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Zusammenfassung 

 
Die Familie der Bag-1-Proteine (Bcl-2 assoziiertes Athanogen 1) besteht aus vier 

Mitgliedern: Bag-1L, Bag-1M, Bag-1 and Bag-1S. Die Proteine werden von derselben 

mRNA generiert, entstehen aber unter Verwendung alternativer 

Translationsinitiationsstellen. Bag1L, die längste Isoform, wird in einer großen 

Bandbreite von Tumoren überexprimiert, während es in benignem Gewebe gering 

nachweisbar ist, ein Befund, der auf eine Rolle des Proteins bei der Tumorprogression 

hindeutet. Die Auswirkung der erhöhten Expression von Bag1L in Tumorzellen wird 

unterschiedlich bewertet. Zum einen gilt die verstärkte Expression dieses Proteins ein 

Anzeichen für eine verbesserte Prognose, auf der anderen Seite wird Bag1L-Expression 

mit erhöhter Aggresivität des untersuchten Tumors assoziiert. Die Zielsetzung der 

vorliegenden Arbeit war es daher, die Funktion von Bag1-L bei der Entwicklung von 

malignen Prostatatumoren genauer zu untersuchen. Hierfür wurden Bag-1 defiziente 

Mäuse (Bag-1-/-) mit Tieren eines Mausmodells für transgene Adenokarzinome der 

Mausprostata (TRAMP) verpaart. Die Analyse der aus dieser Verpaarung resultierenden 

Mäuse zeigte, dass sowohl das Tumorgewicht als auch der Verlauf der Erkrankung 

signifikant mit dem Expressionslevel von Bag1-L korrellierte. Überexpression von 

Bag1-L erhöhte die Fähigkeit der benignen Zelllinie BPH-1 Kolonien zu formen, zeigt 

aber einen gegenläufigen Effekt auf die malignen Zelllinie 22Rv.1. Die 

wachstumsinhibierende Funktion konnte auf einen im nachfolgenden Bag1- Peptid 

genannte 68 Aminosäuren umfassender Teilbereich von Bag-1L eingegrenzt werden. 

Die ektopische Expression des Bag1-Peptids reduzierte die Viabilität der malignen 

Zellen drastisch, während das Wachstum der benignen Zelllinie BPH-1 nicht signifikant 

beeinflusst wurde. Die Fähigkeit des Bag1-Peptids, das Wachstum von 

Prostatatumorzellen zu hemmen, konnte im Tierversuch unter Verwendung von 

Xenograf-Mausmodellen der humanen Zelllinien 22Rv.1 und LNCaP bestätigt werden. 

Überexpression des Bag1-Peptids in diesen Zelllinien veringert deren Fähigkeit Tumore 

zu bilden und erhöht die Apoptoserate in den Tumoren deutlich. Diese Wirkung des 

Peptids konnte mit seiner Interaktion mit den glukoseregulierten Proteinen GRP75 und 

GRP78 korelliert werden. Diese agieren während der Tumorentwicklung als molekulare 
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Chaparone. Immunfluoreszentfärbungen zeigten die Kollokalisation des Bag1-Peptids 

mit GRP75 und GRP78 im endoplasmatischen Retikulum und in der äußeren Membran 

der Mitochondrien.  In Trunkierungsstudien konnte der N-terminale Bereich des Bag1-

Peptids als der für die wachstumsinhibierende Wirkung verantwortliche identifiziert 

werden und in weiterführenden Studien schließlich auf 19 Aminosäuren eingegrenzt 

werden. Die vorliegende Arbeit beschreibt die Identifizierung und Charakterisierung 

einer kleinen Region des Co-Chaperones Bag1L als wachstumsinhibierendes Molekül, 

das für die Hemmung des Wachstums von Prostatatumorzellen eingesetzt werden kann. 
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Abstract 

 
Bag-1 (Bcl-2 associated athanogene, member 1) is a family of proteins formed by 

four members (Bag-1L, Bag-1M, Bag-1 and Bag-1S) coded by the same mRNA via 

alternative translational initiation sites. The longest isoform of the family, Bag-1L, has 

been found overexpressed in a variety of cancers while it is almost undetectable in 

benign tissues, indicating its role in the transition of cells towards malignancy. However 

the exact function of Bag1-L in this process is controversial. On the one hand, high 

levels of this protein in tumour specimens are indicative of good prognosis and better 

patient outcome. On the other hand Bag-1L has been associated aggressive tumours. The 

aim of this work is therefore to clarify the role of Bag-1L in prostate cancer. For this 

purpose, transgenic adenocarcinoma of the mouse prostate (TRAMP) model was crossed 

with Bag-1 knock out mice (Bag-1+/-). The resulting mice showed reduction in tumour 

weight and the level of expression of the Bag-1 proteins correlated with cancer 

formation. Moreover in clonogenic assay it was shown that Bag-1L overexpression 

increases colony formation in the benign cells BPH-1 while it has the opposite effect in 

the malignant cells 22Rv.1. A 68-amino acid sequence (defined as Bag-1 peptide) was 

identified to be responsible for the growth inhibitory function on the 22Rv.1 while it had 

no effect in the BPH-1. The ability of this peptide to inhibit prostate tumour cell growth 

was also demonstrated by establishment of xenografts with 22Rv.1 and LNCaP prostate 

tumour cells stably expressing the Bag-1 peptide. These cells showed a reduced ability 

to form tumours and increased apoptosis compared to the control. The growth inhibitory 

action of the peptide correlated with its ability to interact the glucose regulated proteins 

GRP75 and GRP78 that are molecular chaperones involved in cancer formation. 

Immunofluorescence experiments were used to show colocalisation of the peptide with 

the GRPs and localisation in the endoplasmic reticulum and the outer membrane of the 

mitochondria in tumour cells. The N-terminal part of the peptide was identified as the 

region responsible for its growth inhibitory action and was further narrowed down to the 

first N-terminal 19 amino acids. Thus in this work a small region derived from the co-

chaperone Bag-1L has been identified as a growth inhibitory molecule that can be used 

to block growth of prostate tumour cells.  
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1. INTRODUCTION 

1.1 Molecular chaperones and carcinogenesis 

 

Over the years organisms have developed systems to react to external insults 

which perturb normal cell homeostasis. One of the most conserved and studied of these 

systems is represented by the heat shock response, a mechanism first characterized as 

the reaction of cells to sudden increase of temperature (Ritossa, 1962). This kind of 

response allows cell survival in otherwise stressful conditions like exposure to heavy 

metals, lack of oxygen and nutrients, radiation and metabolic inhibitors. The 

characteristic feature of this system is the increased expression of a specific set of 

proteins termed the heat shock proteins or molecular chaperone (Amin et al., 1988; 

Ritossa, 1962). The physiological role of this class of proteins is to prevent protein 

aggregation and misfolding during stress (Hightower, 1980), to regulate folding of 

nascent polypeptides (Frydman et al., 1994) and to drive misfolded proteins to the 

proteasomal machinery for degradation (Hendrick and Hartl, 1993). In addition, the 

molecular chaperones play a role in gene expression, DNA replication, cell 

differentiation and proliferation, senescence, apoptosis and immortalization involving 

pathways crucial for embryonic development, cell homeostasis and cancer progression 

(Schmitt et al., 2007) 

One of the most representative subgroups of this class of proteins is the Hsp70 

(Heat shock protein 70 kDa) family. This group of proteins consists of Hsc70 and 

Hsp70 that are the constitutively expressed and stress-induced isoforms of Hsp70 

(Ritossa, 1962). Other members in this family are mtHsp70, also known as 

mortalin/GRP75 (Glucose Regulated Protein 75 kDa) (Bhattacharyya et al., 1995) and 

BiP/GRP78 (Glucose Regulated Protein 78 kDa). Both GRP78 and GRP75 are induced 

by glucose depletion (Lee, 1992). 

The Hsp70 molecular chaperones are generally organized in three distinct 

domains: an N-terminal ATPase domain, that covers one half of the protein and drives 

the hydrolysis of ATP necessary for the chaperone’s activity (Bukau and Horwich, 

1998); a central peptide/substrate binding domain through which the chaperones bind 

their client proteins (Flynn et al., 1991; Rippmann et al., 1991) and a C-terminal 

oligomerization domain that mediates the self interaction of the chaperones during 
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substrate binding (Palleros et al., 1991). The action of these proteins is dependent on a 

cyclic series of events involving ATP hydrolysis. When bound to ATP, the molecular 

chaperones interact poorly with their substrate molecules (Steitz et al., 1981). Binding 

affinity to the client proteins is increased during ATP hydrolysis. This is driven by the 

ATPase domain that triggers a conformational change throughout the protein upon 

ATP binding (Steitz et al., 1981). The cycle of ATP hydrolysis ends with the binding 

of another molecule of ATP and the release of the client proteins (Steitz et al., 1981). 

Some members of the Hsp70 family are overexpressed in many tumours such as 

breast (Ciocca et al., 1993), colon (Dundas et al., 2005) and prostate tumours (Conford 

et al., 2000) and are associated with poor prognosis and drug resistance neoplasia 

(Jäättelä, 1996). Intriguingly they are expressed on the surface of cells in the transition 

from the benign to the malignant state (Kaur et al., 1998) providing the possibility to 

be used as biomarkers for discriminating  between  healthy and pathologic conditions. 

A group of non-client proteins termed co-chaperones binds the molecular 

chaperones to modulate their activity. These proteins have functions ranging from 

catalysis of the nucleotide binding/hydrolysis, to the formation of multicomplexes and 

the choice of specific client proteins for the chaperones (Caplan, 2003). In addition 

they also have a chaperone activity themselves (Freeman and Yamamoto, 2002). One 

of the most characterized and studied groups of co-chaperones is the Bag family of 

proteins that serves as co-chaperones for Hsp70 proteins. 

 

 

1.2 The Bag Family of Proteins 

 

The Bag family of proteins consists of an evolutionary conserved group of 

proteins present in several species including yeasts, plants and mammals (Doukhanina 

et al., 2006; Sondermann et al., 2002; Sondermann et al., 2001). The first gene of the 

Bag family was identified in a screen for interaction partners of Bcl-2 using mouse 

embryo expression cDNA library (Takayama et al., 1995). This led to the identification 

of a gene that increased synergistically the anti-apoptotic action of Bcl-2 and was 

therefore named Bag-1, Bcl-2 associated athanogene (from the Greek: a-, anti- and 

thanaton, death) member 1.  

In addition to Bag-1, five other members (Bag-2-6) were identified and these 

constituted the Bag family of proteins (Fig. 1). The Bag proteins are believed to 
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function as adaptors for the dynamic organization of complexes involved in several 

pathways, like apoptosis, cell proliferation, growth and stress response as well as 

events crucial for development, neurodegenerative diseases and cancer. Such a broad 

range of functions is covered by the presence of additional domains responsible for the 

specific action of every member of the family. 

 The Bag proteins share a common domain, the Bag domain, located in a single 

copy at their C-terminal region with the exception of Bag-5 that possesses five copies 

of this domain spread throughout the protein (Briknarova et al., 2002).  Through this 

domain the Bag family members interact with a wide variety of proteins including Bcl-

2 (Takayama et al., 1995), the molecular chaperone Hsp70 (Takayama et al., 1999) and 

the E3 ubiquitin ligase CHIP (Carboxyl-terminus of Hsc70-interacting protein) (Arndt 

et al., 2005). Nuclear magnetic resonance (NMR), X-ray crystallography and limited 

proteolysis studies identified the Bag domain as a 110-124 amino acid motif consisting 

of three antiparallel alpha helices of 30-40 amino acids each (Briknarova et al., 2001; 

Brimmell et al., 1999; Sondermann et al., 2001). However the length of the Bag 

domain varies among the Bag family members, producing two distinct sub-groups. A 

“long” Bag domain present in Bag-1 family of proteins and a “short” Bag domain of 

Bag-3, Bag-4 and Bag-5 (Briknarova et al., 2002). Alignment of the Bag domains of 

Bag-2 and Bag-6 showed a truncation of the second alpha helix of Bag-2, while in 

Bag-6 the region upstream the second helix contains several proline residues which 

most likely disorganizes the first helix (Briknarova et al., 2002). 

Bag-3 contains at the N-terminal region a WW domain, so called due to the 

presence of two conserved tryptophan (W) residues (Andre and Springael, 1994). Since 

the WW domain binds the proline-rich region XPPXY present in several proteins of 

the cytoskeleton, it is supposed that Bag-3 may mediate the chaperone action of Hsp70 

with specific regulators of the cytoskeleton but this has not been fully investigate yet. 

Another domain present in Bag-3 is the PXXP domain that mediates the interaction of 

Bag-3 with proteins containing the SH3 domain. It has been reported that the PXXP 

domain of Bag-3 is important for the negative regulation of cell migration and 

adhesion by interfering with the interaction between the SH3 containing protein 

p130Cas and the focal adesion protein FAK (Kassis et al., 2006). Consistently it has 

been shown that Bag-3 PXXP domain interacts also with the SH3 domain of the latent 

PLC!" (Doong et al., 2000) a molecule involved as well in the regulation of cell 
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migration (Vidal et al., 2001). These evidences indicate therefore that Bag-3 plays a 

role in cell motility through interactions mediated by its PXXP domain. 

 

 

 

 

Fig. 1.1: The Bag-1 family.   

The structure of human BAG-family proteins. In red is shown the BAG domain common to all the 
members of the family. In light green is represented the nuclear localization signal (NLS), in blue the 
ubiquitin-like domain, in yellow the WW domain, present only in BAG3 and in dark green the PXXP 
motif. The vertical bars represent the TXSEEX repeats present in the BAG-1 family members (adapted 
from Takayama and Reed, 2001). 

 
 

A ubiquitin-like domain (ULD) is present in the central part of the Bag-1 proteins 

and in a double copy at the N-terminal part of Bag-6 (Manchen and Hubberstey, 2001). 

Ubiquitin is a 76 residues polypeptide binding covalently as a tag to proteins that are 

directed to the proteasome for degradation (Hershko et al., 1979). In Bag-1, the ULD 

links the chaperone activity of Hsp70 to the degradation of unfolded substrates 

(Lüders, 2000). It interacts with the 20S core and 19S subunit of the proteasome in a 

complex involving Hsp70 and the E3 ubiquitin ligase CHIP where it facilitates the 

release of unfolded substrates to the proteasomal machinery (Demand et al., 2001). The 
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two copies of ULD of Bag-6 do not have a clear function but it has been shown that 

deletion of both copies is lethal to the development of Xenopus embryos (Kikukawa et 

al., 2005).  

Specific motifs known as nuclear localization sequence (NLS) direct proteins to 

the nucleus. They consist of either a monopartite series of positively charged amino 

acids or a bipartite sequence formed by two of such series separated by a spacer 

sequence (Lange et al., 2007). Some of the Bag family members possess a nuclear 

localization sequence for translocation in the nuclear compartment of the cell. Bag-1L 

contains at its N-terminal region a monopartite NLS and it is the only member of the 

family of Bag-1 proteins present exclusively into the nucleus (Knee et al., 2001).  A 

bipartite NLS common to all the members of the Bag-1 family occurs upstream of the 

Bag domain (between amino acids 219-234 of Bag-1L) (Zeiner and Gehring, 1995) but 

its function has not been well characterized. Bag-6 contains a NLS right upstream of 

the Bag domain and mutation of this sequence leads to nuclear exclusion of the protein 

(Manchen and Hubberstey, 2001).  

A domain unique to the Bag-1 proteins is the TR/QSEEX motif present in nine 

copies in Bag-1L and M and three in Bag-1 and Bag-1-S (Townsend et al., 2003a) The 

predicted structure of the repeats is an alpha helix with the acidic residues oriented 

toward one side. This structure represents the site of phosphorylation for some kinases 

(e.g. creatine kinase) (Takayama et al., 1998) and it has indeed been found to be 

phosphorylated (Schneikert et al., 2000) but its function is not known yet.  

Among all the Bag proteins the best studied in different signal transduction 

pathways and in transcriptional regulation is the Bag-1 family of proteins. 

 

 

1.3  The Bag-1 family of proteins 

 

1.3.1 Isoforms and regulation of expression 

 

In humans the Bag-1 family consists of four members (50 kDa Bag-1L, 46 kDa 

Bag-1M - otherwise known as RAP46/HAP46 - 36 kDa Bag-1 and a 29 kDa Bag-1S) 

encoded by the same mRNA via alternative translational initiation site (Yang et al., 

1998). The translation initiation site of the largest isoform, Bag-1L, consists of a non-

canonical CUG, while three in-frame AUG downstream form the start codons for the 
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other isoforms (Yang et al., 1998). All the Bag-1 isoforms share a common C-terminal 

region but with variable lengths of N-termini (Takayama et al., 1998) (Fig.1.1). In 

mice, the isoforms produced are only the longest 50 kDa Bag-1L and the shorter 32 

kDa Bag-1S (Packham et al., 1997).  

Translation of Bag-1S can also occur via an internal ribosomal entry site (IRES) 

that enables protein expression in a cap-independent manner providing constant levels 

of Bag-1 protein as a fast response to stress conditions (Dobbyn et al., 2008). The 

action of the IRES requires two trans-acting factors: poly(rC) binding protein 1 

(PCBP1) and polypyrimidine tract binding protein (PTB) (Takahashi et al., 2001). 

These proteins accumulate in the cytoplasm in response to chemotoxic stress induced 

by vincristine that leads to increased translation of Bag-1S. In general the expression 

levels and the cellular localization of the different Bag-1 isoforms can vary 

considerabily for different pathological conditions (Takayama et al., 1998). 

 

 

1.3.2  The Bag-1 proteins are multifunctional 

 

The Bag-1 family members interact with several proteins involved in apoptosis, 

proliferation, stress response and regulation of transcription. For this reason these 

proteins are considered multifunctional. Some of their actions are isoform specific 

and/or cell type specific. The main interaction partners and their actions are 

summarized in Table 1.1. 

