL reasoners poses the challenge to
choose the best performing reasoner on a given ontology and reasoning task. To ap-
proach this problem, the reasoning broker system HERAKLES has been introduced,
in whose development we have been involved in. Furthermore, it has been described

15http://www.vi
odi.org [accessed 2009-9-9]

10.5 CONCLUSION 151

how our approximate solutions have been integrated into the reasoning broker sys-
tem HERAKLES in order to enable it for scalable instance retrieval. To realize the
integration, a novel anytime reasoning interface supplementary to the existing most
commonly used OWL API has been designed and applied.

Finally, we have highlighted a possible application of approximate reasoning so-
lutions in an ontology-based information retrieval system where a proper tradeoff
between search performance and quality is required.

152 APPLICATIONS

Part IV

Finale

Chapter 11

Related Work

There have been a number of approaches, which addresss the scalability of expressive
reasoning for the Semantic Web. Those range from distributed and parallel reason-
ing to ontology modularization. Since the goal of this thesis is to develop scalable
reasoning methods using logical approximation, those works related to approximate
reasoning for the Semantic Web will be discussed and compared with the approaches
developed in this thesis.

11.1 Approximate Reasoning in the Semantic Web

Approximations are used for dealing with problems that are hard, usually NP-hard
or coNP-hard. A significant number of approaches in the approximate reasoing field
have been proposed to address intractability of reasoning while staying within the
framework of symbolic, formal logic. In this thesis we are concerned only with ap-
proximate reasoning for the Semantic Web, and therefore approximating different
logics are not within the scope of our examination. However, for completeness in
providing a review of related work on approximate reasoning, we start with a brief
presentation of the family S of approximate logics [Cad95]. For a critique of these log-
ics, and for further developments in complete but unsound reasoning, the interested
reader is referred to the work of Finger and Wassermann [FW02, FW06].

Approximating Logics. Thework of Cadoli and Schaerf in [Cad95, SC95] represents
a significant milestone in the development of approximate logics. Two families of
logics are proposed; S-3 is classically sound but incomplete, while S-1 provides for
complete but unsound reasoning. Together these two families can be used to provide
varying levels of approximation to classical propositional logic.

For both the S-3 and S-1 logics, a set of propositional atoms S is maintained and
serves to identify individual logics. This set is referred to as the parameter set, or
more informally, the relevance set. The parameter set serves to control inference and
also defines the complexity for a logic. The complexity of reasoning is determined by

156 RELATED WORK

the size of this set. With a small parameter set the available inferences are severely
limited but the complexity of reasoning is of a low order polynomial. As the size
of the parameter set approaches the set of all propositional atoms the logics become
increasingly classical, both in their inferences and complexity. These logical develop-
ments are based on earlier work by Levesque, on logics of limited inference [Lev84],
which in turn, draw from work on multi-valued logics [ABD92]. However, the inno-
vation of Cadoli and Schaerf has been to consider a parameterized family of logics,
where each individual logic is determined by membership of the parameter set. This
has allowed more fine-grained reasoning behaviour, with gradations of logical and
computational properties.

Classical approximate reasoning methods have rarely been considered in the con-
text of the Semantic Web. In the following, we will review some work of the ap-
proaches dealing with approximate reasoning for the Semantic Web.

Approximate Satisfiability. In addition to the family of approximate logics, Cadoli
and Schaerf also investigated approximation of DL reasoning in [SC95]. Regarding
this, they proposed a syntactic manipulation of concept expressions that simplifies the
task of checking their satisfiability. The method generates two sequences of approx-
imations, one sequence containing weaker concepts and the other sequence contain-
ing stronger concepts. The sequences of approximations are obtained by substituting
a subconcept D in a concept expression C by a simpler concept.

More precisely, for every subconcept D, this method defines the depth of D to
be the number of universal quantifiers occurring in C and having D in its scope. The
scope of ∀R.φ is φ which can be any concept term containing D. A sequence of weaker
(stronger) approximated concepts can be defined, denoted by C⊤i (C⊥i), by replacing
every existentially quantified subconcept, i.e., ∃R.φ where φ is any concept term, of
depth greater or equal than i by ⊤ (⊥). Concept expressions are assumed to be in
negated normal form (NNF) before approximating them. The sequences C⊤ and C⊥

can be used to gradually approximate the satisfiability of a concept expression. In
[SC95], subconcepts D ≡ ∃R.C are replaced as the worst case complexity depends on
the nesting of existential and universal quantifiers. The Theorem 1 given in [SC95]
leads to the following for C⊥-approximation:

(I ⊑ Q)⊥i is not satisfiable ⇔ (I ⊓ ¬Q)⊥i is satisfiable ⇒
(I ⊓ ¬Q) is satisfiable ⇔ (I ⊑ Q) is not satisfiable.

Therefore, we are only able to reduce complexity when approximated subsump-
tion tests are not satisfiable. When an approximated subsumption test (I ⊑ Q)⊥i is
satisfiable, nothing can be concluded and the approximation continues to level i + 1
until no more approximation is applicable, i.e., the original concept term is obtained.
Analogously, from the Theorem 1 one obtains that when (I ⊑ Q)⊤i is satisfiable this
implies that (I ⊑ Q) is satisfiable. When (I ⊑ Q)⊥i is not satisfiable nothing can
be deduced and the approximation continues to level i + 1. Research on this kind of

11.1 APPROXIMATE REASONING IN THE SEMANTIC WEB 157

DL approximation is quite limited. This approach is the only method that deals with
approximation of satisfiability in DLs.

In contrast to the approach dealing with the approximation of satisfiability in DLs,
the focus of our approaches is on the approximation of assertional reasoning over ex-
pressive ontologies. Comparing it with our knowledge compilation approach, the
this approach deals with a syntactic manipulation of concept expressions while our
approach concentrates on a manipulation of knowledge bases. More technically, this
method suggests substituting some sub-concepts of a complex concept expression
by a simpler concept, whereas our method deals with the replacement of disjunc-
tions. Comparing the AQA approach with this method, our approach defines an ap-
proximate semantics and computes the extension of concept expressions by breaking
down complex expressions into atomic concepts, instead of substituting certain sub-
concepts. Another crucial difference is the logic under consideration. Our solutions
deal with more expressive description logics, while the logic considered in the first
approach is a less expressive description logic, such as ALC .

Approximation Of Classifying Concepts. In [GSW05], Groot and his colleagues
have investigated whether approximation reasoning methods known from the
knowledge representation literature can help to simplify OWL reasoning. Concretely,
it has been studied how to apply the approximate deduction approach of Cadoli and
Schaerf in [SC95] to the problem of classifying new concept expressions.

Classifying a concept expression Q into the concept hierarchy requires a number
of subsumption tests for comparing the query concept with other concepts Ci in the
hierarchy. As the classification hierarchy is assumed to be known, the number of sub-
sumption tests can be reduced by starting at the highest level of the hierarchy and to
move down to the children of a concept only if the subsumption test is positive. The
most specific concepts w.r.t. the subsumption hierarchy which passed the subsump-
tion test are collected for the results. Finally, it is to check if the result is subsumed
by Q as this implies that both are equal. The idea of Groot here is to approximate
the subsumption tests using the method of Cadoli and Schaerf e.g., to approximate
the subsumption tests by sequences of weaker and stronger subsumptions. Although
this approximation method can contribute to the efficiency of query classification, the
experiments taken by Groot have shown that a direct application does not lead to
an improvement and that it also suffers from two fundamental problems. One is the
collapsing of concept expressions leading to many unnecessary approximation steps.
The other is that only in some cases the approximate method is able to successfully
replace subsumption tests by cheaper approximations.

Scalable Instance Retrieval. In the following, we describe an approach to ABox
reasoning that restricts the language and deals with role-free ABoxes, i.e.,ABoxes that
do not contain any axioms asserting role relationships between pairs of individuals.
Instance Store developed in [LTHB04] addresses the scalability of reasoningwith very

158 RELATED WORK

large ABoxes so is partly close to our approach presented in Chapter 7. To better
apprepriciate the difference, the approach is described in detail.

In the case of a role-free ABox, the instances of a concept D could be retrieved
simply by testing for each individual x in A if KB |= x : D. This would, however,
clearly be very inefficient if A contained a large number of individuals. An alterna-
tive approach is to add a new axiom Cx ⊑ D to T for each axiom x : D in A, where
Cx is a new atomic concept; such concepts will be called pseudo-individuals. Clas-
sifying the resulting TBox is equivalent to performing a complete realisation of the
ABox: the most specific atomic concepts that an individual x is an instance of are the
most specific atomic concepts that subsume Cx and that are not themselves pseudo-
individuals. Moreover, the instances of a concept D can be retrieved by computing
the set of pseudo-individuals that are subsumed by D. The problem with this latter
approach is that the number of pseudo-individuals added to the TBox is equal to the
number of individuals in the ABox, and if this number is very large, then TBox rea-
soning may become inefficient or even break down completely (e.g., due to resource
limits).

The basic idea behind the Instance Store is to overcome this problem by using a
DL reasoner to classify the TBox and a database to store the ABox, with the database
also being used to store a complete realisation of the ABox, i.e., for each individual
x, the concepts that x realises (the most specific atomic concepts that x instantiates).
The realisation of each individual is computed using the DL (TBox) reasoner when an
axiom of the form x : C is added to the Instance Store ABox. A retrieval query to the
Instance Store (i.e., computing the set of individuals that instantiate a query concept)
can be answered using a combination of database queries and TBox reasoning. Given
an Instance Store containing a KB〈T ,A〉 and a query concept Q, the instances of Q
are computed as follows. First, the DL reasoner is used to compute C, the set of most
specific atomic concepts in T that subsume Q, and D, the set of all atomic concepts
in T that are subsumed by Q. Next, the database is used to compute AQ , the set of
individuals in A that realise some concept in D, and AC, the set of individuals in A
that realise every concept in C. Then, the DL reasoner is used to compute A

′

Q, the
set of individuals x ∈ AC such that x : B is an axiom in A and B is subsumed by Q,
finally returning the answer AQ ∪ A

′

Q.
On the whole, our approach AQA, in contrast, addresses scalability of reasoning,

by giving up soundness and completness, whereas Instance Store preserves sound-
ness and completeness. Moreover, our approach materializes not only atomic exten-
sions, but also materializes atomic role extensions and computes extensions of com-
plex concept expressions based on the simplified semantics, as described in Section
7.2, Chapter 7.

Approximating Queries. In [Sv02], Stuckenschmidt and van Harmelen have intro-
duced a method for approximating conjunctive queries. The method computes a se-
quence Q1, ...,Qn of queries such that: (1) i < j ⇒ Qi ⊒ Qj and (2) Qn ≡ Q. The first
property ensures that the quality of the results of the queries does not decrease. The

11.1 APPROXIMATE REASONING IN THE SEMANTIC WEB 159

second property ensures that the last query computed returns the desired exact result.
The proposed method can easily be adapted for instantiation checks. The computed
sequence Q1, ...,Qn is used to generate the sequence C∆

1 , ...,C
∆
n with C∆

i = a : Qi. As-
suming that less complex queries can be answered in less time, instantiation checks
can then be speeded up using the following implication:

(I 6⊑ Q′) ∧ (Q ⊑ Q′)⇒ I 6⊑ Q.

In [Sv02] the sequence of subsuming queries Q1, ...,Qn is constructed by stepwise
adding a conjunct (of the original query) starting with the universal query. A problem
that remains to be solved in this approach is a strategy for selecting the sequence of
queries to be checked successively. This problem boils down to ordering the conjuncts
of the query which should balance the two factors “smoothness” and “time complex-
ity”. As described in [Sv02] the smoothness of the approximation can be guaranteed
by analyzing the dependencies between variables in the query. After translating the
conjunctive query to a DL expression, these dependencies are reflected in the nesting
of subexpressions. As the removal of conjuncts from a concept expression is equiva-
lent to substitution by ⊤, this nesting provides a selection strategy to determine a se-
quence of approximations Si where all subexpressions at depth greater or equal than
i are replaced by ⊤. Hence, this method is somewhat similar to C⊤-approximation
except that it is restricted to the conjunctive query, i.e., the instance description is not
approximated, and it can replace any conjunct in the query with ⊤, not only existen-
tially quantified conjucts.

