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LiQuIDITY AND ITS IMPACT ON BOND PRICES

ABSTRACT

In this paper, we propose a theoretical continuous-time model to analyze the impact of
liquidity on bond prices. This model prices illiquid bonds relative to liquid bonds and
provides a testable theory of illiquidity induced price discounts. The model is tested using
1992-1994 data from bonds issued by the German government. These bonds define a
market segment that is homogeneous in bankruptcy risk, taxes, age, and coupons, but
the bonds differ with respect to their liquidity. The empirical findings suggest that bond
prices not only depend on the dynamics of interest rates, but also on the liquidity of
bonds. Therefore, bond liquidity should be used as an additional pricing factor. The
findings of the out-of-sample test demonstrate the superiority of the model in comparison
with traditional pricing models.

1 INTRODUCTION

One of the core results of asset pricing theory is the tradeoff between risk and
expected return. Typically, risk is modeled as a price risk caused by only a few
factors that influence all assets in common. An example is the Capital Asset Pricing
Model! (CAPM) with the return of the market portfolio as the only factor. Another
example is the general equilibrium model of Cox/Ingersoll/Ross (1985a), in which
the factors do not have to be specified until the model is actually implemented.

However, these neoclassical models do not allow for individual factors that influ-
ence only a subset of assets. The liquidity of an asset is just such an individual
factor. Its importance is well documented in the literature. Empirical studies
suggest that the (risk-adjusted) average return of an asset increases with its illiqui-
dity. This result is reported for both stock?2 and bond? markets.
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1 See, e. g., Sharpe (1964).

2 See, e.g., Amibud/Mendelson (1986), Silber (1991), Kadlec/McConnell (1994), and Brennan/
Subrabmanyam (1996).

3 See, e.g., Sarig/Warga (1989), Amibud/Mendelson (1991), Boudoukb/Whitelaw (1991), Warga
(1992), and Kamara (1994).
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Bond Prices

The additional return of illiquid assets compensates for the risks of holding illiquid
assets. A typical risk for an investor who holds illiquid assets is that it might be
impossible to sell the assets rapidly, making possible for an investor to run out of
cash. A second form of liquidity risk is that selling an illiquid asset might cause the
transaction price to drop. Furthermore, illiquid assets often cannot be used in the
repurchase market.

Though the tradeoff between illiquidity and expected return has received growing
attention in the empirical literature and from market participants, there are few
theoretical models that analyze the impact of illiquidity on returns. Focusing on
the stock market, Amibud/Mendelson (1986) show that because rational investors
prefer liquid stocks that can be traded immediately at lower costs, the equilibrium
expected return is higher for illiquid stocks than for liquid stocks. Longstaff (1995)
argues that liquid stocks offer a valuable option to trade. Consequently, liquid
stocks trade at higher prices than comparable illiquid stocks.

Models that analyze the impact of liquidity on bond prices are more closely relat-
ed to our approach. Grinblatt (1995) develops a pricing model in which liquidity
considerations generate interest-rate swap spreads. He argues that for liquidity
reasons, the yield of a Treasury note is lower than a corresponding yield asso-
ciated with the fixed rate of a swap. Grinblatt applies the valuation technique
developed for derivatives and adds a liquidity factor to traditional models of the
yield curve. Basically, he assumes that holding Treasury notes yields an additional
continuous cash flow because of the liquidity of Treasuries. The motivation of this
cash flow is that Treasuries earn an additional interest in the repurchase market.

On the theoretical side, our paper proposes an extension of Grinblatfs (1995)
approach. Our approach is similar to Grinblatt in the sense that we price fixed-
income securities within a two-factor Cox/Ingersoll/Ross-type model 4. These factors
are the short-term interest rate and a second exogenous factor that accounts for
securities’ liquidity. Unlike Grinblatt (1995), who models the prices of liquid and
illiquid securities endogenously, we price illiquid bonds relative to liquid ones.
Thus, we can develop a testable model of the impact of illiquidity on bond prices
that is not affected by pricing errors of perfectly liquid bonds. Therefore, we
extend Grinblatt’s model by introducing time-dependent parameters that change
the non-market-fitting model of Grinblatt into a perfect fitting model for the liquid
segment?>.

The empirical contribution of our paper is to analyze the impact of liquidity on
bond prices for the German bond market. Not only do we measure this impact,
but we are also able to extract determinants of this impact that can be used to
forecast prices. An advantage of our empirical approach is that our model focuses
on bond markets rather than swap spreads. The latter may reflect not only liqui-
dity, but also default risk, while the Government segment of the bond market is
essentially default-risk-free. Thus, this segment is ideally suited to separate the
impact of liquidity from the impact of default risk.

