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Abstract

This report describes a formalisation and deductive verification of a Byzantine Agreement
Protocol. The model evolves over twelve steps of refinement each introducing a new aspect. The
Event-B method is used to model the protocol, and the publicly available tool Rodin is used to
deductively prove its correctness.
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1 Introduction

Byzantine Agreement Protocols are used to ensure that in the presence of a limited number of defect or
malicious units a message can be distributed amongst them in such a way that, eventually, all correctly
working units agree on one consensus decision. They can be used, for instance, to synchronise the
view components of a system have about each other. The original problem statement and the first
protocols were presented in [9] and [5]. Many protocols that mainly differ in the applied authentication
scheme or the fault model have been presented since. See Sect. 4 for a brief overview over a number
of protocols.

Agreement protocols are of relevance today when in a safety-critical environments several com-
ponents of a decentralised system need to share a common value. If no central authority instance is
present, the components have to perform an agreement protocol to come up with a consentaneous
decision.

Byzantine agreement protocols are not too complex in their nature and can be described concisely.
They are, on the other hand, also not trivial algorithms, and Lamport et al. admitted in [5]: “We
know of no area in computer science or mathematics in which informal reasoning is more likely to
lead to errors than in the study of this type of algorithm.” They are therefore most appropriate for a
formal examination. A protocol variation without secure signatures (called oral messages) has been
formally verified in [7] using the higher order proof environment PVS. We will here concentrate on a
different kind of protocol (written or signed messages) which uses secure signatures.

The formalism chosen for our formalisation is Event-B [1] and the tool used for the verification is
Rodin1 [2].

1.1 Problem statement

We consider a system which is composed of a non-empty set of Modules. Every module is either non-
faulty, arbitrarily faulty or symmetrically faulty. The union of the (disjoint) sets of arbitrarily
faulty and symmetrically faulty modules is the set of faulty modules.

Modules receive and send messages which contain Values. A non-faulty module relays every
message it receives to all other modules which have not yet seen this message. Faulty modules do
the same, but they may drop messages instead of passing them on. Arbitrarily faulty modules are
unrestricted in the messages that they discard. A symmetrically faulty module either relays a message
to all modules which have not seen it yet (like a non-faulty module) or it does not send any relayed
message at all. Their behaviour may change, however, from received message to message. Please note:
Faulty modules can never forge messages, only discard them.

The protocol is divided into steps, called rounds. In the first round (round 0), a dedicated module
transmitter sends messages to all other modules. A non-faulty transmitter sends the intended value
V0 to all other modules. A faulty transmitter, however, may send arbitrary initial messages to all
parties, it may also drop messages, i.e., not send a message to every other module.

From round 1 on, the transmitter does no longer receive or send any more messages. Messages are
amended with a history of those nodes which have already seen it. A receiving node may therefore
easily detect to whom a message has to be passed on and to whom not.

In the original protocol an error value E was used to describe faulty behaviour. We opted for
“dropping” messages, but one formulation can easily simulate the other.

1.2 Assumptions

We list here the assumptions that we make about the modules involved in the protocol:

A1 The sending of messages is synchronised.

Equivalent: The protocol is strictly round-based.

No module can receive a message of a certain round while it still can produce messages of the
same round. Messages belong to a certain round and cannot be delivered at a later round.

A2 Sender and receiver references embedded in a message are truthful.
1We first used Rodin release 1.0 and later 1.1.
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We consider this integral, reliable information part of the network environment or given due to
the communication wiring.

A3 The transmitter sends at most one message to each module in the first round. It does not send
any more messages in later rounds.

This assumptions can easily be implemented in reality: If a module encounters more than one
different message stemming from the transmitter, it can discard all of them (assuming the sender
must be faulty) or all but the first for instance.

A4 Messages cannot be forged.

A module (even a faulty one) cannot make up a message from scratch. A module must receive a
message of the previous round to produce one (or more) messages for the upcoming round. All
it can do is amend its own signature to extend the set of visited modules.

It is up to the used signature and message scheme to ensure that this is indeed the case. Usually
this means that forged messages can be created but are invalid (e.g. digital signatures violated)
and, hence, forgery can always be detected. The assumption requires also that messages must
be sent immediately, i.e. in the round directly after receiving the message.

A5 Messages carry histories.

Every message contains, besides its value, the set of modules through which it has passed. We
assume that A4 also covers the histories of messages.

A6 There is a response time within which every non-arbitrarily-faulty module is guaranteed to relay
a message (if it relays it).

An arbitrarily malfunctioning module may here delay a message for an arbitrary period of time.
This assumption is needed for an asynchronous version of the protocol in which A1 does not
hold and timeout deadlines are employed.

We will in later stages of the refinement chain relax A1 (see Sect. 2.10).

1.3 Rounds

The perception of when a round begins or ends varies throughout the literature. This section clarifies
our notion on what happens during a round and how rounds are counted.

In our model, messages which are being sent (are in rec) in round n arrive in round n+ 1 (Fig. 1).
Therefore, in round n (for round = n) n sending rounds are finished, i. e. the respective messages
have arrived. In the original description of ZA [3] on the other hand, messages which are being sent
in round n arrive in the same round (Fig. 2). Accordingly, in round n (effects of ZA(n)) n+ 1 sending
rounds are finished, i. e. the respective messages have arrived. Hence, the effects of ZA(n) can be
observed in the state with round = n + 1 in our model, because in both cases n + 1 sending rounds
are finished.

· · ·
phase 1:
receive and collect
recold  collected

phase 2: create new mes-
sages and send them
recold  rec︸ ︷︷ ︸

round n

phase 1
. . .

phase 2
. . .

︸ ︷︷ ︸
round n + 1

· · ·

Figure 1: Rounds of our model — round = n: n sending rounds finished, i. e. messages have
arrived; recold refers to the contents of rec in the previous round

· · · phase 1: create new mes-
sages and send them

phase 2:
receive and collect︸ ︷︷ ︸

round n

phase 1
. . .

phase 2
. . .︸ ︷︷ ︸

round n + 1

· · ·

Figure 2: Rounds of ZA — r = n [ZA(n)]: n+1 sending rounds finished, i. e. messages have arrived
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Summing up, for round = n exactly n sending rounds have been finished (i. e. the respective
messages have arrived and been observed, that is entered in collected) and the n+ 1st sending round
is in progress (the messages are on their way).

In [3] the bound for ZA is given as r ≥ card(faulty). This is due to the difference in counting the
rounds (see Sect. 1.3). Both, for our round ≥ card(faulty) + 1 and for ZA(r) with r ≥ card(faulty)
there are card(faulty)+1 sending rounds finished. Accordingly, the bounds are identical (with respect
to the number of sending rounds).

2 Modelling the Byzantine Agreement Problem

Event-B is a formal method for modelling discrete reactive systems. It is based on the concept of
refinement allowing to formally derive more detailed system descriptions from more abstract ones.
Even though the models can be used for model checking [6] and model animation [8], they are most
often verified using deductive reasoning: Formal proofs have to be given to show the correctness of
refinements and invariants. For an introduction and overview over the Event-B method, see [4], for
instance.

The concept of dividing a model into several levels of refinement allows us to distribute different
aspects of the modelling task among several steps of the design. For one machine, the specifier, the
verifier and an interested reader can then concentrate on one particular aspect of the model instead
of dealing with the entire complexity all the time. We employ the means of refinement in our model
beginning with very simple models which implement the postulated assumptions, and then introduce
more complex elements of the protocol in later steps. The descriptions and their proven properties
become more and more complex.

Models in Event-B are defined in contexts (where carrier sets, constants and axioms are provided)
and in machines (which contain definitions of events and invariants which descripe the discrete state
transition system). We will in this section first present the contexts used by the various machines and
then—in a top-down fashion—describe the refinement tower of Event-B machines.

Notational remarks

We will use the following fonts to distinguish different kinds of identifiers:

MachineName Name of a context or machine
CarrierName Name of a carrier set
constName Name of a constants or variable
act1 Name of a named element (guard, action, invariant, . . . )
thm1 Name of a theorem (which is implied by before standing invariants or axioms)

We declare events extended if they have substitutions in common with the event they refine. In
parentheses, we list the actions which are “inherited” from the refined event, i.e., which are implicitly
copied verbatim.

2.1 The contexts of the model

The contexts used throughout the model are depicted in Fig. 3, the more complex context Mod-
uleList is covered in Sect. 2.9.

The sets of Modules and messages (Values) are modelled as carrier sets in the first context Con-
text to emphasise their role as primary objects in the protocol. Please note that it is not necessary
to request Module to be a finite set. All proofs work also for an infinite number of modules. However,
the subset of faulty modules is chosen to be a finite set. We later want to argue that the number of
rounds the protocol has to perform is related to the number of faulty nodes—which is the cardinality
of this set—and, hence, need to know that this set is always finite. We call the Value that is the value
which ought to be broadcast the intended value and denote it as V0. The transmitter is an arbitrary
Module acting as the sole sender in round 0. If the transmitter is not arbitrarily faulty, V0 is the only
value observed during the algorithm.

The context HybridContext refines the notion of a faulty module by introducing two sets arb-
Faulty and symFaulty which partition the set of faulty modules, i.e., the sets are disjoint and their
union is faulty. The context VotingContext is used in a later refinement (ValueTable, see
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Sect. 2.8) where an arbitrary voting function is considered. A voting function is a total function
from value tables (i.e. partial functions from modules to values) to values. The only requirement is
that if the table is not empty, the chosen value must be one of the values in the range of the table
(axm vote1).