In [WGS05], Wache and his colleagues have observed that queries have typically
a very flat structure. Considering this, they have proposed an improved strategy ex-
tending the above approach with a heuristic for subconcept selection. Moreover, to
overcome the flatness of queries typically found in ontologies, the improved strategy
provides an order for subexpressions at the same level of depth. A possible ordering
is the expected time contribution of a conjunct to the costs of the subsumption test.
As measuring the actual time is practically infeasible, a heuristic to determine a suit-
able measure of complexity for expression is used. The basic idea here is to unfold
the conjuncts using the definitions of the concepts from the ontology occurring in the
conjunct. In order to determine a suitable measure of complexity for expressions, the
standard proof procedure for DLs has been considered. Most existing DL reasoners
are based on tableau methods, which determine the satisfiability of a concept expres-
sion by constructing a constraint system based on the structure of the expression. As
the costs of checking the satisfiability of an expression depends on the size of the con-
straint system, this size has been considered to be used as a measure of complexity.

As determining the exact size of the constraint system requires to run the tableau
method, heuristics are used for estimating the size. Based on this estimated size, one
can determine the order in which conjuncts at the same level of depths are consid-
ered. This strategy was implemented in the Instance Store system and evalutated on

160 RELATED WORK

the Gene ontology1. As reported in [WGS05], the experiment has shown some po-
tential for speeding up instance retrieval. However, a comprehensive evaluation is
still required so questions on the applicability of this approach to more expressive
knowledge bases are still open.

In contrast to our AQA approach, the focus of the approaches discussed above
is to approximate conjunctive queries, thus, proposing a rewriting technique of con-
junctive queries into concept expressions. Moreover, the focus of our AQA approach
is to provide scalable instance retrieval for complex concept expressions by apply-
ing approximate semantics. This means, our focus is not on the approximation of
conjunctive queries, but on complex concept expressions.

Anytime Classification Instead of answering an approximated query or approxi-
mating deduction, an approach taken by Schlobach et al. in [SBK+07] addresses the
scalability of terminological subsumption by approximating ontologies. Moreover, a
method for approximate subsumption has been proposed which is based on ignoring
a selected part of the set of concepts in an ontology. By incrementally increasing this
set, one can construct an anytime algorithm for approximate subsumption, which
yields sound but possibly incomplete answers w.r.t. classical subsumption queries.
The behaviour of this approximate algorithm is dependent on the strategy for select-
ing the subset of concepts taken into account by the approximation.

Based on the formal definitions such as lower and upper S-approximations for
interpreting ALC concepts and approximate subsumption, the authors have shown
how this approximate subsumption on an ontology can be computed in terms of a
classical subsumption check on a rewritten version of the ontology. The approximate
subsumptionmethod has been applied to a set of 8 benchmark ontologies, comparing
its performance against classical subsumption in terms of runtime and recall. An
important aspect in applying this method is to define an approximated vocabulary,
i.e., to build an increasing sequence of approximation sets of vocabulary by adding
new concepts. Regarding this, three different strategies have been suggested to define
an approximated vocabulary, based on the occurrence frequency of the concepts in the
axioms. The RANDOM strategy simply chooses concepts randomly, whereas MORE
adds the most occurring concept first. LESS adds the least occurring concepts first.

The experiments as reported in [SBK+07] have shown that the gain in runtime
outweights the loss in recall on 5 out of 8 cases. Furthermore, the gain is larger for
ontologies where classical subsumption queries are expensive. Hence, it has been re-
vealed that the approximation algorithm works best when it is most needed, namely
on complex ontologies. The experiments have also shown that of the three strategies
considered, themost-frequent-first strategy performed best, in particalur on those on-
tologies with a skewed occurrence frequency of the concepts in the axioms. The test
ontologies were relatively large and expressive, however, they were simplified to cor-
responding ALC versions since the approximate method has been only designed for

1http://www.geneontology.org/ [accessed 2009-9-12]

11.2 EVALUATION OF REASONING SYSTEMS 161

handling ALC ontologies. To this end, the effect of this approximation method on
more expressive OWL ontologies is still unknown.

Although this method applies approximation in a similar way like our approxi-
mate solutions, the reasoning task considered is quite different. The reasoning task
targeted in this approach is the problem of subsumptions, while our approaches deal
with the approximation of assertional reasoning.

11.2 Evaluation of Reasoning Systems

There have been a number of efforts made to evaluate DL reasoning systems. The
main concern of those approaches is to develop benchmarks for testing reasoning
performance. The development of automated benchmarking frameworks has been
largely neglected. Measuring degree of query soundness and completeness and its
difficulty in testing a large set of queries have been rather sparsely addressed so far.
The related work in this context has been reviewed focusing on the development of
automated benchmarking tools as well as the measurement of the degree of query
soundness and completeness. Two frameworks have been identified which strive
for a similar goal like that of our automated benchmarking framework introduced in
Section 9.5, Chapter 9.

LUBM. A benchmarking framework called LUBM (Lehigh University Benchmark),
has been proposed in [GQPH07]. It suggests a collection of requirements for devel-
oping benchmark for knowledge representation systems, adapting the requirements
used in the database community. The LUBM provides an automated approach which
allows to measure degree of the soundness and correctness of reasoning systems, an-
alyzing howmany of the correct answers are returned and howmany of the returned
answers are correct. It also provides a benchmark ontology about the university do-
main along with some test queries. Furthermore, it presents a synthetic data genera-
tion approach for OWL ontologies that is scalable andmodels the real world data. The
data-generation algorithm [WGQH05] learns from real domain documents, and gen-
erates test data based on the extracted properties relevant for benchmarking. In this
framework, a collection of performancemetrics have been considered such as loading
time, repository size and query response time including query soundness and com-
pleteness. Loading time is simply the time taken to load benchmark ontology while
repository size measures the size of the repository of systems with persistent storage.
It measures the degree of completeness of each query answer as the percentage of the
entailed answers that are returned by the system while the degree of soundness is
measured as the percentage of the answers returned by the system that are actually
entailed.

The framework includes interpretation methods generating various charts. Three
alternative interpretation ways of trading query response time and query complete-
ness at the same time are introduced. Using clustered columns, the first method sim-

162 RELATED WORK

ply demonstrates the relationship between query response time and the degree of
query completeness on each query. The second method uses a scatter chart to show
query response time and query completeness for individual queries in different sys-
tems. Compared to the former one, the method is better in illustrating a flavor of the
overall performance of the systems. The third method shows the generalisation of the
results, i.e., average query time and average completeness per system. On the whole,
this framework is not designed to tackle the issues related to measuring soundness
and completeness in the presence of a large set of queries.

In [MYQ+06], a benchmarking framework called UOBM standing for University
Ontology Benchmark, has been introduced which extends the LUBM framework in
terms of inference and scalability testing. The framework provides both OWL Lite
and OWL DL ontologies covering a complete set of OWL Lite and DL constructs,
respectively. Furthermore, it includes necessary properties to construct effective in-
stance links and improve the LUBM data generation methods to make the scalability
testing more convincing. Moreover, the ABox of an ontology is enriched by interre-
lations between individuals of formerly separated units, which then requires ABox
reasoning to answer the set of given UOBM queries.

In terms of measurements, such as measuring response time of reasoning systems
as well as the degree of soundness and completeness, the aim of the LUBM frame-
work as well as UOBM is comparable to that of the automated framework developed
in this work. However, these frameworks provide a benchmark with a given ontology
and a fixed number of queries, which are manually constructed. In contrast, the focus
of our benchmarking framework described in Chapter 9 is on (1) automated execu-
tion of benchmarks, which can embed arbitrary OWL ontologies, and (2) automated
generation of test queries, especially for instance retrieval. Another significant differ-
ence is the scalability of the frameworks. Our framework is able to deal with several
thousands of queries to benchmark reasoning systems, whereas the current imple-
mentation of these frameworks is designed to benchmark queries that are manually
constructed.

BENCHEE. Another framework we have analysed is the Benchee framework
[KS04] developed by the Racer group2. Benchee is a benchmark-testing infrastruc-
ture that supports and standardizes the creation and execution of test benchmarks for
the DL reasoning system Racer. It provides a simple, easy-to-use, intuitive GUI for
editing benchmarks and monitoring benchmark executions. Benchmarks are speci-
fied in a Benchee specific format which can be further processed and plotted by the
gnuplot tool3. Currently, Benchee does not have support for benchmarking other rea-
soning systems. However, it enables to benchmark different versions of the Racer
system, using Racer servers and detect changes in their performances.

2http://www.ra
er-systems.
om [accessed 2009-09-22]

3Gnuplot is a portable command-line driven graphing utility.

11.2 EVALUATION OF REASONING SYSTEMS 163

A unique feature of this framework is the use of nRQL [HMS+04] language for
specfying benchmark commands and telling Racer servers what they should per-
form. As a matter of fact, this framework cannot be used for benchmarking approx-
imate reasoning systems due to two reasons. First, it is designed to benchmark only
Racer systems. Second, it does not address the need of measuring the degree of query
soundness and completeness.

164 RELATED WORK

Chapter 12

Conclusion and Outlook

This chapter concludes the thesis by summarizing the results and outlining possi-
ble directions for further research. In Section 12.1, we summarize the contents of
this work and accentuate the major contributions. Subsequently, Section 12.2 reviews
open research questions that are directly related to our work and gives an outlook on
how those could be addressed in future work. Additionally, an outlook on a broader
area of approximate reasoning for the Semantic Web is given as a concluding remark.

12.1 Summary of the Thesis

In this work we have posed the hypothesis: Using approximation, scalable reasoning
over expressive ontologies can be achieved in a controlled and well-understood way. This
hypothesis has been investigated by means of contributions in the areas of knowl-
edge compilation, query answering and resource-bounded reasoning reflected by the
structure of this thesis.

In this regard, the goal of this thesis has been to develop approximate reasoning
methods whose computational properties can be established in a well-understood
way, namely in terms of soundness and completeness, and whose quality can be an-
alyzed in terms of statistical measurements, namely recall and precision. As a result,
an approximate reasoning framework for scalable instance retrieval for expressive on-
tologies has emerged with the support of resource-bounded reasoning by composed
anytime algorithms as well as automated benchmarking.

12.1.1 State of the Art of Expressive Reasoning Techniques

It has been extensively studied how to efficiently reason over expressive knowledge
bases with large TBoxes. A number of reasoning systems for expressive description
logics, namely SHIQ, have been developed based on tableau algorithms, which run
in 2NEXPTIME. Although existing DL reasoning systems promise an efficient im-
plementation, the underlying worst-case complexity is discouraging, in particular,

166 CONCLUSION AND OUTLOOK

when reasoning with a large volume of instance data. Towards scalable reasoning
with large ABoxes, a significant effort has been made, which is based on resolution
principles [Mot06]. Its aim is to lower the high computational complexity of query
answering; it has been illustrated that by translating expressive ontologies into dis-
junctive datalog programs and by applying efficient deductive database techniques,
query answering in expressive description logic SHIQ(D) is possible with the worst
data complexity of NP. The overall complexity is however still EXPTIME. Although
considerable progress has been made in the last ten years in realizing scalable rea-
soning, an important issue is how to lower the high computational complexities of
reasoning in expressive languages, and enable scalable reasoning techniques without
the expressivity power needed by emerging applications in the Semantic Web.

As a field that has emerged in logic and artificial intelligence, approximate reason-
ing addresses the intractable problems of logical reasoning and deals with lowering
the high computational complexities. Its basic idea is to speed up reasoning by trad-
ing off the quality of reasoning results against increased speed.

Based on the ideas and techniques developed in this field, the main goal of this
thesis has been to develop practicable, approximate reasoningmethods for assertional
reasoning, aiming to lower high computational complexities that a state-of-the-art DL
reasoning systemwill have to face in emerging large-scale semantic applications.

In this regard, this thesis has examined the requirements of achieving scalable
reasoning over expressive knowledge bases with large and complex TBoxes as well
as large ABoxes. Several results have been achieved that are not yet to be found
in related work. We will summarize the contributions by describing the individual
components of the resulting framework.