4 See Cox/Ingersoll/Ross (1985b).

5 Hull/White (1990) propose such a procedure.
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The paper is organized as follows. In Section 2 we develop the theoretical model.
Section 3 describes the empirical implementation. We present the empirical results
in Section 4. Section 5 concludes.

2 MODELING THE LIQUIDITY SPREAD

In this section, we develop a simple continuous-time valuation framework for illi-
quid bonds that allows for both liquidity risk and interest-rate risk. Following the
lines of Grinblatt (1995), we model two stochastic factors, the instantaneous risk-
free rate of a liquid investment and an as yet unspecified factor that accounts for
the price differences between liquid and illiquid bonds. In contrast to Grinblatt,
we price illiquid bonds relative to liquid ones.

The dynamics of the short rate 7 are given by
dr = a(y —r)dt + o\rdz, D

where @, ¥, and o are constants, and z is a standard Wiener process. This assump-
tion is drawn from the term structure model proposed by Cox/Ingersoll/Ross
(1985b). The specification captures many of the observed features of the short-rate
behavior, such as mean-reversion, non-negative interest rates, and conditional
volatility depending on the level of the short rate. In addition, the model is analyt-
ically tractable®.

The second state variable x generates the liquidity-based discount of illiquid
bonds. The state variable is assumed to follow the diffusion process

dx = k(0 — x)dt + ¢\ xdw, ®)

where k, 6, and ¢ are constants, and w is a standard Wiener process. We consider
x as a pay-off rate that must be paid continuously by the investor due to the illi-
quidity of the instrument. Any disadvantage of an illiquid investment in compar-
ison with a liquid one would be included in this outflow. Examples are higher
costs of immediacy and opportunity costs due to the lack of an active repurchase
market.

The primary sources of these costs are not modeled explicitly here. Rather, we
assume that the overall illiquidity costs can be approximated adequately by (2).
This diffusion process aggregates the various stochastic events that are important
for the actual costs of illiquidity at some point in time7’. We assume costs that are
changing stochastically over time to reflect varying repurchase rates and bid-ask
spreads due to demand and supply changes. The square root process (2)
precludes negative values and is therefore an appropriate assumption for illiqui-

6 See Cox/Ingersoll/Ross (1985b).
7 See also Grinblatt (1995).
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dity costs. In addition, the mean-reverting drift reflects that the costs of illiquidity
are fluctuating randomly around some mean level 6.

In addition, we assume that the instantaneous correlation between dz and dw is
zero. This assumption could easily be relaxed to allow for nonzero correlation be-
tween dz and dw, although the resulting pricing formula for illiquid bond prices
would be more complex. Empirical validation of the model is needed to deter-
mine whether this additional complexity is warranted.

Apart from the costs of holding illiquid bonds, we assume perfect, frictionless,
arbitrage-free markets in which securities trade in continuous time. Thus, we can
express the bond prices as functions of the state variables. The state variables we
consider are the short-term interest rate 7, which influences all bond prices, and
the illiquidity factor x, which influences only the prices of illiquid bonds.

In this framework, the price L(7,£,T) of a liquid zero coupon bond with maturity in
T is the solution to the partial differential equation

2
L +L,,[a(y—r)—lar]+[w%r:rL. 3)

Subscripts denote partial derivatives. A is a constant parameter related to the
market price of interest-rate risk that depends on the preferences of the market
participants.

A solution of this parabolic partial differential equation that satisfies the initial
condition L(r,T,T) for all #,T" is given by Cox/Ingersoll/Ross (1985b) as

L(r,t,T) = A(t,THe P17 .

with the functions A(#,7) and B(¢,T) depending on the model parameters and resi-
dual maturity. For explicit expressions see Cox/Ingersoll/Ross (1985b), p. 393. The
prices of coupon bonds can be easily obtained as portfolios of discount bonds.

The price of an illiquid interest-rate contingent claim depends not only on the
short-term rate 7 but also on the factor x. It can be shown that the price V(rx,t,T)
at time ¢ of any illiquid discount bond with payoff at time 7'is the solution of the
partial differential equation

2 2

V,+V,lo(y —r)— Aorl+ V. [k(0 — x) — pgx]+ V,,,%r + Vxx%x =(r+x)Vv. 5

with the initial condition V(r,x,7,7) = 1. A and ¢ are the constant parameters
related to the market price of interest-rate risk and liquidity risk, respectively. As

8 In the following we refer to the parameters A and @ shortly as market prices of interest-rate and
liquidity risk, respectively.
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the short-term rate, the liquidity factor is not a traded asset. Therefore, a second
preference-dependent parameter, the market price of illiquidity risk ¢, appears in
the valuation equation. The basic difference between the valuation equation and
standard two-factor term structure models is that the illiquid investment appre-
ciates (adjusted for risk) at the instantaneous rate (r+x)dt, rather than at rdt, so an
investor requires an additional instantaneous return of xdt due to the illiquidity of
the bond.

