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Abstract. Maximizing the quality index modularity has become one of the primary methods
for identifying the clustering structure within a graph. As contemporary networks are not static
but evolve over time, traditional static approaches can be inappropriate for specific tasks. In
this work we pioneer the NP-hard problem of online dynamic modularity maximization. We
develop scalable dynamizations of the currently fastest and the most widespread static heuristics
and engineer a heuristic dynamization of an optimal static algorithm. Our algorithms efficiently
maintain a modularity-based clustering of a graph for which dynamic changes arrive as a stream.
For our quickest heuristic we prove a tight bound on its number of operations. In an experimental
evaluation on both a real-world dynamic network and on dynamic clustered random graphs, we
show that the dynamic maintenance of a clustering of a changing graph yields higher modularity
than recomputation, guarantees much smoother clustering dynamics and requires much lower
runtimes. We conclude with giving sound recommendations for the choice of an algorithm.

1 Introduction

Graph clustering is concerned with identifying and analyzing the group structure of networks®.
Generally, a partition (i.e., a clustering) of the set of nodes is sought, and the size of the
partition is a priori unknown. A plethora of formalizations for what a good clustering is
exist, good overviews are, e.g., [20,2]. In this work we set our focus on the quality function
modularity, coined by Girvan and Newman [3], which has proven itself feasible and reliable
in practice, especially as a target function for maximization (see [1] for further references),
which follows the paradigm of parameter-free community discovery [4].

The foothold of this work is that most networks in practice are not static. Iteratively
clustering snapshots of a dynamic graph from scratch with a static method has several dis-
advantages: First, runtime cannot be neglected for large instances or environments where
computing power is limited [5], even though very fast clustering methods have been proposed
recently [6, 7]. Second, heuristics for the NP-hard [1] optimization of modularity suffer from
local optima—this might be avoided by dynamically maintaining a good solution. Third,
static heuristics are known not to react in a continuous way to small changes in a graph.

G A o The lefthand figure illustrates the general situation for updat-

7} VT ing cluster1r_1gs. A. graph G is updated by some change A, yle'ld—
ing G’. We investigate procedures A that update the clustering
C(G) to C'(G") without re-clustering from scratch, but work
towards the same aim as a static technique 7 does.

C(G) -- A » (@)
Fig. 1: The problem setting.

*This work was partially supported by the DFG under grant WA 654/15-1.
3We use the terms graph and network interchangeably.



Related Work. Dynamic graph clustering has so far been a rather untrodden field. Re-
cent efforts [8] yielded a method that can provably dynamically maintain a clustering that
conforms to a specific bottleneck-quality requirement. Apart from that, there have been at-
tempts to track communities over time and interpret their evolution, using static snapshots of
the network, e.g. [9, 10], besides an array of case studies. In [11] a parameter-based dynamic
graph clustering method is proposed which allows user exploration. Parameters are avoided in
[12] where the minimum description length of a graph sequence is used to determine changes
in clusterings and the number of clusters. In [13] an explicitly bicriterial approach for low-
difference updates and a partial ILP* are proposed, the latter of which we also discuss. To
the best of our knowledge no fast procedures for updating modularity-based clustering in
general dynamic graphs have been proposed yet. Beyond graph theory, in data mining the
issue of clustering an evolving data set has been addressed in, e.g., [14], where the authors
share our goal of finding a smooth dynamic clustering. The literature on static modularity-
maximization is quite broad. We omit a comprehensive review at this point and refer the
reader to [1,2,15] for overviews, further references and comparisons to other clustering tech-
niques. Spectral methods, e.g., [16], and techniques based on random walks [17, 18], do not
lend themselves well to dynamization due to their non-continuous nature. Variants of greedy
agglomeration [19, 6], however, are well suited, as we shall see.

Our Contribution. In this work we present, analyze and evaluate a number of concepts
for efficiently updating modularity-driven clusterings. We prove the NP-hardness of dynamic
modularity optimization and develop heuristic dynamizations of the most widespread [19]
and the fastest [6] static algorithms, alongside apt strategies to determine the search space.
For our fastest procedure, we can prove a tight bound of ©(logn) on the expected number
of operations required. We then evaluate these and a heuristic dynamization of an ILP*-
algorithm [1]. We compare the algorithms with their static counterparts and evaluate them
experimentally on random preclustered dynamic graphs and on large real-world instances.
Our results reveal that the dynamic maintenance of a clustering yields higher quality than
recomputation, guarantees much smoother clustering dynamics and much lower runtimes.

Notation. Throughout this paper, we will use the notation of [20]. We assume that G =
(V, E,w) is an undirected, weighted, and simple graph® with the edge weight function w: E —
R>o. We set |[V| =: n,|E| =: m and C = {C,...,Cy} to be a partition of V. We call C a
clustering of G and sets C; clusters. C(v) is C' 3 v. A clustering is trivial if either k = 1 (C'), or
all clusters contain only one element, i.e., are singletons (CV'). We identify a cluster C; with its
node-induced subgraph of G. Then E(C) := Ule E(C;) are intra-cluster edges and E \ E(C)
inter-cluster edges, with cardinalities m(C) and m(C), respectively. Further, we generalize
degree deg(v) to clusters as deg(C') := Y . deg(v). When using edge weights, all the above
definitions generalize naturally by using w(e) instead of 1 when counting edge e. Weighted
node degrees are called w(v). A dynamic graph G = (G, ..., Gy, ) is a sequence of graphs,
with Gy = (Vi, Ey,wi) being the state of the dynamic graph at time step t. The change
A(Gy, Gy1) between timesteps comprises a sequence of b atomic events on Gy, which we
detail later (see Tab. 1). In our setting the sequence of changes arrives as a stream.

4ILP stands for Integer Linear Program
A simple graph in this work is both loopless and has no parallel edges.



The Quality Index Modularity. In this work we set our focus on modularity [3], a measure
for the goodness of a clustering. Just like any other quality index for clusterings (see, e.g., [20,
2]), modularity does have certain drawbacks such as non-locality and scaling behavior [1] or
resolution limit [21]. However, being aware of these peculiarities, modularity can very well be
considered a robust and useful measure that closely agrees with intuition on a wide range of
real-world graphs, as observed by myriad studies. Modularity can be formulated as

2
mod(C) := méf) — ﬁ <Z deg(v)) (weighted version analogous) . (1)
ceC \veC

Roughly speaking, modularity measures the fraction of edges which are covered by a clustering
and compares this value to its expected value, given a random rewiring of the edges which,
on average, respects node degrees. This definition generalizes in a natural way as to take edge
weights w(e) into account, for a discussion thereof see [22] and [23]. MODOPT, the problem
of optimizing modularity is NP-hard [1], but modularity can be computed in linear time and
lends itself to a number of simple greedy maximization strategies. For the dynamic setting,
the following simple corollary theoretically corroborates the use of heuristics, even if we do
take the effort to compute an optimal initial clustering.

Corollary 1 (DYNMobpOpPT is NP-hard). Given graph G, a modularity-optimal clustering
C°PY(@) and an atomic event A to G, yielding G'. It is NP-hard to find a modularity-optimal
clustering C°PY(G").