CONTEXT Context

SETS
Module

Value

CONSTANTS
faulty

transmitter

V0

AXIOMS
axm1 : faulty ⊆ Module

axm2 : transmitter ∈ Module

axm3 : V0 ∈ VALUE
axm4 : finite(faulty)

END

(a) the abstract context Context

CONTEXT HybridContext

EXTENDS Context

CONSTANTS
arbFaulty

symFaulty
AXIOMS

def faulty :
partition(faulty, arbFaulty, symFaulty)

END

(b) the more detailed context HybridContext adds to Con-

text

CONTEXT VotingContext

EXTENDS Context

CONSTANTS
vote

AXIOMS
type vote : vote ∈ (Module 7→ Value)→ Value

axm vote1 : ∀f ·f ∈ Module 7→ Value ∧ ran(f ) 6= ∅⇒ vote(f ) ∈ ran(f )
thm vote ran : ∀f , g ·f ∈ MODULE 7→VALUE ∧ g ∈ MODULE 7→VALUE ⇒

((∃x ·ran(f ) = {x} ∧ ran(g) = {x})⇒ vote(f ) = vote(g))
END

(c) the context introducing the notion of a voting function

Figure 3: Contexts used by the machines in the model

2.2 The hierarchy of machines

We have structured our model into twelve machines. Five of them (namely Messages, Messages-
Signed, History, Guarantees, HybridGuarantees) gradually introduce new aspects into the
model in a linear fashion. Two (namely ValueTables, ZA) extend the chain to model the protocol
variant ZA (e.g. described in [3]). Another two (namely Roundless and SM) weaken the concept of
the round-based protocols and finally model the standard-algorithm SM.

The remaining machines (with their names ending in Tech) are definitorial extensions (see Sect. 5)
of their respective counterparts and are used to add variables helpful for the agreement proofs. To keep
the modelling free of too many technical details, we introduced the technical machines, in which we
proof the agreement properties. These invariants are then invariants also in the original machines by
the theorem from Sect. 5. The figures presenting the machines in the following do not always contain
all proven invariants but concentrate on essential properties to keep the presentation relatively clear.
Events, however, are depicted complete.

Please see Fig. 4 for a schematic of the refinement hierarchy. Therein, contexts are drawn as
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rhomboids, machines as rectangles. A solid line indicates a refinement relationship (going from refining
to refined entity), and a dotted line stands for a “sees”-clause between a machine and a context.

sees

sees

sees

sees

def. ext.

def. ext.

def. ext.

MessagesContext

MessagesSigned

History

Guarantees

GuaranteesTechHybridGuaranteesHybridContext

HybridGuaranteesTechRoundless

SM

VotingContext ValueTables

ValueTablesTechZAModuleList

Figure 4: Refinement Hierarchy of Machines

2.3 Machine “Messages”

The initial machine Messages—depicted in Fig. 5—introduces the general concepts of messages,
rounds and the collection of values. For most of the upcoming machines (all but Roundless and
SM), the protocol is strictly round based by assumption A1, and we memorise the current round
number in a variable round. For a description of the notion of a round please see Sect. 1.3. The event
structure with the two events Initialisation and Round is kept up throughout this model.

A single message is an element of the Cartesian product Module × Module × Value with the
first component the sender module of the message, the second its receiver and the third the value
transmitted by it. The variable messages holds the set of messages sent in the current round (i.e. in
round round). Every module keeps an account of the values which it has already received. We model
this by a total function collected which maps to every Module a set of Values.

Action act1 of the initialisation is given in form of a before-after-predicate because the result
value messages′ is used in the initial assignment to collected. This shape of a non-deterministic “such-
that” substitution will remain the same in the upcoming refinements. An arbitrary (partial) mapping
between Modules and Values is used to describe the initial set of messages (which the transmitter
sends to modules) and the initial mapping of collected values. The first action of event Round imposes
hardly any restriction on a refining event. Almost every set of messages can be used to fulfill this
indeterministic choice. act2 which updates the sets of encountered values by those values sent in
the last round, has to be adapted with the representation of the sent messages. Action act3 which
initialises and increments the round counter remains the same in all future machines.

Please note that act1 in the initialisation and round together ensure—already at this high level of
abstraction—assumption A3 by explicitly allowing/disallowing the transmitter as sender of messages.

2.4 Machine “MessagesSigned”

In a first refinement, we introduce a restriction on the set of messages which can be sent by the
modules in the model. According to assumption A4, modules can only pass on values they receive
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MACHINE Messages

SEES Context

VARIABLES
messages
round
collected

INVARIANTS
type messages : messages ∈ (Module× Module)↔ Value

type round : round ∈ N
type collected : collected ∈ Module→ P(Value)

EVENTS
Initialisation

begin
act1 : messages, collected :|

messages′ = {transmitter} × Module× Value ∧
collected′ = (Module× {∅})C− {transmitter 7→ ran(messages′)}

act3 : round := 0
end

Event ROUND =̂
begin

act1 : messages :∈ ((Module \ {transmitter})× Module)↔ Value

act2 : collected := λn ·n ∈ Module | collected(n) ∪ {s, v ·(s 7→ n) 7→ v ∈ messages | v}
act3 : round := round + 1

end
END

Figure 5: Machine Messages
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and never come up with new values which were not presented to them in a message of the previous
round.

The refined events change very little, but act1 of event ROUND is modified to only allow messages
which are in accordance with A4. Only messages which are induced by a message of the current round
may be used in the next round. The information about sender and receiver in a message tuple is
authentic and cannot be faked as we may assume by A2.

Already at this high abstraction level we can observe two rather important invariants which will
contribute a lot to the notion of validity. The invariant

∀s, r, v ·(s 7→ r) 7→ v ∈ messages⇒ v ∈ collected(transmitter)

(named no new vals) captures the fact that every value appearing in a message at any time must
have appeared in the first round at the transmitter already. Invariant no new vals2

∀n·collected(n) ⊆ collected(transmitter)

states the corresponding property for the values collected by modules: They must have appeared in
the collection of the transmitter first.

MACHINE MessagesSigned

REFINES Messages

SEES Context

VARIABLES
messages
round
collected

INVARIANTS
no new vals : ∀s, r , v ·(s 7→ r) 7→ v ∈ messages⇒ v ∈ collected(transmitter)
no new vals2 : ∀n ·collected(n) ⊆ collected(transmitter)

EVENTS
Initialisation

(inherits: act1, act3)
begin
end

Event ROUND =̂
refines ROUND (inherits: act2, act3)

begin
act1 :

messages :∈ P({s, r , v ,n ·(s 7→ r) 7→ v ∈ messages ∧ r 6= transmitter | (r 7→ n) 7→ v})
end

END

Figure 6: Machine MessagesSigned

2.5 Machine “History”

The second refinement to machine History (cf. Fig. 7) implements A5 hereby implying a change of
representation for the set of messages. Instead of the state variable messages, we will now employ a
variable rec2 which holds a set of messages with histories. We need not concern ourselves with the
order of modules in histories yet, but model them as sets of modules. A message is, hence, an element

2standing for “received messages”
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of the product (Module×Module)×(P(Module)×Value). At the same time we ensure that no message
is ever sent to a module which has already “seen” it.

This representation change gives rise to a glueing invariant glue rec messages

messages = {s, r, l, v ·(s 7→ r) 7→ (l 7→ v) ∈ rec | (s 7→ r) 7→ v}

stating that the tuples in messages is obtained from the set of messages tuples with history by dropping
with the history component. Please note that more than one message in rec can fall onto the same
message in messages if they coincide in every component but the history list.

Histories are not arbitrary sets, they have some fundamental properties by construction, of which
the most important are captured in rec content

∀s, r, l, v ·(s 7→ r) 7→ (l 7→ v) ∈ rec⇒ s ∈ l ∧ transmitter ∈ l ∧ r /∈ l

stating that the sender s of a message and the transmitter are always part of the history l, while, on
the other hand, the receiver r never is. We change the nature of histories in the refinement to ZA
where we take the order into consideration, please see Sect. 2.9 for details.

In the beginning (round 0) every history is set to {transmitter} and it grows by exactly one module
per round which manifests itself in invariant set card

∀s, r, l, v ·(s 7→ r) 7→ (l 7→ v) ∈ rec⇒ finite(l) ∧ card(l) = round+ 1 .

The event description undergoes a more thorough change than in previous steps due to the repre-
sentation change, but captures the same essential ideas. The events act1 in both events ensure that
histories are used the way they ought to be: In round 0 they are initialised with the singleton set
{transmitter} and in later rounds the new sender r of any outgoing message is added to the history
list. Since the variable message was originally changed by a generalised substitution with before-after-
predicate, we have to provide a witness (in the with clauses) which fulfills the requirements given in
the refined machine and fits the needs of this refinement.

2.6 Machine “Guarantees”

It is only now (see Fig. 8) that we introduce the protocol-specific message handling. In machine
Guarantees we distinguish between faulty and non-faulty modules. We assume that non-faulty
nodes behave as the protocol requires while faulty may behave arbitrarily.

In event Round we use an expression of the form “let R = α in β(R)” which is not syntactically
valid in Event-B, but was introduced for better readability. This let-in-expression can be equivalently
written as ∀R ·R = α⇒ β(R). The locally bound identifier R holds the set of messages which would
be sent if all modules were non-faulty, and is obviously an upper bound for the set of the messages
actually sent (rec′ ⊆ R). We also require that for any non-faulty sender all messages are properly
relayed, i.e. that any message is forwarded to all module which have not yet received it.

This is the level of refinement at which we reason about an agreement property for the first time.
Since the non-faulty modules’ processing is total, distribution of values amongst all non-faulty modules
can be guaranteed. The invariant agreement3

round ≥ card(faulty) + 1⇒ (∀n,m·n /∈ faulty ∧m /∈ faulty⇒ collected(n) = collected(m))

states that after a certain number of rounds (rounds ≥ card(faulty) + 1), the observations of all non-
faulty modules coincide (collected(n) = collected(m)). Please see Sect. 3 on a more detailed analysis
of this property. Property ex non faulty

round ≥ card(faulty)⇒ (∀s, r, l, v ·(s 7→ r) 7→ (l 7→ v) ∈ rec⇒ (∃x·x ∈ l ∧ x /∈ faulty))

is in the very center of the agreement arguments: If the round counter is equal to or greater than
the number of faulty modules, then there must be at least one module which is non-faulty (simple
cardinality considerations) in the history of every message which has seen and, hence, distributed the
value to all other modules. This is the main argument why after card(faulty)+1 rounds all non-faulty
modules have seen the same set of values. We can also prove invariant validity

round ≥ 1 ∧ transmitter /∈ faulty⇒ (∀n·collected(n) = {V0})

now, stating that in case of a working transmitter after the first round every module has experienced
the value V0 and only this value.

