
Composition studies of Ultra High Energy

Cosmic Rays using Data of the

Pierre Auger Observatory

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN
von der Fakultät für Physik des

Karlsruher Institut für Technologie
(KIT)

genehmigte DISSERTATION

von Dipl.-Phys. Karen Salomé Caballero Mora
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Abstract

The subject of this work is to estimate the mass composition of Ultra High Energy Cosmic
Rays recorded by the surface detector of the Pierre Auger Observatory. The time traces of
the surface detector stations are explored to obtain a new observable sensitive to the mass
composition. This observable is based on the time it takes for the integrated signal recorded
by each one of the stations of the surface detector, to rise from 10% to 50% of the final value,
which is known as the risetime, t1/2. The new observable, called ∆1000 is calculated for high
quality hybrid events and calibrated with the most mass-sensitive observable recorded by the
fluorescence detector, namely the depth of the shower maximum, Xmax. This is the depth
in the atmosphere at which the maximum number of particles in the shower is reached. It
is demonstrated that with this method one takes advantage of the high statistics provided
by the surface detector (100% duty cycle) to obtain a new estimation for the depth of the
shower maximum, XSD

max. The details of the calibration method, estimations of systematic
uncertainties and discussions about fluctuations of the data are presented. Deductions on
mass composition, based on comparisons with simulations are presented as well. The results
on mass composition obtained by the fluorescence detector (around 13% duty cycle) are
corroborated by the surface detector on average basis, pointing to an increase of the mass
composition with the energy. Due to the large statistics of the surface detector, the energy
range of the Observatory for measuring Xmax could be extended to energies of 80 EeV, i.e.
by a factor of 2.3 with respect to the range reached with the analysis of fluorescence data.
The mass composition corresponding to energies above 1019.6 eV is found to get heavier but
still remains in a mixed mass composition.

Zusammenfassung

Bestimmung der Elementzusammensetzung der hochenergetischen kosmischen
Strahlung mit dem Detektorfeld des Pierre Auger Observatoriums

Das Thema dieser Arbeit ist die Bestimmung der Elementzusammensetzung der hochen-
ergetischen kosmischen Strahlung mit dem Detektorfeld des Pierre Auger Observatoriums.
Die zeitliche Struktur der Detektorsignale wird untersucht um eine neue masseabhängige
Observable zu definieren. Die Observable wird aus der sogennanten Anstiegzeit hergeleitet,
die Zeit die das integrierte Signal braucht um von 10% bis 50% des Gesamtwertes zu
steigen. Die neue Observable, ∆1000, wird für qualitativ hochwertige Ereignisse berechnet.
Daraufhin wird ∆1000 mit der Tiefe des Schauermaximums (Xmax) kalibriert. Die Tiefe
des Schauermaximums ist definiert als die Tiefe in der Atmosphäre, wo die maximale
Teilchenzahl des Luftschauers erreicht ist. Xmax ist die am stärksten massenabhängige
Observable, die der Fluoreszenzdetektor messen kann. Die ausschließliche Verwendung von
SD-Daten für eine neue Bestimmung des Schauermaximums XSD

max nutzt höhere Statistik,
da die Betriebszeit nahezu 100% beträgt. Die Details der Kalibrierungsmethode sowie
die Bestimmung der systematischen Unsicherheit und statistiche Fluktuationen werden
diskutiert. Die Elementzusammensetzung wird durch Vergleich mit Simulationen hergeleitet.
Die vom SD bestimmte Elementzusammensetzung ist konsistent mit Ergebnissen aus FD-
Messungen (ca. 13% Betriebszeit) und weist auf einen Anstieg der durchschnittlichen Masse
mit zunehmender Energie hin. Aufgrund der hohen Statistik des Detektorfeldes wurde der
Energiebereich der Messungen von Xmax bis 80 EeV ausgedehnt und somit um einen Faktor
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2.3 höher als der Energiebereich, der durch die Analyse von FD-Daten erreicht wird. Die
Analyse zeigt, dass die Primärmasse bei Energien über 1019.6 eV zunimmt, jedoch liegt in
diesem Energiebereich weiterhin gemischte Massenzusammensetzung vor.