 

 

1.3.2.1 Regulation of Hsp70 activity and stress response 

 

The most studied (and the strongest) interaction partner of the Bag-1 proteins is 

Hsp70. This protein uses the ATPase domain at its N-terminus to bind to helices 2 and 

3 of the Bag domain in a stoichiometry of 1:1 and with a dissociation constant Kd of 1-

3 µM (Sondermann et al., 2001). In this respect Bag-1 serves as a nucleotide exchange 

factor of Hsp70 and plays a role in the chaperone activity of this protein by allowing 

the release of folded substrates. This action of Bag-1 is competitively inhibited by 

another co-chaperone, Hip (Hsp70 inhibitor protein), and stimulated by Hsp40 (Nollen 

et al., 2001).  
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Isoform 
Interaction 

partner 
Action Reference 

All Bag-1 proteins Bcl-2 Inhibition of apoptosis (Takayama et al., 1995) 

All Bag-1 proteins Hsp-70 Regulation of chaperone activity (Takayama et al., 1997) 

Bag-1-L/M GR Reduction of DNA binding (Kullmann et al., 1997) 

Bag-1L ER Increase of transcriptional activity (Cutress et al., 2003) 

Bag-1 RAR 
Inhibition of transcriptional 

activity 
(Liu et al., 1998) 

Bag-1-L AR Increase of transcriptional activity (Froesch et al., 1998) 

Bag-1-L VDR 

Activation 

Inhibition 

Metabolism 

(Guzey et al., 2000) 

(Witcher et al., 2001) 

(Lee et al., 2007) 

Bag-1; Bag-1-S Raf-1 Proliferation (Wang et al., 1996) 

All Bag-1 proteins GADD34 Inhibition of UPR (Hung et al., 2003) 

GR= Glucocorticoid receptor; RAR= Retinoic acid receptor; AR= Androgen receptor; VDR= Vitamin D 
receptor; UPR= Unfolded protein response 

 
Table 1.1: Interaction partners and activity of the Bag-1 proteins 

The Bag-1 proteins exert multiple functions through the interaction with different proteins. The 
table lists the main interaction partners and the action of the Bag-1 proteins.  

 

 

In stressful conditions, a mechanism that protects the cells from the lethal action 

of heavy metal exposure, heat shock, hypoxia, etc. is induced. In this context, Bag-1 

proteins provide a pro-survival advantage to the cell through their interaction with 

Hsp70. For instance, overexpression of Bag-1 isoforms increases survival of MCF-7 

breast cancer cells after heat shock and point mutations in the Bag domain that destroy 

its binding to Hsp70 fail to rescue the cell (Townsend et al., 2003b). A further 

confirmation that the pro-survival action of Bag-1 is mediated by its interaction with 

Hsp70 comes from studies that show that overexpression of Bag-1 but not of a deletion 

mutant lacking the region of interaction with Hsp70, in rat nigral CSM14.1 and human 

neuroblastoma SHSY-5Y cells, induces resistance to staurosporine and thapsigargin 

treatment (Liman et al., 2005).  

The protective function of the Bag-1 proteins is also dependent on the subcellular 

localization. For example cytoplasmic Bag-1S protects primary cardiac mouse 

myocytes from simulated ischemia/reperfusion (Townsend et al., 2004) while direction 

of Bag-1S to the nucleus via the fusion to a nuclear localization signal abrogated its 

cytoprotective action. The protective action of Bag-1 has also been confirmed in an in 

vivo mouse model of stroke (Kermer et al., 2003) where gene transfer of Bag-1 
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increased survival of neurons upon glutamate treatment and decreased mortality after 

stroke injury (Kermer et al., 2003).  

The attenuation of stress response by the Bag-1 proteins is mechanistically 

described as interference in the function of the stress protein GADD34 (Growth Arrest 

and DNA Damage-Inducible Protein 34 kDa). Exposure to stressful conditions induces 

protein aggregation and misfolding resulting in cell toxicity. Activation of a response 

termed unfolded protein response (UPR) represents the reaction of cells to stress 

leading to reduction of protein aggregation and attenuation of transcription (Kaufman, 

1999). During UPR, GADD34 interacts with the protein phosphatase PP1 and 

attenuates the translational elongation through dephosphorylation of the elongation 

factor 2# (eIF2#) (Connor et al., 2001) resulting! in shutoff of !protein! synthesis. Bag-1 

proteins interact with GADD34 during stress response in a complex including also 

Hsp70 and PP1 resulting in the inhibition of GADD34 effect on protein synthesis and 

in inhibition of stress-induced apoptosis (Hung et al., 2003). 

 

 

1.3.2.2 Regulation of proliferation and apoptosis 

 

Bag-1 proteins were first identified as interactors of Bcl-2 leading to synergistic 

inhibition of apoptosis when the two genes were co-expressed in the lymphoid Jurkat 

cell line (Takayama et al., 1995). Since then several mechanisms have been proposed 

to explain the action of Bag-1 in cell proliferation and apoptosis. 

First, Bag-1 is reputed to regulate cell proliferation and cell growth. through its 

interaction with the serine/threonine kinase Raf-1 (Wang et al., 1996). Raf-1 

phosphorylates and activates the MAP kinase cascade leading to enhanced cell 

proliferation (Weidong et al., 1993). It is thought that Bag-1 can increase cell growth 

through its interaction with this protein. In addition it has been shown that Bag-1 

concentrates Raf-1 at the proximity of the mitochondrial membrane where it interacts 

with Bcl-2. In this situation, Raf-1 can phosphorylate proteins to which it is otherwise 

inaccessible such as the pro-apoptotic protein Bad which is then dissociated from Bcl-

XL leading to cell survival (Wang et al., 1997). Bag-1 proteins also interact with B-Raf 

in a complex with Akt and Hsp70 which leads to the phoshorylation of Bad at serine 

136 and the inhibition of apoptosis. Disruption of this complex results in early lethality 
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in hematopoietic and neuronal cells in a Bag-1 knock-out mouse model (Götz et al., 

2005).   

Second, Bag-1 is reputed to bind to the membrane form of the heparin binding 

EGF-like growth factor (pro-HB-EGF) (Lin et al., 2001) to decrease etoposide-induced 

apoptosis in LNCaP and PC3 metastatses-derived prostate cancer cells. The interaction 

of the two proteins occurs through the cytoplasmic tail of pro-HB-EGF and a region on 

Bag-1 including the ULD but lacking the Bag domain. 

 

 

1.3.2.3 Regulation of transcription 

 

Bag1 proteins can regulate transcription either directly, by functioning as 

transcription factors, or indirectly, by influencing the activity of other transcription 

factors like the nuclear hormone receptors (NHR). 

 

1.3.2.3.1 Bag-1 proteins as transcription factors 

 

The genes that are activated directly by the Bag-1 proteins are mainly viral genes. 

For instance Bag-1M, but not Bag-1L and Bag-1S, can stimulate the transcriptional 

activity of the Cytomegalovirus (CMV) early region promoter requiring both the N- and 

the C-terminal regions (Takahashi et al., 2001). Moreover Bag-1S can function as 

transcription factor stimulating the transcription of the John Cunningham Virus (JCV) 

early promoter (Devireddy et al., 2000). The mechanism by which the Bag-1 proteins 

regulate the viral gene expression is not understood but it is likely to be through discreet 

binding sites of the protein to DNA. It has been reported that Bag-1M is able to bind 

DNA through the first 10 amino acids at the N-terminal region (Zeiner et al., 1999). 

These consist of two clusters of three lysine (from 2 to 4) and three arginins (from 6 to 8) 

included in the nuclear localization sequence present only in the isoforms Bag-1M and -

L (Zeiner et al., 1999). 

 

1.3.2.3.2 Bag-1 proteins and the nuclear hormone receptors 

 

Bag-1 proteins have also been reported to bind nuclear receptors and to influence 

their transcriptional activity. Nuclear hormone receptors are transcription factors 
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structurally organized in distinct domains: an the N-terminal activation function 

domain (AF-1) followed by a DNA binding domain, a hinge region, a ligand binding 

domain (LBD) and a variable C-terminal domain according to the subtype of receptor 

(Kumar and Thompson, 1999).  

In all the cases analysed it was found that the C-terminal region of the Bag-1 

proteins binds the nuclear receptors (Froesch et al., 1998; Guzey et al., 2000; 

Kullmann et al., 1997; Liu et al., 1998). Since this region also binds Hsp70 (Takayama 

et al., 1997) this indicates that the mediation of Hsp70 in the regulation of nuclear 

receptor action by the Bag-1 proteins is required. The following examples are some of 

the reported specific interactions and modulation of nuclear receptor actions by Bag-1 

proteins (see also Table 1.1 for a summary). 

1. Bag-1-M interacts with the GR and inhibits, together with Hsp70, 

dexamethasone-induced activation of transcription by the receptor (Kullmann et al., 

1997; Schneikert et al., 2000). It has also been shown that the binding of Bag1-M to 

the GR destroys the interaction of the receptor with its responsive elements on the 

DNA (Kullmann et al., 1997; Schmidt et al., 2003). 

2. The longest isoform Bag-1-L binds the androgen receptor (AR) to enhance its 

activation upon hormone binding (Froesch et al., 1998). The binding to the receptor 

takes place through an head-to-tail interaction between the Bag domain and the AF-1 

domain of the AR on one hand, and the N-terminal region of Bag-1-L and the ligand 

binding domain of the AR on the other hand (Shatkina et al., 2003) Bag-1L also binds 

chromatin on the androgen responsive elements (AREs) playing a role in the 

recruitment of the receptor to its response element (Shatkina et al., 2003).  

3.  Bag-1L interacts and regulates the action of the Vitamin D3 receptor (VDR) 

(Guzey et al., 2000). This effect seems to be cell type specific since in glioblastoma 

cells Bag-1L inhibits VDR activation upon treatment with 1,25-dihydroxyvitamin D3 

(Witcher et al., 2001). Conversely it has been reported that in oral keratinocytes (Lee et 

al., 2007) and in the prostate cancer bone metastasis-derived cell line PC3 (Guzey et 

al., 2000) Bag-1L enhances VDR transactivation. Bag-1L acts on VDR-dependent 

transcription also by enhancing the synthesis of the 24-hydroxylase, an enzyme 

important for the catabolism of vitamin D3, influencing therefore the levels of the 

ligand and its negative feedback loop regulation (Lee et al., 2007).  
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 1.3.3 Bag-1 in cancer 

 

In addition to its effect in transcription, studies of overexpression of Bag-1 

proteins in vitro and in vivo led to the suggestion that Bag-1 levels could be used as 

prognostic marker for patient outcome. On the other hand, changes in levels of Bag-1 

can also affect tumour progression. 

  

1.3.3.1 Bag-1 as prognostic marker 

 

Overexpression of Bag-1 has been detected in patient specimen of colorectal 

tumour (Clemo et al., 2008), laryngeal cancer (Yamauchi et al., 2001), cervical tumour 

(Yang et al., 1999) and follicular thyroid carcinoma (Ito et al., 2003). In breast cancer 

nuclear expression of Bag-1 has been associated with poor prognosis (Tang et al., 

1999) while reduced nuclear and increased cytoplasmic levels have been related to 

invasive tumours (Krajewski et al., 1999). Intense staining for Bag-1 proteins has also 

been detected in the nucleus and the cytoplasm of prostate cells in early stage prostate 

cancer patient associated with more aggressive tumours (Krajewska et al., 2006). In 

addition it has been shown that Bag-1 gene is amplified and overexpressed in hormone-

refractory prostate cancer (Mäki et al., 2007). Intriguingly increased levels of Bag-1 

can be also predictive of better patient outcome and overall survival when detected in 

early stage breast cancer (Millar et al., 2008; Nadler et al., 2008; Turner et al., 2001) 

and lung carcinoma (Rorke et al., 2001).  

 

1.3.3.2 Bag-1 in tumour progression 

 

From in vitro experiments it has been shown that Bag-1 proteins can increase 

cancer cell migration implicating a possible role in metastasis. For example Bag-1 

overexpression increased motility of MKN74 cells derived from well differentiated 

gastric cancer (Naishiro et al., 1999). In addition stable transfection of these cells with 

Bag-1 and injection into the peritoneal cavity increased metastatic lesion formation 

(Yawata et al., 1998). Similarly an increase in metastatic potential upon Bag-1 gene 

transfer has also been observed in B16 melanoma cells injected into immunodeficient 

mice (Takaoka et al., 1997). The influence of Bag-1 on metastases has been 
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demonstrated also in a lung-metastasis mouse model where reduction of Bag-1 gene 

level resulted in decreased number of lung metastatic foci (Götz et al., 2004). 

The overexpression of Bag-1 proteins in cancer is directly correlated with the 

anti-apoptotic action of these proteins resulting in a survival advantage for the cancer 

cells. In some cases it has been described that the four isoforms of the Bag-1 family 

have distinct anti-apoptotic function in tumour cells. For example Bag1-L and Bag-1M 

are shown to be the only members of the family that increase resistance to anti-cancer 

drug treatment in cervical carcinoma cells (Chen et al., 2002) and in breast cancer cell 

line MCF-7 while the other isoforms are uneffective (Liu et al., 2009).  

From in vivo, in vitro and clinical studies it is clear that the role of Bag-1 in 

cancer is still controversial and strongly dependent on factors such as cell type, stage of 

the neoplasia and relative abundancy of the isoforms of the family. 
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1.4 AIM 

 

Bag-1 family of proteins consists of four members, Bag-1L (p50), Bag-1M (p46), 

Bag-1 (p32) and Bag-1S (p29) originating from the same mRNA through different 

translational initiation sites by a leaky mechanism. These proteins regulate diverse 

cellular processes in physiological and pathophysiological situations. In cancer their 

role is controversial since in some cases they are associated with good prognosis and 

better patient outcome when overexpressed and in other cases their increased levels are 

indicative of aggressive and invasive tumours. One Bag-1 isoform associated with such 

reported dual function is Bag-1L. 

The aims of this study are three-fold. First, to determine whether changes in Bag-

1L levels can influence prostate cancer cell growth. Second, to identify specific 

sequences on Bag-1L that regulate prostate cancer cell growth. Third, to investigate 

whether these sequences can be used as tools in prostate cancer therapy. 
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2. MATERIALS AND METHODS 

2.1 Materials 

 

2.1.1 Chemicals and consumables 

Name Source 

Agarose Peqlab, Erlangen 

Ampicillin Roth, Karlsruhe 

Ammonium Persulfate (APS) Roth, Karlsruhe 

Bovine Serum Albumine (BSA) PAA Laboratories GmbH, Pasching 

Bacto-Agar Otto Nordwald GmbH, Hamburg 

Bacto-petri dishes Greiner Labortechnik, Nürtingen 

Bacto-Trypton Roth, Karlsruhe 

Bacto-yeast extract Roth, Karlsruhe 

Bromophenolblue Sigma–Aldrich Chemie, Steinheim 

n-buthanol Roth, Karlsruhe 

Chloroform Merck, Darmstadt 

Crystal violet Lighting Powder Company, INC.,  

Dimethylsuloxide (DMSO) Fluka, Neu Ulm 

Dithiothreitol (DTT) Gibco, Invitrogen, Karlsruhe 

DNA Marker 1 Kb PeqLab, Erlangen 

DNA Marker 100 bp PeqLab, Erlangen 

Dulbecco’s Modified Eagle Medium 

(DMEM) 

Gibco, Invitrogen, Karlsruhe 

ECL™ Western Blot Detection Reagents Amersham Pharmacia Biotech, 

Freiburg 

Ethylenediamine Tetraacetic Acid (EDTA) Roth, Karlsruhe 

Ethanol (EtOH) Roth, Karlsruhe 

Ethidium Bromide Roth, Karlsruhe 

Fibronectin Sigma Aldrich, Taufkirchen 
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FBS (Fetal Bovine Serum)  Gibco, Invitrogen, Karlsruhe 

G418 (Geneticin
®
) Sigma Aldrich, Taufkirchen 

Glycylglycerine Roth, Karlsruhe 

Glycine Roth, Karlsruhe 

Glycerol  Roth, Karlsruhe 

Glucose Roth, Karlsruhe 

Glutamine Sigma Aldrich, Taufkirchen 

Hydrogen Chloride (HCl) Roth, Karlsruhe 

Isopropanol Roth, Karlsruhe 

Magnesium Chloride Roth, Karlsruhe 

Magnesium Sulfate Roth, Karlsruhe 

Methanol (MeOH) Roth, Karlsruhe 

!-mercaptoethanol Roth, Karlsruhe 

Milk powder Saliter, Obergünzburg 

Nonident P-40 (NP40) Boehringer, Mannheim 

Phosphate Buffered Saline w/o CaCl2 and     

MgCl2
 
1X and 10X 

Gibco, Invitrogen, Karlsruhe 

Phenol Roth, Karlsruhe 

PMSF (phenyl methanesulphonyl fluoride) Sigma Aldrich, Taufkirchen 

Potassium Chloride Merck, Darmstadt 

Poly-L-lysine Sigma Aldrich, Taufkirchen 

Protein Marker PeqLab Erlangen 

Rotiphorese
®
 Gel30: Acrylamide/ bis-

acrylamide (30%/0,8%) 

Roth, Karlsruhe 

Rotisol Roth, Karlsruhe 

RPMI medium 1640 Gibco, Invitrogen, Karlsruhe 

Sodium Acetate  Roth, Karlsruhe 

Sodium Chloride Roth, Karlsruhe 

Sodium Dodecyl Sulphate (SDS) Roth, Karlsruhe 

Sodium Hydroxide Roth, Karlsruhe 

Sodium N-lauryl sarcosinate (Sarkosyl) Sigma Aldrich, Taufkirchen 

Tetramethyl ethylen diamine (TEMED) Roth, Karlsruhe 

Tris-base Roth, Karlsruhe 
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Tris-HCl Roth, Karlsruhe 

Triton-X-100 Sigma Aldrich, Taufkirchen 

Trypsin 0,025% Difco, Detroit 

Trypsin 0,025% with EDTA Gibco, Invitrogen, Karlsruhe 

Triton-X-100 Biorad, Munich 

Tween 20 Roth, Karlsruhe 

 

2.1.2 Bacteria and eukariotic cell lines  

 

2.1.2.1 Bacteria 

Name Genotype 

E. Coli DH5 ! (for standard cloning) F-, end A1, hsd R17 (rk
-
, mk

+
), sup E44, thi-1, 

"-, rec A1, gyr A96, relA1 

E. Coli BL21 (for the expression of 

the GST-fused proteins) 

F-, ompT, hsdSB (rB
-
, mB

-
), dcm, gal, DE3, 

pLysS (Cm
r
),  

 

2.1.2.2 Eukariotic cell lines 

 

All the cells grew adherently in monolayers at 37 °C with 5% CO2 on Cellstar
®
 Petri 

dishes (Greiner Bio-one, Frickenhausen, Germany). 