3in GuaranteesTech
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MACHINE History

REFINES MessagesSigned

SEES Context

VARIABLES
rec
round
collected

INVARIANTS
type rec : rec ∈ (Module× Module)↔ (P(Module)× Value)
glue rec messages : messages = {s, r , l , v ·(s 7→ r) 7→ (l 7→ v) ∈ rec | (s 7→ r) 7→ v}
rec content : ∀s, r , l , v ·(s 7→ r) 7→ (l 7→ v) ∈ rec ⇒ s ∈ l ∧ transmitter ∈ l ∧ r /∈ l
no new vals : ∀s, r , l , v ·(s 7→ r) 7→ (l 7→ v) ∈ rec ⇒ v ∈ collected(transmitter)

direct consequence of MessagesSigned.no new vals

trans not dom : ∀s ·s 7→ transmitter /∈ dom(rec)
direct consequence of rec content

set card : ∀s, r , l , v ·(s 7→ r) 7→ (l 7→ v) ∈ rec ⇒ finite(l) ∧ card(l) = round + 1
due to construction the length of the history depends on the round

EVENTS
Initialisation

(inherits: act3)
begin

with
messages′ : messages′ = {s, r , l , v ·(s 7→ r) 7→ (l 7→ v) ∈ rec′ | (s 7→ r) 7→ v}

act1 : rec, collected :|
rec′ ⊆ {transmitter} × (Module \ {transmitter})× ({{transmitter}} × Value) ∧
collected′ = (Module× {∅})C− {transmitter 7→ ran(ran(rec′))}

end
Event ROUND =̂
refines ROUND (inherits: act3)

begin
with

messages′ : messages′ = {s, r , l , v ·(s 7→ r) 7→ (l 7→ v) ∈ rec′ | (s 7→ r) 7→ v}
act1 : rec :∈ P({s, r , l , v ,n ·(s 7→ r) 7→ (l 7→ v) ∈ rec ∧ n /∈ l ∧ n 6= r |

(r 7→ n) 7→ (l ∪ {r} 7→ v)})
act2 : collected := λn ·n ∈ Module | collected(n) ∪ {s, l , v ·(s 7→ n) 7→ (l 7→ v) ∈ rec | v}

end
END

Figure 7: Machine History
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MACHINE Guarantees

REFINES History

SEES Context

VARIABLES
rec
round
collected

INVARIANTS some omitted, some lifted from GuaranteesTech

nonfaulty transmitter : transmitter /∈ faulty⇒
collected(transmitter) = {V0}

ex nonfaulty : round ≥ card(faulty)⇒
(∀s, r , l , v ·(s 7→ r) 7→ (l 7→ v) ∈ rec ⇒ (∃x ·x ∈ l ∧ x /∈ faulty))

validity : round ≥ 1 ∧ transmitter /∈ faulty⇒
(∀n ·collected(n) = {V0})

agreement subset : round ≥ card(faulty) + 1 ⇒
(∀n,m ·n /∈ faulty ∧m /∈ faulty⇒ collected(n) ⊆ collected(m))

See proof sketch in Sect. 3.2 (lifted)
agreement : round ≥ card(faulty) + 1 ⇒

(∀n,m ·n /∈ faulty ∧m /∈ faulty⇒ collected(n) = collected(m))
Main theorem, simple consequence of agreement subset (lifted)

finite running : finite(MODULE ) ∧ round ≥ card(MODULE )⇒ rec = ∅
The protocol terminates for a finite number of modules (lifted)

EVENTS
Initialisation

(inherits: act3)
begin

act1 : rec, collected :|
∃values ·values ∈ MODULE 7→VALUE ∧
(transmitter /∈ faulty⇒ values = MODULE × {V0}) ∧
rec′ = {n ·n ∈ dom(values) \ {transmitter} |

(transmitter 7→ n) 7→ ({transmitter} 7→ values(n))} ∧
collected′ = (MODULE × {∅})C− {transmitter 7→ ran(values)}

end
Event ROUND =̂
refines ROUND (inherits: act2, act3)

begin
act1 : rec :|

let R = {l , v , s, r ,n ·(s 7→ r) 7→ (l 7→ v) ∈ rec ∧n 6= r ∧n /∈ l | (r 7→ n) 7→ ((l ∪ {r}) 7→ v)} in
rec′ ⊆ R ∧
(∀t , u, x ,w ·(t 7→ u) 7→ (x 7→ w) ∈ R ∧ t /∈ faulty ∧ w /∈ collected(t)⇒

(t 7→ u) 7→ (x 7→ w) ∈ rec′)
end

END

Figure 8: Machine Guarantees
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2.6.1 Lifting

For each of this machine and the following two (HybridGuarantees and ValueTables) we have
introduced a technical companion (with suffix Tech) which contains technical details on the model
and proofs. They are designed as definitorial extensions implying that some results can be lifted to
the refined machines directly. Please see Sect. 5 for a formal explanation.

The definitorial extension has got two more variables rec old and collected old which store the
value of rec and collected respectively of the previous round. They are needed due to the inductive
nature of some lemmata proofs. Their assignment is the only change to the event descriptions. Apart
from that, only additional invariants are provided.

2.6.2 Example

An example scenario with two faulty modules, one of them the transmitter, is shown in Fig. 9. In
round 0 (Fig. 9(a)), the transmitter sends the initial value, which arrives and is forwarded in the
following round (Fig. 9(b)). One can see, that in round 3 all modules have received the value sent by
the transmitter.

T
{V0}

V0 //M1
{}

M2
{}

M
{}
...

M
{}

(a) round = 0 – The faulty trans-
mitter T sends the value V0 to M1
only. (If T was non-faulty, it would
send the message to all other nodes.
Being faulty, it might also send values
different from V0.)
rec = {(T 7→M1) 7→ ({T} 7→ V0)}

T
{V0}

M1
{V0}

V0 //M2
{}

M
{}
...

M
{}

(b) round = 1 – The faulty mod-
ule M1 observes the received value and
forwards it to M2 only. M1 could drop
the message altogether but it cannot
modify or defer it.
rec =
{(M1 7→M2) 7→ ({T, M1} 7→ V0)}

T
{V0}

M1
{V0}

M2
{V0}

V0 //

&&LLLLLLL

��:
::

::
::

:: M
{}
...

M
{}

(c) round = 2 – The non-faulty
module M2 observes the received
value and forwards it to all modules
which haven’t seen the message yet.
rec =
{m · m ∈ Module \ {T, M1, M2} |
(M2 7→ m) 7→ ({T, M1, M2} 7→ V0)}

T
{V0}

M1
{V0}

M2
{V0}

M
{V0}

uu V0

zz

...
M
{V0}

V0

::

55

(d) round = 3 – All modules have observed
the value V0. Further messages are forwarded
but no new values are observed by any module.
rec = . . .

Figure 9: In this example, transmitter T and module M1 are faulty, the other modules are non-
faulty, hence card(faulty) = 2. M

{v1,v2}
means that module M has observed the values v1 and v2

(collected(M) = {v1, v2}). Messages are depicted as arrows.

2.7 Machine “HybridGuarantees”

The distinction between faulty and non-faulty modules can be done in a more fine-grained manner.
[10] introduces a hybrid fault model which distinguishes between arbitrarily faulty, manifest faulty
and symmetrically faulty modules:

arbFaulty Modules which can send or drop message at their discretion. However, they cannot forge
messages and will send a set which is a subset of the messages a non-faulty module would relay.
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symFaulty The failure of the module is symmetric. If a message is changed or dropped, the same
behaviour is presented to all potential recipients of the message. Since we can always rely
on secure signatures, we can model this by having symFaulty nodes either drop a message or
completely relay it. A symmetrically faulty module can choose its behaviour for any incoming
message separately, however.

manifestFaulty Such a module always sends an erroneous message which can be—due to assumption
A4—detected and, hence, discarded. A manifest faulty node is (with signatures) merely the
corner case of a never-sending symmetrically faulty module.

In Fig. 10 we show the machine which implements this differentiation. In congruence to machine
Guarantees there is also a technical counterpart introduced to conduct the proofs of agreement.
We will omit details here, see Sect. 3. Some properties established in the refined machine no longer
hold in this context and have to be adapted. For instance, it is now not any longer guaranteed that
a message of length greater than card(arbFaulty) contains a non-faulty module; it merely contains
one non-arbitrarily-faulty (i.e. symmetrically-faulty or non-faulty) one (invariant ex nonArbFaulty).
Such and similar adaptations have to be made to many invariants. The agreement proofs done earlier
can therefore not simply be copied, but need to be redone. The experience gained in the simpler
cases certainly helped in the challenge to discharge the new proof obligations, but proves could not
be reused.

Please note that the event descriptions have now become significantly more complex. The different
behaviour of symFaulty, arbFaulty and non-faulty nodes has to be reflected both in the initialisation
and the round event. For the latter we use an indeterministic choice for the parameter nonrec which
chooses a subset of the messages in rec with symmetrically faulty senders. Those messages will be
dropped, not handled. For the remaining messages, symmetrically faulty modules behave like non-
faulty ones.

2.8 Machine “ValueTables”

This refinement includes more information into the messages sent between modules. It allows the
modules to build up a value table storing their knowledge of what value which module has originally
received in round 1 (i.e. directly from the transmitter). This table allows majority or other votes on
the multiset of originally sent values rather than only on the set of observed values.

It turns out, however, that we do not have the same termination constraints. While in the previous
machine, we could guarantee agreement if round ≥ card(faulty) + 1, the protocol does not in general
ensure that all non-faulty modules have built up identical tables in that round already. But we made
the following observations:

1. For any voting4 function, all non-faulty modules come to the same conclusion if round ≥
card(faulty) + 1 (invariant agreement voting).

2. For round ≥ card(faulty) + 2 the protocol (finally) ensures that all non-faulty modules have
identical tables.

3. In the case that the transmitter is faulty, the condition round ≥ card(faulty) + 1 suffices to have
identical tables.

We use round ≥ card(faulty∪{transmitter})+1 as the condition to have identical tables. Invariant
agreement unifies observations 2 and 3.

2.8.1 Modified Problem Statement

The problem statement given in Sect. 1.1 is still valid. There are only two amendments:

1. The messages sent consist of a pair (module m, value v) indicating that m has originally (in
round 1) received v. Modules can only pass on pairs or drop them, they can never defer or forge
them.

2. In round 0 the transmitter distributes an initial message (m, v) to every module m. For a
non-faulty transmitter v is equal to the intended value V0, they may differ in case of a faulty
transmitter.

