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i 

Abstract 

The sequence of a postulated core melt down accident in the reactor pressure vessel (RPV) 

of a pressurised water reactor (PWR) involves a large number of complex physical and 

chemical phenomena. The main objective of the LIVE program is to study the core melt phe-

nomena during the late phase of core melt progression in the RPV both experimentally in 

large-scale 3D geometry in supporting separate-effects tests and analytically using CFD 

codes in order to provide a reasonable estimate of the remaining uncertainty band under the 

aspect of safety assessment. 

The main objective of the LIVE-L3A experiment was to investigate the behaviour of the mol-

ten pool and the formation of the crust at the melt/vessel wall interface influenced by the melt 

relocation position and initial cooling conditions. The test conditions in the LIVE- L3A test 

were similar to the LIVE-L3 test except the initial cooling conditions. In both tests the melt 

was poured near to the vessel wall. In the LIVE-L3 test the vessel was initially cooled by air 

and then by water; in the LIVE-L3A test the vessel was cooled by water already at the start of 

the experiment. 

The information obtained in the test includes horizontal and vertical heat flux distribution 

through the RPV wall, crust growth velocity and dependence of the crust properties on the 

crust growth velocity and cooling conditions. Supporting post-test analysis contributes to the 

characterization of solidification processes of binary non-eutectic melts. The results of the 

LIVE-L3 and LIVE-L3A tests are compared in order to characterize the impact of transient 

cooling condition on the crust solidification characteristics and melt pool behaviour including 

interface temperature, time to reach thermal hydraulic steady-state and the steady-state heat 

flux distribution. 

The report summarizes the objectives of the LIVE program and presents the main results 

obtained in the LIVE-L3A test compared to the LIVE-L3 test. 
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Zusammenfassung 

Der Ablauf eines hypothetischen Kernschmelzunfalls in einem Reaktordruckbehälter (RDB) 

eines Druckwasserreaktors (DWR) beinhaltet eine große Anzahl komplexer physikalischer 

und chemischer Phänomene. Das Hauptziel des LIVE Programms ist es, das Verhalten der 

Kernschmelze während der späten Phase der Kernzerstörung und –verlagerung im RDB 

sowohl experimentell in großem 3-dimensionalen Maßstab und in begleitenden Einzeleffekt-

untersuchungen als auch analytisch mit CFD Codes zu untersuchen. Dadurch soll eine bes-

sere Einschätzung der Bandbreite der verbleibenden Unsicherheiten unter dem Aspekt der 

Sicherheitsbewertung ermöglicht werden. 

Das Hauptziel des LIVE-L3A Versuches war die Untersuchung des Verhaltens eines 

Schmelzesees und der Krustenbildung an der Kontaktfläche Schmelze/Wand, worauf die 

Position des Eingusses und die anfänglichen Kühlungsbedingungen Einfluss haben. Die 

Versuchsbedingungen waren ähnlich zu denen des Versuches LIVE-L3, es herrschten je-

doch unterschiedliche anfängliche Kühlungsbedingungen. In beiden Versuchen wurde die 

Schmelze in der Nähe der Behälterwand eingegossen. In LIVE-L3 wurde die Behälterwand 

jedoch anfänglich durch Luft gekühlt und erst später durch Wasser, in LIVE-L3A wurde hin-

gegen die Behälterwand von Anfang an durch Wasser gekühlt. 

Die aus den Experimenten gewonnenen Informationen beinhalten Wärmestromverteilungen 

durch die Behälterwand, Wachstumsgeschwindigkeit der Kruste und Abhängigkeit von Krus-

teeigenschaften von der Wachstumsgeschwindigkeit und den Kühlungsbedingungen. Beglei-

tend wurden Nachuntersuchungen der Kruste zur Charakterisierung des Erstarrungsprozes-

ses der binären nicht-eutektischen Schmelze durchgeführt. Der Vergleich der Ergebnisse 

von LIVE-L3 mit LIVE-L3A zeigte den Einfluss der transienten Kühlungsbedingungen auf die 

Charkteristik der Kruste-Erstarrung, auf das Verhalten des Schmelzesees einschließlich der 

Kontakt-Temperaturen, auf die Zeit bis zum Erreichen eines stationären hydraulischen Zu-

standes und die Zeit bis zu Erreichen stationärer Wärmeströme. 

Der vorliegende Bericht fasst die Ziele des LIVE Versuchsprogramms zusammen und prä-

sentiert die wichtigen Ergebnisse von LIVE-L3A, verglichen mit LIVE-L3, auf. 
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1 Introduction 

The behavior of the corium pool in the lower head is still a critical issue in the understanding 

of Pressurized Water Reactors (PWR) core meltdown accidents. A number of studies have 

already been performed to pursue the understanding of a severe accident with core melting, 

its course, major critical phases and timing, and the influence of these processes on the ac-

cident progression. The thermal behavior of a single-phase melt pool during steady-state can 

be well modeled by now [1-3]. However, uncertainties still exist in the description of the tran-

sient melt behavior, such as e.g. formation and growth of the in-core melt pool, characteris-

tics of corium arrival in the lower head, and molten pool behavior after the debris re-melting, 

which are plant and accident sequence dependent [4]. 

These phenomena have a strong impact on a potential termination of a severe accident. It is 

therefore necessary to study the core melt phenomena both experimentally and analytically 

to provide a reasonable estimate of the remaining uncertainty band in regard to safety as-

sessment. 

To complement the experimental data on melt pool behavior in the vessel lower head 

Karlsruhe Institute of Technology (KIT) performs large-scale tests in the LIVE program [5], 

[6]. The LIVE tests are designed to investigate the core melt behavior in the lower plenum of 

the reactor pressure vessel and the influence of the cooling of the vessel outer surface with 

water in the conditions that may occur during core meltdown accident in PWRs [7]. To simu-

late the corium melt a non-eutectic binary mixture of sodium nitrate NaNO3 and potassium 

nitrate KNO3 is used. 

The information obtained from the LIVE experiments includes the melt temperature evolution 

during different stages of the test, the heat flux distribution along the reactor pressure vessel 

wall in transient and steady-state conditions, the crust growth velocity and the influence of 

the crust formation on the heat flux distribution along the vessel wall. In the post-test analysis 

crust thickness profile along the vessel wall, the crust composition and the morphology are 

determined. 

Complimentary to other international programs with real corium melts, the results of the LIVE 

activities provide data for a better understanding of in-core corium pool behavior. The ex-

perimental results are being used for the development of mechanistic models for the descrip-

tion of in-core molten pool behavior and their implementation in the severe accident codes 

like ASTEC. 
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2 LIVE-L3A test design 

2.1 Test facility description 

The LIVE test facility consists of 3 main parts: the test vessel with cooling system, the volu-

metric heating system and a separate heating furnace. All parts of the LIVE test facility are 

arranged in a scaffold having three levels. On level 0 (the floor of the experimental hall), all 

signal cables come together in different control cabinets. Here the measurement signals are 

collected and transmitted to the control room which is located next to the experimental hall. 

In the control room, the data acquisition system and online monitoring systems are arranged. 

On level 0, also the power supply of the heating system and the corresponding hardware to 

control the heating system is located.  

On level 1, the LIVE test vessel is positioned. The LIVE test vessel is a 1:5 scaled RPV of a 

typical pressurised water reactor (PWR). For the first and second phase of the LIVE experi-

mental program, only the hemispherical bottom of the RPV is used (Figure 1). The inner di-

ameter of the test vessel is 1 m and the wall thickness is ~ 25 mm. The test vessel is fabri-

cated from stainless steel. To investigate the influence of different external cooling conditions 

on the melt pool behaviour, the test vessel is enclosed by a second vessel (cooling vessel) to 

be able to cool the test vessel at the outside. The cooling water inlet is located at the bottom 

of the cooling vessel and the outlet is positioned at the top of the vessel. 

Figure 1: LIVE test vessel with volumetric heating system. 
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The volumetric heating system located in the LIVE test vessel is also shown in Figure 1. 

More details on the heating system are given in the section 2.3. 

The top of the LIVE test facility just before the start of a test is shown in Figure 2. The LIVE 

test vessel and the cooling vessel are installed on three steel beams and are enclosed by an 

insulation layer. The test vessel is covered with a lid at the top. The lid consists of a layer of 

102 mm insulation material surrounded by 20 mm stainless steel plate at the top and 1 mm 

stainless steel at the sidewall and the bottom of the lid. Additionally, there is a 1 mm shield 

plate mounted 5 mm below the insulation layer to protect the lid from the radiation of the hot 

melt (Figure 3). 

 

Figure 2: Top view of the LIVE test vessel before the start of the test. 

The lid has several openings. There are two melt pouring openings to allow pouring of the 

melt either centrally or close to the sidewall of the lower head. The pouring position near the 

wall is located at the polar angle of 65.5°, and the azimuth angle between 112.5° and 202.5°. 

There are different small openings to light up the vessel or to take melt samples during the 

test. These small openings can also be used for the crust detection system. Additionally 

there are two openings for video observation of the melt surface. The atmosphere between 

Infrared camera 

Video camera 

Melt pouring openings 

Linear actuator with 
measuring rod 
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the melt surface and the upper lid is filled with nitrogen. The flow rate of nitrogen flushing is 2 

l/min. 
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Figure 3: Scheme of the insulation lid. 

To allow transient pouring of the melt into the test vessel, the melt is produced in the external 

heating furnace (Figure 4). The capacity of this tilting furnace is 220 l. If scaled to reactor 

case, this amount corresponds to the most conservative core melt down situation with 100% 
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anticipated melting of the core inventory including both oxidic and metallic components [8]. 

The maximum temperature of the heating furnace is 1100 °C. The heating furnace is 

mounted on a lifting device and is controlled independently in a separate scaffold, which is 

integrated into the scaffold of the test facility. During the pouring process the furnace can be 

tilted and moved upwards at the same time so that the pouring orifice always remains at the 

same position. 

Figure 4: Heating furnace for melt generation. 

When the melt reaches the desired temperature, the furnace is tilted and the melt is dis-

charged with a specified pouring rate into the test vessel via a heated pouring spout. The 

amount of the discharged melt is defined by the tilting angle and the melt mass flow rate de-

pends on the tilting velocity. There are two pouring spouts available for the melt pouring ei-

ther centrally or near the vessel wall, as shown in Figure 5. In addition, the heating furnace is 

equipped with a vacuum pump; so it is possible to extract the residual melt out of the test 

charging orifice 

pouring orifice 
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vessel back into the heating furnace at the end of the experiment to uncover the crust formed 

during the test. In this way, the crust thickness profile and the total mass of the crust can be 

measured after the test. The atmosphere in the heating furnace is filled with nitrogen during 

the melt preparation. 

The control panel of the heating furnace is installed at level 2 of the LIVE test facility. From 

this level the heating furnace is charged with melt components. 

Figure 5: Top view of the LIVE test vessel with two pouring spouts. 

 

2.2  Melt composition and melt generation 

2.2.1 Selection of simulant materials 

Simulant materials used in the LIVE program should, to the possible greatest extent, repre-

sent the real core materials in important physical properties and in thermo-dynamic and 

thermo-hydraulic behaviour. Therefore, the applicability of several binary melt compositions 

as a simulant for the oxidic part of the corium has been investigated. Important criteria for the 

selection are that the simulant melt should be a non-eutectic mixture of several components 

with a distinctive solidus-liquidus range of about 100 K, and that the simulant melt should 

have similar solidification and crust formation behaviour as the oxidic corium. Moreover, the 

Pouring spout 1 for central 

melt release 

Pouring spout 2 for lateral melt 

release 
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simulant melt should not be toxic and aggressive against steel and vessel instrumentation. 

And finally, the temperature range of the simulant melt should not exceed 1000 °C distinc-

tively because of the technical handling and the selection of the volumetric heating system 

and the heating furnace.  

For the first series of experiments a binary mixture of sodium nitrate NaNO3 and potassium 

nitrate KNO3 is used. However, since nitrate salts are soluble in water, the applicability of 

such melts is restricted to dry conditions inside the test vessel. The eutectic composition of 

this melt is 50-50 mole% and the eutectic temperature is 225 °C [9]. The maximum tempera-

ture range between solidus and liquidus is ~60 K and corresponds to a 20/80 mole% NaNO3-

KNO3 mixture. This melt can be used in a temperature range from 224 °C (solidification) to 

370 °C (chemical decomposition). Figure 6 shows a cited phase diagram from [10]. Although 

mixtures of KNO3 and NaNO3 are often used as a corium melt simulant in nuclear engineer-

ing, the exact phase diagram, especially the position of the solidus line, is still under discus-

sion [14]. Therefore, the liquidus temperatures of this simulant with the heating up method 

was measured at KIT. The measured liquidus temperatures from 100% KNO3 to 50 mole% 

KNO3 / 50 mole% NaNO3 are given in Table 1. The liquidus temperatures of the 20/80 

mole% NaNO3-KNO3 composition from our measurements amounted to 284 °C [5].  

 

Figure 6: KNO3-

NaNO3 phase diagram given in the reference [10]. 
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Table 1: Liquidus temperature of KNO3-NaNO3 mixture (100 mole% to 50 mole% range). 