12.1.2 Knowledge Compilation

The hypothesis we have dealt with in this context was: Scalable reasoning in large and
expressive knowledge bases of expressive (intractable) ontology languages can be achieved by
compiling them into less expressive ones. Supporting this hypothesis, we have presented
the knowledge compilation method SCREECH in Chapter 6. Based on the fact that
data complexity is polynomial for non-disjunctive datalog, SCREECH provides several
approximation strategies that compile disjunctive datalog programs into Horn pro-
grams, thus enabling tractable ABox reasoning over expressive ontologies with large
data sets. Consequently, a Horn program generated by SCREECH is approximate with
respect to the original one. In general, it is conceivable that one can generate many
different Horn programs from a disjunctive program. Hence, an important issue in
developing SCREECH has been to determine practicable approximations for generat-
ing Horn programs. On the one hand, such approximations are supposed to provide
good approximate answers. On the other hand, they ought to speed up reasoning.
Another requirement has been to explore those approximations whose logical prop-
erties can be determined in terms of soundness and completeness. After having an-
alyzed several approximations, three approximation strategies, called SCREECH-ALL,

12.1 SUMMARY OF THE THESIS 167

SCREECH-ONE, and SCREECH-NONE, have been formed and their logical properties
have been analyzed. As a result, SCREECH-ALL is a complete, yet unsound approx-
imation. SCREECH-NONE is sound, but incomplete, whereas SCREECH-ONE is un-
sound and incomplete. SCREECH can be applied to the DL reasoning systemKAON2,
since it transforms knowledge bases of the expressive description logic SHIQ to dis-
junctive datalog programs. In order to estimate the practicability of SCREECH, well-
known benchmarking ontologies have been used. The quality of each approxima-
tion as well as its reasoning performance has been compared with those of KAON2.
We conjecture that a knowledge compilation method like SCREECH is practicable in
emerging Semantic Web applications deploying expressive ontologies with large data
sets when their knowledge bases do not significantly change over time.

12.1.3 Approximate Query Answering

The hypothesis we have evaluated in this context was: Scalable reasoning in large and
expressive knowledge bases of intractable ontology languages can be also achieved by query
approximation. As a result, a fast approximate reasoning system for instance retrieval,
AQA, has been conceived and implemented. Central to this approach is the approx-
imate semantics for computing the approximate extension of a complex concept ex-
pression based on the atomic extensions as introduced in Section 7.2, Chapter 7. Based
on this semantics, several algorithms have been introduced to effectively compute ap-
proximate extensions, namely database, offline and online variants.

In the database variant, approximate extensions of a complex concept are com-
puted by mapping them into a relational algebra expression and evaluated by using
the materialization of atomic extensions. In the offline variant, approximate exten-
sions of a complex concept are computed in computer memory based on the materi-
alization of atomic extensions. Materialization plays a major role in these variants. It
has been illustrated that it is possible to achieve a speedup of about factor 10, while
the number of introduced errors varies depending on the query, but is within reason-
able bounds. These variants have proved to be very useful when dealing with large
data sets.

Although materialization appears to be a promising technique for fast query an-
swering, a materialization process is rather time-consuming. In some applications
that deal with relatively large ontologies, it would be impracticable to materialize the
whole of atomic extensions. Hence, the online variant is intended to access atomic
extensions by invoking a sound and complete DL reasoner at query-time as well as
computing approximate extensions in computer memory. Furthermore, the combi-
nation with the knowledge compilation method SCREECH has extended this variant.
This means, SCREECH provides it with approximate knowledge bases, in which rea-
soning can be sped up in some application cases.

Regarding an effective dealing with time-consuming materialization, an efficient
strategy has been developed and implemented, which enables AQA to maintain ma-
terialization incrementally and on-demand. Finally, a comprehensive empirical anal-

168 CONCLUSION AND OUTLOOK

ysis of AQA reporting positive results has been conducted by using the well-known
expressive benchmarking ontology WINE. One purpose of this experiment has been
to reveal how fast the AQA variants are in comparison to the efficient ABox reasoner
KAON2. Another purpose has been to measure the quality of the approximate in-
stance retrieval. The evaluation has demonstrated that it is possible to achieve a sig-
nificant performance improvement for ABox reasoning over expressive ontologies
with large ABoxes and TBoxes. Moreover, the evaluation has shown that a significant
speed-up of about factor 10 can be obtained. It has also been shown that the approx-
imate instance retrieval yields fewer errors for many practical complex queries than
that for simple queries.

12.1.4 Evaluating Approximate Reasoning Systems

The hypothesis we have dealt with in this context was: The development of approximate
reasoning methods needs well-defined methodological guidelines and tool support to measure
correctness and performance. Clearly, the ultimate goal of approximate reasoning re-
search is to develop approximate reasoning systems that are both effective and effi-
cient. The performance of an approximate reasoning algorithm can be easily evalu-
ated bymeasuring response time. Evaluating the quality of an approximate reasoning
algorithm, however, is a highly complex issue. Chapter 5 has provided a solid math-
ematical foundation for the assessment and comparison of approximate reasoning
algorithms with respect to correctness, run-time and anytime behavior. This general
framework can serve as a means to classify algorithms with respect to their respec-
tive characteristics and help in deciding which algorithm best matches the demands
of a concrete reasoning scenario. With regard to a concrete implementation of that
general framework, we have analyzed the difficulty in benchmarking approximate
reasoning systems and identified that tool support is important. Concerning this, we
have derived a number of requirements, which an automated tool has to meet for
evaluating approximate reasoning systems. The implementation of the automated
benchmarking framework has been described in Section 9.5, Chapter 9.

12.1.5 Development of Composed Anytime Algorithms

Applying anytime computation is an important aspect in the Semantic Web as it is
linked to the field of resource-bounded reasoning. Unlike standard algorithms that
grant a fixed quality of output and completion time, anytime algorithms for resource-
bounded reasoning are meant to be interruptible at any time. In practice, it would not
always be beneficial to develop algorithms that continuously generate intermediate
answers whose quality is unknown. Instead it would be much more beneficial if the
quality of the answers were known.

In Chapter 8, we have analyzed how to construct anytime algorithms by com-
posing approximate reasoning algorithms. With regard to this, we have investigated
how to combine the approximate reasoning approaches presented in Chapters 6 and

12.2 FURTHER WORK 169

7. The main goal of this investigation had been to improve the quality of approxi-
mate algorithms with different computational characteristics. As a result, two any-
time reasoners, namely SCREECH-Anytime and AQA-Anytime, have been designed
and implemented. The resulting reasoners are not interruptible at any time, but at
the time when one approximate algorithm involved in the composition finishes its
computation and is able to continue. The advantage of such compositions is that the
quality of intermediate answers can be clearly distinguished, since soundness and
completeness of the composed approximate algorithms are known.

Furthermore, introducing a novel anytime interface designed for anytime compu-
tation in the OWL API, we have integrated the anytime reasoners into the reasoning
broker system HERAKLES, which is being developed in the research project THE-
SEUS. HERAKLES aims at providing scalable reasoning services for sophisticated
Semantic Web applications of the future of the Internet, which are being developed in
THESEUS. We conjecture that extending the reasoning broker with anytime behavior
for scalable instance retrieval will be useful for emerging web-scaled Semantic Web
applications of expressive, complex ontologies.

12.2 Further Work

The work in this thesis has opened up many possibilities for future work. In this sec-
tion, wewill sketch open research issues that can be derived from the results achieved
in this work as next steps in regard to various aspects.

Development of Approximate Reasoning Systems — Since the focus of this the-
sis is to develop approximate reasoning algorithms for instance retrieval, the corre-
sponding benchmarking framework has been developed to support benchmarking
for instance retrieval. As an initial future step, it would be valuable to extend the
benchmarking framework such that it also supports other reasoning tasks such as
satisfiability, subsumption checking as well as classification.

A key aspect to show the advantages of approximate reasoning solutions in con-
trast to the correct one is to develop artificial ontologies in addition to existing real
ontologies. Such artificial ontologies will be crucially helpful to explore the advan-
tages and disadvantages of approximate solutions, thus improving them. Hence, it is
very valuable to develop methodological guidelines and appropriate tools to support
the modeling of such benchmarking ontologies.

Besides measuring reasoning performance, measuring the degree of complete-
ness and soundness plays an important role in developing approximate solutions.
Yet, without an explanation of how and why such answers have been derived, it is
hard to improve approximate solutions. Explanation is mostly provided in the con-
text of ontology design to help an ontology designer to rectify problems identified
by reasoning support, or to explain to a user why an application behaves in an un-
expected manner. In developing an approximate reasoning algorithm, explanation is

170 CONCLUSION AND OUTLOOK

very important and needs to be investigated. Analyzing ontologies and queries, and
attempting to explain the output is not sufficient, and in most cases, it is not even
possible to derive correct explanations. Thus, it is valuable to develop methods to
visualize and explain inferences that produce approximate answers. This will help
understanding the behavior of approximate solutions, thus improving them. In this
context, an important future topic is the development of explanation tools that do not
only support the ontology design lifecycle, but also the development of approximate
reasoning algorithms.

Scalable Conjunctive Query Answering — The development of a decision pro-
cedure for conjunctive query answering in expressive DLs is a recent topic of great
interest within the DL community. On the other hand, scalable conjunctive query an-
swering is an important requirement for many large-scale SemanticWeb applications.

Conjunctive query answering in OWL-DL ontologies is, however, intractable in
the worst case. Moreover, it has been illustrated that conjunctive query answering
in expressive DLs between ALCI , the fragment of SHIQ with inverse roles, and
SHIQ is 2EXPTIME-complete. On the other hand, Calvanese et al. have argued that
true scalability of conjunctive query answering in DL ontologies can only be achieved
by making use of standard relational database management systems [CDL+07a].
Hence, it would be of interest to extend the AQA approach for conjunctive query
answering. A starting point for this extension would be to make use of the so-called
rolling-up technique based on the idea of rewriting conjunctive queries into equiva-
lent concept expressions [Tes01].

Another more comprehensive treatment would be to make use of the recent the-
oretical results obtained in [GHLS07]. It has been shown that all SHIQ conjunc-
tive queries can be rewritten into concept expressions that contain role conjunctions.
Reasoning with role conjunctions is, however, computationally harder (2EXPTIME-
complete) than reasoning without them. Hence, it would be of great interest to apply
these novel theoretical results and to extend AQAwith regard to conjunctive queries.

Parameterized Knowledge Compilation — While slightly more speculative,
there are a number of possibilities for the development of alternative compilation
techniques based on various approximate logics. A strong theme in knowledge com-
pilation is that there is always a balance to be made between space and computation.
That is, it is not possible to compile an arbitrary knowledge base into a structure that
is guaranteed to be polynomial in the size of the original knowledge base yet also
offers polynomial time query answering. Compilation techniques based on approxi-
mate logics offers a useful framework for balancing the opposing forces of space and
time. A particularly exciting area for the application of approximate logics to knowl-
edge compilation is the development of relevant knowledge compilation techniques.
A relevant knowledge compilation technique would allow a knowledge base to be
separated into domain partitions. Querying within a particular domain would be

12.2 FURTHER WORK 171

subject to computational guarantees, while querying across domains would have no
such guarantees. The various partitions could be defined with reference to particu-
lar parameter sets of an approximate logic, where the parameter sets are determined
through the use of machine learning techniques or by a knowledge base designer.
Consequently, it would be worth exploring the extent to which these techniques can
be applied as a means towards achieving relevant knowledge compilation.

In summary, this work has focused on the development of approximate query
answering techniques and showed how scalable instance retrieval can be performed
over expressive ontologies with large and complex TBoxes as well as large ABoxes.
This is a step towards realizing the vision of approximate reasoning on the Semantic
Web. Although additional research questions have to be addressed to fully reach this
goal, the presented approximate ontology reasoning framework provides a solid basis
for further deployment as well as further research.

172 CONCLUSION AND OUTLOOK

Part V

Appendix

Chapter 13

Appendix A

13.1 Used Data Structures

This section describes the abstract data type list and its access functions that are used
to describe the algorithms defined in Chapters 6 through 9.

Definition 13.1 (List). Listsare abstract data types which can be regarded as special tuples.
They are sequences where every item is of the same type. We introduce functions that will
add elements to or remove elements from lists; that sort lists or search within them. Like
tuples, lists can be defined using parenthesis in this thesis. The single elements of a list are
accessed by their index written in brackets ((a, b, c) [1] = b) where the first element has the
index 0 and the last element has the index n− 1 (while n is the count of elements in the list:
n = len((a, b, c)) = 3) . The empty list is abbreviated with nil.

Definition 13.2 (createList). The l = createList(n, q) method creates a new list l of the
length n filled with the item q.

