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Abstract
Increasing the shares of Renewable Energy Sources (RES) and Distributed Energy

Resources (DER) is one of the most important levers in many countries to cope with
the environmental, political, and economic challenges of future energy supply. The
underlying question of this thesis is whether Distributed Storage Systems (DSSs) at
the end consumer level can economically foster the integration of intermittent and
non-dispatchable resources by providing demand-side flexibility.

The analyses reveal a substantial integration potential of such systems, if hourly
flexible electricity prices are provided to end consumers and capacity costs for dis-
tributed storage devices decrease to 200-400 EUR/kWh. The combination of results
from three different models shows the economics of DSSs under price and load forecast
uncertainty as well as under the condition of load-variable market prices. The mod-
els investigate the influence of technical and economic parameters within and around
DSSs.

The first model (Part I) analyzes the economics of a single storage system on the
grid. In contrast to other papers dealing with the economic evaluation of storage sys-
tems and the solution of storage scheduling problems, the presented approach varies
in three dimensions: (i) Instead of centralized (large) storage systems on the Genera-
tion or Transmission level, the focus is on DSSs. (ii) The objective function is a purely
economic storage application aiming at arbitrage accommodation, whereas the existing
literature mostly analyzed the economic impact of partly or primarily technical storage
applications, like load leveling, peak shaving, or frequency control. (iii) The presented
model accurately links technical characteristics of a storage device with economic pa-
rameters of the system and its environment, which most of the existing storage models
in literature only rudimentary do.

Part II presents a simulation model that analyzes the performance of DSSs under
uncertainty. The described simulation model contributes three new aspects to scientific
literature in this area: (i) In comparison with all other papers analyzing the economic
impact of forecast errors, the presented methodology provides a more generic and
extensive functionality of forecast error simulation. (ii) Few of the existing storage
models considered forecast uncertainties into their analyses, none does so for DSSs.
(iii) The third major contribution to literature on storage models is a benchmark of
optimal vs. heuristic scheduling algorithms.

The third model (Part III) takes a market-wide perspective and models the impact
that the aggregated charge and discharge volumes of multiple DSSs have on the elec-
tricity price. This work complements the existing literature on Demand Response (DR)
programs by evaluating such programs when based on DSSs at the end consumer level.
It continues the thought of implementing automated communication and control de-
vices on the consumer side. Such devices help to let demand automatically follow
supply to better integrate intermittent and non-dispatchable resources and to reduce
critical peak loads without requiring the interaction and the behavioral change of the
consumer.
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Chapter 1

Introduction

Peaking oil prices and massive CO2 emissions of fossil-fired power plant fuel an econom-
ically and environmentally motivated debate on how our future energy supply should
look like. The evident scarcity of fossil resources as well as climate change require
the energy sector to seek more sustainable alternative resources. The most recent de-
bates on the European energy market show that the utilities industry as well as most
energy consumers are facing significant changes in the future. Examples for the up-
coming change are reflected in the frequent discussion of Smart Metering technologies
in the daily press, the intended increase of energy generation from Renewable Energy
Sources (RES) and Distributed Energy Resources (DER), the announced CO2 reduc-
tions in the European Union until 2020, and a continuation of the ongoing liberalization
and unbundling of the energy markets (European Union, 2008, German government,
2008).

The significant increase of power generation from DER and RES is a central target,
which could positively contribute to an increase in energy autonomy and a reduction
of CO2 emissions. Depending on the ownership and market structure in the power
generation sector, it could also contribute to further liberalization of the energy mar-
kets. Clearly, a shift from today’s centralized market structure towards a decentralized
model would cause problems in terms of keeping or improving quality and reliability
of energy supply. It would require major investments and technological innovations in
the electricity grid infrastructure and energy markets.

1.1 Problem
The underlying question of this research work is whether Distributed Storage Systems
(DSSs) at the end consumer level can economically foster the integration of RES and
DER by providing demand-side flexibility. Increasing the shares of RES and DER is
one of the most important levers in many countries to cope with the environmental,
political, and economic challenges of future energy supply. However, a number of issues
have to be solved to successfully integrate such resources into the energy systems in
place.

The main technical issue of integrating large shares of non-dispatchable and in-
termittent resources, which for example applies to wind and solar power (RES) and
micro-CHP systems (combined head and power) (DER), is to maintain the stability of
the grid. At each point in time, the volumes of demand and supply in the electricity
system must be balanced. Traditionally, balancing these volumes has been achieved
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entirely by adjusting the provided supply volume, since the short-term demand volume
has been assumed inelastic. Responsiveness of directly controllable supply resources
as well as additional reserve capacities ensured the flexibility of the supply volume.
Unlike conventional generation resources, DER and especially RES often do not allow
for such responsiveness in supply. The traditional paradigm to compensate for this
flexibility decrease is to install additional reserve capacities, which leads to increasing
costs and decreasing efficiency of the overall system due to a lower average utilization of
the available resources. Instead, this work investigates a shift of this paradigm towards
an increasingly flexible and responsive demand side through DSSs. In the focus of this
investigation is the analysis of the economics of DSSs at the end consumer level that re-
act to flexible market prices. The systems operate autonomously as automated agents
that optimize the consumers’ load profiles according to the market price. The systems
only discharge for covering the consumers’ demand, they do not sell electricity back
to the market. The main advantage of such an automated Demand Response (DR)
mechanism over conventional DR programs is that the flexibility potential is reliably
and constantly available over time. It is not limited by the constraint of an actual
behavioral change or action of the consumer and the related problem of preference elic-
itation. The analyses in this research work do not address related technical, political,
and economic questions regarding a possible divestiture or decommission of utilities’
existing assets, regulatory enforcements of integrating RES, or grid-related constraints.

1.2 Structure of the Thesis
Part I of the thesis analyzes the economics of DSSs at the end consumer level in de-
tail. Sensitivity analyses are performed along the three main dimensions of market
parameters, consumer parameters, and technical as well as economic storage system
parameters. The analyses assume an hourly flexible price signal and model the DSS as a
price taker, i.e., charge and discharge decisions of the analyzed system do not affect the
market price. The market price itself is assumed to appropriately reflect the demand-
supply-situation on the market and an increase in supply from RES and DER leads to
a decreasing market price (Section 6.2.4). The numerical analyses build on standard
household load profiles (VDEW, 2006), price data from the EEX (2007), and storage
parameters from academic literature. The existing literature mainly investigates the
economics of centralized storage models that operate on the wholesale market, operat-
ing DSS at the end consumer level is hardly investigated and understood. Therefore,
the analyses in Part I address the following research questions:

Research Questions (Part I):

• How does a Distributed Storage System influence the electricity costs of
a standard household in case of hourly flexible electricity prices?

• How do market, consumer, and storage parameters impact the result and
which are the most relevant parameters?

Part II addresses the question whether the information required to operate such
storage systems is actually available at the end consumer level. The autonomous agents
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that operate the DSSs need to know the price and the load data of the upcoming days to
derive an economically profitable Charge-Discharge-Schedule (CDS). The linear model
in Part I optimized such CDS based on known data series. But since these data are not
ex-ante available for real-world applications, the systems need to derive these schedules
from price and load forecast data. Forecast errors will evidently lead to deviations from
the economically optimal schedule. The numerical simulation model used to analyze
the impact of forecast errors is an extension of the linear optimization model defined
in Part I and builds on the same data sources. The analyses in Part II investigate the
impact of forecast errors and assess the robustness of different forecast and scheduling
approaches. Therefore, this part addresses the following research questions:

Research Questions (Part II):

• To what extent do load and price forecast errors lead to a deviation from
the optimal operational result of a Distributed Storage System?

• How much do the results deteriorate when price and load forecasts are
derived through available standard forecast methods?

• What are the best scheduling algorithms and how robust are the achieved
economic results with regard to increasing forecast errors?

Part III finally analyzes the effect of operating multiple DSSs as DR agents on the
system. Since the aggregated charge and discharge volumes of multiple DSSs will be
substantially higher than in the one-consumer-case, which was analyzed in Part I, the
DSSs are no longer modeled as price takers. Thus, the charge and discharge decisions
of the storage systems influence the market price. Higher aggregated load volumes lead
to higher prices and reverse. The analyses assume a perfect coordination of the systems
and therefore treat the aggregated storage capacity as one large entity. The numerical
analysis model is an extension of the analysis model defined in Part I, but it builds
on partially different data. Instead of the load profile of a standard household, the
aggregated load profile of Germany in 2007 is applied (ENTSOE, 2007). The analyses
in Part III address the following research questions:

Research Questions (Part III):

• What is the cost reduction potential of a perfectly responsive demand side
in case of hourly flexible electricity prices?

• How do the costs for Distributed Storage Systems constrain this potential?

• What is the amount of economically operable distributed storage capacity
in a market?

Figure 1.1 illustrates the structure of the thesis. As described in the paragraphs
above, the chapters of Part II and Part III build on the model and the results of Part
I (in particular of Section 3.2).
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Economics of a Distributed Storage
System at the End Consumer Level





Chapter 2

Storage Systems at the End
Consumer Level

The most recent developments and issues on the European energy market show that
the utilities industry as well as most energy consumers are facing significant changes in
the future. Examples for decisions and targets behind these changes are the intended
increase of energy generation from Renewable Energy Sources (RES) and Distributed
Energy Resources (DER), the announced CO2 reductions in the European Union until
2020, and a continuation of the ongoing liberalization and unbundling movements in
the market (European Union, 2008, German government, 2008).

The significant increase of power generation from DER and RES is a central target,
which can positively contribute to an increase in energy autonomy and a reduction
of CO2 emissions. Depending on the ownership and market structure in the power
generation sector, it could also contribute to further liberalization of the energy mar-
kets. Clearly, a shift from today’s centralized market structure towards a decentralized
model would cause problems in terms of keeping or improving quality and reliability
of energy supply. It would require major investments and technological innovations in
the electricity grid infrastructure and energy markets.

One of the key characteristics of electrical energy is that supply and demand must
be in balance at each point in time to make the energy grid run stable. Therefore,
Transmission System Operators are obliged to reserve a certain amount of capacity
(Primary, Secondary, and Tertiary Control) in order to react appropriately to devia-
tions from the demand forecast. An increasing amount of distributed energy production
and intermittent sources like wind or solar energy complicates the process of balancing
demand and supply. In comparison with coal or nuclear power plants, the output of
these energy sources is more volatile and less predictable since it strongly depends on
environmental (weather) conditions.

The traditional approach to balance supply and demand is supply-side-driven.
The installation of additional control capacity ensures sufficient power supply at any
time. Since control capacity is more expensive than regular capacity, this will lead
to increasing market prices. Alternatively, market-based approaches for Demand-Side
Management (DSM) are discussed, but only selectively realized. Up to now, energy
suppliers and large industrial consumers have planned and adjusted their supply and
demand volumes in order to balance the market. Commercial customers, public institu-
tions and private households are not actively involved in matching demand and supply
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of the electricity markets, although their share is about 50% of the total consumption1.
The main reason is that commercial customers and private households do not have
a direct economic incentive to change their load profiles, since energy tariffs are flat,
i.e., do not depend on the current demand and supply levels. In Germany, this will
change from beginning of 2011 onwards when load-dependent tariffs must be offered
(Federal Law Gazette, 2008).The upcoming challenge is to provide consumers with
market information (e.g., a price signal) so that consumers (humans and/or machines)
can appropriately react to the market situation.

Smart Grid and Smart Metering are two terms that describe related technological
innovations for the future grid. Smart Grid is a superordinate concept for the digital-
ization of the grid infrastructure containing intelligent components. Objectives of the
concept are condition-based and remote maintenance, improved integration of DER and
RES, increased reliability and flexibility through distributed decision making and con-
trol, and enabling DSM more effectively, e.g., through Real-time pricing (RTP), which
requires Smart Metering technology. The objectives of Smart Metering are enabling
DSM, installing a platform for value-added services, improving fraud protection, and
increasing operational efficiency, e.g., through optimized business processes ("billing &
collections") and remote meter reading, which is often an important functionality to
achieve regulatory compliance. In its core, a smart metering device is a digital meter
with a communication interface for sending and receiving data. The sending mode en-
ables functionalities such as remote meter reading, while the receiving mode supports
price updates for load- or time-dependent flexible pricing.

Assuming that the required market information and particularly flexible electricity
tariffs are provided, consumers would have an economic incentive to reduce energy
consumption in peak hours and shift it to off-peak hours. To avoid a reduction of
this load shifting potential due to behavioral constraints of the consumer, storage
applications could help to maximize demand-side flexibility, i.e., having the option to
shift portions of demand to different times than those where they actually occur. This
would allow maximizing the use of energy from renewable sources when it is available.

Instead of the difficulty to quantify behavioral constraints, the challenges of the
storage-based approach contain the installation of an economically beneficial and tech-
nologically feasible storage system, the design of an appropriate (electronic) market
that provides consumers with market information, and sufficiently accurate forecast
mechanisms for load volumes and prices to determine operation schedules. Essentially,
distributed storage devices must be able to follow or generate an economically benefi-
cial Charge-Discharge-Schedule (CDS). An important assumption for the analyses is
that flexible prices are provided to end consumers. The hypothesis is that storage ap-
plications can decrease the average costs for electricity through increasing demand-side
flexibility. I.e., demand will follow a price incentive and could therefore also foster the
integration of RES, if accordingly priced in the market2.

2.1 Objective and Structure of Part I
To support the above hypotheses of decreasing average costs for electricity and fos-
tering the integration of RES through Distributed Storage System (DSS), this part of

1Example of Germany, 2005 (BDEW, 2008).
2Part III of this work will deal with the last part of this hypothesis.
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the research work defines and analyzes a detailed storage model that links technical,
economic, market, and consumer parameters. The model calculates the maximal eco-
nomic benefits of a distributed storage device at the end consumer level. Therefore, the
model determines the optimal CDS of a storage system by solving a linear optimization
problem. All parameters of the model are analyzed with respect to their impact on the
resulting total cost.

The remainder of this part of the thesis gives an overview about existing research
work on electricity storage (Section 2.2) and defines two storage models. The first stor-
age model estimates the potential benefits from arbitrage accommodation and delivers
first insights into the sensitivity of CDSs (Section 3.1). The second model combines de-
tailed technical and economic parameters of a storage system into a linear optimization
model. Systematic sensitivity analyses for all model parameters are run on this model
(Section 3.2). Section 3.3 summarizes the findings and discusses their relevance.

2.2 Related Literature
Energy storage for power systems is a broadly discussed topic in academic literature
since the 1980s. Related literature covers a wide range of storage applications and
objectives of storage usage, e.g., for supporting the conventional power system, the
operations of remote locations (islands), or the integration of DER or RES into the
grid. Traditionally, large and centralized storage systems have been discussed and
analyzed, whereas distributed storage is a more recent and less researched field.

Cook et al. (1991) present a historic overview of battery storage applications. A
more recent overview by Divya and Østergaard (2009) references and structures many
articles on battery storage systems and models. They point out that despite the numer-
ous projects and research efforts in the area of storage technology very few examples
of practical implementations exist. Divya and Østergaard (2009), Cook et al. (1991),
and Kondoh et al. (2000) present overviews of existing sites of storage system imple-
mentations (without pumped hydro). According to Divya and Østergaard (2009), the
variety and large amount of conventional generation resources as well as the intercon-
nection between these resources made storage technology economically less attractive
and technically not mandatory in the past. Additionally, a lack of practical experience
and supporting tools hampered the realization of such projects. However, the increas-
ing shares of non-conventional and non-dispatchable resources in today’s and future
power grid will change this trend in their opinion.

The potential of storage technology to foster a stronger decentralization of the power
grid has also been discussed in early papers by Kirkham and Klein (1983), Harty et al.
(1994), and Coles et al. (1995). Especially Harty et al. (1994) underline the large
potential of existing and emerging storage technologies, but not limited to supporting
stronger decentralization. Their article gives a qualitative overview of the benefits
for generation and transmission companies as well as for end consumers from various
storage technologies.

A recent overview of detailed technical and economic characteristics of 21 storage
technologies is given in Chen et al. (2009). Schoenung and Hassenzahl (2003) present
another detailed technology review of 16 technologies, which additionally links the
technologies to potential applications. The (technical) characteristics of a storage tech-
nology must fulfill the (technical) requirements of an application, e.g., output power
(power capacity), output duration (energy capacity), power density, energy density,
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and the cycling period, as well as finally economic requirements. Kondoh et al. (2000),
Ribeiro et al. (2001), and Barton and Infield (2004) match these technology character-
istics with application requirements and graphically present their results. Figures 2.1
and 2.2 depict examples where the characteristics output power and output duration
have been linked to requirements of storage applications.

1 sec 1 min 1 hour 1 day
Output duration

Power plant
generator
stabilization

Fluctuation
smoothing

Load leveling

UPS
Emergency
power source

SMES

Redox super
capacitor

Double layer
capacitor

Flywheel with
levitation
bearing

Advanced
batteries

CAES

Pumped hydroFlywheel with
Conventional bearing

Lead
acid
battery

A B
O

ut
pu

t p
ow

er
 (k

W
)

104

102

100

106

Figure 2.1: Output power and duration - classification of existing storage sites, in
Kondoh et al. (2000)

2.2.1 Storage Applications
Storage applications describe the objectives that are pursued by storage usage. In the
literature, many storage applications have been described and analyzed. E.g., Eyer
et al. (2004), Baumann (1992) (slightly modified and extended in Jewell et al. (2004)),
Cook et al. (1991), and Kottick and Blau (1993) give an overview of potential appli-
cations. However, often the terms used differ between these overviews and consistent
terms do not always cover the exact same scope. This work will present a storage appli-
cation overview that builds on the aforementioned references, but clearly goes beyond
their combined scope and content.

The following paragraphs of this chapter will structure the identified storage ap-
plications. Each application is allocated in a two-dimensional matrix, where the first
dimension indicates the location of the storage system and the second dimension de-
scribes the overall objective (generalized application domain) of the application. Table
2.1 depicts this matrix with 41 reviewed papers allocated to its cells. Many papers
analyze multiple objectives with their models, but hardly any assign the storage sys-
tem to multiple locations. Therefore, Sections 2.2.1 - 2.2.1 of this work present the
literature review along the location dimension.

The locations of storage systems in the literature are situated
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Figure 2.2: Output power and duration - storage application requirements, in Ribeiro
et al. (2001)

• as co-locations to conventional generation units,

• as co-locations to substations and other components of the transmission and
distribution (T&D) grid,

• as co-locations to renewable and distributed generation resources,

• at remote (island) locations,

• in proximity to end consumers,

• or within grid-integrated Electric Vehicle (EV).

This structure refines the grouping in Eyer et al. (2004), who suggest a distinction
into Grid System Applications, Consumer/End-use Applications, and Renewables. In
an earlier paper by Cook et al. (1991), only co-locations to generation and T&D sites
are distinguished.

The overall objectives of storage applications are grouped into five main categories:

• Arbitrage,

• Investment Deferral,

• Power Quality,

• Reliability,

• and Load Curve Optimizations.
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Applications aiming at Arbitrage accommodation always have a clearly economic
objective. These applications either maximize the revenues of sellers or producers
or minimize the costs of buyers or consumers. The basic principle of this storage
application is to charge energy in low-price (off-peak) hours and to discharge energy in
peak-price hours. Following this principle, arbitrage accommodation includes buying
and selling on wholesale markets, time-shifted selling of produced and stored energy
(bulk energy management) (cf. Exarchakos et al. (2009), Graves et al. (1999)), and
cost minimization through load shifting in combination with Time-of-use (TOU) tariffs
(also described as load shifting (Nieuwenhout et al., 2006), load redistribution (Maly
and Kwan, 1995)).

The objective of Investment Deferrals applies mainly to storage at generation
and T&D locations and follows an economic objective. If an increasing demand for
electricity requires an expansion of the installed capacity, storage systems can be used
to temporarily satisfy the additional demand and, thus, to delay the investment in
conventional infrastructure components. Especially small additional capacity require-
ments that undergo the economic size of additional conventional installations can be
economically served with storage applications (cf. Rau and Taylor (1998), Schoenung
and Eyer (2005)).

The objective of maintaining and ensuring Power Quality includes voltage and
frequency control, provision of reactive power control and a reduction of load shedding
for under-frequency control (cf. Alt et al. (1997), Kottick and Blau (1993), Ribeiro et al.
(2001), Schoenung and Burns (1996)). All these objectives are of primarily technical
nature.

Achieving Reliability of the electricity supply can have both technical and eco-
nomic objectives. Storage applications in this domain include providing power regula-
tion (load following), spinning reserve, (emergency) backup supply, black start capa-
bility, as well as the integration of RES and DER, e.g., through ensuring contractual
supply or reducing output fluctuations. (cf. Chacra et al. (2005), Clark and Isherwood
(2004), Ferreira (1992), Jenkins et al. (2008), Ribeiro et al. (2001), Schoenung and
Burns (1996), Sobieski and Bhavaraju (1985), Su and Huang (2001), Vosen and Keller
(1999))

The objective of Load Curve Optimizations includes various storage applica-
tions that either actively shape the load curve (peak shaving, load leveling) (cf. Ander-
son and Lo (1999), Chowdhury and Rahman (1988), Jung et al. (1996), Sobieski and
Bhavaraju (1985)) or optimize the operations of a grid component and, thus, alter the
load curve indirectly. Such operational optimizations include the minimization of fuel
or production costs (cf. Anderson and Lo (1999), Lee (1992), Lee and Chen (1993)),
levelizing incremental costs (cf. Sullivan (1982)), and reducing losses. These objectives
can either follow technical or economic objectives.

As the empty fields in the matrix of Table 2.1 show, not all combinations of storage
locations and objectives are relevant. Although theoretically possible, e.g., arbitrage
accommodation at remote locations or investment deferrals for other than generation
or T&D components have not been investigated in literature. From a practical point of
view, these combinations seem irrelevant. One exception are arbitrage applications for
grid-integrated EVs. Up to now, authors have looked at regulation services in vehicle-
to-grid (V2G) model. Although the primary purpose of an electric vehicle is clearly
to ensure mobility, it seems possible and practically relevant to analyze arbitrage ap-
plications based on storage in grid-integrated electric vehicles, e.g., charging strategies
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that build on TOU-based electricity prices and minimize the total operating costs of
an EV.

Since the focus of this research work will be on arbitrage accommodation, the follow-
ing sections will focus on arbitrage applications along the storage location dimension.

Arbitrage Accommodation on Wholesale Markets

Storage applications that are located on the grid system level focus on wholesale energy
prices, if aiming at arbitrage accommodation. A comprehensive analysis of arbitrage
value in Pennsylvania, New Jersey, Maryland (PJM) from 2002 to 2007 is presented
in Sioshansi et al. (2009). When modeling their storage system as a price taker, i.e.,
charge and discharge decisions do not affect the market price, they reveal an arbitrage
value range of 60-120 USD/kWh per year (variations due to different years).

Walawalkar et al. (2007) investigates the economics of energy storage systems in
New York state’s electricity market by modeling Natrium Sulfur (NaS) and flywheel
storage systems. Their analysis indicates a strong economic case for storage sys-
tem installations in New York City for arbitrage services using NaS-based systems,
whereas they find significant opportunities for regulation services in New York state
using flywheel-based systems.

A paper by Graves et al. (1999) analyzes revenues from arbitrage accommodation
on electricity wholesale markets for different price granularities. They find out that
hourly prices allow up to two times higher benefits from arbitrage services than blocked
prices.

Nieuwenhout et al. (2006) analyze two settings for arbitrage accommodation us-
ing storage systems on the wholesale level. Based on data of the Amsterdam Power
Exchange (APX) they analyze arbitrage on a day-ahead power market and on an im-
balance market. Overall, the imbalance market reveals the highest revenues in their
models with a theoretical maximum of 470 EUR/kWh per year.

A recent paper by Exarchakos et al. (2009) investigates the influence of DSM on
electricity storage systems, under the condition that the only income is from arbitrage
accommodation through optimized CDSs. They find that small amounts of load shift-
ing due to DSM can significantly affect the profit of the storage application. Overall,
they state a 10% revenue reduction for arbitrage services through DSM programs.

Maximizing Revenues of Renewable and Distributed Energy Resources

Especially small, non-conventional generation devices such as Photovoltaic (PV) pan-
els, wind turbines, or microturbines can use storage systems to deliver energy to the
grid preferably in peak price hours. Thus, time-shifting their delivery to the network
will on the one hand maximize their revenues. On the other hand it also fosters the
technical integration of such resources. Barton and Infield (2004) investigate such a case
with intermittent RES for various storage technologies. Bathurst and Strbac (2003)
describe a system that combines energy storage with two wind farms. They present
an algorithm that calculates the optimal dispatch of the storage system. Depending
on the forecast errors regarding the wind farm’s energy production and the spreads on
the imbalance market, their analysis reveals up to 25% higher profits.

Korpaas et al. (2003) also combine wind power plants with energy storage. They
state that revenues of wind power plants can be increased through storage systems by
time-shifting their delivery according to higher spot market prices. However, they state
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that with current prices storage systems are likely to be a more expensive alternative
than grid expansions.

A paper by Wu et al. (2002) investigates the combination of a PV system with
battery storage. For a utility-financed model they confirm a profitable business case,
whereas a consumer-financed model delivers negative economic results.

Arbitrage Accommodation through Load Shifting at the Consumer Level

The basic assumption on the consumer level is that storage devices are charged from
the grid at low price hours and discharged in order to serve the consumer’s demand
at peak prices. I.e., discharging does not mean selling the energy back to the grid,
but essentially shifting the effective load on the grid to an earlier point in time. This
implies that flexible tariffs must be available to end consumers, in order to provide an
economic incentive. Therefore, these storage applications are also described as (TOU)
energy cost management applications.

Daryanian et al. (1991) describe a model based on electric thermal storage. Their
paper investigates a consumer response algorithm that achieves 10% savings through
load shifting. Their price signal is an experimental RTP rate.

Detailed analyses on the Taiwanese market are described in Lee and Chen (1994),
Lee and Chen (1995), and Maly and Kwan (1995). The Taiwanese tariff consists of
time-dependent price blocks during the day and a determination of the overall price
level depending on the peak load during the consumption period. I.e., higher peak loads
lead to higher blocked prices for the individual consumer. Therefore, these approaches
also focus on peak shaving and a TOU optimization. Besides shifting load to cheaper
time blocks, particularly a reduction of the peak load is economically beneficial under
such conditions.

Nieuwenhout et al. (2006) analyze two setting for load shifting at the end consumer
level. The first setting assesses arbitrage opportunities if a simple day-night-tariff is
provided. The second setting analyzes the combination of a storage system with small
generation units at the consumer’s site that charge the storage instead of feeding the
generated energy into the grid. Both settings do not reveal any relevant arbitrage
value.

Additionally to papers that use storage applications, there is also a number of papers
that present TOU optimization models without storage applications, e.g., Ashok and
Banerjee (2001) and Soliman et al. (2007).

2.2.2 Existing Modeling Approaches
Besides the storage application, the reviewed papers differ regarding their modeling
approaches. Generally, storage models can be distinguished into models with economic
and/or technical objectives. Further distinctions can be made regarding the analyzed
storage technology, the storage model’s level of detail, and the algorithm applied to
solve the modeled problem. Detailed storage models reflect both technical and eco-
nomic parameters of the selected technology. Examples for such parameters in battery
storage models are Depth of Discharge (DOD), separate efficiency degrees for storage
and peripheral components, charging speeds (power capacity), storage and peripheral
cost components and their depreciation over time. Divya and Østergaard (2009) criti-
cize that many papers modeling battery storage models do not explicitly parameterize
their calculations for a specific technology, e.g., lead-acid or li-ion. Furthermore, they
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criticize that important technical details, such as the DOD, are often not included into
the models. The results of a detailed paper review within this research work support
this criticism (see Table 2.2). The table gives a detailed overview of 43 storage models
described in related academic literature.

Regarding the algorithms applied to solve the modeled problem, most models use
either a dynamic programming approach, linear optimization models, statistical meth-
ods, or simulations, which might involve the previous methods. An example that
applies dynamic programming can be found in Ferreira (1992), where the focus is on
the specific case of short-term scheduling of a pumped storage plant. Another example
of a generation-side-focused model using dynamic programming is presented in Ander-
son and Lo (1999), where the objective of the storage application is on load leveling.
Here, as well as in Alt et al. (1997), the modeling focus is rather on the grid parame-
ters than on the storage modeling. Contrary, a technically more detailed storage model
using dynamic programming is presented in Lee and Chen (1994) and Lee and Chen
(1995). Most papers that use the approach of dynamic programming focus on load
curve optimizations such as peak shaving or load leveling.

Contrary, nearly all papers investigating arbitrage values use linear optimization
models. Bathurst and Strbac (2003) use a linear optimization model for increasing
revenues of wind power plants. They use a generic storage model instead of param-
eterizing a particular storage technology. Exarchakos et al. (2009) also use a linear
optimization model assessing the impact of DSM programs on the profitability of stor-
age systems (see Section 2.2.1). They model various storage technologies, thereof also
lead-acid batteries. Their model does not include a parameter that limits the DOD,
which has a significant effect on the life time of the battery (leading to a longer bat-
tery life cycle in their model). Furthermore, they model fixed costs for storage usage,
instead of a flexible, usage-dependent rate that approximates the actual depreciation
costs based on the expected number of charge cycles. As a consequence, the capital
costs in their model dominate the economic result. A very detailed model of a lead-acid
batteries in storage systems is described in Wu et al. (2002).

A well-modeled, lead-acid-based storage system with a clearly technical focus is
presented in Jenkins et al. (2008). They use a round-based simulation model on discrete
time series to evaluate the value of storage in combination with microgeneration systems
at the consumer site. This work presents a similar model in Section 3.2, but extended
with economic parameters.
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Table 2.2: Detailed Review of Storage Models in Literature
Reference Algorithm Objective Modeled technology Model details
Alt et al. (1997) DP (using econ. battery medium

DYNASTORE)
Anderson and Lo (1999) MPDP econ. battery low
Barton and Infield (2004) SIM, proba- tech. n/a low

bilistic methods
Bathurst and Strbac (2003) LO econ. generic medium
Baumann (1992) n/a env. SMES n/a
Chacra et al. (2005) multi-objective econ. PSB, VRB medium

optimization
Chowdhury and Rahman (1988) n/a econ. battery medium
Clark and Isherwood (2004) SUPERCODE econ. zinc air, medium

optimization hydrogen
Comnes et al. (1988) n/a econ. thermal storage low
Daryanian et al. (1991) LO econ. thermal storage low
Exarchakos et al. (2009) LO econ. lead-acid, VRB, medium

CAES, PHS (var)
Ferreira (1992) DP econ. PHS high
Graves et al. (1999) LO econ. generic n/a
Jenkins et al. (2008) round-based SIM tech. lead-acid higha

Jung et al. (1996) round-based SIM tech. battery medium
Kandil et al. (1990) LO econ. generic low
Korpaas (2004) DP tech. generic n/a
Kottick et al. (1993) n/a tech. battery medium
Kottick and Blau (1993) n/a tech., battery low

econ.
Lee (1992) MPDP tech., PHS, medium

econ. battery
Lee and Chen (1993) DP econ. battery medium
Lee and Chen (1994) adv. MPDP tech., battery medium

econ.
Lee and Chen (1995) MPDP econ. battery medium
Maly and Kwan (1995) DP econ. battery mediumb

Nieuwenhout et al. (2006) SA econ. lead-acid, Li-ion medium
Poonpun and Jewell (2008) SA econ. VRLA high

NaS, ZnBr,
flywheel, VRB

Rau and Short (1996) successive QOP tech. other hydro low
Rau and Taylor (1998) DP econ. battery low
Reckrodt et al. (1990) n/a econ. battery high
Rehtanz (1999) n/a tech. SMES high
Ribeiro et al. (2001) n/a tech. flywheel, battery low
Schoenung and Burns (1996) SA econ. SMES, flywheel, low

capacitors, CAES,
CAS, PHS

Schoenung and Eyer (2005) SA econ. VRLA, NiCd, VRB, low
ZnBr, Li-ion,
flywheel (high
speed), hydrogen

Sioshansi et al. (2009) LO econ. generic low
Sobieski and Bhavaraju (1985) synthetic system econ. battery n/ac

D (EPRI)
Su and Huang (2001) n/a econ. battery n/a
Sullivan (1982) QOP econ. battery medium
Tam and Kumar (1990) EMTP v2.0, EPRI tech. SMES n/a
Vosen and Keller (1999) HA, using NN tech. hydrogen, battery medium
Walawalkar et al. (2007) MC SIM, SA econ. NaS, flywheel low
Weissbach et al. (1999) n/a tech. flywheel high
Wu et al. (2002) LO econ. lead-acid higha

Yau et al. (1981) UMC hybrid SIM tech. battery medium
DP=Dynamic Programming, HA=Heuristic Algorithm, LO=Linear Optimization, MDPD=Multi-Pass DP,
QOP=Quadratic Optimization Problem, SA=Statistical Analysis, SIM=Simulation.
CAES=Compressed Air Energy Storage, CAS=Compressed Air in Vessels, NaS=Natrium Sulfur=Sodium Sul-
fur, PHS=Pumped Hydro Storage, PSB=Polysulfide-Bromine, SMES=Superconducting Magnetic Energy Storage,
VRB=Vanadium Redox Battery, VRLA=Valve-Regulated Lead Acid, ZnBr=Zinc Bromide.

a Includes parameter for Depth of Discharge.
b Includes electro-technical details.
c Includes a detailed parameter specification.



18 Chapter 2. Storage Systems at the End Consumer Level



Chapter 3

Design and Analysis of Storage
Optimization Models

This chapter presents the analysis results and definition of an estimation model and
a linear optimization model. The estimation model in Section 3.1 is used to derive a
simple and transparent estimate of the saving potential through DSS at the end con-
sumer level by performing a statistical analysis (published in Ahlert and van Dinther
(2009a)). Section 3.2 defines a more complex model that accurately implements eco-
nomic and technical characteristics of a storage system (published in Ahlert and van
Dinther (2008)). In a second step, this models is transformed into a linear optimization
model (published in Ahlert and van Dinther (2009b)). Section 3.3 gives a summary
and a conclusion of the analysis results.