4A voting is a function which selects a value from a non-empty multiset and a default value from the empty set.
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MACHINE HybridGuarantees

REFINES Guarantees

SEES HybridContext

VARIABLES
rec

round

collected

INVARIANTS (agreement lifted)
ex nonArbFaulty : round ≥ card(arbFaulty)⇒

(∀s, r , l , v ·(s 7→ r) 7→ (l 7→ v) ∈ rec ⇒ (∃x ·x ∈ l ∧ x /∈ arbFaulty))
nonArb collected : round ≥ 1 ∧ transmitter /∈ arbFaulty⇒

(∃v ·collected = Module× {{v}}) ∨ collected = Module× {∅}
agreement : round ≥ card(arbFaulty) + 1 ⇒

(∀n,m ·n /∈ faulty ∧m /∈ faulty⇒ collected(n) = collected(m))
EVENTS
Initialisation

inherits: act3

begin
act1 : rec, collected :|
∃values ·values ∈ Module 7→ Value ∧
(transmitter /∈ faulty⇒ values = Module× {V0}) ∧
(transmitter ∈ symFaulty⇒ values = ∅ ∨ (∃v ·values = Module× {v})) ∧
rec′ = {n ·n ∈ dom(values) \ {transmitter} |

(transmitter 7→ n) 7→ ({transmitter} 7→ values(n))} ∧
collected′ = (Module× {∅})C− {transmitter 7→ ran(values)}

end
Event ROUND =̂
refines ROUND (inherits: act2, act3)

any
nonrec

where
choice nonrec : nonrec ⊆ {l , v , s, r ·(s 7→ r) 7→ (l 7→ v) ∈ rec ∧ r ∈ symFaulty |

(s 7→ r) 7→ (l 7→ v)}
then

act1 : rec :|
let RH = {l , v , s, r ,n ·(s 7→ r) 7→ (l 7→ v) ∈ rec \ nonrec ∧ n 6= r ∧ n /∈ l |

(r 7→ n) 7→ ((l ∪ {r}) 7→ v)}
in rec′ ⊆ RH ∧

(∀s1 , r1 , l1 , v1 ·(s1 7→ r1 ) 7→ (l1 7→ v1 ) ∈ RH ⇒
(((s1 /∈ faulty ∧ v1 /∈ collected(s1 )) ∨ s1 ∈ symFaulty)⇒

(s1 7→ r1 ) 7→ (l1 7→ v1 ) ∈ rec′))
end

END

Figure 10: Machine HybridGuarantees
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2.8.2 Modified Model

This refinement is a representation change. The set of messages rec is replaced by a set msgs in which
every element has one more component containing the original5 receiver of the value. If this extra
component is discarded (projection to the tuple without this component), this corresponds to the set
rec of simpler messages:

type msgs: msgs ∈ (Module× Module)↔ (P(Module)× Module× Value)

glue msgs rec: (∀s, r, l, v ·((s 7→ r) 7→ (l 7→ v) ∈ rec⇔ (∃f ·(s 7→ r) 7→ (l 7→ f 7→ v) ∈ msgs)))
Instead of a function collected : Module→P(Value) we have a value table function valtable : Module→
(Module 7→Value) which assigns to every module a partial table in which the knowledge about initially
sent values is stored. For example valtable(n)(m) = v means that module n knows that module m
initially received value v. Since by assumption A4, no other values can be introduced, the range of
that function is the set of seen values for a module:

glue valtable collected: ∀n·collected(n) = ran(valtable(n))

The machine definitorial extension ValueTablesTech enriches the model by two variables msgs old
and valtable old which hold the value of msgs and valtable of the previous round. The additional in-
formation made—again—the model and its proof obligations more complex and many of the results
obtained earlier had to be redone. But again, the insight gained in the less complex situations helped
to come up with the desired results here. Please see Fig. 11 for machine ValueTable.

2.9 Machine “ZA”

The last refinement in this chain is machine ZA which models the algorithm according to its pre-
sentation in [3]. The ZA algorithm is an algorithm for written messages which sends more messages
than would be necessary to reach agreement. It is said it has a higher fall-back-security in case the
signatures are not secure.

The algorithm is originally described as a recursive procedure with ZA(n) referring to ZA(n− 1).
For the purposes of this model within the event-based methodology of Event-B, we have made the
rounds of the algorithm explicit and changed the modelling of the messages. While we did consider
the history of a message to be a set so far, the ZA algorithm considers it an ordered sequence of
modules, here an element of the set ModuleList. We did not need the properties of lists since we kept
extra data like the sender, receiver, and first receiver separately. In ZA the representation of messages
is changed to the variable msgsZA with

msgsZA ∈ (Module× Module)↔ (ModuleList× Value) .

Messages whose lists are permutations of one another come together to the same abstract representa-
tion, there is a “one-to-many” relationship between the elements in msgs and msgsZA.

In ValueTable we explicitly specified the first receiver in the message tuple, this information can
now be taken from the history sequence. In round 0 the receiver is the first receiver, in any subsequent
round, it is the the first element h(1) of the history h of a message. This is captured in the glueing
invariant glue msgsZA msgs:

(round = 0⇒ (∀s0, r0, h0, v0 ·(s0 7→ r0) 7→ (h0 7→ v0) ∈ msgsZA⇒
(s0 7→ r0) 7→ (ran(h0) 7→ r0 7→ v0) ∈ msgs))

∧ (round ≥ 1⇒ (∀s1, r1, h1, v1 ·(s1 7→ r1) 7→ (h1 7→ v1) ∈ msgsZA⇒
(s1 7→ r1) 7→ (ran(h1) 7→ h1(1) 7→ v1) ∈ msgs))

We have worked with sets up to now for good reasons: The Event-B methodology and the Rodin
tool have considerable difficulties when it comes to handling sequences: they are not supported na-
tively, but must be manually modelled in a context. We opted for modelling them as partial functions
from natural numbers to modules. This is captured in the definition6

type moduleList: ModuleList = (
⋃
n·n ∈ N | 0 .. n→ Module)

5we usually use f for first receiver
6The empty sequence is not in ModuleList. We have not included it as we do not need it for our purposes.
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MACHINE ValueTables

REFINES HybridGuarantees

SEES HybridContext

VARIABLES
msgs round valtable

INVARIANTS (agreement, agreement voting lifted)
type msgs : msgs ∈ (Module× Module)↔ (P(Module)× Module× Value)
glue msgs rec : (∀s, r , l , v ·((s 7→ r) 7→ (l 7→ v) ∈ rec⇔ (∃f ·(s 7→ r) 7→ (l 7→ f 7→ v) ∈ msgs)))
type valtable : valtable ∈ Module→ (Module 7→ Value)
glue valtable collected : ∀n ·collected(n) = ran(valtable(n))
validity : ∀n ·valtable(n) ⊆ valtable(transmitter)
agreement : round ≥ card(arbFaulty ∪ {transmitter}) + 1 ⇒

(∀n,m ·n /∈ faulty ∧m /∈ faulty ∧m 6= transmitter ∧ n 6= transmitter⇒
valtable(n) = valtable(m))

agreement voting : round ≥ card(arbFaulty) + 1 ⇒
(∀n,m ·n /∈ faulty ∧m /∈ faulty ∧m 6= transmitter ∧ n 6= transmitter ⇒

vote(valtable(n)) = vote(valtable(m)))
EVENTS
Initialisation (inherits: act3)

begin
with

rec′ : rec′ = {s, r , l , f , v ·(s 7→ r) 7→ (l 7→ f 7→ v) ∈ msgs ′ | (s 7→ r) 7→ (l 7→ v)}
collected′ : collected′ = (λn ·n ∈ Module | ran(valtable ′(n)))

act1 : msgs, valtable
∃values ·values ∈ Module 7→ Value ∧
(transmitter /∈ faulty⇒ values = Module× {V0}) ∧
(transmitter ∈ symFaulty⇒ values = ∅ ∨ (∃v ·values = Module× {v})) ∧
msgs ′ = {n ·n ∈ dom(values) \ {transmitter} |

(transmitter 7→ n) 7→ ({transmitter} 7→ n 7→ values(n))} ∧
valtable ′ = (Module× {∅})C− {transmitter 7→ {transmitter}C− values}

end
Event ROUND =̂
refines ROUND (inherits: act3)

any
nonrecmsgs

where
choice nonrecmsgs : nonrecmsgs ⊆ {s, r , l , f , v ·(s 7→ r) 7→ (l 7→ f 7→ v) ∈ msgs ∧ r ∈

symFaulty | (s 7→ r) 7→ (l 7→ f 7→ v)}
with

rec′ : rec′ = {s, r , l , f , v ·(s 7→ r) 7→ (l 7→ f 7→ v) ∈ msgs ′ | (s 7→ r) 7→ (l 7→ v)}
nonrec : nonrec = {s, r , l , v , f ·(s 7→ r) 7→ (l 7→ f 7→ v) ∈ nonrecmsgs ∧ (∀f1 ·(s 7→ r) 7→

(l 7→ f1 7→ v) ∈ msgs ⇒ (s 7→ r) 7→ (l 7→ f1 7→ v) ∈ nonrecmsgs) | (s 7→ r) 7→ (l 7→ v)}
then

act1 : msgs :| let M = {l , f , v , s, r ,n ·
(s 7→ r) 7→ (l 7→ f 7→ v) ∈ msgs \ nonrecmsgs ∧ n 6= r ∧ n /∈ l |
(r 7→ n) 7→ ((l ∪ {r}) 7→ f 7→ v)} in

msgs ′ ⊆ M ∧
(∀l1 , f1 , v1 , s1 , r1 ·(s1 7→ r1 ) 7→ (l1 7→ f1 7→ v1 ) ∈ M ⇒

(((s1 /∈ faulty ∧ f1 7→ v1 /∈ valtable(s1 )) ∨ s1 ∈ symFaulty)⇒
(s1 7→ r1 ) 7→ (l1 7→ f1 7→ v1 ) ∈ msgs ′))

act2 : valtable := λn ·n ∈ Module | valtable(n)C−
{s, l , f , v ·(s 7→ n) 7→ (l 7→ f 7→ v) ∈ msgs | f 7→ v}

end
END

Figure 11: Machine ValueTables
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in context ModuleList (Fig. 12) which was introduced for that reason. This context contains
also helpful theorems which were needed when proving the correctness of ZA. Please note that the
definitions are not polymorphous but contain hard coded the carrier set Module. For another type,
the definitions (and proofs) would have to be repeated.