Name Source and description 

22Rv.1 

Human prostate carcinoma cell line derived from a human prostate carcinoma 

xenograft (CW22R) that was serially propagated in nude mice after 

castration-induced regression and relapse of the parental, androgen dependent 

CWR22 xenograft.  

LNCaP 

Human cancer cell line derived from a needle aspiration biopsy of the left 

supraclavicular lymph node of a 50-year-old Caucasian male with confirmed 

diagnosis of metastatic prostate carcinoma. 

BPH-1 

Human epithelial cells from a 68-year-old man with benign prostate 

hyperplasia immortalized with SV40 large T antigen. They express 

cytokeratins 8, 18 indicative of a luminal specific origin and 19, lost during 

neoplastic progression, but not 14 and 7, overexpressed in carcinoma.  
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2.1.3 Oligonucleotides for cloning experiments 

 

Specific primers were used to amplify portions of genes of interest using 

Polimerase Chain Reaction technique. The oligonucleotides were designed in order to 

have specific and unique restriction sites to clone the fragment of interest into the 

desired vector. 

For cloning of the Bag-1 derived peptides into pcDNA3.1-HA the restriction site 

for the endonuclease BamHI was designed in every forward primer while XbaI site was 

designed for the reverse primers.  

For cloning GRP5, GRP78 and their deletion mutants into pGEX4T.1 the 

restriction site for BamHI was designed in every forward primer and the restriction site 

for XhoI for every reverse. 

The following primers were used for cloning the Bag-1 peptide (202-269), the N-

terminal peptide (202-241), the C-terminal peptide (241-269), the !N-peptide (220-

269), the 19-mer peptide (202-220) and the 22-mer peptide (220-241) into pcDNA3.1-

HA (the direction is always 5’ – 3’). 

  

 

Name 

 

Sequence 

(restriction site underlined) 

202_forward_BamHI 
TCG GAT CCC CAA GAA GAA GCG GAA GGT CCG 

AAC ACC GTT GTC AGC ACT TGG 

220_forward_BamHI 
TCG GAT CCC CAA GAA GAA GCG GAA GGT CCG 

AAA AAA GAA CAG TCC ACA G 

241_forward_BamHI 
TCG GAT CCC CAA GAA GAA GCG GAA GGT CCG 

AGA GAA GAT AGC TGA CCA GC 

269_reverse_XbaI 
TCT CTA GAT CAT TCA GCT TGC AAA TCC TTG 

GG 

241_reverse_XbaI TCT CTA GAT CAC TCC ACA GAC TTC TCC 

220_reverse_XbaI 
TCT CTA GAT CAT TTC CCA ATT AAC ATG ACC 

CGG C 
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For cloning into pGEX4T.1 GRP75 (1-679), GRP75!ATPase (434-679), GRP75-

ATPase domain (1-433), GRP75 substrate binding domain (434-588), GRP75 

Oligomerization domain (589-679), GRP78 (1-651), GRP78!ATPase (408-651), 

GRP78-ATPase domain (1-407), GRP78 substrate binding domain (408-567), GRP78 

Oligomerization domain (568-651) the following primers were used (the direction is 

always 5’ – 3’): 

 

 

Name Sequence  

(restriction site underlined) 

GRP75_1_forward_BamHI CCG GAT CCA TGA TAA GTG CCA GCC G 

GRP75_434_forward_BamHI 
CCG GAT CCG ATG TGC TGC TCC TTG ATG 

TC 

GRP75_589_forward_BamHI CCG GAT CCA TTC ACG ACA CAG AAA CC 

GRP75_433_reverse_XhoI CGC TCG AGT CAC GTG ACA TCG CCG GCC 

GRP75_588_reverse_XhoI CGC TCG AGT CAG ATT CCT TCA GCC 

GRP75_679_reverse_XhoI 
CGC TCG AGT CAC TGT TTT TCC TCC TTT 

TGA TC 

GRP78_1_forward_BamHI 
CCG GAT CCA TGA AGC TCT CCC TGG TGG 

CCG CG 

GRP78_408_forward_BamHI CCG GAT CCC AAG ATA CAG GTG ACC TGG 

GRP78_568_forward_BamHI 
CCG GAT CCG CCT ATT CTC TAA AGA ATC 

AG 

GRP78_407_reverse_XhoI 
CGC TCG AGT CAA TCA CCA GAG AGC ACA 

CC 

GRP78_567_reverse_XhoI CGCTCGAGTCAATAGCTTTCCAACTC 

GRP78_651_reverse_XhoI 
CGC TCG AGT CAC AAC TCA TCT TTT TCT 

GC 
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2.1.4 Antibodies 

 

Name Description 
Experimental 

conditions 
Producer Application 

Anti-

HA 

Mouse monoclonal 

antibody  

1:100 in TBS 1X + 

10% Milk, ON, 4ºC 
 WB 

Anti-

HA 

(clone 

3F-10) 

Rat monoclonal 

antibody  

1:1000 in blocking 

buffer, 1 h, RT 

Roche 

Diagn. 
IF 

Anti-

GRP78 

(N-20) 

Goat polyclonal 

antibody recognizing 

GRP78 of rat, mouse 

and human origin 

1:1000 in TBS 1X + 

10% BSA, ON, 4ºC 

Santa 

Cruz 

Biotech. 

WB 

Anti-

GRP78 

Rabbit polyclonal 

antibody recognizing 

GRP78 of human, 

mouse, rat, chinese 

hamster and pig 

origin 

1:500 in blocking 

buffer (4% goat 

serum in PBS 1X), 1 

h, RT  

Abcam IF 

1:1000 in TBS 1X + 

10% BSA, ON, 4ºC 
WB 

Anti-

GRP75 

(H-155) 

Rabbit polyclonal 

antibody recognizing 

GRP75 of rat, mouse 

and human origin 

1:250 in blocking 

buffer (4% goat 

serum in PBS 1X), 1 

h, RT 

Santa 

Cruz 

Biotech.  IF 

Anti-

Bag1 

(FL-

274) 

Rabbit polyclonal 

antibody recognizing 

all the Bag-1 proteins 

1:1000 in TBS 1X + 

5% Milk, 4 h, RT 
Sigma  WB 

WB= western blot; IF= immunofluorescence; TBS= Tris buffered saline; BSA= bovine serum 

albumine; RT= room temperature; ON= overnight 
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2.1.5 Secondary antibodies 

 

All secondary antibodies HRP-conjugated were purchased from DAKO 

Diagnostic GmBH (Hamburg, Germany). All secondary fluorescently-labelled 

antibodies were purchased from Jackson Immuno Research (USA). 

 

 

2.1.6 Restriction enzymes 

 

All restriction enzymes were purchased from New England Biolabs (Beverly, 

USA), Promega (Mannheim, Germany) and Invitrogen GmbH (Karlsruhe, Germany). 

 

 

2.1.7 Plasmids 

 

The following plasmids made in the vector pcDNA3.1-HA (made by Dr. S. 

Mink) from the vector pcDNA3.1 (Invitrogen, Karlsruhe, Germany) were used for 

stable or transient transfections into mammalian cells.. 

 

Name Description 

pcDNA3.1-Bag-1L 

Expression plasmid with the cDNA of the protein 

Bag1-L. The starting codon CUG is mutated into 

ATG 

pcDNA3.1-HA- 

Bag-1L!202-269 

Expression plasmid with the cDNA of the protein 

Bag1-L lacking the fragment between position 202 

and 269. The starting codon CUG is mutated into 

ATG 

pcDNA3.1-HA-Bag-1 peptide 
Expression plasmid with the cDNA of the protein 

Bag1-L form position 202 to 269 

pcDNA3.1-HA-!N peptide 
Expression plasmid with the cDNA of the protein 

Bag1-L form position 220 to 269 

pcDNA3.1-HA 

N-terminal peptide 

Expression plasmid with the cDNA of the protein 

Bag1-L form position 202 to 241 
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pcDNA3.1-HA 

C-terminal peptide 

Expression plasmid with the cDNA of the protein 

Bag1-L from position 241 to 269 

pcDNA3.1-HA-19-mer peptide 
Expression plasmid with the cDNA of the protein 

Bag1-L from position 202 to 220 

pcDNA3.1-HA-22-mer peptide 
Expression plasmid with the cDNA of the protein 

Bag1-L from position 220 to 241 

 

 

Plasmids for production and purification of GST-fused proteins. The following 

plasmids were made in the vector pGEX4T.1 (GE Healthcare, Frieburg, Germany). 

 

Name Description 

pGEX4T.1 GRP75 Encodes fort he full length GRP75 

pGEX4T.1 GRP75!ATPase 
Encodes for a deletion mutant of GRP75 covering 

its sequence from position 434 to 679 

pGEX4T.1 GRP75 

ATPase domain 

Encodes for a deletion mutant of GRP75 covering 

its sequence from position 1 to 433 

pGEX4T.1 GRP75 

substrate binding domain 

Encodes for a deletion mutant of GRP75 covering 

its sequence from position 434 to 588 

pGEX4T.1 GRP75 

oligomerization domain 

Encodes for a deletion mutant of GRP75 covering 

its sequence from position 589 to 679 

pGEX4T.1 GRP78 Encodes for the full length GRP78 

pGEX4T.1 GRP78!ATPase 
Encodes for a deletion mutant of GRP78 covering 

its sequence from position 408 to 651 

pGEX4T.1 GRP78 

ATPase domain 

Encodes for a deletion mutant of GRP75 covering 

its sequence from position 434 to 679 

pGEX4T.1 GRP78 

substrate binding domain 

Encodes for a deletion mutant of GRP75 covering 

its sequence from position 408 to 567 

pGEX4T.1 GRP75 

oligomerization domain 

Encodes for a deletion mutant of GRP75 covering 

its sequence from position 568 to 651 
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2.2 Methods 

 

2.2.1 Cloning methods 

 

2.2.1.1 Polymerase chain reaction (PCR) 

 

All Polymerase chain reactions were carried out in a Thermal Cycler machine 

(GeneAmp
®
 PCR System 2700, Applied Biosystem). The reaction volume was usually 

of 20-50 !l containing 10 ng of plasmid template or 100 ng of genomic cDNA 

template. The PCR reaction solution also contained 100-200 !M deoxynucleosides 

triphosphate (dNTPs), 10 pmol of each primer, reaction buffer (containing a final 

concentration of 20 mM Tris-HCl pH 8.8, 10 mM (NH4)2SO4, 10 mM KCl, 0.1% 

Triton X-100 and 0.1 mg/ml bovine serum albumine) and 0.25-1 unit (U) of Pfu proof-

reading DNA polymerase (from the archaeon Pyrococcus furiosius). The Pfu was 

stored in storage buffer (20 mM Tris-HCl, pH 8.2, 1 mM DTT, 0.1% Tween 20 and 

50% glycerol) at -20ºC. Cycle number and reaction conditions were determined 

empirically for each fragment of DNA to amplify. 

 

For cloning the Bag-1 peptide, the N-terminal peptide, the C-terminal peptide, the 

19-mer peptide and the 22-mer peptide the following programme was used: 

 

1. 94ºC, 1’ 

2. 94ºC, 1‘   

3. 55ºC, 1’ 30” 

4. 72ºC, 1’ 

5. Hold at 4ºC 

 

The steps 2-4 were repeated for 30 cycles.  

 

For cloning GRP75!ATPase, GRP75-substrate binding domain, GRP75-

oligomerization domain, GRP78!ATPase, GRP78-substrate binding domain and 

GRP78-oligomerization domain the following programme was used: 
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1. 94ºC, 3’ 

2. 94ºC, 30”   

3. 60ºC, 1’ 

4. 72ºC, 6’ 

5. Hold at 4ºC 

 

The steps 2-4 were repeated for 30 cycles.  

 

For cloning GRP75-ATPase domain and GRP78-ATPase domain the following 

programme was used: 

 

1. 94ºC, 5’ 

2. 94ºC, 20” 

3. 74ºC, 1’ 30” 

4. 72ºC, 6’ 

5. 94ºC, 20” 

6. 72ºC, 1’ 

7. 72ºC, 6’ 

8. 94ºC, 20” 

9. 70ºC, 30” 

10. 72ºC, 5’ 

11. Hold at 4ºC 

 

The steps 2-4 were repeated for 5 cycles, the steps 5-7 for 10 cycles and the steps 

8-10 for 30 cycles. 

 

For cloning GRP75 and GRP78 the following programme was used: 

 

1. 94ºC, 3’ 

2. 94ºC, 30”   

3. 60ºC, 1’ 30” 

4. 72ºC, 5’ 

5. Hold at 4ºC 

 



MATERIALS AND METHODS  

 35 

The steps 2-4 were repeated for 30 cycles. 

 

For testing mycoplasma contaminations in cell lines 100 !l of supernatant was 

boiled at 95ºC and 2 !l were used for a PCR reaction. For this PCR the Taq DNA  

polymerase enzyme (Promega, Mannheim, Germany) was used with the following 

programme:  

 

1. 94ºC, 2’ 

2. 94ºC, 30”   

3. 60ºC, 30” 

4. 72ºC, 30” 

5. Hold at 4ºC 

 

The steps 2-4 were repeated for 35 cycles. 

 

 

2.2.1.2 Separation of nucleic acids by agarose gel electrophoresis 

 

DNA separation was performed on a horizontal agarose gel ranging from 0.8 to 

2% of concentration according to the size of the fragments to separate. The desired 

amount of agarose was dissolved in TAE buffer 1X (0.04 M Tris pH 7.2, 0.02 sodium 

acetate, 1mM EDTA). To dissolve the agarose the solution was boiled and then cooled 

down to an approximate temperature of 40ºC. After addition of ethidium bromide to 

have a final concentration of 0.4 mg/ml, the solution was poured into a horizontal gel 

chamber and a comb was placed over the chamber to allow the formation of slots 

where the samples could be placed. For the electrophoretic run the chamber was filled 

with TAE buffer 1X and the samples were mixed with DNA sample buffer (5mM 

EDTA, 50% glycerol, 0,01g bromophenolblue) and loaded onto the gel. The standard 

ladder used was either the peqGOLD 1 kb DNA-Leiter (0.5 mg DNA/ml, for fragments 

ranging from 250 to 10000 bp) or the peqGOLD 100 bp DNA-Leiter (for fragments 

from 80 to 1031 bp). The electrophoresis was carried at 80-120 V and the separation 

was visualized under a UV light source. Since agarose gel contains ethidium bromide 

nitril-based gloves were use for handling. 
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2.2.1.3 DNA fragment extraction from agarose gel 

 

For extracting distinct DNA fragments from agarose gel the peqGOLD gel 

extraction kit (peqLab Biotechnology GmbH, Erlangen, Germany) was used. When the 

run was completed the distinct band was visualized under a source of UV light of mild 

intensity and removed with a scalpel. The agarose was dissolved at 55ºC in XP2 Binding 

Buffer. Thereafter the solution was added to a HiBind
®

 DNA spin column and 

centrifuged at 10000 rpm (Eppendorf centrifuge 5417R) 1 min. The column was washed 

once with XP2 Binding Buffer and twice with SPW Wash Buffer (completed with 

ethanol 80% final concentration) by centrifugation at 10000 rpm (Eppendorf centrifuge 

5417R), 1 min, 4ºC. Residual ethanol was remove from the column by one additional 

centrifugation at 10000 rpm (Eppendorf centrifuge 5417R) for 1 min. 30 !l of elution 

buffer were then added in the centre of the column and collected into an eppendorf tube 

by centrifugation at 10000 rpm (Eppendorf centrifuge 5417R) for 1 min. The presence of 

the DNA fragment was confirmed by gel electrophoresis. 

 

 

2.2.1.4 Ligation of DNA fragments 

 

All ligations were performed using 1 U of the enzyme T4 DNA ligase (Fermentas, 

St Leon-Rot - Germany). For insertion of a specific DNA fragment into a vector the ratio 

insert:vector was usually 1:3 or 1:6. The reaction was carried in presence of T4 DNA 

ligase buffer (containing a final concentration of 50 mM Tris-HCl pH 7.5, 

10 mM MgCl2, 10 mM DTT, 1 mM ATP, 25 !g/ml BSA) in a final volume of 20 !l for 

1 hour at 22ºC or for 4 hours at 16ºC or ON at 4ºC. Every ligation experiment was 

performed incubating the empty vector digested with the same restriction enzymes as 

control. The reaction was stopped by inactivation of the enzyme at 65ºC for 10 min.  

 

 

2.2.1.5 Transformation of plasmid DNA into bacteria 

 

For transformation typically 50 !l of chemically competent bacteria DH5! were 

incubated with 10 !l of the ligation mix or 1 !l of the purified plasmid DNA for 20 min 

on ice. Thereafter the cells were thermically shocked at 37ºC for 5 min or 42ºC for 2 min 
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and then incubated on ice for 2 min. The transformed bacteria were then allowed to grow 

in a final volume of 500 !l of LB 1X without amipicillin for 30 min at 37ºC on a shaker. 

In the meantime LB 1X agarose plates with ampicillin were pre-warmed at RT. Finally 

100 !l of bacteria were plated and incubated ON at 37ºC. 

 

 

2.2.1.6 Small-scale purification of plasmid DNA 

 

For mini-preparation of DNA 3 ml of transformed bacteria were incubated in LB 

1X with ampicillin ON at 37ºC on a shaker at 220 rpm. Thereafter 1 ml of the bacteria 

culture was transferred into an eppendorf tube and centrifuged at 12000xg for 30 s at 4ºC 

(centrifuge Eppendorf 5417 R). The purification was performed using the solutions P1, 

P2 and P3 from the Qiagen Plasmid Maxi Kit
®
 (Qiagen, Hilden - Germany). The SNT 

was removed, the pellet was resuspended in 100 !l of solution P1 with RNase A (10 mM 

EDTA, 50 mM Tris-HCl pH 8.0, 400 mg/ml RNase A) and incubated 5 min at RT. 