(13.1) l = createList(n, q)⇔ len(l) = n ∧ ∀0 ≤ i < n⇒ l[i] = q

Definition 13.3 (insertListItem). The function m = insertListItem(l, i, q) creates a new
list m by inserting one element q in a list l at the index 0 ≤ i ≤ len(l). By doing so, it shifts
all elements located at index i and above to the right by one position.

m = insertListItem(l, i, q)⇔ len(m) = len(l) + 1∧m[i] = q ∧

∀j : 0 ≤ j < i ⇒ m[j] = l[j] ∧

∀j : i ≤ j < len(l)⇒ m[j+1] = l[j](13.2)

Definition 13.4 (addListItem). The addListItem function is a shortcut for inserting one
item at the end of a list:

(13.3) addListItem(l, q) ≡ insertListItem(l, len(l) , q)

176 APPENDIX A

Definition 13.5 (deleteListItem). The function m = deleteListItem(l, i) creates a new list
m by removing the element at index 0 ≤ i < len(l) from the list l (len(l) ≥ i + 1).

m = deleteListItem(l, i)⇔ len(m) = len(l)− 1 ∧

∀j : 0 ≤ j < i⇒ m[j] = l[j]

∀j : i < j < len(l)⇒ m[j−1] = l[j](13.4)

Definition 13.6 (deleteListRange). The method m = deleteListRange(l, i, c) creates a
new list m by removing c elements beginning at index 0 ≤ i < len(l) from the list l (len(l) ≥
i + c).

m = deleteListRange(l, i, c)⇔ len(m) = len(l)− c ∧

∀j : 0 ≤ j < i ⇒ m[j] = l[j] ∧

∀j : i + c ≤ j < len(l)⇒ m[j−c] = l[j](13.5)

Definition 13.7 (countOccurences). The function countOccurences(x, l) returns the
number of occurrences of the element x in the list l.

(13.6) countOccurences(x, l) = |{i ∈ 0 . . . len(l)− 1 : l[i] = x}|

Chapter 14

Appendix B

14.1 Detailed Evaluation Results

In this section, we will present the detailed experimental results conducted by com-
paring the AQA system with KAON2, a summary of which has already been pre-
sented in Chapter 7 on page 81.

Tables 14.1 through 14.4 show the detailed experimental results regarding the run-
ning times required by AQA and KAON2 for querying concept queries built from the
constructors, such as ∃, ∀, ⊔ and ⊓, for instance retrieval on the ontologyWINE.

tdb illustrates the running times measured for the database variant, toffline displays
those measured for the offline variant, whereas tkaon2 shows the running times mea-
sured for KAON2. The measured times are given in milliseconds. The last row of
each table then displays the sum of the respective values of each column.

As regards measuring the quality of approximation, extaqa gives the extensions for
each query computed by AQA, whereas extkaon2 reports the extensions computed by
KAON2. miss indicates the elements of the conventional extensions, which were not
found by AQA, corr indicates those, which were correctly found, and finally, more
indicates those individuals which were incorrectly computed by AQA.

178
A

P
P
E
N
D
IX

B

Table 14.1: Detailed experimental results for ∃-queries.

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

1 ∃lo
atedIn.nom23 300 211 3113 205 369 164 205 0

2 ∃madeFromGrape.nom8 113 4 2496 0 41 41 0 0

3 ∃madeFromGrape.nom62 132 3 2887 0 123 123 0 0

4 ∃madeFromGrape.nom29 99 4 2319 0 246 246 0 0

5 ∃madeFromGrape.WineGrape 116 12 2970 41 2173 2132 41 0

6 ∃lo
atedIn.nom10 209 129 2513 82 82 0 82 0

7 ∃lo
atedIn.nom41 248 138 2891 656 656 0 656 0

8 ∃lo
atedIn.Region 968 83 2814 2665 3362 697 2665 0

9 ∃adja
entRegion.Region 154 7 2921 82 82 0 82 0

10 ∃hasMaker.Winery 1026 68 2232 2132 2173 41 2132 0

11 ∃hasBody.WineBody 338 9 2961 1681 2173 492 1681 0

12 ∃hasWineDes
riptor.WineBody 521 36 2472 1681 2173 492 1681 0

13 ∃hasBody.nom40 375 11 3003 1681 2173 492 1681 0

14 ∃hasWineDes
riptor.nom40 567 74 2696 1681 2173 492 1681 0

15 ∃hasSugar.WineTaste 397 10 2943 1640 2173 533 1640 0

16 ∃hasFlavor.WineTaste 396 11 2455 1763 2173 410 1763 0

17 ∃hasBody.WineTaste 413 12 2898 1681 2173 492 1681 0

18 ∃hasWineDes
riptor.WineTaste 675 44 2644 1804 2173 369 1804 0

19 ∃lo
atedIn.nom38 356 46 2943 1435 1435 0 1435 0

20 ∃hasBody.nom59 245 12 2465 1148 1189 41 1148 0

21 ∃hasWineDes
riptor.nom59 398 44 2859 1148 1189 41 1148 0

22 ∃hasBody.nom51 301 11 2443 1558 1722 164 1558 0

23 ∃hasWineDes
riptor.nom51 397 44 2890 1558 1722 164 1558 0

24 ∃hasBody.nom49 222 10 2528 1025 1107 82 1025 0

25 ∃hasWineDes
riptor.nom49 277 29 2978 1025 1107 82 1025 0

26 ∃hasBody.nom45 181 8 2493 533 656 123 533 0

14.1
D

E
T
A
IL

E
D
E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S

179
Detailed experimental results for ∃-queries (continued)

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

27 ∃hasWineDes
riptor.nom45 282 39 2990 533 656 123 533 0

28 ∃hasSugar.nom7 288 9 2544 1517 1517 0 1517 0

29 ∃hasWineDes
riptor.nom7 414 41 3108 1517 1517 0 1517 0

30 ∃hasSugar.nom18 306 11 2387 1640 2173 533 1640 0

31 ∃hasWineDes
riptor.nom18 538 42 2932 1640 2173 533 1640 0

32 ∃hasSugar.nom12 275 8 2381 1435 1763 328 1435 0

33 ∃hasWineDes
riptor.nom12 361 62 2993 1435 1763 328 1435 0

34 ∃hasSugar.WineSugar 526 9 2531 1640 2173 533 1640 0

35 ∃hasWineDes
riptor.WineSugar 603 45 3047 1640 2173 533 1640 0

36 ∃madeFromGrape.nom25 130 1 2361 0 82 82 0 0

37 ∃hasColor.nom9 103 16 2827 41 2173 2132 41 0

38 ∃hasWineDes
riptor.nom9 372 41 2497 41 2173 2132 41 0

39 ∃hasColor.nom32 99 1 2971 0 41 41 0 0

40 ∃hasWineDes
riptor.nom32 225 40 2483 0 41 41 0 0

41 ∃hasColor.WineColor 106 1 3100 41 2173 2132 41 0

42 ∃hasWineDes
riptor.WineColor 356 57 3109 41 2173 2132 41 0

43 ∃lo
atedIn.nom2 199 50 2362 82 164 82 82 0

44 ∃hasColor.nom28 99 2 3079 0 1066 1066 0 0

45 ∃hasWineDes
riptor.nom28 187 48 2423 0 1066 1066 0 0

46 ∃lo
atedIn.nom19 235 36 2985 164 287 123 164 0

47 ∃lo
atedIn.nom31 246 35 2557 0 41 41 0 0

48 ∃hasSugar.WineDes
riptor 399 10 2900 1640 2173 533 1640 0

49 ∃hasFlavor.WineDes
riptor 422 12 3012 1763 2173 410 1763 0

50 ∃hasBody.WineDes
riptor 467 11 2533 1681 2173 492 1681 0

51 ∃hasColor.WineDes
riptor 117 3 3345 41 2173 2132 41 0

52 ∃hasWineDes
riptor.WineDes
riptor 901 56 2733 1804 2173 369 1804 0

180
A

P
P
E
N
D
IX

B

Detailed experimental results for ∃-queries (continued)

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

53 ∃madeFromGrape.nom6 138 2 3205 41 287 246 41 0

54 ∃hasColor.nom5 138 1 3021 41 984 943 41 0

55 ∃hasWineDes
riptor.nom5 298 42 2527 41 984 943 41 0

56 ∃lo
atedIn.nom17 201 50 2991 82 82 0 82 0

57 ∃lo
atedIn.nom42 195 43 2482 0 41 41 0 0

58 ∃hasFlavor.nom48 211 17 3230 1066 1148 82 1066 0

59 ∃hasWineDes
riptor.nom48 291 64 3244 1066 1148 82 1066 0

60 ∃madeFromGrape.nom3 108 2 2463 0 41 41 0 0

61 ∃lo
atedIn.nom16 220 44 3131 0 41 41 0 0

62 ∃hasFlavor.nom64 268 9 2496 1271 1312 41 1271 0

63 ∃hasWineDes
riptor.nom64 416 78 2936 1271 1312 41 1271 0

64 ∃hasFlavor.nom50 290 9 3092 1558 1640 82 1558 0

65 ∃hasWineDes
riptor.nom50 439 40 2444 1558 1640 82 1558 0

66 ∃hasFlavor.nom35 297 9 3087 1763 2173 410 1763 0

67 ∃hasWineDes
riptor.nom35 486 41 3142 1763 2173 410 1763 0

68 ∃hasFlavor.WineFlavor 315 10 2405 1763 2173 410 1763 0

69 ∃hasWineDes
riptor.WineFlavor 562 42 3223 1763 2173 410 1763 0

70 ∃madeFromGrape.nom33 142 2 2975 0 41 41 0 0

71 ∃lo
atedIn.nom57 301 43 2327 0 41 41 0 0

72 ∃lo
atedIn.nom47 197 73 3009 41 82 41 41 0

73 ∃madeFromGrape.nom63 105 2 2468 41 82 41 41 0

74 ∃madeFromGrape.nom11 106 1 2926 41 246 205 41 0

75 ∃madeFromGrape.nom43 103 1 2877 0 123 123 0 0

76 ∃hasBody.nom56 141 18 2338 123 246 123 123 0

77 ∃hasWineDes
riptor.nom56 221 33 2996 123 246 123 123 0

78 ∃madeFromGrape.nom60 99 1 2986 0 41 41 0 0

14.1
D

E
T
A
IL

E
D
E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S

181
Detailed experimental results for ∃-queries (continued)

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

79 ∃lo
atedIn.nom46 220 40 2321 0 41 41 0 0

80 ∃lo
atedIn.nom61 235 85 3281 0 41 41 0 0

81 ∃lo
atedIn.nom14 234 50 2917 0 41 41 0 0

82 ∃hasSugar.nom54 136 8 2516 82 164 82 82 0

83 ∃hasWineDes
riptor.nom54 220 35 3152 82 164 82 82 0

84 ∃hasFlavor.nom55 150 9 2827 205 410 205 205 0

85 ∃hasWineDes
riptor.nom55 258 35 2326 205 410 205 205 0

86 ∃hasFlavor.nom58 181 9 3072 492 615 123 492 0

87 ∃hasWineDes
riptor.nom58 253 27 2464 492 615 123 492 0

88 ∃lo
atedIn.nom15 323 45 3106 1271 1271 0 1271 0

89 ∃madeFromGrape.nom24 124 1 2987 0 328 328 0 0

90 ∃lo
atedIn.nom30 251 43 2461 0 41 41 0 0

91 ∃lo
atedIn.nom52 215 48 3022 0 41 41 0 0

92 ∃madeFromGrape.nom27 103 2 3069 41 123 82 41 0

93 ∃hasSugar.nom1 152 6 2560 123 246 123 123 0

94 ∃hasWineDes
riptor.nom1 212 40 3193 123 246 123 123 0

95 ∃madeFromGrape.nom34 107 2 3139 0 82 82 0 0

96 ∃lo
atedIn.nom26 236 48 2452 0 41 41 0 0

97 ∃lo
atedIn.nom44 198 53 2996 82 246 164 82 0

98 ∃lo
atedIn.nom36 193 41 3122 0 41 41 0 0

99 ∃madeFromGrape.nom39 99 1 2433 0 164 164 0 0

100 ∃hasSugar.nom53 171 8 3094 205 246 41 205 0

101 ∃hasWineDes
riptor.nom53 330 40 3090 205 246 41 205 0

102 ∃hasVintageYear.VintageYear 104 2 2175 41 41 0 41 0

103 ∃madeFromGrape.nom37 100 2 3064 0 164 164 0 0

104 ∃madeFromGrape.nom21 102 2 2315 0 41 41 0 0

182
A

P
P
E
N
D
IX

B

Detailed experimental results for ∃-queries (continued)

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

105 ∃madeFromGrape.nom20 99 1 2940 0 205 205 0 0

106 ∃lo
atedIn.nom22 238 68 2897 0 41 41 0 0

107 ∃madeFromGrape.Grape 119 3 2443 41 2173 2132 41 0
107

∑
k=1

Ci 29331 3187 298472 68347 104099 35752 68347 0

14.1 DETAILED EVALUATION RESULTS 183

184
A

P
P
E
N
D
IX

B

Table 14.2: Detailed experimental results for ∀-queries.