KNO3 
mole% 

Liquidus 
°C 

KNO3 
mole% 

Liquidus 
°C 

50 223.8 76 275.2 

52 223.7 78 278.0 

54 224.4 80 284.4 

56 227.2 82 290.1 

58 231.4 84 297.8 

60 236.7 86 300.7 

62 240.4 88 306.0 

64 245.0 90 310.1 

66 250.0 92 314.2 

68 253.5 94 319.0 

70 258.3 96 324.1 

72 262.2 98 328.5 

74 267.9 100 336.0 

 

 

2.2.2 Melt composition, preparation and generation 

The non-eutectic 20/80 mole% NaNO3-KNO3 melt was used in the LIVE-L3A experiment. 

The melt characteristics are described In Table 2. For the melt preparation, the residual melt 

of the previous experiment LIVE-L4, which used the same melt composition, was recycled. 

At the end of the test LIVE-L4, the residual melt in the test vessel was extracted from the test 

vessel back into the heating furnace. The composition of the residual melt was not identical 

to the original melt composition due to crust formation in the test vessel. The crust remains in 

the test vessel and is normally enriched in KNO3, the high melting temperature component of 

the melt. So the composition of the residual melt has to be determined. Moreover, only part 

of the melt generated in the furnace was poured into the test vessel during the LIVE-L4 test. 

Therefore, two melt samples were taken, one at the beginning of the test from the pouring 

spout and the other one from the melt pool just before the melt extraction from the test ves-

sel. Analysis of these melt samples and known mass of the residual melt in the heating fur-

nace allowed to determine the values of NaNO3 and KNO3 additives needed to obtain the 

desired 20/80 mole% NaNO3-KNO3 melt composition. The determination showed that 8.16 

kg of NaNO3 and 38.84 kg of KNO3 had to be added to achieve the desired total mass of 392 

kg or 210 l of the melt respectively in the heating furnace. 
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Table 2: Melt characteristics and preparation. 

Type NaNO3 KNO3 

Mole % 20% 80% 

Mass % 17.37% 82.63% 

Mass 68 kg 324 kg 

Total mass 392 kg 

Tliquidus 284 °C 

Tsolidus 224 °C 

Loading of the furnace 
~455 l powder (for T=20 °C) 

~210 l melt (for T=350 °C) 

Pouring mass 120 l (corresponds to ~31 cm melt height) 

Initial temperature 350 °C 

Flow rate of nitrogen flushing 2 l/min 

 

After loading of the heating furnace, the mixture was heated up for about 3 days to a tem-

perature of 350 °C before the test initiation and was kept at this temperature until the start of 

the experiment. During this time the atmosphere in the heating furnace was flushed with ni-

trogen at 2 l/min to avoid the chemical decomposition of the melt. 

 

2.3 Decay heat simulation 

The volumetric heating system has to simulate the decay heat released from the corium melt. 

Consequently, the heating system has to produce the heat in the melt as homogeneously as 

possible. Therefore a heater grid with several independent heating elements was con-

structed, as shown in Figure 7. The heating elements consist of shrouded electrical resis-

tance wires. The maximum design temperature of the heating system is 1100 °C. To allow a 

quasi-homogeneous heating of the melt pool, the heating system has six heating planes at 

different elevations with a distance of about 45 mm. Each heating plane consists of a spirally 

formed heating element with a distance of ~40 mm between each winding. The heating ele-

ments are located in a special cage to ensure the correct positioning. To realise a quasi-

homogeneous heating of the melt, each plane is controlled separately. 

The power, which the heating coil of each plane can provide, is determined by the length of 

the heating wire, the corresponding resistance and the supplied voltage. For the dimension-

ing of the heating system, an input supply voltage of 230 V was assumed. However, the volt-

age measured at the heating elements varies from 209 to 211 V so that the total maximum 

power of all heating planes amounts to 24.5 kW [5]. 
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Figure 7: LIVE volumetric heating system. 

The maximum power of the heating planes is given in Table 3 as an average value deter-

mined by different measurements. The vertical position of the heating planes in the test ves-

sel is also given, related to the bottom of the test vessel. For the quasi-homogeneously heat-

ing of the melt the maximum heating power is limited to about 18.5 kW. 

Table 3: Characteristics of the LIVE heating system. 

Heating 
plane 

Distance of the heating 
planes to the test vessel 

bottom, mm 

Diameter of 
the heating 

elements, mm 

Maximum power measured 
during commissioning, W 

6 36.4 2 1080 

5 90.4 3 2338 

4 135.4 4 2715 

3 182.4 4 6624 

2 233.4 4 6407 

1 278.4 4 5300 

   ΣΣΣΣ 24464 
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Before the test LIVE-L3A, the heating plane 4 was replaced because of the damage during 

the previous test. The new heating plane provides a comparable maximum power as the 

previous one. 

To control the heating system and to avoid overheating of the heating elements, two monitor-

ing thermocouples are installed at each heating element: one at the outer region and the 

other one at the inner region of the heating element coil. The power automatically switches 

off when the temperature exceeds 380 °C to avoid the overheating and chemical decomposi-

tion of the melt. 

The heating system is controlled by a separate PC control system, which is independent 

from the PC data acquisition system. The programme Visual Designer 4.0 is used to store 

and to display the data of the heating system. Here, the actual performance of the heating 

system and also the temperature of the monitoring thermocouples are stored. 

 

2.4 Facility instrumentation and data acquisition 

The LIVE test facility is extensively instrumented to monitor and control the experiment and 

to collect data for subsequent evaluation. In Figure 8 a scheme of the LIVE test vessel with 

some instrumentation is shown. All data is stored on a PC data acquisition system running 

under the Visual Designer 4.0. 

To measure the temperature at the inner and outer surface of the vessel wall, 17 thermocou-

ples are installed at five levels and along 4 azimuth angles at 22.5°, 112.5°, 202.5° and 

292.5° on the inner wall surface (named IT) of the test vessel and 17 thermocouples at the 

same positions on the outer wall surface (named OT) of the test vessel. The position of the 

IT and OT thermocouples is given in the Figure A-3 in the Annex A.2. Temperatures meas-

ured at these locations are used to calculate the heat flux through the vessel wall. 

Furthermore, 36 thermocouples are positioned in the melt pool to measure the melt pool 

temperatures at different positions (named MT). The position of the MT thermocouples is 

given in the Figures A-5 and A-6 in the Annex A.2. The thermocouples are uniformly distrib-

uted in the melt at a distance of 100 mm in horizontal and vertical direction between each 

other. The thermocouples are mounted at the cage of the volumetric heating system. 
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Figure 8: Scheme of the LIVE test vessel with some instrumentation. 

 

To quantify the crust growth at the vessel wall/melt pool interface three thermocouple trees 

were installed. The thermocouple trees were attached at the inner vessel wall along the azi-

muth angle of 35°. Each thermocouple tree consists of 7 thermocouples, which are arranged 

parallel to the vessel wall. For the first thermocouple tree CT4, which is located at the most 

lowest point, 100 mm above the bottom of the test vessel, the distance of the thermocouples 

from the inner vessel wall into the melt is 0, 9, 18, 27, 36, 45, 54 mm. For the other two ther-

mocouple trees CT2 and CT3, which are positioned 200 and 300 mm above the vessel bot-

tom of the test vessel respectively, the distance of the thermocouples from the inner vessel 

wall is 0, 3, 6, 9, 12, 15, 18 mm. Here the distance between the thermocouples is smaller 

comparing to the first thermocouple tree, since thinner crust growth is expected at these po-

sitions.  

In addition, several video systems are installed to observe the pouring process and the be-

haviour of the melt surface during one experiment. They include: 

- a conventional video camera directed from the upper lid of the test vessel onto the 

surface of the melt; 

- an infrared (IR) video camera directed from the upper lid of the test vessel onto the 

surface of the melt, viewing through a ZnSe window on the surface of the melt near 

the vessel wall. The view area of the camera is 22x17 cm. This camera operates in 
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the IR wavelength range from 7.5 to 13.0 µm and produces a real-time infrared re-

cording with a frequency of 0.25 s to 5 s according to the needs of the experiment. 

Motion pattern and flow velocity at the melt surface can be recorded by the IR cam-

era; 

- a video camera installed at the side of the test vessel. With this camera, the pouring 

process of the melt can be observed in more detail. 

Decay power input in the melt is recorded and melt samples are extracted during each test. 

Different openings in the upper lid of the test vessel allow pouring of the melt to the central 

region or close to the sidewall of the lower head. To be able to investigate the crust, which is 

formed at the wall of the vessel, the residual melt is extracted out of the vessel at the end of 

the test. 

The melt pool vertical temperature profile and the boundary temperature at the melt/crust 

interface can be measured by the crust detection system. The crust detection system con-

sists of a linear actuator and a measuring lance. The linear actuator is mounted on the lid of 

the test vessel. The measuring lance is attached to the linear actuator. The lance can be 

driven at 0.1 mm accuracy. The position of the crust detection system on the lid is at radius 

365 mm and azimuth angle 340°. 

At the bottom of the lance 5 thermocouples are installed. The distance between each ther-

mocouple is 5 mm. When the measuring lance touches the crust front, the temperature of the 

lowest thermocouple remains at a constant level. In this way the boundary temperature and 

the position of the crust can be measured. By moving the lance stepwise, the thickness of 

the thermal boundary and the temperature gradient within the boundary layer ahead of the 

crust can be determined. A picture of the crust detection system mounted on the lid of the 

test vessel is shown in Figure 9. 

At the outer surface of the cooling tank three thermocouples are installed to measure the 

temperature between the cooling tank and the insulation layer. 

All the details on the channel assignment and the instrumentation of the facility are given in 

the Annex A. 
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Figure 9: Crust detection system mounted on the lid of the test vessel. 

 

linear actuator 

measuring lance 
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3 Preparation and performance of the LIVE-L3A test 

The experiment LIVE-L3A was successfully conducted on April 23-25, 2008. It was prepared 

and performed nearly identically in comparison with the experiment LIVE-L3 [5]. The simu-

lated core melt was generated in the heating furnace as described in the section 2.2.2. The 

experiment started with the melt pour from the heating furnace into the test vessel. In Table 4 

the planned main test parameters and the test phases of the experiment are summarised. 

The melt was discharged in one single lateral pour and the planned initial temperature of the 

melt was 350 °C. The pouring mass was 224.4 kg (corresponds to 120 l volume). The only 

difference between the LIVE-L3A and LIVE-L3 experiments was the outside cooling condi-

tions. In LIVE-L3 the water cooling of the outside of the test vessel was started about 7200 s 

after the melt pouring. Therefore in this experiment the initially formed crust layer was par-

tially re-molten in the first phase of the test due to insufficient cooling by air and the increase 

of the melt temperature. In the second phase of the test after the water cooling initiation the 

new crust formed at the vessel wall and grew symmetrically. In contrast with LIVE-L3, the 

test vessel in the LIVE-L3A was cooled by water already 2 minutes before the melt pouring 

with ~47 g/s water flow rate. These conditions allow fast crust formation also influenced by 

the lateral melt pouring position, which can lead to asymmetry in the heat flux distribution and 

crust thickness. 

Table 4: Designed test parameter and test phases of the experiment LIVE-L3A. 

Melt characteristics and preparation 

Type NaNO3 KNO3 

Mole % 20 % 80 % 

Mass % 17.37 % 82.63 % 

Mass 68 kg 324 kg 

Total mass 392 kg 

Loading of the furnace 
~455 l powder (for T=20 °C) 

~210 l melt (for T=350°C) 

Pouring mass 120 l or 224.4 kg (corresponds to ~31 cm melt height) 

Initial melt temperature 350 °C 

Flow rate of nitrogen flushing 2 l/min 

Melt pour 

Position lateral 

Number of pours 1 

Furnace tilting velocity 0.5°/s 

Furnace target angle 76° 
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Pouring rate 6 kg/s 

Pouring spout temperature 360 °C 

Phase 1: Homogeneous heat generation with continuous outer vessel wall cooling 

Start time 145 s 

Boundary conditions water, continuous cooling 

Cooling water flow rate ~0.047 kg/s 

Heating planes all 

Heating power 10 kW 

Heat generation homogeneous 

Initial melt temperature 350 °C 

Phase 2: Reduction of heat generation 

Test conditions reaching of steady-state conditions in phase 1 

Start time 90237 s 

Boundary conditions water, continuous cooling 

Cooling water flow rate ~0.047 kg/s 

Heating planes all 

Heating power 7 kW 

Heat generation homogeneous 

Phase 3: Test termination and melt extraction 

End time 181400 s 

Test conditions reaching of steady-state conditions in phase 2 

Heating power switched off 

 

The measured flow rate of the cooling water after the melt pouring is shown in the Figure 10. 

The planned flow rate of ~47 g/s was kept very well throughout the whole test. 



3 Preparation and performance of the LIVE-L3A test 

19 

0 20000 40000 60000 80000 100000 120000 140000 160000 180000
-10

0

10

20

30

40

50

60

70

80

90

100

 DF2: Flowmeter DN10

F
lo

w
m

et
er

 D
N

10
 [m

l/s
]

T ime [s]
 

Figure 10: Cooling water flow rate in the LIVE-L3A experiment. 