Proof. We reduce an instance G of MODOPT to a linear number of instances of DYNMoODOPT.
Given graph G, there is a sequence G of graphs (Go, ..., Gy = G) of linear length such that (i) G
starts with G consisting of one edge e of G and its incident nodes u, v, (ii) G ends with G, (iii)
graph G;41 results from G; and an atomic event A;. MODOPT can be solved in constant time
for Gy yielding C°P*(Gp). Subsequently solving DYNMoDOPT for instances G;, C°PY(G;), 4;
yielding C°P*(G;41), we end with C°PY(G,) = C°PY(G), the solution to MODOPT.

Measuring the Smoothness of a Dynamic Clustering. By comparing consecutive clus-
terings, we quantify how smooth an algorithm manages the transition between two steps,
an aspect which is crucial to both readability and applicability. An array of measures exist
that quantify the (dis)similarity between two partitions of a set; for an overview and further
references, see [24]. Our results strongly suggest that most of these widely accepted mea-
sures are qualitatively equivalent in all our (non-pathological) instances (see App. E for an
example). We thus restrict our view to the (graph-structural) Rand index [24], being a well
known representative; it maps two clusterings into the interval [0,1], i.e., from equality to
maximum dissimilarity: Ry(C,C’) := 1 — (|E11| + |Eoo|)/m, with Ey; = {{v,w} € E:C(v) =
C(w) ANC'(v) = C'(w)}}, and Eyo the analog for inequality. We use the intersection of two
graphs when comparing their clusterings. Low distances correspond to smooth dynamics.

2 The Clustering Algorithms

Formally, a dynamic clustering algorithm is a procedure which, given the previous state of
a dynamic graph G;_1, a sequence of graph events A(G;_1,G}) and a clustering C(Gy—1) of
the previous state, returns a clustering C'(G¢) of the current state. While the algorithm may
discard C(Gy—1) and simply start from scratch, a good dynamic algorithm will harness the



results of its previous work. A natural approach to dynamizing an agglomerative clustering
algorithm is to break up those local parts of its previous clustering, which are most likely to
require a reassessment after some changes to the graph. The half finished instance is then given
to the agglomerative algorithm for completion. A crucial ingredient thus is a prep strategy S
which decides on the search space which is to be reassessed. We will discuss such strategies
later, until then we simply assume that S breaks up a reasonable part of C(Gy—1), yielding
C(Gy_1) (or C(GYy) if including the changes in the graph itself). We call C the preclustering
and nodes that are chosen for individual reassessment free (can be viewed as singletons).

Formalization of Graph Events. We describe our test instances in more detail later,
but for a proper description of our algorithms, we now briefly formalize the graph events we
distinguish. Table 1 lists all events (and their nomenclature)
name formal that can make up the sequence of changes between two graph
node creation |V + u states. Most commonly edge creations and removals take place,
node removal |V — u and they require the incident nodes to be present before and
edge creation |E + {u,v} after the event. Given edge weights, changes require an edge’s
edge removal |E — {u,v} Presence. Node creations and removals in turn only handle de-
weight increase |w(u, v) + o 8ree Zero nodes, i.e., for an intuitive node deletion we first have
weight decrease|w(u, v) — z to remove all incident edges. To summarize such compound
time step 1 events we use time step events, which indicate to an algorithm
that an updated clustering must now be supplied. Between time
steps it is up to the algorithm how it maintains its intermediate clustering. Additionally, batch
updates allow for only running an algorithm after a scalable number of b timesteps.

Table 1: Atomic graph events

2.1 Algorithms for Dynamic Updates of Clusterings

The Globgl Greedy. Algorithm. The Algorithm 1: Global(G.C)
most prominent algorithm for modular-

ity maximization is a global greedy algo- 1 While 3C;, €5 € €:dQ(C;,C5) = 0 do
rithm [19], which we call Global (Alg. 1). o (C1,C2) — arg oB%e dQ(Ci, )
Starting with singletons, for each pair of clus- merge(C1, Cs) o

ters, it determines the increase in modularity
dQ that can be achieved by merging the pair and performs the most beneficial merge. This is
repeated until no more improvement is possible. As the pseudo-dynamic algorithm sGlobal®,
we let this algorithm cluster from scratch at each timestep for comparison. By passing a
preclustering C (G¢) to Global we can define the properly dynamic algorithm dGlobal. Starting
from C (Gy) this algorithm lets Global perform greedy agglomerations of clusters.

The Local Greedy Algorithm. In a recent work [6] the simple mechanism of the afore-
mentioned Global has been modified as to rely on local decisions (in terms of graph locality),
yielding an extremely fast and efficient maximization. Instead of looking globally for the best
merge of two clusters, Local, as sketched out in Alg. 2, repeatedly lets each node consider
moving to one of its neighbors’ clusters, if this improves modularity; this potentially merges
clusters, especially when starting with singletons. As soon as no more nodes move, the current

SFor historical reasons, sGlobal appears in plots as StaticNewman, dGlobal as Newman, sLocal as StaticBlondel
and dLocal as Blondel, based on the algorithms’ authors.



clustering is contracted, i.e., each cluster is contracted to a single node, and adjacencies and
edge weights between them are summarized. Then, the process is repeated on the resulting
graph which constitutes a higher level of abstraction; in the end, the highest level clustering
is decisive about the returned clustering: The operation unfurl assigns each elementary node
to a cluster represented by the highest level cluster it is contained in.

We again sketch out an algorithm which
serves as the core for both a static and a _Algorithm 2: Local(G®/max, 0 /max, P)

dynamic variant of this approach, as shown 1 h+« 0

in Algorithm 2. As the input, this algorithm 2 repeat
takes a hierarchy of graphs and clusterings 3 (G,C) — (G",ch)
and a search space policy P. Policy P affects 4 repeat
the graph contractions, in that P decides 5 forall freev € V do
which nodes of the next level graph should if max dQ(u,v) > 0 then
be free to move. Note that the input hier- 6 vEN ()
archy can also be flat, i.e., hpax = 0, then W arg vg}?}; dQ(u, v)
line 11 creates all necessary higher levels. move(u,C(w))
Again posing as a pseudo-dynamic algo-

rithm, the static variant (as in [6]), sLocal, until no more changes
passes only (G¢,C") to Local, such that it 10 Ch — C~
starts with singletons and all nodes freed, 11 (Gh+1 CM1) « contract(G", Ch, P)

instead of a proper preclustering. The pol- 12 h+—h+1

icy P is set to tell the algorithm to also start 138 until no more real contractions
from scratch on all higher levels and to not 14 C(GO) — unfurl(chfl)

work on previous results in line 11, i.e., in
C*1 again all nodes in the contracted graph are free singletons.

The dynamic variant dLocal remembers its old results. It passes the changed graph, a
current preclustering of it and all higher-level contracted structures from its previous run to
Local: (G, Gii'&"hm‘”‘, C, C;l’('i’"hm‘""‘,P). In level 0, the preclustering C defines the set of free
nodes. In levels beyond 0, policy P is set to have the contract-procedure free only those nodes
of the next level, that have been affected by lower level changes (or their neighbors as well,
tunable by policy P). Roughly speaking, dLocal starts by letting all free (elementary) nodes
reconsider their cluster. Then it lets all those (super-)nodes on higher levels reconsider their
cluster, whose content has changed due to lower level revisions. Thus, a run of Algorithm 2
avoids recomputing unrelated regions of the graph and resolving ambiguous situations in a
complementary fashion without necessity.