Resumen

Estudios de composición de Rayos Cósmicos Ultraenergéticos medidos con el
detector de superficie del Observatorio Pierre Auger

El objetivo de este trabajo es estimar la composición de los Rayos Cósmicos Ultraenergéticos
medidos con el detector de superficie del Observatorio Pierre Auger. Las trazas temporales
del detector de superficie son investigadas para obtener una nueva observable sensitiva a la
composición. Esta observable se basa en el tiempo que la señal integrada de cada estación del
detector de supreficie necesita para subir del 10% al 50% de su valor total, lo cual es conocido
como el risetime, t1/2. La nueva observable, llamada ∆1000 es calculada para eventos h́ıbridos
de alta calidad y calibrada con la observable más sensitiva a la composición medida con el
detector de fluorescencia, la profundidad del máximo del chubasco, Xmax. Ésta se define como
la profundidad en la atmósfera a la cual se alcanza el máximo número de part́ıculas producidas
en un chubasco. Se demuestra que con este método se puede aprovechar la enorme cantidad
de datos proporcionados por el detector de superficie (100% de servicio activo) para obtener
una nueva estimación de la profundidad del máximo del chubasco, XSD

max. Los detalles del
método de calibración, estimaciones de las incertidumbres sistemáticas aśı como discusiones
acerca de las fluctuaciones de los datos son presentados en este trabajo. Deducciones acerca
de la composición basadas en comparaciones con simulaciones se presentan también. Los
resultados acerca de composición obtenidos por el detector de fluorescencia (13% de servicio
activo) son confirmados, en promedio, por el detector de superficie apuntando a un aumento
de la masa con la enerǵıa. Debido a la enorme estad́ıstica del detector de superficie, el rango
de medición para Xmax, alcanzado por el Observatorio podŕıa extenderse a enerǵıas de 80
EeV, es decir, un factor de 2.3 con respecto del rango alcanzado con el análisis de datos de
fluorescencia. Se encuentra que la composición correspondiente a enerǵıas sobre 1019.6 eV
tiende a ser pesada pero aun permanece siendo una mezcla.
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Introduction

The discovery of cosmic rays at the end of 19th century opened a new subject in physics
from which invaluable information about the most energetic particles coming from the space
can be obtained. There is a feedback between physics of cosmic rays and particle physics to
try to understand the mechanisms of their interactions with matter and at the same time
giving the possibility to develop the fundamental theories of physics from its macroscopic and
microscopic perspective, respectively. The origin and production mechanisms of cosmic rays
above 1018 eV, the so called Ultra High Energy Cosmic Rays (UHECRs), is still unknown.
Information about the nature of the cosmic rays, i.e. the mass composition, constitutes
one of the characteristics that can help to understand the processes that create them. It
might also allow to constrain the sources of such kind of cosmic rays as well as to have
a properly interpretation of the energy spectrum. However, mass composition studies at
such high energies are difficult due to the low flux of cosmic rays observed, which is about
1 − 100 km−2century−1. Moreover, even the most recent accelerators built in the earth,
such as the Tevatron [1] or the Large Hadron Collider (LHC) [2] reach only center of mass
energies of the order of 1-10 TeV, making the development of interaction models at higher
energies uncertain. High technological requirements are needed to collect reasonably good
statistics from arriving cosmic rays with that low flux. An effective area of thousands of
square kilometers is necessary. Those requirements are now available for the first time using
the advantages of the Pierre Auger Observatory. This is a hybrid detector, consisting on an
area of 3000 km2 and two kind of detectors, fluorescence telescopes (fluorescence detector,
FD) and water Cherenkov stations (surface detector, SD). Studies on mass composition of
UHECRs using mass-sensitive observables from both kind of detectors are presented in this
work.