Following a separation of variables approach, the partial differential equation (5)
can be decomposed in two partial differential equations with only one state
variable each. This leads to

V(r,x,t,T)= L(rt, T)D(x,t,T). 6)

Equation (6) has an intuitive (multiplicative) structure. The first term, L(7,T)
represents the value that the zero coupon bond would have if it were liquid. The
second term, D(x,%,T), adjusts for the illiquidity of the bond. This illiquidity func-
tion is expressed by a classical one-factor Cox/Ingersoll/Ross-model, the solution of
which is given by

D(x,t,T) = G(t,T)e” H D= @)
with
2x6
(1<+(,oc;+)5)ﬁ GZ
xe 2
G, T) = ®

(k+ Q¢+ ™ — 1 +2y

(-0
2[6)( ,,_ l] (9)
(K + Qg+ )X ™ — 1) +2y

X =K+ +2¢%. 10

The prices of illiquid coupon bonds can be obtained as portfolios of illiquid
discount bonds.

HT)=

Obviously, taking into account bond liquidity causes an increased complexity of
the valuation model. To keep complexity at an acceptable level, we assume that
an asset is considered either as liquid or illiquid, thus ignoring the real-world fuzz-
iness of this feature. However, when an asset is classified as illiquid, we do not
assume that this leads to a deterministic price reduction. Rather, the price of an
illiquid asset depends on the stochastic state variable x.
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Apart from technical details, the model presented so far corresponds to the
approach of Grinblatt (1995). In the following, we take a different approach.
Rather than determining the current values of liquid bonds endogenously, we are
interested in pricing illiquid bonds relative to the prices of liquid bonds. Such an
approach seeks to explain the price discount due to illiquidity given the prices of
liquid bonds. Therefore, we need a model that is able to reproduce an arbitrary
market yield curve within the liquid segment.

We follow the lines of Hull/White (1990) to turn the above non-market-fitting
model into a model that exactly fits an exogenous term structure of liquid
discount bonds. We do this by allowing for a time-dependent parameter A=A(#)
within the market price of interest-rate risk®. Given the parameters describing the
short-rate process (1), we use a numerical procedure to determine A(#) in such a
way that the model perfectly matches the current yield curve of liquid bonds. The
basic structure of formula (4) still holds, although the time dependency involves
more complex expressions for A(#,7) and B(4,7). These expressions must be
solved numerically.

We obtain the values of illiquid bonds as a solution to the fundamental valuation
equation (5), generalized through the time-dependent function A(#). The structure
(6) of this solution and the valuation expressions (7) — (10) remain unchanged. As
a result we obtain a valuation framework for illiquid instruments that takes as
exogenous the initial term structure of interest rates generated by liquid bonds.
This is the main difference between our approach and that of Grinblatt (1995).

3 DESIGN OF THE EMPIRICAL STUDY

The empirical implementation of the model described in Section 2 requires four
steps. First, we need a homogeneous market segment in which bond prices differ
with respect to their liquidity [see Section 3.1]. Second, we must classify the bonds
in the market segment according to their liquidity [see Section 3.2]. Third, we must
test the empirical quality of the classification [see Section 3.3]. Fourth, we must
estimate the parameters necessary for testing the model on the basis of the prices
of bonds being classified as liquid and illiquid, respectively [see Section 3.4].

3.1 Dara

Our model explains price differences between liquid and illiquid bonds. To test
our model, we need bonds that differ only in their liquidity. To avoid return differ-
ences due to differences in default risk, we restrict ourselves to bonds issued by
the German Government (BUND) and its state-operated funds (BAHN, POST). The
bonds can be viewed as default-risk free. To form a homogeneous market
segment, we further restrict the data set to non-callable straight bonds with fixed

9 Alternatively, we could choose to make the other model parameters time dependent. For
economic and technical reasons, we choose to make the market price of interest-rate risk time
dependent. See Ubrig/Walter (1996) for a discussion of this topic.
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coupons, identical tax treatment, and initial time to maturity of ten years, which is
the typical time to maturity of German Government bonds. The non-callable
restriction avoids any bias caused by implicit call options. Restricting the analysis
to bonds with identical initial maturity dates ensures that bonds with identical resi-
dual maturity are of the same age. Hence, we also avoid a possible bias due to
effects of aging.

In total, 143 bonds satisfy the criteria for our sample period, January 1992 through
December 1994. Using daily observations, 755 quotes are available for each bond.
The bond prices used in this study result from the daily noon auction carried out
at the Frankfurt Exchange, which is the largest in Germany. The data are provided
by the German Financial Data Base in Mannheim.