3.1 Basic Estimation Model
The main goal of the basic model is to estimate the economic benefits of a DSS at the
end consumer level with a simple and transparent approach. The results of this model
will give a first indication whether DSS at the end consumer level could result in a
positive saving potential for the end consumers. The model uses a simple charge and
discharge decision heuristic aiming at arbitrage accommodation. The basic approach
is to charge the device at low prices and to discharge at peak prices. The decision
heuristic indicates the system when to charge and discharge the storage device in order
to maximize the average arbitrage accommodation per day in a given time period. The
time period consists of T timeslots and D days. The index for timeslots is t = 1 . . . T ,
for days it is d = 1 . . . D. Each day has TD = T · D−1 timeslots. The results of the
model will allow to estimate the impact of the storage device on the total costs for the
given time period.

In the following, Section 3.1.1 will define the basic parameters of the storage model
and describe the data sources used. Section 3.1.2 defines a simple model that estimates
the economic saving potential of DSS and Section 3.1.3 summarizes and critically eval-
uates the results of the estimation model.

3.1.1 Parameters and Data Sources
The parameters of the model describe the technical characteristics of the storage de-
vice, the energy demand for each timeslot (kWh), the market price per energy unit in
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each timeslot (EUR/kWh) and the decision variables.

Storage parameters

• C is the maximal capacity of the storage device (kWh)

• η is the efficiency degree of the storage device (%), with 0 ≤ η ≤ 100

• v is the number of timeslots needed to fully charge the storage device at the
maximal charging speed (# of timeslots)

• ψ is the storage costs per nominal (full) charge cycle (EUR/nominal cycle), de-
fined as the quotient ψ = α ·γ−1, where α is the total investment and operational
costs over life time and γ the expected number of nominal (full) charge cycles
over life time of the storage

Energy demand and market price parameters

• `t is the energy demand (load) in timeslot t (kWh)

• pt is the market price per energy unit in timeslot t (EUR/kWh)

Auxiliary parameters

• td := rank(pt, d) indicates the rank of a market price pt within a the day d from
td = 1 for the lowest price of the day (timeslot with the lowest price) to td = tD

for the highest price

Decision variables

• i is the limit for a ranked market price for off-peak timeslots in which the system
charges the storage device, i.e., the system should charge the storage if the rank
td of the current market price pt is less than or equal to i, thus td ≤ i with
1 ≤ i ≤ TD

• j is the according limit for peak timeslots in which the storage is discharged, i.e.,
if the rank td of the current market price pt is greater than or equal to j, thus
td ≥ j with 1 < j ≤ TD

Thus, the limits i and j define the lower bound of the peak timeslots for discharging
respectively the upper bound of the off-peak timeslots for charging the storage device.
Since the limit parameters i and j apply for the entire time period (365 days of the year
2007) with different weekdays and seasons, they are defined as index values instead of
absolute prices, i.e., the i-lowest and the j-highest price for each day.

The data input was varied within four scenarios as presented in Table 3.1. The
efficiency degrees and the storage costs are derived from battery storage technologies
in a developmental stage (Sauer, 2007). Data for market prices accord to the price
curve distribution of the published hourly prices in 2007 at the EEX (2007) and are
normalized to a weighted average price of 0.20 EUR/kWh. The data for the energy de-
mand (load) reflect the standard "H0 profile" (profile of a private household) published
by the German Electricity Association1(VDEW, 2006). The standard "H0 profile" is

1Today, the German Electricity Association (VDEW) is part of the German Energy and Water
Association (BDEW).
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normalized to an annual consumption of 1,000 kWh and multiplied with a random
vector (± 15% for each value). The granularity of the load data corresponds to 15-
minute-timeslots. The hourly market price data has therefore been transformed into
15-minute-timeslots as well. Thus, each day contains 96 timeslots for 365 days in 2007,
resulting in 35,040 timeslots for the following analyses.

Table 3.1: Parameter Values for Basic Estimation Model
Capacity Charging speed Efficiency Storage costs

Scenario C (kWh) v (#timeslots) η (%) ψ (EUR/cycle)
Scenario 1 0.5 2 80 0.10
Scenario 2 0.5 2 90 0.10
Scenario 3 1.0 4 80 0.10
Scenario 4 1.0 4 90 0.10

3.1.2 Model Definition
The model will determine the economic impact of varying the limits for off-peak time-
slots and peak timeslots in which the system will charge respectively discharge the
storage device in order to maximize the arbitrage accommodation. The model will
therefore calculate the savings through storage usage for different charge and discharge
limits. The savings are calculated against the costs baseline K (EUR) of a system
without storage usage, based on the given vectors pt for the market price and `t for the
demand per timeslot:

(3.1) K =
T∑
t=1

`t · pt

For each day d, `jd determines the volume of the demand within the peak timeslots,

(3.2) `
j

d =
∑
t∈tjd

`t where t
j
d := {t|td ≥ j}

The average costs per energy unit in the off-peak timeslots of day d is

(3.3) kid =

∑
t∈ti

d

pt

i
where tid := {t|td ≤ i}

The weighted average costs per energy unit in the peak timeslots is

(3.4) k
j

d =

∑
t∈tjd

`t · pt

`
j

d

where t
j
d := {t|td ≥ j}

The model determines the economic benefit of shifting load from peak timeslots
(discharging) to off-peak timeslots (charging). The objective function of the model
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calculates the savings against the baseline costs for each tuple and takes storage costs
into account:

(3.5) max→ 1
K
·
D∑
d=1

`
j

d ·
(
k
j

d −
kid
η

)
︸ ︷︷ ︸

A

− `
j

d · ψ
C︸ ︷︷ ︸
B

Term A determines the arbitrage benefit. In total, `jd energy units (kWh) will
be shifted from peak timeslots to off-peak timeslots. The arbitrage benefit for each
shifted energy unit corresponds to the difference between the weighted average costs
per energy unit in the peak timeslots kjd and the average costs per energy unit in the
off-peak timeslots kid. Due to the limited efficiency degree of the storage device, the
amount of energy charged into the storage device (respectively the price paid) must be
higher than the amount that is actually discharged, therefore kid · η−1. The arbitrage
benefits from Term A must be reduced by the costs for storage usage in Term B. Given
the amount of load shifted `jd and the maximal capacity of the storage device C, `jd ·C−1

charge cycles are required with costs of ψ per nominal charge cycle.
To obtain a valid solution, the input parameters for the objective function must

comply with two constraints. The tuple (i, j) must not lead to overlapping off-peak
and peak timeslots:

(3.6) i < j

The second constraint reflects the maximal charging speed of the storage device.
Since the required number of timeslots to fully charge the storage device is v and `jd ·C−1

energy units need to be shifted, the charging limit i must fulfill

(3.7) i ≥ v · `
i
d

C
∀d

3.1.3 Results
Figure 3.1 shows the result for variations of the charging limit i. In this case, the
optimal (i.e., resulting in maximal reduction of total costs) value for the discharging
limit j has been chosen automatically. Accordingly, Figure 3.2 shows the result for
variations of the discharging limit j with optimal values for the charging limit i. The
maximal reduction of total costs with the basic model is estimated at ∼ 9%.

The results reveal that the underlying costs per capacity unit (which links the
parameters capacity and storage costs) is the most important factor to reduce the
total costs. Scenario 3 and 4 with a storage capacity of 1,000 Wh and storage costs
of 0.10 EUR per nominal charge cycle result in a maximal reduction of total costs of
∼ 9%, whereas Scenarios 1 and 2 with a 500Wh-capacity-storage device and the same
storage costs (i.e., relatively twice as high as in Scenarios 3 and 4) achieve ∼ 3%
total costs reduction only. Clearly, these results must be interpreted in the context of
the given load profile with a normalized annual load of 1,000 kWh, which is below the
consumption volume of an average household in Europe or the US.
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Figure 3.1: Impact of varying the charging limit i
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Figure 3.2: Impact of varying the discharging limit j

Regarding the definition of the limit values, the results reveal that setting the
charging limit has a significant impact on the overall results. A too largely defined
period of off-peak timeslots will result in significantly lower reduction of total costs. In
contrast, the limit for defining the peak timeslots has little influence on the reduction,
if the limit is in the range of j = 56 to j = 80. In case of the charging limit, the
realized reduction of total costs decreased significantly for limit values of i > 8. For
a heuristic decision algorithm without (precise) ex-ante knowledge of the price curve’s
distribution this implies a greater risk when setting the absolute charging limit for a
day (depending on the expected price distribution for the day): if the limit is set too
high, the realized arbitrage accommodation will be significantly lower than the best
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(with this algorithm) achievable value. If set too low, no arbitrage accommodation will
be realized on that day. In case of setting the discharging limit, this risk is lower due to
the larger range of discharge limits that lead to a solution close to the best achievable
result with this algorithm.

For a heuristic decision algorithm including a forecast function, this implies that the
quality of price forecasting for off-peak timeslots (i.e., lowest market prices for a day)
has greater importance than price forecasting for peak timeslots (i.e., highest market
prices of a day).

As described, the presented model estimates the total costs reduction achieved by
a simple heuristic decision algorithm; it does not calculate the maximal reduction of
total costs for the described scenarios. In order to benchmark the results of this model
and to evaluate the improvement potential of the presented model, Section 3.2 presents
a linear optimization model that outlines the theoretically maximal reduction of total
costs.

3.2 Linear Optimization Model
The objective of the linear optimization model is to determine the minimal total costs
for a given time period. For each timeslot t in the given period, the model can determine
the amount of energy to charge into the storage device respectively to discharge from
it. The time period consists of T time-slots t with t = 1 . . . T . The decision variables
are ϕt ∈ [0; 1] for charging and λt ∈ [0; 1] for discharging the storage device (see Table
3.2). The decision variables indicate the percentage of time at which the storage is
charged respectively discharged in timeslot t.

Hence, the possible modes for the storage device are charging (ϕt > 0), waiting/idle
(ϕt = 0 ∧ λt = 0) and discharging (λt > 0).

Table 3.2: Decision Parameters
Parameter Description Symbol Unit Value
Charge parameter for timeslot t ϕt (%) 0 ≤ ϕt ≤ 100
Discharge parameter for timeslot t λt (%) 0 ≤ λt ≤ 100

3.2.1 Parameters
Analyzing and assessing the economic benefits of a storage system at the end consumer
level requires a detailed description of the storage system’s technical specification and
of the external parameters of the environment where the storage system is located. The
storage system consists of the storage device and peripherals, e.g., power converters.
The external parameters contain information about the context of the consumer and
the energy market where the consumer obtains its energy from. Figure 3.3 depicts an
overview of the basic parameters and their interdependencies.

Market Parameters

The relevant parameters from the energy market are the price curve with its specific
granularity and distribution. The extremes of the price curve’s granularity are flat
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• Price curve granularity
• Price curve distribution
• Average market price
• Interest rate

• Annual demand
• Load curve distribution

Storage System Parameters

Market Parameters Consumer Parameters

Capacity
• Max. storage capacity
• Cost rate per capacity unit
• Max. charging speed
• Maintenance cost

Power
• Input power (rectifier)
• Output power (inverter)
• Cost rates per power unit
• Maintenance cost

Efficiency
• Rectifier efficiency
• Storage efficiency
• Storage self-discharge
• Inverter efficiency

System Life Time
• Peripherals‘ life time
• Average depth of discharge
• System temperature

Analysis and assessment 
of economic benefits

Figure 3.3: Overview of model parameters (build on Kowal and Sauer (2007))

tariffs, i.e., the same price per energy unit for the entire time period, and RTP, i.e.,
potentially varying prices for each point in time. Between these two extremes, one can
distinguish several tariff variants, e.g., day-vs.-night tariffs, blocked tariffs, and hourly
tariffs. Figure 3.4 illustratively depicts price curves with different time-block tariffs. In
the case of hourly or RTP the shape of the price curves can differ depending on how
supply and demand match on the market, as shown in Figure 3.5. All given price curve
examples have the same average prices. The parameter pt models the price curve by
indicating the energy price (EUR/kWh) per timeslot t and, thus, combines the price
curve’s granularity and distribution.
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Figure 3.4: Sample plots of different price granularities

Another market parameter, which is not directly related to the energy market, is
the interest rate i (%). The interest rate is the key parameter for determining the
capital cost of the storage system’s investment costs. Table 3.3 contains the market
and consumer parameters.
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Figure 3.5: Sample plots of different price curve shapes

Consumers Parameters

The relevant parameters for the consumer side describe the load curve (synonymously
for consumption or demand) with its shape and the annual load. The shape and the
aggregated height (annual load) of the load curve can differ depending on the end user
living situation, habits, and electrical devices used.

According to the market price curve in Paragraph 3.2.1, the parameter lt models the
load curve by indicating the load (kWh) per timeslot t. To use load data in a model,
the availability of load data and its granularity respectively are the determining factors.

Table 3.3: Market and Consumer Parameters
Parameter Description Symbol Unit Value
Price per energy unit in pt (EUR/kWh) Flexible end
timeslot t consumer prices
Interest rate i (%) 7
Load (demand) in `t (kWh) Standard house-
timeslot t hold profiles

Storage System Parameters

The key parameters of a storage system are its dimensions capacity, power, efficiency,
and estimated system life time, as well as their corresponding cost components. The
capacity dimension contains the maximal storage capacity C (kWh) of the storage
device, the cost per storage capacity unit κ (EUR/kWh), and the charging speed of
the chosen storage technology vstore (h), which indicates the time required for a nominal
charge cycle.

The power dimension can be split into input and output. The power of the rectifier
(ac to dc) determines the input power P in (kW) and the power of the inverter (dc
to ac) determines the output power P out (kW) of the storage system. The costs per
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power unit are πin (EUR/kW) respectively πout (EUR/kW). Additionally to the costs
for capacity and power, the storage system has annual maintenance cost. The annual
maintenance share m (%) is a percentage of the system’s initial investment cost.

The efficiency of the storage system is determined by the efficiency of the power
input component (rectifier) ηin (%), the charging efficiency of the storage device ηstore
(%), and the power output component (inverter) ηout (%) (Bodach, 2006). Addition-
ally, the self-discharge rate per hour of the storage technology ηselfdch (% per hour)
determines the overall efficiency of the system. Figure 3.6 gives an overview of the
efficiencies.
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selfdchx η⋅

*      = hours between charging and dischargingx

outselfdchxC ηη ⋅⋅⋅

storein

C
ηη ⋅

C

Figure 3.6: Efficiency degrees of a storage system2

The estimated life time of the system can be distinguished into the expected life
time of the peripherals τ (years) and the number of expected nominal (full) charge
cycles of the storage device γ (#), according to a defined limit for the maximal DOD δ̄
(%). It is assumed that the life time of the peripherals τ (years) is independent from the
usage intensity, given regular maintenance. Contrary, the number of expected nominal
(full) charge cycles γ (#) highly depends on the usage intensity, namely the average
DOD δ (%) and the temperature of the storage system θ (◦C). Figure 3.7 shows the
interdependencies of these parameters and Table 3.4 contains an overview of all storage
system parameters.

3.2.2 Model Definition
The total costs of installing and operating the storage system consist of a fixed and a
variable component:

(3.8) Ktotal = Kfixed +
T∑
t=1

Kvariable
t

Sections 3.2.2 and 3.2.2 describe the fixed and variable cost component in more
detail. Section 3.2.2 contains the mathematical model formulation and Section 3.2.2
presents the simplified model implementation.

2Based on Ter-Gazarian (1994).
3Left side taken from Kowal and Sauer (2007), cited after Varta and Johnson Control (2007)

(unknown source).
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Figure 3.7: Nominal cycles as function of DOD and temperature, example of NiMH
batteries3

Fixed Cost Components

The fixed costs are independent from the charge and discharge cycles of the storage
system. They contain the annual depreciation rate for the peripheral components,
the capital cost of the initial investment into the storage system, and the annual
maintenance cost for the storage system, i.e., the storage device and the peripheral
components.

(3.9) Kfixed = Kperipherals_depreciation +Kcapital_cost +Kmaintenace

It is assumed that the life time of the peripherals τ (years) is independent from the
usage intensity, given regular maintenance. Components for power input and output
represent the storage system’s peripherals in this model.

(3.10) Kdepreciation_peripherals = P in · πin + P out · πout

τ

Both capital cost and maintenance cost are defined as percentages of the initial
investment in the storage device (capacity) and the system peripherals (power):

(3.11) Kcapital_cost = i · (P in · πin + P out · πout + C · κ)

(3.12) Kmaintenance = m · (P in · πin + P out · πout + C · κ)

Variable Cost Components

The variable costs are dependent on the scheduling and the volume of the charge
and discharge cycles. They contain the energy cost components for (external) market
supply, the savings due to supply from the (internal) storage system, and the costs for
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Table 3.4: Overview of Storage System Parameters
Parameter Description Symbol Unit
Maximal capacity of the storage device C (kWh)
Cost per storage capacity unit κ (EUR/kWh)
Maximal charging speed of the device vstore (h)
(hours required for a full charge cycle)
Power-in of the storage system (rectifier) P in (kW)
Power-out of the storage system (inverter) P out (kW)
Cost per power unit (in) πin (EUR/kW)
Cost per power unit (out) πout (EUR/kW)
Annual maintenance cost as percentage m (%)
of the initial investment
Rectifier efficiency (in) ηin (%)
Storage efficiency ηstore (%)
Inverter efficiency (out) ηout (%)
Self-discharge rate of the storage device ηselfdch (%)
Estimated life time of system peripherals τ (years)
Expected nominal cycles γ (#)
of the storage device
Maximal DOD allowed δ̄ (%)
Average DOD until timeslot t δt (%)
Temperature of the storage system θ (◦C)

charging the storage device. All these components are independent from the system’s
(charging) state. Additionally, the variable costs contain the storage depreciation costs,
which are a state-dependent cost component.

Kvariable
t = Kmarket_supply

t −Kstorage_supply
t +

Kstorage_charging
t +Kstorage_depreciation

t

(3.13)

State-independent cost components The costs for (external) market supply cor-
respond to the costs the consumer would have without using a storage system, i.e.,
the price per energy unit in timeslot multiplied with the load (demand) volume in the
same timeslot:

(3.14) Kmarket_supply
t = pt · `t

The savings due to supply from the (internal) storage system in timeslot t indicate
the cost reduction respectively reduction of demand on the external market due to
storage discharge (λ > 1 ), i.e., the demand is partly or fully served from the storage
device.

(3.15) Kstorage_supply
t = pt · λt · qoutt

The potential discharge volume qoutt in timeslot t is limited by the power output
P out and the maximal capacity C of the storage system ( T h is a model parameter that
indicates the number of timeslots per hour):
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(3.16) qoutt = min
(
λt; min

(
C; P

out

Th

))

The costs for charging the storage device in timeslot t ( ϕt > 0) base on the price
per energy unit in the current timeslot pt and the potential charge volume qin .

(3.17) Kstorage_charging
t = pt · ϕt · qin

The storable volume per timeslot is limited by the maximal charging speed v to
C · v−1. The necessary charge volume qin exceeds the stored volume due to limited
efficiency degrees of the power input component and the storage device itself.

(3.18) qin = C

ηin · ηstore · v

The maximal charging speed of the storage system v (#) indicates the required
timeslots for a nominal charge cycle. It depends on the slowest component (system’s
peripherals power limitation vs. charging speed of the storage device vstore):

(3.19) v = T h ·max
(
C

P in
; vstore

)

State-dependent cost components As explained in Paragraph 3.2.1, the number
of expected nominal (full) charge cycles γ (#) of a storage device highly depends on
the usage intensity, namely the average DOD δ (%) and the temperature of the storage
system θ (◦C). In the following, the temperature θ is assumed constant.

A higher average DOD leads to a reduction of nominal charge cycles γ , which again
has a direct influence on the depreciation of the storage device. One can formulate the
costs for a full charge cycle ψ (EUR) as follows:

(3.20) ψ = C · κ
γ

The deeper the storage device is discharged, the higher the marginal cost per nom-
inal charge cycle (see Figure 3.8). Since a discharge cycle can last for several timeslots,
the discharge action in timeslot t must also cover the increasing marginal costs for the
previous discharge action. A discharge action is defined as a reduction of the system’s
storage level due to intended discharge or self-discharge of the storage device. Thus,
the storage depreciation cost in timeslot t must cover the marginal depreciation cost for
the discharge action in timeslot t and the difference between the marginal depreciation
cost in t and t− 1 for the previous discharge:

(3.21) Kstorage_depreciation
t = sg · (1− ϕt) · [(ξt − ξt−1) · ψt + q̂t−1 · (ψt − ψt−1)]

The auxiliary function sg(x) is defined as follows:

(3.22) sg(x) =

1 x > 0
0 else
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An alternative formulation of the storage depreciation cost is more compact4:

(3.23) Kstorage_depreciation = C · κ
(
q̂t
γt
− q̂t−1

γt−1

)
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Figure 3.8: Interrelation of depth of discharge and cost per nominal discharge cycle

The previous discharge actions (sum of discharge volumes until t−1 ) q̂t−1 is defined
as:

(3.24) q̂t =
t∑

t′=1
ξt′ − ξt′−1 = q̂t−1 + (ξt − ξt−1)

where ξt indicates the system’s state (storage level) in timeslot t . ξt takes the
intended charge and discharge actions as well as self-discharge of the system during
idle phases ( ϕt = 0 ∧ λt = 0 ) into account:

(3.25) ξt =


∑t
t′=1

C
v
· ϕt′ −

qout
t′
ηout
· λt′ − ηselfdch

Th
· (1− ϕt′ − λt′ξt′−1) t > 0

0 else

The marginal depreciation costs for a nominal cycle ψt in timeslot t are defined as:

(3.26) ψt = C · κ
γt

γt is the expected nominal cycles of the storage device, which is a technology-specific
function. The function requires the system temperature θ and the average DOD δt until
timeslot t as input factors (see Figure 3.7):

(3.27) γt = f(θ, δt)
4Appendix A contains a derivation of equation (3.23) as well as a mathematical prove of the identity

of equations (3.21) and (3.23).
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(3.28) δt = 1− ξ̃t
C

ξ̃t is the average of load states (storage levels) after completed discharge cycles until
timeslot t:

(3.29) ξ̃t =


sg(1−ϕt)·ξt+

∑t

t′=1 max(0,ξt′ )
sg(1−ϕt)+(t−1)+

∑t

t′=1 min(0,ξt′ )
t > 1 ∧∑t

t′=1 sg(ξt′ − ξt′−1) > 0

C else

The auxiliary function sg(x) is defined as follows:

(3.30) sg(x) =

1 x < 0
0 else

ξt indicates a local minimum in the sequence of load states with a value of ξt ≥ 0 .
All other values are invalid values, i.e., no local minima.

(3.31) ξt =

ξt ξt−1 ≥ ξt ∧ ξt < ξt+1 ∧ t > 0
−1 else

Mathematical Formulation

Based on the definitions and equations of the preceding paragraphs, one can now
formulate the optimization problem. The objectives of the optimization model are to
determine the optimal timeslots for charging and discharging the storage device in order
to minimize the total cost for the given time period (t = 1 . . . T ). For each timeslot
t, the model must determine the amount of energy to charge into the storage device
respectively to discharge from it. The costs resulting by using an optimally dispatched
storage system are calculated against the annual baseline cost Kbaseline (EUR) for an
identical consumer scenario without a storage system.

(3.32) Kbaseline =
T∑
t=1

pt · `t

Hence, the objective function of the linear optimization model is

(3.33) max→ 1− 1
Kbaseline

·
(
Kfixed +

T∑
t=1

Kvariable
t

)

The constraints for the optimization problem are as follows: A solution is valid only
if the decision variables ϕt and λt are kept within their range (3.34). Charging and
discharging within the same timeslot t is allowed, but must not overlap (3.35). At each
point in time, the system’s state (storage level) must be positive, but not exceeding
the maximal capacity of the storage device (3.36). After a start-up phase until tstartup
(initial charging), the State of Charge (SOC) ξt must not fall below the maximal DOD
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δ̄ (%) (3.37). The SOC ξt in timeslot t must take the intended charge and discharge
actions into account (3.25):

(3.34) 0 ≤ ϕt, λt ≤ 1 ∀t

(3.35) ϕt + λt ≤ 1 ∀t

(3.36) 0 ≤ ξt ≤ C ∀t

(3.37) (1− δ̄) · C ≤ ξt ∀t > tstartup

The start-up phase until tstartup can be set arbitrary, but must be in the following
range to ensure a sufficiently long initial charging phase with respect to the system’s
charging speed v.

(3.38)
⌈(

1− δ̄
)
· v
⌉
≤ tstartup ≤ T

As formula 3.33 expresses, the usage of a storage system with the objective of
arbitrage accommodation is beneficial, if the avoided cost for external supply in the
moment of discharge are higher than the previously required cost for charging and
using (depreciating) the storage device. If the cost for using (depreciating) the storage
device are greater zero (standard case), this implies that the cost per unit for charging
the device must be less than the cost for external supply (per unit) in the moment of
discharge, i.e., flexible electricity tariffs are required.

Model Implementation

Modeling the fixed cost components and the variable, state-independent costs, i.e.,
independent from the system’s state (storage level), can be realized in a linear opti-
mization model with a standard format (scalar a is a constant, vectors A are constants
and x are decision variables):

(3.39) min→ a+
∑

A1.t · x1.t + . . .+ An.t · xn.t

Also the SOC parameter ξt with its recursive definition as well as the accumulated
discharge volume qt , which bases on the SOC parameter, can be resolved and trans-
formed into the format above. However, the variable, state-dependent costs, namely
the storage depreciation costs, cannot be transformed into the format above, since the
calculation of the costs for a nominal discharge cycle ψt cannot be linearized.

The implementation of the linear optimization model will transform the previously
defined model into a standard form of a mixed-integer problem (3.39). Therefore, in
contrast to the above defined mathematical model, its implementation assumes the
number of expected nominal charge cycles as constant. This simplification implies
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that the costs per discharge cycle are fixed, as well as the according average DOD δ.
Thus, the costs of discharging the storage device are not state-dependent but state-
independent, like the other cost components. The costs of a nominal charge cycle ψ
(EUR) are therefore defined as

(3.40) ψ = C · κ
γ

The storage depreciation costs Kstorage_depreciation
t in timeslot t are the product of

the discharged volume relative to the storage system’s capacity (λt · qoutt ·C−1) and the
costs for a nominal discharge cycle ψ (EUR):

(3.41) Kstorage_depreciation
t = λt · qoutt

C
· C · κ

γ
= λt · qoutt

κ

γ

Thus, the variable costs are defined as follows:

(3.42) Kvariable
t = pt · `t − pt · qoutt · λt + pt · qin · ϕt +

κ

γ
· qoutt · λt

For the formulation of the linear optimization model, Kvariable can be transformed
into (3.43) with Ax as ex-ante given vectors.

(3.43) Kvariable
t = λt

(
qoutt

(
κ

γ
− pt

))
︸ ︷︷ ︸

A1

+ϕt
(
qin · pt

)
︸ ︷︷ ︸

A2

+ pt · `t︸ ︷︷ ︸
A3

Analogously, (3.9) can be transformed into an ex-ante given scalar a0, since all con-
tained variables are constant and previously known. Also Kbaseline can be transformed
into an ex-ante known scalar a3, since pt and `t are given. This implies that (3.43) can
be further simplified to

(3.44) Kvariable
t = λt · A1.t + ϕt · A2.t

when transforming the objective function of the linear optimization model (3.33)
to

(3.45) max→ 1− 1
a3
·
(
a0 + a3 ·

T∑
t=1

λt · A1.t + ϕt · A2.t

)

(3.46) ⇔ max→ a+
T∑
t=1

λt · A1.t + ϕt · A2.t

with
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(3.47) a = 1− a0

a3

Thus, the objective function now corresponds to the standard format for linear
optimization problems. The constraints of the model remain unchanged for the imple-
mentation:

(3.48) 0 ≤ ϕt, λt ≤ 1 ∀t

(3.49) ϕt + λt ≤ 1 ∀t

(3.50) 0 ≤ ξt ≤ C ∀t

(3.51) (1− δ̄) · C ≤ ξt ∀t > tstartup

The start-up phase until tstartup can be set arbitrary, but must be in the following
range to ensure a sufficiently long initial charging phase with respect to the system’s
charging speed v.

(3.52)
⌈
1− δ̄

⌉
· v ≤ tstartup ≤ T

However, the SOC ξt need to be simplified. The current definition of ξt leads to a
complex, recursive implementation due to the integration of self-discharge effects. For
the implemented model it is assumed that the effects of self-discharge of the system are
negligible within a period T selfdch (# of timeslots).5 The SOC ξt of the implemented
model therefore disregards self-discharge and is reduced to

(3.53) ξt =
t∑

t′=1

C

v
· ϕt′ −

qoutt′

ηout
· λt′

An additional constraint of the linear optimization models avoids exceeding the technology-
specific self-discharge tolerant time period T selfdch. The distance between the charge
volume and the discharge volume must be smaller than T selfdch.

(3.54) ϕt −
t+T selfdch∑

t′=t
λt′ ≤ 0 ∀ 1 ≤ t ≤ T − T selfdch

5For battery storage technologies within the analyzed system, this assumption of T selfdch = 168
(1 week) is made, since batteries have a very low self-discharge rate of 0.1-0.3% on a daily basis, i.e.,
around 0.7-2.1% per week. Since the average storage duration of a kilowatt hour in the analysis model
turned out to be 0.7 days, the self-discharge effects under the given assumption are negligible. In other
technology simulation, e.g., flywheel storage or capacitors, self-discharge over a time period of several
hours is significant and will therefore deteriorate the results significantly. (cf. Chen et al. (2009))
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3.2.3 Data Sources and Analysis Scenarios
The input values for the technical storage parameters reflect an average and a best case
of a developmental stage of known technologies (see Table 3.5), published in Kowal
and Sauer (2007). The best case of the lead-acid technology scenario is the reference
case for all simulation results. Table 3.6 depicts the reference values for the remaining
storage and market parameters. Data for market prices accord to the price distribution
of the published hourly prices in 2007 on the EEX (2007) and are normalized to a
weighted average price of 0.20 EUR/kWh. The data for the load curve (electricity
demand) reflect the standard "H0 profile" (profile of a private household) published by
the VDEW (2006). This reference load profile is normalized to an annual consumption
of 2,000 kWh and multiplied with a random vector (±15% for each timeslot).

The granularity of the load data corresponds to 15-minute-timeslots. The hourly
market prices have therefore been transformed into 15-minute-timeslots as well. Thus,
each day contains 96 timeslots (timeslots per hour T h = 4) for 365 days, resulting in
35,040 timeslots for the following analyses.

Table 3.5: Technology Scenariosa

πin,
Technology γb κ πout ηstore

Best Case Lead-acid (ref. scenario)c 3000 100 120 85
Nickel Cadmium 10000 400 120 70
Li-ion 10000 300 130 95

Average case Lead-acid 2100 175 175 82
Nickel Cadmium 7500 550 177 65
Li-ion 7000 650 315 92

a Published in Kowal and Sauer (2007)
b Maximum DOD: 80%.
c The best case of the lead-acid technology is the reference scenario for
all later simulation results, unless differently stated.

3.2.4 Analysis Results
The linear optimization model calculated the optimal annual savings that a consumer
could realize when using a storage system in comparison to the baseline scenario with-
out a storage system.

The following paragraphs present the results of varying the input parameters of
the reference case, namely the impact of sizing the storage system’s capacity, perform-
ing sensitivity analyses to all technical and economic parameters, and modifying the
characteristics of price and load curves.

Capacity Variation

The larger the storage system capacity, the more load can be shifted from peak to off-
peak hours. Such load shifting is beneficial, if the spread between off-peak and peak
tariffs is greater than the costs for using the storage device. The costs for using the
device are determined by the technology used, namely its costs per storage capacity
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Table 3.6: Reference Parameter Values
Symbol Unit Reference Value
pt (EUR/kWh) Flexible end consumer pricesa
`t (kWh) VDEW load profileb
i (%) 7
m (%) 2
τ (years) 10
C (kWh) 5.0c
P in (kW) 1.0c
P out (kW) 0.5c
ηin (%) 95
ηout (%) 98
ηselfdch (%/h) 0d
T selfdch (#) 168
vstore (h) 5.0
δ̄ (%) 80
T h (#/h) 4e
a Flexible end consumer price, weighted average 0.20 EUR/kWh, same dis-
tribution as spot market prices at the European Energy Exchange (EEX)
in 2007.

b Standard household load profile in VDEW (2006).
c The optimal values for C, P in, and P out are adjusted depending on the
simulated technology, consumer load curve, and market price curve. The
reference values are the optimal values for the reference scenario.

d Self-discharge is neglected for the selected technology scenarios within the
time period of T selfdch timeslots.

e Model parameter (no storage system parameter).

unit and the expected number of nominal (dis-)charge cycles (see equations (3.16) and
(3.18)). Disadvantageously, extending the capacity leads to higher fixed costs due to
higher capital costs of the system (see equation (3.42)). Figure 3.9 shows the impact
of capacity extensions for the technology cases presented in Table 3.5.

-20,0%

-10,0%

0,0%

10,0%

20,0%

0 2 4 6

Storage Capacity (kWh)

A
nn

ua
l S

av
in

gs
 (%

)

Lead acid (best case, ref. case)
NiCd (best case)
Li Ion (best case)
Lead acid (avg. case)
NiCd (avg. case)
Li Ion (avg. case)

 
 Figure 3.9: Impact of capacity variations for different technology cases
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The results of the capacity variation reveal that the parameter "cost per storage
capacity unit" κ (EUR/kWh) has the largest impact on the overall result. Although the
li-ion technology (best case) has a by factor 3.3 higher number of expected life cycles
and a higher storage efficiency than the lead-acid technology (best case), the lead-acid
technology with its by factor 3.3 lower costs per capacity unit leads to significantly
better results of ∼17% vs. ∼5% annual savings.