When dealing with this formalisation of sequences, the user has to manually prove that concate-
nating a value to a list results in a list again at very many places. Despite the fact that nothing
“new” was introduced in this machine, and agreement and other important properties could directly
be inherited from ValueTables, the proofs were considerably complex. The lacking support for
sequences in Rodin can hardly be compensated for manually.

CONTEXT ModuleList
EXTENDS Context
CONSTANTS

ModuleList

fstrec

AXIOMS
type moduleList : ModuleList = (

⋃
n ·n ∈ N | 0 .. n→MODULE )

thm1 : ModuleList ⊆ N 7→MODULE
thm2 : ∀ml ·ml ∈ ModuleList⇒ (∃n ·n ∈ N ∧ dom(ml) = 0 .. n)
type fstrec : fstrec ∈ (MODULE ×ModuleList)→MODULE
def fstrec : ∀r , h ·h ∈ ModuleList⇒ ((1 ∈ dom(h)⇒ fstrec(r 7→ h) = h(1 ))∧ (1 /∈ dom(h)⇒

fstrec(r 7→ h) = r))
fstrecEmpty : ∀r , h,m ·h ∈ ModuleList ∧ 1 /∈ dom(h)⇒ fstrec(r 7→ h C− {1 7→ m}) = m
fstrecNonEmpty : ∀r , h,m, k ·h ∈ ModuleList ∧ k ≥ 1 ∧ dom(h) = 0 .. k ⇒

fstrec(r 7→ h C− {k + 1 7→ m}) = h(1 )
concatenation : ∀ml ,m, k ·ml ∈ ModuleList ∧ dom(ml) = 0 .. k ⇒

ml C− {k + 1 7→ m} ∈ ModuleList
samefstrecValue :

∀m, h,n, k ·n ∈ MODULE ∧m ∈ MODULE ∧ h ∈ ModuleList ∧ dom(h) = 0 .. k ⇒
fstrec(m 7→ h) = fstrec(n 7→ h C− {k + 1 7→ m})

END

Figure 12: Context ModuleList

2.10 Machine “Roundless”

We end the exploration of the ZA protocol now and turn our attention towards another algorithm:
Signed Messages (SM) as it was proposed in [5]. In contrast to most other protocols, this protocol
has not been presented as a strictly round-based, synchronous, recursive algorithm but as a form of
reactive system:

If [a] lieutenant receives a message then [...] he sends [other] messages.

To model this as an refinement (starting at Guarantees) is an interesting task since it changes the
approach to the algorithm fundamentally. While up to now we concentrated on seeing the system
with all modules in each event we should now come up with events whose focus is the behaviour of
one single module and one single incoming message.

The main two changes introduced in machine Roundless (Fig. 14) are: Firstly, the machine’s
variables are no longer bound to the current round but may hold messages of various rounds, and
secondly, we add a new event Process acting as a generalisation of the processing of one particular
message by its receiver.
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MACHINE ZA

REFINES ValueTables

SEES HybridContext, ModuleList

VARIABLES
msgsZA round valtable

INVARIANTS
type msgsZA : msgsZA ∈ (Module× Module)↔ (ModuleList× Value)
domainOfHistory : ∀s, r , h, v ·(s 7→ r) 7→ (h 7→ v) ∈ msgsZA⇒ dom(h) = 0 .. round
glue msgsZA msgs : (round = 0 ⇒ (∀s0 , r0 , h0 , v0 ·(s0 7→ r0 ) 7→ (h0 7→ v0 ) ∈ msgsZA⇒

(s0 7→ r0 ) 7→ (ran(h0 ) 7→ r0 7→ v0 ) ∈ msgs)) ∧
(round ≥ 1 ⇒ (∀s1 , r1 , h1 , v1 ·(s1 7→ r1 ) 7→ (h1 7→ v1 ) ∈ msgsZA⇒

(s1 7→ r1 ) 7→ (ran(h1 ) 7→ h1 (1 ) 7→ v1 ) ∈ msgs))
glue msgZA fstrec : msgs = {s, r , h, v ·(s 7→ r) 7→ (h 7→ v) ∈ msgsZA | (s 7→ r) 7→ (ran(h) 7→

fstrec(r 7→ h) 7→ v)}
last is sender : ∀s, r , h, v ·(s 7→ r) 7→ (h 7→ v) ∈ msgsZA⇒ h(round) = s

EVENTS
Initialisation

begin
with

msgs′ : msgs ′ = {s, r , h, v ·(s 7→ r) 7→ (h 7→ v) ∈ msgsZA′ | (s 7→ r) 7→ (ran(h) 7→ r 7→
v)}

act1 : msgsZA, valtable :| ∃values ·values ∈ Module 7→ Value ∧
(transmitter /∈ faulty⇒ values = Module× {V0}) ∧
(transmitter ∈ symFaulty⇒ values = ∅ ∨ (∃v ·values = Module× {v})) ∧
msgsZA′ = {n ·n ∈ dom(values) \ {transmitter} |

(transmitter 7→ n) 7→ ({0 7→ transmitter} 7→ values(n))} ∧
valtable ′ = (Module× {∅})C− {transmitter 7→ ({transmitter}C− values)}

act3 : round := 0
end

Event ROUND =̂
refines ROUND

any
nonrecmsgsZA

where
choice nonrecmsgsZA : nonrecmsgsZA ⊆ {s, r , h, v ·(s 7→ r) 7→ (h 7→ v) ∈ msgsZA ∧ r ∈

symFaulty | (s 7→ r) 7→ (h 7→ v)}
with

nonrecmsgs : nonrecmsgs = msgs \ {s, r , h, v ·(s 7→ r) 7→ (h 7→ v) ∈ msgsZA \
nonrecmsgsZA | (s 7→ r) 7→ (ran(h) 7→ fstrec(r 7→ h) 7→ v)}

msgs′ : msgs ′ = {s, r , h, v ·(s 7→ r) 7→ (h 7→ v) ∈ msgsZA′ |
(s 7→ r) 7→ (ran(h) 7→ fstrec(r 7→ h) 7→ v)}

then
act1 : msgsZA :| let M = {h, v , s, r ,n ·

(s 7→ r) 7→ (h 7→ v) ∈ msgsZA \ nonrecmsgsZA ∧ n 6= r ∧ n /∈ ran(h) |
(r 7→ n) 7→ ((h C− {round + 1 7→ r}) 7→ v)} in

msgsZA′ ⊆ M ∧
(∀h1 , v1 , s1 , r1 ·(s1 7→ r1 ) 7→ (h1 7→ v1 ) ∈ M ⇒

(((s1 /∈ faulty ∧ fstrec(r1 7→ h1 ) 7→ v1 /∈ valtable(s1 )) ∨ s1 ∈ symFaulty)⇒
(s1 7→ r1 ) 7→ (h1 7→ v1 ) ∈ msgsZA′))

act2 : valtable := (λn ·n ∈ MODULE | valtable(n)C−
{s, h, v ·(s 7→ n) 7→ (h 7→ v) ∈ msgsZA | fstrec(n 7→ h) 7→ v})

act3 : round := round + 1
end

END

Figure 13: Machine ZA
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Two new variables msgPast and msgPool with

msgPast ∈ (Module× Module)↔ (P(Module)× Value)
msgPool ∈ (Module× Module)↔ (P(Module)× Value)

are introduced to hold all messages of various rounds. When a message is processed by its receiver it
is removed from msgPool and added to msgPast. Newly created messages are then added to msgPool.
The two glueing invariants

glue msgPool rec: rec = {s, r, l, v ·(s 7→ r) 7→ (l 7→ v) ∈ msgPool ∪ msgPast∧
card(l) = round+ 1 | (s 7→ r) 7→ (l 7→ v)}

glue collected msgPast: ∀n·collected(n) = {s, l, v ·(s 7→ n) 7→ (l 7→ v) ∈ msgPast∧
card(l) ≤ round | v}

show that rec is the subset of msgPool∪msgPast of messages of the current round (card(l) = round+1).
The variable collected is reproduced by examining the values of all messages in msgPast.

It is interesting to see that event Round has no more substitutional part of its own (apart from
the round := round+ 1 inherited from its abstract ancestor). The actual message processing now in
one or more executions of event Process, and Round is a mere change of perspective which has no
influence on the message data. We have to provide, however, witnesses to refine the event of machine
HybridGuarantees which instantiate the post state rec′ and the choice of dropped messages nonrec.
A guard all handled ensures that the round event is only taken when all messages of the current
round have been processed (and possibly some more). Without it the refinement would be incorrect.

Event Process is newly introduced and, therefore, must not have effects on the variables of the
refined machine, i.e. it must refine the “skip” event. Despite the fact that msgPool and msgPast
are modified by this event, the values of collected and rec which are calculated from these sets, do
not change. The processing is kept general, all possible treatments are put into one event, a later
refinement can differentiate between different cases here.

This machine is obviously no longer in accordance with A1. As we have announced earlier, we now
drop this assumption in favour of A6.

2.11 Machine “SM”

The last machine in our refinement hierarchy is depicted in Fig. 15. It does neither modify the
Initialisation nor the Round event but refines the Process event in two different ways: One event
(Process nonfaulty) models the processing of a sane module. All messages that could be relayed are
relayed. The other (Process drop) models the case in which a module does not at all react to incoming
messages. These are two corner cases of the possible behaviour of modules and one could add more
such refinements if needed.

This machine is different because it does not (like most other machines) introduce new behaviour
or refine data structures. It merely differentiates an abstract event (Process in Roundless) into more
concrete instances. It is also the only machine for which all proofs were simple enough to be proved
automatically by the built-in solvers of Rodin.

The machine was designed to model the algorithm SM as presented in [5]

Algorithm SM(m)7:
Initially collected(i) = ∅.

1. The transmitter signs and sends its value to every module (but itself).

2. For each i:

(a) If module i receives a message of the form v : 0 from the transmitter and it has not yet
received any order, then

i. it lets collected(i) = {v}
ii. it sends the message v : 0 : i to every other module.