ILP. While optimality is out of reach, the problem can be cast as an ILP [1]. A distance
relation indicates whether elements are in the same cluster:

V{u,v} € <Z> 2 Xy = {0 if C(u) = C(v) ( node distance var.) (2)

1 otherwise

Xuv +Xvw —qu > 0

V
V{u,v,w} € (3) 28 X + Xuw — Xow >0 5 Xy €{0,1} (3)
qu + Xvw - Xuv Z 0
minimize modip(G,Cq) = Z <w(u,v) - W)XW (4)

{uvye(y)



Table 3: Reactions of the algorithms to graph events. Isolated nodes are made singletons when inserted and
simply deleted when removed. With “— S” we indicate that a prep strategy prepares a preclustering.

A(Gt, Gt41) Algorithms’ reactions

formal sGlobal |dGlobal|sLocal |dLocal dILP dEOO

E+ {u,v} |- -5 |- — S — S, pILP(args)|-

E —{u,v} |- -8 |- — S — S, plLP(args)|-

w(u,v) +x |— -5 |- — S — S, plLP(args)|-

w(u,v) —z |- -5 |- — S — S, pILP(args)|-

t+1 Global [Global [Local(G:|Local(Gy ==, |- EOO(G+1,
(Gt,CV)|(Ge,C) |Ctall) |C, L™=, aff /nb) Ciy1,args)

Note that the definition of X, renders this a minimization problem. Since runtimes for the
full ILP reach days for more than 200 nodes, a promising idea pioneered in [13] is to solve a
partial ILP (pILP). Such a program takes a preclustering—of much smaller complexity—as the
input, and solves this instance, i.e., finishes the clustering, optimally via an ILP; a singleton
preclustering yields a full ILP. We introduce two variants, (i) the argument noMerge prohibits
merging pre-clusters, and only allows free nodes to join clusters or form new ones, and (ii)
merge allows existing clusters to merge. For both variants we need to add constraints and
terms to Eqgs. 2-4. Roughly speaking, for (i), variables Y, ¢ indicating the distance of node u
to cluster C' are introduced and triplets of constraints similar to Eq. 3 ensure their consistency
with the X-variables; for (ii), we additionally need variables Zo¢r for the distance between
clusters, constrained just as in Eq. 3. Details on these formulations and on their impact on
the target function can be found in App. B. The dynamic clustering algorithms which first
solicit a preclustering and then call pILP are called dILP. Note that they react on any edge
event; accumulating events until a timestep occurs can result in prohibitive runtimes.

Elemental Optimizer The elemental operations optimizer, Table 2: EOO operations, al-
EOO, performs a limited number of operations, trying to in- lowed/disallowed via parameters
crease the quality. Specifically, we allow moving or splitting Operation |Effect

off nodes and merging clusters, as listed in Table 2. Although m?rge(uv") C(u) UC(v)

rather limited in its options, EOO or very similar tools for z;::‘tt((z),v) (C{(Zi _C&’)C\(Z))T_UC (w)
local optimization are often used as post-processing tools 7

(see [25] for a discussion). Our algorithm dEOO simply calls EOO at each time step.

2.2 Strategies for Building the Preclustering

We now describe prep strategies which generate a preclustering C, i.e., define the search space.
We distinguish the backtrack strategy, which refines a clustering, and subset strategies, which
free nodes. The rationale behind the backtrack strategy is that selectively backtracking the
clustering produced by Global enables it to respect changes to the graph. On the other hand,
subset strategies are based on the assumption that the effect of a change on the clustering
structure is necessarily local. Both output a half-finished preclustering.

The backtrack strategy (BT) records the merge operations of Global and backtracks them
if a graph modification suggests their reconsideration. We detail in App. C what we mean
by “suggests”, but for brevity we just state that the actions listed for BT provably require
very little asymptotic effort and offer Global a good chance to find an improvement. Speaking
intuitively, the reactions to a change in (non-)edge {u,v} are as follows (weight changes are
analogous): For intra-cluster additions we backtrack those merge operations that led to u and



Table 4: Overview of how strategies handle graph events. Changes to edges’ weights are analog to cre-
ations/removals. Degree-0 nodes are universally made singletons when inserted and ignored when removed.

Event Reaction
BT BU, V= [N, V= BN, V =
E + {u,v sep(u, ) Cu) =C) C(u) UC(v)|Na(u) U Ng(v)|BFS{u, v},
(w0} {iso(u),iso(v) C(u) # C(v) () () Nafu) «(v) tu.vh
E—{u,v iso(u),iso(v)  C(u) =C(v) C(u) UC(v)|Ng(u) U Ng(v)|BES{u, v}s
{ }{_ o o) () | N Na(e) BES ),

v being in the same cluster and allow Global to find a tighter cluster for them, i.e., we separate
them. For inter-cluster additions we track back u and v individually, until we isolate them as
singletons, such that Global can re-classify and potentially merge them. Inter-cluster deletions
are not reacted on. On intra-cluster deletions we again isolate both u and v such that Global
may have them find separate clusters. For more details on these operations see App. C. Note
that this strategy is only applicable to Global; conferring it to Local is neither straightforward
nor promising as Local is based on node migrations in addition to agglomerations. Anticipating
this strategy’s low runtime, we can give a bound on the expected number of backtrack steps
for a single call of the crucial operation isolate. We leave its formal proof to The. 2 in App. C:

Theorem 1. Assume that a backtrack step divides a cluster randomly. Then, for the number
I of steps isolate(v) requires, it holds: E{I} € @(Inn).

A subset strategy is applicable to all dynamic algorithms. It frees a subset V of individual
nodes that need reassessment and extracts them from their clusters. We distinguish three
variants which are all based on the hypothesis that local reactions to graph changes are
appropriate. Consider an edge event involving {u,v}. The breakup strategy (BU) marks the
affected clusters V' = C(u) U C(v); the neighborhood strategy (Ng) with parameter d marks
V = Ng(u) UNy(v), where Ng(w) is the d-hop neighborhood of w; the bounded neighborhood
strategy (BNy) with parameter s marks the first s nodes found by a breadth-first search
simultaneously starting from « and v.

3 Experimental Evaluation of Dynamic Algorithms’

Instances. We use both generated graphs and real-world instances. We briefly describe them
here, but for more details please see [26] and [13].

Random Graphs {ran}. Our Erdés-Rényi-type generator builds upon [27] and adds to this
dynamicity in all graph elements and in the clustering, i.e., nodes and edges are inserted and
removed and ground-truth clusters merged and split, always complying with sound proba-
bilities. The generator’s ground-truth clustering defines edge probabilities and thereby steers
how the graph evolves. Roughly speaking, within ground-truth clusters edges accumulate and
in between they become sparse. The generator additionally maintains a reference clustering,
which follows the ground-truth clustering, as soon as changes in the latter actually manifest
in the edge structure; we use this reference clustering to compare our algorithms to. In later
plots we use selected random instances, however, descriptions apply to all such graphs.”