For the reference scenario, the system based on lead-acid technology has an optimal
storage capacity of 5 kWh, while this is 2.5 kWh for the li-ion-based system. For larger
capacity values, both cases result in lower percentage of annual savings, i.e., capital
costs of the investment into additional storage capacity exceed its benefits through
arbitrage accommodation.

For all other technologies, the analysis reveals negative annual savings. Thus, in
these cases the use of a storage system is not beneficial for the given scenario.

For the following simulation results, the lead-acid technology scenario (best case)
is the reference, unless a different scenario is explicitly named.

Variation of the Storage Price

The capacity variation analysis for the six different technology cases revealed that the
lead-acid-based storage system had superior result to the li-ion-based system. The
key differentiating parameter between these technology cases are the costs per storage
capacity unit κ (EUR/kWh). Figure 3.10 shows the annual savings in dependency
from κ for the lead-acid and the li-ion technology. The li-ion based case scenario
achieves the same annual savings as the lead-acid-based case for storage capacity costs
of approximately 175 (EUR/kWh). The analysis reveals that lead-acid system return
positive savings in the given scenario, if the price per storage capacity unit falls below
∼200 EUR/kWh respectively ∼375 EUR/kWh for the li-ion technology.
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 Figure 3.10: Impact of storage capacity price variations on annual savings

Sensitivity Analysis of System Parameters

Besides the storage system’s capacity, technical and economic parameters of the storage
system determine the annual savings. In order to assess their impact on the savings,



3.2. Linear Optimization Model 39

each parameter is varied separately in 4 levels (±1%, ±10%) from the reference value
in Table 3.5 respectively 3.6 (all parameters are varied separately from each other).
The results in Figure 3.11 reveal that variations of the efficiency parameters6 and the
costs per storage unit show the highest sensitivity on the annual savings. These results
are in line with the findings of a sensitivity analysis in Sobieski and Bhavaraju (1985).

Although the variation of the cost per storage capacity unit shows a lower sensitivity
than the efficiency degrees, it still has the highest absolute impact on the savings (see
previous paragraph) due to the larger absolute differences between the parameter values
(100 EUR/kWh (lead-acid) vs. 300 EUR/kWh (li-ion)). Variations of the remaining
parameters have a minor influence on the savings.
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Figure 3.11: Sensitivity analysis for technical and economic storage parameters

Price Curve Variation

The fluctuations of the market price determine the off-peak and peak periods when the
storage system can be charged respectively discharged. Additionally, the price level
and the spread between peak and off-peak prices determine the charge and discharge
volumes.

The following paragraphs analyze the relative impact of the average price spread,
the average price level, and the price curve granularity on the annual savings. The
point in time of peak and off-peak periods does not shift.7 Table 3.7 contains the
variables that were used to model the price curve variations.

6Storage efficiency and rectifier efficiency have the same impact due to the model formulation, see
equation (3.18). An increase of the rectifier and inverter efficiency by 10% from the reference value is
not applicable, since this would lead to efficiency values >100%.

7The effect of shifting peak and off-peak hours is indirectly analyzed in Paragraph 3.2.4, where the
load curve distribution is varied.
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Variation of the Average Market Price The market price vector contains a price
pt for each timeslot t. For the market price variation analysis, each price is increased
respectively decreased with the same constant value. Price vectors with average market
prices of 90%, 99%, 101%, and 110% of the reference vector’s average price are com-
pared in the analysis. For each price vector, Figure 3.12 depicts the relative savings in
the context of the reference scenario.

Table 3.7: Price Curve Variation Parameters
Parameter Description Symbol Unit
Price per energy unit in timeslot t pt (EUR/kWh)
Price vector (p1, . . . , pT ) (reference) P
Average market price (reference) avg(P ) (EUR/kWh)
Modified price in timeslot t p∗t (EUR/kWh)
Variation factor α

The new market prices p∗t (EUR/kWh) are calculated as

(3.55) p∗t = pt + (avg(P ) · (α− 1))

Figure 3.12 compares the annual savings for each factor. It shows that the relative
savings decrease in case of an increasing market price. Since all market prices for the
analyzed time period are varied by the same constant factor, the realizable spreads
remain the same. Thus, the absolute savings also remain equal. Since a decrease in
market prices also leads to lower baseline cost (compare equation (3.32)), the relative
savings decrease. Additionally, limited efficiency degrees even decrease the absolute
savings in case of higher average market prices (see equations (3.42) and (3.18)).
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 Figure 3.12: Impact of market price level variations
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Variation of Price Spreads The variation of the average price spread analyzes an
increase respectively decrease of the average spread, i.e., the average price difference
between peak and off-peak timeslots. The average (annual) market price is constant
in all compared cases in Figure 3.13. The factor α indicates the percentage change of
the average price spread and the new market prices p∗t (EUR/kWh) are calculated as

(3.56) p∗t = α · (pt − avg(P )) + pt
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Figure 3.13: Impact of price spread variations

For the reference scenario, an increase of the average price spread by 1% leads
to 0.6% point higher annual savings. An increase by 10% raises the annual benefits
through the storage system to 22.0% (+5.4% points). In the context of increasing
shares of intermittent energy sources that are likely to cause more volatility on future
electricity prices, the significant influence of the spread supports the benefits of the
storage model.

Variation of the Price Curve Granularity The price curve granularity deter-
mines the number of (potentially) different price blocks per day. The assumption is
that all price blocks are of equal size, i.e., account for the same number of timeslots.
The market price within a price block is constant. Figure 3.14 shows a sample plot of
three price curve granularities.

All market price variations base on the reference price vector, which has 24 different
price blocks per day. Figure 3.15 depicts the relative savings in dependency from the
price curves granularity.

The block tariff vector p∗t (EUR/kWh) with the block size β (# of timeslots per
block) (β ∈ {1, 2, 3, . . .}) is calculated on the basis of the reference price vector P :

(3.57) p∗t = β−1 ·
β−1∑
x=0

pt′+x
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Figure 3.14: Sample plots of price curve granularities

where

(3.58) t′ = ((t− 1) mod β)

The analysis shows that an increasing number of market price blocks per day in-
creases the benefits from a storage system. A larger number of price blocks allow the
storage system to charge in particularly low-price timeslots and to avoid external mar-
ket supply in timeslots with extremely high prices. A decreasing number of price blocks
flattens the extreme values of a price curve and impedes the arbitrage accommodation
strategy of the storage system.
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 Figure 3.15: Impact of the price curve granularity on annual savings
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Hence, this market parameter is an important decision and steering (incentive)
variable for consumers, providers, and regulators.8

Load Curve Variation

The load curve represents the electricity demand of the analyzed consumer case for
each timeslot. It is assumed that the load data are ex-ante given. The determining
characteristics of the load curve are its distribution and the overall annual load (elec-
tricity demand) of the consumer. The following paragraphs analyze the influence of
these components on the relative savings.

Annual Load Variation The variation of the annual load is a linear modification
of the consumer’s annual consumption. Each load value lt of the load curve vector is
multiplied with a constant variation factor. The analysis compares annual loads from
1000 kWh to 8000 kWh for a lead-acid-based storage system and a li-ion-based storage
system.

Due to the higher annual load, the load shift volumes also increase. Therefore,
each data point in Figure 3.16 is based on the optimally sized storage system for the
corresponding situation.9

The simulation results in Figure 3.16 reveal that higher annual loads do not neces-
sarily lead to higher relative savings. Besides the optimization of the storage system
capacity, an optimization of the power converter dimensions is required. Nevertheless,
size variations for the power and storage capacity can not always achieve positive an-
nual savings. Both, the charging speed limit and the increasing power converter costs
are bottlenecks in case of larger annual loads (compare equations (3.9) and (3.42)).
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 Figure 3.16: Influence of the annual consumer demand on relative savings

8E.g., the offering of flexible tariffs is legally required in Germany from beginning of 2011 onwards
(Federal Law Gazette, 2008), but the detailed granularities of future tariffs remain to be seen.

9The optimal storage capacity has been determined separately for each annual load variation and
technology scenario.
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Variation of the Load Curve Distribution Load distribution variations, i.e.,
shifting the time of electricity demand and level of load peaks, change the characteristic
of the load curve. As a consequence, the optimal CDS differs for each load distribution
(assuming the same price curve). The saving potential of a storage system depends
on the distribution of the load curve in comparison with the price curve’s distribution.
Load distribution variations do not change the annual load.

Besides the reference load curve, two additional load curves were generated: a load
curve l∗t with an approximately equably distribution as the price curve and a generated
load curve of a single working household.

A load profile `∗t with a similar distribution to the price curve pt is generated in two
steps: (1) Derivation of a load profile ˜̀t with a price curve-equivalent distribution and
an annual load equal to that of `t, (2) variation of ˜̀t with a factor α:

(3.59) ˜̀
t = pt ·

(
T∑
t′=1

`t′

)
·
(

T∑
t′=1

pt′

)−1

(3.60) ⇒
T∑
t=1

`t =
T∑
t=1

˜̀
t

(3.61) `∗t =

˜̀t − α pt < median(P )˜̀
t + α else

In order to avoid negative values for `∗t , α must not be greater than the minimal
value of ˜̀t:
(3.62) α = tmin

( ˜̀
t

)
If α > 0, the resulting load curve `∗t will be pro-cyclic in comparison with the price

curve pt, i.e., the load peaks will be relatively higher than the price peaks and off-peak
values relatively lower. In case of α < 0, the effect inverts.

The reference load profile and the generated load profile of the single working house-
hold differ only in their intra-day load distribution. The seasonal and weekday-specific
load distributions are equal and correspond to the distributions given in Figures 3.17-
3.19.

As Figure 3.20 shows, the variation of the load curve’s distribution has a significant
impact on the relative savings that can be achieved by operating a storage system.

The more the load curve distribution differs from the given price curve distribution,
the more the relative savings decrease. The indicator χshape measures the similarity of
the load curve distribution to the price curve distribution.

(3.63) χshape = 1
T
·
T∑
t=1

abs
(
`t˜̀
t

− 1
)

A series of simulations with 60 randomly generated load profiles of 1- and 2-person
households (30 households each, includes 67% of households with inhabitants that
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Figure 3.17: Seasonal load distribution of the reference load profile
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Figure 3.18: Weekday-specific load distribution of the reference load profile
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Figure 3.19: Average intraday load distributions of the analyzed load profiles

frequently leave to work and 33% of households of retired inhabitants) confirms the
correlation of χshape and the relative annual savings (see Figure 3.21), which is not
intuitive regarding the number of possible load distributions and their effects on the
savings through the storage system. Thus, the indicator χshape can be seen as an
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 Figure 3.20: Impact of the load profile distribution on relative savings

Table 3.8: Load Curve Distribution Indicator Values
Load Curve χshape Annual Savings (%)
VDEW Standard Load Curve 0.51 16.6
Profile (reference)
Profile with Price Curve- 0.29 19.1
similar Distribution
Generated Load Profile of a single 1.57 9.6
working household

indicator for investment decisions that allows an ex-ante estimation of potential benefits
from a storage system for a given consumer profile.
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Figure 3.21: Correlation of annual savings with the load shape indicator χshape

Furthermore, the optimal system capacity varies depending on the load curve dis-
tribution. If the consumer’s load is high in low-price timeslots and low in peak price
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timeslots, the baseline cost and the saving potential are low due to low load shifting
volumes, which again results in a lower optimal storage capacity value. If the load
curve distribution is pro-cyclic with the price curve (highest electricity demand occurs
in price peak timeslots), the annual savings potential, the load shifting volumes and
the corresponding optimal storage capacity value are high.

Technology Comparison

The input parameters for the simulations represent three different technologies for the
storage devices: lead-acid, li-ion, and NiCd storage technology. For each technology,
input parameter values for the dimensions number of expected nominal charge cycles
(ENCC), storage costs (SC), peripheral costs (PC), and storage efficiency (SE) have
been defined (Table 3.5).

The best values regarding ENCC relate to li-ion and NiCd-based storage technolo-
gies. The best value regarding SC related to lead-acid-based technology. PC do not
differ much between technologies and are therefore not expected to make a difference.
The ranks of SE values relate in descending order to li-ion, lead-acid, and NiCd-based
technology. The open question before running the analysis was which of the technolo-
gies would offer the best package of characteristics for the defined context and how big
the influence of single parameters would be.

As a hypothesis, li-ion and lead-acid-based storage systems were expected to deliver
best results. Due to a 3 times worse value in ENCC, but a 3 times better value in
SC, the lead-acid technology was expected to have a slight advantage over the li-ion
technology. Although the costs per nominal charge cycle (quotient of SC and ENCC)
are alike, the capital costs for the lead-acid technology are lower. The NiCd technology
was expected to deliver the lowest savings, since it represented worse parameter values
for the dimensions SC and SE than the other technologies.

The simulation results reveal that the lead-acid-based storage systems performed
significantly better in the given setting than li-ion and NiCd-based systems (up to 17%
lead-acid vs. 5% li-ion). This implies for the given parameter values that the dimension
SC has a much stronger impact on the results than SE and ENCC. As expected, the
NiCd technology delivered lowest savings. Overall, only the best case scenarios of the
lead-acid and the li-ion technology lead to a financially positive business case.

The results show that selecting the best storage technology depends significantly
on the given context. In the given setting of stationary storage systems at the end con-
sumer level, aspects like size, weight (mobility), capacity density and power density are
of little or no relevance. In contrast, storage applications in mobile phones, laptops, or
electric vehicles particularly require these dimensions. Therefore, the main disadvan-
tages of the lead-acid technology do not negatively impact the results in the simulated
context, and the li-ion technology could not benefit from its greatest strengths. A de-
tailed sensitivity analysis of the lead-acid-based storage system (best case) examined
how a variation of the input parameters affects the saving results. Based on the results
of the technology analysis that simulated the individual parameters as a package, it is
expected that the most important dimension is the SC, followed by ENCC and SE.

The simulations revealed a different picture from these expectations. The most
economically sensitive parameter is the SE, followed by SC and ENCC. The results
make clear that the influence of ENCC had been overestimated. In fact, it is only half
the influence of SC. However, the most influential parameter is SE (factor 1.5 more
influential than SE in the given setting). Comparing again li-ion and lead-acid based
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technology, one could expect a clearer advantage respectively less disadvantage for
the li-ion-based system. Taking a detailed look at the compared technology packages
shows that the relative difference of the input values regarding this parameter is only
1.1 between li-ion and lead-acid technology (95% vs. 85%), whereas it is about a factor
3.3 for SC (disadvantageously for li-ion). Therefore, it is clear that SC is the most
important parameter within this setting in absolute terms, while storage efficiency
variations have the highest relative impact on the results. Additionally, the sensitivity
analysis shows that the variations of technical parameters do not have a linear impact
on the results, whereas this is the case for economic parameters.

3.3 Summary
This part of the research work addressed the question whether it is economically ben-
eficial to install small, distributed storage devices on the electricity grid. Therefore,
two models were presented, which measure the economic impact of DSSs at the end
consumer level aiming at arbitrage accommodation (Basic Estimation Model in Sec-
tion 3.1, Linear Optimization Model in Section 3.2). Both models address the decision
problem when to charge and discharge the storage devices in order to maximize arbi-
trage accommodation. The first model estimates the benefits that could be achieved
using heuristic decision algorithms that base on a lower limit for charging and an upper
limit for discharging the storage system. The second model is a more complex linear
optimization model that determines the optimal charge-discharge-strategy for a given
time period and a given set of input parameters. It takes various cost components
into account, such as capital and maintenance costs (fixed costs), time-dependent elec-
tricity supply costs (variable costs), and storage depreciations (variable and storage
state-dependent costs). The technical parameters of the storage system model the di-
mensions capacity, power, efficiency, and estimated system life time, as well as their
corresponding cost components.

For technical parameters of storage devices that are currently in a developmental
stage, the linear optimization model resulted in a 17% reduction of total costs, while
the basic model estimated a 9% reduction using a simple heuristic algorithm.

The main reason for the lower cost reduction of the heuristic algorithm in com-
parison with the optimal solution is the rough granularity of the charge and discharge
limits. The basic estimation model sets only one, even though relative, value for the
discharge and charge limits within the given time period. Thus, it calculates the limits
that result in the highest average cost reduction per day, but not the highest absolute
cost reduction for each day. In contrast, the linear optimization model determines the
optimal CDS and therefore indicates the theoretically maximal savings. Moreover, the
basic estimation model calculates the costs of charging the storage device on the aver-
age market price within the off-peak timeslots, whereas the linear optimization model
calculates on the actual price per timeslot. Although the heuristic decision algorithm
is obviously simple and offers a lot of room for improvement, it results in a saving
potential on total cost of 9% (vs. 17% optimal solution). Thus, it is to assume that
more sophisticated heuristic algorithms in realistic settings are likely to achieve more
than 10% savings on total costs.



3.3. Summary 49

3.3.1 Contribution to Scientific Literature
In contrast to other papers dealing with the economic evaluation of storage systems
and solutions for storage scheduling problems, this work varies in three dimensions:
(i) Instead of centralized (large) storage systems on the Generation or Transmission
level, the focus is on DSSs at the end consumer level. (ii) The objective function is
a purely economic storage application aiming at arbitrage accommodation, whereas
the existing literature mostly analyzed the economic impact of primarily technical
storage applications (see Section 2.2), like load leveling, peak shaving, or frequency
control. (iii) The simulation is based on a linear optimization model instead of a
dynamic programming algorithm. Unlike the primarily technically-focused models,
the presented mathematical model accurately links the technical characteristics of a
storage device with the economic parameters of the system and its environment by
variable pricing of system usage. The pricing depends on the effects that the intended
usage has on the technical characteristics and the state of the system. E.g., charge-
discharge decisions of the storage model reflect the relation between the average DOD
and the expected nominal charge cycles of a storage device, which again impacts the
costs per nominal charge cycle (depreciation costs).

3.3.2 Practical Relevance of the Findings
The linear optimization model reveals a cost reduction potential of up to 17% on
total annual costs with a lead-acid-based storage system, whereas a li-ion-based system
achieves only 5% savings. The results indicate that - in dependence on the system
environment - lead-acid technology may be superior to li-ion technology. The sensitivity
analyses underline the outstanding impact of the costs per storage unit (EUR/kWh)
and the high sensitivity of the efficiency degrees on the achievable benefits. Other
parameters such as the expected system life time, power converter costs, and capital
costs show a significantly lower economic impact in the analyses.

The analysis of the market price curve revealed two major findings. Firstly, the
analysis shows that the level of peak prices vs. off-peak prices is a strong driver for
the achievable savings. In contrast, a purely constant price increase, which does not
lead to higher spreads, has a negative influence on the results. I.e., the system’s
benefits increase with the volatility of the market price. The analyzed influence of
the price curve variations on the overall savings reveals that a 1% increase of the
average spread leads to 0.6% points higher overall savings. A 10% increase will raise
the savings by 5.4% points to 22% annual savings. In the context of increasing shares
of distributed and renewable (and intermittent) energy sources, the volatility of the
electricity market is likely to increase. Given the predicted shortage of supply (cf.
DENA (2008)), especially peak prices are expected to increase due to greater demand
for expensive control capacity. All this would lead to more price volatility and, thus, a
significant increase in potential benefits from storage applications that aim at arbitrage
accommodation.

The second finding of the market price analysis concerns the electricity tariffs avail-
able. Increasing the granularity of the available electricity tariff from 3 to 6 market
prices per day (e.g., a time-dependent tariff for morning, day, and night hours) will
increase the savings by a factor 5 (∼ 2% vs. ∼ 10%). Providing hourly tariffs to the
consumer raises the savings to ∼ 17%. Decreasing the market price granularity will
significantly limit potential arbitrage accommodation and thus, limit the incentives for
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DSM and for consumers to adapt their behavior. Therefore, the market price gran-
ularity is an important decision and steering variable for consumer, providers, and
regulators. E.g., the offering of flexible electricity tariffs is legally required in Germany
from beginning of 2011 onwards, but the existing law does not prescribe the market
price granularity in detail (compare §40 (3) in Federal Law Gazette (2008)).

Regarding the consumer parameters, the simulation results reveal a strong correla-
tion between the annual savings and the similarity of the load and price curve distri-
butions. Due to the large number of possible variation, this result is not intuitive, but
could be confirmed through Monte-Carlo simulations. Each simulation run based on
a different load profile that reflected a realistic, bottom-up generated consumer curve.
The profiles were randomly created on the basis of realistic base parameter values and
normalized to the same annual load.

The measured correlation implies that the introduced indicator χshape for measuring
the similarity between load and price curve distribution can be seen as an indicator for
investment decisions. The indicator allows an ex-ante estimation of potential benefits
from storage systems for a given consumer profile in combination with a given price
profile.
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Chapter 4

Price and Load Forecasting in the
Electricity Sector

The integration of an increasing share of non-conventional energy resources will pose
great challenges in the upcoming modernization and restructuring of the power grids.
Non-conventional resources include distributed and renewable generation capacities as
well as Demand-Side Management (DSM) applications of increasingly informed and
responsive end consumers.

On the supply side, increasing the shares of Renewable Energy Sources (RES) and
Distributed Energy Resources (DER) is a clear goal in most industrialized countries.
The European Union targets a share of 20% overall energy production from renewable
resources until the year 2020 (European Union, 2008). In Germany, the grid regulation
authority expects DER to contribute 30% of the overall power production by 2020
(DENA, 2005). On the demand side, smart metering technologies, DSM applications,
and electric vehilces begin to change the known consumption patterns of end consumers.
In Germany, smart metering technology is set to be introduced into new buildings
starting by the end of 2010 (with one year grace period for existing houses). E.g.,
smart metering allows for immediate energy flow visualizations, which is known to
change consumption patterns significantly (Darby, 2006). Additionally, the anticipated
increase of Plug-in Electric Vehicle (PEV) and Plug-in Hybrid Electric Vehicle (PHEV)
requires smart charging strategies to integrate these new loads into the energy grid
(about 1 million units targeted in Germany by 2020 (German government, 2008)).

Hence, ensuring the grid’s stability by balancing demand and supply at each point
in time becomes more challenging due to new supply and consumption patterns. In
the traditional grid, the supply side provides the required flexibility through control
capacity. While the supply side has always been flexible and responsive, a higher
share of RES and DER, i.e., intermittent and non-dispatchable resources will reduce
the supply side’s degree of flexibility. To compensate the higher volatility induced
through RES and DER, either the supply side, or the demand side, or both sides have
to provide additional flexibility. Providing supply-side flexibility is typically based on
comparatively expensive gas power plants that produce CO2 emissions and increase
the dependency on natural gas. An alternative concept on the supply side are Virtual
Power Plant (VPP), an innovative concept that has been investigated in the last years.
VPP combine several energy resources to a virtual unit with a predictable output,
where resources are predominantly RES and DER. It is often supported with storage
solutions. (Setiawan, 2007)
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When changing the traditional paradigm of a purely supply-side-focused flexibility
provision, storage systems and DSM programs can provide flexibility on the demand
side by realizing or creating load shifting potentials. More flexibility on the demand
side shifts demand to timeslots where supply is available from RES or DER. Storage
systems will hide load shifting towards the end consumer.

All options on both, the supply and the demand side, need price and load forecast
data in order to economically optimize the schedules of the underlying measures. Fore-
casts are essential for an effective coordination of the energy market. But maintaining
or even improving the quality level of traditional short-term load forecasts becomes
more difficult if shares of RES and DER increase. The output of these resources is
much harder to predict than for conventional power plants (Konjic et al., 2005). As-
suming an increasing amount of economically scheduled distributed generation and
consumption units implies that coordinating demand and distributed supply volumes
will require forecasts for smaller units, i.e., on a less aggregated level than the tra-
ditional grid (Konjic et al., 2005). Due to the lack of averaging effects, this causes
additional difficulties (Pahasa and Theera-Umpon, 2008). Moreover, an increasingly
flexible and reactive demand side will lead to new demand patterns that might not be
fully compatible with the traditional forecasting tools.1 The same accounts for price
forecasts. Flexible prices - especially on a Real-time pricing (RTP) basis - will increase
the complexity of load forecasting since prices and loads are correlated (Bunn, 2000)
(even though the degree of price elasticity and, thus, the precise relation between load
and price is hard to determine (Yun et al., 2008)).

A prerequisite for a shift from passive energy consumption to an active, distributed,
and load-responsive DSM are flexible electricity prices that provide an economic in-
centive for load shifting. It is assumed that flexible prices appropriately reflect the
demand-supply-situation on the market. Traditionally, flexible prices only apply to pro-
ducers and large industrial consumers. This is about to change by aiming at smarter,
i.e., more responsive households and consumers in the future. In Germany, accord-
ing legal changes are already passed. End consumers will have access to load- and
time-dependent electricity tariffs from 2011 onwards (Federal Law Gazette, 2008).

With new time- and load-dependent tariffs in place, customers will have an incentive
to shift their consumption towards off-peak hours while during peak hours their PEV,
PHEV, or stationary battery storage devices might (temporarily) feed energy back into
the grid given an appropriate monetary compensation. Thus, DSM applications will
need to calculate price forecasts in order to effectively schedule their energy consuming
devices.

On the load forecasting side, upcoming technologies like Smart Metering in combi-
nation with modern information and communication technologies will provide precise
consumption data on the low-voltage level. Potentially, this can be a major enabler for
load forecasting on a less aggregated level.

Future grids will contain a larger share of RES and DER as well as a more flexible
and reactive demand side triggered by price-sensitive consumers. To cope with the
increasing volatility on both the supply and the demand side, storage will become more
important. Accurate price and load predictions are necessary to optimize the operation
schedules of such storage devices. In the case of Distributed Storage System (DSS),
load forecasts on a distributed, less aggregated level are required.

1E.g., if the forecast methods use historic data for their input, but DSM programs significantly
change these data.
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4.1 Objective and Structure of Part II
Within a context of uncertain price and load forecasts, this part of the thesis will an-
alyze the impact of price and load forecast errors on the economics of a DSS at the
end consumer level. The analyses build on the basic model in Ahlert and van Dinther
(2009b) (Part I), which aims at arbitrage accommodation using a battery storage. But
the analysis within this part relax the assumption of ex-ante known price and load
data, since these data would not be available for real-world application. The presented
battery storage management algorithm in Section 3.2 achieves approximately 17% sav-
ings on the annual electricity costs of a prototypical 2-person household. The algorithm
computes an optimal Charge-Discharge-Schedule (CDS) for the storage system given
ex-ante known load and price data. The research questions of this part of the thesis
investigate to what extent load and price forecasts deteriorate the economics of the
derived CDS in comparison to the previously calculated optimal CDS. Furthermore,
the economic robustness of different scheduling and forecast algorithms are calculated.

After a review of related literature on price and load forecasting (Section 4.2), this
part of the thesis simulates various scenarios of load and price forecasts. Chapter 5
defines the simulation model (Sections 5.1-5.3) and simulation scenarios (Section 5.4).
Section 5.5 analyses the results of the price and load forecast scenarios and the robust-
ness of economic results in dependence on the scheduling algorithms in a DSS. The
effects of load and price forecast characteristics like forecast accuracy, autocorrelation
of forecast errors, and the scope of the forecast horizon, as well as the influence of
scheduling algorithms are benchmarked against the optimal result calculated in the
first part of this work. Section 5.6 summarizes the findings and discusses their rele-
vance.

4.2 Related Literature
The number of scientific articles on forecasting in the energy sector is extremely large.
The majority of articles deals with load forecasting, since price forecasting is a com-
parably new research area. Sections 4.2.1 and 4.2.2 will give a short, clearly not ex-
haustive overview of load forecasting, including a discussion of load forecasting for
low-volume consumption entities (Small Unit Load Forecasting). Section 4.2.3 will
present an according overview of price forecasting. The sections will reflect which fore-
cast methodologies and approaches are available and what level of forecast accuracy
they can achieve. Section 4.2.4 presents a review of existing economic analyses on fore-
cast accuracy impact, Section 4.2.5 discusses the issue of autocorrelation in forecast
errors, and Section 4.2.6 describes how storage models in the literature have integrated
forecast uncertainties into their analyses.

4.2.1 Load Forecasting
Load forecasting and particularly short-term load forecasting have been subject to
research since the 1960s. The reviews in IEEE Committee Report (1980) and Mahmoud
et al. (1981) give an overview of numerous articles on the topic until 1981. Until
that time, the predominantly used approaches were statistical methods that modeled
time series (for a detailed explanation of the most important statistical forecasting
methods see Moghram and Rahman (1989)). Starting in the 1980s until today, various
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models using methods from artificial intelligence (AI) are presented in literature (for a
comparative overview see Metaxiotis (2003)).

AI-based models are not generally superior to statistical models, but they have
shown an ability to better performance in dealing with non-linearity and other difficul-
ties in modeling time series. Statistical models are often unable to adapt to unusual
weather conditions and varied holidays. Among the various models using neural net-
works, it is hard to predict when and under which conditions certain models will deliver
best results. (Metaxiotis, 2003)

In order to give an idea of available forecast methods and their accuracies, Table
4.1 depicts a review of 7 papers using different modeling approaches (not exhaustive).

Table 4.1: Load Forecasting Accuracies
Lead Error Test
Time Error Measure Perioda Method Reference
1 HA 1.4% DMAPE 5×6 ANN Park et al. (1991)
1 HA <1% RSME 1 FL, NN Liu et al. (1996)
1 DA 1.8% MAPE 180 ANN+BP Lee et al. (1992)
1 DA 1-5% DMAPE 1 ST Moghram and Rahman (1989)
1 DA 1.7% DMAPE n/a RBF NN+ANFIS Yun et al. (2008)
1 DA 1.5% DMAPE 1 NN+BP Chang and Yi (1998)
1 DA 1.7% DMAPE 5×6 ANN Park et al. (1991)
1 DA 2.0-2.4 DMAPE 1 WAV, PSO NN Bashir and El-Hawary (2009)
a Period length in days.
NN=Neural Networks, ANN=Artificial NN, FL=Fuzzy Logic, BP=Back Propagation, ST=Statistical Tech-
niques (Multiple Linear Regression, Stochastic Time Series, General Exponential Smoothing, State Space
Method), RBF=Radial Basis Function, ANFIS=Adaptive Neural Fuzzy Inference System, WAV=Wavelets,
PSO=Particle Swarm Optimization.
MAPE=Mean Absolute Percentage Error, DMAPE=daily MAPE, RSME=Root Square Mean Error
HA=hour ahead, DA=day ahead

4.2.2 Small Unit Load Forecasting
All approaches presented in Table 4.1 perform load forecasting on a high aggregation
level, i.e., for large volumes that contain the demand of numerous small units. Fore-
casting load volumes on a less aggregated level, e.g., on a substation level, leads to less
accurate forecasts. It exhibits a weaker statistical pattern due to a lack of averaging
effects and incomplete historical load and weather data (Pahasa and Theera-Umpon,
2008, Sargunaraj and Gupta, 1997, Worawit and Wanchai, 2002). As distributed gen-
eration has made forecasts on the aggregated level more complex (see Chapter 4), this
accounts in particular for the substation level (Konjic et al., 2005). For compensating
this statistical issue, expert systems with human input are sometimes used (Pahasa
and Theera-Umpon, 2008).

To give an overview of the available results of load forecasting techniques for low-
volume consumption units, Table 4.2 depicts a comparative overview of 7 approaches
and their observed accuracies. Table 4.1 and 4.2 shall give an orientation for scenarios
defined in Section 5.4 and the interpretation of results in Section 5.5.

4.2.3 Price Forecasting
In comparison to load forecasting, energy price forecasting is a less researched topic.
Most literature available is dated after the year 2000, when the deregulation of the
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Table 4.2: Small Unit Load Forecasting Accuracies
Lead Error Test
Time Error Measure Perioda Method Reference
1 HA 1.4% MAPE >365 PAR Espinoza et al. (2005)
1 HA 6.6% MAPE 7 KF Sargunaraj and Gupta (1997)
1 DA 5.5-6.7 MAPE 365 ANN+SVM Pahasa and Theera-Umpon (2008)
1 DA 3.0-8.7%b MAPE n/a FR Nazarko and Zalewski (1999)
1 DA 1.7/90% BWE/CI 14 FIS Konjic et al. (2005)
1 DA 7.3% MAPE n/a NN+GA Worawit and Wanchai (2002)
1 DA 6.0% MAPE 365 DWT+SVM Pahasa and Theera-Umpon (2007)
1 DA 4.3% MAPE >365 PAR Espinoza et al. (2005)
1 WA 11.5% MAPE 7 KF Sargunaraj and Gupta (1997)
a Period length in days.
b Peak load forecast
PAR=Periodic Autoregression, KF=Kalman Filtering, NN=Neural Networks, ANN=Artificial NN,
SVM=Support Vector Machine, FR=Fuzzy Regression, FIS=Fuzzy Inference System, GA=Genetic Algo-
rithm, DWT=Discrete Wavelet Transformation.
MAPE=Mean Absolute Percentage Error, BWE/CI=Bandwidth Error at a Confidence Interval
HA=hour ahead, DA=day ahead, WA=week ahead

energy markets in the US, UK, and other European countries started (Bunn, 2000).
Price forecasts are more complex and therefore less accurate than load forecasts, since
price curves are much more volatile than load curves (Benini et al., 2002) and price
volatility usually increases when prices increase. This phenomenon can be particularly
observed for peak prices (Bunn, 2000). Reasons for volatility are the characteristics of
electricity and of electricity markets: limited storability, required demand and supply
balance at any given point in time, short-term inelasticity of the demand, and typically
an oligopoly structure on the supply side (Aggarwal et al., 2009). In addition to the last
aspect, strategic behavior of market participants may impact the prices significantly.
Overall, price forecasting is a less mature research field than load forecasting (Aggarwal
et al., 2009, Benini et al., 2002, Bunn, 2000).

To give an overview of the price forecasting techniques available and their accu-
racies, Table 4.3 presents a selection of the forecasting methods reviewed and com-
pared in Aggarwal et al. (2009). "In conclusion, there is no systematic evidence of
out-performance of one model over the other models on a consistent basis" (Aggarwal
et al., 2009).