The time traces of the surface detector are analysed to define a new mass-sensitive observable
called ∆1000. This is based on a feature of the time trace called risetime, t1/2, which is
the time it takes for the integrated signal to rise from 10% to 50% of the final value. The
characterization of ∆1000 and all necessary treatments of the time trace to define it such
as the parameterisation of a measurement uncertainty, σ1/2, the correction of the azimuthal
asymmetry and a reliable parameterisation of t1/2 as a function of the distance of the station
from the shower core, are performed.

The parameter ∆1000 is calibrated with the depth of the shower maximum, Xmax, which is
measured with the fluorescence detector and is the most mass-sensitive parameter available
in the Pierre Auger Observatory. The goal is to obtain an estimation of this from SD
measurements, XSD

max. The advantage of this method lies on the high statistics available
from the SD (100% duty cycle), in comparison with the one from the FD (around 13% duty
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cycle). That means that similar results on mass composition obtained already from studies
with FD can be reproduced with high statistics. Specially comparisons with the results on
the rate of change of Xmax with the energy, the elongation rate, D10, reported by the Pierre
Auger Collaboration in Ref. [3] are presented.

Studies about fluctuations of ∆1000 to estimate the uncertainties in XSD
max as well as estimations

of systematics coming from the calibration procedure, for understanding the reliability of XSD
max

on an event-by-event basis, are performed. The uncertainties from the calibration procedure
are also estimated by using Monte Carlo simulations for testing the effectiveness of the ∆1000

method to reproduce XMC
max, which is the value given by the simulations. The corresponding

results of XSD
max are compared with predictions of different hadronic interaction models.

Once the XSD
max parameter is obtained, the mass composition of cosmic rays of energies above

3 EeV, the energy at which the SD reaches the full efficiency, is determined by using the new
observable. For this purpose, the corresponding D10, and the mean logarithmic mass, 〈ln A〉,
are calculated and considered in the same sense as they are when the usual Xmax observable
is used.

The method proposed in this work gives the possibility to have a value for Xmax for measured
events even if they are not hybrid. In this sense, the highest energy cosmic rays used by
the Pierre Auger Collaboration for studies of anisotropy of their arrival direction, which
demonstrates their extragalactic origin reported in Ref. [4], are analysed. Deductions about
their mass composition are made.
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Chapter 1

Ultra high energy cosmic rays

Cosmic rays are particles with energies between 109 and 1020 eV that reach the Earth from
interstellar space. Most of them consist of fully charged nuclei and protons plus a steady
flux of electrons, gammas and anti-matter [5]. The nature of cosmic rays above 1015 eV is
nevertheless still not well known, especially the origin and production mechanisms above
1018 eV. In this chapter the main characteristics of UHECRs and the relevance of studies on
mass composition are described.

1.1 A brief history of the study of cosmic rays

The discovery of cosmic rays is the result of observations made by Charles Wilson at the end
of 19th century [6–8]. Wilson observed that electroscopes lost charge without any apparent
reason. Trying to explain that effect, Wulf developed the ionization chamber [6–8], which was
used by Victor Hess in 1912 to measure the increase or decrease of the radiation which should
cause the ionization, at different heights. He concluded that such radiation should come
from the space [9]. In 1913 and 1914 Werner Kohlhörster and Walther Bothe found that at
heights of 9300 m the effects were fifty times greater than on the ground [6–8]. From 1923
to 1926 Robert Andrew Millikan and his collaborators made measurements also under the
water corroborating that the origin of the radiation was extraterrestrial. Millikan gave to that
radiation the name ”cosmic rays” [10] . In 1927 Skobeltzyn found that trajectories produced
by gamma rays behave like cosmic rays [11]. Meanwhile Kohlhörster and Bothe measured in
1929 a flux of atomic and subatomic particles using coincidences between two Geiger Müller
counters. That flux explained the effects of the high energy radiation. Bothe established
in 1930 in Postdam the first research center dedicated to cosmic rays. A latitudinal effect
on the flux was also observed, because particles with low energies were not detected near to
the equator [6–8]. In 1930 A. H. Compton and collaborators confirmed the latitudinal [12]
effect (already observed also by Clay in 1927 [13]), which was directly correlated with the
geomagnetic latitude. C. Störmer considered the Earth as a magnetic dipole and studied
trajectories of charged particles. He was able to set areas for each point on the Earth, where
it was not possible to measure a great amount of cosmic rays with positive charge (from the
East), and others where the cosmic rays with negative charge were limited (from the West) [6–
8]. His study was complemented with calculations made by Manuel Sandoval Vallarta in
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Chapter 1. Ultra high energy cosmic rays