EMail Graph G.. The network of email contacts at the department of computer science at
KIT is an ever-changing graph with an inherent clustering: Workgroups and projects cause

"For implementation notes see App. A, supplementary information is stored at illwww.iti.uni-
karlsruhe.de/projects/spp1307/dyneval



increased communication. We weigh edges by the number of exchanged emails during the
past seven days, thus edges can completely time out; degree-0 nodes are removed from the
network. This network, G, has between 100 and 1500 nodes depending on the time of year, and
about 700K events spanning about 2.5 years.
It features a strong power-law degree distribu-
tion. Fig. 2 shows the temporal development
of this graph in terms of n (lower) and m
(upper) per 100 events. The first peak stems
from a spam attack in late ’06, the two large
drops from Christmas breaks and the smaller 50
drops from spring and autumn breaks.

arXiv Graphs {arx}. Since 1992 the
arXiv.org e-Print archive® is a popular repos- 0 1000~ 2000 3000 4000 5000 6000 7000
itory for scientific e-prints, stored in several Fig.2: Nodes (blue) and edges (red) of G,
categories alongside timestamped metadata. We extracted networks of collaboration between
scientists based on coauthorship. For each e-print we add equally weighted clique-edges among
the contributors such that each author gains a total edge weight of 1.0 per e-print contributed
to; see Fig. 3 for three examples. We let e-prints time out after two years and remove dis-
connected authors. As these networks are ill-natured for local updates, we shall use them as
tough trials. We show results for two categories that feature a large connected component.

1500

1000

Fundamental Results. For the sake of readability, we use a moving average in plots for
distance and quality to smoothen the raw data (see Figs. 18 and 19 in App. E for an example),
separately looking at variances. We consider the criteria quality (modularity), smoothness
(Rg4) and runtime (ms), and additionally |C|.

Discarding dEOQO. In a first feasibility test, dEOO immediately falls behind all other algo-
rithms in terms of quality (Fig. 10), an observation substantiated by the fact that postpro-
cessing works better if related to the underlying algorithm [25]. Moreover, runtimes for dEOO
as the sole technique are infeasible for large graphs.

Local Parameters. It has been stated in [6] that the order in which Local considers nodes
is irrelevant. In terms of average runtime and quality we can confirm this for sLocal, though a
random order tends to be less smooth; for dLocal the same observation holds (see App. D.3).
However, since node order does influence specific values, a random order can compensate the

8Website of e-print repository: arxiv.org; for our tools for collecting and processing the data see
illwww.iti.uni-karlsruhe.de/projects/spp1307/dyneval
.

g M »
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Fig. 3: The arXiv category Nuclear Theory, containing 33k e-prints, after 01, 05 and ’09. Since disconnected
cliques let modularity approach 1 quickly, lower modularity corresponds to a higher degree of collaboration.



effects this might have in pathological cases. We found that considering only affected nodes
or also their neighbors in higher levels, does not affect any criterion on average.

pILP Variants. Allowing the ILP to merge existing clusters takes longer, and clusters
coarser and with a slightly worse modularity; we therefore reject it.

Heuristics vs. dILP. A striking obser-
vation about dILP is the fact that it yields
worse quality than dLocal and sLocal with
identical prep strategies, as in Fig. 4. Be- 07
ing locally optimal seems to overfit, a phe- s
nomenon that does not weaken over time oo
and persists throughout most instances.
Together with its high runtime and only
small advantages in smoothness dILP is ill- o030
suited for updates on large graphs.

0.80

0.75

0.55

: . . . 50000 o 150000

Static Algorithms. Briefly comparing g 4 rrodularity for diocal (blue), dGlobal (purple),
sGlobal and sLocal we can state that slLo- dILP(noMerge) (yellow) and dILP(merge) (green) on the
cal consistently yields better quality and a first quarter of G, batch size 1, strategy BNg

finer yet less smooth clustering (see App. D.2). This generally applies to the corresponding
dynamic algorithms as well. In terms of speed, however, sGlobal hardly lags behind slLocal,
especially for small graphs with many connected components, where sLocal cannot capitalize
on its strength of quickly reducing the size of a large instance. For such instances, separately
maintaining and handling connected components could thus reasonably speed up sLocal, but
would also do so for sGlobal.

Prep Strategies. We now determine the best choice of prep strategies and their parameters
for dGlobal and dLocal. In particular, we evaluate Ny for d € {0,1,2,3} and BNy for s €
{2,4, 8,16, 32}, alongside BU and BT. Throughout our experiments d = 0 (or s = 2) proved
insufficient, and is therefore ignored in the following. For dLocal, increasing d has only a
marginal effect on quality and smoothness, while runtime grows sublinearly, which suggests
d = 1. For dGlobal, N4 risks high runtimes for depths d > 1, especially for dense graphs. In
terms of quality Np is the best choice, higher depths seem to deteriorate quality—a strong
indication that large search spaces contain local optima. Smoothness approaches the bad
values of sGlobal for d > 2. For BN, increasing s is essentially equivalent to increasing d, only
on a finer scale. Consequently, we can report similar observations. For dLocal, BN, proved
slightly superior. dGlobal’s quality benefits from increasing s in this range (see App. E.1), but
again at the cost of speed and smoothness, so that BNig is a reasonable choice. BU clearly
falls behind in terms of all criteria compared to the other strategies, and often mimics the
static algorithms. dGlobal using BT is by far the fastest algorithm, confirming our theoretical
predictions from Sec. 2.2, but still produces competitive quality. However, it often yields
a smoothness in the range of sGlobal. Summarizing, our best dynamic candidates are the
algorithms dGlobal@BT and dGlobal@BN¢ (achieving a speedup over sGlobal of up to 1k and
20 at 1k nodes, respectively) and algorithm dLocal@BN,(speedup of 5 over sLocal).

Comparison of the Best. As a general observation, as depicted in Fig. 6, each dynamic
candidate beats its static counterpart in terms of modularity. On the generated graphs, dLocal
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is superior to dGlobal, and faster. In terms of smoothness (Fig. 5), dynamics (except for
dGlobal@BT) are superior to statics by a factor of ca. 100, but even dGlobal@BT beats them.

Trials on arXiv Data. As an independent data set, we use our arXiv grahps for testing
our results from G, and the random instances. These graphs consist solely of glued cliques
of authors (papers), established within single timesteps where potentially many new nodes
and edges are introduced. Together with modularity’s resolution limit [21] and its fondness of
balanced clusters and a non-arbitrary number thereof in large graphs [29], these degenerate
dynamics are adequate for fooling local algorithms that cannot regroup cliques all over as to
modularity’s liking: Static algorithms constantly reassess a growing component (Figs. 3a-3c),
while dynamics using N or BN will sometimes have no choice but to further enlarge some
growing cluster. Locally this is a good choice, but globally some far-away cut might qualify
as an improvement over pure componentwise growth.

However, we measured that dGlobal@BT easily keeps up with the static algorithms’ mod-
ularity, being able to adapt its number of clusters appropriately. The dynamic algorithms
using other prep strategies do struggle to make up for their inability to re-cluster; however,
they still only lag behind by about 1%. Figures 7 and 8 show modularity for coarse and
fine batches, respectively, using the arXiv category Nuclear Theory (1992-2010, 33K e-prints,
200K elementary events, 14K authors). As before, dynamics are faster and smoother. For
the coarse batches, speedups of 10 to 2K (BT) are attained; for fine batches, these are 100
to 2K. In line with the above observations, their clusterings are slightly coarser (except for
dGlobal@BT). See Apps. E.2 and E.3 for insightful further results that exhibit dGlobal@BT’s
appropriateness.