3.2 CILASSIFICATION OF BONDS

In our second step, the bonds described above are classified according to their
liquidity. A straightforward approach is to estimate the liquidity of the bonds
directly by using measures of liquidity, e. g., the bid-ask spread!’. However, since
bid-ask spreads are not available in our sample, our classification must be based
on other observable indicators of liquidity.

For instance, Elton/Green (1998) use the trading volume of a bond as such an
indicator. Our data set contains only information on volume traded at the Frank-
furt Exchange. Since only a small part of total trading volume is carried out via an
exchange in Germany, Frankfurt Exchange trading volume might not be a good
proxy for total trading volume and liquidity. Lassak (1991) suggests measuring the
liquidity of a bond by the number of trading days with zero trading volume for
the bond and by the price jumps after a non-trading period. This approach is
based on the idea that liquid bonds are traded more frequently and with smaller
price changes than are illiquid bonds. However, this approach is inappropriate to
our study, since nearly all the bonds in our sample are traded on every trading
day. Therefore, the measure of Lassak is reduced to a measure of absolute price
changes. Since our model should explain bond prices, measuring liquidity on the
basis of absolute price changes would obviously lead to biased test results.

The classification used here follows Warga (1992), who reports that the age of a
bond and the amount of bond issue!! still available in the market are the best
proxies for bond liquidity. Since the German government does not repurchase
bonds, the amount outstanding equals the issue size of a bond. Therefore, we
proxy bond liquidity with issue size.

To control for age effects, we only compare bonds that are issued within the same
year. The bond with the maximum issue size of each year is classified as a liquid
bond, the one with minimum issue size as an illiquid bond. All remaining bonds
belong to a control group. Bonds with the same issue size are assigned to the

10 For a discussion of liquidity measures, see Kempf(1998).
11 See also Fisher (1959) and Tanner/ Kochin (1971).
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same group. Consequently, more than one bond of an issue year could be classi-
tied as liquid or illiquid.

Once a bond is classified as liquid, this classification persists for the entire life of
the bond. In general, the liquidity of a bond reduces over time since a growing
part of the issue is held by investors until maturity and is, therefore, not available
for trading purposes. However, it seems reasonable to assume that the relative
liquidity advantage of bonds with high issue size compared to those with low
issue size remains. After summarizing the classification results in Table 1 we empi-
rically test this hypothesis.

Table 1: Classification Resulls

Year | Number of liquid Number of illiquid | Number | Coupon range Coupon range

of bonds (Issue size bonds (Issue size of of of

issue | in million DM) in million DM) remaining | liquid bonds illiquid bonds
bonds

1982 8 (1,600) 2 (850) 4 7.75% — 9.75% 8% — 9.5%

1983 | 8 (1,600) 1 (800) 3 7.5% — 8.25% 8.5%

1984 8 (2,000) 2 (875) 2 7% — 8.25% 7.25% — 8.25%

1985 |5 (2,500) 1 (800) 6 6.5% — 7.5% 7%

1986 | 2 (4,000) 1 (850) 6 5.75% — 6.5% 6.375%

1987 | 7 (4,000) 1 (900) 8 5.5% — 6.75% 6.25%

1988 1 (5,000) 3 (2,000) 7 6.375% 6.25% — 6.625%

1989 |1 (5,000 1 (2,000) 7 6.5% 7%

1990 1 (17,000) 1 (2,000) 7 9% 9%

1991 |1 (18,000) 2 (3,000 5 8.25% 8.375% — 8.5%

1992 |1 (19,000) 1 (4,000) 10 8% 7.5%

1993 |1 (16,000) 2 (5,000) 8 6.5% 6.125% — 6.25%

1994 | 3 (10,000) 1 (5,000) 4 6.75% — 7.5% 7.5%

Sum |47 19 77 - -

Table 1 shows the number of issues by group and issue year. The corresponding
issue size is given in brackets (in million DM). The bonds issued in 1982 deter-
mine the short end of the yield curve in 1992, which is the beginning of our
testing period.

The issue size increased over the research period, especially after the German
unification in 1989. However, the issue size varied considerably within each year.
Except for 1982, liquid bonds have at least twice the issue size of illiquid bonds in
our sample. Both groups contain issues from the German government (BUND)
and issues from the state-operated funds (BAHN and POST). The majority of liquid
bonds are BUNDs. 1lliquid bonds are often issued from BAHN and POST. It is often
argued that BUNDs are more popular for foreign investors, which leads to yield
differences between BUND and BAHN or POST. If this is the case, the higher
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number of investors should indeed make BUNDs more liquid than BAHN or POST
bonds'2. Thus, the argument of different degrees of popularity provides another
explanation for liquidity differences.