After the completion of the pouring process, the first test phase with a homogeneous heat 

generation in the melt started. A heating power of approximately 10 kW was applied by 

switching all six heating planes simultaneously. This volumetric homogeneous heating of the 

melt was continued for about 25 hours to reach the steady-state conditions in the melt pool. 

 

After about 90237 s the test phase 2 was started, in which the heating power was reduced to 

7 kW to observe the influence of the power reduction on the crust growth and heat flux distri-

bution. This power level was kept for another 25.5 hours. In the last test phase the heating 

power was switched off and the extraction of the residual melt from the test vessel back into 

the heating furnace was initiated. The duration of melt extraction was 55 seconds.  

 

The course of the test LIVE-L3A test in chronological order is described in the Table 5. 
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Table 5: Sequence of events of the LIVE-L3A experiment. 

Time of day Event 

23.04.2008 

8:06 Melt temperature in the heating furnace 349.5 °C and 342 °C 

8:30 Start of the PC data acquisition system 

8:55 Weight of test vessel: 2017 kg (incl. pouring spout) 

8:56 Start of the external vessel cooling, cooling water flow rate ~0.047 kg/s 

8:58 Start of the video recording of the pouring process 

8:58:30 Start of the video recording of the melt surface (top and side view) 

8:59 Start of the IR camera recording 

9:00:03 Start of the pouring program of heating furnace 

9:03:44 End of the pouring process, furnace returned to the original position 

9:04 Weight of test vessel 2241 kg (incl. pouring spout) 

9:04:10 Start of the heating system, 10 kW, homogeneous heat generation 

9:08:20 Heating furnace power switched off 

9:10:30 Pouring spout removed, weight of the test vessel: 2242 kg 

10:00 Condenser – cooling water on 

24.04.2008 

9:08 Start of the crust thickness measurement with measuring rod 

10:01 End of the crust thickness measurement with measuring rod 

10:05 First melt sample extraction through central pouring opening in the lid 

10:06 Reduction of heating power to 7 kW, homogeneous heat generation 

25.04.2008 

9:10 Start of the crust thickness measurement with measuring rod 

10:33 End of the crust thickness measurement with measuring rod 

10:38 Second melt sample extraction through central pouring opening in the lid 

11:09 Weight of test vessel: 2249 kg (incl. extraction funnel) 

11:19:30 Start of the video recording of the test vessel 

11:24 Weight of test vessel: 2250 kg (incl. extraction tube) 

11:24 Heating power switched off, start of extraction of the residual melt 

11:25:30 End of the extraction 

11:28 Weight of test vessel: 2071 kg (without extraction tube) 

11:44 Cooling water flow switched off 

11:45:18 PC data acquisition switched off 
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4 LIVE-L3A test results 

4.1 Mass and initial temperature of the melt 

The experiment LIVE-L3A started with the pouring of the simulated corium melt from the 

heating furnace into the LIVE test vessel near to the vessel wall via the preheated pouring 

spout. The experimental time t = 0 s is determined by the first response of the thermocouple 

located in the pouring spout (ST1). 
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Figure 11: Initial melt temperature measured in the pouring spout in LIVE-L3A. 

The temperature measurement of the thermocouple ST1 is shown in Figure 11. The initial 

temperature of the NaNO3-KNO3 melt in the pouring spout was about 344 °C, which is in 

good agreement with the planned 350 °C.  

The mass of the test vessel during the pouring of the melt increased from about 2017 kg to 

2241 kg (Figure 12). Therefore about 224 kg of nitrate melt has been poured into the test 

vessel. With a density of about 1870 kg/m3 for the 20/80 mole% NaNO3-KNO3 melt with a 

temperature of 344 °C, determined in [11], a volume of ~119.7 l was released into the test 

vessel which is very close to the planned volume of 120 l. 
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Figure 12: Weight of the test vessel and melt release rate in LIVE-L3A. 

The vessel weight and the melt release rate are shown in Figure 12. The maximum pouring 

rate derived from the analysis of the weight of the test vessel was ~6 kg/s. 

 

4.2 Decay heat simulation in LIVE-L3A 

In order to compare the LIVE-L3A and LIVE-L3 test results the same power generation his-

tory was applied. The heating power generated by each of the six heating planes is shown in 

Figure 13. 

About 145 s after pouring initiation the upper heating plane was covered with melt and a 

heating power of approximately 10 kW was applied to heat the melt homogeneously by 

switching all six heating planes simultaneously. The measured total heating power of two-

minute average was 10025 W at 50000 s. The volumetric homogeneous heating of the melt 

was continued for about 25 hours. 

After 90237 s the second phase of the test was started and the heating power was reduced 

to 7 kW. This power level was kept for another 25.5 hours. The measured total heating 

power was exactly 7000 W in two minute average at 150000 s. At 181395 s of the experi-

ment time the heating power was switched off and the residual melt was extracted from the 

test vessel back into the heating furnace. 
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Figure 13: Heating power generated by each of the six heating planes in LIVE-L3A. 

4.3 Melt behaviour in LIVE-L3A 

The development of the melt temperature during the initial test period is shown in Figure 14. 

After the melt pouring the melt temperature in the middle and the lower part of the vessel 

decreased immediately, whereas the melt temperature in the upper part of the melt pool in-

creased slightly and then decreased to a constant value. The melt temperature in the lower 

part of the vessel decreased faster and it took shorter time to reach a constant value com-

pared to the melt temperatures in the middle and upper regions in the vessel. The time peri-

ods of the melt temperature at vessel height 70 mm, 170 mm and 270 mm to reach the quasi 

steady value were 800 s, 1500 s and 2000 s respectively. The melt pool temperatures at dif-

ferent elevations at the azimuth angle 0° during the whole test period are shown in Figure 15. 

The steady-state melt temperatures ranged from 290 °C in the vessel bottom area to 321 °C 

near the melt surface. Only at the position of the MT5 thermocouple, which is located close 

to the vessel bottom and near to the vessel wall, the temperature decreased below the liq-

uidus temperature of the melt. This indicates the crust formation at this position. The tem-

perature measurements along the azimuth at 90°, 180° and 270° are similar to the tempera-

ture measurements along the azimuth at 0° and the diagrams are shown in Figure C-1 to 

Figure C-3 in the Annex C. After 90237 s the heating power was reduced to 7 kW. The melt 

pool temperatures decreased to constant values between 285 °C and 310 °C. 
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Figure 14: Initial melt temperature during LIVE-L3A. 
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Figure 15: Melt pool temperatures at different elevations along 

the azimuth anlge 0° in LIVE-L3A. 

 

Table 6 presents the melt temperatures at different locations during 10 kW and 7 kW heating 

periods. The given values are averages over 2 minutes, i.e. the average of all values 60 s 

before and 60 s after the given time. No significant differences in the horizontal distribution of 

the melt temperature could be observed in spite of asymmetric melt relocation at the begin-

ning of the test. The temperatures at the same radius and the same depth but different an-

gles are always very similar. 
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Table 6: Temperatures measured in the melt pool during 10 kW and 7 kW test phases (val-

ues are averages over 2 minutes). 

Position 

Thermocouple 
number Azimuth 

angle ϕϕϕϕ 
Radius 
[mm] 

Depth from 
flange up-
per range / 

Vessel 
height 
[mm] 

Temperature 

during 10 kW 

[°C] 

50000s 

Temperature 

during 7 kW 

[°C] 

150000s 

MT1 0 74 450/70 295 290 

MT2 90 74 450/70 291 287 

MT3 180 74 450/70 296 292 

MT4 270 74 450/70 293 288 

MT5 0 174 450/70 252 240 

MT6 90 174 450/70 263 239 

MT7 180 174 450/70 293 286 

MT8 270 174 450/70 250 245 

MT9 0 74 350/170 305 297 

MT10 90 74 350/170 306 298 

MT11 180 74 350/170 303 295 

MT12 270 74 350/170 308 299 

MT13 0 174 350/170 302 294 

MT14 90 174 350/170 304 296 

MT15 180 174 350/170 305 297 

MT16 270 174 350/170 303 295 

MT17 0 274 350/170 305 297 

MT18 90 274 350/170 305 297 

MT19 180 274 350/170 304 296 

MT20 270 274 350/170 305 297 

MT21 0 74 250/270 322 308 

MT22 90 74 250/270 324 310 

MT23 180 74 250/270 323 309 

MT24 270 74 250/270 321 308 

MT25 0 174 250/270 322 308 

MT26 90 174 250/270 323 309 

MT27 180 174 250/270 322 308 

MT28 270 174 250/270 322 309 

MT29 0 274 250/270 322 308 

MT30 90 274 250/270 322 308 

MT31 180 274 250/270 322 308 

MT32 270 274 250/270 322 308 

MT33 0 374 250/270 323 308 

MT34 90 374 250/270 323 308 

MT35 180 374 250/270 323 309 

MT36 270 374 250/270 321 307 
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The development of the melt temperature vertical profile is shown at radial location 174 mm 

in Figure 16. The temperature of the melt at the bottom of the test vessel was always lower 

than the temperature of the melt at the upper part of the test vessel. The melt temperatures 

in the upper part of the melt pool were very similar during the whole test duration. The melt 

temperature in the lower part differed after ~5000 s. Except at the azimuth angle 180°, in 

other positions in the lower part of the pool the melt temperatures were below the melt liq-

uidus temperature. 

 

 

Figure 16: Melt pool temperatures at different positions at the radius 174 mm at different 

times in LIVE-L3A. 

 

4.4 Heat flux and heat balance in LIVE-L3A 

4.4.1 Calculated heat fluxes in LIVE-L3A 

The heat flux through the vessel wall can be calculated based on the temperature difference 

between the inner and outer surface of the test vessel wall. The heat flux q through a plane 

wall is given by:  

LTTkq iopla )( −⋅−=  (1) 

 

where 

qpla: heat flux, W/m2, 

50

100

150

200

250

300

230 240 250 260 270 280 290 300 310 320 330

LIVE-L3A, angle 270°, radius 174 mm

 500 s
 1000 s
 5000 s
 10000 s
 120000 s

Melt temperature [°C]

V
es

se
l h

ei
gh

t [
m

m
]

50

100

150

200

250

300

230 240 250 260 270 280 290 300 310 320 330

LIVE-L3A, angle 0°, radius 174 mm

 500 s
 1000 s
 5000 s
 10000 s
 120000 s

Melt temperature [°C]

V
es

se
l h

ei
gh

t [
m

m
]

50

100

150

200

250

300

230 240 250 260 270 280 290 300 310 320 330

LIVE-L3A, angle 90°, radius 174 mm

 500 s
 1000 s
 5000 s
 10000 s
 120000 s

Melt temperature [°C]

V
es

se
l h

ei
gh

t [
m

m
]

50

100

150

200

250

300

230 240 250 260 270 280 290 300 310 320 330

LIVE-L3A, angle 180°, radius 174 mm

 500 s
 1000 s
 5000 s
 10000 s
 120000 s

Melt temperature [°C]

V
es

se
l h

ei
gh

t [
m

m
]



4 LIVE-L3A test results 

27 

k: thermal conductivity of the wall, W/mK, 

To: outer wall temperature (measured by OT thermocouples), K, 

Ti: inner wall temperature (measured by IT thermocouples), K, 

L : wall thickness, m. 

 

To calculate the heat flux through a spherical wall, qsph, as in the case of the LIVE test vessel, 

the heat flux expressed in the Eq. (1) should be corrected accordingly. Assuming the inside 

area of a spherical wall is the same as that of a plane wall, and the spherical wall also has 

the same thickness as the plane wall one can obtain: 

)( oiplasph RRqq ⋅=  (2) 

 

where 

Ri: inner spherical wall radius, m, 

Ro: outer spherical wall radius, m. 

Figure 17: Definition of heat flux zones on the test vessel wall surface. 

 

Wall inner (IT thermocouples) and outer (OT thermocouples) temperatures at 17 positions 

were measured during the test at five levels. For the calculation of the heat fluxes through 

the vessel wall, five horizontal heat flux zones are defined on the test vessel wall surface, as 

shown in Figure 17. Each zone has its own local heat flux and surface area. The boundary 

between each zone under the melt surface is at the middle of the height between two levels 

of IT and OT thermocouples. The two upper zones are divided by the melt surface. The 

geometric data of the zones are given in Table 7. 
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Table 7: Geometries of the heat flux zones. 

 
Thermocouples Position to flange 

upper edge [mm] 
Height of zone 

[mm] 
Zone inner 
area Ai [m²] 

Zone 1 IT/OT 1 -520 32.5 0.1014 

Zone 2 IT/OT 2-5 -455 91.5 0.2855 

Zone 3 IT/OT 6-9 -337 112.5 0.3510 

Zone 4 IT/OT 10-13 -230 83.2 0.2387 

Zone 5 IT/OT 14-17 -140 176.9 0.5729 

 

Table 8: Correction factor for spherical form and wall thickness. 