Alkaline lysis was performed by adding 200 !l of solution P2 (200mM NaOH, 1% SDS) 

and incubating for 5 min on ice. Thereafter addition of 200 !l of buffer P3 (3M Na 

Acetate, pH 4.8) followed by vortexing and incubation again for 5 min on ice neutralized 

the pH. To separate the lysate from cells debris the solution was then centrifuged at 

12000 rpm for 15 min at 4ºC (Eppendorf centrifuge 5417R). The SNT was transferred 

into a new eppendorf tube and a phenol:chloroform extraction was performed. 

Thereafter the DNA was precipitated by adding 1 ml of ice-cold ethanol to 400 !l of 

aqueous solution. The reaction was carried at -80ºC for 30 min. The DNA was collected 

by centrifugation at 12000 rpm at 4ºC for 15 min (Eppendorf centrifuge 5417R). After 

discarding the SNT the DNA pellet was washed from residual salts with 200 !l of 

ethanol 80%. After centrifugation at 12000 rpm for 2 min at 4ºC (Eppendorf centrifuge 

5417R) the SNT was discarded and the residual ethanol allowed to evaporate. The DNA 

was resuspended in 30 !l of double-distilled water and dissolved by incubation at 50ºC 

for 10 min.  
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2.2.1.7 Phenol:Chloroform extraction of plasmid DNA 

 

For extraction of undesired protein content from DNA plasmid preparation phenol 

(Carl Roth, Karlsruhe, Germany) and chloroform:isoamyl alcohol 24:1 (Sigma Aldrich, 

Taufkirchen, Germany) were mixed in a ratio 1:1. An equal volume of this solution was 

added to the bacteria lysate and vortexed. The two phases were separated by 

centrifugation at 12000 rpm for 2 min at 4ºC. The upper aqueous phase containing DNA 

was transferred into a new reaction tube while the lower one was discarded according to 

the safety rules. 

 

 

2.2.1.8 High-scale purification of plasmid DNA 

 

For high-scale purification of plasmid DNA the Qiagen Plasmid Maxi kit was 

used. Bacteria were cultured the day before the purification in 300 ml of LB 1X with 

ampicillin at 37ºC with shaking at 220 rpm. The day of the experiment bacteria were 

collected by centrifugation at 4000xg for 5 min at 4ºC in a fixed angle rotor (centrifuge 

Hermle ZK 401) and resuspended in 10 ml of buffer P1 containing RNase A. After 

incubation for 10 min at RT alkaline lysis was performed by adding 10 ml of buffer P2 

and vortexing. The reaction was allowed to proceed for 10 min on ice. Thereafter the pH 

was neutralized by 10 ml of buffer P3 and the whole mixture was gently inverted. To 

separate the lysate from membrane debris the suspension was centrifuged at 6000xg, 15 

min at 4ºC (centrifuge Hermle ZK 401). After centrifugation the SNT was poured into a 

Qiagen Tip 500 column pre-equilibrated with 15 ml of buffer QBT (700 mM NaCl, 50 

mM MOPS pH 7.0, 15% isopropanol (v/v), 0.15% Triton X-100 (v/v)). The column 

contained a resin able to bind DNA and to purify it from the lysate. Thereafter the 

column was washed twice with 30 ml of buffer QC (1 M NaCl, 50 mM MOPS pH 7.0, 

15% isopropanol (v/v)). The DNA was eluted from the resin by addition of 15 ml of 

buffer QF (125 mM NaCl, 50 mM Tris-HCl pH 8.5, 15% isopropanol (v/v)) and 

collected in a corex glass tube. To precipitate the DNA 11 ml of isopropanol were added 

to the flow-through and the mixture obtained was gently inverted and incubated on ice 

for 15 min. To collect the precipitated DNA the solution was then centrifuged at 7500xg 

for 15 min at 4ºC (centrifuge Beckman Coulter). The SNT was discarded and the pellet 

was resuspended with 1 ml of Ethanol 80% and collected in an eppendorf tube. After 
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centrifugation at 12000 rpm for 2 min at 4ºC  (Eppendorf centrifuge 5417R) the SNT 

was removed and the pellet dried at 50ºC. The DNA was dissolved in 200-300 !l of 

double distilled water and quantified. 

 

 

2.2.1.9 Quantification of plasmid DNA 

 

To quantify the amount of DNA the optical density (OD) at 260, 280 and 230 nm 

was measured with the NanoDrop
®

 and the software ND-1000 (version 3.1.2). An 

OD260=1 corresponds to 50 !g/ml of double-stranded DNA. A ratio OD260/OD280=1.8 

indicates a nucleic acid preparation relatively free from protein contamination. A ratio 

OD260/OD230 above 1.6 indicates a preparation free of organic chemicals and solvents. 

 

 

2.2.2 Cell culture and transfection methods 

 

2.2.2.1 Cell culture 

 

All mammalian cells were cultured in standard conditions of 37ºC, 5% of CO2 and 

95% of humidity in an incubator (Forma Scientific Labortech GmbH, Göttinghen, 

Germany). All cell lines were grown in sterile Cellstar
®
 Petri dishes (Greiner Bio-One, 

Frickenhausen, Germany) of different formats depending on the experimental 

conditions. Cells were grown to a confluence of 80-90%, then the culture medium was 

removed, the cells were washed once with PBS 1X at room temperature and incubated 

with warm trypsin for 5 minutes  (10 min for the cell line BPH-1) at 37ºC.  Fresh 

medium was then added to the plate and the cells were seeded at a lower concentration 

in a new Petri dish. The human primary prostate cancer cell line 22Rv.1 and the human 

lymphonode methastasis LNCaP cell line were cultured in RPMI 1640 enriched with 

10% FBS. Culturing the LNCaP cell line required a pre-coating of the Petri dishes with 

Poly-L-Lysine (Sigma Aldrich, Taufkirchen, Germany) for at least 1 hour at 37ºC to 

increase the adherence to the culture plate.  
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The human cell line BPH-1 derived from the prostate epithelium affected by 

benign prostatic hyperplasia was cultured in RPMI 1640 enriched with 10% FBS and 

Glutamine (Invitrogen, Karlsruhe, Germany). 

 

 

2.2.2.2 Transfection with FuGene
®
 

 

For transfection with FuGene
®
 cells were subcultured the day before so they could 

reach 70-80% of confluency the day of the experiment. For a 10 cm culture dish 30 !l of 

FuGene
®

 were diluted in 1 ml of pre-warmed serum-free medium and incubated at room 

temperature for 5 mins. Thereafter 10 !g of plasmidic DNA were added and the final 

solution was inverted and incubated for 20 min at room temperature. Finally the solution 

was dropwised into the Petri dish and distributed evenly by gentle swirling.  

 

 

2.2.2.3 Colony forming assay 

 

For colony forming assay 22Rv.1 cells and BPH-1 cells were seeded at 70-80% of 

confluence and transfected with 10 !g of plasmidic DNA with FuGene
®
. The following 

day the cells were washed with 5 ml of PBS 1X and 1 ml of trypsin was added to the 

Petri dish. After 5 minutes of incubation at 37ºC, cells were directly resuspended in fresh 

culture medium, counted with a hemocytometer and seeded in triplicate in a 6 well plate. 

For 22 Rv.1 3x10
4
 cells were seeded, while for BPH-1 3x10

3
 cells were seeded. After 48 

hours the medium was removed and fresh medium with the antibiotic G418 was added 

to start the selection. Since the vector contained a gene for the resistance to the 

antibiotic, only the transfected cells were able to grow and form colonies. When the size 

of the colonies was visible, cells were washed with PBS 1X and fixed with methanol for 

20 minutes at room temperature on a shaker. Thereafter methanol was removed and the 

colonies were stained with 0,05% Crystal Violet for 20 minutes at room temperature on 

a shaker. The plates were finally washed with tap water and the colonies counted. The 

value of the vector was set as 100%. The experiment was repeated at least three times 

with three different plasmid preparations. 
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2.2.2.4 Cell viability assay 

 

For evaluation of viability the CellTiter-Blue
®
 Cell Viability Assay kit (Promega, 

Mannheim, Germany) was used. The assay consists in estimating the amount of viable 

cells based on their ability to convert a non-fluorescent dye (resazurin) into a fluorescent 

product (resorufin).  22Rv.1 stably overexpressing the Bag-1 peptide or the empty vector 

control were seeded into two 96 well plate (4500 cells/well) in triplicate. After 2-3 hours 

20 !l of dye were added to each well containing 100 !l of culture medium for 4 hours at 

37ºC.  

Fluorescence was measured as the ratio between the value of intensity at the 

wavelenght of excitation (560 nm) and emission (590 nm) using the plate-reading 

fluorometer FluoStar Optima (2001, BMG Labtechnology, software version 1.10-0).  

Cell proliferation was determined from the difference between the fluorescence intensity 

obtained at day2 and the value obtained at the day of seeding (day0). 

 

  

2.2.2.5 Immunofluorescence 

 

For immunofluorescence a 4-well glass slide Lab-Tek
®
II Chamber Slide

TM
 System 

(VWR International, Bruchsal, Germany) was pre-coated with approximately 100 !l of a 

solution of 1!g/!l of Fibronectin (Sigma Aldrich, Taufkirchen, Germany) and incubated 

for 1 hour at 37ºC. Thereafter each well was washed once with PBS 1X and 1x10
5 

cells 

were seeded in each well. The following day the medium was removed, the cells washed 

with PBS 1X once and fixed with 4% PFA for 10 min at room temperature. After 

fixation, PFA was removed, cells washed twice with PBS 1X and incubated with 

permeabilization solution (Triton X-100 0,1% in PBS 1X) for 10 min at room 

temperature. Then cells were washed twice with PBS 1X and incubated with blocking 

solution (4% goat serum in PBS 1X) for 15 min at room temperature and subsequentially 

incubated with primary antibody diluted in blocking buffer for 1 hour at room 

temperature. Cells were then washed twice with PBS 1X and secondary antibody diluted 

in blocking buffer was applied for 15’ at room temperature. Finally cells were washed 

twice with PBS 1X and once with water, dried and a glass coverslip (Erie Scientific, 

Portsmouth, US) was mounted using polyvinilalcohol (PVA) as mounting medium. 

Samples were then analysed with a Leica TCS SPE confocal microscope (Software: 
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Leica Application Suite Advance Fluorescence – 2.0.1 build 2043 – Leica 

Microsystems, Wetzlar, Germany). For staining the mitochondria, before the fixation 

living cells were incubated 20 min at 37ºC with medium containing 300 nM final 

concentration of the Mitotracker
®
 Mitochondrion-Selective Probes Deep Red FM 

(Invitrogen, Karlsruhe, Germany). For staining of the endoplasmic reticulum the 

SelectFX
®
 Alexa Fluor

®
 488 Endoplasmic Reiculum Labeling kit (Invitrogen, 

Karlsruhe, Germany) was used. This kit provided a specific antibody recognizing the 

PDI protein present in the ER. The anti-PDI antibody was used at a dilution of 1:1000 in 

PBS 1X containing 4% goat serum. 

 

 

2.2.3 In vivo animal experiment 

 

All the studies carried out using animals were performed according to protocols 

approved by the animal care and use committee of Baden-Württemberg. 

 

2.2.3.1 Transgenic adenocarcinoma of the mouse prostate (TRAMP)  

 

2.2.3.1.1 Tumour harvesting and protein analysis 

 

For tumour weight determination 25 week-old TRAMP mice wild type or 

eterozygous for Bag-1 gene (Bag-1
+/-

) were sacrificed and prostate and seminal vescicles 

were weighed using a scale. The samples were stored at -80˚C or fixed in 4% PFA for 16 

hours and then stored in an aqueous solution containing 50% ethanol. For the analysis of 

Bag-1 expression 50 !g of prostate and seminal vesicles lysates quantified with the 

Bradford assay were separated on a 15% polyacrylamide-SDS gel, transferred to a 

nitrocellulose membrane and probed with rabbit-anti-Bag-1 antibody (Sigma, FL-274). 

Thereafter the membrane was stripped and re-probed with an anti-!-actin antibody to 

determine the levels of !-actin as loading control. The Bag-1 and !-actin protein amount 

were quantified using the programme ImageJ
®
. Bag-1 relative protein level was 

calculated according to the formula: 

 

Relative Bag-1 level= Bag-1 band intensity/ !-actin band intensity 
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Each value was associated to the respective weight and the correlation was 

calculated using the application Microsof Excel
®
 (Microsoft Corporation, US). 

 

 

2.2.3.1.2 Survival experiment 

 

For survival experiment mice were sacrificed by neck dislocation either when the 

tumour size reached the maximum limit allowed or when the animals showed clear signs 

of imminent death. For calculation of the survival curve the programme GraphPad 

Prism
®
 was used. For the experiment 60 wild type and 50 Bag1

+/-
 TRAMP mice were 

used. 

 

 

2.2.3.2 Xenograft model of prostate cancer cells
 

 

2.2.3.2.1 Injection of 22Rv.1 stable clones into athymic nude mice 

 

Before the injection every cell line was checked for mycoplasma infection using 

the VenorGem
®
 mycoplasma kit (Sigma, Taufkirchen, Germany). 

For generation of xenograft models cells were washed with PBS 1X and trypsinized 

incubating with trypsin 0,025% + EDTA for 5 minutes (10 for LNCaP cells) at 37˚C. 

After detachment cells were resuspended in fresh culture medium and counted with a 

hemocytometer. The amount of cells needed was collected into a new falcon tube, 

washed twice with PBS 1X and resuspended in the appropriate volume of PBS 1X. 

LNCaP were resuspended in a solution of 50% Matrigel
®
 (BD Bioscience, Heidelberg, 

Germany) in PBS 1X. Since Matrigel is solid at room temperature, it was stored for 

maximum three months at -20ºC and on ice at the moment of use. 5x10
6
 22Rv.1 or 

LNCaP prostate cancer cell lines were subcoutaneously injected into 6-8 week-old 

athymic nude mice in both flanks in 100 !l of PBS 1X. Tumour size was measured with 

a calliper every week for a maximum of 9 weeks for the injection of stable clones 

overexpressing the Bag-1 peptide and 5 weeks for the ones expressing the N-terminal, 

the C-terminal and the !N-peptide. Tumour size was assessed measuring three 

perpendicular diameters according to the formula: V=(1/6) ["] (d1d2d3), where " is a 
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matematic constant and d1, d2 and d3 represent the three spatial dimensions (width, 

depth and height). 

Mice were sacrificed by neck dislocation either because the tumour reached the 

maximum size (around 1000 cubic mm) or because the time limit of the experiment was 

reached. 

 

 

2.2.3.2.2 Tumour harvesting 

 

For harvesting tumour tissue mice were sacrificed by neck dislocation and the 

tumour was removed using forceps and scissors. Thereafter the tumour was weighed 

using a scale. Part of the tissue was stored in a tissue embedding cassette (Labonord, 

Mönchengladbach, Germany) for immunohistochemical analysis.  

 

 

2.2.4 Immunohistochemistry 

 

2.2.4.1 Tissue processing and embedding 

 

Tumour tissues were fixed in a solution of 4% PFA (for 1 L of solution pH 7.4: 892 

ml of double distilled water, 108 ml of Formalin 37%, 11.86 g f Na2HPO4, 9.07 g 

KH2PO4) for 16 hours at RT. Thereafter the fixative solution was removed and the 

samples were kept in Ethanol 50% for long-term storage. For processing the samples a 

full-automatic tissue processor Hypercenter XP was used (Thermo Fischer Scientific, 

Dreich, Germany). The first part of the process dehydrates the tissues through washing 

steps with solutions containing increasing amount of ethanol followed by a washing step 

with xylene to remove the alcohol. Finally tissues were kept in liquid paraffin before the 

embedding process. For dehydrating the tissues the following programme was used: 

 

1. 50% ethanol, 15’ immersion, 1h 15’ drain 

2. 70% ethanol, 30’ immersion, 1h 15’ drain  

3. 95% ethanol, 45’ immersion, 15’ drain 

4. 95% ethanol, 45’ immersion, 15’ drain 

5. 95% ethanol, 45’ immersion, 2h drain 
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6. 100% ethanol, 45’ immersion, 15’ drain 

7. 100% ethanol, 45’ immersion, 15’ drain 

8. 100% ethanol, 45’ immersion, 2h drain 

9. xylene, 1 h immersion, 15’ drain 

10. xylene, 1 h immersion, 2h drain 

11. paraffin, 1 h immersion, 15’ drain 

12. paraffin, 1 h immersion, 2h drain 

 

After processing tumour samples were paraffin-embedded using a Leica EG 1660 

embedding machine (Leica Microsystems, Wetzlar, Germany). Paraffin embedded 

tissues were kept at 4ºC to allow solidification of the paraffin matrix. 

 

 

2.2.4.2 Cutting of paraffin embedded tissue blocks 

 

Paraffin embedded blocks were cooled on ice before cutting into slices. To cut the 

block into 5 !m-thick slices a Leica RM2155 microtome was used (Leica Microsystems, 

Wetzlar, Germany). After cutting the slice was placed into a water-bath (Medax Nagel 

GmbH, Kiel, Germany) set at 50ºC (10ºC below the melting temperature of the paraffin) 

to remove all the wrinkles. Thereafter the slice was lifted onto a XTRA
TM

 Adhesive 

Microslide 26x76x1 mm (Surgipath, Richmond, US). After briefly drying on the side of 

the water bath, the section was placed in a Heraeus oven (Weiss-Gallenkamp, 

Loughborough, United Kingdom) at 60ºC, 1 h to dry out.  