Return differences could also be due to coupon differences between liquid and
illiquid bonds. Since our data do not contain pairs of bonds with identical issue
dates and coupon sizes, but different issue sizes, we cannot completely rule out
this possibility. However, 7Table 1 shows that there are no systematic coupon
differences between liquid and illiquid bonds [see columns 5 and 6 in Table 1.
Table 1 suggests that our portfolios of liquid and illiquid bonds do not show
systematic tax-induced return differences.

3.3 EmPIRICAL QUALITY OF THE CLASSIFICATION

Having presented our classification scheme, we now test whether issue size is a
reasonable proxy for the liquidity of a bond. Our test is based on the assumption
that ceteris paribus, liquid bonds have higher prices than illiquid ones. If this
assumption holds for the German bond market, the bonds classified as liquid
should have higher prices than the corresponding bonds in the remaining group.
The prices of the latter bonds should be above the prices of the illiquid bonds.
This joint hypothesis (illiquidity yields to price reductions and issue size is a
reasonable proxy for liquidity) is tested below.

Unfortunately, the question of whether issue size is an adequate proxy for liquid-
ity cannot be analyzed separately. Therefore, a rejection of the joint hypothesis
could either be traced back to issue size being an inappropriate liquidity measure
or to the lack of a price reduction due to illiquidity. However, in our case, this
well-known problem of joint hypothesis should be of minor importance. As the
discussion in Section 1 shows, there is strong empirical evidence that illiquidity
causes price reductions. Therefore, we can safely assume that a possible rejection
of the joint hypothesis indicates that issue size is in fact an inappropriate liquidity
proxy.

To test this hypothesis, we use only liquid bonds to estimate the term structure of
interest rates for each of the 755 days. To find discount factors that explain the
observed market prices of coupon bonds, we apply a two-step procedure. In the
first step, we use a quadratic linear programming approach to determine a discrete
discount function. This results in term structure estimates that can very accurately
explain observed bond prices. However, this approach fully transfers noise in the
data to the term structure of interest rates. Therefore, to obtain a smooth yield
curve, we approximate the corresponding term structure of interest rates in a
second step, using a cubic spline function consisting of ten polynomials!3. Thus,
we are able to obtain term structures that explain observed prices of liquid
coupon bonds with an average absolute pricing error of only DM 0.001.

12 For example, Demsetz (1968) finds a positive effect of the number of investors on the liquidity of
an asset.
13 For details, see Ubrig/Walter (1997).
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Given the term structure of interest rates within the liquid segment, we are able to
determine the theoretical prices the bonds would have if they were liquid. We
compare these theoretical prices with the actual market prices of the illiquid
bonds. Figure 1 shows the mean price discounts due to illiquidity for each day of
the sample period.

Figure 1: Liquidity Discount Over Time
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12

1

0.8 1

06 T

0.4 1

0271

ol 1 AL
|

-0.2
Jan 92 Dec 94

Time

Several results are worth noting. First, Figure 1 shows that, on average, illiquid
bonds trade at a discount compared to liquid bonds. Second, there is no time
trend in the liquidity discount4,

On average, the illiquid bonds trade at a significant discount of DM 0.40 per DM
100 nominal value (t-value® = 7.14)1¢, This result supports our joint hypothesis
that illiquid bonds have a higher yield than liquid bonds, and that issue size is a
reasonable proxy for liquidity.

The average discount cannot indicate whether liquidity differences between bonds
with high and low issue size persist during the life of the bond, or if they disap-
pear while the bond is maturing. Therefore, we repeat the above analysis, group-
ing the bonds in time-to-maturity segments with length of one year. For each illi-

14 We used an Augmented-Dickey-Fuller-Test with time trend to check this visual impression. We
found no significant trend. The liquidity discount fluctuated around a constant, estimated as 0.024.
The mean-reversion parameter was highly significant.

15 All significance tests in this paper are based upon the estimation procedure proposed by
Newey/West (1987) which allows for autocorrelation and heteroscedasticity in the residuals.

16 The remaing bonds trade at a significant discount of DM 0.10 per DM 100 nominal value (t-value =

3.62).
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quid bond with a residual maturity between zero and one year, we determine the
price it should have if it were liquid. This price is compared to its market price.
The remaining nine maturity segments are treated in a similar manner. Table 2
summarizes the results.