Summary of Insights. The outcomes of our evaluation are very favorable for the dynamic
approach in terms of all three criteria. Furthermore, the dynamics exhibit the ability to react
quickly and adequately (Fig. 9) to changes in the random generator’s ground-truth clustering.

We observed that dLocal is less susceptible to an increase of the search space than dGlobal.
However, our results argue strongly for the locality assumption in both cases—an increase in
the search space beyond a very limited range is not justified when trading off runtime against
quality. On the contrary, quality and smoothness may even suffer for dLocal. Consequently, N
and BN strategies with a limited range are capable of producing high-quality clusterings while



excelling at smoothness. The BT strategy for dGlobal yields competitive quality at unrivaled
speed, but at the expense of smoothness.

For dlLocal a gradual improvement of quality and smoothness over time is observable,
which can be interpreted as an effect reminiscent of simulated annealing, a technique that
has been shown to work well for modularity maximization [28]. Our data indicates that the
best choice for an algorithm in terms of quality may also depend on the nature of the target
graph. While dLocal surpasses dGlobal on almost all generated graphs, dGlobal is superior
on our real-world instance G.. We speculate that this is due to G, featuring a power law
degree distribution in contrast to the Erddés-Rényi-type generated instances. In turn, our
arXiv trial graphs, which grow and shrink in a volatile but local manner, allow a for a small
margin of quality improvement, if the clustering is regularly adapted globally (re-balanced
and coarsened /refined). Only the statics and dGlobal@BT are able to do this, however, at the
cost of smoothness. Universally, the latter algorithm is the fastest.

Concluding, some dynamic algorithm always beats the static algorithms; backtracking is
preferable for locally concentrated or monotonic graph dynamics and a small search space is
to be used for randomly distributed changes in a graph.

4 Conclusion

As the first work on modularity-driven clustering of dynamic graphs, we deal with the NP-
hard problem of updating a modularity-optimal clustering after a change in the graph. We
developed dynamizations of the currently fastest and the most widespread heuristics for mod-
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Fig. 9: Modularity on a long (10k time steps) slowly
growing (n = 1k to 2k) random graph: The very
simple method of the reference clustering to deter-
mine the ground-truth clustering relies solely on how
clearly the split of a cluster, or the merge of two
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trast, the dynamic algorithms manage to adapt quickly
to changes in the ground-truth clustering (from top
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ularity-maximization and evaluated them and a dynamic partial ILP for local optimality. For
our fastest update strategy, we can prove a tight bound of ©(logn) on the expected number
of backtrack steps required. Our experimental evaluation on real-world dynamic networks
and on dynamic clustered random graphs revealed that dynamically maintaining a cluster-
ing of a changing graph does not only save time, but also yields higher modularity than
recomputation—except for degenerate graph dynamics—and guarantees much smoother clus-
tering dynamics. Moreover, heuristics are better than being locally optimal at this task. Sur-
prisingly small search spaces work best, avoid trapping local optima well and adapt quickly
and aptly to changes in the ground-truth clustering, which strongly argues for the assumption
that changes in the graph ask for local updates on the clustering.
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Appendix

A Implementation Notes.

We conducted our experiments on up to eight cores, 1 per experiment, of a dual Intel Xeon
5430 running SUSE Linuz 11.1. The machine is clocked at 2.6GHz, has 32GB of RAM and
2x 1MB of L2 cache. Our algorithms and measures are implemented in Java 1.6.0_13, partially
using the yFiles graph library”, and run on a 64-Bit Server VM. Evaluations, plots and the
setups of experiments were conducted via a frontend programmed in Mathematica (version
7.0.1.0). As priority queue we use a java.util.PriorityQueue. As a data structure which
supports backtrack, instead of using a rather involved fully dynamic union-find structure,
we maintain a similar structure, a binary forest with actual nodes as leaves and the merge
operations as internal tree-nodes.

B Full and Partial ILP Formulations

We realize a distance relation between elements—mnodes to start with—of the graph, which
indicates whether elements belong together in the clustering. We denote the set of node
distance variables (see Eq. 2) by

(V) = (X : {u,0} € (g)} with X, = {0 if C(u) = C(v) 5

1 otherwise

With these a full ILP formulation of modularity-optimization is already possible if we set
V =1V, ie., all nodes are “free”. We merely have to ensure the properties of an equivalence
relation, reflexivity, symmetry and transitivity.
‘7 Xuv+XUw_qu20
Huow} € () 4 Kot Xuw = Xou 20 5 X € (0.1) ©
qu +Xvw - Xuy Z 0

minimize modip(G,Cq) = Z <w(u,v) - M)X“v (7
{uvye(y)

Equation 6 represents transitivity, we can omit the other two: Reflexivity, X,, = 0, is auto-
matically ensured since a node is always in the same cluster as itself. Symmetry, X, = Xyq,
is ensured since there is only one such variable.

Elements are Nodes and Preserved Clusters. For the partial ILP we usually preserve
some clusters C and have only some free nodes, so V C V. Nodes are allowed to join other
clusters and to form new ones, but preserved clusters can neither split nor merge. To indicate
whether a free node joins a cluster we introduce the set of node-cluster distance variables

0 ifC(u)=C

1 otherwise

V(V,C) :={Yuo : {u,C} € V xC} with Yo = { (8)

9Licensed from yWorks for more information, see www.yworks.com .



We now need to couple these variables with X to ensure that if two nodes u, v join the same
cluster, their variable X, also reflects that they are clustered together. Moreover a node must
only join one cluster, and the target function must evaluate such joins:
‘7 Xuv+YuC_YvCZO
\V/{U,’U,U)}E <2> xC: Xuv“‘Y;;C_YuCZO ; YuCE{Oal} (9)
Yuo + Yoo — Xuw 20

VueV: Z Yuc > k—1 (anode’s cluster must be unique) (10)
ceC
minimize modpartianLp (G,C) = Z w(u,v) — w(v) - wlv) X (11)
o merge BN 2w(B) )"
quEX(V)

Y (S (et - St ),

Yuc€Y(V,C) \wel

Preserved Clusters may Merge. Finally, if we also allow pre-clusters to merge, we can
handle them just as we handle nodes. We thus additionally introduce cluster distance vari-
ables, which indicate whether two clusters merge:

0 merge(C, D)

Z(C) = {ZC’D : {C,D} S <§>} with Zcp = {1 (12)

To ensure consistency we need constraints as in Eq. 3 for Z. Additionally, just as for X we
need to couple Z with ), and let the target function evaluate merging clusters. In turn we
must now drop the constraints in Eq. 10, since now a node can join more than one cluster—if
and only if these clusters merge.
C~ Zep+Zpe — Zcg 2 0
V{C,D,E} € <3 Zep +Zer — Zpe >0 (13)
Zce+ ZpE — Zep 20

C~ ZCD+YuD_YuCZO
¥{u,C, D} € V x (2) A Zep 4 Yae —Yup 2 0 (14)
Yuwec +Yup —Zcp 2> 0

L w(u) - w(v)
minimize modpatianLp(G,C) = Z wu,v) — ————= | Xy (15)
oy n m( i)
CE (S (et )
Y,c€Y(V,C) \wel

Y (I (s - =) ) zen

ZCDEZ((f) zeC yeD



Summary. In Table 5 we summarize which con-

straints are necessary for which problem formula- Table 5: ILP variants
tion. Preliminary experiments using techniques such Name Constraint Set
as breaking symmetry, orbitopal fixing or lazy con- Full (V =V) 5-6

noMerge 5-6, 8-10

straints did not seem promising although a thorough
merge 5-6, 89, 12-14

investigation might yield some mild speedup. Note
that for the case where merging is allowed we could also have variables as in Eq. 6 for ZU X,
and discard ) altogether. Note further that if in addition to the merging of clusters we also
allow splitting, we actually arrive at the full ILP again.