4.2.4 Economic Impact of Forecast Errors
An early paper evaluating the effect of load uncertainty on unit commitment risk is
Zhai et al. (1994). The authors use a Gauss-Markov model to evaluate the probability
of having insufficient committed capacity for the compensation of unexpected load vari-
ations, but they do not quantify the effect in economic terms. Ranaweera et al. (1997)
determine the economic impact of load forecast accuracy improvements by simulat-
ing independent, normally distributed forecast errors. Hobbs (1998) and Hobbs et al.
(1999) vary a given relative error vector with a constant scalar to simulate variations of
the forecast accuracy. They additionally rely on real-world examples, which underline
the potentially significant economic impact of load forecast accuracy. A mixed-integer
optimization approach to determine the value of forecasting is presented in Delarue
and Dhaeseleer (2008). They use a constant absolute error term and, in a second
analysis, a linearly growing absolute error term to simulate forecast errors. Teisberg
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Table 4.3: Price Forecasting Accuracies
Lead Error Test
Time Error Measure Perioda Method Reference
1 HA 6.04% DMAPE 30 NN(MLP)+BP Lee et al. (2005)
1 DA 3% WMAE 45 AR,ARMA Cuaresma et al. (2004)
1 DA 2.5-11.11% DMAPE 7 2OWAVT Kim et al. (2002)
1 DA 3-11.11% WMAPE 28 ARMA, ARX Weron and Misiorek (2005)

ARMAX, AR
1 DA 3-5% DMAPE 7-14 DR,TF Nogales et al. (2002)
1 DA 3.5-5.16% DMAPE 7 NN(MLP)+ Li and Wang (2006)

AFSA
1 DA 15.5% WMAPE 7 NN(MLP)+ Hu et al. (2008)

BP
1 DA 7.5% MAPE 7 × 4 NN(MLP)+ Amjady (2006)

seasons GDR
1 WA 7% WMAE 45 AR, ARMA Cuaresma et al. (2004)
a Period length in days.
NN=Neural Networks, MLP=Multilayer Perceptron, BP=Back Propagation, AR=Autoregressive Model,
ARMA=AR Moving Average, 2OWAVT=2nd order polynomial wavelet transformation, ARX=AR with
exogenous variable, DR=Dynamic Regression, TF=Transfer Function, AFSA=Artificial Fish Swarm Al-
gorithm, GDR=Generalized Delta Rule.
MAPE=Mean Absolute Percentage Error, DMAPE=Daily MAPE, WMAPE=Weekly MAPE,
WMAE=Weekly Mean Absolute Error.
HA=hour ahead, DA=day ahead, WA=week ahead.

et al. (2005) analyze the economic impact of load forecasts that have been improved
by weather forecast information on the optimal dispatch of spinning reserves. Their
analysis builds on the model in Hobbs et al. (1999). Ortega-Vazquez and Kirschen
(2006) assess the economic impact of forecast errors measured in terms of costs for
generation interruptions, i.e., generation outages. In their paper, a variable degree of
forecast error autocorrelation is modeled and analyzed, which none of the other papers
before did explicitly. E.g., Hobbs et al. (1999) explicitly used real forecast data with
strongly autocorrelated forecast errors while load forecast errors in Ranaweera et al.
(1997) are completely uncorrelated random numbers.

The aforementioned papers reveal a positive economic value of forecasting accuracy
(between 0.08 and 0.3% of operating costs per 1% point accuracy improvement), but
these results are very hard to compare due to different settings and assumptions.

A fairly simple, but effective approach to simulate imperfect price forecasts is in-
vestigated in Sioshansi et al. (2009). They apply the optimal schedule of the previous
period to the current period. This method achieves 85% of the optimal result. In
Conejo et al. (2005), this approach is described as ’a naïve, but challenging test’ for
more sophisticated forecast methods. Still, this approach does not allow for assessing
the economic impact of stepwise forecast accuracy improvements. Table 4.4 summa-
rizes the approaches and findings of the related articles.

All aforementioned articles perform the economic analysis from the perspective of a
(centralized) large utility company and focus purely on load forecast accuracy (except
for Sioshansi et al. (2009)). In contrast, this research work focuses on a (distributed)
consumer perspective and analyzes the impact of price and load forecast accuracies on
a locally optimized dispatch of storage capacity aiming at arbitrage accommodation.
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The model in this work combines the strengths of the aforementioned articles, i.e., an
adjustable degree of forecast error autocorrelation and an adjustable level of forecast
errors.

As in most literature on forecasting, the measure for the assessment of forecast er-
rors is the Mean Absolute Percentage Error (MAPE). In the context of electricity loads,
data values are typically non-zero and positive. MAPE is therefore a suitable, stan-
dardized and commonly applied measure (see Hyndman and Koehler (2006), Misiorek
et al. (2006) for a more detailed discussion and comparison with other measures).

4.2.5 Autocorrelation of Forecast Errors
Relative forecast errors of load and price forecasts tend to be autocorrelated (Hobbs
et al., 1999). I.e., succeeding timeslots tend to have similar (relative) forecast errors,
which reflects a systematic over- or underestimation within a certain period of time. A
method to determine the degree of autocorrelation of a time series is the Durbin-Watson
Test (DWT) (Durbin and Watson, 1950):

(4.1) DWT =
∑T
t=2 (Xt −Xt−1)2∑T

t=1 (Xt)2

where a DWT value of 0 indicates a perfect positive autocorrelation, 4 indicates a
perfect negative autocorrelation, and 2 indicates no autocorrelation.

Among the referenced papers in Tables 4.1, 4.2, and 4.3, 4 papers presented the
relative error data of their forecasts. The analysis of these papers reveals that the
forecast errors in these papers are autocorrelated for all applied methods, although
there are notable differences depending on the method used, the season, and the time
period analyzed. In average, the DWT autocorrelation value equals 0.69 for load
forecasts and 0.47 for price forecasts. Tables 4.5 and 4.6 summarize the results.

4.2.6 Forecast Uncertainties in Storage Models
Storage optimization models aiming at arbitrage accommodation2 can be distinguished
into four groups with respect to their solution approaches and applied algorithms. The
difference that shall be emphasized in this work is that the first three groups do not
take forecast uncertainties into account when optimizing storage schedules, while the
last group does so.

The first group contains models using a (static) statistical analysis to assess the
economics of DSSs. E.g., Nieuwenhout et al. (2006) analyze two settings for load
shifting at the end consumer level. The second group is models building on (multi-pass)
dynamic programming methods to determine the optimal CDS for the storage system.
Examples are Lee and Chen (1994), Lee and Chen (1995) as well as Maly and Kwan
(1995) that present analyses with a particular focus on the Taiwanese tariff system,
which provides combined incentives for TOU optimization and peak load reduction.
The third group contains papers that present linear optimization models determining
the optimal CDS. E.g., Wu et al. (2002) and Bathurst and Strbac (2003) analyze how
storage systems can foster the integration of renewable (intermittent) sources from
an economic perspective. Exarchakos et al. (2009), Graves et al. (1999), Sioshansi

2This includes storage models that optimize their schedules according to Time-of-use (TOU) tariffs.
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Table 4.5: Autocorrelation of Errors in Load Forecasting
Test Period Autocor-

Reference Length Method relationa Comment
Yun et al. (2008) 48 (1/2 h) RBFNN+ 1.51

HD
48 (1/2 h) RBFNN 1.28

HD+PC
48 (1/2 h) ANFIS 0.71

HD+PC
48 (1/2 h) RFBNN+ 1.51

ANFIS
Moghram and Rahman (1989) 24 (h) MLR 0.85 Summer

24 (h) MLR 1.31 Winter
24 (h) ARIMA 0.61 Summer
24 (h) ARIMA 0.12 Winter
24 (h) TF 1.63 Summer
24 (h) TF 0.12 Winter
24 (h) GES 0.14 Summer
24 (h) GES 0.14 Winter
24 (h) SS 0.34 Summer
24 (h) SS 0.28 Winter
24 (h) KBES 0.24 Summer
24 (h) KBES 0.25 Winter

a Durbin-Watson Test (DWT) value
RBFNN=Radial Basis Function Neural Network, HD=Historic Data, PC=Price Change, ANFIS=Adaptive
Neural Fuzzy Inference System, MLR=Multiple Linear Repression, ARIMA=Autoregressive Integrated Mov-
ing Average, TF=Transfer Function, GES=General Exponential Smoothing, SS=Static Space Approach,
KBES=Knowledge-based Expert System

et al. (2009) analyze arbitrage opportunities on wholesale markets, and Ahlert and van
Dinther (2009b) analyze arbitrage accommodation based on TOU at the end consumer
level.

All of the aforementioned models assess the economics of DSSs on ex-ante given
data and do not incorporate the uncertainty induced through forecast errors. The forth
group builds on simulations that incorporate data streams underlying probabilistic
distributions. Barton and Infield (2004) investigate how time-shifting the supply from
wind farms can be used to maximize revenues. The uncertainty in their model stems
from the distribution of wind speeds, which are an essential input factor for the wind
farm’s electricity production. Walawalkar et al. (2007) analyze the economics of energy
storage systems in New York. They use probabilistic input data streams for revenues
and charging costs in order to analyze the net present value of two defined storage
systems.

In the following, this part of the thesis will present a simulation model that in-
corporates uncertainty through imperfect price and load forecasts into the economic
evaluation of a DSS model.
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Table 4.6: Autocorrelation of Errors in Price Forecasting
Test Period Autocor-

Reference Length Method relationa Comment
Conejo et al. (2005) 3x24 (h) TF 0.64 Spring

3x24 (h) TF 0.62 Summer
3x24 (h) TF 0.54 Fall
3x24 (h) TF 1.20 Winter
3x24 (h) ARIMA 0.25 Spring
3x24 (h) ARIMA 0.20 Summer
3x24 (h) ARIMA 0.18 Fall
3x24 (h) ARIMA 0.54 Winter
3x24 (h) WL 0.42 Spring
3x24 (h) WL 0.19 Summer
3x24 (h) WL 0.44 Fall
3x24 (h) WL 0.60 Winter
3x24 (h) DR 0.67 Spring
3x24 (h) DR 0.63 Summer
3x24 (h) DR 0.60 Fall
3x24 (h) DR 1.13 Winter
3x24 (h) NN 0.25 Spring
3x24 (h) NN 0.19 Summer
3x24 (h) NN 0.14 Fall
3x24 (h) NN 0.58 Winter
3x24 (h) NAIVE 0.36 Spring
3x24 (h) NAIVE 0.26 Summer
3x24 (h) NAIVE 0.20 Fall
3x24 (h) NAIVE 0.25 Winter

Misiorek et al. (2006) 35 (weeks) AR 0.52
35 (weeks) ARX 0.54
35 (weeks) AR-G 0.53
35 (weeks) ARX-G 0.50
35 (weeks) TAR 0.53
35 (weeks) TARX 0.50
35 (weeks) RS 0.51
35 (weeks) NAIVE 0.37

a Durbin-Watson Test (DWT) value
TF=Transfer Function, ARIMA=Autoregressive Integrated Moving Average, WL=Wavelets,
DR=Dynamic Regression, NN=Neural Networks, AR=Autoregression, ARX=AR with ex-
ogenous variable, G=GARCH (Generalized autoregressive conditional heteroscendasticity),
TAR=Threshold + AR, RS=Regime Switching



Chapter 5

Forecast Error Simulation in
Storage Models

In order to study the economic impact of price and load forecast errors on the op-
erations of a DSS, this research work simulates forecast data streams with defined
characteristics and uses them as input data for deriving operation schedules for a DSS.
The results in Section 5.5 reflect the three main simulation settings that have been
analyzed: (i) simulations with load forecast errors, (ii) simulations with price forecast
errors (published in Ahlert and Block (2010)), and (iii) simulations of combined price
and load forecast errors (published in Ahlert (2009a) and Ahlert (2009b)). Addition-
ally, an economic robustness analysis of different scheduling algorithms is performed
for the last setting (published in Ahlert and Dinther (2010)).

The forecast simulation model implements three characteristics of a forecast, namely
the relative forecast errors, the autocorrelation of forecast errors, and the length of the
forecast horizon. The simulation model consists of three main steps for each day of the
simulation period: (1) Generating a forecast, (2) determining an arbitrage-maximizing
CDS, and (3) executing the CDS. Figure 5.1 depicts the overall control flow of the
simulation model.

Step 1 generates a forecast of the hourly load volumes and electricity prices for the
next forecast period. The forecasts are derived from the actual data with a procedure
presented in Section 5.1. This procedure ensures a forecast with predefined charac-
teristics like specific forecast accuracy levels within the forecast period and a specified
degree of autocorrelation of forecast errors.

Step 2 determines an arbitrage-maximizing CDS for the forecast period based on
the forecast generated in Step 1. For most simulation scenarios within this part of the
thesis (except simulations in Sections 5.2.2, 5.5.3), a linear optimization model derives
a ’pseudo optimal’ schedule, i.e., optimal according to the load and price forecasts,
instead of a ’truly’ optimal schedule based on the (ex-ante unknown) actual price and
load data. It calculates the CDS by solving a unit commitment problem for the DSS,
which is conceptually similar to a unit commitment problem for pumped-hydro plants,
but simulated at the end consumer level with a 5-kWh-storage device. The DSS does
not sell electricity back to the wholesale market, but avoids peak prices for the end
consumer. I.e., it performs a TOU optimization with respect to the load (profile) of a
given consumer and the technical constraints of the DSS.

Some scenarios use an alternative scheduling approach that is based on a heuristic
algorithm (Sections 5.2.2, 5.5.3). The scheduling problem is subject to various papers,
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Define system paramters
Define simulation period

start

More days in sim-
ulation period?

Generate Forecast
[for next forecast period]

+

Determine Schedule
[for next forecast period]

Execute Schedule
[for next execution period]

Select next day in simulation 
period

end

-

Optimal charge-dis-
charge-schedule based 
on the forecast data

Execute schedule within 
the technical constraints 
of the storage system 

Forecast next execution 
period (day-ahead) + x 
days forecast horizon

Figure 5.1: Control flow of the simulation model

e.g., Ahlert and van Dinther (2009b), Exarchakos et al. (2009), Sioshansi et al. (2009)
using linear optimization models, or Lee and Chen (1995), Maly and Kwan (1995) using
dynamic programming methods. The aforementioned models assume ex-ante known
load data to determine the optimal CDS. This work relaxes that assumption and uses
artificially generated forecasts instead (Step 1).

In Step 3, the simulation model tries to operate the battery storage within the
execution period based on this schedule whenever technically possible, i.e., the schedule
is kept as long as it does not violate any technical constraints of the given storage
system, e.g., maximum or minimum State of Charge (SOC). The more a forecast
deviates from the actual data, the more often the proposed schedule will violate the
constraints and, thus, has to be adapted to accommodate the real load situation in the
affected timeslots.

The total costs of the simulated period are calculated based on the same model
as in Part I of this thesis, which minimizes the total costs of electricity supply, DSS
installation and operation:

(5.1) min→ Kfixed +
T∑
t=1

Kvariable
t

with Kfixed being a constant representing the capital and maintenance costs as well as
annual depreciations and Kvariable

t being the variable operation costs that result from
the executed CDS (see Section 5.3) including costs for charging and using (depreciating)
the storage device. The simulation model within this part of the research work builds on
the same assumptions, specifications, and input datasets as the basic model.1 Appendix

1The distribution of the electricity prices reflects the price distribution of market prices from
the EEX (2007). The load data distribution corresponds to the VDEW standard household profiles
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B contains a description of all parameters, including their symbols and reference values
(further details on the definition of the cost components in Section 5.2.1).

The forecast generation module (Step 1) within this Monte Carlo simulation involves
random numbers. Thus, the result of a single simulation run is subject to statistical
fluctuations. To obtain a stable simulation result not exceeding a predefined error E,
the method presented in Hahn and Shapiro (1968, p. 245) is used to calculate the
number of required simulation runs n:

(5.2) n =
[
z1−α/2 · σ′

E

]2

where

• E: maximum allowable error for average MAPE deviation

• 1−α: desired probability that true average MAPE deviation does not differ from
the estimated deviation by more than ±E

• σ′: (estimate of the) standard deviation of the average MAPE deviation

• z1−α/2: (1− α/2) · 100 percent point of standard normal distribution

For all simulation results presented in this research work, up to 500 simulation runs
have been performed to ensure a precision of ±E < 1 in a 95% confidence interval
(α = 5%). The following sections describe the detailed computational steps within the
simulation model (Sections 5.1 - 5.3) and the simulation scenarios (Section 5.4).

5.1 Forecast Generation
The forecast generation module derives an artificial forecast Ft (1 ≤ t ≤ T FP ) for a
forecast period of length T FP from the actual data. The artificial forecast Ft deviates
from the given actual data At by a percentage error Xt:

(5.3) Ft = (1 +Xt) · At ∀t

The MAPE x̄t of forecast data points F n
t (forecast value in simulation n) to an actual

data point At is calculated over all simulation runs n (1 ≤ n ≤ N).

(5.4) x̄t = 1
N

N∑
n=1

|F n
t − At|
At

The stochastic process for generating the percentage error Xt is a modified Random
Walk with a normally distributed error variable εi (1 ≤ i ≤ t)

(5.5) Xt = εt + α
t−1∑
i=1

εi with εi ∼ N (0, σi)

where the factor α allows for a variation of the autocorrelation of the error stream. A
value of α = 1 leads to highly autocorrelated relative forecast errors Xt, i.e., a DWT
(VDEW, 2006) and an annual load of 2000 kWh (approximately the consumption of an average
German two-person household). For the technical parameter specification of the lead-acid-based
battery storage system see Section 3.2.



66 Chapter 5. Forecast Error Simulation in Storage Models

value of 0, whereas α = 0 leads to completely uncorrelated forecast errors, i.e., a DWT
value of 2. To match a specified DWT value of a scenario, α is manually adjusted for
each simulation scenario.

The standard deviation σi (derivation of yi in Section 5.1.1) is defined as

(5.6) σi = σ̃ · yi

with

(5.7) σ̃ = a ·
√

2π
2

since a MAPE of normally distributed values is
√

2π·2−1 times smaller than its standard
deviation (see Section 5.1.2).

The MAPE at the first timeslot of a forecast period is specified with a and anal-
ogously ā for the last timeslot, which reflects that forecast errors increase over time.
This work assumes a linear increase of the MAPE x̄t (at timeslot t) during the forecast
period (see Figure 5.2). This simplifying assumption can be relaxed if more accurate
data from empirical observations or simulation models are available.

(5.8) x̄t = σ̃ ·
(

1 + (t− 1) (ā · a−1 − 1)
T FP − 1

)

The defined standard deviation σi ensures that the expected value of Ft deviates
by x̄t for each timeslot t and that it has a specified degree of autocorrelation.

t

MAPE [%]

EPT FPT

a

a

a

a

Execution Period Forecast Horizon

Forecast Period

Figure 5.2: Elements of the forecast period
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5.1.1 Derivation of the Standard Deviation σi

The modified Random Walk process shall meet the MAPE x̄t for each timeslot t (equa-
tion (5.8)). Thus, the process shall have the following property:

(5.9) V ar(Xt) = σ̃2
(

1 + (t− 1)(ā · a−1 − 1)
T FP − 1

)2

V ar(Xt) is continuously growing from V ar(X1) = σ̃2 to V ar(XTFP ) = (ā · a−1)2 · σ̃2.
To achieve the desired characteristics of the process, σ̃ is defined as in equation (5.7)
and yi must be determined. The variance of the modified Random Walk is

(5.10) V ar(Xt) = V ar

(
εt + α

t−1∑
i=1

εi

)

Since all εi (1 ≤ i ≤ t) are independent and normally distributed random variables
and α is a constant factor, one can transform the equation to

(5.11) V ar(Xt) = V ar(εt) + α2
t−1∑
i=1

V ar(εi)

Replacing V ar(εi) (1 ≤ i ≤ t) with σ̃2 · y2
i and factoring out σ̃2 results in

(5.12) V ar(Xt) = σ̃2 · (y2
t + α2

t−1∑
i=1

y2
i )

To determine yi, equations (5.9) and (5.12) are matched

(5.13) σ̃2
(

1 + (t− 1)(ā · a−1 − 1)
T FP − 1

)2

= σ̃2
(
y2
t + α2

t−1∑
i=1

y2
i

)

and solved for yi:

(5.14) yi = T FP + i · ā · a−1 − i− ā · a−1
√

1 + α2 · i− α2 · (T FP − 1)

The combination of equations (5.14) and (5.6) results in the standard equation σi:

(5.15) σi = σ̃ · T
FP + i · ā · a−1 − i− ā · a−1
√

1 + α2i− α2 · (T FP − 1)

5.1.2 Determining the Mean Absolute Percentage Error of
Normally Distributed Variables

A random number generator N with a normal probability distribution produces a
Series of N random variables Xi(1 ≤ i ≤ N) with

(5.16) Xi ∼ N (µ, σ), µ > 0

The MAPE x̄ of ~X (1×N) is defined as

(5.17) x̄ = 1
N
·
N∑
i=1

|Xi − µ|
µ
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The question is how to determine the standard deviation σ in order to match x̄. Since
x̄ is by definition relative to the expected value µ, σ is defined as

(5.18) σ = α · x̄

The probability density function of N is defined as

(5.19) f(x) := 1
σ ·
√

2π
· e−

1
2(x−µσ )2

One now combines g(x) as the relative deviation of a value x from its expected value
µ with its probability:

(5.20) g(x) := x− µ
µ
· f(x)

Since the relative deviation of x is supposed to equal x̄ · µ and the probability density
function f(x) is symmetric, one can define the following equation to calculate α:

(5.21)
∫ ∞
µ

g(x)dx = 1
2 · x̄ · µ

Solving the integral function leads to

(5.22) lim
x→∞

 x̄ · α · e− 1
2(x−µσ )2

− 1
(−1) ·

√
2π

 = x̄ · µ
2

This equation converges against

(5.23) x̄ · α√
2π

= x̄ · µ
2

so that

(5.24) α =
√

2π · µ
2

If µ = 0, equation (5.17) for calculating x̄ is replaced by the Mean Absolute Error
(MAE), which is defined as

(5.25) mae = 1
N

N∑
i=1
|xi|

and g(x) is defined as

(5.26) g(x) := x · f(x)

since x itself is the deviation from the expected volume in this case. The relative
deviation of x is supposed to equal mae:

(5.27)
∫ ∞

0
g(x) dx = 1

2 ·mae

This equation can be analogously solved for α, resulting in

(5.28) α =
√

2π
2
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5.2 Schedule Determination
Determining an arbitrage-maximizing CDS is subject to various papers (see beginning
of Chapter 5). As an alternative to linear optimization algorithms and dynamic pro-
gramming approaches, this work additionally defines and analyzes a heuristic schedul-
ing algorithm. Results from the implementation of the linear optimization model, which
was presented in Part I of this work, and the heuristic algorithm are benchmarked in
Section 5.5.3. The main idea of the heuristic algorithm is to quickly generate a robust
schedule, i.e., being less vulnerable to fluctuations of the forecast accuracy and the
degree of forecast error autocorrelation.

5.2.1 Scheduling Algorithm using Linear Optimization
The schedule for the storage system determines when to charge and discharge the
storage device. Formally, the vector ϕ (1 × T FP ) defines the charge schedule and λ
(1 × T FP ) the discharge schedule (0 ≤ ϕt, λt ≤ 1). For each timeslot of the current
forecast period, the linear optimization model minimizes the variable costs Kvariable

t :

(5.29) Kvariable
t = pt`t − ptqoutt λt + ptq

in
t ϕt +

κ

γ
qoutt λt

where ` is the given demand (load) curve, p the actual price curve, κ · γ−1 the storage
costs per discharge cycle for using (depreciating) the storage system, ϕ and λ the charge
and discharge decision parameters, qoutt the maximal discharge volume in timeslot t

(5.30) qoutt = min

(
`t;min

(
C; P

out

T h

))

and qin the maximal charge volume.

(5.31) qin = C

ηin · ηstore · ν

The constraints of the linear optimization model are

(5.32) 0 ≤ ϕt, λt ≤ 1 ∀t

(5.33) ϕt + λt ≤ 1 ∀t

(5.34) 0 ≤ ξt ≤ C ∀t

with

(5.35) ξt =
t∑

t′=1

C

ν
· ϕt′ −

qoutt′

ηout
· λt′

ϕ and λ are the decision variables of the linear optimization model. Thus, solving
the linear optimization problem reveals the values for ϕ and λ (further details on the
linear optimization model in Section 3.2).

To determine the optimal CDS, the model is fed with the load forecast, the elec-
tricity price forecast, and the technical system specification. If the data for load and
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prices are actual values, i.e., forecasts with no error, a linear optimization algorithm
as presented in Section 3.2 determines the optimal CDS. In case of forecast errors, the
CDS is ’pseudo optimal’ since the applied load and price values deviate from the actual
ones in the next step (schedule execution). The higher the MAPE of a forecast, the
more a CDS deviates from the economically optimal CDS that builds on the actual
data.

The procedure determines the CDS for the entire forecast period, while - in the
next step - the schedule will be applied only to the execution period. Producing CDS
for a forecast period larger than the next execution period avoids myopic schedule
optimizations by anticipating inter-day load shifting, which might be economically
beneficial.

5.2.2 Heuristic Scheduling Algorithm
As the linear optimization model in the previous section, the heuristic algorithm pre-
sented in this section will also determine a CDS. In contrast to the linear optimization
algorithm, the heuristic algorithm will not determine an optimal schedule, but it intents
to derive a more robust schedule against forecast fluctuations. The heuristic algorithm
works in the two phases. The first phase determines the price limits. The second phase
then derives the schedule using these price limits. Both phases are described in detail
in the following paragraphs.

Price Limit Determination

In the first phase, the algorithm determines price limits for charging and discharging.
I.e., the storage system considers charging as soon as the forecast price falls below
the charge limit price, analogously it considers discharging when the forecast price
exceeds the discharge limit price. The parameters used for the price limit determination
function are:

• Lt(price.fo, load.fo): List of Price-Load-Tuples (forecasts) for each timeslot t in
the forecast period 1 ≤ t ≤ T . Accessing the price is defined as Lprice.fot′ (load
analogously).

• ~Lt′(price.fo, load.fo): Sorted list (by ascending forecast prices), i.e., ~Lprice.fot′ ≤
~Lprice.fot′′ ∀ t′ < t′′ (1 ≤ t′, t′′ ≤ T FP ).

• κ: Price per storage capacity unit (EUR/kWh).

• γ: Number of expected nominal (full) charge cycles over the lifetime of the storage
device (#).

• cm : Contribution margin on top of the variable costs of storage usage, cm ≥ 0
(%) enforces higher charge-discharge price spreads in the CDS.

• ∆ = κ · γ−1 · (1 + cm): Required price difference between charge and discharge
timeslots (EUR/kWh).

• pcharge = ~Lprice.foi : Charge price limit (EUR/kWh), i is the charge index for list
~L.
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• pdischarge = ~Lprice.foj : Discharge price limit (EUR/kWh), j is the discharge index
for list ~L.

• bcharge: Buffer on the charge index (#) (bcharge < T ), sets the lower bound for
the charge index i.

• ηout: is the output efficiency of the storage system (%).

Determining the price limits follows two rules:

• Rule 1: The difference between the highest charging price and the lowest dis-
charging price must always be greater or equal than the required price difference
∆. This ensures that each charge-discharge-cycle covers the variable costs of
storage usage, regardless of the order in which the prices occur.

• Rule 2: The expected charge volume and the aggregated volume of the expected
discharge timeslots are always balanced. I.e., the aggregated volume of the ex-
pected discharge timeslots never exceeds the expected charge volume and the
expected charge volume never exceeds the expected discharge volume by more
than the volume of one nominal charge timeslots.

Formally, the price limit determination function is defined as

(5.36) min→ j − i

aiming at a maximization of the economically beneficial charge and discharge volumes.
The constraints are Rule 1 (equation (5.37)) and Rule 2 (equation (5.38)). Equation
5.39 ensures that values of i and j do not cross and remain in valid ranges.

(5.37) ~Lprice.foj − ~Lprice.foi ≥ ∆

(5.38) i · C
v
− 1
ηout

TFP∑
t′=j

~Lload.fot′ <
C

v

(5.39) 1 + bcharge ≤ i ≤ T FP − 1, 2 ≤ j ≤ T FP , i < j

Schedule Derivation

In the second phase, the algorithm determines the CDS. Additionally to the simplest
variant Heuristic 1, variants Heuristic 2, Heuristic 3, and Heuristic 4 base the decision
whether to actually charge or discharge the DSS not only on the previously determined
price limits, but also on the expected alternatives in the succeeding timeslots (based
on the forecast). In both cases, the rationale behind the additional conditions is to
find local minima for charging and discharging in the forecast data (refinement of Rule
1). Appendix C contains the flow chart diagrams of the heuristic algorithm, including
incremental refinements of its variants. Additionally to the parameters defined for the
previous phase, Phase 2 uses the following parameters:

• pfot : Price forecast for timeslot t (EUR/kWh).



72 Chapter 5. Forecast Error Simulation in Storage Models

• `fot : Load forecast for timeslot t (EUR/kWh).

• qout.fot : Maximal discharge volume in timeslot t according to the load forecast
(kWh).

• ξt : State of Charge (SOC), stored electricity in timeslot t (kWh).

• δ̄ : Maximal Depth of Discharge (DOD) (%).

• C : Maximal storage capacity (kWh).

• v : Maximal charging speed, i.e. required timeslots for a nominal charge cycle
(#).

The variant Heuristic 1 marks timeslots for charging as soon as the expected price
falls below the charge price limit (discharging analogously).

(5.40) Condition C1 : pfot ≤ pcharge ∀t

(5.41) Condition C2 : pfot ≥ pdischarge ∀t

The variant Heuristic 2 additionally performs a refinement of the charge condition.
A timeslot is only marked for charging, if the volume that could be charged in later
timeslots with relatively lower prices (until the next discharge cycle) does not exceed
the expected discharge volume of the next discharge cycle.

(5.42) Condition C3 : C

v
· |T ′1| < C − ξt

with
T ′1 =

{
t′|pfot′ < pfot : t′ > t ∧ 6 ∃t′′ ≤ t′ : pfot′′ ≥ pdischarget

}
Heuristic 3 extends Heuristic 2 by an additional discharge condition. A timeslot is

only marked for discharging, if the expected discharge volume of later timeslots with
relatively higher prices does not exceed the available volume in the DSS until the next
charge cycle.

(5.43) Condition C4 : 1
ηout
·
∑

t′∈T ′2
qout.fot′ < ξt − (1− δ̄) · C

with

(5.44) T ′2 =
{
t′|pfot′ > pfot : t′ > t ∧ 6 ∃t′′ ≤ t′ : pfot′′ ≤ pcharget

}
Heuristic 4 extends Heuristic 3 by an additional charge and an additional discharge

condition. These refinements allow the algorithm to assume a temporary charge cycle
within a discharge period (respectively a temporary discharge cycle within a charge
period). Table 5.1 summarizes all variants of the heuristic algorithm and their charge
and discharge conditions.

(5.45) Condition C5 : C

v
· |T ′3| < C − ξt +

1
ηout
·
∑
t′′∈T ′′

`fot′′
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with

(5.46) T ′3 =

t′|pfot′ < pfot : t′ > t ∧ C

v
·
∣∣∣T̃ ′3∣∣∣− ∑

t′′∈T ′′3
qout.fot′′ > (1− ξt) · C


and

(5.47) T̃ ′3 =
{
t̃′|t̃′ > t ∧ t̃′ ≤ t′ ∧ pfo

t̃′
< pfot

}
and

(5.48) T ′′3 =
{
t′′|t′′ < t′ ∧ pfot′′ ≥ pdischarget

}

(5.49) Condition C6 : 1
ηout
·
∑
t′∈T ′4

qout.fot′ < ξt − (1− δ̄) · C + C

v
· |T ′′4|

with

(5.50) T ′4 =
{
t′|pfot′ > pfot : t′ > t ∧ Γ

}
where

(5.51) Γ :=
 1
ηout
·
∑
t̃′∈T̃ ′

qout.fo
t̃′

− C

v
· |T ′′4| < ξt − (1− δ̄) · C


containing

(5.52) T̃ ′ =
{
t̃′|t̃′ ≤ t′ ∧ t̃′ > t ∧ pfo

t̃′
> pfot

}
and

(5.53) T ′′4 =
{
t′′|t′′ > t ∧ t′′ ≤ t′ ∧ pfot′′ ≤ CLP

}

Table 5.1: Variants of the Heuristic Algorithm
Charge condition Discharge condition

Algorithm for timeslot t for timeslot t
Heuristic 1 C1 C2
Heuristic 2 C1 ∧ C3 C2
Heuristic 3 C1 ∧ C3 C2 ∧ C4
Heuristic 4 C1 ∧ C3 ∧ C5 C2 ∧ C4 ∧ C6
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5.3 Schedule Execution
The previous step of the simulation model determined a charge schedule ϕt (1 ≤
t ≤ T FP ) and a discharge schedule λt based on the price and load forecasts. Due
to deviations between the forecast and the actual data, this schedule might violate
the (technical) constraints of the storage device. In particular, the constraints are the
lower and upper bound of the SOC, i.e., the realized DOD and the maximal storage
capacity C. The schedule execution algorithm applies the actual price and load data
pt and `t instead of the forecast data and tries to execute the CDS as complete as
possible within these constraints. If necessary, ϕt′ and λt′ are updated according to the
technical constraints within the execution period 1 ≤ t′ ≤ TEP .