Table 2: Liquidity Discount for Different Maturity Segments

Maturity Segment | Mean Discount t-Statistics F-Statistics

() (DM) (Level of Significance) | (Level of Significance)
1 0.035 1.94 (0.053) -
2 0.108 9.34 (< 0.001) 11.56 (< 0.001)
3 0.087 7.17 (<0.001) 1.61  (0.205)
4 0.206 16.71 (< 0.001) 47.34 (< 0.001D)
5 0.122 11.10 (< 0.00D) 26.05  (<0.001)
6 0.350 30.37 (< 0.001) 205.72 (< 0.001)
7 0.386 34.47 (<0.00D) 491 (0,027
8 0.805 58.22 (< 0.001) 55581 (< 0.001)
9 0.799 68.83 (< 0.001) 012 (0.726)

10 0.998 87.86 (< 0.001) 151.43 (< 0.001)

Explanation: The maturity segment t includes all bonds with a residual maturity between t—1 and t
years. The mean discount is the mean price difference between the theoretical price of
comparable liquid bonds and the market prices of the illiquid bonds of the respective
segment. The #statistic corresponds to the hypothesis that the mean discount is zero. The
F-statistic corresponds to the hypothesis, that the mean discount in segment t is equal to
the discount in segment t—1.

The liquidity discount in 7able 2 is significant for all maturity segments. Thus,
liquidity differences between illiquid and liquid bonds persist while the bonds are
maturing.

The table shows that the discounts tend to increase with the bonds’ maturity. The
smallest discount of DM 0.035 is obtained for the maturity segment between zero
and one year. The maximum of almost DM 1 per DM 100 nominal value is
obtained for the segment between nine and ten years. The hypothesis that all ten
estimated liquidity discounts are equal is rejected on a 1% level (F-statistic = 825).

Table 2 also shows F-statistics for the hypothesis that neighboring maturity
segments result in identical price discounts. For most comparisons, the liquidity
discount is significantly higher in the longer-maturity segment.

Figure 2 illustrates the results. The mean liquidity discounts as a function of resid-
ual maturity [in DM per DM 100 nominal value] are approximated with a fifth-
order polynomial. The figure also graphs the corresponding mean values present-
ed in Table 2.
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Figure 2: Liquidity Discount as a Function of Residual Maturity
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Summing up the (model-independent) results obtained so far, two results are
worth noting. First, issue size turns out to be a reasonable proxy for liquidity.
Second, liquidity differences persist during the life of a bond.

3.4 PARAMETER ESTIMATION

The aim of our theoretical model is to explain the price differences between liquid
and illiquid bonds. According to this model, the prices of illiquid bonds depend
on two stochastic factors, the instantaneous interest rate 7 and the instantaneous
liquidity factor x. To test the model, we must estimate the parameters of the
stochastic processes (1) and (2). In this section, we present the estimation proce-
dure and the resulting parameters.

In the first step, we generate time-series of the instantaneous interest rate 7(#) and
liquidity factor x(9. Since neither the instantaneous interest rate nor the liquidity
factor are directly observable, we must estimate them from observable variables.
We calculate the short-term interest rate r(#) of liquid bonds by extrapolating the
yield to maturity of two liquid bonds with one payment day outstanding. As an
alternative, we could use money-market rates. However, these might reflect
default risk present in this market segment. In addition, we would have to assess
the liquidity of the segment. Our procedure avoids both problems.

We determine the liquidity factor in a similar way. First, we calculate the yields of
the two smallest-issue-size bonds with one payment day outstanding. In addition,
we take the corresponding yields from the term structure of liquid bonds. If the
illiquid bonds were liquid, then they should offer these corresponding theoretical
yields. We take the difference between actual and theoretical yield to maturity as a
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proxy of the unobservable instantaneous liquidity spread x(#. Thus, we assume
that the instantaneous liquidity spread equals the liquidity spread derived from
two illiquid bonds with time to maturity of less than one year.

This procedure leads to two time series of instantaneous interest rates r(#) and
instantaneous liquidity spreads x(#). Each series covers the research period
1992-1994 and has 755 observations. The series are shown in Figure 3.

Figure 3: Time Series of the Short Rate (r) and the Liquidity Factor (x)

Short Rate r Liquidity Factor x
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The average instantaneous interest rate is 6.77%, and the average instantaneous
liquidity spread is 0.17%. The liquidity spread is different from zero at the 1% level
with a #statistic value of 7.45. However, we note that the liquidity spread is not
uniformly positive through time. This contradicts our theoretical model and might
be due to an approximation error in the procedure used to determine x(f. A
more detailed analysis indicates that short-term price variations of a few illiquid
bonds are responsible for many of the negative values. The negative values are
excluded in the estimation procedure presented below.

We now turn to the estimation of the parameters underlying the x and the 7pro-
cesses. We use a Euler scheme to discretize the stochastic processes (1) and (2),
and determine the parameters of the discretized version by means of a maximum
likelihood method. To estimate the parameters of the interest-rate process, we use
the entire time series of 755 observations. For the process parameters of the
instantaneous liquidity spread, we exclude the 99 that have negative values,
leaving 656 observations. Table 3 summarizes the estimation results.
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Table 3: Parameter Estimates

Long-Term Mean Mean-Reversion Volatility Parameter
Parameter
Interest-Rate Process Y= 0.05144 o= 0.6192 o = 0.0495
Liquidity Process 6 =0.0018 k=778 ¢ =0.6883

Explanation: This table contains the parameter estimates for the discretized version of the processes (1)
and (2).