 

 

2.2.4.3 Immunohistochemical analysis of apoptotic cells 

 

For staining apoptotic cells in paraffin embedded tumour slides the ApopTag
®

 

Peroxidase in situ apoptosis detection kit was used (Millipore, Schwalbach, Germany). 5 

!m-thick slides were subjected to several washes to remove the paraffin and re-hydrate 

the section. The procedure was as following: 3 times in xylene for 5’, 2 times in ethanol 

for 5’, once in ethanol 95% for 3’ and once in ethanol 70% for 3’. Finally tissue sections 

were washed with PBS 1X for 5’. Since fixation forms protein cross-links that mask the 
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antigenic sites in the tissue, slices were treated with Protein kinase (20!g/ml in water) to 

break the protein cross-links, therefore unmasking the antigens and epitopes and 

enhancing the staining. After two washes of 2’ each with double distilled water, the 

endogenous peroxidase was quenched by treating the sections with a solution of 3% 

H2O2 in PBS 1X for 5’. Thereafter the slides were washed two times for 5’ with PBS 1X 

and approximately 100 !l of equilibration buffer were applied to the section. The 

sections were then treated with terminal deoxynucleotidil transferase (TdT) enzyme 

diluted in reaction buffer (working strength TdT enzyme) for one hour at 37ºC. The 

reaction was stopped with working strength stop/wash buffer for 10 min at room 

temperature. The slides were then washed with PBS 1X 3 times and anti-digoxygenin 

conjugate antibody was applied for 30 min at room temperature. The excess of antibody 

was removed by washing 4 times with PBS 1X and the brown staining was developed by 

using the peroxidase substrate kit – DAB (Vector Laboratories, Burlingame, US). To 

prepare 5 ml of substrate solution 2 drops of buffer stock solution, 4 drops of 3’-3’ 

diaminobenzidine stock solution and 2 drops of H2O2 were added to 5 ml of double 

distilled water. The solution was incubated for 2 min at room temperature. Thereafter the 

sections were washed 3 times for 1 min and 1 time for 5 min with double distilled water. 

To visualize the nuclei the sections were counterstained by incubation for 2 min at room 

temperature with hematoxylin (Labonord, Mönchengladbach, Germany). After rinsing 

with fluent water for 2 min, the sections were dehydrated by one wash with n-butanol for 

2 min and three washes with xylene for 2 min. A glass coverslip was mounted on top of 

the slide with the non-aqueous mounting medium Coverquick (Labonord, 

Mönchengladbach, Germany). For microscopy analysis and image acquisition an 

Axioscop Zeiss microscope (Carl Zeiss Microimaging, Heidelberg, Germany) and the 

software Axiovision (Release 4.5 12/05) were used. 

 

 

2.2.5 Protein methods 

 

2.2.5.1 Preparation of protein lysates from cells 

 

Typically for protein extraction cells in a 10 cm dish were washed with 5 ml of ice-

cold PBS 1X and scraped in 1 ml of PBS 1X. The resuspended cells were collected into 
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an eppendorf tube and centrifuged at 4000 rpm 5 min at 4ºC (Eppendorf centrifuge 

5417R). The SNT was then aspirated and cells were resuspended in 100 !l of lysis 

buffer (Tris pH 8.0 50 mM, NaCl 150 mM, EDTA pH 8.0 5 mM, NP40 1%, protease 

inhibitor cocktail 1:100). The extract was thereafter sonified at Amp 60, 10 pulses and 

centrifuged at 12000 rpm, 5 min, 4ºC (Eppendorf centrifuge 5417R). Thereafter protein 

concentration was quantified wit the Bradford method. After quantification the lysate 

was diluted in 2X Sample Buffer (Tris pH 6.8 100 mM, SDS 4%, 2% !-

mercaptoethanol, glycerol 10%, bromo phenol blue 0.2%) and boiled 5 min at 95ºC to 

allow complete denaturation. 

 

 

2.2.5.2 Preparation of protein lysates from tissues 

 

For protein extraction from mouse tissue the samples were thaw out on ice and 

resuspended in lysis buffer (Tris pH 8.0 50 mM, NaCl 150 mM, EDTA pH 8.0 5 mM, 

NP40 1%, SDS 0.1%, PMSF 1 mM, protease inhibitor cocktail 1:100). To have an 

efficient extraction the tissue was mechanically destroyed using pestle and mortar. After 

incubation for 30 min on ice the lysate was sonified at Amp 60, 10 pulse and quantified 

with the Bradford assay. Thereafter an equal amount of 2X Sample buffer was added to 

the lysate and the solution was boiled for 5 min at 95ºC. 

 

 

2.2.5.3 Quantification of protein extracts 

 

For quantifying the protein content the Bradford assay was used. Typically 5 !l of 

protein extract were diluted in 1 ml of Bradford (Bio-rad, Munich, Germany) solution 

1X. 200 !l of the solution were added into a 96 well plate and the intensity of the signal 

was defined by reading at an optical density of 595 nm using a ELX 808 UI Ultra 

Microplate Reader (software KC4 v 3.01). The signal background was determined by 

diluting 5 !l of lysis buffer into 1 ml of Bradford solution 1X. A standard curve using 

defined amount of BSA was used to calculate the final protein content using the formula: 
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y= ax+b, 

 

y= amount of protein (!g) 

a= slope of the curve 

x= optical density (595 nm) 

b= origin on y axis 

 

 

2.2.5.4 Separation of proteins by SDS PAGE (polyacrylamide gel 

electrophoresis) 

 

The Penguin Doppelgelsystem P9DS apparatus (PeqLab, Erlangen, Germany) was 

used to cast the polyacrylamide gel. Typically 10% polyacrylamide gel was used (for 30 

ml of final volume, 11.9 ml of double distilled water, 10 ml of 30% Acrylamide mix, 7.5 

ml of Tris 1.5 M pH 8.8, 300 !l of 10% SDS, 300 !l of APS, 12 !l of TEMED).  The 

resolving gel was poured and overlaid with Rotisol 70%. After polymerization the 

Rotisol was washed away with distilled water and the separating gel was covered with 

stacking gel (for 10 ml of solution 6.8 ml of double distilled water, 1.7 ml of 30% 

Acrylamide mix, 1.25 ml of Tris 1 M pH 6.8, 100 !l of 10% SDS, 100 !l of APS, 10 !l 

of TEMED). A comb was placed over to allow the formation of slots where the samples 

could be placed. The gel was then fixed in the running chamber and 1X Laemmli buffer 

(for 1L of 10X solution: 30.26 g of Tris base, 144.13 g of Glycin, 50 ml of SDS 20% in 

1 L of double distilled water) was poured over. The desired amount of cell lysate diluted 

in sample buffer was then loaded onto the SDS gel. Samples were run at 80V in the 

stacking gel and 150V in the separating gel for 3-4 hours or at 30V ON. 

 

 

2.2.5.5 Western blotting 

 

For western blotting analysis proteins were transferred onto an Immobilion
TM

 poly 

vinylidene fluoride (PVDF) membrane (Millipore, Schwalbach, Germany), pre-soaked 

in methanol. The transfer was performed at 35 V ON at 4ºC. Thereafter western blot 

analysis was performed. To reduce unspecific binding of the antibody the membrane 

was incubated with blocking solution for 1 hr at RT. For detecting the protein of interest 
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specific primary antibody was incubated in blocking solution for 4 hr at RT or ON at 

4ºC (see table of antibodies for detailed information). Thereafter the membrane was 

washed three times with TBS 1X  (for 1L of 10X stock solution pH 7.6: 80 g of NaCl ; 

24.2 g of Tris base in deionized water) + 0,1% Tween 20 (TTBS 1X or TBST 1X) 10 

min each. After washing the membrane was incubated with the secondary antibody for 1 

hr at RT and washed four times with TTBS 1X 10 min each. Detection of proteins was 

finally performed using the enhancer of chemioluminescence (ECL) western blot 

detection reagent (Amersham, Braunschweig, Germany). The signal was developed 

using films from ECL Hyperfilm (Amersham, Braunschweig, Germany) or  Fuji Super 

RX 18x24 film (Ernst Christiansen GmbH, Planegg, Germany). 

 

 

2.2.5.6 Membrane stripping 

 

To use more than once the membranes for Western blot analysis the filters were 

incubated with stripping solution (3,125 of Tris
.
HCl 1 M pH 6.8, 5 ml of 20% SDS, 400 

!l of !-mercaptoethanol in a final volume of 50 ml) at 50ºC for 20 min with shaking. 

The membranes were then washed 5 times 10 min each with TTBS 1X. 

 

 

2.2.6 GST-pull down experiment 

 

2.2.6.1 Preparation of GST-fused proteins 

 

For preparation and purification of GST-fused proteins BL21 bacteria transformed 

with the plasmid encoding for the desired GST-fused protein were incubated ON in 20 

ml LB 1X + ampicillin. The following day the bacteria culture was expanded to 1 L of 

LB 2X and allowed to grow till OD600=0.5-0.8 measured with a spectrophotometer 

Biophotometer (Eppendorf, Wesseling-Berzdorf, Germany). Thereafter to induce the 

production of the recombinant protein isopropilthiogalactoside (IPTG) was added to a 

final concentration of 1 mM and incubated for 3 hours at 37ºC on a shaker. At the end of 

the induction cells were collected by centrifugation at 4000xg, 5 min at 4ºC in a fixed 

angle rotor (centrifuge Hermle ZK 401) and the pellet were frozen at -80ºC. Bacterial 

pellets were resuspended in resuspension buffer (2 mM EDTA, 2 mM PMSF in PBS 
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1X). Thereafter to allow cell lysis 1 mg/ml of lysozyme (Sigma Aldrich, Taufkirchen, 

Germany) was added to the bacteria and incubated for 10 min on ice. To have a 

complete protein extraction 1% Triton-X-100 was added to the solution ad incubated at 

4ºC on a rotor. For the purification of the proteins GST-GRP75 and GST-GRP78 1% of 

sodium N-Laurylsarcosinate (or Sarkosyl) was added and incubated for 30 min at 4ºC on 

a rotor. Thereafter the solution was sonified at Amp 60, 10 pulses and centrifuged at 

7000xg, 15 min at 4ºC (centrifuge Beckman Coulter). In the meantime approximately 1 

ml of glutathione-sepharose 4B slurry beads (GE-Healthcare, Freiburg, Germany) were 

washed twice with PBS 1X. The GST-fused proteins present in the supernatant were 

then added to the glutathione beads and incubated at least for 1 hour at 4ºC on a rotor. 

Thereafter they were washed with PBS 1X by centrifugation at 2000 rpm, 2 min, RT 

(Eppendorf centrifuge 5417R) twice to remove all the unbound proteins. The 

recombinant proteins bound to the beads were then resuspended in a solution of PBS 1X 

containing DTT 1 mM and protease inhibitors diluted 1:100 and kept at 4ºC for short-

term storage (maximum 24 hours). For long-term storage, proteins were eluted from the 

beads by incubation with 500 !l of reduced glutathione (0.5 M in 50 mM Tris pH 8.0) 

for 10 min at RT. Typically 6 fractions were collected and the protein amount was 

quantified by polyacrylamide gel electrophoresis and subsequent staining with 

Coomassie
®
 blue. Defined amount of BSA (Promega, Mannheim, Germany) were used 

as standard to determine the concentration of protein present in each fraction. The most 

abundant fractions were pooled together, requantified and stored at -80ºC. 

 

 

2.2.6.2 Incubation of GST-fused proteins with cell lysate 

 

For GST-pull down 22Rv.1 cells stably overexpressing the Bag-1 peptide (clone 

P29) were cultured. The day of the experiment the medium was aspirated and cells were 

scraped in approximately 5 ml of ice cold PBS 1X. After centrifugation at 2000xg, 2 min 

at 4ºC (centrifuge Beckman Coulter) the cell pellet was resuspended in 500 !l of lysis 

buffer (Na2HPO4 pH 7.4 10 mM, EDTA 1 mM, KCl 150 mM, glycerol 15% in double 

distilled water). The resuspended cells were subjected to 3-5 cycles of freeze-thaw by 

immersion in liquid nitrogen followed by incubation at 37ºC. Thereafter the lysate was 

sonified at Amp 50, 10 pulses and centrifuged at 12000xg, 15’, 4ºC (centrifuge Beckman 
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Coulter). The supernatant was collected in a new eppendorf and quantified using the 

Bradford assay.  

In parallel GST-fused proteins bound to glutathione sepharose beads were 

quantified by loading onto a polyacrylamide gel together with defined amounts of BSA. 

At the end of the run protein amount was determined by staining the gel with 

Coomassie
® 

blue. 

Approximately 400 !g of cell extract were incubated with 50 !g of GST-fused 

protein in LBST buffer (20 mM Hepes
.
KOH pH 7.9, 100 mM NaCl, 2.5 mM MgCl2, 0.1 

mM EDTA, 1mM DTT, protease inhibitors 1:100, 0.05% NP40, 1.5% Triton-X-100) in 

a final volume of 200 !l, ON at 4ºC on a rotor. The following day the sample were 

washed 4 times with LBST buffer by centrifugation at 2000 rpm, 30”, 4ºC (Eppendorf 

centrifuge 5417R). The beads were resuspended in 60 !l of 2X sample buffer and boiled 

at 95ºC for 5 min. Finally the samples were centrifuged at 12000 rpm, 5 min, 4ºC 

(Eppendorf centrifuge 5417R).  20 !l of each sample were loaded onto a polyacrylamide 

gel and subjected to electrophoretic separation. The proteins were blotted on a PVDF 

membrane and western blot analysis was performed. To check if equal amount of 

recombinant protein were loaded at the end of the experiment the membrane was stained 

with Coomassie
®
 blue. 

 

 

2.2.6.3 Staining with Coomassie
®
 blue 

 

For staining with Coomassie
®
 blue the polyacrylamide gel was washed twice with 

distilled water for 10 minutes at room temperature on a shaker to remove the salts that 

could interfere with the staining. Thereafter the gel was incubated 1 h at RT on a shaker 

with SimplyBlue
TM

 Safe stain (Invitrogen, Karlsruhe, Germany). Finally the gel was 

washed several times with distilled water to remove the excess of staining and stored at 

4ºC. The same procedure was applied to PVDF membranes. 
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3. RESULTS 

3.1 Bag-1 levels and tumour formation  

 

Increased level of expression Bag-1 has been correlated with aggressive and 

hormone refractory prostate tumour (Krajewska et al., 2006; Mäki et al., 2007) but no 

clear evidence that Bag-1 can indeed influence tumour formation has been provided so 

far. To study the impact of Bag-1 gene level on tumour formation the transgenic 

adenocarcinoma of the mouse prostate (TRAMP) model was crossed with a Bag-1 knock 

out mouse (Bag-1
+/-

).  Bag-1
+/-

 mice have a deficiency for one allele of the Bag-1 gene 

resulting in decreased expression of the Bag-1 isoforms Bag-1L and Bag-1S. Animals 

homozygous for Bag-1 showed embryonic lethality at stage 13.5 (Götz et al., 2004) and 

therefore could not be used for the purpose of this study. 

The TRAMP is a mouse model used to study prostate cancer development. 

TRAMP mice carry a transgene composed of the SV40 early genes T and t antigens 

(Tag) fused to a fragment (-426/+28 bp) of the rat probasin promoter (Hurwitz et al., 

2001). This model is based on the observation that transgenes expressing the SV40 

antigens can indeed lead to tumour formation (Brinster et al., 1984). Since the rat 

probasin promoter that controls the expression of the SV40 antigen is specifically 

expressed in the prostate epithelium in a androgen regulation manner (Greenberg et al., 

1994; Johnson et al., 2000), increased levels of hormone during puberty leads to specific 

expression of the SV40 Tag into the mouse prostate epithelium (Greenberg et al., 1995). 

Typically at the 10
th

 week of age, TRAMP mice develop prostatic intraepithelial 

hyperplasia (PIN, a pre-neoplastic lesion in the prostate leading to cancer). At the 22
nd

 

week of age, prostate cancer expanding into the seminal vesicles  (Gingrich et al., 1999) 

is detected (Greenberg et al., 1995). Between the 24
th

 and the 30
th

 week of age, the mice 

develop a poorly differentiated prostate cancer (Greenberg et al., 1995). On the base of 

these changes, the animals were sacrificed at the 25
th

 week of age and prostate tumour 

and seminal vesicles were harvested and weighed. TRAMP/Bag-1
+/- 

showed a reduction 

of 23.3% in the weight of tumour and seminal vesicles compared to the wild type, 

indicating that Bag-1 plays a role in tumour development (Fig. 3.1A).  
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Fig. 3.1: Bag1 gene level influences prostate cancer development in TRAMP mouse model  

TRAMP model was generated in B57/BL6 mice and crossed with B57/BL6 mice heterozygous for 

Bag-1 gene.  A) Bag-1 haploinsufficiency impairs tumour development. 25-week old TRAMP mice T/+; 

+/+ (n=17) and their Bag1+/- haploinsufficient littermates T/+; +/- (n=16) were sacrificed and tumour and 

seminal vesicles were weighed. The results are showed as mean value ± SEM (* p<0.05). B) Bag-1 protein 

level correlates with tumour weight. Protein extracts were obtained from representative tumour and 

seminal vesicles of TRAMP wild type (n=4) and TRAMP/Bag-1
+/-

  (n=4) mice and loaded onto a 

polyacrylamide gel. Western blot analysis using an anti-Bag-1 antibody was performed to determine the 

level of expression of Bag-1 proteins and an anti-!-actin antibody for normalization. C) Bag-1 gene level 

reduction does not affect overall survival. Kaplan-Meier curve shows no difference in the survival between 

wild type (T/+;+/+, black line, n=60) and Bag-1
+/-

 ( T/+;+/-, red line, n=50) TRAMP mice (p= 0.9669). 

 

 

Moreover for a direct evidence of Bag-1 proteins expression contributing to tumour 

growth, cell extracts from representative prostate and seminal vesicles of TRAMP/Bag-

1
+/+ 

and TRAMP/Bag-1
+/-

 mice were loaded onto a polyacrylamide gel. Bag-1 protein 

level was analyzed by immunoblot using an anti-Bag-1 antibody and normalized to !-

actin. Since the level of expression of Bag-1L is very low in mouse cells, Bag-1S level 

was used in this study. The relative intensity of the bands corresponding to Bag-1S was 

quantified using the software ImageJ
TM 

and plotted against the weight of tumours and 

seminal vesicles. The curve obtained from these two values showed an r squared of 0.89 

indicating that Bag-1 protein expression strongly correlated with tumour weight (Fig. 