 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

thermocouples 
IT/OT 

1 

IT/OT 

2-5 

IT/OT 

6-9 

IT/OT 

10-13 

IT/OT 

14-17 

polar angle, ° 0 30 51 65.5 76.5 

Ri/Ro 0.957 0.956 0.956 0.956 0.955 

wall thickness, mm 23.3 23.5 23.63 23.76 23.9 

 

The temperature measured by the IT and OT thermocouples are shown from Figure C-4 to 

Figure C-11 in Annex C. In Table 8, the local wall thickness and correction factor “Ri/Ro” for 

the five horizontal heat flux zones are given. The wall thickness is measured at the local po-

sitions of IT/OT thermocouples. The IT and OT thermocouples are mounted in grooves in the 

vessel wall. The height and diameter of the groves are equal to the diameter of the thermo-

couples. The groove depth for the IT thermocouples is 0.5 mm, and that for the OT thermo-

couples is 1 mm. Therefore the half of the total groove depth is deducted from the wall thick-

ness for the heat flux calculation.  

The wall of the test vessel is made of stainless steel AISI316Ti, the material number is 

X6CrNiMoTi17-12-2. The thermal conductivity of this material is taken from [12] and is pre-

sented in Table 9. 

Table 9: Heat conductivity of the AISI316Ti steel. 

Temperature, K 300 400 600 

Heat conductivity, W/(mK) 13.4 15.2 18.3 

 

Since the working temperature of the test vessel for the LIVE-L3A test was between 300 K 

and 400 K, the following equation can be obtained from the data given in the Table 9. The 

temperature is given in K. 
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)300(018.04.13)( −⋅+= TTk  (3) 
 

In the following, the results of the calculation of the heat fluxes based on the measurement of 

the inner and outer wall temperature are described in more detail. The thermocouple IT1 was 

destroyed during the test, therefore the thermocouple PT11 was used for the calculation of 

the heat flux for the heat flux zone 1. The value of PT11 is given in Figure C-12. The calcu-

lated heat fluxes during the whole test LIVE-L3A are also shown in Annex C from Figure C-

13 to Figure C-16. The average heat flux in each heat flux zone is shown in Figure 18. 
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Figure 18: Average heat flux values for the five heat flux zones in LIVE-L3A. 

The results show that the highest heat flux during the thermal hydraulic steady-state was in 

the zone 4 (heat flux qIT10-13), which is just below the melt surface (the melt surface was lo-

cated at the vertical angle of ~69°). The second highest heat flux zone was in the zone 3 

(qIT6-9), the level below the zone 4, followed by the zone 2 (qIT2-5). The lowest heat fluxes 

were calculated for the heat flux zones 1 (qIT1) and 5 (qIT14-17). 

In Table 10, the heat fluxes calculated with IT/OT measurements as 2 minutes average val-

ues at the steady-state during the 10 kW (time 50000 s) and 7 kW (time 150000 s) heating 

periods are listed.  
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Table 10: Calculated heat fluxes (W/m2) during pouring and during steady-state of 10 kW and 

7 kW heating power in LIVE-L3A. 

Plug 
Nr. 

Area 
zone 

Heat flux 
position qIT  

q at 10 kW 
steady-state 

50000 s 

q at 7 kW 
steady-state 

150000s 

Max. transient 
q at pouring 

1 1 qPT11 1983 2873 56461 

qIT2 (22.5°) 2432 1911 24351 

qIT3 (112.5°) 2425 1905 44432 

qIT4 (202.5°) 2529 2128 58690 
2-5 2 

qIT5 (292.5°) 2131 1616 18303 

qIT6 (22.5°) 6884 4068 25178 

qIT7 (112.5°) 6664 3615 20770 

qIT8 (202.5°) 9897 4988 29325 
6-9 3 

qIT9 (292.5°) 8555 5311 38009 

qIT10 (22.5°) 14205 9138 14672 

qIT11 (112.5°) 19002 11669 29914 

qIT12 (202.5°) 19825 11348 28261 
10-13 4 

qIT13 (292.5°) 17564 9707 28664 

qIT14 (22.5°) 1879 1769 4989 

qIT15 (112.5°) 2906 2693 12098 

qIT16 (202.5°) 2112 1929 3511 
14-17 5 

qIT17 (292.5°) 1650 1769 1632 

 

The mean value of the heat flux for each zone is shown in Figure 19. The results indicate 

that by increasing the heat generation in the melt pool the corresponding heat flux increases 

mainly in the upper part of the melt, whereas the heat flux in the lower part of the melt re-

mains almost constant. 

The horizontal heat flux distribution during the 10 kW heating period is shown in Figure 20. 

Considerable asymmetry in horizontal heat flux distribution is observed in the upper part of 

the vessel, where the contact area of the melt jet with the vessel wall was located. The open-

ing for the melt pouring in the upper lid is 80 mm in diameter. The contact area of the wall 

with melt is positioned at polar angle between 52°-72° and at azimuth angle between 112.5°- 

202.5°. Figure 20 shows that the heat flux through the melt pouring area during the steady-

state was about 1.4 times higher than the one at the opposite side. The asymmetric horizon-

tal heat flux distribution could result from the asymmetric melt relocation position. Probably 

the crust at the melt pouring area solidified in different cooling condition during the melt pour-
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ing period, which led to different crust properties such as crust thickness and crust thermal 

conductivity. 

Figure 19: Calculated heat flux distribution along the vessel wall in LIVE-L3A. 

 

Figure 20: Heat flux distribution at four azimuth angles during 10 kW steady-state  
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The maximum transient heat fluxes during pouring are also shown in Table 10. The transient 

heat fluxes during pouring were significantly higher than the heat fluxes during steady-state. 

All heat flux values during melt pouring are illustrated in Figure 21. The maximum heat flux 

values were in the zone 2 and zone 1 with ~59 kW/m2 and 57 kW/m2 respectively. After the 

melt pouring, the heat flux decreased rapidly in about 3 minutes, and then further decreased 

slowly to constant values. 
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Figure 21: Calculated transient heat fluxes during the initial period of 10 kW in LIVE-L3A. 

4.4.2 Heat balance during the steady-state in LIVE-L3A 

During the thermal hydraulic steady-state of a severe accident in the lower head of the RPV 

a part of the decay heat generated in the melt pool is removed through the bottom hemi-

spheric vessel wall and the rest of the decay heat is released from the melt pool upper sur-

face. The fraction of the heat transferred through the vessel wall is extremely important to 

determine the cooling effectiveness by external flooding for different heat generation and 

cooling rates. 

In the LIVE test facility the heat through the vessel wall (Qwall) is removed by water which 

flows from the bottom to the top opening of the cooling vessel. The heat through the test 

vessel wall can be calculated from the heat flux estimation, and the heat removed by water 

(Qwater) can be calculated based on the water inlet and outlet temperature and the water flow 

rate. The aim of the heat balance calculation in the test LIVE-L3A is a) to determine the Qwall 

for different heat generation levels and b) to check the reliability of the measurements in the 

LIVE facility by comparing Qwall with Qwater.  
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The total heat transfer through the vessel wall Qwall is the sum of the local heat flux multiplied 

by the corresponding surface area of the vessel wall:  

 

∑ ⋅= iiwall AqQ  (4) 

 

where 

qi: local heat flux, W/m2, 

Ai: surface area of the of the corresponding local heat flux zone, m2. 

 

The heat flux of each zone was calculated in section 4.4.1 and the corresponding surface 

areas are shown in Table 7.  

The heat removed by cooling water (Qwater) is calculated according to equation (5): 

 

)( inoutwpwater TTfcQ −⋅⋅=  (5) 

 

where 

cp: specific heat capacity of water, 4.193 J/gK at 10 °C, 

fw: water mass flow rate, g/s, 

Tout: outlet temperature of the cooling water, K 

Tin: inlet temperature of the cooling water, K 

 

In order to calculate the fraction of the heat transferred through the vessel wall at steady-

state conditions, two times are selected: 50000 s (10 kW period) and 150000 s (7 kW pe-

riod). The 2 minute average value of the heat transferred through the vessel wall (Qwall) and 

the heating power (Qheating) at these times are listed in Table 11. 

The results in the Table 11 show that more than 80 % of the total heat was removed through 

the vessel wall to the cooling water. This high value of Qwall resulted from the good insulation 

of the vessel upper lid. Furthermore, heat generation leads to a higher fraction of Qwall. About 

91 % of the heat was released through the vessel wall to the cooling water during the steady-

state phase with 10 kW heating power compared to about 86 % during the steady-state 

phase of 7 kW heating power. Most of the rest heat was removed through the shortcuts in 

the vessel flange and openings in the upper lid.  

 

Table 11: Heat balance between the heat transfer through the vessel wall and heating power 

Heating period Time Qwall Qheating Qwall/Qheating 

10 kW 50000 s 9125 W 10025 W 91 % 

7 kW 150000 s 6053 W 7000 W 86 % 
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To calculate the Qwater, the water inlet Tin and outlet Tout temperatures were measured during 

the test. It was found out after the test that the thermocouples used to measure these tem-

peratures (designated as ZT and AT) slightly deviated from the real values in the working 

temperature range. After the post-test calibration of these two thermocouples, following 

equations are obtained to correct the measured values of the water inlet and outlet tempera-

tures. 

measured

in

real

in TT ⋅+−= 0089.13389.0  (6) 

 

measured

out

real

out TT ⋅+= 9518.01419.0  (7) 

 

The temperature of the cooling water at the inlet was about 11 °C, the temperature of the 

cooling water outflow during the 10 kW steady-state was ~51 °C and during the 7 kW steady-

state it was reduced to ~37 °C. The corresponding temperature plot is given in Figure C-20.  

The heat balance between the heating power, Qwall and Qwater for the whole test duration is 

shown in Figure 22. 
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Figure 22: Heat balance between heating power, heat transfer through the vessel wall and 

heat removed by the cooling water in LIVE-L3A. 
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The heat removed by cooling water (Qwater) was ~7% lower than the total heat transferred 

through the vessel wall (Qwall). No noticable measurement errors can be detected for the wa-

ter flow meter and water temperatures, as well as for the wall inner (IT) and outer tempera-

tures (OT) for the Qwall determination. Therefore realistic value of the Qwall should be in the 

range between 0 % and 7 % of the measured Qwall. 

 

4.4.3 Behaviour of the melt surface 

As it is described in the section 2.4, an infrared camera is installed at the lid of the facility to 

observe the melt surface behaviour near to the vessel wall. The recorded thermograms are 

used to measure the temperature distribution on the surface of the molten pool and to iden-

tify the convection patterns in the fluid during different stages of experiments (Figure 23). 

 

 

Figure 23: IR images on the melt surface: 

top: 3 min after the melt pouring; bottom: steady-state during 10 kW. 
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The analysis of the recordings shows a complex picture of the fluid motion at the upper sur-

face. The general trend is that the fluid is transported from the center of the pool to the ves-

sel outer wall. To quantify the flow velocity, the IR pictures were analysed similarly to particle 

image velocimetry (PIV). Instead of seeds used in PIV, moving areas of the melt surface with 

distinctive patterns were used, assuming that they follow the flow dynamics. The displace-

ment of the patterns after 2 seconds was determined and the flow velocity was calculated. In 

the LIVE-L3A the flow velocity of the upper surface has been analysed during the transient 

phase and during the steady-state phase of 10 kW heat generation. 

The results of the measurements are presented in Figure 24 and Figure 25. The X-axis is 

given in the dimensionless term R/Rves where R is the starting radial position of the analysed 

point and Rves is the vessel radius (50 cm). The complex motion pattern leads to a large scat-

ter of the results, the calculated flow velocities during the transient phase of the test are 

within the range 0.3-0.4 cm/s. During the steady-state the flow velocity increases to the value 

of ~0.5 cm/s. 
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Figure 24: Flow velocity measured at the upper surface during the transient phase of the test. 
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L3A 10KW steady state
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Figure 25: Flow velocity measured at the upper surface during the steady-state of 10 kW. 

4.4.4 Melt pool temperature profile and boundary layer temperature 

The vertical melt pool temperature profile, the crust thickness and the melt/crust boundary 

temperature can be measured with the crust detection system shown in Figure 9. Without 

crust layer at the wall, the lance can touch the vessel wall at polar angle 47°. In Figure 26 the 

position of the crust detection lance is illustrated. 

Figure 26. Position of the crust detection lance used for crust thickness and vertical 

temperature profile measurements. 
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The experimental data obtained from the crust detection lance provide important information 

for the understanding of solidification character and melt pool behaviour. The temperature 

gradient ahead of the crust front is an important parameter to evaluate the melt solidification 

process which is discussed in the section 4.5.2. A detailed melt temperature vertical profile 

gives information about the heat transfer and flow pattern in the melt.  