Charging must not exceed the maximal capacity of the storage device. Thus, ϕt′
might have to be less than 1 (partial charging in t′):

(5.54) ϕt′ = min

(
ϕt′ ,

(C − ξt′−1) · v
C

)
∀t′

Discharging must not exceed the available electricity stored, i.e., the difference
between the current SOC ξt (including the charged capacity in t′) and the maximal
DOD (i.e., minimal SOC) allowed:

λt′ = min

(
λt′ , ξt′−1 + ϕt′ ·

C

v
− (1− δ̄) · C · ηout

qoutt′

)
∀t′(5.55)

where qoutt′ is the maximal discharge volume in timeslot t′. Accordingly, the SOCt′ of
the executed timeslot t′ is

(5.56) ξt′ = ξt′−1 + ϕt′ ·
C

v
− λ · q

out
t′

ηout
∀t′

The variable costs Kvariable
t′ of timeslot t′ within equation (5.1) that result from the

updated (executed) CDS equal to

(5.57) Kvariable
t′ = ϕt′ · pt′ · qin + λt′

(
qoutt′

(
κ

γ
− pt′

))
∀t′

5.4 Simulation Scenarios
The scenarios define the reference frame for the simulated price and load forecasts.
Generally, four basic settings are possible (Figure 5.3):

• Simulations with actual data only

• Price Forecast Simulations

• Load Forecast Simulations

• Combined Price and Load Forecast Scenarios

Simulations with actual data only deliver optimal results, if the schedule is deter-
mined with an optimization algorithm. These simulations (respectively analyses) have
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been performed in the first part of this research work and form the benchmark case for
all further simulations in this chapter.

All simulations in the following chapter build on the same data and specifications
of the DSS as the basic model in Section 3.2, as already pointed out at the beginning of
Chapter 5. This accounts for the technical system parameter values, the actual data on
electricity prices and on consumer load profiles. The distribution of the electricity prices
reflects the price distribution of market prices from the EEX (2007). The load data
distribution corresponds to the VDEW standard household profiles (VDEW, 2006) and
an annual load of 2000 kWh. Appendix B contains an overview of these parameters.

For the other cases (load forecast scenarios, price forecast scenarios, combined price
and load forecast scenarios), Sections 5.4.1 - 5.4.3 will describe the simulation scenarios.
Besides the MAPE of a forecast (see Section 5.1) these scenarios also simulate a specific
level of autocorrelation of the forecast errors, which is measured as a DWT value
(Section 4.2.5).

5.4.1 Load Forecast Scenarios
The load forecast scenarios assume load forecasts with specified forecast errors and
given price data. These scenarios reflect situations where an hourly price signal is
ex-ante to the planning period provided to a consumer, e.g., because the hourly price
curve is part of a predefined tariff. Scenario 1 reflects the accuracies that have been
reported in Table 4.2. Scenario 2 and 3 deteriorate the accuracy levels of Scenario 1
by a factor 2 respectively 3. Thus, these scenarios are very conservative. The reference
value of the forecast errors’ autocorrelation is 0.75 (DWT value), which is the average
(rounded) value within the reviewed papers in Section 4.2.5. Table 5.2 summarizes the
load forecast simulation scenarios.

5.4.2 Price Forecast Scenarios
The price forecast scenarios assume price forecasts with specified forecast errors and
given load data. Scenario 4 reflects the accuracies that have been reported in Table 4.3.
Scenario 5 and 6 deteriorate the accuracy levels of Scenario 4 by a factor 2 respectively
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Table 5.2: Load Forecast Simulation Scenarios
MAPE at the MAPE at the Autocor-

beginning of day 1 end of day 7 relation
(%) (%) (DWT)a

Scenario 1 7.5 15 0.75
Scenario 2 15 30 0.75
Scenario 3 22.5 45 0.75
a Durbin-Watson Test (DWT) value

3 (see Table 5.3). Thus, these scenarios are rather conservative. The reference value of
the forecast errors’ autocorrelation is 0.5 (DWT value), which is the average (rounded)
autocorrelation value within the reviewed papers in Section 4.2.5.

Table 5.3: Price Forecast Simulation Scenarios
MAPE at the MAPE at the Autocor-

beginning of day 1 end of day 7 relation
(%) (%) (DWT)a

Scenario 4 5 15 0.5
Scenario 5 10 30 0.5
Scenario 6 15 45 0.5
a Durbin-Watson Test (DWT) value

5.4.3 Combined Price and Load Forecast Scenarios
The set of price and load forecast scenarios combines three basic scenarios of price fore-
cast scenarios (Section 5.4.2) and load forecasts scenarios (Section 5.4.1) to 9 scenarios
in total (Figure 5.4). As the previously defined Scenarios 1 to 6, each scenario has three
parameters: (1) MAPE at the beginning of the first day of the forecast period (lower
accuracy bound), (2) MAPE at the end of the last day of the forecast period (upper
accuracy bound), and (3) a specific degree of autocorrelation of relative forecast errors
(indicated with the DWT value). All of these parameter values are set as defined in
Scenarios 1 to 6, just that each of the Scenarios 7 to 15 contains both a load forecast
setting (Scenarios 1 to 3) and a price forecast setting (Scenarios 4 to 6).
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Scenarios 7, 8, 10, and 11 reflect realistic, but conservative assumptions (compare
Sections 4.2.1 - 4.2.3), whereas Scenarios 9, 12, 13, 14, and 15 reflect very conservative
assumptions with regard to the achievable load and price forecast accuracies.

5.5 Simulation Results
The simulation model calculated the annual savings that a DSS could realize using
price and load forecast data. All results are indicated relative to the optimal result.
The optimal result is determined through a linear optimization algorithm that derives
an optimal CDS from the actual price and load data. Each scenario simulates forecasts
with a specified MAPE of the lower and the upper accuracy bound, as well as a
specified degree of autocorrelation of forecast errors (see Section 5.1). Since the forecast
generation procedure uses random number streams, each Monte Carlo simulation is run
up to 500 times to average out statistical effects (see beginning of Chapter 5).

The following paragraphs present the economic analysis of load forecast scenarios,
price forecast scenarios, and combined load and price forecast scenarios, as defined in
Section 5.4. Results in Sections 5.5.1 and 5.5.2 use a linear optimization algorithm to
determine the CDS. In Section 5.5.3, the linear optimization algorithm and a heuristic
scheduling algorithm are compared.

5.5.1 Load Forecast Scenarios
The following paragraphs present the economic analysis of load forecast impacts on the
annual savings of the DSS. The analyzed forecast characteristics are forecast accuracy,
the degree of autocorrelation in forecast errors, the granularity of forecast data, and
the variation of the forecast horizon length.

Forecast Horizon

Extending the forecast horizon allows for more effective intertemporal optimizations of
the scheduling algorithm. The forecast horizon is defined as that part of the forecast
period, which exceeds the execution period (see Figure 5.2). A short forecast horizon
leads to myopic charge and discharge actions and does not take advantage of the
opportunity to shift portions of load over one or more days. Clearly, a larger forecast
horizon also increases the MAPE at the end of the forecast period. Table 5.4 depicts
the assumed (linear) relation between forecast errors and the length of the forecast
period.

Figure 5.5 shows the economic impact of extending the forecast horizon. While a
myopic schedule that only considers the immediately next execution period, i.e., the
next day in our simulations, shows high deviations of more than 8% from the optimum
for all scenarios, already a forecast horizon of one day leads to much lower deviations.
For a 6 days forecast horizon, one can observe a result of 2.0-7.5% (Scenario 1-3) from
the optimal result. Forecast horizons of 6 to 20 days remain on the approximately
same level for Scenarios 1 and 2; marginal result improvements (about 1% point) can
be observed. Only Scenario 3 with the highest forecast errors shows a more substantial
improvement of 2% points for longer forecast periods than 7 days, although the MAPE
at the end of the forecast period increases significantly. Thus, the results indicate that
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Table 5.4: MAPE at the End of the Forecast Horizon
Forecast
Horizon Scenario 1 Scenario 2 Scenario 3
(days) (%) (%) (%)

0 8.6 17.1 25.7
1 9.6 19.3 28.9
2 10.7 21.4 32.1

6 (ref.) 15.0 30.0 45.0
13 22.5 45.0 67.5
20 30.0 60.0 90.0

the lower accuracy bound at the beginning of the forecast period has a much higher
impact on the overall result than the upper bound at the end.
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 Figure 5.5: Impact of load forecast horizon extensions

In conclusion, the forecast horizon is an important parameter for the model. In our
simulations, load shifts over more than 7 days obviously occurred very rarely so that
the effect of optimizing beyond this horizon economically did not have a substantial
impact. Therefore, all following simulations for Scenarios 1-3 have been performed
with a forecast horizon of 6 days.

Autocorrelation of Forecast Errors

As pointed out by Hobbs et al. (1999), load forecast errors tend to be autocorrelated.
Our analysis of the published forecast data streams in the reviewed papers confirms
this (Section 4.2.5). I.e., succeeding timeslots tend to have similar (relative) forecast
errors, which reflects a systematic over- or underestimation within a certain period of
time. For all simulated scenarios, the standard value for the autocorrelation is 0.75
(DWT value).

The results in Figure 5.6 show that autocorrelated forecast errors negatively impact
the deviation from the optimal result. Forecasts without autocorrelated errors achieve
the best results. While a DWT value of 1-2 leads to a marginal deterioration of the
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Figure 5.6: Impact of autocorrelation of load forecast errors

result (1-5% deviation from the optimum for Secnarios 1-3), DWT values smaller than
1 significantly deteriorate the result. The explanation behind this obeservation is that
highly autocorrelated forecast errors of load forecasts lead to a systematic over- or
underestimation of a period. Thus, the CDS will systematically violate the technical
constraints of the system, which preludes an economically optimal operation. Forecasts
with low autocorrelation of relative errors average out the errors and, thus, do not
systematically operate the storage at its limits.

Thus, the chosen load forecast method within a scheduling algorithm for a DSS
must be tested towards the autocorrelation of its forecast errors. Methods delivering
highly autocorrelated forecast errors might even be inferior to less accurate forecast
techniques with lower error autocorrelation.

Load Forecast Granularity

Especially load forecast for (very) small consumer units, e.g., entities below the sub-
station level, faces significant difficulties to achieve accurate load forecasts. Since sta-
tistical deviations in the load profile are not averaged out as on more aggregated levels
(aggregation of multiple units), aggregating timeslots is a possible alternative for small
units. The reference case are hourly load forecast streams. Instead, the following anal-
ysis simulated load forecasts of blocks of 2-8 hours length. Thus, these blocks are more
aggregated and therefore allow for higher forecast accuracy within these timeblocks.
In a second step, these forecasts are transformed into streams of hourly forecasts by
simply dividing the load forecast into equally large pieces for the hourly data stream.
E.g., if a forecast of a 3-hour-timeslot from 8 am to 11 am indicates a load volume of
750 Watt hours (Wh), it is transformed into 250 Wh load within each hourly timeslots
from 8 am to 11 am. Figure 5.7 shows the results of this analysis.

The results show that aggregating timeslots can even have a positive impact on
the result. The straight lines indicate the results of the scenarios using the (standard)
autocorrelation value of forecast errors of 0.75 (see Table 5.2). The dotted lines refer to
Scenarios 1-3, but without autocorrelation of forecast errors. For all standard scenarios
(straight lines), one can observe that the result slightly improves when extending the
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 Figure 5.7: Impact of load forecast granularity

forecast block size from 1 to 2 hours. For forecast blocks of more than 2 hours the
results deteriorate steadily. In contrast, the scenarios without autocorrelated forecast
errors (dotted lines) show a steady increase in the deviation from the optimal result
for all forecast block size enlargements. Thus, the described approach of first aggre-
gating and then equally dividing timeslots helps to average out the negative effects of
autocorrelation in load forecast errors (see Section 5.5.1) when extending the forecast
block size from 1 to 2 hours.

Increasing the forecast block length from 1 to 8 hours increases the deviation from
the optimal result by 1-3% points (Scenarios 1-3). This result seems to be a very
important lever for small unit load forecasting. Potentially, an aggregation of several
timeslots allows for averaging out forecast errors, while causing only a minor deterio-
ration of the result due to the aggregation. Forecasting methods for small unit load
forecasting will have to investigate what benefits on the accuracy side can be obtained
from forecasting larger timeslots. E.g., if the forecast accuracy can be improved from
15% MAPE to 7.5% MAPE by increasing the forecast block size from 1 to 4 hours, the
deviation from the optimum could be reduced from 3.8% (Scenario 2, 1-hour forecast
blocks) to 2.0% (Scenario 1, 4-hour forecast blocks). In this case, aggregating timeslots
would have an overall positive effect on the result.

Load Forecast Accuracy

The more accurate a load forecast is, the better the (day-ahead) derived CDS realizes its
objective of arbitrage accommodation. I.e., charging the storage system with precisely
the right volume in the cheapest timeslots and discharging the optimal volume in the
most expensive ones.

Figure 5.8 depicts the deviations from the optimal result depending on the upper
accuracy bound at the end of the forecast period (14 days). The lower accuracy bound
is kept constant within each scenario.

One can see that the results of each scenario remain on distinct levels - independent
of the variation of the upper accuracy bound (Scenario 1 at 2%, Scenario 2 at 4%,
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Figure 5.8: Impact of load forecast accuracy on economic result

Scenario 3 at 6%). Hence, the lower accuracy bound determines the overall level of
realizable savings. The upper bound has only a marginal effect. The results in Section
5.5.1 already indicated this observation.

Figure 5.9 shows the cumulative probability of up to 500 simulation runs of Scenar-
ios 1-3. It reveals that each scenario delivers already distinct results. Decreasing the
MAPE at the beginning of the forecast period by 1% point leads to an average reduc-
tion of the deviation from the optimal result of 0.25% points (from 6% for Scenario 3
with 22.5% MAPE to 2% for Scenario 1 with 7.5% MAPE).
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 Figure 5.9: Cumulative probability of deviations from the optimum (load forecast
variations)

Furthermore, these results indicate a high robustness of the mechanism towards
load forecast accuracy deviations. In comparison with the possible forecast accuracies
reported in literature (see Tables 4.1 and 4.2), the required forecast quality is relatively
low. The context of the analysis in this research work reflects forecasting of (very)
small units (end consumer level). Table 4.2 presents upper-case reference points for
substation levels and delivers the values for Scenario 1 (average accuracy in literature)
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in Table 5.2. Since for an end consumer level the volumes are even lower and forecasts
therefore less accurate than on the substation level, the more conservative Scenarios
2 and 3 reflect this deterioration. In conclusion, the required load forecast accuracy
for economically operating a DSS is considerably low and within a feasible scope for
existing forecast methods.

5.5.2 Price Forecast Scenarios
The following paragraphs present the economic analysis of price forecast impacts on the
annual savings of the DSS. The analyzed forecast characteristics are forecast accuracy,
the degree of autocorrelation in forecast errors, and the variation of the forecast horizon
length.

Forecast Horizon

As explained in Section 5.5.1, extending the forecast horizon allows for more effective
intertemporal optimizations of the scheduling algorithm. A short forecast horizon leads
to myopic charge and discharge actions and does not take advantage of the opportunity
to shift portions of load over one or more days. As for load forecasts, a larger forecast
horizon also decreases the achievable price forecast accuracy level at its end. This
work assumes a linear decrease of the achievable price forecast accuracy level from the
beginning to the end of the forecast period (see Table 5.5).

Table 5.5: MAPE at the End of the Forecast Horizon
Forecast
Horizon Scenario 4 Scenario 5 Scenario 6
(days) (%) (%) (%)

0 6.4 12.9 19.3
1 7.9 15.7 23.6
2 9.3 18.6 27.9

6 (ref.) 15.0 30 45
13 25.0 50.0 75.0

Figure 5.10 shows the economic impact of extending the forecast horizon. An
extremely myopic optimization that only optimizes the immediately next execution
period and does not consider any additional forecast horizon results in substantial
deviations from the optimal result: 8.2% for Scenario 4, 12.9% for Scenario 5, and
21.2% for Scenario 6. For all scenarios, a forecast period including one additional day
in its forecast horizon delivers the best results: 1.8% for Scenario 4, 7.2% for Scenario
5, and 16.6% for Scenario 6. For forecast horizons of more than one day, economic
results decrease again. This implies that the benefits from intraday optimizations
beyond a scope of one day undergo the costs of deteriorating forecast accuracies for
such longer forecast horizons. Thus, the analyzed storage application mainly realizes
arbitrage from load shifting between two consecutive days. This is a relevant piece
of information for selecting the right storage technology with regard to self-discharge
rates of different storage technologies. In comparison to the results of the load forecast
horizon analysis, the results of this analysis are much more dependent on the MAPE at
the end of the forecast horizon. A deterioration of this parameter has a much stronger
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Figure 5.10: Impact of price forecast period length

negative impact on the achievable results. All following analyses for Scenarios 4-6 will
be performed with the optimal forecast horizon dimension of one day.

Autocorrelation of Forecast Errors

Empirical examples in Hobbs et al. (1999) indicate that relative forecast errors tend
to be autocorrelated. I.e., succeeding timeslots tend to have similar (relative) forecast
errors, which reflects a systematic over- or underestimation within a certain period
of time. The analysis of the referenced forecast methodologies in Section 4.2.5 also
confirms this observation in scientific literature. The results in Figure 5.11 show that
stronger autocorrelation of price forecast errors leads to better results for the analyzed
storage system.

For devices that derive a schedule for arbitrage accommodation through optimiza-
tion algorithms, this can be explained as follows: A systematic over- or underestimation
of a price within a given period, i.e., strong autocorrelation of relative forecast errors,
fosters the correct selection of the relatively lowest (for charging) and highest prices
(for discharging) respectively. Thus, the CDS gets closer to the truly optimal CDS
with regard to the actual data.2 With or without intending the effect of autocorre-
lated errors, available forecast implementations tend to have this characteristic which
improves the economic result of the analyzed storage system.

Price Forecast Accuracy

The more accurate a price forecast, the better the (day-ahead) derived CDS realizes
its objective of arbitrage accommodation. I.e., charging the system precisely at the
cheapest timeslots respectively discharging it at the most expensive ones.

Figure 5.12 depicts deviations from the optimal result depending on the MAPE at
the end of the forecast period. Thus, this analysis varies the parameter “MAPE at day
the end of day 7” for each scenario, the lower accuracy bound at the beginning of the
forecast period is kept constant.

2The opposite is the case for load forecasts. The more the CDS contains a systematic over- or
underestimation of charge and discharge volumes, the less it matches the truly optimal CDS.
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Figure 5.11: Economic impact due to autocorrelation of price forecast errors 
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 Figure 5.12: Impact of price forecast accuracy bounds

As Figure 5.12 shows, even large deviations of this upper accuracy bound have
comparably limited impact on the economic result: ±0.5% point for Scenario 4 up to
±1.5% points for Scenario 6. Significantly greater importance can be assigend to the
lower accuracy bound (“MAPE at the beginning of day 1”). Regardless of the upper
accuracy bound variations, the result for Scenario 4 to 6 are clearly distinct.3 This
can also be observed from Figure 5.13, which shows the cumulative probability of the
deviations from the optimal result. The higher the price forecast accuracy, the smaller
the variance of the achieved economic result.

Decreasing the MAPE at the beginning of the forecast period by 1% point leads to a
reduction of the deviation from the optimal result of 1.4% points in average (from 19.2%

3The remaining parameters forecast period and autocorrelation of forecast errors are equal for all
scenarios.
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 Figure 5.13: Cumulative probability of deviations from the optimum (price forecast)

for Scenario 3 with 15% MAPE to 4.9% for Scenario 1 with 5% MAPE). Comparing all
scenarios, the deviation from the optimum increases over-proportionally to the increase
of the forecast error (MAPE) at the beginning of the forecast period.

Both analyses (Figure 5.12 and 5.13) reveal that the most important parameter for
choosing a specific forecast method is the method’s MAPE for day-ahead forecasts,
i.e., the daily MAPE (DMAPE). Even if a forecast method deteriorates hugely over
time, e.g., delivering a high weekly MAPE (WMAPE), a low DMAPE is still the key
parameter. Moreover, the available price forecast accuracies (see Table 4.3), which
were used to derive Scenario 4, produce schedules that deviate of no more than 2%
from the optimal result.

5.5.3 Combined Price and Load Forecast Scenarios
Price and load forecast scenarios will be analyzed with respect to the combined influ-
ence of price and load forecast characteristics. Additionally, the impact of different
scheduling algorithms on the overall result will be investigated. The first paragraph of
this section will analyze the impact of the forecast horizon length, the second paragraph
will present an evaluation of different heuristic scheduling algorithms, and the third
paragraph will benchmark the results of the heuristic scheduling algorithm against the
results of the linear optimization scheduling algorithm. The last paragraph will also
include an analysis of the impact of forecast error autocorrelation.

Forecast Horizon

As already discussed in Sections 5.5.1 and 5.5.2, a longer forecast horizon allows for a
more effective intertemporal optimization of the CDS. The results reveal that a short,
myopic forecast period that only takes the immediately next execution period into
account leads to substantially lower savings of the DSS. However, the optimal length
of the forecast horizon differs. A forecast horizon length of one day was the optimal
value for price forecasts, whereas load forecast scenarios continuously improved with
the length of the load forecast horizon, although only marginally beyond a forecast
horizon of more than 6 days.
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Figure 5.14 presents the analysis of a forecast horizon length variation for Scenarios
7-9, i.e., scenarios with low load forecast errors and increasing price forecast errors.
Figure 5.14 shows the same pattern as Figure 5.10. Thus, the decreasing price forecast
accuracy, which is the limiting factor for the optimal price forecast horizon length in
Section 5.5.2, has a greater weight than the increasing savings for longer load forecast
horizons in Section 5.5.1. In other words, the optimal length of the forecast horizon
in the price forecast scenarios determines the optimal length of the forecast horizon in
the combined Scenarios 7-15.
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Figure 5.14: Impact of forecast period length (combined price and load forecasts)

The results for Scenarios 7-9 show that the lowest deviations from the optimal result
are reached for forecast horizons of one day (4-19%). For Scenario 7, longer forecast
horizons marginally increase the deviation. Deviations in Scenario 8 increase by 3%
points for forecast horizons of 13 days length. Scenario 9 shows the most substantial
increase for a forecast horizon length of 13 days with 27% (+8% points).

Comparison of Heuristic Scheduling Algorithms

As explained in Section 5.2.2, Heuristic 1 defines the simplest and most myopic algo-
rithm, whereas Heuristic 2 includes a refinement of the charge condition and Heuristic
3 includes an additional refinement of the discharge condition. Heuristic 4 as the most
complex variant includes another refinement of both the charge and the discharge con-
dition. The question is to what extent these refinements impact the robustness of the
heuristic algorithm towards variations of the forecast accuracy.

The variation of the lower price forecast accuracy bound reveals that variants
Heuristic 1-3 lead to approximately equal deviations from the optimum for a MAPE
above 35%, whereas the results of Heuristic 4 become considerably worse for a MAPE
above 20%. Variants Heuristic 1-3 result in a deviation of more than 60% from the
optimal benchmark value. The results are different for lower price forecast errors.
Schedules determined with Heuristic 1 lead to much higher deviations from the op-
timum (40-60%) than Heuristic 2-4 (15-60%). When comparing the second and the
third variant, there is hardly any difference visible in Figure 5.15 (the numeric results
reveal that Heuristic 3 is marginally superior up to a MAPE of 15%). The numeric
results also show that Heuristic 4 delivers the best results for a MAPE below 15%. I.e.,
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the additional refinements of the charge and discharge algorithm are marginally bene-
ficial in case of low price forecast MAPE, but they lead to a significant deterioration
of results for higher MAPE values, which becomes particularly obvious for Heuristic 4
with its detailed refinement steps.
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Figure 5.15: Impact of price forecast errors on the variants of the heuristic algorithm

The implication of these results is that the refinement of the charge schedule de-
termination leads to a result improvement for forecasts with errors below 40% MAPE,
whereas the refined discharge schedule determination only has a marginal effect for
forecasts with up to 15% MAPE. Hence, determining the charge price limit correctly
is more important than determining the discharge price limit, as already stated in Sec-
tion 3.1 (different analysis approach used). For real-world applications, only Heuristic
2 and Heuristic 3 are relevant variants, since forecasts with a MAPE of more than 40%
lead to unacceptable high deviations from the optimum anyway. Heuristic 4 is actually
not relevant in any setting, since for forecast with very low MAPE other scheduling
algorithms will deliver much better results (Section 5.5.3).

Price Margin Parameter The price margin parameter describes a relative (per-
centage) increment of the required price difference ∆ (Section 5.2.2). I.e., an increase
of the price margin parameter value leads to CDS where the charge and discharge
prices are lower or/and the discharge prices are higher. Table 5.6 shows the results of
price margin variations.

The results show that the price margin parameter is fairly independent from the
overall forecast accuracy level (below ±0.5% for all simulated combinations of scenarios
and algorithms). It shows some dependency on the chosen variant of the heuristic algo-
rithm. The more complex the heuristic variant, i.e., the more its charge and discharge
conditions are refined, the lower the optimal value of the price margin parameter. The
simples variant Heuristic 1, which does not perform any refinements of the charge and
discharge conditions, delivers best results for a price margin value of 0.6-0.7. Heuristic
2 delivers best results at price margins values of 0.3, Heuristic 3 delivers best results
at price margins values of 0.2-0.3, and Heuristic 1 delivers best results at price margins
values of up to 0.1. Overall, the influence of the price margin parameter on the results
is very limited.
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Table 5.6: Impact of the Price Margin Parameter
Algorithm Scenario 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Heuristic 1 Scenario 7 36.0% 35.5% 35.1% 34.8% 34.7%* 34.8%

Scenario 11 39.4% 39.0% 38.8% 38.6%* 38.8% 39.0%
Scenario 15 49.1% 48.8% 48.6% 48.6%* 48.8% 49.2%

Heuristic 2 Scenario 7 15.1% 14.8% 14.7% 14.7%* 14.8% 15.0%
Scenario 11 22.3% 21.9% 21.7% 21.6%* 21.6% 21.9%
Scenario 15 33.0% 32.5% 32.2% 32.1%* 32.1% 32.4%

Heuristic 3 Scenario 7 12.8% 12.6% 12.6%* 12.7% 13.0% 13.4%
Scenario 11 22.0% 21.7% 21.6%* 21.7% 21.8% 22.1%
Scenario 15 33.8% 33.3% 33.1% 33.0%* 33.2% 33.5%

Heuristic 4 Scenario 7 10.8% 10.7%* 10.8% 11.0% 11.3% 11.7%
Scenario 11 20.6%* 20.6% 20.7% 21.0% 21.3% 21.8%
Scenario 15 36.4%* 36.5% 36.7% 37.0% 37.5% 38.0%

Note: Results of simulations for scenarios without price forecast error autocorrelation. The head row of the
table contains the simulated price margin parameter values.

* Best value within a scenario simulation (row).

Charge Buffer Parameter The charge index buffer parameter forces the schedul-
ing algorithm to assume a higher charge price limit pcharge than it would be determined
by matching the charge and discharge volumes. The mechanism is supposed to com-
pensate for forecast inaccuracies. Table 5.7 depicts the results of the analysis using
the scheduling algorithm variant Heuristic 3 (the other variants reveal the same impli-
cations). The results show that the charge index buffer parameter has a clear impact
on the deviation from the optimal result and that it correlates with the lower price
forecast accuracy bound. Scenarios 7, 10, and 13 (MAPE of the price forecast error
7.5%) deliver best results for a charge index buffer value of 3 to 4. Scenarios 8, 11, and
14 require a charge index buffer value of 5 to 6, and Scenarios 9, 12, and 15 perform
best at charge index buffer values of 7 to 8. Thus, there is a clear correlation between
the level of the charge index buffer value and the overall accuracy of the simulated
forecast scenario. This qualitative implication account for all variant of the heuristic
algorithm, but the optimal parameter values for Heuristic 1 are slightly higher.

Table 5.7: Impact of the Charge Index Buffer Parameter
0 1 2 3 4 5 6 7 8 9

Scenario 7 14.6% 13.4% 12.8%* 12.8% 13.2% 14.2% 15.4% 16.9% 18.8% 21.0%
Scenario 10 18.6% 17% 16.0%* 15.7% 15.8% 16.5% 17.6% 19% 20.8% 22.9%
Scenario 13 25.1% 22.9% 21.5% 20.6%* 20.3% 20.5% 21.1% 22.3% 24% 25.9%
Scenario 8 27.6% 24.2% 21.7% 20.2% 19.4% 19.3%* 19.7% 20.7% 22% 23.8%
Scenario 11 32.0% 28.3% 25.6% 23.6% 22.5% 22.0%* 22.2% 23% 24.1% 25.9%
Scenario 14 39% 34.9% 31.8% 29.2% 27.7% 26.8% 26.5%* 26.8% 27.6% 29.2%
Scenario 9 50.1% 43.1% 37.3% 32.7% 29.6% 27.4% 26.2% 25.9%* 26.5% 27.8%
Scenario 12 54.2% 47.7% 41.7% 37% 33.3% 30.8% 29.4% 29.0%* 29.2% 30.3%
Scenario 15 60.4% 54% 48.4% 43.8% 39.8% 36.9% 34.9% 33.9% 33.8%* 34.4%

Note: Results of simulations using the scheduling algorithm variant Heuristic 3 and scenarios without
price forecast error autocorrelation. The head row of the table contains the simulated charge index buffer
parameter values.

* Best value within a scenario simulation (row).

Heuristic vs. Linear Optimization Scheduling Algorithm

To compare the performance of the heuristic and the linear optimization algorithm,
4 simulation setups have been defined and run for each of the 9 scenarios. The first
two simulation setups use the linear optimization algorithm for determining the CDS.
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Setup 3 and 4 use the heuristic algorithm. Moreover, Setup 1 and 3 use price forecasts
with autocorrelated forecast errors, whereas the scheduling algorithms in Setup 2 and
4 operate on forecast without autocorrelated forecast errors. Table 5.8 summarizes the
simulation setups.

Table 5.8: Simulation Setups
Autocorrelation of

Scheduling Algorithm Price Forecast Error
Setup 1 Linear Optimization yesa
Setup 2 Linear Optimization no
Setup 3 Heuristic yesa
Setup 4 Heuristic no
a Durbin-Watson Test (DWT) value 0.5

As already stated in Section 5.5.2, autocorrelation of price forecast errors improves
the results when using a linear optimization algorithm for determining the CDS. If
forecast errors are not autocorrelated, results deteriorate substantially. The results in
Figure 5.16 confirm this observation, when comparing the results of Setup 1 and Setup
2 for each scenario. The reason behind this observation is the systematic over- or
underestimation of prices in consecutive timeslots. The structural condition supports
the linear optimization algorithm, which selects the timeslots with the relatively highest
(lowest) prices for discharging (charging).
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Figure 5.16: Results of scheduling algorithms in combination with forecast error auto-
correlation variations

The aim of the heuristic algorithm is to deliver a robust alternative scheduling pro-
cedure for both setups (3 and 4) and all scenarios. The results in Figure 5.16 reveal
that the algorithm achieves its objective only for Setup 4, but not for Setup 3. In
comparison to the linear optimization algorithm, the heuristic algorithm cannot deal
with autocorrelated forecast errors. A comparison of the results for Setup 3 and 4 re-
veals that the heuristic scheduling algorithm deals much better with uncorrelated than
with autocorrelated price forecast errors in each of the 9 scenarios. When comparing
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the results of Setup 2 and 4 (no autocorrelation of price forecast errors), the heuristic
algorithm clearly delivers better results. For Setups 1 and 3 the contrary is the case.

A key finding of the analysis among the 9 scenarios is that the heuristic algorithm
delivers better, i.e., more robust results than the linear optimization algorithm for
increasing price forecast errors (lower increase of the deviation from the optimum when
increasing the price forecast error and/or the load forecast error - comparison of Setups
1 and 4).

The result overview for all scenarios also reveals that primarily the price forecast
error sets the level for the achievable savings. For all setups, the average results of
Scenarios 7, 10, 13 (price forecast with 5% MAPE, results deviate in a range of 7-18%
from the optimum) are distinct from the average results of Scenarios 8, 11, 14 (10%
MAPE, 15-28% deviation from the optimum) and Scenarios 9, 12, 15 (15% MAPE,
26-42% deviation from the optimum). Extreme load forecast errors have a much lower
impact than price forecast errors.

In conclusion, the choice of the schedule determination algorithm depends on the
available price forecast data. If the price forecast errors are autocorrelated, a linear
optimization algorithm will deliver best results. Otherwise the heuristic algorithm
delivers superior results.

5.6 Summary
This part of the research work analyzed the economic impact of price and load forecast
errors on the optimal operations of a DSS. It presented a method to derive artificial
forecast streams from actual data that systematically simulate forecast data charac-
teristics like accuracy levels, forecast period lengths, autocorrelation of forecast errors,
and forecast granularities. The results are based on Monte Carlo simulations.

In conclusion, the system tolerates significant forecast errors while still operating
close to the economic optimum. Price forecast errors have a stronger negative impact
on the economics of the DSS than load forecast errors. The key parameter of both price
and load forecasts is the day-ahead MAPE of the forecast. This parameter defines the
overall level of achievable savings. Price forecasts with a MAPE of 5% (10%, 15%)
lead to deviations from the optimal result of 1.8% (7.2%, 16.6%). Load forecasts with
a MAPE of 7.5% (15%, 22.5%) lead to deviations of 1.7% (3.8%, 6.3%). Scenarios
combining price and load forecasts deviate much stronger from the optimal results
than the sum of price and load deviations. Still, for (conservative) average scenarios
with 10% MAPE for price forecasts and 15% MAPE for load forecasts, the results
deviate less than 20% from the optimum.

Another important parameter of the forecast data is the autocorrelation of forecast
errors. This parameter has a significant impact on the achievable results. While the
autocorrelation of price forecast errors has a positive influence on the results, the
opposite is the case for load forecast errors. Therefore, observing the autocorrelation
of forecast errors and selecting appropriate forecast methods is an important aspect
for the realization of a DSS, which might even trade-off forecast accuracy to a certain
extent.