3.1B). In addition it was determined if reduced Bag-1 level would influence the overall 

survival of the mice. Kaplan-Meier analysis showed comparable survival curves of 
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TRAMP wild type and TRAMP/Bag-1
+/-

 mice (Fig. 3.1C). Thus although reduction of 

Bag-1 level slightly reduced tumour size it did not influence the overall survival of the 

mice. 

 

 

3.2 Effect of Bag1-L overexpression in benign and cancer cells 

 

The TRAMP experiment showed that Bag-1 expression is important for tumour 

formation consistent with previous studies on overexpression of Bag-1 protein in 

prostate cancer (Krajewska et al., 2006). Reports that Bag-1L is overexpressed (Mäki et 

al., 2007) or downregulated (Hague et al., 2002) in cancer indicates a dual function of 

this protein. In addition increase in Bag-1L expression has been reported to correlate 

with malignant cell transformation (Takayama et al., 1998). In order to analyze 

mechanistically the role of Bag-1L in prostate cancer development, two cell lines derived 

from two different stages of the human prostate were used. On the one hand BPH-1 cell 

line derived from a patient with benign prostatic hyperplasia and on the other hand 

22Rv.1 cells obtained from a primary prostate cancer. These two cell lines showed 

different levels of Bag-1L as determined by western blot experiment. In this assay equal 

amounts of protein extract were loaded onto a polyacrylamide gel and subjected to 

electrophoretic separation and transferred on a PVDF membrane. Hybridization of the 

membrane with an anti-Bag-1L specific antibody showed an undetectable level of the 

protein in the benign cell line BPH-1 (Fig. 3.2A lane 1) compared to the cancer cell line 

22Rv.1 (Fig. 3.2B lane 2). !-actin levels were used as loading control.  

To assess the effect of increased level of Bag-1L on cell growth in the benign and 

malignant cells, colony forming assay was used. This assay is based on the ability of 

cells to grow into colony when seeded at a low density (Franken et al., 2006). 

Quantification of the number of colonies generated from a given population of cells 

gives a direct estimation of the degree of cell growth. For the purpose of this study, 

22v.1 and BPH-1 cells were transfected with an expression vector containing the cDNA 

of Bag-1L and the gene for resistance to the antibiotic Geneticin (also called G418). The 

cells were then diluted to allow colony formation and the transfected cells were selected 

by G418 treatment. Overexpression of Bag-1L in BPH-1 produced an increase in colony 

formation compared to cells transfected with empty vector indicating a positive effect of 

Bag-1L on cell growth (Fig. 3.2B, black bars). Intriguingly the same experiment in the 
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22Rv.1 produced the opposite result, since it showed a significant reduction in colonies 

(Fig. 3.2B, white bars). These results suggest that Bag-1L has a dual function in the 

regulation of cell growth and that this effect is cell type specific. 

 

 

 

 

Fig. 3.2: Effect of Bag-1L on growth of benign and malignant prostatic cells 

A) BPH-1 and 22Rv.1 cell extracts were loaded on a polyacrylamide gel. After transfer to a PVDF 

membrane an anti-Bag-1L antibody was used to detect Bag-1L levels and an anti-!-actin antibody for 

normalization. B) Bag-1L has opposite effects in bening and malignant cells. BPH-1 and 22Rv.1 were 

transfected and selected with G418. The colonies formed were stained with crystal violet and quantified 

setting the value of the vector as 100%. The results are shown as the mean value of at least three 

independent experiments carried out with three different plasmid preparations ±SD (** p<0.01). Open bars 

represent the result of the 22Rv.1 and the filled bars are the result of the BPH-1 cells. 

 

 

3.3 Identifcation of a growth-inhibitory Bag-1L-based peptide 

 

The fact that Bag-1L reduces the survival of 22Rv.1 prostate cancer cells when 

overexpressed indicates that sequences in this protein must contribute to this effect. One 

of the best studied functions of Bag-1L is its ability to bind chromatin (Shatkina et al., 

2003). In chromatin immunoprecipitation assay carried out by Dr. L. Shatkina 

(unpublished data) a region of 68 amino acids encompassing amino acids 202 to 269 of 

the Bag1-L protein, when deleted, abrogated the binding to chromatin. This sequence 

includes part of the ubiquitin-like domain and part of the Bag domain (approximately 

one and a half helical turns).  
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Fig. 3.3: A region of 68 amino acids of Bag-1L is important for the growth inhibitory effect on 

the cancer cells 

A) Schematic diagramme of Bag1-L, Bag-1L!202-269 (or Bag-1L!peptide) and Bag-1L(202-269) 

(or Bag1-L peptide). The domains of Bag-1L in the diagramme are: the nuclear localization sequence (in 

green), the ubiquitin-like domain (in blue) and the Bag domain (in red). The numbers indicate the position 

of the amino acids. B) Bag-1L peptide reduces cell growth in prostate cancer cell 22Rv.1. For clonogenic 

assay BPH-1 and 22Rv.1 cells were transfected with constructs encoding the indicated peptides and 

selected with G418. The results are shown as the mean value of at least three independent experiments 

carried out with three different plasmid preparations ±SEM (* p<0.05). The value of the vector is set as 

100%. Filled bars represent BPH-1 cells and open bars the 22Rv.1 cells. 

 

 

Schematic diagrammes of Bag1-L, the identified deletion mutant Bag1-L!202-269 

(otherwise known as Bag1-L!peptide) and Bag1-L(202-269) (or Bag-1L peptide) are 

showed in Fig. 3.3A.  

These three Bag-1L constructs were stably transfected into the 22Rv.1 cancer and 

the BPH-1 benign cells and subjected to a clonogenic assay. In this colony forming 

assay, overexpression of Bag-1L!peptide in BPH-1 cells showed  an impairement of the 

growth increase observed with the wild type Bag-1L in Fig. 3.2B, indicating a loss of 

function of this protein. Similarly the growth inhibitory function of the wild type Bag-1L 

in 22Rv.1 was abrogated when the Bag-1L!peptide was expressed. Overexpression of 

the Bag-1L peptide in the BPH-1 cells did not show any significant effect on colony 

formation compared to the vector control. Intriguingly expression of the peptide in 

22Rv.1 cells reduced the colony formation, indicating that this sequence contained the 

information for the growth-inibitory effect (Fig. 3.2B). In addition, since this sequence 

did not show any effect on the BPH-1 cells, it seems that its action is cancer cell specific. 
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Since the region covered by the peptide is common to all the isoforms of the Bag-1 

family, in the next paragraphs the peptide will be named as Bag-1 peptide. 

 

 

3.4 Stable expression of Bag-1 peptide reduces proliferation in 

vitro 

 

The growth inhibitory action of the Bag-1 peptide and the specificity towards 

cancer cells deserved a deeper analysis. In order to focus on this aspect, 22Rv.1 cells 

were transfected with an empty expression vector containing G418 resistance gene as 

control or the plasmid containing the hemagglutinin (HA) tagged Bag-1 peptide 

sequence. After transfection, the cells were selected with G418 and single clones were 

isolated and expanded. The level of expression of the peptide was determined by western 

blot analysis on cell extracts using an antibody recognizing the HA tag and !-actin for 

the control of equal loading. Stable clones with different level of expression of the 

peptide (Fig. 3.4B, lanes 4-8) or the empty expression vector (Fig. 3.4B, lanes 1-3) were 

selected. To determine whether the expression of the peptide influenced cell 

proliferation, Cell titer blue
®
 proliferation assay was performed. This assay is based on 

the ability of cells to metabolize a dye (resoazurin) into the fluorescent dye (resorufin). 

Measuring the ratio between the wavelength of excitation (560 nm) and emission (590 

nm) of fluorescence intensity gives a direct estimation of the number of cells. Cell 

proliferation was determined from the difference between the fluorescence intensity 

obtained on the second day (day2) over the value obtained at the day of seeding the cells 

(day0). The graph in Fig. 3.4A shows that all the stable clones expressing the peptide 

exhibited a decreased proliferation compared to the control cell clones independent of 

the amount of peptide expressed. This result confirms the growth inhibitory action of the 

peptide in the prostate cancer cell line 22Rv.1. 
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Fig. 3.4: Stable clones of 22Rv.1 cells show reduced cell viability in vitro 

Bag-1 peptide stably expressed in 22Rv.1 cells decreases cell proliferation. A) Cell titer blue
®

 

proliferation experiment with stable clones transfected with the empty vector control or with the Bag-1 

peptide sequence. Stable clones were seeded in a 96-well plate and the cell number in each well was 

estimated by measuring the ratio between the wavelength of excitation and emission (560/590 nm). The 

assay was performed over two days of duration and the fluorescence was measured with a Fluostar 

Optima
TM

 plate reader (BMG). Values are represented as the mean of at least four independent 

experiments ±SD (* p<0.05). B) Level of Bag-1 peptide in the 22Rv.1 clones. Cellular extracts of stable 

clones were subjected to Western blot analysis. An anti-HA antibody was used to detect the peptide and an 

anit-!-actin antibody for !-actin as an indication of equal loading control. 
 

 

3.5 Bag-1 peptide reduces tumour growth and weight in vivo 

 

The Bag-1 peptide showed anti-growth properties in clonogenic and proliferation 

assay. Another possibility to study its effect is the in vivo tumour mouse xenograft model 

(Kerbel, 2003).  

The animals used for this model are the athymic nude mice that are phenotypically 

hairless and do not have the thymus gland (Pantelouris, 1968). These mice do not have a 

functional immune system and since they lack the thymus, which is the source of T-cells, 

they can accept grafts from other organisms like rats or humans without any risk of 

rejection (Spang-Thomsen and Visfeldt, 1976).  

 To determine whether the peptide affects tumour growth, stable 22Rv.1 cell clones 

expressing the Bag-1 peptide were injected subcutaneously into both flanks of the mice. 

The clones were divided into three groups: the vector control group (V18, V19 and V33), 

clones expressing weak levels of peptide (P41 and P63) and clones expressing high level 

of peptide (P25, P29 and P42). Tumour growth was estimated by measuring the size 
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once a week with a caliper and calculating the volume using the formula V= 

1/6x!(d1d2d3), where V is the volume (in cubic mm), ! is a mathematical constant and 

d1d2d3 the three dimensions measured (depth, width and height). Nine weeks after the 

injection, the animals were sacrificed by neck dislocation and the tumours were 

harvested and weighed. Alternatively mice were sacrificed when the maximum limit 

(around 1000 cubic millimiters) allowed by the animal care committee was reached.  

The group of tumours formed by cells with the vector control reached the 

maximum size in a time range of 4 to 8 weeks (Fig. 3.5A). Mice bearing tumours 

expressing low levels of peptide were sacrificed between the 6
th

 and the 7
th

 week 

following the injection. This shift in termination time did not correspond to a significant 

difference in the tumour size (Fig. 3.5B). On the contrary, the stable clones expressing 

high levels of peptide showed a significant decrease in tumour size compared to the 

vector control and the weak peptide groups without reaching the maximum limit within 

the time period of nine weeks (Fig. 3.5C). 

 

 

 

 

Fig. 3.5: Bag1 peptide reduces 22Rv.1 prostate tumour cell growth in vivo 

Growth curves of xenograft models of 22Rv.1 stable clones. Six-week old athymic nude mice were 

injected subcutaneously into each flank with 5x10
6
 cells of each stable clone. To follow the growth, 

tumours were measured every week up to nine weeks using a caliper and the formula V= 1/6
 
! (d1d2d3), 

where V is the volume, ! is a mathematical constant and d1d2d3 the three measurements of the three 

dimensions. Mice bearing tumours above the maximum size limit were sacrificed. The graphs represent the 

growth of 22Rv.1 cells stably expressing the empty vector as control (A), weak levels of peptide (B) and 

high levels of peptide (C). Curves are presented as the mean value of 5-10 tumours ±SD. 
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In order to demonstrate that the growth-inhibitory effect of the peptide is not 

restricted to a particular cell type, stable clones were generated in LNCaP cell line 

derived from a prostate cancer lymph node metastasis. Two clones containing the empty 

vector (V69 and V82) and two clones expressing the peptide  (P12 and P35) were 

injected into the flank of the athymic nude mice.  The clones transfected with the empty 

vector reached the maximum size of 1000 cubic millimiters within 8 weeks.  Tumour 

growth was accompanied by loss of weight of the animals and for this reason the 

experiment carried out with the clone V69 had to be terminated 6 weeks after the 

injection (Fig. 3.6A). Injection of clones overexpressing the peptide hardly grew over the 

period of 8 weeks confirming that indeed the sequence identified affects prostate cancer 

cell growth (Fig 3.6B). The growth of tumours expressing the clone P35 was monitored 

only up to 6 weeks because the tumours became necrotic. 

In addition to measuring the sizes, the weights of the tumours were also recorded 

after sacrificing the mice.  

 

 

 

 

Fig. 3.6: Bag-1 peptide reduces LNCaP cell growth in vivo 

Growth curves of xenograft models of LNCaP cells. Six-weeks old athymic nude mice were 

injected subcutaneously with 5x10
6
 cells mixed 1:1 with matrigel

®
. The curves represent the growth of the 

tumours over  the time range of 8 weeks. Stable clones expressing empty vector as control and the peptide 

are shown in panel A and B. The results are shown as the mean value of 5-10 tumours ±SD. 

 

 

A summary of the tumour weights of tumours formed by the 22Rv.1 and LNCaP 

cell clones and corresponding termination time for each clone injected is showed in table 

3.1. In 22Rv.1 cell xenografts no significant differences were observed between the 

group of the clones transfected with the empty vector and the low expressing peptide. 

Consistent with the measurements of the tumour sizes, an approximately 4-fold 
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difference was observed between the high expressing peptide clones and the vector 

control group. Tumours derived from the injection of clones generated in LNCaP cells 

showed a striking 10-fold reduction in the weight over the control group. 

 

 

22Rv.1 cells  LNCaP cells 

 
Clone 

no 

Tumor 

weight 

(g) 

Termination 

time (weeks) 

 

 
Clone 

no 

Tumor 

weight 

(g) 

Termination 

time (weeks) 

V33 1.24±0.61 4  V82 0.65±0.29 8 

V19 1.36±0.54 4-5  

Vector 

clones V69 0.22±0,03 6 
Vector 

clones 
V18 1.73±0.48 7-8  P35 0.05±0.01 6 

P41 1.09±0.41 6-7  

Peptide 

clones P12 0.04±0.03 8 Weak 

peptide 

clones 
P63 1.27±0.29 6-7  

P25 0.31±0.14 7-9  

P42 0.38±0.20 9  

Strong 

peptide 

clones P29 0.42±0.17 9  

 

Table 3.1: Bag-1 peptide reduces tumour weight in xenograft models of 22Rv.1 and LNCaP 

cells 

Tables of tumour weights and termination times for xenograft models of 22Rv.1 and LNCaP stable 

clones. When tumour reached the maximum size or nine weeks after injection, animals were sacrificed and 

tumours harvested and weighed. The numbers (in grams) represent the mean value of at least five tumours 

±SD. 

 

 

To determine the reason for the reduced volume and weight of the tumours derived 

from cells expressing the Bag-1 peptide, histological staining for apoptosis was carried 

out. Apoptosis is the process of programmed cell death (PCD) occurring for the natural 

turnover of cells in tissues. In cancer, this process is inhibited resulting in uncontrolled 

cell division. To detect apoptosis, the terminal deoxynucleotidyl transferase dUTP nick-

end labelling (TUNEL) assay was used. The principle of the assay is based on the 

observation that during apoptosis DNA is nicked by DNase. The enzyme 

deoxynucleotidyl transferase can recognize the nicks and add dUTPs at the 3’-OH 

terminus of the DNA. Addition of digoxygenin conjugated-UTP allows for specific 

recognition of cells undergoing apoptosis (Gavrieli et al., 1992). For this purpose, 

tumour tissues derived from the 22Rv.1 stable clones where paraffin-embedded and cut 

into 5-!m-thick sections for immunohistochemical analysis. 

Apoptotic cells were detected using an anti-digoxygenin antibody conjugated to a 

peroxidase. Addition of the substrate 3’,3’-diaminobenzidine (DAB) and hydrogen 

peroxide produces a  brown-coloured signal. Nuclei of normal cells were stained blue-
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purple with hemtoxylin which binds to the negatively charged DNA. In Fig. 3.7 

representative sections of xenografts established from 22Rv.1 stable clones are showed. 

Tumour tissue derived from clones expressing the empty vector showed a prevalent blue 

staining indicating the absence of apoptosis. Histological analysis of the sections 

obtained from clones expressing low levels of peptide showed a slight increase in the 

staining of apoptotic cells. Conversely when sections of xenografts generated from high 

expressing peptide clones were analysed, almost the whole surface was stained with 

apoptotic cells accompanied by some diffused brownish staining indicative of necrosis.  

 

 

 

 

Fig. 3.7: Xenografts of stable clones expressing Bag-1 peptide show increased apoptosis 

Paraffin-embedded sections of tumours generated from subcutaneous injection of 22Rv.1 stable 

clones into athymic nude mice (20X magnification). Tumour tissues were harvested at the moment of 

sacrifice and fixed in 4% paraformaldheyde. Thereafter the specimens were embedded in paraffin, cut into 

5 !m-thick slices and subjected to immunohistochemical analysis. Nuclei were stained in blue-purple with 

hematoxylin while apoptotic cells were detected using the TUNEL assay and stained brown. 

Representative sections of xenografts obtained from each 22Rv.1 stable clone were acquired with an 

Axioscop  microscope (Zeiss). 
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3.6 The Bag-1 peptide interacts with distinct sequences of GRP75 

and GRP78 

 

In this work a peptide derived from Bag-1 has been shown to inhibit prostate 

cancer cell growth but its mechanism of action is unknown. One of the first steps 

towards understanding its mode of action is to identify the cellular targets through which 

it acts. To accomplish this, interaction partners of the peptide were investigated. The 68 

amino acid peptide was fused to glutathione-S-transferase to generate a recombinant 

protein for GST-pull down assay. Addition of 22Rv.1 and LNCaP cell lysate to the GST-

fused peptide led to identification of glucose-regulated protein 75 (GRP75) and 78 

(GRP78) as the interaction parner of the peptide.  