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

1 ∀madeFromGrape.nom8 256 8 2587 160 1 0 1 159

2 ∀hasBody.nom45 512 9 1052 133 16 0 16 117

3 ∀hasMaker.Winery 354 15 637 161 53 0 53 108

4 ∀hasBody.WineBody 234 12 568 161 161 0 161 0

5 ∀hasBody.nom49 422 9 1340 145 27 0 27 118

6 ∀hasSugar.WineTaste 309 12 501 161 161 0 161 0

7 ∀hasSugar.WineSugar 211 9 523 161 161 0 161 0

8 ∀hasColor.nom9 233 9 494 161 161 0 161 0

9 ∀hasSugar.nom1 432 8 927 124 6 0 6 118

10 ∀madeFromGrape.nom29 369 8 22466 160 6 0 6 154

11 ∀hasVintageYear.VintageYear 378 7 475 161 161 0 161 0

12 ∀lo
atedIn.Region 322 17 560 161 161 0 161 0

13 ∀hasFlavor.nom64 334 9 851 149 32 0 32 117

14 ∀madeFromGrape.nom62 766 8 5534 160 5 0 5 155

15 ∀madeFromGrape.WineGrape 379 9 748 161 161 0 161 0

16 ∀hasSugar.nom7 233 9 1590 158 37 0 37 121

17 ∀hasBody.nom59 298 9 51798 148 29 0 29 119

18 ∀hasFlavor.nom58 677 8 676 130 15 0 15 115

19 ∀hasBody.nom51 557 9 1849 158 42 0 42 116

20 ∀hasColor.WineColor 401 8 1800 161 161 0 161 0

21 ∀hasSugar.nom12 290 9 934 156 47 0 47 109

22 ∀madeFromGrape.nom25 233 8 1550 160 2 0 2 158

23 ∀madeFromGrape.nom3 144 8 1721 160 1 0 1 159

24 ∀hasBody.nom56 156 39 1744 123 6 0 6 117

25 ∀hasSugar.WineDes
riptor 289 10 528 161 161 0 161 0

26 ∀madeFromGrape.nom6 286 8 1486 161 7 0 7 154

14.1
D

E
T
A
IL

E
D
E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S

185
Detailed experimental results for ∀-queries (continued).

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

27 ∀hasFlavor.WineTaste 135 24 517 161 161 0 161 0

28 ∀hasColor.nom5 156 9 978 161 24 0 24 137

29 ∀adja
entRegion.Region 113 9 538 161 161 0 161 0

30 ∀hasBody.nom40 144 12 551 161 161 0 161 0

31 ∀hasColor.nom32 122 8 28775 160 1 0 1 159

32 ∀hasFlavor.nom50 188 9 676 156 40 0 40 116

33 ∀hasSugar.nom54 293 8 1751 123 4 0 4 119

34 ∀hasFlavor.nom55 231 8 1811 123 10 0 10 113

35 ∀hasFlavor.WineFlavor 112 8 500 161 161 0 161 0

36 ∀hasFlavor.nom35 134 8 516 161 161 0 161 0

37 ∀madeFromGrape.nom60 104 9 1335 160 1 0 1 159

38 ∀madeFromGrape.nom27 101 8 9749 160 2 0 2 158

39 ∀hasColor.nom28 124 8 947 160 28 0 28 132

40 ∀madeFromGrape.nom20 115 7 1214 160 5 0 5 155

41 ∀madeFromGrape.nom21 221 8 878 160 1 0 1 159

42 ∀hasFlavor.nom48 133 9 1714 144 28 0 28 116

43 ∀madeFromGrape.nom24 122 8 1394 160 8 0 8 152

44 ∀madeFromGrape.nom11 154 7 900 160 5 0 5 155

45 ∀madeFromGrape.nom39 178 8 4545 160 4 0 4 156

46 ∀madeFromGrape.nom33 143 8 1513 160 1 0 1 159

47 ∀madeFromGrape.nom63 154 8 621 160 1 0 1 159

48 ∀madeFromGrape.nom43 102 7 932 160 3 0 3 157

49 ∀madeFromGrape.Grape 192 8 492 161 161 0 161 0

50 ∀hasSugar.nom53 133 8 781 126 6 0 6 120

51 ∀madeFromGrape.nom37 155 7 1113 160 4 0 4 156

52 ∀madeFromGrape.nom34 214 8 747 160 2 0 2 158

186
A

P
P
E
N
D
IX

B

Detailed experimental results for ∀-queries (continued).

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

53 ∀hasColor.WineDes
riptor 139 8 522 161 161 0 161 0

54 ∀hasFlavor.WineDes
riptor 154 9 593 161 161 0 161 0

55 ∀hasWineDes
riptor.WineDes
riptor 117 9 491 161 161 0 161 0

56 ∀hasBody.WineTaste 146 8 524 161 161 0 161 0

57 ∀hasBody.WineDes
riptor 243 8 544 161 161 0 161 0
57

∑
k=1

Ci 13847 545 173088 8839 3730 0 3730 5109

14.1 DETAILED EVALUATION RESULTS 187

188
A

P
P
E
N
D
IX

B

Table 14.3: Detailed experimental results for ⊔-queries.

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

1 nom46⊔ nom53 53 10 3032 123 123 0 123 0

2 nom6⊔PinotNoir 76 9 2556 246 246 0 246 0

3 WineBody ⊔Chianti 83 5 3252 164 164 0 164 0

4 Wine ⊔ ItalianWine 302 53 2996 2173 2173 0 2173 0

5 nom33⊔ nom53 88 3 2677 123 123 0 123 0

6 nom2 ⊔RedWine 161 19 3114 1107 1107 0 1107 0

7 WineTaste ⊔CotesDOr 132 7 3201 410 410 0 410 0

8 PinotBlan
 ⊔Vintage 50 4 2346 82 82 0 82 0

9 nom36⊔Margaux 56 2 3066 82 82 0 82 0

10 PotableLiquid ⊔RedBurgundy 324 65 3092 2173 2173 0 2173 0

11 Medo
 ⊔ nom26 107 3 2444 123 123 0 123 0

12 Riesling ⊔Fren
hWine 130 3 3162 164 164 0 164 0

13 nom38⊔ nom36 78 5 2962 82 82 0 82 0

14 nom54⊔ nom30 53 3 2465 82 82 0 82 0

15 nom38⊔CotesDOr 64 3 3145 82 82 0 82 0

16 TexasWine ⊔RoseWine 57 2 3000 82 82 0 82 0

17 nom7⊔Chardonnay 89 5 2514 410 410 0 410 0

18 nom25⊔WhiteNonSweetWine 149 9 3086 779 779 0 779 0

19 nom54⊔Fren
hWine 56 2 3137 41 41 0 41 0

20 Sauternes ⊔WhiteBordeaux 55 2 2630 41 41 0 41 0

21 SauvignonBlan
 ⊔ nom27 69 3 3186 205 205 0 205 0

22 WineFlavor ⊔CheninBlan
 66 3 3039 205 205 0 205 0

23 EarlyHarvest ⊔Margaux 52 2 3309 41 41 0 41 0

24 nom8 ⊔Meritage 65 3 2576 246 246 0 246 0

25 WhiteWine ⊔ SemillonOrSauvignonBlan
 148 81 3260 984 984 0 984 0

26 WineColor ⊔Medo
 90 2 3196 205 205 0 205 0

14.1
D

E
T
A
IL

E
D
E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S

189
Detailed experimental results for ⊔-queries (continued).

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

27 nom58⊔Meritage 70 2 2548 82 82 0 82 0

28 PotableLiquid ⊔ nom50 359 8 3169 2255 2255 0 2255 0

29 Bordeaux ⊔GermanWine 92 2 3068 246 246 0 246 0

30 LateHarvest ⊔ nom37 73 1 3262 123 123 0 123 0

31 nom62⊔Merlot 70 2 2566 205 205 0 205 0

32 nom18⊔ nom9 65 1 3349 246 246 0 246 0

33 nom41 ⊔Gamay 49 2 2992 82 82 0 82 0

34 nom48⊔WineFlavor 61 2 3206 123 123 0 123 0

35 nom38⊔WhiteLoire 70 1 2491 82 82 0 82 0

36 Chardonnay ⊔ nom14 107 3 3372 369 369 0 369 0

37 DryRedWine ⊔RedBordeaux 195 6 3097 1025 1025 0 1025 0

38 nom7 ⊔ nom3 75 2 3413 123 123 0 123 0

39 DessertWine ⊔ Zinfandel 103 3 2447 369 369 0 369 0

40 nom29⊔CaliforniaWine 201 4 3318 984 984 0 984 0

41 nom41⊔ FullBodiedWine 253 15 3077 697 697 0 697 0

42 Port ⊔Margaux 92 1 3341 82 82 0 82 0

43 nom19⊔CheninBlan
 101 1 2530 123 123 0 123 0

44 nom43 ⊔ nom27 97 2 3243 82 82 0 82 0

45 WineTaste ⊔ nom45 78 2 3238 369 369 0 369 0

46 nom9⊔DryRiesling 60 2 3521 164 164 0 164 0

47 Loire ⊔Chardonnay 117 2 2609 451 451 0 451 0

48 GermanWine ⊔ nom20 77 2 3403 123 123 0 123 0

49 Semillon ⊔Burgundy 122 2 3189 246 246 0 246 0

50 nom48 ⊔ nom30 73 2 3100 82 82 0 82 0

51 nom22⊔WhiteNonSweetWine 168 4 2606 779 779 0 779 0

52 nom63 ⊔ nom43 86 1 3342 164 164 0 164 0

190
A

P
P
E
N
D
IX

B

Detailed experimental results for ⊔-queries (continued).