The parameter results for the interest-rate process are in line with those reported
for other research periods in the German bond market.”

A comparison of the parameters for the interest-rate process and the liquidity
factor shows quite different time-series properties. In particular, the strong mean-
reversion (¥) and high volatility (¢) of the liquidity process are striking. Cross-
correlation analysis between the changes in the interest rate and changes in liqui-
dity spread shows a slightly negative contemporaneous correlation (—=0.19), but no
lagged correlation. Although the cross correlation turns out to be statistically signi-
ficant, we interpret the value of —0.19 as low enough to be ignored in our theore-
tical modeling.

4 EmpIRICAL TESTS

To provide insights into the empirical validity of the proposed model, we use a
two-step approach. In Section 4.1 we perform in-sample tests to analyze how well
the model fits observed price discounts due to liquidity differences. However, in-
sample tests have a major drawback. They provide no information on the most
relevant topic for investors, namely, whether the model can be used to improve
investors’ price forecasts. To test the forecasting ability of our model, we add an
out-of-sample test in Section 4.2.

4.1 IN-SAMPLE TESTS

The solution of the fundamental pricing equation (5) provides us with the theore-
tical prices of illiquid bonds. Given the current term structure of liquid bonds and
the parameters of the liquidity process (2), there is only one unknown parameter
in the model, which is the market price of liquidity risk, ¢. This parameter reflects
the unobservable preferences of market participants. We estimate the parameter in
the sample by minimizing the sum of squared differences between observed
prices and theoretical prices within a one-day period.

The average absolute price difference between market prices and theoretical
prices of illiquid bonds is DM 0.2224 per DM 100 nominal value. Based on both

17 See Walter (1996), p. 155.
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illiquid and liquid bonds, the average absolute price difference between market
prices and theoretical prices reduces to DM 0.1394. This reduction results from the
fact that our model explains prices of liquid bonds almost perfectly.

To provide a useful point of reference for the results obtained in our model, we
estimate two alternative benchmark models. The first model is a one-factor Cox/
Ingersoll/Ross-type model. We use it to explain only illiquid bonds, i.e., we
assume that prices of illiquid bonds are determined solely by a single stochastic
factor, which is described by (1). Given this assumption, the theoretical prices of
illiquid bonds are given by (4). This benchmark is based on the following idea: A
bond trader, who is aware of the price differences between liquid and illiquid
bonds, could use two different valuation models, one for liquid and one for illi-
quid bonds. We test whether such a procedure results in lower pricing errors for
illiquid bonds than does our model.

To implement the one-factor Cox/Ingersoll/Ross-type model, we use the same
methodology as before. We hold constant over the whole sample period the
parameters that describe the movement of the short rate, and estimate the market
price of interest-rate risk, A, each day on the cross-sectional data of illiquid bonds.
More precisely, we estimate A by minimizing the sum of squared differences
between the model and market prices for each day under consideration. As we do
in our model, we define the fitting error as the mean absolute difference between
the model and market prices of illiquid bonds for the benchmark model. The
average fitting error is DM 0.7682. This value is considerably higher than the value
of DM 0.2224 obtained in our theoretical model. The difference of DM 0.5458 is
different from zero at the 1% level. The tstatistic is 3.03. In addition, for 629 of the
656 valuation days, our model results in a lower fitting error than does the bench-
mark model.

In interpreting these results, we note that the same number of parameters — only
one — is determined for both models in the sample. We use this parameter to fit
the level of market prices of illiquid bonds for the benchmark model. However, it
is fitted essentially to the price differences between liquid and illiquid bonds in
our model. This might be the reason for the superiority of our model, since it
might be easier to explain price differences than price levels. Therefore, we use a
second, more challenging benchmark.

Ideally, we should compare our model with an alternative theoretical model to
explain price discounts due to illiquidity. Unfortunately, there is no such model in
the literature. Therefore, we have to adopt a purely empirical benchmark model to
explain prices of liquid and illiquid bonds. We use a cubic spline function with
ten polynomials to fit a joint term structure of liquid and illiquid bonds. Therefore,
the benchmark model uses all the coefficients of the cubic spline to fit all in-
sample bond prices. In contrast, our theoretical model uses the cubic spline func-
tion to fit the liquid bonds only and one single additional parameter to explain
price differences between illiquid and liquid bonds.