GRP75 (also known as mortalin or mtHsp70) belongs to the family of the heat 

shock proteins (Hsps) and is localised mainly in the mitochondria (Bhattacharyya et al., 

1995). GRP78 (also called BiP) is mainly in the endoplasmic reticulum and is involved 

in the regulation of the unfolded protein response (UPR) (Lee, 2001). Both proteins are 

overexpressed in a large number of cancers (Daneshmand et al., 2007; Wadhwa et al., 

2006).  

In order to better understand the function of the peptide, its binding site on the two 

target proteins was investigated. GRP75 and 78 share 47% of amino acid identity 

(Bhattacharyya et al., 1995) and consist of three domains: an ATPase domain that drives 

ATP hydrolysis, a substrate binding domain (SBD) that recognizes the client protein and 

an oligomerization domain that regulates the interaction of the GRPs with themselves 

(Bhattacharyya et al., 1995). To show which domain is bound by the Bag-1 peptide, 

GST-pull down assay was performed using glutathione-S-transferase fused to GRP75, 

GRP78 and several truncations. These consisted of the ATPase domain, the substrate 

binding domain, the oligomerization domain and the full length protein lacking the 

ATPase domain (!ATPase). A schematic representation of the GST-fused GRP75 and 

78 and their deletion mutants is shown in Fig. 3.8A. The GST-fused proteins were pre-

adsorbed on glutathione-sepharose beads and then incubated with cell extract of 22Rv.1 

stably expressing the Bag-1 peptide. As negative control the cell lysate was incubated 

with the glutathione-S-transferase. At the end of the incubation the samples were washed 

and loaded onto a polyacrylamide gel for electrophoretic separation. After transfer onto a 

PVDF membrane, western blot analysis was carried using an anti-HA antibody to detect 
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the Bag-1 peptide bound to the GST-fused proteins. To verify equal protein loading, the 

membranes were stained with Coomassie
® 

blue.  

 

 

 

Fig. 3.8: Interaction of the Bag-1 peptide with GRP75 and GRP78 

GST-pull down experiment with GRP75 and 78 and their deletion mutants. A) Schematic 

diagramme of GRP75 and GRP78 and their deletion mutants. The ATPase domain is depicted green, the 

peptide binding domain white and the oligomerization domain red. B) GST-pull down assays were 

performed incubating 50 !g of GST-fused GRP75 and its deletion mutants with 400 !g of cell lysate of 

22Rv.1 stably overexpressing the Bag-1 peptide. Prior to the incubation with the cell lysate, the GST-fused 

proteins were bound to gutathion sepharose beads 4B. After washing, the samples were boiled, loaded onto 

a polyacrylamide gel and transferred onto a PVDF membrane. Western blot analysis was performed using 

an anti-HA antibody to detect the peptide bound to the GST-fused protein. The membrane was stained 

Comassie
®

 blue for equal loading control. C) GST-pull down assay performed incubating 50 !g of GST-

fused GRP78 and its truncations with 400 !g of lysate from 22Rv.1 cells stably overexpressing the Bag-1 

peptide. 
 

 

Incubation of the cell lysate with GST-fused GRP75 and its truncations showed a 

weak interaction of the full length protein with the Bag-1 peptide (Fig. 3.8B lane 3) 

while deletion of the ATPase domain increased the binding (Fig. 3.8B, lane 4). The 

ATPase and the oligomerization domain did not show significant binding (Fig. 3.8B, 

lane 5 and 7), but the substrate binding domain bound the Bag-1 peptide (Fig. 3.8B, lane 
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6) to the same extent as the GRP75!ATPase protein indicating that the interaction is 

mediated by the substrate binding site.  

Studies with GST-fused GRP78 and its deletion mutants incubated with the cell 

extract obtained from the 22Rv.1 stably expressing the Bag-1 peptide produced different 

results. The full length GRP78 protein bound the peptide (Fig.3.8C, lane 3) as well as 

GRP78!ATPase (Fig.3.8C, lane 4) even if the extent is reduced considering the loading 

control. Unlike the case of the studies with GRP75, the ATPase domain showed 

interaction (Fig. 3.8C, lane 5) and the substrate binding domain and the oligomerization 

domain (Fig. 3.8C, lane 6 and 7) showed almost undetectable binding indicating that 

GRP78 interacts with the peptide mainly through its ATPase domain. These results show 

that the Bag-1 peptide recognizes specific sequences of  distinct domains on GRP75 and 

GRP78. 

 

 

3.7 The Bag-1 peptide is colocalised with GRP75 and GRP78 

 

If the Bag-1 peptide binds to GRP75 and 78 as shown in GST-pull down 

experiment, these proteins should colocalise in cultured cells. For this reason 22Rv.1 

cells expressing the peptide were fixed with 4% paraformaldehyde and subjected to 

immunofluorescence assay (Fig. 3.9). For detecting the peptide an anti-HA antibody was 

used while GRP78 and GRP75 were identified by the use of specific antibodies.  

Laser confocal microscopy analysis showed that the peptide (green staining) was 

equally distributed in the nucleus and cytoplasm of the cell. In the cytoplasm it was 

identified in punctuated staining indicating the targeting of subcellular compartment(s) 

(Fig. 3.9A and D). GRP75 (red staining) occurred mainly with a punctuated distribution 

in the cytpolasm (Fig. 3.9B). Staining with the peptide showed a partial colocalisation of 

the two proteins around the punctuated structures (Fig. 3.10C). GRP78 (red staining) was 

visible mainly in the cytoplasm (Fig. 3.9E). Co-staining of the peptide and GRP78 

showed an intense colocalisation (orange signal) in the cytoplasm of the cells (Fig. 3.9F) 

indicating that the peptide mainly co-localises with this protein. 

 

 



RESULTS  

 67 

 

 

Fig. 3.9: The Bag-1 peptide is colocalised with GRP75 and GRP78 

Confocal microscopy analysis of 22Rv.1 cells stably expressing the Bag-1 peptide (63X 

magnification). For immunofluorescence assay 22Rv.1 cells were fixed with paraformaldehyde on a 

coverslip and stained with an anti-HA antibody to detect the peptide (green, A and D). GRP75 (B) and 

GRP78 (E) were detected with anti-GRP75 and 78 specific antibodies and are represented in red. The 

merge of the two channels (E and F) produces an orange colour when the two proteins colocalise. Images 

were acquired with a Leica TCS SPE confocal microscope (Leica Microsystems). 

 

 

3.8 The Bag-1 peptide is localised in the endoplasmic reticulum 

but not in the mitochondria 

 

Confocal microscopy analysis showed that the Bag-1 peptide colocalised with both 

targets in the cytoplasm in punctuated structures. Since GRP75 and GRP78 are 

preferentially in the mitochondria and the ER respectively and both these structures have 

a dotted distribution in the cytoplasm, the localization of the peptide in these two 

subcellular compartments was investigated. For this purpose immunofluorescence assay 

was performed using 22Rv.1 cells stably transfected with the Bag-1 peptide (Fig. 3.10). 

Mitochondria were detected with the Mitotracker
®
 mitochondrion selective probe (Fig. 

3.10A, II) that accumulates selectively into the mitochondria where it is converted into a 

fluorescent dye. For tracking the ER an antibody recognizing the ER-associated protein 

disulfide isomerase (PDI), one of the most abundant proteins in the ER (Lyles and 

Gilbert, 1991) was used (Fig. 3.10A, V). Merging of the images of the peptide (Fig. 

3.10A, I) and the mitochondria (red staining, Fig. 3.10A, II) showed a yellow staining 
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indicating that the peptide was rather localising at the outer membrane of the 

mitochondria (Fig. 3.10A, III). The merge of the channel of the peptide (Fig. 3.10A, IV) 

with the channel of the ER (Fig. 3.10A, V) showed an orange-yellowish colour 

indicating colocalisation of the peptide with the PDI (Fig. 3.10A, VI).  

In order to quantify the amount of peptide localizing in the mitochondria and in the 

ER, the IMARIS
®
 software was used with three representative confocal images for each 

staining. Only 15% of colocalisation of the peptide with the mitochondria was observed, 

while the peptide and the ER colocalised in almost half of the surfaces taken into account 

for the study (Fig. 3.10B) indicating that the peptide preferentially localizes in the 

endoplasmic reticulum. 

 

 

 

 

Fig. 3.10: Subcellular localisation of the Bag-1 peptide 

Immunofluorescence analysis on 22Rv.stably expressing the Bag-1 peptide to determine its 

subcellular localisation. Confocal images of 22Rv.1 stably expressing the Bag-1 peptide fixed with 4% 

paraformaldehyde (63X magnification). The Bag-1 peptide was detected with an anti-HA antibody and is 

represented in green (I and IV). For staining of the mitochondria, the Mitotracker
®

 dye was used (II) while 

for the endoplasmic reticulum the ER-tracker
®

 kit was used (V). Both the mitochondria and the 

endoplasmic reticulum are represented in red. Merge of the channels shows the area of colocalisation (III 

and VI). Images were acquired with a Leica TCS SPE confocal microscope (Leica Microsystems). B) 

Quantification of the percentage of colocalisation of the Bag-1 peptide in the mitochondria (left bar) and 

the endoplasmic reticulum (right bar). The calculation was performed using the IMARIS
®

 software (v 

6.3.1, Bitplane). The values represent the average of three independent experiment ±SD. Images were 

acquired with a Leica TCS SPE confocal microscope. 
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3.9 The N-terminal region of the Bag-1 peptide is sufficient for 

growth inhibition 

 

The  region of 68 amino acids identified from Bag-1L  included a portion of the 

ubiquitin-like domain at the N-terminal region and a part of the Bag domain at the C-

terminal region. With the help of secondary structure predictors (PSIPRED and 

PROFSEC) it was shown that the peptide consists of a !-sheet and a loop derived from 

the ubiquitin-like domain followed by an "-helix structure representing the Bag domain 

(W. Wenzel, unpublished data). In order to determine which of these regions of the 

peptide is responsible for its growth-inhibitory properties, several deletion mutants of the 

Bag-1 peptide were generated. These consisted of the N-terminal part of the peptide 

encompassing the first 40 amino acids (from position 202 to 241) and covering the whole 

portion of the ubiquitin-like domain plus a small sequence of the Bag domain. This 

mutant was termed N-terminal peptide. The last 29 amino acids (from position 241 to 

269) covering the C-terminal end of the peptide was named C-terminal peptide. In 

addition, the first 18 amino acids representing the ubiquitin-like domain were removed 

generating a peptide of 50 amino acids (from position 220 to 269) defined as #N-

peptide. A schematic representation of the peptides used for this study is shown in Fig. 

3.11A. 

To determine which of the described sequences retained the ability of inhibiting 

cell growth, they were cloned into an expression vector carrying the gene for G418 

resistance and transfected into the 22Rv.1 prostate cancer and the BPH-1 bening prostate 

cells for colony forming assay (Fig. 3.11B).  

Overexpression of the C-terminal peptide did not significantly reduce the colony 

number both in 22Rv.1 and in BPH-1 cells. Similar results were obtained when the #N-

peptide was overexpressed, indicating that the mutant truncated at the N-terminal region 

of the peptide did not contribute to the growth inhibitory function. In contrast, when the 

N-terminal peptide was expressed in the cells it reduced colony formation in the 22Rv.1 

to the same extent as the Bag-1 peptide. However expression in the BPH-1 cells did not 

have a significant effect. These results indicate that the first 40 amino acids at the N-

terminal region of the Bag-1 peptide is sufficient to inhibit cell growth and that this 

action is specific for cancer cells since the BPH-1 cells are not affected. Consistent to 
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this result, GST-pull down assay, using the described peptides fused to the GST and 

22Rv.1 cell lysate, showed that the sequences that did not inhibit cancer cell growth (the 

C-terminal peptide and the !N-peptide) did not bind GRP75 and 78 while the N-terminal 

peptide bound the two proteins (unpublished data from K. Jehle, a diploma student in our 

laboratory).  

 

 

 

Fig. 3.11: A region of 40 amino acids at the N-terminal part of the Bag-1 peptide is sufficient to 

reduce colony formation 

A) Schematic representation of the deletion mutants of the Bag-1 peptide. The domains depicted 

blue and red are the ubiquitin-like domain and the Bag domain respectively. B) Clonogenic assay with 

constructs expressing deletion mutants of the Bag-1 peptide in BPH-1 and 22Rv.1 cells. Cells transfected 

with these constructs were selected with medium containing G418. Results are shown as the mean value 

±SEM of at least three independent experiments using three different plasmid preparations (*p <0.05). The 

values obtained with the empty vector were set as 100%. Open bars represent the result of the 22Rv.1 and 

the filled bars are the result of the BPH-1 cells. 
 

 

To confirm the effect of the identified peptide in an in vivo tumour model, the 

22Rv.1 cells were transfected with constructs carrying the respective peptides and the 

G418 resistance gene. After antibiotic selection single clones were picked, expanded and 

again subcutaneously injected into the flanks of athymic mice to establish xenograft 

models. Tumour sizes were measured weekly over a period of five weeks (Fig. 3.12). 

Injection of stable clones expressing the C-terminal region of the peptide produced 

tumour sizes comparable to the vector controls indicating that this sequence does not 

have any effect on the growth profile of the xenografts (Fig. 3.12A). Similar results were 

obtained when single clones expressing the Bag-1 peptide lacking the first 18 amino 
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acids were analysed (Fig. 3.12B). On the other hand xenografts of stable clones 

expressing the N-terminal region of the peptide could not be established indicating that 

this sequence is sufficient and necessary for the growth inhibitory action of the Bag-1 

peptide (Fig. 3.12C).  

 

 

 

 

Fig. 3.12: Bag1 N-terminal peptide reduces prostate tumour growth in vivo.  

Growth curves of stable clones expressing Bag-1 peptide deletion mutants. Six-week old athymic 

nude mice were subcutaneously injected with 5x10
6 

cells of stable clones expressing the C-terminal 

peptide (A), the !N-peptide (B) and the N-terminal peptide (C). Tumours were measured every week for 

five weeks using a caliper. Results are presented as the mean value of 5-10 tumours ±SD.  
 

 

Comparison of the growth curves of the Bag-1 peptide expressing clones (Fig. 

3.5C) and the clones containing the N-terminal peptide (Fig. 3.12C) shows that the two 

peptides identified have similar efficacy of action. 

 

 

3.10 A sequence of 19 amino acids at the N-terminal region of the 

Bag-1 peptide is sufficient to reduce cell growth 

 

The colony forming assay and the in vivo xenograft models shown in section 3.11 

demonstrated that deletion of the region covering a portion of the ubiquitin-like domain 

(between amino acids 202 and 220) in the Bag-1 peptide abrogated its growth inhibitory 

action and that expression of 40 amino acids from the N-terminal region was sufficient to 

inhibit tumour growth. Since the N-terminal peptide (202-241) still contained sequences 
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derived from two domains (the ubiquitin-like domain and the Bag domain) it was further 

divided into a fragment of 19 amino acids (from position 202 to 220) including only the 

ubiquitin-like domain portion and a fragment of 22 amino acids (from position 220 to 

241) including the Bag domain and 5 upstream amino acids (Fig. 3.13A). In order to 

study the effect of these sequences on cell growth, the peptides were cloned into an 

expression vector and colony forming assay was performed in 22Rv.1 and BPH-1 cell. 

When the 19-mer peptide (202-220) was transfected in 22Rv.1 the colony formation was 

reduced to the same extent as the N-terminal peptide indicating that this sequence is able 

to reproduce the effect of the N-terminal peptide. Overexpression of the same construct 

into BPH-1 cells did not reduce colony formation indicating that this peptide exerts a cell 

type specific action (Fig. 3.13B). When the 22-mer peptide (220-241) was expressed, it 

did not show any effect on colony formation in the two cell lines analysed (Fig. 3.13B). 

The Bag-1 peptide and its truncation showed a specificity of action towards the 

cancer cell line 22Rv.1 while it did not affect the growth of the benign cell line BPH-1. 

If these sequences exert indeed their growth inhibitory action through the binding to 

GRP75 and GRP78, their specific effect on cancer cell lines could be explained by 

differences in the level of expression of the two target proteins in the cell lines analysed. 

Thus extracts from 22Rv.1 and BPH-1 cells were run onto a polyacrylamide gel and 

subjected to electrophoretic separation to check the relative levels of GRP75 and GRP78. 

After transfer onto a PVDF membrane, Western blot experiment was performed using 

anti-GRP75 and GRP78 antibodies for detecting GRP75 and GRP78 and an anti-!-actin 

antibody to determine the level of !-actin which was used for equal loading control. The 

22Rv.1 cancer cell line (Fig. 3.13C, lane 1) showed a higher level of expression of 

GRP75 and GRP78 compared to the benign cell line BPH-1 (Fig. 3.13C, lane 2) 

suggesting that the reduced level of expression of these target proteins may explain the 

differential effect of the Bag-1 peptides towards growth of these cells.  
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Fig. 3.13: A sequence of 19 amino acids of Bag1-L reduces cancer cell growth.  

A) Schematic diagramme of the deletion mutants derived from the N-terminal region of the Bag1 

peptide. B) Colony forming assay performed in 22Rv.1 and BPH-1 cells. Results are shown as the mean 

value of at least three independent experiments using three different plasmid preparations (*p<0.05). 

Vector values are set as 100%. Open bars represent the result of the 22Rv.1 and the filled bars are the 

result of the BPH-1 cells. C) Level of expression of GRP75 and GRP78 in 22Rv.1 and BPH-1 cells. 

Extracts from 22Rv.1 and BPH-1 cells were loaded on a polyacrylamide gel and transferred to a PVDF 

membrane. Western blot analysis was performed with anti-GRP75 or anti-GRP78 antibody to detect 

GRP75 or GRP78 and an anti-!-actin antibody to detect !-actin used as loading control. 
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4. DISCUSSION 

 

Bag-1 (Bcl-2 associated athanogene, member 1) is a family of proteins formed by 

four members (Bag-1L, Bag-1M, Bag-1 and Bag-1S) encoded by the same mRNA via 

alternative translational initiation site (Yang et al., 1998). The longest isoform of the 

family, Bag-1L, has been found overexpressed in a variety of cancers while it is almost 

undetectable in benign tissues, indicating that this protein plays a role in the transition of 

cells towards malignancy (Takayama et al., 1998). However reports on Bag1-L function 

in cancer have so far led to controversial results. On the one hand, detection of high 

levels of this protein in tumour specimens is indicative of good prognosis and better 

patient outcome (Millar et al., 2008). On the other hand, it has been demonstrated that 

Bag-1L inhibits apoptosis in cancer cells and is associated with aggressive tumours 

(Kikuchi et al., 2002; Krajewska et al., 2006; Takayama et al., 1995).  