C The Backtrack Strategy

To motivate the backtack strategy we first detail some insights on the change in modularity
if (i) the graph changes and (ii) we decide to move some nodes from one cluster to another, in
order to react to the change. Please note that all statements generalize trivially to weighted
edges. Let C' € C be a cluster and D € {C U} be a cluster or the empty set. Let further
U C C be a subset of C, and define further the clustering D:

D:=(C\{C,D}))U{C\U,DUU} (move U from C to D) (16)

The basis of modularity (Mod), coverage (Cov) and the expected value of coverage (ECov)
change when we move from clustering C to D; we can express these changes and the change
A in modularity as follows:

Acoy := Cov(D) — Cov(C) , Apcoy := ECov(D) — ECov(C) , (17)
A := Mod(D) — Mod(C) = Acey — Akcov (18)

Note that A must be non-positive if C was optimal. If we generalize the definitions in Sec. 1
from clusters to general sets of nodes, then we can write these as:

E(U,D) — E(U,C\U)

Acoy = m ’ (19)

Agcoy i= 4%712 (Z deg*(B) — > deg2(3)> (20)
BeD BeC

- ﬁ (deg?(D U ) + deg?(C \ U) — deg?(D) — deg?(C)) (21)

- de;n [2]) (deg(D) — deg(C'\ U)) (22)

Given a change in the graph we want to know whether moving from C to D is beneficial.
Thus, in addition to moving from C to D, we now move from G to G, i.e., we change graph
G by, say, adding edge {v,w}. Analogously to the above we now define Al , Aye,, and
Al oq- We can now establish sufficient and necessary conditions for A’ to be positive if A <0,
the following two Tabs. 6-7. We distinguish cases whether or not v and w are elements of
C, D or U. In both tables, this is done in the first column and the second columns give the
appropriate values of Af, = and Afe,,. The last columns give tight conditions for A’ to be
strictly positive, i.e., for the case when moving such a set U from C to D increases modularity
in G'.



Table 6: The different effects on modularity if, after the insertion of edge {v,w}, we move a specific subset U
of nodes from cluster C to cluster D.

preconditions formulae for A7, and Ay, A<0and A" >0 iff
= LACOU AEC’ov S
v,wg CUD Cov m+1
¢ /ECm) = (mLH)QAECov [ACova (1 + )ACov)
veC\U, wé¢ D or Cov = mLHACov AEC’ov e
w e C\U, v ¢ D 2 degq(U) [ACO’U? (1 + %)ACOU + de%(?m)

veC\U, weDor
weC\U, ve D

AECov S

[ACova (]- + )ACOU)

v¢ C, weDor

AECov S

w¢C veD | Npoy, = (557) Ancon + 381 | [Acon, (1+5)Ace — “42)
veU, wé D or Cov = mtAcov AEOov €
weU, v ¢ D /EC’ov = (m+1 )QAECOU [ACOW (1 + )ACOU)

velU, weDor
weU veD

/ _ A T

Cov — m+1 Cov t m(ii-l o)
/ _ °ga
ECov — (m+1) Apcov + 2(m+1)2

AE‘Cov S

[Aco, (1+ )Acov 4 2mt2-—degg(U)

2m?

)

Table 7: For the deletion of edge {v,w}, this table details effects analogously to Tab. 6

preconditions formulae for Ay, and A% A <0and A’ > 0iff
v,wg CUD Aoy = miTdc0w Agcoy €
A/ECov - (m+1) Agcoy [Acou, (1 + ,”)ACOU)
v,we C\U Aoor = m-%l—lACOU (U Agcoy € .
A/‘ECov - (m+1) AEC’ov - ((,e,gﬁ(l)z) [Acov, (1 + T,,)ACm %%Z(U))
v,w € D A/Cov = m+1 ACOU AECO’U €
| Alpcor = (1) *Becon + TéT [Acon (1 + £)Acy, — L))
A/COL = %ACOU AECov €
e v A/EC‘ou = (m+1) AE00U++ W [ACO'LM (1 + %)ACOU - M)
veU, we C\U or AL, = T ACos — AECo €
wel, veO\U | Ay, = (529)* Apce + 2560001 | [Agy,, (14 2)Ag,, — 2titdegf)—deq(0))

Summarizing, if we want to adapt a clustering to a change in a graph by moving a set U
of nodes between clusters, the given ranges for Ao,y categorize exactly when a given set U
(specified by the first column) will increase modularity for the new graph G’. However, this
does not determine a specific set U—we still have to decide on this, but by the size of the
range for Agcoy we can deduce some structure. Since we aim at a dynamization dGlobal of the
global agglomerative algorithm, a reasonable approach is as follows: Backtrack specific merge
operations of the static algorithm sGlobal until the most promising (according to Tabs. 6-7)
operations in terms of moving a set U are available; then let the algorithm finish the clustering
for G’. Of course this does not yield optimality by any means, nor does it identify the best
set U, but it gives Global a fighting chance to find a good improvement with minimum effort,
since exclusively the most promising parts of the clustering are broken up.

In the following we detail our update proce-
dures which are motivated by the above discussion.

Algorithm 3: backtrack(v)

For these we require the helper algorithms given in

Algs. 3-5. Algorithm 3, backtrack(v),

resulted from.

1 C(v) = C'(v)U

Cw)\C'(v)

splits the cluster containing v into those two parts it



Algorithm 4, isolate(v), iteratively backtracks
those merges that involved v, until v is contained in
a singleton. Algorithm 5, separate(u, v), backtracks
those merges involving both u and v until v and v
are in different clusters.

Algorithm 4: isolate(v)

1 while [C(v)| # 1 do
2 L backtrack(v)

Algorithm 5: separate(u, v)

1 while C(u) = C(v) do
Backtrack Inter-Cluster Edge Addition. L backtrack(u)
Since we assume for most graphs that the degree
of each cluster does not exceed m, we have the best chances to increase modularity if we
choose U to contain either v or w and move U to the cluster containing the other node (see
sixth case in Tab. 6). Therefore, we define this part of our backtrack strategy as isolate(u),
isolate(v).