Also the analysis of the optimal forecast horizon length reveal opposed results for
price and load forecasts. Longer forecast horizons allow for more effective intertemporal
optimizations of the scheduling algorithm, but they also decrease the achievable forecast
accuracy level at the end of the forecast horizon. The optimal forecast horizon length
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for price forecasts is one additional day to the next execution period, whereas load
forecast scenarios continuously improved their results for longer forecast horizons -
although marginally. For scenarios that simulate both price and load forecasts, the
optimal forecast horizon length of price forecasts is decisive. The benefits from longer
forecast horizons in load forecast scenarios cannot offset the deterioration of results in
case of longer price forecast horizons.

The optimal scheduling algorithm depends on the autocorrelation of price forecast
errors. In case of a strong autocorrelation, optimization algorithms deliver the best
operation schedules for the DSS. In case of uncorrelated price forecast errors, the
presented heuristic algorithm delivers the best schedules. The best case results of both
algorithms are very similar. The linear optimization algorithm shows slightly better
performance for forecasts with low MAPE, whereas the heuristic algorithms show a
higher robustness in case of increasing forecast errors.

In conclusion, price and load forecast accuracies of available forecast methods are
sufficient to ensure economically beneficial operations of DSSs.

5.6.1 Contribution to Scientific Literature
The presented simulation model defines a DSS aiming at arbitrage accommodation at
the end consumer level. The DSS operations are scheduled based on price and load
forecasts. The forecast generation module allows a detailed specification of the forecast
stream characteristics for the simulation.

The described simulation model contributes three new aspects to scientific literature
in this area: (i) The forecast generation module allows a detailed economic assessment
of the impact of forecast accuracy on the operations of the DSS. Additionally to fore-
cast accuracy, the generation module allows to specify the degree of autocorrelation of
forecast error, which has a significant influence on the economics of the DSS. In com-
parison with all other papers analyzing the economic impact of forecast errors (Section
4.2.4), the presented methodology provides a more generic and extensive functionality.
(ii) Additionally, few of the existing storage models in literature considered forecast
uncertainties into their analyses, and actually none of them considered load and price
forecast uncertainties (Section 4.2.6). This work provides a comprehensive analysis on
how forecasts impact the economics of DSS, depending on, e.g., forecast accuracies
and forecast error autocorrelations. (iii) The third major contribution to literature
on storage models is the benchmark of different scheduling algorithm classes. Most
papers on storage models use optimization algorithms to determine the optimal sched-
ules for charging and discharging the storage system. The algorithms typically base on
either linear optimization models or dynamic programming. Additionally to the class
of optimization algorithms, this work presents differently complex variants of a heuris-
tic scheduling algorithm and benchmarks their results against a linear optimization
algorithm. The results show that these algorithms are complementary to each other:
Optimization algorithms perform best in combination with highly autocorrelated price
forecast errors, whereas their results dramatically deteriorate for uncorrelated price
forecast errors. The heuristic scheduling algorithms show exactly the opposite charac-
teristic.
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5.6.2 Practical Relevance of the Findings
Available forecast methods deliver sufficiently accurate forecasts to economically oper-
ate DSS, most likely even for small unit load forecasting. Even conservative scenarios,
i.e., 2-3 times higher forecast errors (MAPE) than reported in literature, lead to less
than 20% deviation from the theoretical optimum. The results of this research work
deliver a quantitative basis for assessing the economic benefits that can be achieved by
further forecast enhancements.

Especially in the context of end consumer environments, ensuring high levels of
forecast accuracy is difficult due to small volumes and a lack of averaging effects. The
analyses within this work revealed that decreasing the load forecast granularity, i.e.,
forecasting the load for blocks of several hours instead of hourly blocks, hardly dete-
riorates the economic result, although it potentially increases the achievable forecast
accuracy significantly.

The results of this research work are applicable to all kind of DSM programs and
appliances that perform load shifting in order to benefit from TOU or flexible tar-
iffs respectively. Upcoming technologies like Smart Metering that enable concepts of
Smart Homes will increasingly use such decentrally coordinated DSM programs. The
simulation results along the characteristics of forecast data streams will therefore be
valuable to future DSM programs.

Smart Metering and further information and communication technology integration
in the electricity grid fuel a number of recent research initiative that investigate how
to make the grid smarter. Clearly, Smart Meters with a bidirectional communication
interface will provide a data set on the low-voltage level of the grid that has not
been available so far. Therefore, research projects investigate how to decentrally use
this information for DSM programs, e.g., aiming at controlled load shifting. Load
forecasting on the end consumer level plays an important role for local (decentral)
decisions in this context. The results of this part of the work give a first impression on
the required accuracy of load forecasts on the end consumer level.
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Chapter 6

Demand Responsiveness on
Electricity Markets

In many countries, the structure and the organization of the electricity markets has
changed substantially over the last decades. The major trends were a move from mo-
nopolistic or oligopolistic, regulated markets to deregulated markets with increasing
competition. Generally, this involved restructuring the sector by unbundling vertically
integrated utilities and reducing their horizontal concentration. The aim of vertical un-
bundling is to separate potentially competitive generation and supply from the natural
monopoly activities of transmission and distribution networks. The aim of horizontal
separation is to create enough effective competition in generation and retailing where
economies of scale favor competition. (Jamasb and Pollitt, 2005, Joskow, 2000)

The regulated objective of the erstwhile vertically integrated utilities was to max-
imize social welfare with distributional equity, i.e., meeting the load at all time. The
prevailing paradigm of the market was to guarantee stable, secure, and reliable mar-
ket operations by investing into generating capacity. Consequently, generating units
that were to cover peak load had very low load factors. The costs for installing and
maintaining this system were charged to the consumer. The deregulation of electricity
markets aimed at increasing competition and fostering profit-maximizing strategies.
Thus, utilities had to decrease the number of generating units with extremely low
load factors. I.e., the pursued paradigm is maximizing social welfare with efficiency
(description of the paradigm shift in Ng’uni and Tuan (2006)).

As a consequence, ensuring the reliability and the stability of the grid is not the
task of generating companies, but it is the task of the deregulated market itself. The
market’s incentives for generators to provide additional capacity when required are
high prices. The particular problem of electricity markets arose from its low level of
demand elasticity. "This is due not only to the peculiar characteristics of [electricity],
such as non-storability, lack of good substitutes and the relatively small portions of the
typical customers’ budget but also to the relation between wholesale and retail electricity
markets" (Bompard et al., 2007). Deregulated markets typically offer no opportunity
and no incentive to the majority of consumers to actively participate in the market,
which leads to a mostly unresponsive demand, although consumers would certainly not
be completely unresponsive (Faruqui and George, 2002, Ilic et al., 2002, Spees and Lave,
2008). Assuming an inelastic demand is a serious weakness of deregulated electricity
markets, which led to severe systemic issues (extreme peak prices) in several electricity
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markets, e.g., in California (Borenstein, 2002). Even if suppliers do not conspire, they
can raise market prices in such situations (Spees and Lave, 2008).

Regulators have taken several measures to cope with this problem, e.g., by fostering
bilateral contracts between suppliers and large consumers, setting price caps, and forc-
ing divestiture in cases of extremely large market shares. All of these measures address
the supply side and ignore the potential of a price-responsive demand side. (Bompard
et al., 2007)

As this work will present in further detail in Section 6.2, many research projects have
shown that a more responsive demand can mitigate the effect of extreme price peaks
effectively. Most of the related work on Demand Response (DR) programs has its focus
on avoiding load peaks and the thereof resulting price peaks. Thus, literature on DR
programs describes a shift from the classical philosophy where supply follows demand
to a new philosophy where efficient market systems minimize demand fluctuations to
avoid load and price peaks (Albadi and El Saadany, 2007).

When relating a load- and price-responsive demand side to the effective integration
of Renewable Energy Sources (RES), avoiding load peaks is not the right objective any-
more. It will rather become important to coordinate availability of demand resources
(Spees and Lave, 2008), i.e., a demand shift towards time periods where supply from
intermittent resources like wind and Photovoltaic (PV) is available. Only if demand
profiles better match supply profiles from RES, excessive fossil-based control capacity
with low load factors can be decommissioned. This would have a positive impact on
both electricity prices and environmental pollution.

Due to the uncertainty of production forecasts and the irregular pattern of the pro-
duction profiles of intermittent energy resources, the required demand-side flexibility
to match demand and supply profiles is high. Most likely, these flexibility requirements
would exceed the demand elasticity of private households and commercial and indus-
trial consumers, if assuming price levels in the same order of magnitude as today (more
on the issue of determining the price elasticity of the demand side in Section 6.2.3).
I.e., achieving the required demand flexibility through behavioral changes seems unre-
alistic. Spees and Lave (2007a) suggest that end consumers could purchase electricity
on an hourly basis by using automated devices. The installation of automated demand-
side control equipment could achieve a significantly higher and more reliable degree of
demand elasticity, as experiments with bi-directional communication control devices
have proven (Braithwait, 2000). Certainly, the disadvantage of automated devices is
the required investment into additional components on the consumer side.

The typical devices at the end consumer level that are considered for a fully or semi-
automated, price-responsive load control are air condition units, thermostats, fridges,
freezers, washing machines, and tumble dryers. These devices can provide automated
or semi-automated load shifting potential, if equipped with additional control com-
ponents. Nevertheless, it is also obvious that all of these devices have operational
constraints that significantly limit the flexibility and the reliable availability of the
potential load shifting volume1. Distributed Storage Systems (DSSs) at the end con-
sumer level would not have such constraints. In contrast, storage systems decouple the

1Examples of such constraints are the presence of humans, temperature and other weather condi-
tions, limitations in rental contracts or insurance contracts that do not allow operations of electrical
devices without supervision, noise disturbance that bother neighbors or children during night hours,
sequential dependencies between different devices (washing machine and tumble dryer), and, of course,
people’s habits.
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actual load profile of a consumer from the load profile visible towards the grid, without
requiring the actual load profile to change. The extent of the system’s load shifting po-
tential depends on its economic parameters and technical constraints, such as storage
capacity, power converter capacity, and efficiency degrees. I.e., within their technical
and economic constraints, DSSs can provide reliably available demand flexibility, given
an economic incentive to shift load.

6.1 Objective and Structure of Part III
This part of the thesis will analyze the saving potential and the volume of an optimal
load shifting schedule. All analyzes are calculated on historic data of the German
electricity market from 2007 (see Section 7.1). The analyses consider the market price
as an endogenous, load-dependent variable. I.e., incremental load shifts from peak to
off-peak periods decrease the load volume and the market price in the peak period,
whereas they increase them in the off-peak period. Hence, it is modeled that the
Charge-Discharge-Schedule (CDS) of multiple DSS mutually influence their economics,
even in case of optimal coordination. The overall amount of electricity consumed is
not changed (excluding the losses of storage units due to imperfect efficiency degrees,
which increase the overall load volume). I.e., there are no pure load reductions, but
only load shifts.

The first research question investigates the general potential of an optimally re-
sponsive demand side in case of hourly flexible electricity tariffs. In a second step, this
potential is analyzed given the constraints and costs of DSSs. I.e., the second step
addressed the question what saving potential could be realized through DSSs. The ob-
jective of the third research question and the final analyses is to determine the optimal
and the maximal amount of storage capacity that can be economically operated in the
market in dependency on the storage prices, the given load curve, and the determined
price functions. If the optimal amount of storage capacity is installed, savings through
load shifting can reach a theoretical maximum in case of optimal coordination and
average electricity prices are reduced. If the maximal amount of storage capacity is
installed, total savings are marginally positive.

Section 6.2 will give an overview of related work. Section 7.1 explains the basic
variables of the analyses and their interrelations. In Section 7.2, an estimation model
determining the economic potential of perfect load shifting in the German electricity
market is presented. Section 7.3 describes the detailed analysis model and the according
algorithmic solution to it and Section 7.4 presents the results of the analyses. Section
7.5 gives a summary of the key findings and discusses their practical and academic
relevance.

6.2 Related Literature
The following sections will give an overview of related academic literature on the impact
and effect of Demand Response programs (Sections 6.2.2 and 6.2.3) and on the market
price impact of integrating RES (Section 6.2.4). Beforehand, Section 6.2.1 defines some
elementary terms in this domain.
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6.2.1 Definition of Elementary Terms
The most general term that describes the active efforts of utilities to influence the
level or timing of customers’ usage patterns is Demand-Side Management (DSM). It
can either refer to programs that promote energy efficiency2, i.e., a reduction of the
total demand volume, or to programs that promote specific load-shape objectives, like
peak load reductions, load shifting, or off-peak building (Eto, 1996). The focus of
the following sections is on those programs that aim at shaping the demand profile
to achieve more efficient market outcomes. These programs are also called Demand
Response Programs.

Demand Response is achieved through direct or indirect payments designed to in-
duce lower electricity consumption at times of high wholesale market prices or when
system reliability is at risk (USDE, 2006). Generally, three actions can lead to the
intended lower electricity consumption: (i) reducing consumption during critical peak
periods without increasing load in other periods, (ii) shifting parts of the peak de-
mand volume to off-peak periods, and (iii) avoiding system load during peak periods
through on-site generation. These actions are achieved through either price-based pro-
grams or incentive-based programs. Price-based programs build on variable electricity
tariffs that charge higher prices at peak periods. Examples are Time-of-use (TOU)
tariffs, critical peak pricing, extreme day pricing, dynamic pricing, and Real-time
pricing (RTP). Incentive-based programs are either utility-controlled or market-based.
Utility-controlled programs directly control devices on the consumer side that can be
shut down. The consumer is offered lower electricity rates if the utility is allowed to
curtail load. In market-based programs, the consumers either bid on the electricity
market for demand reserves (potential load reduction volumes) or they receive pre-
negotiated payments if they reduce load in critical peak hours. In contrast to the
utility-controlled incentive programs, consumers have the final decision whether or not
to actually curtail load in critical peak periods. (Albadi and El Saadany, 2007, USDE,
2006)

All DR programs base on the change of the consumers’ demand profile. The effec-
tiveness of a program is measured with the price elasticity of the consumers’ demand.
The price elasticity indicates to what extent a change in the electricity price leads
to a change in the demand volume. "It is a unit-less coefficient, obtained by divid-
ing the percentage change in quantity demanded by the percentage change in price"
(Faruqui and George, 2002). In Kirschen et al. (2000), price elasticity is decomposed
into self-elasticity (or own-price elasticity) and cross-price elasticity. A related concept
to cross-price elasticity is the elasticity of substitution (Faruqui and George, 2002). In
the case of electricity, own-price elasticity measures the percentage demand variation
divided by the percentage price variation within the same time interval. Cross-price
elasticity measures the effect of price variations in a certain time period on demand
variations in another time period. Elasticity of substitution describes the ratio of the
percentage change in the ratio of the demand between two period (e.g., peak and off-
peak period) to the percentage change in the corresponding price ratio (Braithwait,
2000, Faruqui and George, 2002). Each type of elasticity effects a variation of the
demand for electricity depending on its price. High prices will reduce the demand and,

2Programs providing information to raise the consumers’ general awareness of energy consumption,
distributing technical information for improvements in energy usage, granting subsidies or loans for the
installation of energy-efficient technologies, and incentives for performance contracting (Eto, 1996).
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thus, reduce load peak, whereas low prices can increase the demand, as Figure 6.1
illustrates.
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Figure 6.1: Effect of price elasticity of the demand side (illustrative)

6.2.2 Reviews of Demand Response Programs
There is a number of reports (e.g., USDE (2006), FERC (2006)) and reviews that give
an overview of existing DR programs and their performance, especially for the North
American market (e.g., Faruqui and George (2002), Spees and Lave (2007a)). A further
review by Ng’uni and Tuan (2006) also includes DR programs from Sweden and Finland
in their review. They point out that DR programs must be designed specifically to the
consumers’ perceptions, which may differ significantly between markets. Heffner (2002)
analyzes 45 studies on DR and concludes that utility-controlled programs (contingency
programs) show better performance than market-based programs with respect to the
demand actually curtailed when needed in critical peak hours. Hence, programs with
automated control actually curtail or shift a larger share of the potentially available
volume than price-based programs.

The paper of Hwang (2001) reports on the successful implementation of an inter-
ruptible load program in Taiwan. The core of the program are radio-controlled air
condition appliances that can be switched off in a coordinated manner in critical peak
hours. The program effectively reduces critical peak loads while maintaining a high
level of comfort on the consumer side. King and Chatterjee (2003) reviewed numer-
ous studies on end consumer responsiveness. They summarize that the effectiveness of
DR programs, i.e., the price elasticity of the demand side, hugely depends on different
factors. These hardly quantifiable factors are for example the availability of large elec-
trical appliances in a household, the income of the household, the weather, the time
of the day, and the geographical area. Patrick and Wolak (2001) report similar results
for industrial and commercial consumers in England and Wales. Price elasticity varies
substantially across industries and for different times of the day. Spees and Lave (2008)
conclude that consumer responsiveness is not known with confidence. Additional fac-
tors that affect elasticity values besides the aforementioned ones are the unavailability
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of substitutes for electricity and the dependence on the timing perspective3. Table
6.1 presents an overview of selected studies on DR programs and their measured price
elasticity of the demand side.

6.2.3 Economic Impact of Flexible Pricing and Price Elastic-
ity

Borenstein (2005) investigates the long-run efficiency of RTP and states that the mag-
nitude of efficiency gains from RTP is likely to be significant, even if demand shows
very little elasticity. If all consumers are on RTP rates and own-price elasticity equals
-0.5, consumers could save up to 12% on their annual bills. If the own-price elasticity
value is reduced to -0.1, the annual savings are reduced to 5.9%. Borenstein (2005)
also compares RTP tariffs with TOU tariffs. He concludes that TOU tariffs are a poor
substitute for RTP, since such tariffs only capture about 20% of the possible welfare
effects. The results in Spees and Lave (2008) are lower, but overall comparable. Their
simulations on Pennsylvania, New Jersey, Maryland (PJM) market data reveal that
elasticity values of -0.1 result in 0.7% consumer surplus in case of TOU rates and 3.2%
in case of RTP. I.e., the ratio of the resulting savings between the TOU and the RTP
scenario is also around 20% (as in Borenstein (2005)), but the absolute consumer sur-
plus is only about 50% of the previously described results. The main reason for the
difference is that Spees and Lave model a rather short-run scenario, whereas Borenstein
models a long-run scenario.

Holland and Mansur (2006) present quite different findings when analyzing the
short-run effects of RTP. They only report up to 2.5% welfare increase in case of RTP.
According to their analyses, flat electricity tariffs that are adjusted on a monthly basis
would have many of the same effects as RTP adoption. They argue that such monthly
rates capture more of the deadweight loss than TOU tariffs, without requiring new
metering equipment. Therefore, such rates shall be favored in short-run scenarios.
Faruqui and George (2002) conclude this point differently. According to them, TOU
tariffs are certainly a first necessary step to go in the right direction. Still, TOU
rates do not recognize the inherent uncertainty in supply costs, since these tariffs are
designed to reflect prices under expected long-term conditions. Thus, TOU rates do
not allow for mitigating the price risk on the consumer side of the meter, as real-time
or dynamic pricing would do.

But mitigating this risk is most likely beneficial for consumers. Different market
models analyze the effect of a more elastic demand side and conclude that even small
elasticity degrees (-0.15 or greater) increase the market efficiency significantly. E.g.,
Bompard et al. (2007) show the increasing value of elasticity in case of decreasing levels
of market competition. Wang et al. (2003) model a market including demand-side bid-
ding for load and load reserves. Their market reveals a positive effect on the consumers’
surplus and limits the market power of producers. Similarly, Strbac et al. (1996) model
a competitive electricity market incorporating demand-side bidding. They also report
on the positive effects of even limited demand-side elasticity, since small production
cost reductions (due to peak load reductions) may lead to significant benefit redistri-
butions between producers and consumers due to large differences between marginal

3Long-run vs. short-run elasticity. In short-run scenarios, consumers have few options to change
their load profiles. In long-run scenarios, consumers have more possibilities to react and to adapt,
e.g., through technological and contractual changes.
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prices (large savings for consumers) and marginal benefits from load reductions (small
profit loss for the producer since the most expensive generation units typically run on
small margins). Equally, Spees and Lave (2008) assert that producers will not see large
reductions in profits.

From the consumers’ perspective, hourly flexible tariffs will actually not lead to
higher costs, since consumers already pay the weighted average of all high- and low-
price hours. In any case, each degree of increase in responsiveness will reduce the
electricity bill and even lower the costs of unresponsive consumers due to generally
decreasing peak prices (Spees and Lave, 2007a).

Sioshansi and Short (2009) evaluate the impact of RTP on the usage of wind gen-
eration, which is a similar thought as pursued in the work at hand. They simulate
how much additional supply from wind generation can be integrated (increase of wind
power usage) depending on the degree of demand-side elasticity. Their simulation data
are historical system, market, and wind availability data from 2005 in the Electricity
Reliability Council of Texas (ERCOT). They show that RTP can increase the usage of
potential wind generation up to 7%. Nevertheless, due to the fairly low wind genera-
tion share of 10% in the analyzed region, it remains unclear how RTP in combination
with average elasticity values of -0.1 would integrate larger shares of wind power sup-
ply. Examples from Spain and Denmark have shown that integration of wind energy
becomes critical, as soon as its share exceeds 30% of the market share. If for example
wind power supply peaks during the night, providing a reliably available load shifting
potential could be a task of automated load control agents and storage systems, as
discussed in this research work.

6.2.4 Effects of Increasing Shares of Renewable Energy Sources
On the positive side, the key characteristic of RES like wind or PV generation units
are a reduction of the emissions from energy production. On the negative side, their
characteristics are non-dispatchability and variable and uncertain real-time availability
of the resources.4 The negative aspects are the most severe impediments to a large-scale
implementation of such RES into the power grid, since additional reserve capacity might
be required and supply might be curtailed to ensure the grid’s reliability. (Sioshansi
and Short, 2009)

Klobasa and Ragwitz (2006) quote an additional need for ancillary service capac-
ity of 10-20% of the additionally installed renewable generation capacities. Neubarth
et al. (2006) state that for the volume of 26.9 TWh from wind power plants about
17 TWh balancing capacity were required.5 The issue of integrating RES grows dis-
proportionally strong with increasing their shares of capacity installed (Sioshansi and
Short, 2009). In order to reliably integrate RES into the grid, the only alternative to
supply curtailments and additional reserve capacity is to achieve a more responsive
demand that follows the fluctuating supply patterns of RES.

Achieving the required flexibility on the demand side is not only ecologically de-
sirable, but also economically beneficial. A number of studies have calculated the

4Although the cited references in this section mostly refer to energy from wind power plants,
the following analysis within literature can also apply to PV generation units, if their operational
costs further decrease. Those units have the same characteristics like wind units with respect to the
performed analyses: very low marginal costs and a stochastic, hard to predict supply pattern.

5September 1, 2004 to August 31, 2005 on the German market
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merit-order effect of power supply from RES on the spot market price, which describes
a price decrease on the spot market in case of an increasing offer from RES due to
their low marginal costs. "The price in the wholesale electricity market is the result
of the intersection of the electricity demand curve and the supply curve" (Sáenz de
Miera et al., 2008). The supply unit with the highest marginal costs that still has to
be selected to satisfy demand sets the wholesale price. An increase of RES with very
low marginal costs like for wind and PV would consequently reduce the price of the
most expensive supply unit selected, i.e., reduce the market price. Graphically, the
increase of the supply from RES shifts the supply curve to the right and leads to a
lower intersection point of the demand and the supply curve (Figure 6.2). A more
detailed description of the effect is given in Sensfuss et al. (2008) and Sáenz de Miera
et al. (2008).
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Figure 6.2: Merit-order effect of increasing supply volumes from RES (illustrative)

The first article (indirectly) describing this effect focused on emission trading schemes
(Jensen and Skytte, 2003). They used an analytical approach and showed that if
marginal costs of RES were lower than those of conventional resources, supply from
RES would reduce the market price. Their original intention was to show that if such
offset occurs, renewable energy resource promotion schemes could be combined with
emission trading schemes to achieve RES deployment, cost-effective emission reduction,
and lower energy prices at the same time.

Neubarth et al. (2006) perform a statistical time series analysis, which reveals that
the power supply from wind power plants has reduced the spot market price on the
European Energy Exchange (EEX) in the period from September 1st, 2004 until August
31st, 2005 by 5% per 1,000 MW of wind power supply (translating into an absolute
price effect of 6.08 EUR/MWh). They show that the effect is robust and statistically
significant. Sensfuss et al. (2008) use a multi-agent simulation model and reveal a
price effect of 2.50 EUR/MWh in 2004, 4.25 EUR/MWh in 2005, and 7.83 EUR/MWh
in 2006 for the German market. They emphasize that the simulation results heavily
depend on the assumptions regarding gas prices, emission certificate prices, and other
fuel prices. Sáenz de Miera et al. (2008) use an empirical analysis of data from the
Spanish market. Their analysis reveals a price effect of 7.08 EUR/MWh in 2005,
4.75 EUR/MWh in 2006, and 12.44 EUR/MWh in 20076. They additionally calculate
the net costs for the end consumer by subtracting the subsidies and supports granted to

6January 1st, 2007 to May 31st, 2007
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RES. For each period (2005-2007), they find net savings for the end consumers. Martin
(2004) presents a thought experiment on how supply from PV units would impact the
regional power market price in New England. An additional volume of 1 GW installed
PV capacity would have reduced market prices in New England by 2-5% in 2002.

Sioshansi and Short (2009) remarks that such merit-order effects increase dispro-
portionally, if the original peak prices were cleared on a previously less competitive
market. The merit-order effect, as presented in the above mentioned analyses, theoret-
ically shifts the surplus from generators to consumers. If the surplus is actually passed
on depends on the competitiveness on the retail market (Sensfuss et al., 2008).

In conclusion, a higher expected supply volume of RES leads to a lower spot market
price. Since RES like PV and wind are intermittent resources, their impact on the
spot market price will automatically cause higher price volatility. Additionally, low
demand elasticity in combination with the integration of RES also leads to higher spot
market volatility. "[...] the more one insists on a particular market quantity in the
face of uncertainty regarding supply and demand, the more variability one will expect
in prices. The expected volatility in prices will be higher the less elastic is supply and
demand." (Chupka, 2003)7. Hence, it is essential to increase demand elasticity in order
to more effectively integrate RES, to efficiently capture the merit-order effect on the
spot market, and to ensure passing on the surplus to the end consumers through more
competitive markets8.

The following chapters will therefore present models that first estimate the value
of optimal demand responsiveness, and then calculate the realizable value when DR is
implemented based on DSS.

7Chupka cites the ’price vs. quantities’ trade-off under uncertainty analyzed by Weitzman (1974)
and Laffont (1977).

8Demand elasticity increases market competition and efficiency, as explained in the previous section
of this chapter.



Chapter 7

Storage Models considering the
Price Impact of Demand Response

One of the most important constraints to the models in Part I and II of this thesis is
the limitation to a price taker model, i.e., a storage model that considers the market
price as an exogenous variable. This chapter will present two models that relax this
assumption and treat the price as an endogenous variable. These models will determine
the optimal and the maximal amount of storage capacity that can be economically
operated within a specified market. To develop a model that determines these values
under consideration of the price impact of demand response through DSSs, a number
of parameters and their interdependencies need to be defined. Section 7.1 will give
an overview of the key parameters to be determined and their relation to each other.
Besides the technology parameters of the storage systems, load and price distribution
functions determine the analysis (see Figure 3.3 in Section 3.2.1). Section 7.2 will
then define a simplified estimation model and Section 7.3 will present a more detailed
market-wide analysis model based on linear programming.

7.1 Basic Analysis Variables
Generally, storage model parameters of the market-wide analysis model are the same as
for the one household analysis model as given in Table 3.4 (Section 3.2.1). Additionally,
the capacity dimensioning model uses the aggregated capacity Ĉ (sum of capacities over
all DSSs in the market). The maximal and the optimal values for the installed capacity
that can be operated economically on the system are indicated with Ĉmax

κ and Ĉopt
κ ,

where κ specifies the level of storage capacity costs per unit (EUR/kWh). Analogously
to the total costs K in the one-household-model and the cost baseline Kbaseline for a
scenario without storage capacity, this model uses K̂ for the aggregated total costs on
the system level and K̂baseline for the total costs baseline on the aggregated level. Table
7.1 contains the additional model parameters on the aggregated level.

The optimal and the maximal amount of storage capacity that can be operated
economically in a given market as well as the total costs are closely linked to the costs
per storage capacity unit κ (EUR/kWh). Figure 7.1 gives a schematic overview of
the interrelations between the costs per storage capacity unit, the amount of storage
capacity installed on the system, and the savings that can be achieved.

Since the costs per storage capacity unit revealed to be the key determining param-
eter of a technology scenario (see Section 3.3), it will also be the key parameter for the



106 Chapter 7. Storage Models considering the Price Impact of Demand Response

Table 7.1: Additional Model Parameters on the Aggregated Level
Parameter Description Symbol Unit
Total costs on the aggregated (market-wide) level K̂ (EUR)
Total costs baseline on the aggregated (system- K̂baseline (EUR)
wide) level (costs without a storage system)
Maximal storage capacity on the aggregated Ĉmax

κ (kWh)
level that can be economically operated
Optimal storage capacity on the aggregated Ĉopt

κ (kWh)
level that leads to maximal savings

κ1
κ2
κ3
κ4

Costs per Storage Capacity Unit (EUR/kWh)
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Figure 7.1: Interrelations of model parameters

storage capacity dimensioning problem. As Figure 7.1 shows in the upper left chart,
one can determine the level of savings in combination with a value Ĉ for the capacity
installed for each storage cost level κx. For each storage cost level, it exists an eco-
nomically maximal and an economically optimal amount of installed storage capacity
Ĉmax
κx respectively Ĉopt

κx .
If the optimal capacity level Ĉopt

κx leads to marginally positive savings, the maximal
capacity level Ĉmax

κx is only marginally greater than the optimal capacity. The curve of
κ3 in Figure 7.1 represents this cost level. All cost levels below κ3 will lead to higher
positive values for the optimal capacity Ĉopt

κx and the maximal capacity Ĉmax
κx . The

optimal capacity Ĉopt
κx is always less than the maximal capacity Ĉmax

κx in these cases.

(7.1) Ĉmax
κ′ > Ĉmax

κ′′ > 0 ∧ Ĉopt
κ′ > Ĉopt

κ′′ > 0 ∀ κ′, κ′′ : 0 < κ′ < κ′′ ≤ κ3
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(7.2) Ĉmax
κ′ > Ĉopt

κ′ > 0 ∀ 0 < κ′ < κ3

Capacity values below the maximal capacity Ĉmax
κx lead to positive savings, if

κx ≥ κ3. Capacity values above the maximal capacity lead to negative savings. Eco-
nomically, the benefits from load shifting exceed the costs for installing and operating
the storage capacity up to a capacity level of Ĉmax.

(7.3) savings
(
Ĉκ′

)
> 0 ∀ Ĉκ′ < Ĉmax

κ′ : κ′ < κ3

(7.4) savings
(
Ĉκ′

)
≤ 0 ∀ Ĉκ′ > Ĉmax

κ′ : κ′ < κ3

If the maximal capacity level Ĉmax
κx equals zero, the optimal capacity level Ĉopt

κx must
also equal zero. In such a case, the costs for using the storage system (variable costs)
exceed the benefits from load shifting. In Figure 7.1, κ4 indicates such a cost level. For
all storage cost levels κx between κ3 and κ4, the values for Ĉmax

κx and Ĉopt
κx equal zero,

as well as for all cost levels above κ4.

(7.5) Ĉmax
κ′ = Ĉopt

κ′ = 0 ∀ κ′ ≥ κ3

The chart in the upper right corner of Figure 7.1 presents the relation between the
costs per storage capacity unit κ and the maximal savings that can be achieved by
installing the optimal amount of storage capacity Ĉopt

κ . This chart can be derived from
the previously discussed chart, as graphically illustrated. The chart in the lower right
corner of Figure 7.1 depicts the optimal and the maximal level of installed storage
capacity in dependency from the level of costs per storage capacity unit. This chart
can be derived from the two previous charts.

7.1.1 Characteristics of the Load Curve
The basic data of the load curve represent the market-wide load in Germany in 2007.
The data were provided by ENTSOE (2007) and have a granularity of one price per
hour, rounded on megawatts. Thus, the load data differ from the load data used in
Section 3.2 for the one-household-model, where a standard household profile was used.

Since the market-wide analysis model in this part of the work intends to determine
the maximal and the optimal storage capacity dimension that can be economically
operated in a market, the market-wide load data fit the analysis better than a scaled
standard household profile. It better matches the price data from the EEX, which is
also a market-wide variable. This is very important for the analysis in the following
chapters, since the model will build on load-variable prices that are derived from historic
spot market prices.

The key characteristic of the load curve is its distribution. The absolute peaks and
the annual load volume itself can be neglected for the interpretation of the results,
since the result figures will be indicated in relative terms to the absolute load volume.
More precisely, they will be indicated as the percentage of the average weekly load
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volume. One of the key result figures is the installed capacity Ĉ (and its derivatives
Ĉmax and Ĉmax), which depends primarily on the distribution of the load curve and
scales with the volume of the load curve. Thus, all results in Section 7.4 can be applied
to any market with the same (or a fairly similar) price and load curve distribution to
the German market in 2007, independently from the absolute market size. Table 7.2
gives the absolute values of the reference load curve that is used in the analysis model.

Table 7.2: Load Curve Characteristics
Characteristic Value
Annual load volume 496,632,963 MWh
Average weekly load volume 9,524,468 MWh
Maximum hourly load (peak) 78,377 MWh
Minimum hourly load 33,651 MWh

When comparing the distribution of the market-wide annual load volume with
the annual load volume of a standard household, the main differences can be seen
in the diurnal load pattern. The average weekday and weekend patterns as well as
the average seasonal patterns differ only marginally. Figure 7.2 graphically illustrates
these differences.
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Figure 7.2: Distribution of the aggregated and the standard household load curve
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7.1.2 Characteristics of the Price Curve
The basic data of the price curve are the same as for the single household analysis model
in Section 3.2, but the market-wide analysis model treats the price as an endogenous
variable. The price is now modeled as a load-variable parameter, i.e., it changes in
timeslot t if the aggregated load changes in this timeslot.