The crust thickness detected with the lance at the polar angle 47° in the LIVE-L3A was 9.9 

mm during the steady-state of 10 kW and 17.4 mm during the steady-state of 7 kW. The melt 

pool temperature profiles during 10 kW and 7 kW heating period are shown in Figure 27. The 

vertical temperature profiles measured at the position shown in Figure 26, have four charac-

teristic temperature regions in the bulk of the melt pool: the first region was the temperature 

boundary layer, whose thickness was about 3 mm during the steady-state and the tempera-

ture gradient was ~9.5 K/mm; the second region was a down flow of the melt, the tempera-

ture in this area was very fluctuating; the third region was a stagnant zone with stratified 

temperature profile; the last region was a turbulent zone with almost homogenous melt tem-

perature distribution. Reducing the heating power from 10 kW to 7 kW led to a decrease of 

melt temperature about 10°C in the down flow zone and the centre zone.  

Figure 27: Melt pool temperature profiles during 10 kW and 7 kW heating periods. 

 

4.5 Post-test analysis in LIVE-L3A 
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into the heating furnace. Thus, the mass of the crust formed on the vessel wall at the end of 

the test was 45 kg, which corresponds to 20 % of the total melt mass in the test vessel. 

After the extraction of the melt and cool down of the test facility, the upper lid was removed 

from the vessel. A view into the test vessel after the test is shown in Figure 28. 

The crust formed at the vessel wall can be clearly seen. The upper edge of the crust indi-

cates the position of the melt surface during the experiment. The crust formed during melt 

pouring period on the left of the vessel can also be seen. The thickness of the crust was 

measured along two directions and crust samples were taken to investigate the crust charac-

teristics and composition. In the following sections the detailed post-test analysis is de-

scribed. 

 

 

Figure 28: View of the test vessel after disassembly of the lid in LIVE-L3A. 

4.5.1 Bulk melt composition in LIVE-L3A 

The original melt composition and the melt composition at the end of 10 kW and 7 kW heat-

ing periods were analysed from the samples taken by a steel rod. The melt solidified on the 

cold surface of the rod was used for the composition analysis. The samples were dissolved 

in water and the composition analysis was performed by determining the content of Na and K 

cations in the aqueous solution. The sampling positions and sampling times were:  
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- Sample 0: crust from the pouring spout opening. This sample corresponds to the 

original melt composition. 

- Sample 1: melt from the centre of the test vessel, at the end of the 10 kW phase. 

- Sample 2: melt from the centre of the test vessel at the end of the 7 kW phase. 

The composition of the melt and the corresponding melt liquidus temperature are given in the 

Table 12. The original KNO3 concentration was 79.7 mole%. Since KNO3 concentration in 

crust is distinguishingly higher than the KNO3 concentration in the melt pool, the concentra-

tion of KNO3 in the melt pool became lower as the crust developed. Corresponding to the 

change of the melt composition, the liquidus temperature of the melt pool was reduced from 

283.5°C to 278.5°C. The changing bulk melt liquidus temperature also means that the 

melt/crust interface temperature was changing during the test period. 

 

Table 12: Composition of the melt pool. 

 
Original sample 

(Sample 0) 
End of 10 kW 

(Sample 1) 
End of 7 kW 
(Sample 2) 

Na/K, [w/w] 0.1497 0.1559 0.1644 

K, [mol-%] 79.706 79.044 78.148 

Na, [mol-%] 20.294 20.956 21.852 

Na/K, [mol/mol] 0.2546 0.2651 0.2796 

KNO3, [w/o] 82.371 81.776 80.969 

NaNO3, [w/o] 17.629 18.224 19.031 

Melt liquidus 
temperature, °C 283.47 281.36 278.51 

 

4.5.2 Crust growth rate and growth period in LIVE-L3A 

Some important parameters related to the melt solidification process can be determined with 

the temperature measured by the thermocouple trees. The detailed description of the ther-

mocouple trees is given in section 2.4. These solidification parameters are the crust thick-

ness development with time, the crust growth rate, the melt/crust interface temperature dur-

ing solidification, the temperature gradient in the crust and the time period of crust growth. 

Based on these parameters, the conditions of the melt solidification can be determined. For 

example, whether the crust grows under undercooling conditions, and if it is the case, how 

long is the undercooling period. The time period of crust growth is important for the definition 

of the boundary conditions: within the crust growth period, the interface temperature is lower 
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than the bulk melt liquidus temperature; beyond this period the interface temperature is equal 

to the bulk melt liquidus temperature. Additionally, the crust growth velocity influences the 

crust porosity, crust composition, crust microstructure and most importantly, crust thermal 

conductivity.  

The times at which the crust front arrived at the thermocouple location can be determined 

based on the changing slope of the cooling temperature due to the phase change. However, 

since only a few thermocouples were embedded in the crust, the crust growth velocity cannot 

be precisely determined. More accurate determination can be performed assuming that the 

temperature gradient in the crust at the interface is the same as in the adjacent crust. Figure 

29 illustrates the calculation method. 

When a crust layer with thickness “z” is between two thermocouples located at zi and zi+1, 

and there are at least two thermocouples embedded in the crust, which show the tempera-

tures Ti-1 and Ti, then the temperature gradient G near the crust front can be determined in 

Eq. (8):  

1

1

−

−

−

−
=

ii

ii

ZZ

TT
G  (8) 

 

and the crust thickness z can be calculated according to Eq (9).  

G

TT
zz i

i

−
+= int  (9) 

 

where Tint is the temperature at the melt/crust interface. 

 

 

Figure 29: Determination of crust thickness during the solidification process. 
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Based on the calculation above, the crust thickness, the temperature gradient within the crust 

and the crust growth velocity can be determined. These parameters at the polar angles 37.6° 

and 52.9° are given in Table 13. 

The parameters shown in Table 13 are subject to some deviation due to the assumption that 

the temperature gradient in the crust at the interface is the same as the one located inside 

the crust which can be measured by the next adjacent thermocouple, and the interface tem-

perature is equal to the previous one when the crust front reaches the last thermocouple im-

mersed in the crust layer. Nevertheless the presented determination of the crust thickness 

shows reliable results, as shown in Figure 30. At all positions, the crust grew fast during the 

initial period. For example, at polar angle 37.6° about 80% of the crust was formed during the 

first hour. Figure 30 also shows that the crust growth period was different at different vessel 

heights. The crust growth period in the lower part of the vessel was longer than in the upper 

parts. The time period of crust growth at polar angle 37.6° was more than 25 hours whereas 

this time period at 52.9° was about 1.6 hours.  

Table 13: Crust temperature gradient Gs, crust thickness z and crust growth rate R during 

10 kW in the LIVE-L3A test. 

 CT4: 37.6° CT2: 52.9° 

Time, 
s 

Gs, 
K/mm 

z, 
mm 

R, 
µm/s 

Gs/R, 
K·s/mm2 

Gs, 
K/mm 

z, 
mm 

R, 
µm/s 

Gs/R, 
K·s/mm2 

200 18.96 7.40 9.10 2084 23.35 3.91 2.55 9167 

300 17.31 8.31 9.01 1922 22.41 4.17 0.77 29140 

371 16.29 8.94 7.22 2258 22.30 4.22 1.07 20794 

600 14.15 10.60 6.90 2052 21.72 4.47 2.47 8809 

1000 11.95 13.36 7.92 1509 18.87 5.45 1.52 12416 

1400 9.36 16.52 9.97 939 17.07 6.06 0.60 28548 

1600 9.16 18.52 2.24 4100 17.46 6.18 0.25 69831 

2000 8.89 19.42 2.30 3857 17.41 6.28 0.41 42143 

3000 8.17 21.72 1.07 7658 16.65 6.69 0.28 58837 

4000 7.91 22.79 0.36 22100 16.12 6.98 0.19 84163 

6000 7.70 23.50 0.18 43027 15.41 7.36 0.08 199808 

9000 7.58 24.04 0.18 43279 15.06 7.59 0.02 794025 

12000 7.42 24.57 0.12 63949 15.00 7.65    

16000 7.36 25.03 0.10 71782 15.00 7.66   

20000 7.28 25.44 0.20 36693 15.06 7.54   

25000 7.21 26.43 0.13 55412 15.18 7.45   

28001 6.98 26.82 0.04 181119 15.30 7.42   

40000 6.92 27.29 0.02 356024 15.36 7.37   
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89000 6.80 28.24 0.02 331907 15.42 7.45   

90000 6.80 28.26         
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Figure 30: The development of crust thickness after melt pouring in the LIVE-L3A. 

 

At the polar angle 66.9°, the crust growth period was influenced by the melt temperature evo-

lution. As shown in Figure 14, in contrast with the melt temperatures in the middle and lower 

parts of the vessel, the melt temperature in the upper part of the pool increased slightly at the 

beginning and then decreased to a constant value. It took about 2000 s for the melt to reach 

the steady-state temperature. This time period represents also the crust growth period at the 

polar angle 66.9°. The crust growth rates R calculated in Table 13 are shown in Figure 31. 

Following behavior of the crust growth rate can be observed: 

− The crust grew faster in the lower part of the vessel wall than in the middle and upper 

parts. 

− The crust growth rate reduced significantly after 4000 s. 

− The crust growth rate did not decrease continuously. Significant reduction of the crust 

growth velocity shortly after the melt pouring is observed. After this period the crust 

growth rate was recovered shortly and then was reduced again. 

The temperature gradient within the crust “Gs” is shown in Figure 32. Since the heat flux 

through the crust layer to the vessel wall was higher in the upper part of the vessel, the tem-

perature gradient in the upper part of the crust was also higher. After ~6000 s the tempera-

ture gradient in the crust at polar angle 52.9° was about 15 K/mm, whereas at the 37.6° posi-

tion this value was about 7 K/mm.  
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Figure 31: Crust growth rate in LIVE-L3A. 
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Figure 32: Temperature gradient in the crust layer near the crust/melt interface. 

 

The cooling conditions during the melt solidification are also examined. The question is 

whether the crust solidifies under supercooling conditions [19]. If this was the case, then 

what was the time period of the undercooling. For binary melts the supercooling condition 

should fulfil at least the “constitutional supercooling” conditions, when the temperature of a 

liquid ahead of the solid-liquid interface is lower than the liquidus temperature. The word 

“constitutional” means that the supercooling arises from the change in the melt composition 

and not in the melt temperature [13]. Under the supercooling condition a mushy zone exists, 
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and beyond this period, a planar crust front exists. The constitutional supercooling condition 

is fulfilled when the Eq. (10) is satisfied. 

 

(10) 

where 

GL  is the actual temperature gradient in the liquid at the interface; 

R  is the rate of solidification; 

mL  is the slope of the liquidus line of the local melt; 

k  is the equilibrium partition ratio Cs/C0; 

Cs  is the solute concentration (here NaNO3) in solid; 

C0  is the solute concentration (here NaNO3) in bulk liquid; 

DL  is the self diffusion coefficient of the solute in the liquid (here NaNO3). 

 

Since the thermal conductivity in the liquid melt is similar to that in the solid crust, the tem-

perature gradient in the liquid GL is replaced by the temperature gradient within the crust Gs. 

The calculated values of Gs/R are shown in Table 13 for the following melt properties: 

mL: -2.42 °C/(mol%), 

k:  0.2 taken from the reference [14], 

C0:  20 mol% NaNO3, 

DL:  0.002 mm²/s, taken from the references [15] and [16]. 

The right side of the Eq. (10) amounts 96800 K·s/mm2. Comparing the value of Gs/R in the 

Table 13 with this criterion, the time period of the crust growth under supercooling conditions 

can be obtained. This time period is different at different locations and amounts to 25000 s at 

polar angle 37.6° and to 4000 s at polar angle 52.9°. 

 

4.5.3 Crust morphology in LIVE-L3A 

The crust thickness profiles along the vessel wall were measured after the test at the azimuth 

direction of the melt pouring (157.5°-337.5°) and at the direction perpendicular to the melt 

pouring (247.5°-67.5°). In Figure 33 the crust thickness profiles at these two directions are 

shown. Also the exact position of the melt surface during the test can be determined. The 

crust thickness during the 7 kW heating power was in the range from 10 mm at the melt sur-

face and ~50 mm at the vessel bottom. No significant asymmetry of the crust thickness can 

be observed, as shown in Fehler! Verweisquelle konnte nicht gefunden werden.. This 

indicates that the asymmetric melt pouring position (azimuthal angle 157.5°, polar angle 52°-

72°) has almost no influence on the final crust thickness.  
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Figure 33: Crust thickness profiles at the end of LIVE L3A. 

Figure 34: Comparison of crust thickness at four different locations. 
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The microstructure and the composition of the crust were examined with SEM (scan-

ning.electron microscopy). 17 mm thick crust sample taken from the location at polar angle 

55° was analysed. In Figure 35 the images across the crust layer from the melt/crust inter-

face to the crust/wall interface are shown. 

 

 

Figure 35: Examples of the crust microstructure at different locations from the melt/crust 

interface to the crust/wall interface. 

0 mm to crust front (at melt/crust interface)     4 mm to crust front (inner layer) 

10 mm to crust front (outer layer)     14 mm to crust front (outer layer) 

17 mm to crust front (at crust/wall) 
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A two-layer structure was formed in the crust due to 10 kW and 7 kW heating periods. At the 

examined crust position the outer layer (formed during the 10 kW heating period) is about 8 

mm, the inner layer is about 9 mm thick. Therefore, the images shown in Figure 35 at 0 mm 

and 4 mm show the crust formed during the 7 kW heating period. The other images relate to 

the crust formed during the 10 kW heating period. The microstructure through the cross sec-

tion of the crust shows heterogeneous character of the grain size distribution. Moreover, the 

crust layer formed during 10 kW heat generation (images of 10 mm, 14 mm and 17 mm) was 

looser and more porous, resulting from rapid solidification. 