(b) If module i receives a message of the form v : 0 : j1 : . . . : jk and v is not in the set
collected(i), then

7adapted to our definitions
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MACHINE Roundless

REFINES Guarantees

SEES Context

VARIABLES
msgPool msgPast round

INVARIANTS
type msgPool : msgPool ∈ (Module× Module)↔ (P(Module)× Value)
type msgPast : msgPast ∈ (Module× Module)↔ (P(Module)× Value)
messages content : ∀s, r , l , v ·s 7→ r 7→ (l 7→ v) ∈ msgPast ∪ msgPool ∧ l 6= ∅⇒

finite(l) ∧ s ∈ l ∧ r /∈ l
msg implies msg : ∀s, r , l , v ·s 7→ r 7→ (l 7→ v) ∈ msgPast ∪ msgPool ∧ card(l) > 1 ⇒

(∃n ·(n 7→ s) 7→ (l \ {s} 7→ v) ∈ msgPast ∧ n ∈ l ∧ n 6= s)
pool round : ∀s, r , l , v ·s 7→ r 7→ (l 7→ v) ∈ msgPool ⇒ card(l) > round
glue msgPool rec : rec = {s, r , l , v ·(s 7→ r) 7→ (l 7→ v) ∈ msgPool ∪ msgPast ∧ card(l) =

round + 1 | (s 7→ r) 7→ (l 7→ v)}
glue collected msgPast : ∀n ·collected(n) =

{s, l , v ·(s 7→ n) 7→ (l 7→ v) ∈ msgPast ∧ card(l) ≤ round | v}
guarantee : ∀s, r , l , v ·(s 7→ r) 7→ (l 7→ v) ∈ msgPast ∧ r /∈ faulty ∧

¬(∃s1 , l1 ·(s1 7→ r) 7→ (l1 7→ v) ∈ msgPast ∧ card(l1 ) ≤ round)⇒
{n ·n 6= r ∧ n /∈ l | (r 7→ n) 7→ (l ∪ {r} 7→ v)} ⊆ msgPool ∪ msgPast

EVENTS
Initialisation

begin
with

collected′ : collected′ = (Module× {∅})C− {transmitter 7→ ran(ran(msgPool ′))}
rec′ : rec′ = msgPool ′

act1 : msgPool ,msgPast :| ∃values ·values ∈ Module 7→ Value ∧
(transmitter /∈ faulty⇒ values = Module× {V0}) ∧
msgPool ′ = {n ·n ∈ dom(values) \ {transmitter} |

(transmitter 7→ n) 7→ ({transmitter} 7→ values(n))} ∧
msgPast ′ = {transmitter 7→ transmitter} × ({∅} × ran(ran(msgPool ′)))

act2 : round := 0
end

Event ROUND =̂ refines ROUND
when

all handled : ∀s, r , l , v ·(s 7→ r) 7→ (l 7→ v) ∈ msgPool ⇒ card(l) > round + 1
with

rec′ : rec′ = {s, r , l , v ·(s 7→ r) 7→ (l 7→ v) ∈ msgPool ∪ msgPast ∧ card(l) = round + 2 |
(s 7→ r) 7→ (l 7→ v)}

then
act1 : round := round + 1

end
Event PROCESS =̂

any output s r l v

where
grd1 : (s 7→ r) 7→ (l 7→ v) ∈ msgPool
out1 : output ⊆ {n ·n 6= r ∧ n /∈ l | (r 7→ n) 7→ (l ∪ {r} 7→ v)}
out2 : r /∈ faulty ∧ ¬(∃s1 , l1 ·(s1 7→ r) 7→ (l1 7→ v) ∈ msgPast ∧ card(l1 ) ≤ round) ⇒

output = {n ·n 6= r ∧ n /∈ l | (r 7→ n) 7→ (l ∪ {r} 7→ v)}
then

act1 : msgPool := (msgPool \ {(s 7→ r) 7→ (l 7→ v)}) ∪ output
act2 : msgPast := msgPast ∪ {(s 7→ r) 7→ (l 7→ v)}

end
END

Figure 14: Machine Roundless
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i. it adds v to collected(i);

ii. if k < m, then it sends the message v : 0 : j1 : . . . : jk : i to every module other
than j1, . . . , jk.

(c) For each i: When module i will receive no more messages, it obeys the order obtained
from collected(i).

This roundless algorithm is, unfortunately, not a refinement of the stack of machines as they were
developed so far. If (in SM) a node handles a message of length card(l) = N , it records its value as
seen and does not relay any further messages with this value, i.e., a handled message could prevent the
sending of a message in a round round < N which is forbidden in our formalisation as the Roundless
algorithms have to emulate the effects of the roundbased descriptions. We mend this problem by
slightly changing the algorithm:

2. (b) If module i receives a message of the form v : 0 : j1 : . . . : jk and i has not yet received a
shorter message with the value v, then ...

A non-faulty node now relays every message unless it has experienced a message with the same value
and a shorter history.

3 Important Properties

The properties for which we wanted to provide proofs are formulated as invariants in the various
machines. We also came up with a number of invariants which are lemmata which helped finding
proofs for the more complicated properties. The two main ideas we haven proved are validity and
agreement.

After summarising the different formulas which belong to the two categories, we list a number of
intermediate results and show how they can be combined to gain a proof for an agreement property.

Validity The notion of what validity is varies in the literature. We understand it as: “If the
transmitter is non-faulty, then all modules ascribe the value V0 to the transmitter.” The following
properties belong to that category:

• MessagesSigned.no new vals ensures that any value that ever appears in a message has been
originally observed by the transmitter already. It is a direct consequence of A4.

∀s, r, v ·(s 7→ r) 7→ v ∈ messages⇒ v ∈ collected(transmitter)

• MessagesSigned.no new vals2 describes the same fact for collected values. Any value ever
collected by a module must also have been observed by the transmitter.

∀n·collected(n) ⊆ collected(transmitter)

• Guarantees.validity is the intended validity property.

round ≥ 1 ∧ transmitter /∈ faulty⇒ (∀n·collected(n) = {V0})

• HybridGuarantees.nonArb collected contains a more general property. If the transmitter
is not arbitrarily faulty, all modules see either the same single value v or no module receives any
value at all.

round ≥ 1 ∧ transmitter /∈ arbFaulty⇒
(∃v ·collected = Module× {{v}}) ∨ collected = Module× {∅}

Agreement Agreement means: “Any two non-faulty modules agree on the value ascribed to the
transmitter.” Agreement is reached only after a certain number of rounds. Sect. 1.3 discusses why
the parameter of protocols in the literature (like ZA(r)) only seem to be smaller by one in comparison
to the bounds of this formalisation. There are agreement theorems for three stages8 of abstraction:

8always defined in the corresponding technical definitorial extension
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MACHINE SM

REFINES Roundless

SEES HybridContext

VARIABLES
msgPool

msgPast

round

EVENTS
Initialisation

(inherits: act1, act2)
begin
end

Event PROCESS NONFAULTY =̂
refines PROCESS

any
s r l v

where
grd1 : (s 7→ r) 7→ (l 7→ v) ∈ msgPool

with
output : output = {n ·n 6= r ∧ n /∈ l | (r 7→ n) 7→ (l ∪ {r} 7→ v)}

then
act1 : msgPool := (msgPool \ {(s 7→ r) 7→ (l 7→ v)})

∪ {n ·n 6= r ∧ n /∈ l | (r 7→ n) 7→ (l ∪ {r} 7→ v)}
act2 : msgPast := msgPast ∪ {(s 7→ r) 7→ (l 7→ v)}

end
Event PROCESS DROP =̂
refines PROCESS

any
s r l v

where
grd1 : (s 7→ r) 7→ (l 7→ v) ∈ msgPool
grd2 : r ∈ faulty

with
output : output = ∅

then
act1 : msgPool := msgPool \ {(s 7→ r) 7→ (l 7→ v)}
act2 : msgPast := msgPast ∪ {(s 7→ r) 7→ (l 7→ v)}

end
END

Figure 15: Machine SM
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• Guarantees.agreement:

round ≥ card(faulty) + 1⇒ (∀n,m·n /∈ faulty ∧m /∈ faulty⇒ collected(n) = collected(m))

• HybridGuarantees.agreement relaxes the premise. The number of rounds must only exceed
the number of arbitrarily faulty modules.

round ≥ card(arbFaulty) + 1⇒ (∀n,m·n /∈ faulty ∧m /∈ faulty⇒ collected(n) = collected(m))

• If we store value tables instead of only values, the condition is more strict in ValueTa-
bles.agreement. The number of rounds needs to exceed card(arbFaulty ∪ {transmitter}).

round ≥ card(arbFaulty ∪ {transmitter}) + 1⇒
(∀n,m·n /∈ faulty ∧m /∈ faulty⇒ valtable(n) = valtable(m))

• If we are only interested in the result of a voting function, invariant ValueTables.agreement voting
allows us to relax the bound to the previously established card(arbFaulty) + 1:

round ≥ card(arbFaulty) + 1⇒
(∀n,m·n /∈ faulty ∧m /∈ faulty ∧m 6= transmitter ∧ n 6= transmitter⇒

vote(valtable(n)) = vote(valtable(m)))

See also Sect. 3.3 for a discussion of this invariant.

3.1 Selected lemmata of ValueTables

To give the reader an impression of the nature of intermediate propositions that were needed for the
deduction, we list here a few lemmata which helped in the process of proving validity and agreement.
They represent only the important intermediate results and make up about half of the invariants
provided in the technical machine. We will confine ourselves to the most important lemmata from the
most detailed machine ValueTables, other machines have similar properties. The next section will
then present an exemplary proof using these lemmata:

• nonfaulty broadcast states that if a first-receiver-value-pair has been observed by a non-faulty
node n different from the transmitter in a previous round (f 7→ v ∈ valtableold(n)), then n relays
it correctly and the pair is known to every module afterwards.

∀f, v ·(∃n·n /∈ faulty ∧ n 6= transmitter ∧ (f 7→ v) ∈ valtableold(n))⇒
(∀m·(f 7→ v) ∈ valtable(m))

• symfaulty broadcast describes a similar effect for symmetrically faulty modules: If in the past
a symmetrically faulty module n decided to pass on a message (i.e. n is in the history: n ∈ l),
then n passed it on to every module which had not yet seen the pair f 7→ v.