As goodness-of-fit criterion, we again use the average absolute difference between
model and market values, but we now consider both liquid and illiquid bonds.
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The fitting error for the benchmark model (spline approach) is DM 0.1678 per DM
100 face value. In comparison, our theoretical model results in an average abso-
lute difference between model and market values for liquid and illiquid bonds of
DM 0.1394. The difference between these values is significant at the 1% level. The
Fstatistic is 6.38. In 525 of the 656 valuation days, our model results in a fitting
error that is below that obtained for the benchmark model.

Overall, the results of the two in-sample tests show that the proposed model is
able to explain observed prices significantly better than standard Cox/Ingersoll/
Ross and spline models.

4.2 OUT-OF-SAMPLE TEST

The economic relevance of a model can be tested only by out-of-sample tests. If a
model improves our forecasting ability, then we can trade based on the model
and increase our performance. Therefore, we test the one-day forecasting ability
of our model.

As the benchmark, we use a model that forecasts the prices of illiquid bonds at
day ¢ based on the prices of liquid bonds at day # Using information about liquid
bonds from time ¢ instead of 7—1 ensures that our test results reflect only forecast-
ing errors for illiquid bonds, but not forecasting errors for liquid ones.

For each day #, we estimate the term structure of liquid bonds, using the spline
approach described above. Then we calculate the differences between the actual
prices of illiquid bonds and prices implied by the current term structure of liquid
bonds. The mean absolute difference is estimated as DM 0.461 per DM 100
nominal value. This result can be interpreted as follows: If an investor predicted
prices of illiquid bonds for time # knowing the prices of liquid bonds at time ¢, the
average forecast error would amount to DM 0.461.

In addition to the term structure of liquid bonds at time # our model uses informa-
tion on illiquid bonds available the day before, i. e., at time /—1. To determine our
model’s forecast ability, we proceed as follows: First, we estimate the parameters
of the liquidity process (2) for each day t-1 from the previous 100 days using the
method detailed in Section 3.4. Therefore, we use the first 100 observations of x
only as input variables for estimating process parameters, and the number of
observations on which our out-of-sample test is based is reduced. Second, the
market price of liquidity risk, ¢, is determined from the prices of illiquid bonds of
day t—1. Third, we use the parameters of the spread process and the one-day
lagged parameter estimate for @ to calculate the variable D(x,t,7) from equations
(7) through (10). Given the prices of liquid bonds, L(#,T), we are thus able to
determine our one-day price forecast, V(rx,t,7), of illiquid bonds from equation
(6). We compare this forecast with the actual prices of illiquid bonds at time ¢ The
mean absolute price difference is DM 0.253 per DM 100 nominal value. Figure 4
provides daily differences between the pricing errors of the benchmark model and
the pricing errors of our model.
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Figure 4: Improvement of the Forecast
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In comparison with the cubic-spline forecast, our model results in an average
absolute forecast error that is DM 0.208 smaller. This difference is significantly
different from zero at the 1% level. The #statistic value is 8.407. Our model beats
the benchmark model for 97% of all trading days.

This result suggests that the model proposed in this paper has economical rele-
vance for investors, since it improves their ability to forecast prices of illiquid
bonds. This improvement results from the fact that we can successfully forecast
the liquidity factor x from its history. In essence, this means that equation (2)
describes the evolution of the liquidity factor x well enough to draw valuable
information from it.

5 SUMMARY

In this paper, we propose a theoretical continuous-time model to analyze the
impact of liquidity on bond prices. We use a market-fitting two-factor Cox/Inger-
soll/Ross-type model with the short rate and a liquidity factor as stochastic state
variables. This model prices illiquid bonds relative to liquid bonds and provides a
testable theory of illiquidity induced price discounts.

The model is tested using 1992-1994 data from bonds issued by the German
government. These bonds define a market segment that is homogeneous in bank-
ruptcy risk, taxes, age, and coupons, but the bonds differ with respect to their
liquidity. Therefore, the market segment we use is ideally suited to separate
liquidity effects from other effects.

We provide three main empirical results. First, illiquid bonds trade at a significant

discount of DM 0.40 per DM 100 nominal value as compared with liquid bonds.
Second, the liquidity discount increases with maturity. Third, our model is able to
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explain price discounts due to illiquidity much better than can existing models.
This result holds in the sample as well as out of the sample. In the sample, our
model beats the two benchmark models for 96% and 80% of all trading days, re-
spectively, and out of the sample as high as 97% of all days.

Summing up, our empirical findings suggest that bond prices not only depend on
the dynamics of interest rates, but also on the liquidity of bonds. Therefore, bond
liquidity should be used as an additional pricing factor. Our empirical results also
show that our model can explain the price impact of liquidity. In particular, the
findings of the out-of-sample test demonstrate the superiority of our model in
comparison with traditional pricing models.
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