Backtrack Intra-Cluster Edge Addition. In this case it seems to be the best choice to set
U in such a way that it is a subset of C' and contains either one of v or w, or both (cases two and
four in Tab. 6; regarding case four, note that D can be empty, which implies deg(D) = 0).
We thus define this backtrack case as separate(u,v). Since, however, the expected number of
backtrack operations is 2 if we assume that in each such split, v and v are separated with
probability 1/2 (see below for details), one might think that this is too little an invested
effort. We thus also tested an alternative which performs isolate(u) and isolate(v); however
this uniformly did not raise quality but only runtime and distance.

Backtrack Edge Deletions. For the case of edge deletions it is more difficult to find good
backtracking strategies. For additions we can try to reasonably reduce the sizes of the affected
clusters by splitting them into parts that either form new clusters or merge with existing ones.
The strategy in the case of deletions should thus be the inverse: Split off parts of the clusters
that are unaffected by the edge deletion and link them with the affected ones. But how do
we know which cluster to split? We leave this question unanswered, analytically, and rely on
common sense to define the following procedures:

— Inter-cluster edge deletion: do nothing (C = C, but do call Global, as usual)
— Intra-cluster edge deletion: isolate(u), isolate(v)

Analysis of the isolate and the separate Operations. It is easy to see that the expected
number F{S} of backtrack steps S for a single call of separate(u,v) is 2, if we assume that a
backtrack step divides a cluster randomly and thus separates w and v with probability 1/2.
Without further a priori knowledge this is a reasonable assumption; however, it is crucial
to note that all our findings (The. 1 in particular) remain valid for any arbitrary but fixed
constant probability instead of 1/2. For simplicity we use 1/2 in the following. Then, S is
distributed according to the geometric distribution with parameter 1/2 yielding E{S} = 2.

For the proof that the expected number E{I} of backtrack steps I for a single call of
isolate(v) is in @(Inn) (see The. 1), we require the following two lemmas for the theorem that
proves the bound.



Lemma 1. Let (2, A, P) be a probability space, Ay, ...,

(UA>_1— (1—p)"

P(A;))=p,i=1,...,n. Then

(Proof omitted)

Lemma 2. Let i € No,j € N. Then it holds that

FO ()it

Specifically, for j =1 the following equation holds:

FE0-G)) e

A, € A independent events with

1 1
In2 i+j °
1
i+1

Proof. The proof uses induction over 4, with partial integration for the induction step. Note
that it holds for all j € N. For brevity we just give a proof sketch.

OGO

g f

(such that g = —- n 2< > and f' = 1n2<;>xi<1—<;>z>“ )

0 W@) ,
L) ()

i1 co /1 (Hi)e
- ! — / (> dx
Je.oog+e—=1 Jg 2
il(j — 1! i 1
(J+i—1)! In2 i+y

Theorem 2. Let n € N and X]@,i =1,...,n, 7 =12,...

are Bernoulli-distributed with parameter % We define

N:=min{fkeNo:Vie{2,...,n} Jje{1,...,

Then it follows for the expectance of N:
E{N} € O(Inn)

_ [ P G) < (;) )] (= 0 for i # 0, which holds here)
2(3)1(-(5))

be i.1.d. random wvariables that

Ky x(P % xMy



Proof. W.lo.g. n > 2.

E{N} = iP(N —k)-k= iP(N > k)
k=0 k=0

=Y P@Eie{2...,n}¥je{l,....k}: X" =xV)

o0 I\ n—1 ’
= kZ_Ol - (1 - <2) ) (Lemma 1)
(rewrite)
S S (;)’“)f JR—
S ) reonte)
0 — T T\
(Z /0 ) <; - (1 - <;) > d:c) (vect. approx.)
co(Eis ) -

) k
(set event A; : Vj € {1,....k}: X\ = X!V, then it holds P(A;) = <> )

=0
n—2 n
1 1 1 1 1
€0 m20@+1> 69(1112 (2%))
€ O(lnn) (n-th harmonic no.)

We can interpret the random variables X j(i) € {0,1} of experiments X such that for the j-th
division (by a backtrack step), XJ@ = 0 if the i-th node is in the left half, and Xj(-i) =1if

the i-th node is in the right half. If we assign to node v index 1, then X J(i) - xW means,
that node i is in the same half as v. Event A; then means that for all experiments 1,...,k

node i always ended up on the same half as v. We thus look for the first experiment such
that each node other than v has ended up in another half than v at least once (note that
multiply separating a node ¢ from v doe not alter the statement). Now its easy to see that
The. 2 proves The. 1.



D Further Experiments
D.1 Fundamental Observations

_— StaticNewman2:929 : Modularity avg 0.611194

—_— StaticBlondel(Random,FirstPeak):239 : Modularity avg 0.628871

—_— Blondel(Neighborhood(MSBFES, 1),Random, FirstPeak,Affected):722 : Modularity avg 0.621762
—_— Newman2(Neighborhood(MSBFS, 1)):66 : Modularity avg 0.618707

—_— PartialILP(Cplex,Modularity,Merge Neighborhood(MSBFS, 1)):277 : Modularity avg 0.628585
—_ EOO(Optimizer,Modularity, Merge,Shift,Split,16):995 : Modularity avg 0.594639

—_ Reference : Modularity avg 0.620461

Fig. 10: In terms of modularity, dEOO lags behind the other algorithms.
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— Newman2(Backtrack):451 : Rand (g) avg 0.0300405

—_— StaticNewman2:128 : Rand (g) avg 0.02692

— StaticBlondel(Random,FirstPeak):327 : Rand (g) avg 0.03986

—_— Blondel(BoundedNeighborhood(MSBFS 4),Random,FirstPeak,Affected):840 : Rand (g) avg 0.0118085

—_— Newman2(BoundedNeighborhood(MSBFS,16)):192 : Rand (g) avg 0.0218493

Fig. 11: In terms of R4-distance, dynamics are consistently better on Ge.



D.2 Performance

20’—

of sGlobal and sLocal

15

o

500

1
1000

1500 2000

———StaticNewman2:389 Cluster Count
StaticBlondel(Array,FirstPeak):236 Cluster Count

Reference Cluster Count

Fig. 12: Cluster count: sLocal yields a finer clustering than sGlobal, a similar observation holds for the dynamic

counterparts.

0.40

StaticNewman2:389 : Modularity avg 0.373356
StaticBlondel(Array, FirstPeak):236 : Modularity

Reference : Modularity avg 0.452056

avg 0.428688

Fig. 13: Quality: sLocal surpasses sGlobal on this generated graph.



D.3 Node Orders of dLocal and sLocal
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0 500 1000 1500 2000
——  StaticBlondel(Array,FirstPeak):511 : Rand (g) avg 0.152812
——  Reference : Rand (g) avg 0.0000192771
——  StaticBlondel(InvArray,FirstPeak):96 : Rand (g) avg 0.15601
——  StaticBlondel(Random,FirstPeak):888 : Rand (g) avg 0.207303

Fig. 14: The effect of different node orders, Random and two fixed orders (Array and InvArray), for sLocal on
smoothness, in terms of R4-distance.
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StaticBlondel(Array,FirstPeak):190 : Rand (g) avg 0.0282659
StaticBlondel(InvArray.FirstPeak):552 : Rand (g) avg 0.027855
StaticBlondel(Random,FirstPeak): 142 : Rand (g) avg 0.0396427

Fig. 15: The effect of different node orders, Random and two fixed orders (Array and InvArray), for dLocal on
smoothness, in terms of R,-distance.