∀s, r, l, f, v, n·(s 7→ r) 7→ (l 7→ f 7→ v) ∈ msgsold ∧
n ∈ l ∧ n ∈ symFaulty ∧ n 6= transmitter⇒

(∀m·(f 7→ v) ∈ valtable(m))

• new valtable implies msgs observes: If a first-receiver-value-pair f 7→ v has recently been
added to the valtable of a non-faulty node n (i.e. f 7→ v ∈ valtable(n) \ valtableold(n)), then for
every module m we known that it either knows already about the value (f 7→ v ∈ valtable(m))
or a message has been sent to it from n (∃l·(n 7→ m) 7→ (l 7→ f 7→ v) ∈ msgs).

∀n·n /∈ faulty ∧ n 6= transmitter⇒ (∀f, v ·f 7→ v ∈ valtable(n) \ valtableold(n)⇒
(∀m·f 7→ v ∈ valtable(m) ∨ (∃l·(n 7→ m) 7→ (l 7→ f 7→ v) ∈ msgs)))
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• msgs msgs old states that after the first round, every message in msgs must have a cause, a
message of a certain form sent in the previous round, which justifies its existence. This is not
the case for the messages initially sent by the transmitter in round 0.

round ≥ 1⇒ (∀s, r, l, f, v ·(s 7→ r) 7→ (l 7→ f 7→ v) ∈ msgs⇒
(∃n·(n 7→ s) 7→ (l \ {s} 7→ f 7→ v) ∈ msgsold))

• ex nonArbFaulty2 uses a simple cardinality argument: The length of the history (by construc-
tion) of the last round is round. Hence, we have card(l) > card(arbFaulty), which obviously
implies the conclusion.

round ≥ card(arbFaulty) + 1⇒ (∀s, r, l, f, v ·(s 7→ r) 7→ (l 7→ f 7→ v) ∈ msgsold ⇒
(∃x·x ∈ l ∧ x /∈ arbFaulty))

• ex nonArbFaulty nontrans2 is very similar to the last property. If we increase the required
round by one, and, hence, the length of histories, we may also assume a non-arb-faulty module
in any message history which is not the transmitter.

round ≥ card(arbFaulty) + 2⇒ (∀s, r, l, f, v ·(s 7→ r) 7→ (l 7→ f 7→ v) ∈ msgsold ⇒
(∃x·x ∈ l ∧ x /∈ arbFaulty ∧ x 6= transmitter))

• msg old implies valtable old captures the simple observation that all modules that have
received a message before the last round (n ∈ l) had registered the according entry to their
value table already in the last round.

∀n, s, r, l, f, v ·(s 7→ r) 7→ (l 7→ f 7→ v) ∈ msgsold ∧ n ∈ l⇒ (f 7→ v) ∈ valtableold(n)

3.2 Sketch for the proof of agreement subset

This section gives a transcript of the major steps taken to prove the invariant agreement subset

round ≥ card(arbFaulty ∪ {transmitter}) + 1⇒
(∀n,m·n /∈ faulty ∧m /∈ faulty ∧ n 6= transmitter ∧m 6= transmitter⇒
valtable(n) ⊆ valtable(m))

in ValueTableTech. The proof for similar properties in other machines runs analogously.
We present it to show that the structure of a complex Event-B proof can be subdivided (using

lemmata) in a very similar fashion to in which one would do a pen-and-paper proof. The proof
references to invariants established in this machine or in more abstract machines. They are listed
in the previous section. Invariant agreement (with = instead of ⊆) is a direct consequence of this
property due to the symmetric nature of the invariant.

Given that

• round ≥ card(arbFaulty ∪ {transmitter}) + 1,

• n,m 6∈ faulty,

• n,m 6= transmitter, and

• x 7→ x0 ∈ valtable(n),

we show that x 7→ x0 ∈ valtable(m).

Case Distinction

• x 7→ x0 ∈ valtableold(n)9 ... value has already been observed earlier

nonfaulty broadcast  ∀m · x 7→ x0 ∈ valtable(m)
If the message has already been received by the non-faulty n in the last round, the module has
broadcast it to any other node. The message has been received in this round by any node which
has not yet seen it, also by m (though it might have already known of it of course).

9Please keep in mind that the technical extensions of the machines keep a copy of their variables (suffixed old) which
holds the values of the previous round. (cf. Sect. 2.6.1)
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• x 7→ x0 6∈ valtableold(n) ... value has not been observed yet.

new valtable implies msgs  ∀m · (x 7→ x0 ∈ valtable(m) ∨ ∃l · (n 7→ m) 7→ (l 7→ x 7→ x0) ∈
msgs)
The message was not seen by n before. That implies that n has received an according message
recently. Being non-faulty, module n has to broadcast the message to all modules which are
ignorant of this module-value-pair. Hence, we can assume that there is a message (n 7→ m) 7→
(l 7→ x 7→ x0) ∈ msgs (0).

msgs msgs old  ∃n0 · (n0 7→ n) 7→ (l \ {n} 7→ x 7→ x0) ∈ msgsold (1)
Message (0) from n to m in this round can only arise, if there has been a message (1) in the
previous round which started in some node n0 and was addressed to n.

Case distinction

– transmitter ∈ arbFaulty ... the transmitter is arb. faulty (2)
arbFaulty = arbFaulty ∪ {transmitter} round ≥ card(arbFaulty) + 1
ex non arbFaulty2  x1 ∈ l \ {n} ∧ x1 6∈ arbFaulty (3)
Since for a message in msgsold we have that the length of the history equals the round
number (set card2), message (1) has sufficient length to include a non-arb-faulty module
x1 in its history l \ {n}. Notice, that x1 cannot be the transmitter, because the latter is
arbitrarily faulty while x1 is not.
msg old implies valtable old  x 7→ x0 ∈ valtableold(x1) (4)
Any module which appears in the history of a message has recorded the message’s value in
its value table. Message (1) implies that x 7→ x0 has been recorded in the table of x1.
Case distinction (5)

∗ x1 ∈ symFaulty ... x1 is symmetrically faulty,
symFaulty broadcast  ∀m · x 7→ x0 ∈ valtable(m)
x1 is in the history of message (1) due to (3). That implies that it has acted as a
sender and, due to the symmetry assumption, has relayed the message to all modules
that have not yet seen the value, hereby ensuring everyone knows about it.

∗ x1 6∈ symFaulty ... x1 is not symmetrically faulty, i.e. x1 6∈ faulty (because of (3))
nonfaulty broadcast  ∀m · x 7→ x0 ∈ valtable(m)
Since x1 is non-faulty and has received the entry x 7→ x0 either in the last round or
before that (4), it has broadcast the value to ensure everyone knows about it.

– transmitter 6∈ arbFaulty ... the transmitter is not arbitrarily faulty
card(arbFaulty ∪ {transmitter}) = card(arbFaulty) + card({transmitter}) 
round ≥ card(arbFaulty) + 2
ex nonArbFaulty nontrans2  x1 ∈ l \ {n} ∧ x1 6∈ arbFaulty ∧ x1 6= transmitter (6)
In this case the message (1) even has sufficient length to include a non-faulty module x1

different to the transmitter in its history l \ {n}.
msg old implies valtable old  x 7→ x0 ∈ valtableold(x1) (7)
Any module which appears in the history of a message has recorded the message’s value in
its value table. Message (1) implies that x 7→ x0 has been recorded in the table of x1.
The situation is now the same as in (5): x1 6= transmitter because of (6) and x 7→ x0 ∈
valtableold(x1) from (7).

3.3 On the invariant agreement voting

The result which was achieved for ValueTables in agreement was not satisfactory. It states that, in
the case of a non-faulty transmitter round ≥ card(arbFaulty∪{transmitter}) + 1 has to be satisfied to
guarantee agreement on the value tables amongst the non-faulty modules. The agreement definition
usually used (like in [3]) states that non-faulty modules agree on the value ascribed to the transmitter
for round ≥ card(arbFaulty) + 1.
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Since this “ascription” is done by a voting function vote : (Module 7→ Value)→ Value we hope
that we can lower the bound for an agreement invariant on the result of voting function as in
agreement voting:

round ≥ card(arbFaulty) + 1⇒
(∀n,m·n /∈ faulty ∧m /∈ faulty ∧m 6= transmitter ∧ n 6= transmitter⇒

vote(valtable(n)) = vote(valtable(m)))

The context VotingContext where vote is defined, postulates only one requirement to that function:

∀f ·f ∈ Module 7→ Value ∧ ran(f) 6= ∅⇒ vote(f) ∈ ran(f) ,

saying that if a table is not empty, the chosen value must be taken from the table.
Let us now first assume that transmitter ∈ arbFaulty. Then faulty = faulty ∪ {transmitter} holds

and the premisses of agreement and agreement voting are equal. Thus, the value tables are equal,
thus, the voting results. In the case that transmitter 6∈ arbFaulty, we can use the proposition Hy-
bridGuarantees.nonArb collected

round ≥ 1 ∧ transmitter /∈ arbFaulty⇒
(∃v ·collected = Module× {{v}}) ∨ collected = Module× {∅}

which ensures that a non-arb-faulty transmitter ensures that the range of the value tables of all
modules is either the singleton set {v} or the empty set. In the first case, vote must choose from this
set, it has no choice but to select v. In the case of ∅ all value tables are identical and, hence, also any
voting on them.

4 Byzantine Agreement Protocols

In the last years, a varienty of closely related variations of the byzantine agreement protocols have
been published by different authors. This section will give a very brief classification of some of them,
including those modelled in this report.

[5] The original presentation came up with the basic protocols “Oral Messages” (OM) and “Signed
Messages” (SM).

[10] introduces the hybrid fault model in a protocol variant called Z.

[7] combines the protocol of oral messages OM with the hybrid fault model to the protocol “Oral
Messages, Hybrid” (OMH).