As the crust cools down, stresses are generated within the crust due to the shrinkage. It is 

observed that the manner of the stress relief was different between the two layers. The im-

age in Figure 36 left indicates that minor cracks appeared parallel to the vessel wall, whereas 

in the inner crust layer large through-layer cracks are observed perpendicular to the vessel 

wall. The minor cracks resulted from the slow cooling during the solidification process, 

whereas the large cracks could be generated during the fast cooling at the end of the test 

after the liquid melt extraction and fast cooldown of the crust. 

 

 

Figure 36: Minor cracks in the outer crust layer (left) and large through-layer cracks in the 

inner layer of the crust (right). 

Elemental composition of the different crust layers was determined with energy dispersive X-

ray (EDX). The error range of the analysis was examined by analysing the standard samples. 

It was found out that the error is within ~1 mole %. In Figure 37 the concentration of KNO3 

across the crust layer is shown. The crust composition corresponds to the local melt compo-

sition which is a parameter of crust solidification rate and the diffusion rate of NaNO3. During 

the solidification of KNO3-rich crust, NaNO3 is rejected to the melt ahead of the crust front. 

The sharp decrease of KNO3 content in the crust layer appr. 0.5 mm away from the vessel 

wall indicates that the solidification at the beginning of the test was so fast that NaNO3 was 

highly enriched in the local melt ahead of the crust front. A similar phenomenon occurred 
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after the 10 kW heating power was switched to 7 KW. Since the solidification rate was lower 

in this case, the decrease of the KNO3 concentration was lower as well. The concentration of 

the crust at the end of the solidification process indicates that the solidus concentration of the 

actual melt was about 90 mole %. 
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Figure 37: SEM-EDX analysis of KNO3 concentration across the crust layer. 

 

4.5.4 Crust liquidus temperature and crust composition in LIVE-L3A 

Crust samples from the positions of CT2 (polar angle 52.9°) and CT3 (polar angle 66.9°) 

were taken after the test for the crust liquidus temperature determination. The crust at the 

position of CT4 (polar angle 37.6°) cannot be accessed due to the heating wires and the 

cage. The crust thickness after the 7 kW heating period at the positions of 52.9° and 66.9° is 

about 15 mm and 9 mm respectively. For the 9 mm thick crust seven measurement points 

across the crust layer were selected; for the 15 mm thick crust eight measurement points 

were selected. 

The crust liquidus temperature was determined with “Optimelt”, a melting temperature analy-

sis device which detects the image change in three powder-loaded capillary tubes during 

controlled heat up period. Sampling material was grounded and well mixed before loaded to 

the capillary tubes. Comparing with the cooldown method for melting point determination the 

accuracy of this method is within 4 degrees. In Table 14 the measuring position, crust liq-

uidus temperature and the corresponding concentration of KNO3 in the crust are listed. The 

composition at these sampling positions was determined according to the phase diagram, 

which is shown in Table 1. 
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Table 14: Crust composition and liquidus temperature and in the LIVE-L3A test. 

CT2 

(52.9°) 

Distance 
to wall 
[mm] 

Liquidus 
temp. 
[°C] 

Mole % 
KNO3 

CT3 

(66.9°) 

Distance 
to wall 
[mm] 

Liquidus 
temp. 
[°C] 

Mole % 
KNO3 

15_0 0 312.0 90.92 9_0 0 312 90.92 

15_1.5 1.5 304.0 87.23 9_1.5 1.5 284 79.81 

15_3 3 281.5 79.61 9_3 3 292 81.96 

15_6 6 291.9 82.46 9_4.5 4.5 302 86.86 

15_9 9 302.6 86.71 9_6 6 314 91.74 

15_12 12 315.0 92.32 9_7.5 7.5 318 93.58 

15_13.5 13.5 310.0 89.95 9_In 9 323 95.73 

15_In 15 321.6 95.02     
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Figure 38: Crust liquidus temperature and crust composition at polar angle 52.9° in the LIVE-

L3A test analysed by Optimelt melting method. 

 

The crust liquidus temperature and composition are also shown in Figure 38. The results are 

in a good agreement with the SEM-EDX analysis shown in Figure 37. The low value of KNO3 

concentration near the crust outer surface could not be exactly measured due to a low reso-

lution of the Optimelt device (sampling area more than 1-2 mm2) compared to EDX (0.06 

mm²). Moreover, higher KNO3 concentration was determined by the Optimelt method in 

comparison to the SEM-EDX (Figure 37). This difference can be explained by the measure-

ment principles of the two different methods. SEM-EDX determines an average composition 

of a small area, whereas the Optimelt device measures the liquidus temperature of the com-
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ponent with the highest liquidus temperature in the area. For example, in the innermost layer 

of the crust adjacent to the melt pool, KNO3-enriched phases with KNO3 concentration of 95 

mole% were detected by Optimelt, whereas the average composition at this position de-

tected by EDX is about 90% KNO3. The non-uniform crust liquidus temperature across the 

crust layer also implies a changing boundary temperature at the crust/melt pool interface 

during the thermal hydraulic transient state. 

 

4.5.5 Crust porosity and thermal conductivity in LIVE-L3A 

To analyze the cumulative pore volume and pore size distribution, mercury porosimetry tech-

nique was used. The technique involves the intrusion of mercury at high pressure into the 

investigated sample. The pore size can be determined based on the external pressure 

needed to force the mercury into pores against the opposing force of the mercury’s surface 

tension. Samples from the outer layer (formed during 10 kW phase) and the inner layer 

(formed during 7 kW phase) of a 25 mm thick crust sample were investigated. The results of 

the porosity and the pore size distribution measurements are given in Table 15. 

 

Table 15: Porosity and pore size distribution of crust layers in the LIVE-L3A test. 

 Inner layer (7 kW) Outer layer (10 kW) 

Total cumulative volume, 
mm³/g 

16.27 27.20 

Total porosity, %  3.26 5.52 

Bulk density, g/cm³ 2.01 2.03 

Apparent density, g/cm³ 2.07 2.15 

Pore size distribution 

Pore radius range, µm 
Relative 

volume, mm³/g 
Relative 

volume, % 
Relative 

volume, mm³/g 
Relative 

volume, % 

100000-2000 8.45 51.94 10.96 40.29 

2000-1 7.82 48.06 16.24 59.71 

 

The total porosity of the outer crust layer (5.52%) was higher than the porosity of the inner 

crust layer (3.26%). The higher porosity of the outer layer mainly resulted from the volume of 

fine pores between 1-2000 µm, as shown in Figure 39. Since large pores could result from 

the crack formation during fast cooldown (e.g. at the end of the test after the melt extraction), 

the porosity of the inner crust layer during the LIVE-L3A test could be even lower than the 

value determined after the test. 
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Figure 39: Pore size distribution in the inner and outer crust layers in the LIVE-L3A test. 

 

The crust thermal conductivity is calculated according to the temperature difference meas-

ured across the crust layer at the position of CT thermocouple trees and the calculated heat 

flux as described in the previous section 4.4.1. During the steady-state of 10 kW and 7 kW 

heat generation, the crust local thermal conductivity at the positions of CT4 and CT2 thermo-

couple trees are shown in Table 16.  

Table 16: Crust thermal conductivity evaluated in the LIVE-L3A test. 

  
10 kW 

at 50000s 
7 kW 

at 150000s 

Thermocouple 
tree 

distance 
to wall, 

mm 
∆T, K 

Heat 
flux, 

W/m² 

Therm. 
conduct., 

W/mK 
∆T, K 

Heat 
flux, 
W/m² 

Therm. 
conduct., 

W/mK 

CT4 at 37.6° 0 65.12 3771 0.52 48.32 2558 0.48 

 9 61.16 3771 0.55 45.25 2558 0.51 

 18 59.92 3771 0.57 44.96 2558 0.51 

 27    40.75 2558 0.56 

Mean value:   0.55   0.51 

CT2 at 52.9° 0 43.44 6883 0.48 28.78 4068 0.42 

 3 49.06 6883 0.42 30.22 4068 0.40 

 6    23.96 4068 0.51 

 9    26.81 4068 0.46 

Mean value  : 0.45   0.44 

CT3 at 66.9° 0    68.36 9138 0.40 
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The crust thermal conductivity varied between 0.4 and 0.6 W/mK. The crust thermal conduc-

tivity at the same crust position during the 10 kW phase was higher than during the 7 kW 

phase. This indicates the dependence of the crust thermal conductivity on temperature. It is 

also noted that the thermal conductivity of the crust near the melt pool was higher than near 

the vessel wall. Three observations could contribute to this result: (1) the dependence of the 

crust thermal conductivity on temperature; (2) different microstructure and porositiy of the two 

crust layers [17] and (3) different composition in the crust [18]. The last two facts are related 

with the solidification process. 
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5 Comparison of the LIVE-L3A and LIVE-L3 results 

The results obtained in the LIVE-L3 and LIVE-L3A tests are compared in this section in order 

to understand the impact of cooling conditions on the molten pool heat transfer and crust 

solidification behaviour. The main difference of the test conditions between the LIVE-L3 and 

LIVE-L3A tests were the initial boundary conditions. At the beginning of the LIVE-L3 test the 

vessel was cooled by air from the outside. This rather inefficient cooling led to the increase of 

the melt pool temperatures and melt-down of the crust initially formed at the upper location of 

the vessel wall. Water cooling was started 7199s after the melt pouring resulting in a cool-

down of the test vessel wall and formation of a new crust layer at the upper location of the 

vessel wall. In the LIVE-L3A test the cooling of the outer vessel wall started already at the 

beginning of the test. During the LIVE-L3 test the crust was formed in slow cooling conditions 

after the initiation of the water flooding since the melt temperature was very high and the hot 

vessel wall was first cooled down, whereas the crust in the LIVE-L3A test was formed under 

fast cooling condition when the hot melt touched the cold vessel wall during the melt pouring 

period. These different cooling conditions during the initial period significantly influenced the 

crust growth behaviour and the thermal hydraulics in the melt pool during the thermal hydrau-

lic steady-state. The dependence of the following parameters on the cooling conditions is 

discussed, starting with the melt temperature, followed by crust growth rate and crust thermal 

conductivity, then crust thickness profile and finally the heat flux distribution through the ves-

sel wall and heat flux splitting. Wall inner temperature and the parameters of the cooling wa-

ter are also compared to get a better understanding of the obtained results. 

 

5.1 Melt temperature 

The melt temperatures at 70 mm, 170 mm and 270 mm vessel height are compared between 

the LIVE-L3 and LIVE-L3A tests at the radius of 74 mm. Figure 40 shows the melt tempera-

ture distribution during the initial period in both tests. 

Figure 40 indicates also that the temperature distribution in both tests has similar behaviour 

during first 1000 s: the temperatures in the bottom and middle parts of the melt pool de-

creased and in the upper part of melt pool increased, however after this period the melt tem-

peratures in the two tests behaved differently: in the LIVE-L3 test the melt temperature in-

creased during the air cooling period, whereas the melt temperatures in the LIVE-L3A de-

creased further to constant values. After the initiation of the water flooding at 7199 s in the 

LIVE-L3 test the melt temperatures decreased also to constant values. 
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Figure 40: Melt temperature development during the initial period in LIVE-L3 and LIVE-L3A 

tests. 

During the thermal hydraulic steady-state the melt temperature in the LIVE-L3A test were 

generally 3 °C to 5 °C higher than those measured in the LIVE-L3, as it is shown in Figure 

41, although the wall inner temperatures (IT temperature) in the LIVE-L3A were slightly lower 

compared to the LIVE-L3 test. This indicates that the heat resistance of the crust layer in the 

LIVE-L3A was somewhat higher than in the LIVE-L3 test. 

Large horizontal deviation in the melt temperature distribution in the lower part of the melt 

pool close to the vessel wall is observed, e.g. at the location of 70 mm height and at the ra-

dius 174 mm attributed to the crust formation at these positions. During the LIVE-L3A test in 

which the overall melt temperature was slightly higher, 3/4 of the vessel circumference was 
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embedded within the crust layer, whereas during the LIVE-L3 test the whole circumference 

was covered by the crust at this location. 
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Figure 41: Melt temperature distribution in the LIVE-L3 and LIVE-L3A tests. 

 

5.2 Crust growth characteristics 

The development of the crust thickness at polar angles 37.6° and 52.9° during the two tests 

is shown in Figure 42. In the LIVE-L3 test the start time of the crust growth was the beginning 

of the water flooding, i.e. 7199 s after the melt pouring. 