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

53 nom45⊔ nom47 96 1 3152 82 82 0 82 0

54 DryWhiteWine ⊔ nom52 213 3 3346 779 779 0 779 0

55 WineColor ⊔Chianti 109 1 3330 164 164 0 164 0

56 nom59⊔ nom14 110 1 3337 123 123 0 123 0

57 Fren
hWine ⊔RedBordeaux 104 2 2563 123 123 0 123 0

58 Merlot ⊔ nom21 108 4 3264 164 164 0 164 0

59 nom19⊔ Sauternes 87 3 3109 82 82 0 82 0

60 Wine ⊔ nom64 319 11 3247 2255 2255 0 2255 0

61 DryRedWine ⊔PinotBlan
 256 5 3313 1066 1066 0 1066 0

62 nom5 ⊔GermanWine 91 4 2640 123 123 0 123 0

63 WineBody ⊔ nom53 64 3 3418 205 205 0 205 0

64 DryWine ⊔WineTaste 325 11 3393 2132 2132 0 2132 0

65 nom31⊔RedBordeaux 116 3 3116 164 164 0 164 0

66 nom62⊔Ameri
anWine 283 4 3438 1066 1066 0 1066 0

67 nom51⊔ nom60 140 1 3366 123 123 0 123 0

68 nom10⊔ nom34 52 3 2565 82 82 0 82 0

69 RedBurgundy ⊔ nom1 70 1 3287 82 82 0 82 0

70 nom38⊔RedBurgundy 92 1 2987 82 82 0 82 0

71 nom29⊔Region 182 8 3256 1517 1517 0 1517 0

72 WhiteWine ⊔WhiteBurgundy 223 6 3263 984 984 0 984 0

73 nom45⊔ nom26 55 3 3277 82 82 0 82 0

74 nom7 ⊔ nom32 60 3 2680 123 123 0 123 0

75 nom33⊔Vintage 68 3 3135 82 82 0 82 0

76 nom31⊔ ItalianWine 71 3 3373 82 82 0 82 0

77 San
erre ⊔Port 74 1 3399 82 82 0 82 0

78 DryRiesling ⊔Margaux 49 2 3310 82 82 0 82 0

14.1
D

E
T
A
IL

E
D
E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S

191
Detailed experimental results for ⊔-queries (continued).

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

79 nom47⊔Ameri
anWine 151 6 3405 1025 1025 0 1025 0

80 DryWhiteWine ⊔WhiteWine 164 11 3418 984 984 0 984 0

81 Merlot ⊔ nom50 85 3 3429 205 205 0 205 0

82 nom49 ⊔WhiteTableWine 162 4 3317 779 779 0 779 0

83 WineBody ⊔WhiteLoire 78 1 3212 164 164 0 164 0

84 WineColor ⊔TableWine 272 7 3380 1886 1886 0 1886 0

85 FullBodiedWine ⊔ nom56 187 5 3240 697 697 0 697 0

86 nom28 ⊔ nom44 53 2 3319 82 82 0 82 0

87 nom30 ⊔ nom37 70 1 3368 82 82 0 82 0

88 nom23⊔Mus
adet 71 1 3434 82 82 0 82 0

89 SweetRiesling ⊔ nom58 73 1 3657 123 123 0 123 0

90 nom4⊔Meritage 88 2 3158 82 82 0 82 0

91 nom62 ⊔ nom10 58 1 3301 123 123 0 123 0

92 RedWine ⊔ nom11 208 4 3386 1107 1107 0 1107 0

93 DessertWine ⊔WhiteNonSweetWine 200 5 3195 902 902 0 902 0

94 nom40 ⊔Medo
 88 3 3494 205 205 0 205 0

95 EarlyHarvest ⊔CaliforniaWine 175 3 3409 943 943 0 943 0

96 Merlot ⊔ nom1 79 1 3493 164 164 0 164 0

97 WhiteWine ⊔ nom11 203 5 3363 1025 1025 0 1025 0

98 nom62 ⊔ nom17 76 9 3392 123 123 0 123 0

99 nom62⊔RoseWine 82 2 3429 123 123 0 123 0

100 Margaux ⊔Meritage 74 1 3374 82 82 0 82 0
100

∑
k=1

Ci 11681 552 312677 43050 43050 0 43050 0

192 APPENDIX B

14.1
D

E
T
A
IL

E
D
E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S

193
Table 14.4: Detailed experimental results for ⊓-queries.

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

1 nom46 ⊓ nom53 41 289 3319 0 0 0 0 0

2 nom6 ⊓PinotNoir 50 48 2813 0 0 0 0 0

3 WineBody ⊓Chianti 48 40 2397 0 0 0 0 0

4 Wine ⊓ ItalianWine 77 88 3072 41 41 0 41 0

5 nom33 ⊓ nom53 41 23 2351 0 0 0 0 0

6 nom2 ⊓RedWine 55 51 2858 0 0 0 0 0

7 WineTaste ⊓CotesDOr 55 45 2982 0 0 0 0 0

8 PinotBlan
 ⊓Vintage 51 40 2151 0 0 0 0 0

9 nom36⊓Margaux 47 37 2915 0 0 0 0 0

10 PotableLiquid ⊓RedBurgundy 80 77 2435 41 41 0 41 0

11 Medo
 ⊓ nom26 51 41 2872 0 0 0 0 0

12 Riesling ⊓Fren
hWine 50 37 2703 0 0 0 0 0

13 nom38 ⊓ nom36 52 20 2253 0 0 0 0 0

14 nom54 ⊓ nom30 58 36 3054 0 0 0 0 0

15 nom38 ⊓CotesDOr 40 2 2418 0 0 0 0 0

16 TexasWine ⊓RoseWine 41 37 2970 0 0 0 0 0

17 nom7 ⊓Chardonnay 49 38 2422 0 0 0 0 0

18 nom25⊓WhiteNonSweetWine 47 43 3002 0 0 0 0 0

19 nom54 ⊓Fren
hWine 39 2 2880 0 0 0 0 0

20 Sauternes ⊓WhiteBordeaux 46 37 2395 41 41 0 41 0

21 SauvignonBlan
 ⊓ nom27 43 44 3117 0 0 0 0 0

22 WineFlavor ⊓CheninBlan
 44 37 2345 0 0 0 0 0

23 EarlyHarvest ⊓Margaux 40 20 2930 0 0 0 0 0

24 nom8⊓Meritage 42 41 2886 0 0 0 0 0

25 WhiteWine ⊓ SemillonOrSauvignonBlan
 118 112 2400 287 287 0 287 0

26 WineColor ⊓Medo
 45 23 2979 0 0 0 0 0

194
A

P
P
E
N
D
IX

B

Detailed experimental results for ⊓-queries. (continued).

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

27 nom58⊓Meritage 42 20 2295 0 0 0 0 0

28 PotableLiquid ⊓ nom50 93 27 2972 0 0 0 0 0

29 Bordeaux ⊓GermanWine 45 38 2806 0 0 0 0 0

30 LateHarvest ⊓ nom37 42 37 2502 0 0 0 0 0

31 nom62⊓Merlot 48 38 3026 0 0 0 0 0

32 nom18 ⊓ nom9 44 35 2969 0 0 0 0 0

33 nom41⊓Gamay 39 37 2318 0 0 0 0 0

34 nom48 ⊓WineFlavor 63 23 2970 41 41 0 41 0

35 nom38 ⊓WhiteLoire 49 20 2275 0 0 0 0 0

36 Chardonnay ⊓ nom14 53 52 2897 0 0 0 0 0

37 DryRedWine ⊓RedBordeaux 97 60 2919 123 123 0 123 0

38 nom7 ⊓ nom3 49 20 2358 0 0 0 0 0

39 DessertWine ⊓ Zinfandel 59 37 2956 0 0 0 0 0

40 nom29⊓CaliforniaWine 63 40 3059 0 0 0 0 0

41 nom41⊓FullBodiedWine 58 23 2379 0 0 0 0 0

42 Port ⊓Margaux 50 17 3016 0 0 0 0 0

43 nom19⊓CheninBlan
 54 19 2320 0 0 0 0 0

44 nom43⊓ nom27 43 21 2880 0 0 0 0 0

45 WineTaste ⊓ nom45 50 52 2981 41 41 0 41 0

46 nom9 ⊓DryRiesling 41 20 2481 0 0 0 0 0

47 Loire ⊓Chardonnay 51 21 3295 0 0 0 0 0

48 GermanWine ⊓ nom20 40 25 2471 0 0 0 0 0

49 Semillon ⊓Burgundy 43 40 3101 0 0 0 0 0

50 nom48⊓ nom30 42 1 2894 0 0 0 0 0

51 nom22⊓WhiteNonSweetWine 55 20 2474 0 0 0 0 0

52 nom63⊓ nom43 52 22 3005 0 0 0 0 0

14.1
D

E
T
A
IL

E
D
E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S

195
Detailed experimental results for ⊓-queries. (continued).

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

53 nom45 ⊓ nom47 58 18 2855 0 0 0 0 0

54 DryWhiteWine ⊓ nom52 72 41 2357 0 0 0 0 0

55 WineColor ⊓Chianti 49 1 3045 0 0 0 0 0

56 nom59 ⊓ nom14 39 19 2873 0 0 0 0 0

57 Fren
hWine ⊓RedBordeaux 52 1 2476 0 0 0 0 0

58 Merlot ⊓ nom21 41 17 3037 0 0 0 0 0

59 nom19⊓ Sauternes 41 1 3134 0 0 0 0 0

60 Wine ⊓ nom64 90 41 2490 0 0 0 0 0

61 DryRedWine ⊓PinotBlan
 55 7 3113 0 0 0 0 0

62 nom5 ⊓GermanWine 41 19 2993 0 0 0 0 0

63 WineBody ⊓ nom53 40 2 2353 0 0 0 0 0

64 DryWine ⊓WineTaste 165 25 3228 0 0 0 0 0

65 nom31 ⊓RedBordeaux 42 20 2820 0 0 0 0 0

66 nom62⊓Ameri
anWine 70 21 2461 0 0 0 0 0

67 nom51 ⊓ nom60 49 40 3040 0 0 0 0 0

68 nom10 ⊓ nom34 47 35 2826 0 0 0 0 0

69 RedBurgundy ⊓ nom1 49 20 2410 0 0 0 0 0

70 nom38⊓RedBurgundy 52 1 3150 0 0 0 0 0

71 nom29 ⊓Region 72 22 2909 0 0 0 0 0

72 WhiteWine ⊓WhiteBurgundy 90 21 2406 123 123 0 123 0

73 nom45 ⊓ nom26 41 1 3164 0 0 0 0 0

74 nom7 ⊓ nom32 39 19 2870 0 0 0 0 0

75 nom33⊓Vintage 39 2 2445 0 0 0 0 0

76 nom31⊓ ItalianWine 42 1 3095 0 0 0 0 0

77 San
erre ⊓Port 40 49 3098 0 0 0 0 0

78 DryRiesling ⊓Margaux 40 1 2501 0 0 0 0 0

196
A

P
P
E
N
D
IX

B

Detailed experimental results for ⊓-queries. (continued).

id Ci tdb to f f line tkaon2 extaqa extkaon2 miss corr more

79 nom47⊓Ameri
anWine 52 4 3028 0 0 0 0 0

80 DryWhiteWine ⊓WhiteWine 255 6 3003 738 738 0 738 0

81 Merlot ⊓ nom50 56 1 2505 0 0 0 0 0

82 nom49⊓WhiteTableWine 47 38 2901 0 0 0 0 0

83 WineBody ⊓WhiteLoire 41 1 3040 0 0 0 0 0

84 WineColor ⊓TableWine 81 22 2535 0 0 0 0 0

85 FullBodiedWine ⊓ nom56 47 23 3038 0 0 0 0 0

86 nom28⊓ nom44 46 36 2963 0 0 0 0 0

87 nom30⊓ nom37 40 1 2472 0 0 0 0 0

88 nom23 ⊓Mus
adet 39 37 3177 0 0 0 0 0

89 SweetRiesling ⊓ nom58 42 20 2988 0 0 0 0 0

90 nom4 ⊓Meritage 39 19 2578 0 0 0 0 0

91 nom62⊓ nom10 42 1 3044 0 0 0 0 0

92 RedWine ⊓ nom11 51 23 2957 0 0 0 0 0

93 DessertWine ⊓WhiteNonSweetWine 64 4 2509 0 0 0 0 0

94 nom40⊓Medo
 43 19 3040 0 0 0 0 0

95 EarlyHarvest ⊓CaliforniaWine 44 3 2993 0 0 0 0 0

96 Merlot ⊓ nom1 42 1 2489 0 0 0 0 0

97 WhiteWine ⊓ nom11 59 4 3111 0 0 0 0 0

98 nom62⊓ nom17 42 18 3164 0 0 0 0 0

99 nom62⊓RoseWine 47 1 2411 0 0 0 0 0

100 Margaux ⊓Meritage 43 1 3172 0 0 0 0 0
100

∑
k=1

Ci 5432 2801 278805 1476 1476 0 1476 0

References

[ABD92] A. R. Anderson, N. D. Belnap Jr., and J. M. Dunn. Entailment – the Logic of
Relevance and Necessity, volume 2. Princeton University Press, 1992.

[ABW88] K. R. Apt, H. A. Blair, and A. Walker. Towards a Theory of Declarative
Knowledge. In Jack Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 89–148. Morgan Kaufmann, Los Altos, CA,
1988.

[AKPS94] H. Ait-Kaci, A. Podelski, and G. Smolka. A Feature Constraint System
for Logic Programming with Entailment. Theoretical Computer Science,
122(1&2):263–283, 1994.

[Ari08] Aristotle. Metaphysics. In W. D. Ross, editor, The Works of Aristotle trans-
lated into English, Volume VIII. Oxford University Press, Oxford, UK, 1908.

[BBL05] F. Baader, S. Brandt, and C. Lutz. Pushing the EL Envelope. In Leslie Pack
Kaelbling and Alessandro Saffiotti, editors, IJCAI-05, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, UK, pages 364–369. Professional Book Center, 2005.

[BCM+03] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook. Cambridge University
Press, January 2003.

[BD89] M. S. Boddy and T. Dean. Solving Time-Dependent Planning Problems.
In N. S. Sridharan, editor, IJCAI, pages 979–984, Detroit, Michigan, USA,
August 1989. Morgan Kaufmann Publisher.

[BG01] L. Bachmair andH. Ganzinger. Resolution TheoremProving. In A. Robin-
son and A. Voronkov, editors,Handbook of Automated Reasoning, volume I,
chapter 2, pages 19–99. Elsevier Science, 2001.