[3] by authors of the same group describes more combinations of protocols:

– “Signed Messages, Hybrid” (SMH)

– “OMH with Authentication” (OMHA)

– “Z with Authentication” (ZA)

We compare these protocols in terms of the following properties:
S: Signatures – messages are signed
A: Authentication – authentication is sound, i. e. signatures are reliable (the usual assumption

when using signatures)
H: Hybrid fault model – distinguishing between manifest, symmetric and arbitrary faults
M: Messages reduced – optimised number of messages
V: Voting – majority voting
R: Reporting errors – reporting errors using a report (or wrapper) function R, distinguishing

between E and R(E)
Please see table 1 for the overview.
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Protocol S A H M V R
OM . . . . V .c

OMH . . H . V R
OMHA S ? H . V R
SM S A . M . .b

SMH S A H M . .
Z . . H . V .
ZA S .a H . V .

S: Signatures
A: Authentication (reliable signatures)
H: Hybrid fault model
M: Messages reduced
V: Voting
R: Reporting errors

a The main idea behind ZA.
b No explicit E value, but implicit by missing messages.
c No explicit E value, missing messages are treated as a default value (“RETREAT”).

Table 1: Overview of byzantine agreement protocols

5 Definitorial Extensions

The refinement structure presented Sect. 2 introduced refinements capturing technical details of the
agreement proofs. We later claimed that certain invariants in these refinements are also invariants of
the refined machines. That is of course not the case in general but holds here because the technical
refinements are of a particularly simple kind.

Intuitively, a definitorial extension only adds deterministic behaviour without touching existing
model properties. Any trace of a definitorial extension can therefore be easily projected to a trace of
the refined machine. An invariant of the extension which is syntactically valid in both machines is
therefore also an invariant of the original machine.

Definition (Definitorial Extension) A machine N is called a definitorial extension of a machine
M if:

1. M and N see the same contexts.

2. vM ⊆ vN , i.e., N extends10 the set of variables of M .

3. For every event eM in M there is exactly one event eN by the same name in N such that eN

and eM coincide in the sets of parameter variables and guards. The actions in eN comprise
all actions of eM and, additionally, deterministic actions x := Ee

x(vN ) for the new variables
x ∈ vN \ vM .

4. No other events are defined in N .

Proposition If an Event-B Machine N is a definitorial extension of M , then any invariant I(vM )
in N which syntactically uses only variables in vM is also an invariant for M .

Proof Due to the nature of the definitorial extension, the before-after-predicates of an event e have
the following relationship (with vN \ vM = {x1, . . . , xn})

BAPN
e (vN , v

′
N )⇔ BAPM

e (vM , v′M ) ∧ x′1 = Ee
x1

(vN ) ∧ . . . ∧ x′n = Ee
xn

(vN )

and for the initialisation

BAPN
init(v

′
N )⇔ BAPM

init(v
′
M ) ∧ x′1 = Einit

x1
∧ . . . ∧ x′n = Einit

xn
.

For every trace11 SM := (sM
0

eo→ sM
1

e1→ sM
2

e2→ . . .) of machine M we can extend the states12 sM
i to

states sN
i for machine N . We specify sN

0 (x) := val(Einit
x ) (expressions in the initialising event must

10Variable sets of machines are disjoint by definition. Thus, to be precise we should say there is a variable set v̄M

with v̄M ⊆ vN for which v̄M = vM is implied by the glueing invariant. For simplicity, we identify vM with the copy
v̄M here.

11A trace for a machine is a sequence (si)i∈N of states, s.t. s0 is a state the initialising event can result in and (si, si+1)
is in the transition relation of an event e of the machine. We notate the used event e above the arrow we write between
states of a trace

12A state of a machine is a function that assigns to every variable a value of the domain of the variable’s type.
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not depend on variables) and sN
i+1(x) := valsN

i
(Eei

x (vN )) for all x ∈ vN \ vM . The resulting trace

SN := (sN
0

e0→ sN
1

e1→ sN
2 → . . .) satisfies all necessary before-after-predicates for N by construction

since SM satisfies the according predicates for M . Now, if I(vM ) is an invariant for N in which only
variables in vM are used, the valuations valsM

i
(I(vM )) = valsN

i
(I(vM )) are equal for all i as sM

i and
sN

i coincide on vM . Being an invariant, I(vM ) is always true in all states of SN , and, hence, also in
all states of SM .

All technical machines (i.e. *tech) are definitorial extensions of their non-technical counterparts
which implies that the corresponding agreement invariants can be lifted.

6 Lessons Learnt

6.1 Event-B as modelling language

Unlike in more general purpose formal systems (like PVS, Isabelle, Coq), Event-B imposes a rather
strict corset on the means one can use to model systems. One thing is the commitment to (first-order)
set-theory as the underlying logic. Another is the requirement to model state transitions as events
using generalised substitutions. The introduction of events allows a natural notion of refinement over
them.

We will now describe how, with respect to these aspects, the Event-B method was suited for the
task of formalising the byzantine agreement problem.

Using Sets We believe that for the present problem, sets and relations were good means to express
the necessary structures and their alterations. Event-B is evidently built with the primary focus on
binary relations, higher arity is more complicated to model, as built-in operators (such as C−, C,
. . . ) cannot be applied as conveniently. There is a wide variety of set-theoretic operators which allow
to express even complex issues rather concisely—once one is used to them. They have, however, in
comparison to the more verbose ausfhrungen in plain first order logic the disadvantage that they
appear cryptic to an outsider not used to the symbols of B/Event-B.

At one point, we wanted to slightly leave the purely set-oriented view and introduced ordered
sequences. We tried both a formalisation as abstract data types (using two constructors cons and nil)
and as partial functions from an initial interval of the natural numbers (see Sect. 2.9). This could
not be done in a generic way since Event-B does not support general parametrised types (like “list of
X” for some type X), but only for one particular type of list elements. Also, the tool support for this
additional data structure was poor.

Using Events The Byzantine Agreement belongs to a family of algorithms which, after an initial-
ising step, repeatedly perform the same operations again and again. It also is a protocol which allows
to easily divide the progress of the algorithm into steps or rounds.

These two properties make the procedure suitable for modelling it using events. In this particular
case there is, apart from the initialisation, only one event Round which describes the effects of receiving
and sending messages during one round of the protocol.

If the protocol underwent several phases, we would probably need to add an artificial variable
which would encode the phase we would be in. If one step was so complex that it could not be
adequately expressed by a generalised substitution but rather by something like a loop, we would
then have to simulate that loop by a series of events, and would have to add to the state description
to inhibit other events in the meantime.

Refinement We were able to subdivide the modelling process into eleven steps of refinement of
different natures. Some refinements enriched the model by new aspects of the protocol, some performed
a representation change of the machine state, mainly by changing the way in which a single message
was represented. The mechanism certainly helped to structure the model.

6.2 The tool Rodin

The tool Rodin was used to discharge the arisen proof obligations for our model. The handling and the
user interface are very convenient since the tool is designed as a modification of the eclipse environment.
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In the beginning of our project, the tool seemed astonishingly stable and never crashed. With growing
sizes of terms and sequents, sudden crashes, strange behaviour and out-of-memory-exceptions became
more frequent13.

The interactive prover mechanism, though being quite nice and intuitive to use, lacks strength in
general. Only few rules can be applied manually, one cannot quite prove interactively without using
the external provers. In particular, the interactive prover lacked important rewrite simplification rules
for set comprehensions and λ-abstractions. Fortunately, these rules were added in Rel. 1.1.

The automatic provers that are shipped with Rodin have their strengths and weaknesses:

• Arithmetically, only one (ML) prover supports some linear arithmetic. Its power is very limited
as it apparently expects the input to be of a a certain format. For instance, at one point, when
x+ 1 ≥ 0 was on the sequent (for x ∈ N), we had to add an additional hypothesis x ≥ −1 which
then allowed the procedure to finish the proof automatically.

• Quantification instantiation is not a strength of any of the proof engines. Only in very few and
very obvious cases (like (∀x · p(x)) → p(t)), necessary instantiations were done automatically
and successfully, apparently also only for a single variable. When instantiating lemmata, we
always had to give terms for the universally quantified variables. At the same time, we must
admit that the lemmata themselves were quite complicated properties.

• Set theoretic constructs. The lemmata built into the ML prover seem to be rather extensive. At
many points, the provers (in particular newPP) surprised by closing not quite so obvious goals
automatically.

On other occasions, the proof would not close unless we manually performed a very basic step
manually (such as imp_right e.g.).

• Cardinalities seem a step child of the provers. Fortunately, the interactive component compen-
sates by establishing a couple of deduction rules. Unreasonably often, we had to add the obvious
hypothesis card(t) ≥ 0 for some term t.

In general, quite many case distinctions and added hypotheses were needed to guide the automatic
procedures. After a while, one gained a feeling on what to do as the decision points where symptomatic.

The automatic decision procedures act as black boxes which do not give any justification for their
closing a branch; they are comparable to modern SMT procedures in that point. The procedures not
only operate on the formulas on the current sequent but also possibly incorporate formulas from the
list of available valid hypotheses so that it was not possible to decide which lemmata were actually
used during the proof of a property. When selecting lemmata manually (“search hypotheses”), the
names are not listed (although all invariants and axioms have names). Equally, the names do not
appear in the proof tree, which would be a great help for retracing proofs.

If the user adds and axiomatises new data structures, they may find that the tool is not as
supporting as they would wish. When we modelled sequences in 2.9, we were obliged to prove many
times the fact that the concatenation of a value to a list is a list again. A mechanism which allows
the user to define inference rules which then could be applied manually (or even automatically) could
definitely reduce proof efforts under certain circumstances. The authors are glad that such an extension
mechanism is on its way and will be available in future versions.

7 Conclusion

In this report we describe our formal models of byzantine agreement protocols. In particular, we model
the known protocols ZA and the SM using the Event-B method. Our model comprises 4 contexts and
12 machines, with a total of 106 invariants. We used the tool Rodin to discharge all of the 322 proof
obligation for the model. 74 of them could could be closed automatically, while more than 75% had
to be proven manually, some with a considerable amount of interaction effort. Approximately three
man-months were invested in the design, implementation and verification of the model.

Despite the fact that a protocol has been proven correct, it is still fairly easy to come up with
an implementation which only seemingly implements this protocol but deviates in such a way that
guarantees no longer hold. It should be subject of a further investigation to extend the refinement

13Astonishingly, Rel. 1.0 was considerably more stable than Rel. 1.1 and Rel. 1.2 in our case.
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chain given in this report more towards a real implementation of an algorithm and to establish a
refinement relation between model and implementation.
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