The methodology for modeling an appropriate price function and determining its
parameters builds on the approach presented in Spees and Lave (2007b). The work
at hand uses linear and non-linear regression functions to approximate the observed
prices on the market. The input variable for the price function is the aggregated load.
The load data are sliced in various ways, e.g., by day, by weekend, or by month in order
to determine the most appropriate price functions and parameters. The comparison of
the different variants bases on the goodness of fit (adjusted R2) of the obtained curves.
Table 7.3 presents the results of the regression analyses and gives an overview of the
functions and temporal resolution patterns analyzed. The definitions of the regression
functions are given in Table 7.4.

Table 7.3: Adjusted R2 Results
Temporal Linear Exponential Polynomial Power
Resolution Pattern Function Function Function Function
Year 0.3935 0.4426 0.4381 0.3869
Day of Year 0.7523 0.8048 0.8025 0.7491
Month of Year 0.5864 0.6068 0.6034 0.5822
Week of Year 0.6846 0.7150 0.7091 0.6808
Hour of Day 0.2782 0.3056 0.3053 0.2746
Day of Week 0.3551 0.3948 0.3923 0.3502
Week or Weekend 0.6643 0.6968 0.6945 0.6609

Table 7.4: Definition of Regression Functions
Type Function
Linear function f lin(x) = a0 + a1 · x
Exponential function f exp(x) = a0 + a1 · ea2+a3·x

Polynomial function fpol(x) = a0 + a1 · x+ a2 · x2 + a3 · x3

Power function fpow(x) = a0 + xa1

The regression analysis qualitatively reveals the same results as in Spees and Lave
(2007b), although their analyses delivered overall better fits for the price data. The
best fit for the price function could be achieved by resolving the historic data with the
temporal Day of Year pattern, i.e., determining daily price functions. This accounts
for all regression functions analyzed. Among the regression functions, the exponential
function f exp() delivered the best goodness of fit.

The main reason for the quantitative differences between the results in this work
and the results in Spees and Lave derives from the different data sets used. Spees
and Lave used load and price data from the PJM region, where nearly all electricity is
traded over the day-ahead market price. They used market-wide average PJM market
clearing prices and loads in the day-ahead market and real-time market over 2006
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(Spees and Lave, 2008, p. 6). The basic price data in this work is obtained from the
EEX (2007) and the load data is obtained from the European Network of Transmission
System Operators for Electricity (ENTSOE) for Germany in 2007 (ENTSOE, 2007).
In Germany, the spot market price only applies to 16.5% of the electricity delivered,
since a large share is handled in bilateral contracts outside the market (Sensfuss et al.,
2008). Thus, the market price data do not reflect the current load situation as well as
in the PJM region, but with an adjusted R2 of 0.8 still on a useful level. A similarity
is that both regions have day-ahead markets that determine hourly prices. I.e., the
day-ahead demand-supply-situation and the according commitments shape the daily
market price curves, as the results in Table 7.3 reflect. The analyses clearly reflect the
character of day-ahead markets. Bids and prices for a specified load depend on the
daily situations that differ in availability of generation resources, weather conditions,
or fuel prices (which certainly also have a mid- and long-term effect on the price curve).

As already stated in Spees and Lave (2008), "temporal resolution always improves
the explanatory power of [a] model, but the meaning of this observation is clouded by the
fact that higher temporal resolution models use more complex parameters". Therefore,
they try to limit the number of parameters as much as possible while maintaining a
high level of goodness of fit. I.e., they remove those parameters that have very little
explanatory power. The purpose of the price function derived in the work at hand is
to model the historic price-load-relationship in the German market in 2007 as precise
as possible. It is not intended to identify explaining parameters of historic or future
prices functions. Therefore, the following analyses within this work will build on the
price function f exp() with the best goodness of fit without attempting to further reduce
the number of parameters.

As in Spees and Lave, this work builds the analyses on daily price curves. This
extreme resolution fits best to model the supply-side relationship between price and
load. The opposite extreme of this resolution is a price function that fits the entire
year, which has one among the lowest values of explanatory power in the analysis of
this work and the work of Spees and Lave (see Table 7.3).

Besides the reference price data that correspond to the price distribution at the
EEX in 2007, the analyses in Section 7.4.5 will use modified price data with lower and
higher spreads. I.e., these price data also reflect different volatility levels of the market
price, as Table 7.5 shows. The methodology of deriving the modified price curves is
explained in Section 3.2.4. Applying the regression functions on the modified price
data reveals the same goodness of fit values as on the reference price data (±1%).

Table 7.5: Volatility of Price Curves
Historic Realized

Price Dataa Volatility Volatility
Reduced spread, α = 0.9 0.2018 0.0437
Reduced spread, α = 0.9 0.2346 0.0601
Reference data, α = 1 0.2388 0.0625
Increase spread, α = 1.01 0.2432 0.0651
Increase spread, α = 1.1 0.2995 0.1139
a The value for α refers to equation (3.56) in Section
3.2.4 that defines how the price data were trans-
formed.
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The daily historic volatility HVd is calculated as the daily standard deviation of
(hourly) returns (Brooks, 2008). The overall historic volatility HV is the average of
the daily historic volatilities HVd.

(7.6) HVd = stdh∈d (rh)

(7.7) HV = 1
365 ·

365∑
d=1

HVd

The daily realized volatility RVd is calculated as the average of (hourly) squared
returns. The overall realized volatility RV is the average of the daily realized volatili-
ties.

(7.8) RVd = 1
24 ·

24∑
h=1

r2
h

(7.9) RV = 1
365 ·

365∑
d=1

RVd

As the volatility definitions, also the definition of the return has been taken from
financial literature. The return r is defined as the continuously compounded return
(Campbell et al., 1997), which is the natural logarithm of the quotient of the current
price and the price of the previous period.

(7.10) r = ln

(
pt
pt−1

)
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Figure 7.3: Impact of spread level variations on the price function (illustrative)

As Figure 7.3 shows, variations of the spread level influence the resulting price
function. Higher spreads lead to a steeper price curve, whereas lower spreads flatten
the price curve.
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7.2 Estimation Model
The purpose of the estimation model is to get rough estimates for the results of the
capacity dimensioning problem. In particular, the model will estimate the market-wide
savings potential, the amount of storage capacity required, and the impact of the most
important constraints.

The estimation model will only reflect the basic functioning of storage systems
aiming at arbitrage accommodation. It will not describe detailed technical parameters
of any storage technology. Furthermore, the estimation model uses the simplest price
function available for the purpose of the analysis, which is a single price function for
the entire analysis period. As presented in Table 7.3, such a price function has a much
lower goodness of fit than for example the daily price functions. But for the purpose
of defining a highly transparent, simple, and robust model, a single price function
seems appropriate. The estimation model is less complex and therefore less error-
prone to complex interdependencies of the technical and the economic parameters and
constraints.

7.2.1 Mathematical Formulation
The objective of the estimation model is to minimize the total costs by shifting parts
of the aggregated (market-wide) load volume ˆ̀ from timeslots with peak prices to
timeslots with low prices. The analysis period consists of T timeslots t, t = 1...T .
The aggregated load volume in timeslot t is indicated with ˆ̀

t (kWh), which is always
greater or equal zero. The shifted load in timeslot t is indicated with st (kWh). Its
value can be positive for additional load in timeslot t, negative for a load reduction
in timeslot t, or zero if no load shifting takes place. The total load volume L̂ (kWh)
during the entire analysis period is not altered through load shifting, i.e., the sum of
all load shifted volumes is zero.

(7.11) L̂ =
T∑
t=1

ˆ̀
t =

T∑
t=1

(
ˆ̀
t + st

)

(7.12)
T∑
t=1

st = 0

An important condition is that load shifting must not lead to a negative aggregated
load, i.e., the maximal possible load shift in timeslot t is set by the given aggregated
load volume ˆ̀

t.

(7.13) (−1) · st ≤ ˆ̀
t ∀t

The price pt (EUR/kWh) in timeslot t is defined through a price function f() that
receives the aggregated load as an input parameter. Load shifting alters the price pt:
higher load leads to a price increase and reverse.

(7.14) pt = f
(
ˆ̀
t + st

)
∀t
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The estimation model assumes a single price function f() for the entire analysis
period, i.e., the price function represents the market price for a requested volume of
electricity in any timeslot of the analysis period. The market price in a competitive
market increases monotonically, since cheaper supply (generation units) is allocated
first and more expensive supply is only added, if all cheaper units cannot supply the
requested volume (see also the explanation of the merit-order curve in Section 6.2.4).
The marginal market price sets the uniform market price, i.e., the price of the most
expensive supply unit applies for all selected units in that timeslot.1

The total costs K̂ (EUR) of the analysis period are defined as the sum of total costs
over all timeslots. The total costs of a timeslot are the product of the price and the
actual system load:

(7.15) K̂ =
T∑
t=1

pt ·
(
ˆ̀
t + st

)
=

T∑
t=1

f
(
ˆ̀
t + st

)
·
(
ˆ̀
t + st

)

The baseline of the total costs K̂baseline are the costs for electricity supply without
load shifting:

(7.16) K̂baseline =
T∑
t=1

f
(
ˆ̀
t

)
· ˆ̀t

The objective of the estimation model is to minimize K̂ by deciding on the load
shift volumes st.

(7.17) min→ K̂ =
T∑
t=1

f
(
ˆ̀
t + st

)
·
(
ˆ̀
t + st

)
Since the price function f() increases monotonically, minimizing the value of the

term (ˆ̀t + st) for every timeslot t minimizes the entire equation. Due to the constraint
that the total aggregated load volume L̂ must not be altered, the average load per
timeslot ˜̀avg is the optimal load for each timeslot to minimize the total costs.

(7.18) ˜̀avg = 1
T
· L̂

The average load volume ˜̀avg can be achieved for every timeslot by defining the
load shift volume as the difference of the average load volume per timeslot and the
given load ˆ̀

t:

(7.19) ˜̀avg = ˆ̀
t + st ∀t

(7.20) ⇔ st = ˜̀avg − ˆ̀
t ∀t

1The alternative settlement rule to uniform pricing is pay-as-bid pricing (Shahidehpour et al., 2002,
p. 336). All models and analyses in this work refer to markets applying uniform pricing.
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Since the average load volume ˜̀avg must be positive by definition of L̂ respectively
ˆ̀
t, the non-negativity constraint for the system load (equation (7.13)) is fulfilled:

(7.21) st − ˜̀avg = −ˆ̀
t ∧ ˜̀avg > 0 ∀t

(7.22) ⇒ st ≥ −ˆ̀
t ∀t

Furthermore, the sum of all load shifting volumes st is zero (constraint in equation
(7.12)):

(7.23)
T∑
t=1

st =
T∑
t=1

(
˜̀avg − ˆ̀

t

)
= T · ˜̀avg −

T∑
t=1

ˆ̀
t = 0

Thus, applying the average load ˜̀avg fulfills all constraints of the minimization
problem. By comparing the baseline costs K̂baseline with the achieved total costs K̂ in
a load shifting scenario, the realized savings can be determined. The savings are the
first result.

(7.24) savings =

(
K̂baseline −K

)
K̂baseline

The second result is the load shifting capacity required to realize the load shift
volumes st. The required capacity is the maximum State of Charge (SOC) of a storage
device that performs the load shifts. The SOC St in timeslot t is the cumulative sum
of load shift volumes st until t.

(7.25) St =
t∑

t′=1
st′ ∀t

If any SOC St has a negative value, the storage device would be in a technically
invalid state. Thus, the initially calculated load shift volumes st are not actionable and
therefore have to be modified. Any modification that leads to a technically valid series
of load shift volumes will decrease the savings. The up to now calculated savings result
underestimate the required capacity and overestimate the realizable savings. For the
estimation model, these savings mark the upper bound of the savings potential.

To transform the calculated load shift volumes st into a valid form, the estimation
model defines a simple correction loop that is executed until no SOC value St vio-
lates the non-negativity condition anymore. The corrective step distributes the highest
negative SOC Smint in timeslot tmin equally to all preceding timeslots:

(7.26) st = st −
1

tmin − 1 · S
min
t ∀t < tmin

Clearly, this measure unbalances the load shift volumes and leads to a higher total
aggregated load L̂, which obviously deteriorates the result. In an optimal solution,
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the determination of the charge and discharge volumes considers the minimization
objective and the constraints at the same time. Such a solution will certainly lead to
higher savings that the proposed corrective loop in the estimation model. Therefore,
the savings and the required total costs resulting from the corrected load shift volumes
mark the lower bound of the savings potential. The result of the estimation model
averages the results of the lower and the upper bound at equal weights.

7.2.2 Results and Interpretation
Based on the data of the German market from 2007, the estimation model reveals an
average saving potential of 19.8% at a required storage capacity size of 10.6 GWh. The
results of the lower and the upper result bound are 16.9% and 22.7% savings on the total
costs baseline. The required storage capacity to realize these savings varies between
6.4 GWh and 14.8 GWh (see Table 7.6). The upper result bound does not fulfill the
non-negativity condition for the SOC. I.e., it would overcharge the storage capacity
(trying to discharge more than has been charged before). Consequently, this result
overestimates the saving potential due to partially underestimating the required charge
volumes, which would lead to additional costs. Alternatively, this result overestimates
the savings potential due to partially overestimating the possible discharge volumes,
which leads to savings that can actually not be realized.

Table 7.6: Results of the Estimation Model
Lower Result Upper Result Average

Bound Bound Result
Savings 16.9% 22.7% 19.8%
Required capacity 14.8 GWh 6.4 GWh 10.6 GWh

The lower result bound does fulfill the non-negativity condition for the SOC. Due
to additional charge volumes (in comparison with the previous case), a storage device
would always be sufficiently charged. The additional charge volumes disregard any
economic constraints or justifications. They are equally distributed to timeslots at the
beginning of the analysis period, i.e., they do not consider low or high charging prices.
Furthermore, the estimation model does not economically compare the alternatives of
not discharging (reducing the discharge volumes) instead of increasing the charge vol-
umes (as applied). Thus, the lower result bound underestimates the potential savings
and overestimates the required storage capacity. Figure 7.4 depicts the results of a
sample week graphically. Both resulting load curves (before and after the corrective
loop) flatten the aggregated load curve. Due to the additional charge volumes, the
corrected load shift volumes lead to an overall higher load at the beginning of the
period.

The results were obtained by applying the ENTSOE (2007) load data as described
in Section 7.1.1 as well as the price function f exp() at the temporal resolution level of
one function for the entire analysis period (one function per year). The price function
fits the real prices on average fairly precise despite its lower goodness of fit value. The
total costs baseline based on the static price curve varies from the total costs baseline
based on the functional price curve by 0.04%. I.e., deviations in the functional price
curve from the given price curve average out over the analysis period. The estimation
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Figure 7.4: Resulting aggregated load after load shifting between January 8 and Jan-
uary 14, 2007

model disregards any technical or economic constraints of the storage system. I.e.,
the model assumes costs per storage capacity unit of zero, unlimited charging speed, a
Depth of Discharge (DOD) of 100%, and perfect efficiency degrees of 100%. Moreover,
the model did not limit the market-wide load. Not including these storage system
parameters clearly overestimates the realistic potential of load shifting through storage
systems. But it gives a good indication for the potential of DR through load shifting
in general, for which the installation of storage systems is only one realization option.
E.g., load shifting through behavioral changes of the consumer or the installation of
automated and semi-automated devices that autonomously shift their load would also
tap the potential. The general cost reduction potential through load shifting is actually
even higher, if daily price functions are applied instead of a single function for the
entire period. Daily price functions will fit the real prices better and will therefore
more precisely identify the economic load shifting volumes, and, thus, lead to a greater
saving potential, as the results of the precise analysis model in Section 7.3 and Section
7.4 will show.

7.3 Market-wide Analysis Model
The objective of the market-wide analysis model is to determine the minimal total
costs for a given analysis period when performing price-responsive load shifting (ar-
bitrage accommodation) with DSS. Regarding its structure and its parameters, the
market-wide analysis model is similar to the linear optimization model in Section 3.2.
Both models build on the same technical and economic storage parameters and con-
straints. The major difference between the models is the determination of the price.
While the linear optimization model in Chapter 3.2 uses a fixed price curve that is in-
dependent from load variations (exogenous variable), the market-wide analysis model
in this chapter uses a specific load-variable price function for each day of the analysis
period (price is an endogenous variable)2. A second small difference is the underlying

2The model in Section 3.2 models a one-household-case. Such a small unit can be regarded as a
price taker on the market, which has no impact on the market price.
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load profile. Instead of a standard household profile as in Section 3.2, this model uses
the aggregated, market-wide load for Germany in 2007 (ENTSOE, 2007).

7.3.1 Mathematical Formulation
As in the linear optimization model, the total costs K̂ are composed of the fixed costs
K̂fixed and the variable costs K̂variable. Fixed costs are capital costs, maintenance
costs, and depreciations of the peripheral components. Variable costs are the costs
for electricity supply from the grid reduced by the share that is served through stored
capacity, costs for charging the storage system, and costs for depreciating (using) the
storage system. The decision parameters of the analysis model are the charge volume
ct in timeslot t and the discharge volume dt. The quotient of the costs per storage
capacity unit κ (EUR/kWh) and the expected number of nominal discharge cycles γ
(#) determines the depreciation (usage) costs for a kilowatt hour of discharge. The
price function ft(ˆ̀t) determines the market price pt for a specific amount of load ˆ̀

t in
timeslot t.

(7.27) min→ K̂ = K̂fixed +
T∑
t=1

K̂variable
t

K̂fixed = P̂ inπin + P̂ outπout

τ
+

(m+ i) · (P̂ inπin + P̂ outπout + C · κ)
(7.28)

(7.29) K̂variable
t = pt ·

(
ˆ̀
t +

ct
ηin · ηstore

− dt
)

+ dt ·
κ

γ

where

(7.30) pt = ft

(
ˆ̀
t +

ct
ηin · ηstore

− dt
)

The charge volumes ct and the discharge volumes dt are the decision variables of the
minimization problem. The constraints of the problem reflect the maximal capacity of
the power components and the maximal charging speed (equations (7.31) (7.33)), as
well as the constraints of the SOC (equations (7.34), (7.35), (7.36)).

(7.31) dt ≤
P̂ out

T h
∀t

(7.32) ct ≤
C

v
∀t

with

(7.33) v = T h ·max
(
C

P̂ in
; vstore

)
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(7.34) dt ≤ ˆ̀
t + ct ∀t

(7.35) 0 ≤ ξt ≤ C ∀t

with

(7.36) ξt =
t∑

t′=1
ct −

dt
ηout

∀t

The SOC ξt must not fall below the maximal DOD δ̄ after an initial start-up phase.
The start-up phase is defined as in Section 3.2.2:

(7.37)
⌈(

1− δ̄
)
· v
⌉
≤ tstartup ≤ T

(7.38) (1− δ̄) · C ≤ ξt ∀t > tstartup

7.3.2 Generic Solution for the Minimization Problem
The generic formulation of the price function ft() inhibits solving the minimization
problem without further specification. Only if the price function was a constant func-
tion f constt (), the problem would turn into a linear optimization problem with ct and dt
as decision variables (similar to the linear optimization model in Section 3.2):

min→ K̂ = K̂fixed +
T∑
t=1

f constt

(
ˆ̀
t +

ct
ηin · ηstore

− dt
)

︸ ︷︷ ︸
a

·
(

ˆ̀
t +

ct
ηin · ηstore

− dt
)

+ dt
κ

γ
(7.39)

(7.40) ⇔ min→ K̂ = K̂fixed + a ·
T∑
t=1

ˆ̀
t +

ct
ηin · ηstore

− dt +
dt
a
· κ
γ

In the context of electricity spot market prices, it is highly unlikely that a constant
function models the market prices properly. If the price function was a linear func-
tion f lint , which is also highly unlikely in this context, the problem would turn into a
quadratic optimization problem.

(7.41) f lint (xt) = at · xt + bt

(7.42) xt := ˆ̀
t +

ct
ηin · ηstore

− dt
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By resolving ft() with f lint , equation (7.27) could be transformed into

(7.43) min→ K̂ = K̂fixed +
T∑
t=1

(at · xt + bt) · xt + dt ·
κ

γ

(7.44) ⇔ min→ K̂ = K̂fixed +
T∑
t=1

at · x2
t + bt · xt + dt ·

κ

γ

To provide a generic solution for the minimization problem that works for all func-
tion types, the following paragraphs present a decomposition of the problem into lin-
earized problems that can be solved iteratively, regardless of the price function applied.
The only requirement to the price function is that it increases monotonically (see Sec-
tion 7.2.1).

The solution algorithm increases the shifted load, i.e., the charge and the discharge
volumes, iteratively until further load shifting does not lead to an economic improve-
ment of the result anymore. In each iteration step j, the constant charge volume
increment c̃ and the constant discharge volume increment d̃ are assigned to those time-
slots that have the highest economic impact (highest reduction of supply costs through
discharging (bt) and lowest increase of charging costs (at)) by setting the decision vari-
able vectors ϕ for charging and λ for discharging. The resulting costs in iteration step
j are indicated with K̂j.

min→ K̂j =
T∑
t=1

[
ft
(
ˆ̀
t + c̃

)
·
(
ˆ̀
t + c̃

)
− ft

(
ˆ̀
t

)
· ˆ̀

t

]
︸ ︷︷ ︸

at

·ϕjt+

[
ft
(
ˆ̀
t − d̃

)
·
(
ˆ̀
t − d̃

)
− ft

(
ˆ̀
t

)
· ˆ̀t + ε · ηout · κ

γ

]
︸ ︷︷ ︸

bt

·λjt
(7.45)

The charge and the discharge increments c̃ and d̃ adjust the constant increment value
ε for efficiency losses.

(7.46) c̃ = ε

ηin · ηstore

(7.47) d̃ = ε · ηout

The discharge volume d̃ must be assigned to a later timeslot than the charge volume c̃
to avoid a negative SOC in any timeslot t. During the time period between charging
and discharging, the maximal storage capacity must not be exceeded.

(7.48) 0 ≤
t∑

t′=1
ϕjt′ − λ

j
t′ ≤

C

ε
∀t, j

(7.49) 0 ≤ ϕjt , λ
j
t ≤ 1 ∀t, j

(7.50)
T∑
t=1

ϕjt = 1 ∀j
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The distance between the charge volume and the discharge volume must be smaller
than a given technology-specific self-discharge tolerant time period T selfdch.

(7.51)
t+T selfdch∑

t′=t
ϕt′ − λt′ ≤ 0 ∀t

At the end of each iteration step j, the additional charge and discharge volumes are
included into the current aggregated load ˆ̀j

t .

(7.52) ˆ̀j
t = ˆ̀j−1

t + ϕjt · c̃− λjt · d̃ ∀t, j

(7.53) ˆ̀0
t = ˆ̀

t ∀t

Additional charge and discharge volumes to the load curve of the previous iteration
step must not violate the power capacity constraints P̂ in and P̂ out in any iteration j.

(7.54) Constraint C1 : ˆ̀j−1
t + ϕjt · c̃− ˆ̀

t ≤ P̂ in · T h ∀t, j

(7.55) Constraint C2 : ˆ̀
t + λjt · d̃− ˆ̀j−1

t ≤ P̂ out · T h ∀t, j

Additionally, the charge volume must not violate the global load maximum ¯̀.

(7.56) Constraint C3 : ˆ̀j−1
t + ϕjt · c̃ ≤ ¯̀ ∀t, j

Discharging during the initial start-up phase is prohibited.

(7.57) Constraint C4 : λjt = 0 ∀t < tstartup, j

The constraints C1-C4 can be incorporated into the static vectors a and b [1× T ] that
simplify equation (7.45):

(7.58) at =

∞ C1 = false ∨ C3 = false
ft
(
ˆ̀
t + c̃

)
·
(
ˆ̀
t + c̃

)
− ft

(
ˆ̀
t

)
· ˆ̀

t else

(7.59) bt =


∞ C2 = false ∨ C4 = false
ft
(
ˆ̀
t − d̃

)
·
(
ˆ̀
t − d̃

)
−

ft
(
ˆ̀
t

)
· ˆ̀t + ε · ηout · κ

γ
else

Thus, equation (7.45) with its constraints (7.49)-(7.51) forms a linear optimization
problem. The complexity of the price function ft() is hidden in the static vectors at
and bt, which have to be calculated in each iteration step j. The run time of the
solution algorithm is primarily determined by the load increment constant ε. The
higher the constant, the less precise the result (optimal solution is underestimated3),
but the faster the runtime of the algorithm. Figure 7.5 summarizes the control flow of
the iterative solution algorithm.

3Due to the characteristic of the merit-order price curve, additional load in low-price periods lead
to a lower price increase than the same amount of load reductions causes as savings during peak-price
periods.
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Initialize the iteration counter j (j:=1)

start

savings > 0

+

Calculate total costs K

end

-

Execute schedule within 
the technical constraints 
of the storage system 

Calculate static vectors a and b

Solve linear optimization problem and 
calculate resulting savings

Update load curve 

Increase the iteration counter j (j:=j+1)

Allocation of the 
incremental charge 
volume and the 
incremental discharge 
volume

Integrate effect of 
incremental charge and 
discharge volumes

Figure 7.5: Control flow of the iterative solution algorithm

The total costs K̂ are calculated at the end of the iterative algorithm. The total
costs are the sum of fixed costs, costs for the resulting load curve ˆ̀J (J indicates the
last iteration step that led to an improvement of the result), and the costs for storage
depreciations. The savings are calculated relative to the baseline costs K̂baseline.

(7.60) K̂ = K̂fixed +
T∑
t=1

f
(
ˆ̀J
t

)
· ˆ̀Jt + ε · J · κ

γ

(7.61) savings =

(
K̂baseline − K̂

)
K̂baseline

7.3.3 Analysis Parameters and Assumptions
The analysis parameters of the market-wide analysis model build on the parameter
values for the optimization model in Section 3.2. Each calculation of the model de-
termines the savings in comparison to a baseline case without storage capacity for a
specified scenario. For each scenario, there is a fixed parameter setting. To calculate
the optimal and the maximal storage capacity that can be economically operated on
the market, these settings are run repeatedly for a series of capacity sizes.

A parameter setting specifies the basic value parameters as in Table 3.6. The
value for the capacity size is set separately, since the impact of its variation is to be
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analyzed. Directly linked to the capacity size is the optimal sizing of the power capacity
parameters P̂ in and P̂ out. The optimal values for these parameters are determined
separately. Figure 7.6 shows that the values follow a logarithmic function in dependency
from the capacity size and the costs per storage capacity unit κ. 
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Figure 7.6: Optimal dimensions of P̂ in (left) and P̂ out (right) in dependency from the
installed capacity Ĉ

Additional parameters in comparison to the one-household-model of Section 3.2 are
the maximal system load ¯̀ and the (dis-)charge increment parameter ε. The maximal
system load limits the load that additional charge volumes create. It is assumed that
the maximal system load ¯̀ equals the maximal peak load of the original aggregated
load curve ˆ̀. I.e., the proposed load shifts will not require higher transmission and
distribution capacities in the grid.

The increment parameter ε influences the accuracy and the performance of the
analysis model, as described in the previous section. The value is set to 2,000 (MWh)
for the following analysis. The analysis results, which are presented in the following
section, underestimate the truly optimal value by approximately 1.5% points (presented
results are not adjusted for this error).

The prices are modeled through daily price functions that depend on the aggregated
load on the system. I.e., there is no static price vector as in the linear optimization
model in Section 3.2. The price function used in the following analyses is the expo-
nential function f expt (xt) = a0 +a1 · exp (a2 + a3 · xt) (see Table 7.4) with daily-specific
parameters ax. I.e., every day of the analysis period has its own set of values for each
parameter a0 to a3. As for the static price vector in Chapter 3.2, the weighted average
price of the basic price curve is 0.20 EUR/kWh.

The load curve represents the aggregated load for Germany in 2007 (ENTSOE,
2007). This profile contains all consumer groups (large industrial companies, small
and medium enterprises, public sector, and private households). Table 7.2 presents
some absolute data points of the load curve.

7.4 Analysis Results
The market-wide analysis model calculated the market-wide annual savings that De-
mand Response Agents could realize when using DSSs in comparison to the baseline
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case of a scenario without storage systems. The electricity price is a load-dependent,
endogenous variable in these analyses.

The following paragraphs present the results of varying the input parameters of
the reference case, namely the impact of the overall installed capacity on the storage
system, the technical storage system constraints, and the storage capacity costs. These
analyses are followed by a sensitivity analyses to all technical and economic parameters
and an analysis of the price spread’s impact.

7.4.1 Capacity Variation Analysis
Depending on the costs of storage capacity and the amount of capacity installed on the
system, storage systems can achieve different levels of annual savings. Lower storage
capacity costs lead to higher savings due to lower capital costs and lower depreciation
on the storage devices themselves. For each technology profile, i.e., each level of storage
capacity costs, there is an optimal and a maximal value of installed storage capacity
that can be operated economically. Economically means that the total annual savings
in the system are at least marginally positive. The savings are maximal for the optimal
value of installed storage capacity and they are marginally positive for the maximal
value of installed capacity.

Figure 7.7 shows the annual savings in dependency on the amount of storage ca-
pacity installed in the system for different storage capacity cost levels. Each curve
represents a distinct level of costs per storage capacity unit. The results show that
increasing storage costs decreases the achievable savings substantially. While storage
capacity costs of 100,000 EUR/MWh (100 EUR/kWh) lead to maximal savings of 9%,
costs of 750,000 EUR/MWh reduce the achievable savings to maximally 1.5%. The
optimal dimensions of the storage capacity installed on the system vary between 3.7%
and 0.3% of the average weekly load.
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Figure 7.7: Results of the capacity variation analysis

More remarkable are the different results for cases where the installed capacity
exceeds the optimal size. The higher the capacity costs, the steeper the annual savings
decline with each additional storage capacity unit installed beyond the optimal size.
The reference case with storage costs of 100,000 EUR/MWh reveals negative savings,
if the amount of installed capacity exceeds 16% of the average weekly load. In case of
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750,000 EUR/MWh, results turn negative if the installed capacity exceeds 1% of the
average weekly load.

7.4.2 Constraint Analysis
The analysis model in Section 7.3 contains several technical constraints that influence
and shape the economic result. To investigate the limiting effects of purely technical
constraints, the following analyses assume that the costs per storage capacity unit κ
(EUR/kWh) and the costs per power capacity unit πin and πout (EUR/kW) are zero.
The two goals of this analysis are to understand the impact of the purely technical
constraints in the model and to compare the results of such an unconstraint model
with the results of the estimation model, which did not consider technical and economic
constraints either. Since the estimation model used a different analysis approach, the
comparison of the results will be a plausibility check for the overall model results. Due
to the price assumptions of this analysis, some technical parameters lose their limiting
character to the economic result, namely the maximal DOD δ̄ (%), the expected number
of nominal charge cycles over lifetime γ (#), the expected system lifetime τ (years),
the power capacity constraints P in and P out, as well as the capacity constraint C
(kWh). Moreover, the interest rate i (%) and the maintenance rate m (%) (economic
parameters) do not impact the economic result anymore.

The only remaining parameters that still impact the economic result are the effi-
ciency degrees ηin, ηout, and ηstore (%), as well as the constraint of the maximal system
load ¯̀ (kW). Figure 7.8 shows the results of three cases that relaxed these parameters
step by step. The first case reveals 15.8% annual savings. This case holds the efficiency
degrees as given in Table 3.6 for the reference case, as well as the maximal system load,
which is limited to the maximum of the original load curve. Parameters like the overall
capacity C and the installed power capacities P in and P out are unlimited, since they do
not impact the economic result anymore (according costs parameter values are assumed
zero).
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 Figure 7.8: Results of the constraint analysis

The second case releases the efficiency degree constraints, i.e., all efficiency degrees
equal 100%. The annual savings are 24.1%, which is 8.3% points (52%) higher than for
the first case. The third case additionally releases the maximal load constraints ¯̀ and
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reveals 24.8% annual savings, which is 0.7% points (3%) higher than for the second
case.

The analysis reveals the outstanding impact of the efficiency degrees in case of low
costs per storage capacity unit. Furthermore, the results validate the analysis model.
The estimation model revealed an annual saving potential of 19.8% in the average case.
Since the estimation model uses a less accurate price function (one price function for
the entire analysis period) than the analysis model (one price function for each day of
the analysis period), the result of the estimation model is lower.

7.4.3 Storage Capacity Cost Analysis
Capacity costs are one of the key parameters of the analysis model. Cost levels differ
significantly between storage technologies and between different developmental stages
of the technology. The capacity cost per storage unit impact the economic result in
two ways: Firstly, capacity costs are directly linked to the initial investment into the
storage system and therefore determine a large share of the capital costs. Secondly, the
quotient of the capacity price and the number of expected nominal discharge cycles
(costs per nominal discharge cycle) determines the depreciation costs for using the
storage system. Higher depreciations costs require higher spreads to economically
operate the system, i.e., reduce the number of arbitrage opportunities for a given
price curve. Figure 7.9 depicts the achievable annual savings in dependency on the
storage capacity costs. The analysis reveals that at storage capacity costs κ of 1.5
million EUR/MWh (1,500 EUR/kWh) the annual savings are zero. I.e., the sum of
capital and depreciation costs equals the benefits from arbitrage opportunities that
could be realized due to sufficiently high spreads. Higher storage capacity costs will
lead to negative savings - regardless of the amount of capacity installed. On the other
extreme, if storage capacity costs are close to zero, an optimally sized system leads to
approximately 14% annual savings.
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Figure 7.9: Results of the storage capacity cost analysis

Since capital costs are close to zero in this case, the result reveals the maximal arbi-
trage potential, which is determined through the load and the price curve distribution.
For the reference case with storage capacity costs of 100,000 EUR/MWh, the analysis
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reveals maximal annual savings of 9% in the case of an optimally sized system. As
shown in Figure 7.9, the optimal storage capacity is 3.7% of the average weekly system
load.