[BG04] D. Brickley and R.V. Guha. RDF Vocabulary Description Language – RDF
Schema. http://www.w3.org/TR/rdf-s
hema/, 2004.

198 REFERENCES

[BL84] R. J. Brachman and H. J. Levesque. The Tractability of Subsumption in
Frame-Based Description Languages. In Ronald J. Brachman, editor, Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI’84), pages
34–37, Austin, USA, August 6–10 1984. AAAI Press.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, May 2001.

[BN03] F. Baader and W. Nutt. Basic Description Logics. In F. Baader, D. Cal-
vanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors,
The Description Logic Handbook: Theory, Implementation, and Applications,
pages 43–95. Cambridge University Press, 2003.

[Bor06] W. N. Borst. Construction of Engineering Ontologies for Knowledge Sharing
and Reuse. PhD thesis, University of Enschede, Enschede, The Nether-
lands, 2006.

[BTX+09a] J. Bock, T. Tserendorj, Y. Xu, J. Wissmann, and S. Grimm. A Reasoning
Broker Framework for OWL. In P. F. Patel-Schneider R. Hoekstra, edi-
tor, Proceedings of the 6th International Workshop on OWL: Experiences and
Directions (OWLED 2009), CEUR Workshop Proceedings, Chantilly, VA,
United States, October 23–24 2009.

[BTX+09b] J. Bock, T. Tserendorj, Y. Xu, J. Wissmann, and S. Grimm. A Reasoning
Broker Framework for Protégé. 11th International Protégé Conference,
Amsterdam, June 23–26 2009.

[BVL03] S. Bechhofer, R. Volz, and P. Lord. Cooking the Semantic Web with the
OWL API. In Proceedings of the 2nd International Semantic Web Conference
(ISWC’03), LNCS, pages 659–675, Sanibel Island, Florida, USA, October
20–23 2003. Springer.

[BYRN99] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[Cad95] M. Cadoli. Tractable Reasoning in Artificial Intelligence. Springer, Secaucus,
NJ, USA, 1995.

[CD97] M. Cadoli and F. M. Donini. A survey on knowledge compilation. AI
Communications, 10(3,4):137–150, 1997.

[CDL+07a] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
EQL-Lite: Effective First-Order Query Processing in Description Logics.
InManuelaM. Veloso, editor, Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence (IJCAI 2007), pages 274–279, Hyderabad,
India, January 6-12 2007. Morgan Kaufmann Publishers.

REFERENCES 199

[CDL+07b] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Tractable Reasoning and Efficient Query Answering in Description Log-
ics: The DL-Lite Family. Journal of Automated Reasoning, 39(3):385–429,
2007.

[CFGL04] C. Cumbo, W. Faber, G. Greco, and N. Leone. Enhancing the Magic-Set
Method for Disjunctive Datalog Programs. In B. Demoen and V. Lifs-
chitz, editors, Proceedings of the 20th International Conference on Logic Pro-
gramming (ICLP 2004), volume 3132 of LNCS, pages 371–385, Saint-Malo,
France, September 6–10 2004. Springer.

[CJB99] B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins. What Are On-
tologies, and Why Do We Need Them? IEEE Intelligent Systems, 14(1):20–
26, 1999.

[Cod83] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Journal of the ACM, 26(1):64–69, 1983.

[CS96] M. Cadoli and M. Schaerf. On the complexity of Entailment in Proposi-
tional Multivalued Logics. Annals of Mathematics and Artificial Intelligence,
18(1):29–50, 1996.

[DB88] T. Dean and M. S. Boddy. An Analysis of Time-Dependent Planning. In
T. M. Mitchell and Reid G. Smith, editors, Proceedings of the Seventh Na-
tional Conference on Artificial Intelligence, pages 49–54. AAAI Press, 1988.

[DM02] A. Darwiche and P. Marquis. A Knowledge Compilation Map. Journal of
Artificial Intelligence Research, 17:229–264, 2002.

[DP01] N. Dershowitz and D. A. Plaisted. Rewriting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chap-
ter 9, pages 535–610. Elsevier Science, 2001.

[EGM97] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transac-
tions on Database Systems, 22(3):364–418, 1997.

[Fen03] D. Fensel. Ontologies: : A Silver Bullet for Knowledge Management and Elec-
tronic Commerce. Springer, December 2003.

[FH07] D. Fensel and F. Van Harmelen. Unifying Reasoning and Search to Web
Scale. IEEE Internet Computing, 11(2):94–96, March/April 2007.

[Flo03] L. Floridi, editor. Blackwell Guide to the Philosophy of Computing and Infor-
mation. Blackwell Publishers, Inc., Cambridge, MA, USA, 2003.

[FW02] M. Finger and R. Wassermann. Logics for Approximate Reasoning: Ap-
proximating Classical Logic From Above. In G. Ramalho and G. Bitten-
court, editors, SBIA ’02: Proceedings of the 16th Brazilian Symposium on

200 REFERENCES

Artificial Intelligence, pages 21–30, London, UK, November 11–14 2002.
Springer.

[FW06] M. Finger and R. Wassermann. The universe of propositional approxima-
tions. Theorectical Computer Science, 355(2):153–166, 2006.

[Gam08] E. Gamma. Design patterns : elements of reusable object-oriented software.
Addison-Wesley, 2008.

[GHKS07] B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the Right Amount:
Extracting Modules from Ontologies. In Proceedings of the 16th Interna-
tional Conference on World Wide Web (WWW), pages 717–726, New York,
NY, USA, May 8–12 2007. ACM Press.

[GHLS07] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive Query An-
swering for the Description Logic SHIQ. In M. M. Veloso, editor, Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence (IJ-
CAI 2007), pages 157–204, Hyderabad, India, January 6–12 2007. Morgan
Kaufmann Publishers.

[GHM+08] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. F. Patel-Schneider, and
U. Sattler. OWL 2: The next step for OWL. Web Semantics., 6(4):309–322,
2008.

[GHT06] T. Gardiner, I. Horrocks, and D. Tsarkov. Automated Benchmarking of
Description Logic Reasoners. In B. Parsia, U. Sattler, and D. Toman, edi-
tors, Proceedings of the 2006 International Workshop on Description Logics (DL
2006), volume 189 of CEUR Workshop Proceedings, Windermere,UK, May
30–June 1 2006.

[GHVD03] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Pro-
grams: Combining Logic Programswith Description Logic. In Proceedings
of the 12th International World Wide Web Conference (WWW 2003), pages 48–
57, Budapest, Hungary, May 20–24 2003. ACM Press.

[GQPH07] Y. Guo, A. Qasem, Z. Pan, and J. Heflin. A Requirements Driven Frame-
work for Benchmarking Semantic Web Knowledge Base Systems. IEEE
Transactions on Knowledge and Data Engineering, 19:297–309, 2007.

[Gru93] T. R. Gruber. A translation approach to portable ontology specifications.
Journal of Knowledge Acquisition, 5(2):199–220, June 1993.

[GSW05] P. Groot, H. Stuckenschmidt, and H. Wache. Approximating Description
Logic Classification for Semantic Web Reasoning. In A. Gómez-Pérez and
J. Euzenat, editors, Proceedings of the 2rd European Semantic Web Conference
(ESWC’05), volume 3532 of Lecture Notes in Computer Science, pages 318–
332, Crete, Greece, May 29 – June 1 2005. Springer.

REFERENCES 201

[GTH06] T. Gardiner, D. Tsarkov, and I. Horrocks. Framework For an Automated
Comparison of Description Logic Reasoners. In Proceedings of the 5th In-
ternational Semantic Web Conference (ISWC 2006), volume 4273 of Lecture
Notes in Computer Science, pages 654–667. Springer, November 5–9 2006.

[Gtv04] P. Groot, A. ten Teije, and F. van Harmelen. Towards a Structured Anal-
ysis of Approximate Problem Solving: A Case Study in Classification.
In D. Dubois, C. A. Welty, and M. Williams, editors, Proceedings of the
Ninth International Conference on the Principles of Knowledge Representation
and Reasoning, pages 399–406, Whistler, British Columbia, Canada, June
2–5 2004. AAAI Press.

[Gua97] N. Guarino. Semantic Matching: Formal Ontological Distinctions for In-
formation Organization, Extraction, and Integration. In SCIE ’97: Inter-
national Summer School on Information Extraction, pages 139–170, London,
UK, June 16–August 8 1997. Springer.

[Gua98] N. Guarino. Formal Ontologies and Information Systems, Preface. In Pro-
ceedings of the 1st Conference on Formal Ontologies and Information Systems
(FOIS’98), pages 3–15, Trento, Italy, June 6–8 1998. IOS Press.

[GZ96] Joshua Grass and Shlomo Zilberstein. Anytime algorithm development
tools. SIGART Bulletin Special Issue on Anytime Algorithms and Deliberation
Scheduling, 7(2):20–27, 1996.

[Hay04] P. Hayes. RDF Semantics. http://www.w3.org/TR/rdf-mt/, 10 February
2004.

[HBN07] M. Horridge, S. Bechhofer, and O. Noppens. Igniting the OWL 1.1 Touch
Paper: The OWL API. In C. Golbreich, A. Kalyanpur, and B. Parsia, edi-
tors, OWLED, volume 258 of CEURWorkshop Proceedings, June 6–7 2007.

[HDG+06] M. Horridge, N. Drummond, J. Goodwin, A. L. Rector, R. Stevens, and
H. Wang. The Manchester OWL Syntax. In B. C. Grau, P. Hitzler,
C. Shankey, and E. Wallace, editors, Proceedings of the OWLED 06 Work-
shop on OWL: Experiences and Directions, volume 216 of CEUR Workshop
Proceedings, Athens, Georgia, USA, November 10-11 2006.

[Hef01] J. Heflin. Towards the Semantic Web: Knowledge Representation in a Dynamic,
Distributed Environment. PhD thesis, University of Maryland, College
Park, 2001.

[Hep08] M. Hepp. Ontologies: State of the Art, Business Potential, and Grand
Challenges. In M. Hepp, P. De Leenheer, A. de Moor, and Y. Sure, editors,
Ontology Management, volume 7 of Semantic Web And Beyond Computing
for Human Experience, pages 3–22. Springer, 2008.

202 REFERENCES

[HEPS03] M. Hori, J. Euzenat, and P. F. Patel-Schneider. OWL Web Ontology Lan-
guage: XML Presentation Syntax, W3C Note. http://www.w3.org/TR/owl-xmlsyntax/, June 11 2003.

[HM01a] V. Haarslev and R. Möller. Description of the RACER System and its
Applications. In C. A. Goble, D. L. McGuinness, R. Möller, and P. F.
Patel-Schneider, editors, Proceedings of the 2001 International Workshop on
Description Logics (DL 2001), volume 49 of CEUR Workshop Proceedings,
Stanford, CA, USA, August 1–3 2001.

[HM01b] V. Haarslev and R. Möller. RACER System Description. In R. Goré,
A. Leitsch, and T. Nipkow, editors, Proceedings of the 1st International Joint
Conference on Automated Reasoning (IJCAR 2001), volume 2083 of LNAI,
pages 701–706, Siena, Italy, June 18–23 2001. Springer.

[HMS+04] V. Haarslev, R. Möller, R. Van Der Straeten, R. Van, Der Straeten, and
M. Wessel. Extended Query Facilities for Racer and an Application to
Software-Engineering Problems. In Volker Haarslev and Ralf Möller, ed-
itors, Proceedings of the 2004 International Workshop on Description Logics
(DL 2004), volume 104 of CEUR Workshop Proceedings, Whistler, British
Columbia, Canada, June 6–8 2004.

[HMS05] U. Hustadt, B. Motik, and U. Sattler. Data Complexity of Reasoning in
Very Expressive Description Logics. In L. P. Kaelbling and A. Saffiotti, ed-
itors, Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI 2005), pages 466–471, Edinburgh, UK, July 30–August
5 2005. Morgan Kaufmann Publishers.

[Hor05] I. Horrocks. Applications of Description Logics: State of the Art and
Research Challenges. In F. Dau, M. Mugnier, and G. Stumme, editors,
Proceedings of the 13th International Conference on Conceptual Structures
(ICCS’05), volume 3596 of Lecture Notes in Artificial Intelligence, pages 78–
90. Springer, May 22–25 2005.