Several phenomena can be observed in the Figure 42. (1) At both positions the crust layer in 

the LIVE-L3A test developed faster than in the LIVE-L3 test during the initial period. The time 
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period in which L3A crust was thicker than L3 crust were ~1000 and ~1600 s at polar angles 

37.6° and 52.9° respectively. At the end of these periods the crust thickness in the LIVE-L3A 

reached ~48% of the final thickness at polar angle 37.6% and ~88% of the final thickness at 

52.9°. This indicates that more than 50% of the crust layer in the LIVE-L3A test formed faster 

compared to the same crust position in the LIVE-L3 test; (2) the final crust layer thickness in 

the LIVE-L3A test was thinner. At the polar angle 37.6° the final crust thickness in the LIVE-

L3A test was only ~80% of the corresponding crust layer thickness in the LIVE-L3 test and at 

the polar angle 52.9° the final crust thickness was ~60% compared to the LIVE-L3 test; (3) 

the total crust growth period in the LIVE-L3A was shorter than in the LIVE-L3 test. The crust 

growth period will be discussed in detail with respect to the G/R ratio (existence of constitu-

tional supercooling conditions). 

 

 

Figure 42: Comparison of the crust thickness development 

in the LIVE-L3 and LIVE-L3A tests. 

The crust growth rates are compared between the LIVE-L3 and LIVE-L3A at polar angles of 

37.6° and 52.9°, as shown in Figure 43. The highest crust growth rate was measured at the 

beginning of the LIVE-L3A test and amounted to 0.06 mm/s. The initial crust growth rate was 

generally higher in the LIVE-L3A test than in the LIVE-L3 test: at 37.6° the crust growth rate 

was about twice as high as in the LIVE-L3 test (Figure 43 (a)), and at 52.9° the initial crust 

growth rate in the LIVE-L3A was about 10 times higher than in the LIVE-L3 test (Figure 43 

(b)). The time periods in which the LIVE-L3A crust growth rate exceeded the one determined 

in the LIVE-L3 were 200 s at 37.6° and 600 s at 52.9°. After these periods, the crust in the 

LIVE-L3 test developed faster. 

Based on the crust growth rate the constitutional supercooling conditions in the two tests 

were examined. As described in the section 4.5.2, the constitutional supercooling condition 

depends on the ratio of the temperature gradient in the fluid at the interface to the crust 

growth rate: G/R. The temperature gradient in the fluid in the two tests was not directly 
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measured. However, due to the similar thermal conductivity between the liquid and the solid 

of the simulant material, the temperature gradients in the crust layer near the melt/crust inter-

face were applied for the evaluation. Figure 44 shows the temperature gradients at two polar 

angles 37.6° and 52.9° in the two tests. 

Figure 43: Comparison of the crust growth rates between the LIVE-L3 and LIVE-L3A tests. 

Figure 44: Temperature gradient in the crust at polar angles 37.6° (left) and 52.9° (right). 

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35 40

crust thickness [mm]

cr
us

t g
ro

w
th

 r
at

e 
[m

m
/s

] L3A-37.6°

L3-37.6°

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 2 4 6 8 10 12 14

crust thickness [mm]

cr
us

t g
ro

w
th

 r
at

e 
[m

m
/s

]

L3A-52.9°

L3-52.9°

(b)

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000

time [s]

te
m

p
e

ra
tu

re
 g

ra
d

ie
n

t [
°C

/m
m

]

L3-37.6°

L3A-37.6°

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

time [s]

te
m

p
e

ra
tu

re
 g

ra
d

ie
n

t [
°C

/m
m

]

L3-52.9°

L3A-52.9°



5 Comparison of the LIVE-L3A and LIVE-L3 results 

60 

Figure 44 shows that the temperature gradient was not constant during the test period and 

was not the same at different vessel heights. The temperature gradient in the LIVE-L3A test 

in the beginning was lower, and the time to reach the steady-state conditions was also 

shorter. During the thermal hydraulic steady-state the temperature gradient near the 

melt/crust interface in the LIVE-L3A was higher compared to the LIVE-L3 results. 

When the G/R ratio is larger than ~105 K·s/mm2, as discussed in the section 4.5.2, the crust 

solidifies under equilibrium conditions and the crust/melt interface is planar. The times when 

the crust front changed from the constitutional supercooling-controlled cellular structure to 

the equilibrium solidification-controlled planar front are given in Table 17. No apparent differ-

ence in the time of transition can be found at 37.6° between the two tests, whereas at the 

52.9° the crust solidification period under the constitutional supercooling conditions in the 

LIVE-L3A was shorter. 

The crust growth period at the polar angle 66.9° was not compared since the crust growth 

was not only determined by the heat and mass transfer between the crust and the melt, but 

was also strongly dependent on the stabilization time period of local melt temperature. 

Table 17: Time period to reach equilibrium solidification conditions in the LIVE-L3 and LIVE-

L3A tests. 

Polar angle LIVE-L3 LIVE-L3A 

37.6° 22000 s or 6.1 hours 25000 s or 6.9 hours 

52.9° 6000 s or 100 min 4000 s or 67 min 

 

5.3 Crust porosity and thermal conductivity 

The crust porosities of the outer (the layer adjacent to the vessel wall) and inner layer (the 

crust layer adjacent to the melt pool) between LIVE-L3 and LIVE-L3A are presented in Table 

18. The relative pore volume of the crust inner and outer layer in the LIVE-L3A test was al-

most twice as high as in the LIVE-L3 test, whereas the difference in the volume of large 

pores was negligible. 

Table 18: Comparison of the crust porosity in the LIVE-L3 and LIVE-L3A tests. 

Specific volume, mm3/g 
Pore radius range 

LIVE-L3 
Outer layer 

LIVE-L3 
Inner layer 

LIVE-L3A 
Outer layer 

LIVE-L3A 
Inner layer 

100000-2000, µm 8.22 8.14 10.96 8.45 

2000-2, µm 8.69 4.45 16.24 7.82 

Porosity, % 3.46 2.6 5.52 3.26 
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The thermal conductivity at polar angles 37.6° and 52.9° was also compared. The mean 

thermal conductivities of the outer layers (formed during 10 kW period) and of the whole lay-

ers are presented in the Table 19. The crust thermal conductivities varied from 0.41 to 0.69 

W/mK depending on the vessel height and crust temperature. At both 37.6° and 52.9° loca-

tions the heat conductivity of the crust in the LIVE-L3A test was lower than in the LIVE-L3, 

e.g. at the polar angle 37.6° the crust thermal conductivity in the LIVE-L3A was 20 % lower 

compared to the LIVE-L3. The thermal conductivity of the outer crust layers decreased from 

~7 to ~10 % when the heating power changed from 10 kW to 7 kW indicating the depend-

ence of the crust thermal conductivity on the crust temperature. The effective thermal con-

ductivity of the whole crust layer was higher than the thermal conductivity of the outer layer, 

meaning that the inner crust layer (formed during the 7 kW heating period) had higher ther-

mal conductivity than the outer crust layer. The reasons of this phenomenon were explained 

in 4.5.5. 

Table 19: Crust thermal conductivities (W/mK) at polar angles 37.6° and 52.9°. 

 outer layer (10 kW) outer layer (7 kW) whole layer (7 kW), 

 37.6° 52.9° 37.6° 52.9° 37.6° 52.9° 

L3 0.690 0.475 0.649 0.446 - 0.458 

L3A 0.547 0.446 0.499 0.414 0.514 0.445 

 

 

5.4 Crust thickness 

The crust thickness profiles after the melt extraction at the end of the two tests are compared 

in Figure 45. The initial crust layer formed above the polar angle 30° in the LIVE-L3 test was 

molten during the air cooling phase before the water flooding at 7199 s after melt pouring as 

a result of elevated melt pool temperatures. The upper part of the crust layer in the LIVE-L3 

was about 15-30% thicker than in the LIVE-L3A at the end of the 7 kW heating period. The 

pits in the crust profiles at the vessel bottom at the polar angle ~25° resulted from heating 

wires embedded in the crust. Crust growth at the end of the test after the power shutdown 

cannot be detected. 

There are some indications that during the steady-state of 10 kW the crust layer in the LIVE-

L3A test was also thinner than in the LIVE-L3 test. The crust thicknesses estimated by the 

crust temperature measurements at 37.6°, 52.9° and 66.9° (Figure C-17 to Figure C-19) dur-

ing the steady-state of 10 kW are given in Table 20. 
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Figure 45: Comparison of the crust thickness in the LIVE-L3 and LIVE-L3A tests at the end of 

the 7 kW heating period. 

 

Table 20: Crust thickness at the end of the 10 kW heating period. 

Polar angle 
Crust thickness in 

LIVE-L3 during 10 kW, mm 
Crust thickness in 

LIVE-L3A during 10 kW, mm 

37.6°(CT1/CT4) 35.9 28 

52.9°(CT2) 12.5 7.5 

66.9°(CT3) 3.4 2.8 

 

Correspondingly to the crust thickness the total mass of the crust was also different in the 

two tests. In the LIVE-L3 test 57 kg was found solidified corresponding to 23.5% of the total 

melt mass, whereas in the LIVE-L3A this value amounted to 47 kg, representing 20.8% of 

the total melt mass. 

 

5.5 Heat flux 

The comparison of the heat flux distribution in the LIVE-L3 and LIVE-L3A tests demonstrates 

significant differences in both horizontal and vertical heat flux distribution. Figure 46 shows 

the heat fluxes at four azimuthal angles in the LIVE-L3 and LIVE-L3A tests. The heat fluxes 

in the LIVE-L3A test near the melt pour position (between azimuth 112.5° and 202.5° and at 

the polar angle 65.5°) were higher than the heat flux at the same position measured in the 

LIVE-L3 test. The heat flux scattering in the LIVE-L3A was larger than in the LIVE-L3 in the 

upper part of the melt pool, e.g., the scattering of the heat flux at the polar angle 65.5° in the 

LIVE-L3A was 31.8% compared to the heat flux mean value, whereas the scattering in the 
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LIVE-L3 test was 16.8%. In the LIVE-L3A test the highest heat flux at the polar angle 65.5° 

was about 12.5% higher than the mean heat flux, whereas in the LIVE-L3 test the highest 

heat flux was 8% higher than the mean value. 

Figure 46: Comparison of the heat flux measured in the LIVE-L3 and LIVE-L3A tests. 

Figure 47: Comparison of the mean heat flux in the LIVE-L3 and LIVE-L3A tests. 
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Concerning the vertical heat flux distribution, Notable difference was observed in the upper 

part of the melt pool. The vertical distribution of the mean heat flux along the vessel polar 

angle is shown in the Figure 47. Higher fraction of heat was transferred through the upper 

part of the vessel wall during the LIVE-L3A test. At the lower part of the vessel wall this dif-

ference is negligible. 

 

5.6 Heat flux splitting, wall inner temperature and cooling water 

temperature 

5.6.1 Heat flux splitting 

The heat flux splitting describes the relationship between the portion of the heat transported 

through the vessel wall below the melt surface (Qwall) and the fraction of the heat released 

from the melt surface. In the LIVE experiments performed up to now only a small fraction of 

heat is transported upwards due to the insulated upper lid; the most of the heat is removed 

through the vessel wall to the cooling water.  

In Table 21 the fractions of Qwall during the steady-state of the LIVE-L3 and LIVE-L3A tests 

are presented. Due to the good insulation of the vessel upper lid 80% to 90% of the heat 

generated in the melt was removed through the vessel wall to the cooling water during the 

steady-state phases of the experiments. Increasing the heating power increases also the 

fraction of the heat transfer through the vessel wall. More heat was removed under the water 

cooling condition (LIVE-L3A) compared to the delayed water cooling condition (LIVE-L3). 

Table 21: Heat flux splitting in the LIVE-L3 and LIVE-L3A tests. 

 Heating 
power 

Time 

s 

Qwall 

W 

Qheating 

W 

Qwall / Qheating 

% 

10 kW 60001 8539 9833 86.8 
L3 

7 kW 94920 5477 6768 80.9 

10 kW 50000 9125 10025 91 
L3A 

7 kW 150000 6053 7000 86.5 

 

5.6.2 Wall inner temperature 

The wall inner temperature increased from ~23°C at the vessel bottom to ~90°C near the 

melt surface. Figure 48 shows the wall inner temperature during the steady-state of 10 kW 

and 7 kW phases. In both tests increasing the heating power resulted in significant increase 

of wall inner temperature up from the polar angle 51°. 
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The measured wall inner temperatures were generally higher in the LIVE-L3 than in the 

LIVE-L3A test. Taking into account that the melt pool temperatures in the LIVE-L3 test were 

lower than in the LIVE-L3A (Figure 41) and the crust in the LIVE-L3 test was thicker than in 

the LIVE-L3A, the crust thermal conductivity in the LIVE-L3 test must be lower than in the 

LIVE-L3A test. 

Figure 48: Wall inner temperatures in the LIVE-L3 and LIVE-L3A tests: left: 10 kW heating 

period, right: 7 kW heating period. 

5.6.3 Cooling water temperature 

The comparison of the cooling water temperature is helpful to get a better understanding of 

the differences observed in the two tests. In the Table 22 the water inlet and outlet tempera-

tures are compared.  

Table 22: Water temperature and water flow rate in the LIVE-L3 and LIVE-L3A tests. 