Figure 7.10 presents an analysis of the optimal and the maximal total storage ca-
pacity of the system that can be operated economically. As already explained in the
context of Figure 7.1, the difference between the optimal and the maximal volume
for the installed capacity differ disproportionately high with decreasing storage ca-
pacity costs. While the maximal amount of capacity installed that can be operated
economically for storage costs close to zero is around 150% of the average weekly load
(about 8% for an optimally sized capacity installation), it is 0.5% if storage costs are at
1,000,000 EUR/MWh (0.2% for an optimally sized installation). This huge difference
in economically operable storage capacity reflects the different amounts of arbitrage
opportunities that are directly linked to the storage depreciation costs per nominal
discharge cycle.
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Figure 7.10: Optimal and maximal storage capacity sizes

7.4.4 Sensitivity Analysis
The sensitivity analysis separately varies each parameter value in four steps from its
reference value (-10%, -1%, +1%, +10%). The results of the sensitivity analysis in-
dicate the relative deviation from the results of the reference case for each parameter
variation. Some values could not be varied in the previously explained manner, since
the modified values would be out of a valid range. E.g., efficiency degrees must not be
greater than 100%.

The results of the sensitivity analysis are valid for the reference case. For other
cases, e.g., case with higher costs of storage capacity, sensitivity values will differ in
absolute and relative terms. The non-linear plot and the slightly different shapes of
the result curves in Figure 7.7 make this obvious. However the relative impact of a
parameter in comparison with other parameters remains about the same for all analyzed
cases.

Figure 7.11 shows the results of the sensitivity analysis of the reference case. The
efficiency degrees ηin, ηout, and ηstore have the highest sensitivity (up to 14.4% result
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deviation through a 10% parameter value variation). The second highest sensitivity
values are observed for the costs per storage capacity unit κ, where a 10% variation
of the reference parameter leads to a 4.1% deviation of the annual savings in opposite
direction to the parameter variation, since lower costs lead to higher savings. A notable
impact can fruther be assigned to the maximum DOD δ̄ (up to 2.2% deviation from
the reference result in case of a 10% variation of the parameter value) and the interest
rate i (up to 2.9% deviation).
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Figure 7.11: Results of the sensitivity analysis

The results of this sensitivity analysis of the technical and the economic parameters
on the aggregated system level in the context of load-variable, daily prices are in line
with the sensitivity results of the single consumer analysis (Section 3.2.4), where the
storage system was modeled as a price taker, i.e., the electricity price was an exogenous,
static variable. Overall, the sensitivities along with the annual savings (for the same
storage parameters) were higher in the single household case. The main reasons for this
difference are the different load curve distributions and the load-variable price curve.
The load curve distribution in the single household case is a standard household profile
(average profile of a 2-person household in Germany), whereas the current analysis
builds on the load profile for Germany in 2007 (ENTSOE, 2007), which includes all
consumer groups. The slightly higher relative impact of the interest rate in case of
the market-wide analysis (relative to the impact of other parameters) in comparison
to the single household case indicates that capital costs have a higher influence on the
market-wide result. I.e., the aggregated load curve for Germany offers a slightly lower
load shifting potential than the standard household profile.
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7.4.5 Spread Analysis
The average spread, i.e., the mean difference between low prices in charge timeslots
and high prices in discharge timeslots, is a key factor of the price curve that determines
the annual savings that can be realized through a storage system aiming at arbitrage
accommodation. If the spreads of a price curve increase, this implies that also the price
volatility increases. The spread analysis varies the reference price curve in four level.
The new price curves are determined through equation (3.56) in Section 3.2.4. The
values for α that scale the variation are 0.9, 0.99, 1.01, and 1.1. The regression analysis
determines the daily price functions (see Section 7.1.2) for the modified price curves.
I.e., the load-variable, daily prices reflect the new spread levels. Table 7.5 depicts the
average volatility of each price curve. As previously stated, higher price spreads lead
to higher volatility, which is reflected in a steeper price curve (Figure 7.3).

Figure 7.12 presents the results of the spread analysis. In Case 1 with a spread
variation of α = 0.9, the annual savings are 7.3%, which is 1.8% points (20%) lower
than for the reference case. Case 2 with a slightly lower spread level than the reference
case (α = 0.99) reveals the same level of savings as the reference case. Case 3 with a
slightly higher spread level than the reference case (α = 1.01) reveals annual savings
that are 0.4% points (4%) above the reference case. In Case 4, the annual savings are
1.3% points (14%) higher than for the reference case. The results show two important
aspects: (1) The variation of the spreads has a substantial effect on the annual savings
that can be achieved through load shifting. This result is in line with the results of
the single household analysis in Section 3.2.4. (2) The spread variations do not have
a linear effect on the annual savings, i.e., increasing or decreasing the spread factor α
does not have a symmetric effect on the result. This is a major difference to the results
in Section 3.2.4, which are perfectly symmetric. The explanation behind this difference
is that the analysis in this section builds on load-variable prices. A price curve with
higher spreads leads to a steeper slope of the load-variable daily price function.

Higher spreads certainly lead to higher annual savings, but not continuously over
multiple load shifts. As Figure 7.3 shows, the same load variation leads to higher price
variations in this case. In case of the lower spreads, this effect turns around. The daily
price curves get flatter, while spreads by definition also get smaller. I.e., this implies a
stronger reduction of the realizable arbitrage opportunities.

As explained in Section 3.2.4 and 6.2.4, the increase of Distributed Energy Resources
(DER) and RES (intermittent and non-dispatchable resources) will lead to an increase
in volatility of market prices, since the output of these resources is intermittent and the
supply from these resources impacts the spot market price. Thus, arbitrage potentials
for DSSs (and load shifting potentials in general) will increase, if the share of renewable
and distributed generation units increases.

7.5 Summary
This part of the thesis analyzed the economic impact of an increasingly large volume
of installed capacity of DSSs at the end consumer level. The DSSs aim at arbitrage
accommodation and charge at times of low prices and discharge during high-price
periods. At the end consumer level, a DSS does not sell its energy back to the market,
but it serves the end consumer’s demand during peak-price periods. Prices are assumed
flexible on an hourly basis. Additional load volumes due to charging DSSs cause a
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Figure 7.12: Results of the price spread analysis

market price increase, and reduced load on the grid due to discharging the DSSs leads
to decreasing market prices. The actual impact of load variations on the price is
determined through daily price functions, which are derived as regression functions on
historic data for the German market from 2007.

The analysis revealed that an optimally responsive load, i.e., a demand side that
perfectly allocates its demand according to the derived daily price curves4, would have
achieved up to 24.8% savings on the annual electricity costs in the German electricity
market in 2007. This value is a theoretical maximum, but it shows the enormous savings
potential of demand responsiveness to compensate for fluctuations in the market. The
literature review on DR programs showed that conventional DR programs can only
achieve a fraction of these savings due to limited price elasticity degrees on the end
consumer side. Therefore, this work investigates the net saving potential of DSSs on
the end consumer level, which has the advantage of being a fully automated solution
with minor technical constraints and, thus, high responsiveness. Disadvantageously,
DSSs require significant investments and cause operational costs that need to be taken
into account.

The economic analysis included the total costs of the DSSs. It revealed that such
systems can realize about 36% of the maximal (theoretically possible) savings, i.e.,
about 9% savings on the annual electricity costs, if storage capacity costs are 100,000
EUR/MWh storage. In case of 500,000 EUR/MWh, about 5% savings on the annual
electricity costs can be achieved. For each storage capacity cost level, the analyses
calculated the optimal amount of storage capacity to install on the system. If the
capacity installed is above or below this optimal value, the realizable savings decrease.
If the capacity installed exceeds an upper bound, savings turn negative due to high
capital costs that cannot be covered anymore. The optimal and the maximal value
depend on the shape of the load and the price profiles of the market. In the analyzed
case for Germany, the optimal value for the capacity to install is 4% of the weekly
average load and the maximum capacity is 16%, if storage capacity costs are around
100,000 EUR/MWh. In case of 500,000 EUR/MWh, these values are 1% and 3%.

A sensitivity analysis of the reference case showed the strong impact of efficiency
degree variations. E.g., a reduction of the storage efficiency by 10% would deteriorate

4Derived through a regression function on historic load and price data of the German electricity
market in 2007; adjusted R2 of the regression function is 0.8 (see Section 7.1.2).
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the savings by 13%. Nevertheless, the overall most important parameter is the storage
capacity costs (EUR/MWh), as it can be seen from the aforementioned figure.

As explained in the introduction of this part of the thesis, as well as in the related
work discussion, increasing shares of RES will increase price volatility on the market,
i.e., cause higher spreads. The spread variation analysis in this part of the work
revealed similar results as in Section 3.2.4. A 10% increase of the average spread will
increase the realizable savings by 1.3% points (14%) in comparison to the reference
case. Similarly, a decrease of the spreads decreases the realizable savings. Thus, DSSs
can mitigate the risk of supply fluctuations and price volatility effectively and therefore
foster the integration of RES while reducing total costs for the end consumer.

7.5.1 Contribution to Scientific Literature
After reviewing the existing literature on market impacts through higher shares of RES
and on the impact of DR programs on the electricity market, two main issues in the
electricity sector became apparent. Firstly, increasing shares of RES will cause more
volatility in electricity prices. Secondly, conventional DR programs are effective for
peak load reductions, but they are not appropriate to let electricity demand follow
supply from RES, since the reliably achieved elasticity is too low to compensate for
fluctuations of RES. Furthermore, even RTP has little impact on the reduction of
consumers’ electricity costs in conventional DR programs that build on consumers
reactions.

This work presents a model to estimate the value of an optimally responsive demand
side, based on historic data for the German electricity market from 2007. In a second
step, a model that builds its responsiveness on distributed electricity storage systems
is presented. This model calculates the achievable savings for the consumer side that
can be realized using optimally coordinated DSS. It takes the total costs of the storage
systems into account and operates the storage devices as arbitrage-maximizing agents.
It is shown that total costs of such a system will be lower than its benefits. Indeed,
the analysis reveals significant savings for the consumer side, which are higher than
savings achieved by conventional DR programs, even if unusually high price elasticity
(below -0.5) is assumed. Additionally, the presented approach addresses both market
issues identified in the literature review: Firstly, price-responsive DSSs decrease the
market price volatility, since they operate as arbitrage agents. Increasing price volatility
actually increases the profitability of DSSs. Secondly, the DSSs can make demand
follow supply in a reliable manner through automated agents, if RTP reflects the current
demand-supply-situation appropriately. I.e., in combination with the merit-order effect
(Section 6.2.4), DSSs will effectively foster the integration of RES with low marginal
costs.

This work complements the existing literature on DR programs by evaluating such
programs when based on DSSs at the end consumer level. It continues the thought
of implementing automated communication and control devices on the consumer side.
Such devices help to let demand automatically follow supply to better integrate RES
and to reduce critical peak loads without requiring the interaction and the behavioral
change of the consumer. Consumers can systematically (automatically) adjust their
load patterns according to real-time prices. Real-time prices mitigate a part of the risk
(and the opportunity) of electricity supply to the consumer and DSSs help to manage
the risk and to capture the opportunity.
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7.5.2 Practical Relevance of the Findings
The model reveals that consumers would have had realized a substantial economic
surplus from load shifting in Germany in 2007. Overall, up to 25% savings could
have been achieved through load shifting under the given price curve assumptions (see
beginning of Section 7.5). In the case of load shifting through storage systems, about
9% maximal savings could be realized due to capital and operational costs for the
storage systems. Thus, the results of the model are relevant to regulators, consumers,
utilities, and potentially investors.

Regulators can use the findings to create incentives for DSM programs that will
lead to overall lower costs. The electricity systems could become more economic and
more resource-efficient. Consumers can see the benefits and opportunities of flexible
electricity prices in combination with DSM programs that help to reduce their elec-
tricity costs. Utilities can use the findings to create offers to their customers (tariffs,
storage services, etc) and to evaluate alternatives to traditional asset investments. To
not lose market shares in a long-term perspective, it might be a strategic advantage to
shift from traditional control capacity (e.g., gas turbines) to DR programs that build
on automated load control, which optionally include storage systems. For investors,
the presented findings reveal first information on strategic investment opportunities
into well-positioned utilities, new market entrants, and technology suppliers.
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Chapter 8

Conclusions & Outlook

Distributed Storage Systems (DSSs) at the end consumer level have the potential to eco-
nomically foster the integration of Renewable Energy Sources (RES) and Distributed
Energy Resources (DER), if flexible electricity prices are provided to end consumers
and storage costs further decrease. The DSSs provide demand-side flexibility by op-
erating as arbitrage-maximizing agents. The analyses have shown that hourly flexible
prices are most suitable1 and that no less than 8 electricity prices per day should be
provided. Storage costs must fall below 200-400 EUR/kWh to achieve profitable oper-
ations2. Both conditions have the potential to be satisfied in the future: As stated in
§40 (3) EnWG, flexible tariffs must be available from 2011 onwards for end consumers
in Germany (Federal Law Gazette, 2008). Storage costs are likely to further decrease
during the next years due to increasing R&D efforts for and demand from Electric
Vehicles (EVs). In a long-term perspective, used batteries from EVs could potentially
serve stationary storage systems as low-cost storage components in the future. Over-
all, the economic analysis of DSSs at the end consumer level revealed a substantial
cost reduction potential for the consumers under the given assumptions. The actually
realizable savings for an end consumer depend on its individual load profile.

The trend of increasing shares of DER and especially RES, which can be observed in
many countries, will lead to lower average market prices (merit-order effect) accompa-
nied by higher market price volatility. Consumers will benefit from these market price
fluctuations, if demand-side flexibility increases. The simulations and analyses within
this research work have given first evidence that DSSs, which operate as autonomous
Demand Response (DR) agents aiming at arbitrage accommodation, can economically
capture a part of this potential. Indeed, increasing market price volatility will raise
the profitability of such systems, which therefore economically support the integration
of sources like wind and solar power.

The combination of results from different models presented in this thesis shows
the economics of DSSs under price and load forecast uncertainty as well as under the
condition of load-variable market prices. This research work presented three analytical
models that investigate the influence of technical and economic parameters within and
around DSSs.

1This would account in particular to Real-time pricing (RTP), but the only data available for the
analyses were hourly flexible prices.

2The cost range reflects the dependence on other storage parameters, but the costs per storage
capacity unit is a pivotal parameter. Further technical and economic storage parameters are provided
in Part I and III of this work.
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The first part of this thesis analyzed the economics of a single storage system on
the grid. Such a system at the end consumer level does not impact the market price
by its charge and discharge decisions and is therefore modeled as a price taker. The
model addressed the research questions how a DSS influences the costs of a standard
household (vs. a baseline case without a storage system) and which parameters have
the greatest economic importance. For parameters of storage devices that are currently
in a developmental stage, the linear optimization model resulted in a 17% reduction of
total annual costs for a standard household in comparison to the baseline case without
a storage system. The sensitivity analyses emphasize the outstanding impact of the
costs per storage unit (EUR/kWh) and the highly sensitive impact of the efficiency
degrees on the achievable benefits. Furthermore, the analyses show that an increase
in market price volatility raises the profitability of the system and that hourly flexible
prices are required to achieve a high level of profitability.

Part II presented a simulation model that analyzed the performance of DSSs un-
der uncertainty. Instead of actual price and load data, the simulations used forecast
data of different quality levels to derive the Charge-Discharge-Schedule (CDS) for a
DSS. The obtained suboptimal schedules still delivered fairly robust economic results.
The analyses addressed the research questions to what extent load and price forecast
errors deteriorated the economics of DSSs and what level of cost reductions could be
realized with available standard forecast methods. In conclusion, the system tolerates
significant forecast errors while still operating close to the economic optimum. Even
conservative assumptions regarding the forecast accuracy led to deviations of less than
15% from the optimum. The accuracies of available price and load forecast methods are
sufficient to ensure economically beneficial operations of DSS. Overall, price forecast
errors have a stronger negative impact on the economics of a DSS than load forecast
errors. The key parameter of both price and load forecasts is the day-ahead Mean
Absolute Percentage Error (MAPE) of the forecast.

The analysis of different scheduling algorithms showed that the choice of the best
scheduling algorithms depends on the forecast characteristics. In case of a strong auto-
correlation of price forecast errors, optimization algorithms deliver the best operation
schedules for the DSS. In case of uncorrelated price forecast errors, the presented
heuristic algorithm delivers better schedules. The linear optimization algorithm shows
slightly better performance for forecasts with low MAPE, whereas the heuristic algo-
rithms show a higher robustness in case of increasing forecast errors.

The model presented in the third part of this work took a market-wide perspective
and modeled the impact that the aggregated charge and discharge volumes of multiple
DSSs have on the electricity price. The underlying research questions were to esti-
mate the cost reduction potential of a perfectly responsive demand side and to assess
which share of this potential could be realized through DSSs. The analyses showed
that the maximal cost reduction potential would have been 24.8% in Germany in 2007.
The presented optimization model, which takes the total costs of a DSS into account,
revealed that such systems can realize about 36% of the maximal cost reduction poten-
tial, i.e., about 9% savings on the annual electricity costs, if storage capacity costs are
100,000 EUR/MWh storage. Furthermore, the analysis results indicate for this case
that the optimal volume for the capacity to install is 4% of the weekly average load
and the maximum capacity is 16%.
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8.1 Limitations of the Approach
All analysis and simulation models presented within this thesis simplify economic and
technical interdependencies and constraints of the physical infrastructure and the en-
ergy markets in place. To a certain degree, the generality of the results is limited by
several assumptions of the models.

All models exclude the investigation of transmission and distribution capacity con-
straints from their scope. Depending on the system’s transmission constraints and
the geographical distribution of the storage devices, real-world applications might have
to take these constraints into account. Furthermore, all models build their analyses
on load profiles of standard households. The standard household profiles represent
the typical consumption of German households. Actual household profiles might vary
from this profile and, thus, result in different level of realizable savings. Thirdly, all
models use an hourly flexible electricity price curve. This price curve is an artificially
derived price pattern that builds on the distribution of the wholesale market prices at
the European Energy Exchange (EEX) in 2007 and has a weighted average electricity
price of 0.20 EUR/kWh. I.e., also the price curve primarily reflects the situation on the
German market, which makes the results of the study primarily applicable to markets
that have a similar electricity load and price distribution as the German market.

Several critical reviews of the models challenged the presented results and provided
further potential improvements and extensions for the models. Some of these aspects
would further improve the economics of the basic linear optimization model in Part I,
e.g., allowing the DSS to sell electricity back to the market or to provide services to
the grid, others would decrease the resulting benefits, e.g., implementing price caps for
the flexible consumer prices. A proposed enhancement to the forecast error simulation
in Part II would be replacing the linear decrease of forecast accuracy over time with
a more detailed function that is based on empirical values. In Part III, replacing the
approximated daily price curves by actual merit-order curves from the EEX would
strengthen the validity of the results. This enhancement would require the order book
data of the EEX, which were not available for this study.

Overall, the presented combination of analyses reveals a first economically robust
indication within the described assumptions that DSSs increase demand-side flexibility,
decrease the consumers’ costs for electricity supply, and foster the integration of RES
and DER. Apart from the absolute cost reduction figures for the consumers, it is to
emphasize that by no means the alternative, a rather traditional supply-side-oriented
approach of installing more conventional control capacity, would integrate RES and
DER at decreasing costs for the end consumers.

8.2 Further Research
The models in this thesis analyzed the saving potential through DSSs in three steps:
(i) first on a household level without influencing the market price, (ii) then on the
same household level but incorporating uncertainty of load and price forecasts when
deriving the CDSs, (iii) and finally on a market-wide, aggregated level, where perfect
coordination of distributed storage devices was assumed and therefore the aggregated
storage capacity was treated as on large entity.

The coordination of distributed storage devices that operate autonomously is cer-
tainly a complex task. Thus, further research is needed regarding the market and
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coordination mechanisms that incentivize or steer a DSS. Additionally interesting in
this context is the question of the negative impact of insufficiently coordinated DSSs
for both, the end consumer and the grid (operators). Another area of further research
is the detailed integration of RES and DER through DSSs. E.g., the relation between
installed capacity of renewable and distributed resources and the optimally installed
storage capacity could be further investigated. A third area of further research are
business models for the analyzed DSS. This field addresses the questions who owns
and who operates the storage systems and who benefits to which degree from the real-
ized savings. Since DSSs that aim at arbitrage accommodation require flexible prices,
the design and analysis of new electricity tariffs from a consumer and a utility perspec-
tive will have high relevance. From the perspective of a storage system owner, which
might be a consumer, a utility, or a third party, more detailed investment calculations
will be of interest. E.g., conducting an investment appraisal for time periods of more
than a year will further investigate the impact of capacity investments (e.g., sizing of
individual storage system) on the absolute savings for a long-term perspective.

In the context of Smart Homes in combination with Smart Metering, load fore-
casting of households and other end consumer entities will become relevant. Smart
Metering will provide the technical infrastructure for local, in-house data analysis of
a consumer demand profile. In combination with sensor-equipped homes and learning
algorithms, load forecasting of very small consumer units can be realized. Further re-
search will have to investigate if the available methods are suitable or must be adapted
for these situations and what forecast accuracies can be achieved with such methods.

Up to now, this research work has analyzed stationary storage systems. If grid-
integrated EVs are included into an extension of the presented models, the temporal
aspect of storage availability and other limiting factors become important. Overall,
EVs have the potential to foster the development of DSSs substantially. First research
results show that there could be huge storage capacity volumes available in parked EVs
that could potentially be used for load shifting (arbitrage accommodation) or other
services to the grid (Fluhr et al., 2010). Moreover, used batteries from EVs that must
be replaced could be a source of economic storage capacity for stationary applications
in future. EVs will typically have much higher performance requirements to a battery
than a stationary battery that is used for arbitrage accommodation. When storage
capacity becomes cheaper, more arbitrage accommodation could be realized and thus,
RES and DER could be integrated more efficiently.
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Appendix A

Derivation of Storage Depreciation
Costs

For each timeslot t, the sum of storage depreciations paid for the discharged volume
until t accords to the investment cost divided by the expected number of nominal cycles
in timeslot t. I.e., the average depreciation rate per discharged capacity unit should
equal the depreciation rate for the in timeslot t expected number of charge cycles.

t∑ paid depreciations
t∑ discharged capacity

!
=

investment cost
expected nominal cycles

Using the mathematical notations defined in Section 3.2.2 instead of the verbal
formulation above, one obtains the following equation:

t∑
t′=1

Kstorage_depreciation
t′

q̂t
= C · κ

γt

⇔ Kstorage_depreciation
t = q̂t ·

C · κ
γt
−

t−1∑
t′=1

Kstorage_depreciation
t′

Simplification: Kstorage_depreciation
t = C · κ ·

(
q̂t
γt
− q̂t−1

γt−1

)

By definition, the storage depreciation cost and the accumulated discharge volume
in timeslot 0 equal 0:

Kstorage_depreciation
0 := 0⇒

t∑
t′=1

Kstorage_depreciation
t′ =

t∑
t′=0

Kstorage_depreciation
t′

q̂0 := 0

The following equation will now be proved by induction.
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q̂t ·
C · κ
γt
−

t∑
t′=1

Kstorage_depreciation
t′ =

(
q̂t
γt
− q̂t−1

γt−1

)

For t = 1: C · κ ·
(
q̂1

γ1
− q̂0

γ0

)
= q̂1 ·

C · κ
γ1
−

1−1∑
t′=0

Kstorage_depreciation
t′

⇔ C · κ ·
(
q̂1

γ1
− 0
γ0

)
= C · κ · q̂1

γ1
− 0

Thus, the identity of the original equation and the simplified equation has been
proven for t. It remains to prove the identity for t+ 1:

For t+ 1:

C · κ ·
(
q̂t+1

γt+1
− q̂t
γt

)
= q̂t+1 ·

C · κ
γt+1

−
t+1−1∑
t′=0

Kstorage_deprecation
t′

⇔ C · κ
(
q̂t+1

γt+1
− q̂t
γt

)
= C · κ · q̂t+1

γt+1
−Kstorage_depreciation

t −
t−1∑
t′=0

Kstorage_depreciation
t′

⇔ C · κ
(
q̂t+1

γt+1
− q̂t
γt

)
= C · κ · q̂t+1

γt+1
−
(
C · κ · q̂t

γt
−

t−1∑
t′=0

Kstorage_depreciation
t′

)
−

t−1∑
t′=0

Kstorage_depreciation
t′

⇔ C · κ
(
q̂t+1

γt+1
− q̂t
γt

)
= C · κ · q̂t+1

γt+1
− C · κ · q̂t

γt
+

t−1∑
t′=0

Kstorage_depreciation
t′ −

t−1∑
t′=0

Kstorage_depreciation
t′

⇔ C · κ
(
q̂t+1

γt+1
− q̂t
γt

)
= C · κ · q̂t+1

γt+1
− C · κ · q̂t

γt

q.e.d.

The number of expected nominal (full) charge cycles γ (#) of a storage device highly
depends on the usage intensity, namely the average Depth of Discharge (DOD) δ (%)
and the temperature of respectively around the storage system θ (◦C). In the following,
the temperature θ is assumed constant. A higher average DOD leads to a reduction of
nominal charge cycles γ, which again has a direct influence on the depreciation of the
storage device. One can formulate the costs for a full charge cycle ψ (EUR) as follows:

ψ = C · κ
γ

The deeper the storage device is discharged, the higher the marginal cost per nom-
inal charge cycle. Since a discharge cycle can last for several timeslots, the discharge
action in timeslot t must also cover the increasing marginal costs for the previous dis-
charge action. A discharge action is defined as a reduction of the system’s storage level
due to intended discharge or self-discharge of the storage device. Thus, the storage
depreciation cost in timeslot t must cover the marginal depreciation cost for the dis-
charge action in timeslot t and the difference between the marginal depreciation cost
in t and t− 1 for the previous discharge:
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Kstorage_depreciation
t = sg(1− ϕt) · ((ξt − ξt−1) · ϕt + q̂t−1 · (ψt − ψt−1))

The following transformation steps prove the identity of the two formulas derived
above for the storage depreciation cost Kstorage_depreciation

t :

Cκ ·
(
q̂t
γt
− q̂t−1

γt−1

)
= sg(1− ϕt) · ((ξt − ξt−1) · ϕt + q̂t−1 · (ψt − ψt−1))

⇔ Cκ ·
(
q̂t
γt
− q̂t−1

γt−1

)
= sg(1− ϕt) ·

(
(ξt − ξt−1) ·

Cκ

γt
+ q̂t−1 ·

(
Cκ

γt
− Cκ

γt−1

))

⇔ Cκ ·
(
q̂t
γt
− q̂t−1

γt−1

)
= sg(1− ϕt) ·

(
(ξt − ξt−1) ·

Cκ

γt
+ q̂t−1 ·

Cκ

γt
− q̂t−1 ·

Cκ

γt−1

)

⇔ Cκ ·
(
q̂t
γt
− q̂t−1

γt−1

)
= sg(1− ϕt) · Cκ ·

(
ξt − ξt−1 + q̂t−1

γt
− q̂t−1

γt−1

)

⇔ Cκ ·
(
q̂t
γt
− q̂t−1

γt−1

)
= sg(1− ϕt) · Cκ ·

(
q̂t
γt
− q̂t−1

γt−1

)

The equation above is obviously correct for ϕt < 1, since sg(x) := 1 for x < 1.
Thus, identity remains to be proven for the case ϕt = 1 resulting in sg(0) := 0. ϕt = 1
implies that the storage device is charged during the entire timeslot t, i.e. it cannot be
discharged or self-discharged. Therefore the accumulated discharge volume does not
increase from t − 1 to t (q̂ = q̂t−1) so that the average DOD does not change either
(δt = δt−1). Since θ is assumed constant in this work, this implies γt = γt−1 by the
definition of γ and finally proves the identity of the two formulas also for the case
ϕt = 1:

C · κ ·
(
q̂t
γt
− q̂t
γt

)
= sg(1− 1) · C · κ ·

(
q̂t
γt
− q̂t
γt

)

⇔ C · κ · (0) = 0 · C · κ ·
(
q̂t
γt
− q̂t
γt

)

q.e.d.
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Appendix B

Overview of Model Variables

Table B.1: Non-Technical Model Variables
Variable Description Model Symbol Unit
Result Variables
Total costs in analysis period LO K (EUR)
Costs baseline in analysis period LO Kbaseline (EUR)
(without DSS)
Total market-wide costs in analysis IM K̂ (EUR)
period
Market-wide costs baseline in analysis IM K̂baseline (EUR)
period (without DSS)
Total market-wide costs in analysis IM K̂j

period after iteration j
Maximal storage capacity that can be IM Ĉmax

κ (kWh)
operated with marginally positive
surplus at a storage cost level of κ
Optimal storage capacity that must be IM Ĉopt

κ (kWh)
operated for maximal surplus at a
storage cost level of κ

LO=Implemented Linear Optimization Model (Section 3.2), IM=Iterative (linearized) Opti-
mization Model (Section 7.3).
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Appendix C

Control Flows of the Heuristic
Scheduling Algorithms

Chapter 5 (Section 5.2.2) presented 4 variants of a heuristic algorithm for determining
the Charge-Discharge-Schedule (CDS) of a Distributed Storage System (DSS). Figure
C.1 depicts this algorithm as a control flow diagram. The control flow contains 3 boxes
that refer to further procedures:

• Determination of price limits (Figure C.2)

• Refinement of the charge condition (Figure C.3)

• Refinement of the discharge condition (Figure C.4)

The most complex variant Heuristic 4 covers all steps of the control flow, whereas
the other variants do not cover some of the steps, as marked in the control flow di-
agrams. The refinement of the discharge condition only applies to Heuristic 3 and
Heuristic 4. As indicated in Figure C.4, Heuristic 3 does not cover an additional
refinement condition in the middle of the algorithm. The refinement of the charge
condition is part of the variants Heuristic 2-4, but Heursitic 2 and 3 do not cover an
additional refinement condition in the middle of the algorithm, as indicated in Figure
C.3.
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Schedule Generation 
(heuristic algorithm)

Price Limit Determination

timePeriodIndex < time period length?
-

chargeCondition = p(t) ≤ chargeLimit;

+

chargeCondition == true? Charge Condition Refinement
+

chargeCondtion == true?

charge[t] = maxChargeVolume;

+
dischargeCondition = p(t) ≥ dischargeLimit;

-

dischargeCondtion == true? Disharge Condition Refinement+

dischargeCondtion == true?

discharge[t] = 
maxDischargeVolume;

timePeriodIndex = timePeriodIndex + 1;

start

Initialize time period;
timePeriodIndex = 0;

p(t): price in timeslot t

end

-

+

-
-

Figure C.1: Schedule generation algorithm
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Create list with price-load-tuples for each timeslot in the 
forecast period

Sort list by ascending prices

Calculate required charge-discharge price difference on 
technology cost parameters

Initializations:
chargeIndex = firstElementIndex of List -1 + buffer;

dischargeIndex = lastElementIndex of List;
chargeIncrement = max. charge volume per timeslot;

SOC = 0;

List(dischargeIndex).price -
List(chargeIndex+1).price ≥ required price 

difference?

chargeIndex = chargeIndex + 1;
SOC = SOC + chargeIncrement;

result_charge_limit = 
List(chargeIndex+1).price-1;
result_discharge_limit = 
List(dischargeIndex).price+1;

-

SOC ≥ List(dischargeIndex).load 
List(dischargeIndex).price -

List(chargeIndex).price ≥ required price 
difference?

Price Limit Determination

+
SOC = SOC - List(dischargeIndex).load / outputEfficiency

SOC ≥ List(dischargeIndex-1).load 
List(dischargeIndex-1).price –

List(chargeIndex).price ≥ required price 
difference?

List(dischargeIndex).price -
List(chargeIndex+1).price ≥ required 

difference?

-

dischargeIndex = dischargeIndex - 1;
SOC = SOC - List(dischargeIndex).load / outputEfficiency

+

result_charge_limit = List(chargeIndex).price;
result_discharge_limit = 

List(dischargeIndex).price;

-

+

+

start

end

-

Figure C.2: Price limit determination algorithm
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Charge Condition Refinement

SOC_temp = current SOC;

t_temp = nextTimeslot;

More timeslots Abort == false?
-

forecast_price(t_temp) ≥ 
dischargeLimit?

+

SOC_temp = SOC_temp – q.out(t_temp) /
outputEfficiency

+

SOC violates DOD constraints? Abort = true;
+

Abort == false forecast_price(t) > 
forecast_price(t_temp)?

-

SOC_temp = SOC_temp + 
maxChargeVolume;

+

SOC_temp > Storage max capacity? Abort = true;
ChargeCondition = false;

+

t_temp = nextTimeslot;

-

-

Not in Heuristic 2
Not in Heuristic 3

start

end

forecast_price(t_temp): 
forecast price in timeslot 

t_temp

q.out(t_temp): maximal 
discharge volume in t_temp

-

Figure C.3: Algorithm of the charge condition refinement procedure
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SOC_temp = current SOC;

t_temp = nextTimeslot;

More timeslots Abort == false?
-

forecast_price(t_temp) ≤ chargeLimit?

+

SOC_temp = SOC_temp + maxChargeVolume;

SOC_temp ≤ maxCapacity? Abort = true;
-

Abort == false forecast_price(t)< 
forecast_price(t_temp)?

+

SOC_temp = SOC_temp – q.out.forecast(t_temp) / 
outputEfficiency;

+

SOC violates DOD constraints?

Abort = true;
dischargeCondition = false;

+

Not in 
Heuristic 3

start

end

t_temp = nextTimeslot;

-

-

forecast_price(t_temp): forecast 
price in timeslot t_temp

q.out.forecast(t_temp): maximal 
expected discharge volume in 

t_temp

-

Discharge Condition Refinement

Figure C.4: Algorithm of the discharge condition refinement procedure
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