In this work, to determine whether changes in the levels of Bag-1L could affect 

prostate cancer cell growth, the transgenic adenocarcinoma of the mouse prostate 

(TRAMP) model was crossed with a Bag-1 knock out mice (Bag-1
+/-

). The resulting 

progeny showed a correlation of Bag-1 levels with size of the prostate tumours. In 

addition, the effect of Bag-1L overexpression was compared between benign and 

malignant prostate cells and the results showed that this protein reduces prostate cancer 

cell growth. The region responsible for this action was identified as a 68 amino acid long 

peptide. This fragment is localised in the endoplasmic reticulum and binds distinct 

domains of the glucose regulated proteins GRP75 and GRP78. The first 19 amino acids 

at the N-termianl part of the peptide were further identified as the region responsible for 

the growth inhibitory effect.  

 

  

4.1 Bag-1L in prostate cancer: a protector or a killer? 

 

An increase in Bag-1 level has been found in patients with prostate cancer 

(Krajewska et al., 2006; Mäki et al., 2007) suggesting that this protein plays a role in the 

development of this tumour. However there is no clear evidence that the level of Bag-1L 
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is related to the development of prostate tumour. In this work it was shown in a TRAMP 

(transgenic adenocarcinoma of the mouse prostate) model that the level of Bag-1 gene 

expression correlated with the size of the tumour. Although significant, the reduction 

(about 23,3% in the TRAMP/Bag-1
+/-

 mice) was expected to be higher when compared 

with another work where crossing Bag-1 heterozygous mice with a model of lung 

metastasis clearly reduced the number of metastatic foci (Götz et al., 2004). One of the 

reasons of the weaker effect of the reduction of Bag-1 levels on tumour formation in the 

TRAMP could be due to the nature of the model used. In the TRAMP model a transgene 

consisting of the fusion of the rat probasin promoter with the SV40 T antigen is 

responsible for the tumour formation. It is likely that the T antigen may interfere with 

the function of Bag-1. This could explain why the knock down of Bag-1 did not 

influence the overall survival of the TRAMP mice when survival studies were carried 

out comparing the TRAMP wild type with the TRAMP/Bag-1
+/-

 mice. 

A comparative study to determine the level of expression of the Bag-1 proteins in 

benign and malignant tissues showed that the longest isoform of the family, Bag-1L, is 

seldom expressed in normal tissues while is found in high levels in cancer (Takayama et 

al., 1998). This observation suggests that Bag-1L levels are critical for tumorogenesis 

and therefore in this work the role of this isoform was studied in prostate cancer. 

Overexpression of Bag-1L in benign prostate cell line BPH-1 increased colony 

formation ability in clonogenic assay, an observation in line with studies reporting that 

this protein is important for the transition of cells from normal to neoplastic condition 

(Takayama et al., 1998). On the contrary increased expression of Bag-1L in the cancer 

cell line 22Rv.1 led to a significant decrease of cell growth, indicating that the sequence 

of this protein contains the information for inhibiting cell growth. Thus the Bag-1L 

protein could exert both positive and negative effect on cell growth. It remains to explain 

why the same protein has opposite effect in two cell lines both of the same tissue of 

origin. One possibility is the pathophysiological stage of the prostate cells at the time of 

the experiment. In fact it is important to note that the 22Rv.1 cells are derived from a 

primary prostate cancer and express Bag-1L while the BPH-1 are derived from benign 

prostatic hyperplasia and do not express the protein. The inhibitory effect and the 

stimulatory action of Bag-1L in these two cell lines would suggest that a threshold for 

Bag-1L determines the protective or the lethal function of the protein.  

Deletion of a region of 68 amino acids has been shown in this work to abolish the 

inhibitory effect of Bag-1L. When the sequence was expressed on its own, it also 
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decreased tumour growth. This observation is consistent with the finding that 

overexpression of a large 174 amino acid peptide, corresponding to Bag-1L lacking the 

first N-terminal 124 the last 47 C-terminal amino acids, exerted a dominant negative 

effect reducing the tumour size of xenograft models of the breast cancer cell line ZR-75-

1 (Kudoh et al., 2002). In the work presented here the growth inhibitory region has been 

narrowed down to 68 amino acids and finally to the region included between the 

positions 202-220. Thus this sequence of 19 amino acids is included in the larger 

sequence of 174 amino acids that exerted the tumour growth inhibitory effect in the 

breast cancer xenograft. This would suggest that the effect of the peptide described in 

this work would not only be limited to prostate cancer but might also cover a wider 

range of malignant cell lines.  

Bag-1 proteins are known to promote cell proliferation and inhibit apoptosis (Liu 

et al., 2009; Townsend et al., 2003a; Yang et al., 1999). This effect is common to all the 

isoforms of the family and deletions of sequences at the N-terminal region of the longest 

isoform, Bag-1L, do not affect the anti-apoptotic property. However deletion of the C-

terminal region converts these proteins into tumour cell growth inhibitors (Kudoh et al., 

2002). This therefore suggests that the C-terminal Bag domain plays a major role in the 

regulation of the action of these proteins. This could occur through the following 

mechanisms. First, the C-terminal sequences could hide the fragment responsible for the 

growth inhibitory action making it unaccessible. Thus, deletion of the C-terminus 

provides the Bag-1 proteins with growth inhibitory properties. Second, removal of the C-

terminal region could cause a conformational change that converts the proteins into cell 

growth inhibitors. Third, deletion of the C-terminal Hsp70 binding domain abrogates the 

strong binding of the Bag-1 proteins to Hsp70 (Takayama et al., 1997) making them 

available for other protein-protein interactions. These three hypothesis do not exclude 

each other and it could well be that the mechanism by which the Bag-1 proteins are 

converted into cell growth inhibitors is a combination of these options. In this 

connection it is important to note that the the 68 amino acid Bag-1 peptide identified in 

this work also lacks the C-terminal Bag domain. 

It is amazing how such a relatively small peptide could influence the growth of 

cancer cells. One striking feature of this small peptide is that it covers part of the 

ubiquitin-like domain (ULD). This domain has been found in a growing number of 

proteins and contains an hydrophobic core sequence with an isoleucine at the centre 

which can be conjugated to a ubiquitin moiety that drives protein degradation 
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(Hochstrasser, 2000). It could be hypothesized that the peptide binds to proteins vital for 

the cancer cells to degrade them. However, even though sequence alignment study has 

shown that the wild type Bag-1L also contains the core sequence recognized by the 

ubiquitin (Grabbe and Dikic, 2009), this region is not included in the peptides identified 

in this work. Alignment of the 68 amino acid peptide identified in this work with the 

whole human genome using the BLAST programme did not retrieve any result other 

than the Bag-1 proteins, indicating that the sequence of the peptide is unique.  

 

 

4.2 Interaction of the Bag-1 peptide with GRP75 and GRP78 

 

Immunofluorescence assay carried out in this work showed that the Bag-1 peptide 

co-localises with glucose regulated proteins 75 and 78 (GRP75 and GRP78) that have 

been identified in our laboratory as interacting partners of the peptide. The GRP75 and 

78 belong to the family of the Hsp70 proteins and share an identity of 43% and 57% 

respectively with Hsp70 (Bhattacharyya et al., 1995). The fact that the Bag-1 peptide 

binds to GRP75 and 78 but not to Hsp70 (D. Maddalo and K. Jehle, unpublished data) 

shows that the action is mediated by specific binding to the target proteins.  

The GRPs function as chaperones controlling the conformation of nascent 

polypeptides (Bukau, 2006). GRP75 and 78 as well as Hsp70 are organized in three 

distinct domains: an ATPase domain that drives the hydrolysis of ATP necessary for the 

enzymatic activity of these proteins, a substrate binding domain (SBD) that recognizes 

the client proteins and an oligomerization domain that modulates the interaction of these 

proteins with themselves. In spite of the high homology, in studies carried out by a 

diploma student in our laboratory it has been shown that the Bag-1 peptide does not bind 

Hsp70 indicating that it is specific in the choice of its substrate. A “kettle pot” model has 

been proposed for the structural organization of GRP75 and GRP78 domains (Kaul et 

al., 2007), where the ATPase domain represents the handle that, upon ATP binding, 

drives a conformational change that opens the lid (the oligomerization domain) allowing 

the entrance of the substrate protein into the pot, represented by the SBD. At the end of 

the process the folded substrate is released by the opening of the lid. In this work it has 

been shown that the peptide can recognize distinct domains on its target proteins. 

According to the above described model, the binding of the peptide to the SBD of 

GRP75 would block the entrance of the client proteins into the pot interfering with the 
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chaperone activity of GRP75. The finding that the binding of the Bag-1 peptide to the 

SBD or the deletion mutant lacking the ATPase domain of GRP75 is stronger compared 

to the full length GRP75 protein could be due to a structural obstruction of the binding 

site of the peptide by the ATPase domain.  

Binding of the Bag-1 peptide to the domains of GRP78 produced different results. 

The Bag-1 peptide binds to the ATPase domain of GRP78 which could impair the 

enzymatic activity of the protein and possibly interfere with its chaperone activity. The 

fact that the Bag-1 peptide binds only to the ATPase domain of GRP78 suggests that the 

interaction takes place through a region not conserved in other chaperones. The ATPase 

domain of GRP78 is based on the model of Hsp70 that consists of 382 amino acids and 

is organised in the domain I (from position 3 to 188), covering the first half of the 

domain, and a second region consisting of the domains IIA (129-288) and IIB (307-382) 

(Flaherty et al., 1990; Osipiuk et al., 1999). Alignment of the sequences of GRP78, 

GRP75, Hsp70 and Hsc70 reveals that the less conserved regions are a small fragment 

between position 96 and 104 (in domain I) and a larger portion between position 235 and 

320 (at the edge of the domains IIA and IIB) on the ATPase domain of Hsp70 

(Bhattacharyya et al., 1995). Thus it is likely that the Bag-1 peptide binds to these non-

conserved regions in the ATPase binding domain of GRP78. It has been observed that a 

molecule, (-)-Epigallocatechin gallate, binds the ATPase domain of GRP78, on a region 

covering the domain IIA and IIB and induces apoptosis by inhibiting the interaction 

between GRP78 and Caspase-7 (Ermakova et al., 2006). A possibility therefore exists 

that the Bag-1 peptide exerts its growth inhibitory function in a similar way. The Bag-1 

peptide can also bind the mutant of GRP78 lacking the ATPase domain, even if to a 

lesser extent. This binding could represent an additional way the peptide affects the 

action of GRP78 by binding to its C-terminal region.  

Further mechanism of action of the Bag-1 peptide through its interaction with 

GRP75 and 78 can be envisaged. GRP75, for example, exerts a positive effect on cell 

growth by sequestering p53 in the cytoplasm to inhibit its nuclear pro-apoptotic activity 

in cancer cells (Wadhwa et al., 1998). MKT-077, a rhodacyanine dye analogue, that 

binds GRP75 to abrogate its interaction with p53, has been shown to induce apoptosis in 

cancer cells. A possibility therefore exists that the Bag-1 peptide functions similarly. 

However, the effect of the binding of the Bag-1 peptide to GRP75 does not seem to 

interfere with p53 since no accumulation of this protein in the cytoplasm has been 

observed when the peptide is overexpressed (K. Jehle unpublished data). The finding 
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that the peptide binds two proteins and is localised in the endoplasmic reticulum and 

possibly on the mitochondrial outer membrane could give alternative hints to its 

mechanism of action. The fact that the Bag-1 peptide binds both GRP75 and 78 would 

mean that it integrates two independent events, a mitochondrial and an ER function to 

optimally inhibit cell growth. One possibility would be that the peptide interferes with 

the unfolded protein response (UPR). The UPR is a pathway that represents the reaction 

of cells to stress inducing agents otherwise lethal like hypoxia and hypoglycemia 

(Kaufman, 1999). Upon stress the ER and the mitochindria cross-talk (Le Bras et al., 

2006) and this process is regulated by GRP78 (Lee, 1992). In addition it has been shown 

that during the UPR GRP78 translocates from the ER to the mitochondria (Sun et al., 

2006) and that the interaction between these two organelles is mediated by GRP75 

(Hayashi et al., 2009). Therefore a peptide which binds to both GRP75 and 78 would 

probably interfere with the UPR and promote cell death, as observed in the tumour 

tissues derived from the clones expressing the peptide.  

Considering that the level of expression of GRP75 and 78 differs between normal 

and malignant cells, it could be explained why the peptide has a different impact on the 

22Rv.1 and BPH-1 cells showing the possibility to discriminate between healthy and 

malignant cells.  

 

 

4.3 The Bag-1 peptide is unstructured 

 

The 68 amino acids peptide identified in this work as a growth inhibitory peptide 

covers a portion of two domains of the wild type Bag-1L protein. The sequence covers 

part of the ubiquitin-like domain at the N-terminal and part of the Bag domain at the C-

terminal region. Circular dichroism studies and NMR analysis of the peptide showed 

that except for a 25% of alpha helical folding the sequence does not have any particular 

secondary or tertiary structure (Dr. C. Muhle, unpublished work). This finding is 

consistent with a structural prediction of the peptide carried out by Dr. Wolfgang 

Wenzel from the Institute of Nanotechnology at the Forschungszentrum Karlsruhe.  

In this work the 68 amino acid peptide was further narrowed down to 40 amino 

acids and in this case the circular dichroism analysis carried out by Dr. C. Muhle showed 

that it is completely unstructured. The observation that the peptide is not structured 
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could lead to the speculation that the binding to the GRPs is driven by its misfolded 

organization rather than through a specific sequence.  

In the last few years several proteins lacking an intrinsic structure under 

physiological conditions have been identified. These proteins have a high structural 

flexibility which allows them to bind several targets (Wright and Dyson, 1999). They 

gain their active conformation only when in the proximity of the protein to which they 

bind (Uversky and Narizhneva, 1998; Wright and Dyson, 1999). Examples are the cyclin 

dependent kinase (Cdk) p21
Waf1/Cip1/Sdi1

 that regulates cell cycle progression by inhibiting 

Cdk2 (Kriwacki et al., 1996) or the C-terminal activation domain of the transcription 

factor c-fos (Campbell et al., 2000). It has been observed that the lack of folding could 

be due to electrostatic repulsion of the amino acidic residues contained in the sequence 

of these proteins resulting in a combination of low overall hydrophobicity and large net 

charge (Uversky et al., 2000). The 68 amino acid sequence of the Bag-1 peptide is in 

line with these observations since it does not contain any aromatic residue except for a 

phenylalanine at position 60 and is rich in charged residues. Unstructured peptides that 

regulate cell growth are usually protected from degradation by substitution of the L-

amino acids by their D-enantiomers, not present in nature and thereby less susceptible to 

proteolysis. An example is represented by a sequence derived from the orphan receptor 

Nur77 which binds the unfolded loop of Bcl-2 (Feifel et al., 1998; Kolluri et al., 2008) 

and inhibits cancer cell growth. Such substitutions could also be applied to the Bag-1 

peptide to maintain or increase its stability. 

 

 

4.4 Potential applications of the peptide  

 

In the work presented a peptide derived from Bag-1L that binds the molecular 

chaperones GRP75 and GRP78 has been described. Intriguingly these two molecules are 

overexpressed on the membrane surface of malignant cells (Shin et al., 2003) providing 

the possibility to discriminate between healthy and neoplastic cells. Moreover it has 

been shown that GRP78 is glycosylated and that this modification drives its expression 

on the cell surface (Rauschert, 2008). From a study of Dr A. Neeb in our laboratory it 

was possible to demonstrate that the Bag-1 peptide binds specifically to the glycosylated 

form of GRP78 indicating the potential ability of the sequence identified in this work to 

recognize cancer cells when administered exogenously. 
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In the last decade tremendous efforts have been made to design small particles in 

the size range of nanometers (nanoparticles) able to recognize a specific target in order 

to deliver drugs and/or pro-drugs specifically to tumours to reduce as much as possible 

side effects and toxicity in patients (Taton, 2002). One possible way of targeting these 

particles to the tumour is to functionalise them with peptides able to recognize molecules 

exposed on the surface of the target cells. In this contest the ability of the Bag-1 peptides 

described here to specifically bind cancer cell markers could be exploited to decorate 

nanoparicles for targeting cancer cells to trigger apoptosis.  

A 13 amino acid cyclic peptide, Pep42, that binds GRP78 on the surface of tumour 

cells has been described. This peptide penetrates and delivers the anti-cancer drugs 

hematoporphyrin and a pro-apoptotic peptide to tumour cells (Liu et al., 2007). In the 

work presented here, since the Bag-1 peptides have by themselves a growth inhibitory 

property, it would not even be necessary to conjugate them with other anti-cancer drugs.  

The Bag-1 peptide described here could also be used for diagnostic purposes by 

conjugation to quantum dots to identify and visualize tumour cells expressing GRP75 

and/or 78 on their surface. Similar studies have been done with streptavidin-conjugated 

quantum dots for in vivo cell imaging (Kaul et al., 2003). The peptides described in this 

work (Devireddy et al., 2000)have the great potential of recognizing GRP75 and GRP78 

and exerting an growth inhibitory effect on cancer cells, making possible to achieve both 

tracking malignant cells and reducing their growth.  

 

 

4.5 Conclusions  

 

In this work a 68 amino acid peptide derived from the co-chaperone Bag-1L with 

growth inhibitory properties has been identified. The finding that this region can bind 

specific domains of the glucose regulated proteins GRP75 and GRP78 and the studies 

reporting overexpression of these proteins in cancer but not in normal cells suggests a 

big potential of the peptide in discriminating between normal and pathological stages.  
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