 Heating 
period 

Time, 

s 

Tinlet 

°C 

Toutlet 

°C 

∆Twater 

°C 

water flow 
rate, 
mg/s 

10 kW 60001 15.9 59.0 40.0 46.6 
L3 

7 kW 94920 15.9 45.6 27.7 47 

10 kW 50000 11.3 53.9 42.6 47.68 
L3A 

7 kW 150000 11.4 40.0 28.6 47.2 

 
Both the water inlet and outlet temperatures in the LIVE-L3 test were higher compared to the 

LIVE-L3A test. However the heatup of the cooling water was more pronounced in the LIVE-

L3A test. Considering that the water flow rate in the LIVE-L3A test was slightly higher, more 

heat should be removed by the cooling water in the LIVE-L3A test. This is in a good agree-

ment with the heat flux splitting described in the section 5.6.1. More heat was transported 

from the melt pool through the vessel walls to the cooling water in the LIVE-L3A test. 
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6 Conclusions  

To complement the experimental data on melt pool behaviour in the vessel lower head KIT 

performs large-scale tests within the LIVE program. The LIVE experimental facility is de-

signed to study the molten pool behaviour in the RPV lower head in order to provide the ex-

perimental data for the development and improvement of mechanistic models applied for the 

description of the late in-vessel phase of the core melt progression. The objective of the 

LIVE-L3A test was to study the influence of the melt relocation mode on the vessel thermal 

loads in the transient phase and on the long-term melt behaviour and crust formation and 

crust properties in the steady-state conditions. 

The test performance of the LIVE-L3A test was similar to the previous LIVE-L3 test except 

the initial cooling conditions. In both tests the melt was poured near to the vessel wall. In the 

LIVE-L3 test the vessel was initially cooled by air and then by water; in the LIVE-L3A test the 

vessel was cooled by water already at the beginning of the experiment. Comparing the re-

sults of the LIVE-L3A and LIVE-L3 tests the following conclusions can be drawn. 

 

Melt temperatures: 

Ineffective air cooling at the beginning of the LIVE-L3 test resulted in the overall increase of 

melt pool temperature from the vessel bottom to the melt surface since the air flow could not 

remove the generated heat sufficiently. At the end of the air cooling period the maximum melt 

temperature reached 370°C, i.e. maximum allowed temperature of the simulant material. 

During the LIVE-L3A test the cooling water outside the vessel wall effectively cooled the hot 

melt. As a result the melt temperature in the middle and lower part of the pool decreased 

quickly to constant values, the melt temperature near the melt surface increased at first 

slightly, but decreased to a steady-state value after ~2000 s. 

 

Behaviour of the initial crust layer: 

In the LIVE-L3 test a crust layer was built up at the very beginning of the test, however it was 

completely molten due to the insufficient cooling by air and increase of the melt temperatures 

up from the polar angle of 30°. After the initiation of the water flooding, a new crust layer was 

formed. Therefore the influence of the asymmetric melt pouring position on the original crust 

layer was negligible in this test. 

In the LIVE-L3A test a crust layer was formed at the beginning of the test and kept its form 

and properties during the whole test duration. The influence of the asymmetric melt pouring 

position on the crust formation process also persisted during the whole test period. 
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Influence of the melt pouring position on horizontal heat flux distribution: 

Considerable asymmetry in horizontal heat flux distribution was observed in the upper part of 

the vessel where the contact area of the melt jet during the pouring was located. At the loca-

tion of the melt jet, the heat flux through the vessel wall was noticeably higher than at the 

opposite location even in the steady-state conditions. 

 

Crust growth velocity, crust thermal conductivity and crust thickness: 

The different initial cooling conditions in the two tests resulted in the different crust growth 

rates, crust thermal conductivity and final crust thickness. The crust layer formed after the 

initiation of the water cooling in the LIVE-L3 test developed under poor cooling conditions, 

since the melt temperature was high and the vessel wall temperature was higher than the 

liquidus temperature of the melt. In the contrast with LIVE-L3, the crust layer in the LIVE-L3A 

test was formed under fast cooling condition, i.e. the melt contacted the cold vessel walls and 

solidified. The difference in the crust growth rates was quite noticeable during the first 3 to10 

minutes of the crust growth period and almost 50% of the whole crust layer was influenced 

by the different growth rate. Fast cooling at the outside leads to a low thermal conductivity of 

the crust and a thinner crust layer during the thermal hydraulic steady-state. Fast cooling 

also leads to a shorter period of the crust growth. 

 

Other differences in the results of the LIVE-L3 and LIVE-L3A were also observed but it is not 

quite clear up to now whether they can be attributed to the initial cooling conditions or to 

other minor differences in the test parameters. These are: 

- steady-state melt temperature: the melt temperatures in the LIVE-L3A were generally 

~3°C higher than in the LIVE-L3 test; 

- vertical heat flux distribution: the focusing of heat flux near to the melt surface was 

more pronounced in the LIVE-L3A test. This corresponds also to the thinner crust 

layer at the upper part of the crust, given that the influence of the different crust ther-

mal conductivity is compensated; 

- heat flux splitting: higher amount of heat was removed through the vessel wall in the 

LIVE-L3A test. 

 

The minor differences in test parameters were: 

- heating power: the heating power in the LIVE-L3A was ~2% higher than in the LIVE-

L3 test during the 10 kW heating period; 

- cooling water temperature: the cooling water temperature in the LIVE-L3A was 

~4.5°C lower than in the LIVE-L3 test. 
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Annex A Data Acquisition and Instrumentation 

Annex A.1  LIVE-L3A channel assignment 

Table A- 1 lists all signals that were registered on the PC data acquisition system for the ex-

periment LIVE-L3A. All signal cables are attached to a control cabinet, which is positioned 

near the LIVE test vessel. The temperature signals are all single-ended signals. The refer-

ence junctions of thermocouples are traditionally maintained at 0°C. This is assumed in 

thermocouple calibration tables. In the LIVE experiments the reference junction is situated in 

the control cabinet and has ambient temperature. To overcome this error of a non-zero ther-

mocouple reference junction, the temperature of the reference point is measured by three 

PT-100 sensors (named RT) that are attached at the connector blocks of the thermocouples. 

This temperature is then used to correct the temperature measured by the thermocouples.  
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Annex A.2  Drawings of the instrumentation of the LIVE test vessel 

Figure A-1: Positions of the instrumented plugs along the meridians at 67.5° and 247.5°. 

Figure A-2: Positions of the instrumented plugs along the meridians at 157.5° and 337.5°. 
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Figure A-3: Positions of the IT and OT thermocouples along the meridians at 22.5° and 

202.5°. 

 

Figure A-4: Positions of the IT and OT thermocouples along the meridians at 112.5° and 

292.5°. 
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Figure A-5: Positions of the MT thermocouples in the section 0° - 180° 

Figure A-6: Positions of the MT thermocouples in the section 90° - 270° 
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Figure A-7: Orientation of the MT thermocouples at the plane 450.4 mm. Reference point is 

the upper edge of the LIVE test vessel. 

Figure A-8: Orientation of the MT thermocouples at the plane 350.4 mm. Reference point is 

the upper edge of the LIVE test vessel. 
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Figure A-9: Orientation of the MT thermocouples at the plane 250.4 mm. Reference point is 

the upper edge of the LIVE test vessel. 

Figure A-10: Positions of the thermocouple trees along the meridians at 25° and 35°. 
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Figure A-11: Positions of the thermocouples at the outer surface of the cooling tank. 
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Annex B Test initial conditions and main parameters 

 

Melt characteristics and preparation 

Type NaNO3 KNO3 

Mole % 20 % 80 % 

Mass % 17.37 % 82.63 % 

Mass 68 kg 324 kg 

Total mass 392 kg 

Loading of the furnace 
~455 l powder (for T=20 °C) 

~210 l melt (for T=350°C) 

Pouring mass 120 l or 224.4 kg (corresponds to ~31 cm melt height) 

Initial melt temperature 350 °C 

Flow rate of nitrogen flushing 2 l/min 

Melt pour 

Position lateral 

Number of pours 1 

Furnace tilting velocity 0.5 °/s 

Furnace target angle 76° 

Pouring rate 6 kg/s 

Pouring spout temperature 360 °C 

Phase 1: Homogeneous heat generation with continuous outer vessel wall cooling 

Start time 145 s 

Boundary conditions water, continuous cooling 

Cooling water flow rate ~0.047 kg/s 

Heating planes all 

Heating power 10 kW 

Heat generation homogeneous 

Initial melt temperature 350 °C 

Phase 2: Reduction of heat generation 

Test conditions reaching of steady-state conditions in phase 1 

Start time 90237 s 

Boundary conditions water, continuous cooling 

Cooling water flow rate ~0.047 kg/s 

Heating planes all 

Heating power 7 kW 
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Heat generation homogeneous 

Phase 3: Test termination and melt extraction 

End time 181400 s 

Test conditions reaching of steady-state conditions in phase 2 

Heating power switched off 
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Annex C Test data 

This appendix provides plots of the experimental results. which are not shown in the main 

part of the report. 

Figure C-1: Melt pool temperatures at different elevations along the meridian at 90° in LIVE-

L3A 
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Figure C- 2: Melt pool temperatures at different elevations along the meridian at 180° in 

LIVE-L3A 

Figure C-3: Melt pool temperatures at different elevations along the meridian at 270° in LIVE-

L3A  
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Figure C-4: Inner wall temperatures of the test vessel at different elevations along the me-

ridian at 22.5° in LIVE-L3A 

Figure C-5: Inner wall temperatures of the test vessel at different elevations along the merid-

ian at 112.5° in LIVE-L3A 
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Figure C-6: Inner wall temperatures of the test vessel at different elevations along the merid-

ian at 202.5° in LIVE-L3A 

Figure C-7: Inner wall temperatures of the test vessel at different elevations along the merid-

ian at 292.5° in LIVE-L3A  
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Figure C-8: Outside wall temperatures of the test vessel at different elevations along the me-

ridian at 22.5° in LIVE-L3A 

Figure C-9: Outside wall temperatures of the test vessel at different elevations along the me-

ridian at 112.5° in LIVE-L3A  
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Figure C-10: Outside wall temperatures of the test vessel at different elevations along the 

meridian at 202.5° in LIVE-L3A 

Figure C-11: Outside wall temperatures of the test vessel at different elevations along the 

meridian at 292.5° in LIVE-L3A  
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Figure C-12: Plug and heat flux sensor temperatures in LIVE-L3A. ϕ = 0°. h = -520 mm. r=0. 

Figure C-13: Heat flux values calculated with IT/OT thermocouples along the meridian at 

22.5° in LIVE-L3A  
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Figure C-14: Heat flux values calculated with IT/OT thermocouples along the meridian at 

112.5° in LIVE-L3A 

Figure C-15: Heat flux values calculated with IT/OT thermocouples along the meridian at 

202.5° in LIVE-L3A  
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Figure C-16: Heat flux values calculated with IT/OT thermocouples along the meridian at 

292.5° in LIVE-L3A 

Figure C-17: Temperature measurements of the thermocouple tree CT4 in LIVE-L3A. ϕ = 

25°. h = -420.4 mm. r = 299 mm  
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Figure C-18: Temperature measurements of the thermocouple tree CT2 in LIVE-L3A. ϕ = 

35°. h = -320.4 mm. r = 398 mm 

Figure C-19: Temperature measurements of the thermocouple tree CT3 in LIVE-L3A. ϕ = 

35°. h = -220.4 mm. r = 456 mm 
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Figure C-20: Cooling water temperatures in LIVE-L3A 
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(RPV) of a pressurised water reactor (PWR) involves a large number of complex phy-
sical and chemical phenomena. The main objective of the LIVE program is to study 
the core melt phenomena during the late phase of core melt progression in the RPV 
both experimentally in large-scale 3D geometry in supporting separate-effects tests 
and analytically using CFD codes in order to provide a reasonable estimate of the 
remaining uncertainty band under the aspect of safety assessment.

The main objective of the LIVE-L3A experiment was to investigate the behaviour 
of the molten pool and the formation of the crust at the melt/vessel wall interface 
influenced by the melt relocation position and initial cooling conditions. The test 
conditions in the LIVE- L3A test were similar to the LIVE-L3 test except the initial 
cooling conditions. In both tests the melt was poured near to the vessel wall. In the 
LIVE-L3 test the vessel was initially cooled by air and then by water; in the LIVE-L3A 
test the vessel was cooled by water already at the start of the experiment.

The information obtained in the test includes horizontal and vertical heat flux dis-
tribution through the RPV wall, crust growth velocity and dependence of the crust 
properties on the crust growth velocity and cooling conditions. Supporting post-test 
analysis contributes to the characterization of solidification processes of binary non-
eutectic melts. The results of the LIVE-L3 and LIVE-L3A tests are compared in order 
to characterize the impact of transient cooling condition on the crust solidification 
characteristics and melt pool behaviour including interface temperature, time to 
reach thermal hydraulic steady-state and the steady-state heat flux distribution.

The report summarizes the objectives of the LIVE program and presents the main 
results obtained in the LIVE-L3A test compared to the LIVE-L3 test.