[HS01] I. Horrocks and U. Sattler. Ontology Reasoning in the SHOQ(D) De-
scription Logic. In B. Nebel, editor, Proceedings of the 7th International
Joint Conference on Artificial Intelligence (IJCAI 2001), pages 199–204, Seat-
tle, WA, USA, August 4–10 2001. Morgan Kaufmann Publishers.

[HV05] P. Hitzler and D. Vrandecic. Resolution-Based Approximate Reasoning
for OWL DL. In Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen,
editors, Proceedings of the 4th International SemanticWeb Conference, volume
3729 of Lecture Notes in Computer Science, pages 383–397, Galway, Ireland,
November 7–11 2005. Springer, Berlin.

REFERENCES 203

[KC04] G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. http://www.w3.org/TR/rdf-
on
epts/, 10
February 2004.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented
and Frame-Based Languages. Journal of the ACM, 42:741–843, July 1995.

[KOM05] A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM – A Pragmatic Se-
mantic Repository for OWL. In Y. Gil, editor,Web Information Systems En-
gineering –WISE 2005 Workshops, volume 3807 of Lecture Notes in Computer
Science, pages 182–192, Cologne, Germany, September 2 2005. Springer.

[Kor01] F. Koriche. A Logic for Approximate First-Order Reasoning. In L. Fri-
bourg, editor, Computer Science Logic, 15th International Workshop, CSL Pro-
ceedings, pages 262–276, Paris, France, September 10–13 2001. Springer.

[KS04] A. Kaya and K. Selzer. Design and Implementation of a Benchmark Test-
ing Infrastructure for the DL System Racer. In S. Bechhofer, V. Haarslev,
C. Lutz, and R. Möller, editors, KI-04 Workshop on Applications of Descrip-
tion Logics (ADL-2004), pages 40–50, Ulm, Germany, September 24 2004.
CEURWorkshop Proceedings.

[Kur05] D. Kuropka. Uselessness of simple co-occurrence measures for IF & IR
– a linguistic point of view. In R. J. Brachman, editor, Proceedings of the
8th International Conference on Business Information Systems, pages 198–202,
Poznan, Poland, April 20–22 2005.

[Lev84] H. J. Levesque. A logic of implicit and explicit belief. In R. J. Brach-
man, editor, Proceedings of the Fourth National Conference on Artificial In-
telligence (AAAI 1984), pages 198–202, Austin, Texas, USA, August 6–10
1984. AAAI Press.

[Llo87] J. W. Lloyd. Foundations of logic programming, 2nd extended edition.
Springer, New York, 1987.

[LTHB04] L. Li, D. Turi, I. Horrocks, and S. K. Bechhofer. The Instance Store: DL rea-
soning with large numbers of individuals. In V. Haarslev and R. Möller,
editors, Proceedings of the 2004 Description Logic Workshop (DL 2004), vol-
ume 104, pages 31–40, Whistler, BC, Canada, June 6-8 2004. CEUR Work-
shop Proceedings.

[Mas98] F. Massacci. Anytime ApproximateModal Reasoning. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence and Tenth Innovative
Applications of Artificial Intelligence Conference, pages 274–279, Madison,
Wisconsin, USA, July 26–30 1998. AAAI Press / MIT Press.

204 REFERENCES

[MBG+02] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, and
L. Schneider. The WonderWeb Library of Foundational Ontologies: Pre-
liminary Report. WonderWeb Deliverable D17, ISTC-CNR, Padova, Italy,
August 2002.

[McB01] B. McBride. Jena: Implementing the RDF Model and Syntax Specifica-
tion. In S. Decker, D. Fensel, A. Sheth, and S. Staab, editors, Semantic Web
Workshop, volume 40 of CEUR Workshop Proceedings, Hongkong, China,
May 1 2001.

[MFHS02] D. L. McGuinness, R. Fikes, J. Hendler, and L. A. Stein. DAML+OIL:
An Ontology Language for the Semantic Web. IEEE Intelligent Systems,
17(5):72–80, 2002.

[MM04] F. Manola and E. Miller. RDF Primer. http://www.w3.org/TR/rdf-primer/, 10 February 2004.

[Mot06] B. Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Universität Karlsruhe, 2006.

[MPSG09] B. Motik, P. F. Patel-Schneider, and B. C. Grau, editors. OWL 2 Web Ontol-
ogy Language: Direct Semantics. W3C Recommendation, 27 October 2009.
Available at http://www.w3.org/TR/owl2-dire
t-semanti
s/.

[MS06] B. Motik and U. Sattler. A Comparison of Reasoning Techniques
for Querying Large Description Logic ABoxes. In M. Hermann and
A. Voronkov, editors, Proceedings of the 13th International Conference on
Logic for Programming Artificial Intelligence and Reasoning (LPAR 2006),
pages 227–241, Phnom Penh, Cambodia, November 13–17 2006. Springer.

[MSS04] B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with
Rules. In S. A. McIlraith, D. Plexousakis, and F. van Harmelen, editors,
Proceedings of the 3rd International Semantic Web Conference (ISWC 2004),
volume 3298 of LNCS, pages 549–563, Hiroshima, Japan, November 7–11
2004. Springer.

[MYQ+06] L. Ma, Y. Yang, Z. Qiu, G. T. Xie, Y. Pan, and S. Liu. Towards a Complete
OWL Ontology Benchmark. In Y. Sure and J. Domingue, editors, Proceed-
ings of the 3rd European Semantic Web Conference (ESWC’06), volume 4011
of Lecture Notes in Computer Science, pages 125–139. Springer, June 11–14
2006.

[Nag07] G. Nagypal. Possibly imperfect ontologies for effective information retrieval.
PhD thesis, Universität Karlsruhe, 2007.

[Neb90] B. Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence, 43(2):235–249, 1990.

REFERENCES 205

[NFF+91] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. R.
Swartout. Enabling technology for knowledge sharing. AI Magazine,
12(3):36–56, 1991.

[O’K90] R. A. O’Keefe. The craft of Prolog. MIT Press, Cambridge, MA, USA, 1990.

[PSHH03] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWLWeb Ontology Lan-
guage: Semantics and Abstract Syntax. http://www.w3.org/TR/owl-
semantics/, February 2003.

[Rob65] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Prin-
ciple. Journal of the ACM, 12(1):23–41, 1965.

[RTH08] S. Rudolph, T. Tserendorj, and P. Hitzler. What Is Approximate Reason-
ing? In D. Calvanese and G. Lausen, editors, Proceedings of the 2nd Interna-
tional Conference onWeb Reasoning and Rule Systems (RR2008), volume 5341
of Lecture Notes in Computer Science, pages 150–164, Karlsruhe, Germany,
October 31 – November 1 2008. Springer.

[Sal86] G. Salton. Another look at automatic text-retrieval systems. Communica-
tions of the ACM, 29(7):648–656, 1986.

[SBF98] R. Studer, R. Benjamins, and D. Fensel. Knowledge Engineering: Princi-
ples and Methods. Journal of Data and Knowledge Engineering, 25(1-2):161–
197, 1998.

[SBK+07] S. Schlobach, E. Blaauw, M. El Kebir, A. ten Teije, F. van Harmelen, S. Bor-
toli, M. C. Hobbelman, K. Millian, Y. Ren, S. Stam, P. Thomassen, R. C.
van het Schip, and W. van Willigem. Anytime Classification by Ontology
Approximation. In R. Piskac, F. van Harmelen, and N. Zhong, editors,
New Forms of Reasoning for the Semantic Web, volume 291 of CEUR Work-
shop Proceedings, November 11 2007.

[SC95] M. Schaerf and M. Cadoli. Tractable Reasoning via Approximation. Arti-
ficial Intelligence, 74:249–310, 1995.

[SI94] C. Sakama and K. Inoue. An alternative approach to the semantics of
disjunctive logic programs and deductive databases. Journal of Automated
Reasoning, 13:145–172, 1994.

[SK91] B. Selman andH. A. Kautz. Knowledge Compilation usingHorn Approx-
imations. In Proceedings 9th National Conference on Artificial Intelligence
(AAAI-91), pages 904–909, Anaheim, California, July 14–19 1991. AAAI
Press / MIT Press.

[SK96] B. Selman and H. Kautz. Knowledge Compilation and Theory Approxi-
mation. Journal of the ACM, 43:193–224, 1996.

206 REFERENCES

[SPG+07] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A
practical OWL-DL reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

[SS09] R. Studer and S. Staab. Handbook on Ontologies – International Handbooks
on Information Systems, 2nd extended edition. Springer, 2009.

[SSS91] M. Schmidt-Schauß; and G. Smolka. Attributive Concept Descriptions
with Complements. Journal of Artificial Intelligence, 48(1):1–26, 1991.

[Sv02] H. Stuckenschmidt and F. van Harmelen. Approximating Terminological
Queries. In T. Andreasen, A. Motro, H. Christiansen, and H. Legind-
Larsen, editors, Proceedings of the 4th International Conference on Flexible
Query Answering Systems (FQAS)’02), pages 329–343, Copenhagen, Den-
mark, October 27-29 2002. Springer.

[Tes01] S. Tessaris. Questions and answers: reasoning and querying in Description
Logic. PhD thesis, University of Manchester, 2001.

[TGH08] T. Tserendorj, S. Grimm, and P. Hitzler. Approximate Instance Retrieval.
Technical report, FZI Research Center for Information Technology, Karl-
sruhe, Germany, December 2008.

[TH06] D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System
Description. In Proceedings of the International Joint Conference on Automated
Reasoning (IJCAR), volume 4130 of LNAI, pages 292–297, Berlin, August
16–20 2006. Springer.

[Tob00] S. Tobies. The complexity of reasoning with cardinality restrictions and
nominals in expressive description logics. Journal of Artificial Intelligence
Research (JAIR), 12(1):199–217, 2000.

[Tob01] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, Germany, 2001.

[TRKH08] T. Tserendorj, S. Rudolph, M. Krötzsch, and P. Hitzler. Approximate
OWL-Reasoning with Screech. In D. Calvanese and G. Lausen, editors,
Proceedings of the 2nd International Conference on Web Reasoning and Rule
Systems (RR2008), volume 5341 of Lecture Notes in Computer Science, pages
165–180, Karlsruhe, Germany, October 31 – November 1 2008. Springer.

[Vol04] R. Volz. Web Ontology Reasoning with Logic Databases. PhD thesis, Institute
AIFB, University of Karlsruhe, 2004.

[WGQH05] S. Wang, Y. Guo, A. Qasem, and J. Heflin. Rapid Benchmarking for Se-
mantic Web Knowledge Base Systems. In Y. Gil, E. Motta, V. R. Benjamins,
and M. A. Musen, editors, The Semantic Web - ISWC 2005, 4th International
Semantic Web Conference, pages 758–772, Galway, Ireland, November 6–10
2005. Springer.

REFERENCES 207

[WGS05] H. Wache, P. Groot, and H. Stuckenschmidt. Scalable Instance Retrieval
for the Semantic Web by Approximation. In M. Dean, Y. Guo, W. Jun,
R. Kaschek, S. Krishnaswamy, Z. Pan, and Q. Z. Sheng, editors, WISE
Workshops, volume 3807 of Lecture Notes in Computer Science, pages 245–
254, New York, NY, USA, November 20–22 2005. Springer.

[WLL+07] T. Weithöner, T. Liebig, M. Luther, S. Böhm, F. von Henke, and O. Nop-
pens. Real-world Reasoning with OWL. In E. Franconi, M. Kifer, and
W. May, editors, Proceedings of the European Semantic Web Conference,
ESWC2007, volume 4519 of Lecture Notes in Computer Science, Innsbruck,
Austria, July 3–7 2007. Springer.

[WLLB06] T.Weithöner, T. Liebig, M. Luther, and S. Böhm. What’sWrongwith OWL
Benchmarks? In E. Franconi, M. Kifer, and W. May, editors, In Proceedings
of the Second International Workshop on Scalable SemanticWeb Knowledge Base
Systems (SSWS 2006), volume 4519 of Lecture Notes in Computer Science,
pages 101–114, Athens, GA, USA, November 5–9 2006. Springer.

[Zil96a] S. Zilberstein. Resource-bounded reasoning in intelligent systems. ACM
Computing Surveys, page 15, 1996.

[Zil96b] S. Zilberstein. Using anytime algorithms in Intelligent systems. Artificial
Intelligence, fall:73–83, 1996.

[ZR96] S. Zilberstein and S. Russell. Optimal composition of real-time systems.
Artificial Intelligence, 82(1-2):181–213, 1996.