D.4 On the Behavior of the Dynamics

1 I
] 50000 100000 150000

—— Blondel(BoundedNeighborhood(MSBFS,8), Array, FirstPeak, Affected):479 Cluster Count
= Newman2(BoundedNeighborhood(MSBFS,§)):825 Cluster Count
~— PartialILP(Cplex,Modularity NoMerge, BoundedNeighborhood(MSBFS,8)): 115 Cluster Count

———  PartialILP(Cplex,Modularity, Merge, BoundedNeighborhood( MSBFS,8)):884 Cluster Count

Fig. 16: Cluster count: dILP(merge) and dILP(noMerge) roughly bound dLocal and dGlobal from below and
above, respectively

—  Blondel(BoundedNeighborhood(MSBES 4),Random,FirstPeak, Affected):813 : Modularity avg 0.680884
—  Newman2( i MSBFS,16)):479 : i avg 0.634049

—  Reference : Modularity avg 0.669392

—  Blondel(Neighborhood(MSBES, 1),Random FirstPeak, Affected):643 : Modularity avg 0.684073

—  Newman2(Backtrack):52 : Modularity avg 0.645054

Fig.17: Dynamic algorithms (from top to bottom: dLocal@N,;, dLocal@BN,, reference, dGlobal@BT,
dGlobal@BN ) adapt quickly to changes in the ground-truth clustering, such changes are indicated by drops
in the reference quality.



E Different Distance Measures Agree
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- StaticNewman2:785 : Rand

- SmucNewmanZ 785 : Jaccard

. 2:785 : Fowlkes—Mall
s

avg 0.0523922
avg 0.131191
avg 0.0804927
avg 0.0912558
avg 0.0646

StaticNewman2:785 : Fred & Jain
StaticNewman2:785 : Maximum Match

Fig. 18: Raw data for several distance measures
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StaticNewman2:785 :

Rand
Jaccard

avg 0.0523922
avg 0.131191

Fowlkes—Mallows avg 0.0804927
Fred & Jain avg 0.0912558
Maximum Match avg 0.0646

Fig. 19: Smoothed data corresponding to Fig. 18




E.1 Prep Strategies: Comparison of Sizes s for dGlobal@BN

0.46
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0.40
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1
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1
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Newman2(BoundedNeighborhood(MSBFS,2)):42 : Modularity
Newman2(BoundedNeighborhood(MSBFS,4)):622 : Modularity
Newman2(BoundedNeighborhood(MSBFS,8)):895 : Modularity
Newman2(BoundedNeighborhood(MSBFS, 16))::
Newman2(BoundedNeighborhood(MSBFS,32))::
Reference : Modularity avg 0.452056

- Modularity
8 : Modularity

avg 0.407212
avg 0.416692
avg 0.422496
avg 0.42631

avg 0.431329

Fig. 20: Quality: dGlobal@BN; benefits from higher values of s in this range

|
2000 4000

Newman2({BoundedNeighborhood(MultiSourceBFS,8)):481 Runtime
hood(MultiS BFS.16)):564 Runtime

Newman2(BoundedNeighborhood(MultiSourceBFS,32)):966 Runtime

Newman2(B

avg 33.3122
avg 36.4708
avg 50.3912

6000 8000 10000
. Newman2(BoundedNeighborh i BFS,2)):615 Runtime avg 23.4556
. N; 2(BoundedNeighborh i BFS,4)):692 Runtime avg 27.2638

Fig. 21: Runtime for dGlobal@BNj; increases (sublinearly) with s



E.2 Trials with arXiv Data: Category Nuclear Theory

Dynamics and statics, batch size 50:

0.15

0.10

00 20 300 400 500 600
Flg 22: Rq, {arx}: On a very low level, the statics

(sLocal and sGlobal) and dGlobal@BT are slightly
less smooth than dLocal@BN. and dGlobal@BN; .
The overall level indicates the graph’s stability.
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1 00 200 300 4()() 500 600

Flg 24: |C|, {arx}: Clearly, dGlobal@BT and the
statics (sLocal and sGlobal) rebalance and re-
organize the clustering, while dLocal@BN, and
dGlobal@BN ;s more often enlarge existing clusters.
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000 10000 15000 20000 25000 30000
Fig. 26 {arx}: The number of nodes (lower blue

plot) and especially the number of edges (upper
red plot) for Nuclear Theory are rather volatile.
Clique-wise growth proves local-unfriendly.

Various dynamics, batch size 1:

0.008 |-
0.006

0.004

0.002

: 000 10000 15000 20000 25000 30000
Flg 23: Ry, {arx}: On an extremely low level, only
dGlobal@BT reacts to the harsh graph changes (see
Fig. 26); dLocal@N,, dLocal@BN,, dGlobal@BN

and dGlobal@N; hardly spot out.
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100

0 5000 10000 15000 20000 25000 30000

Fig.25: |C|, {arx}: As in Fig. 24, dGlobal@BT re-
balances for higher quality; the locals (dLocal@N,,
dLocal@BN,) do slightly better than the globals
(dGlobal@BN s, dGlobal@N,).

I
5000 10000 15000 20000 25000 30000

Fig.27: Runtimes, {arx}: Only dGlobal@BT is
largely unaffected by graph growth. Prep strat-
egy N (dLocal@N,, dGlobal@N, is slower than BN
(dLocal©@BN., dGlobal@BN ;).



E.3 Trials with arXiv Data: Category Computer Science

Category CS with all subcategories consists of 14K e-prints, 25K authors. We use batch size
10 for dynamics, compared to statics using batch size 100 in Fig. 33. dGlobal@BT excels.
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Fig.28: Rg, {arx}: Concerning smoothness,

all tested dynamic algorithms (dGlobal@BT,
dLocal@BN,, dLocal@N;, dGlobal@BN ;) behave
almost identically, even dGlobal@BT.
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500

0 500 1000 1500 2000
Fig.30: |C|, {arx}: All algorithms identify a linear
growth in |C| over time; with dGlobal@BT slightly
beyond the others (dLocal@BN., dLocal@N,

dGIobaI@BNlﬁ).
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0 500 1000 1500 2000
Fig.32: {arx}: There seems to be an unflinching

growth in popularity of arXiv’s categories of com-
puter science. Both the number of nodes (lower
blue plot) and the number of edges (upper red
plot) grow sharply and steadily.
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500 1000 1500 2000
Fig.29: Modularity , {arx}: On a very high level of
quality, only dGlobal@BT starts to slightly stand
out after a while, and dGlobal@BN s falls behind;
dLocal@BN, and dLocal@N; hardly differ.

L L

500 1000 1500 2000
Fig.31: Runtimes, {arx}: Even clearer than for

Nuclear Theory, dGlobal@BT scales well with
the graph while the other algorithms slow
down more strongly (dLocal@BN., dLocal@Ny,
dGlObal@BNu;).
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50 100 150 200
Fig.33: Modularity, {arx}: Batch size 100 for
statics vs. dGlobal@BT. By margins of 0.01%
dGlobal@BT lies between sLocal and sGlobal.
dGlobal@BT has virtually the same R4 and |C| as
the statics but is faster by factors beyond 10%.
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