Mexico, O. Lemaitre in Belgium, and with measurements made by Luis Álvarez in Mexico
City [6–8]. In 1938 Pierre Auger made mesurements on the Alps, he observed that detectors
which were separated large distances from each other, registered particles at the same time.
He concluded that there were showers of secondary particles produced by the interaction of
primary particles with the molecules of the atmosphere. The primary particles should have
energies of the order of 1015 eV to be able to produce such extensive air showers [14]. After
the discovery of new particles, it was possible to continue identifying them as cosmic rays, as
for example with the muon µ. The nature of the low energy radiation arriving at the Earth
was determined at the end of the fourties, using photographic emulsions at large heights.
It was found that the primary particles consist of protons, α particles and heavier nuclei.
Measurements of particle interactions made in accelerators has been very important to develop
models which can be compared with measurements of cosmic rays, but for UHECRs there are
not yet such kind of measurements available, maybe the expected data from the Large Hadron
Collider (LHC) can help to extrapolate more accurately the current models to higher energies.
The cosmic ray spectrum of energies between 3 · 1015 and 1018 eV was determined during the
years 1954 and 1957 with an experiment of 0.9 m2 at Harvard Agassiz [15]. For studying the
origin of cosmic rays with energies of 1017 eV an observatory with scintillator detectors was
built by Bruno Rossi’s group at the Massachusetts Institute of Technology [16]. Later, in
1960, an array of 19 scintillators with an area of 3.3 m2 arranged on a 884 m grid was built
at Volcano Ranch, New Mexico, directed by David Linsley. With this array it was possible
to conclude that cosmic radiation at these energies is isotropic. Also in 1962 a cosmic ray of
1020 eV was detected [16]. From that discovery on, arrays with areas of more than 8 km2 were
built. Some of them are Haverah Park (England, 12 km2, water Cherenkov tanks), Yakutsk
(Russia, 18 km2, scintillators, atmospheric Cherenkov detectors, muon counters) and AGASA
(Japan, 100 km2, scintillators, muon counters). In 1966 it was predicted a cut-off in the flux
of cosmic rays at energies greater than 5 · 1019 eV [17,18]. This prediction was set by Keneth
Greisen, Valdem Kuz’min and Georgi Zatsepin and is known as the “GZK cut-off”. Studies on
that demand the necessity of new measurement techniques. Suga and Chudakov suggested the
possibility of using the atmosphere as an enormous scintillator. In 1976, at Volcano Ranch,
rudimentary fluorescence detectors were used. After that the Fly’s Eye experiment was built
in the USA, which used fluorescence detectors too. This array measured very high energetic
events (3 · 1020 eV). In 1994 also AGASA and Yakutzk measured events with energies of
2 ·1020 eV [6–8]. Another example of experiments using high resolution fluorescence detectors
is HiRes in Utah [19]. The combination of both, fluorescence and surface detectors set on a
big area, is now being used by the Pierre Auger Observatory [20]. Its hybrid condition allows
to obtain almost model-independent data and to dispose of a large aperture in comparison
with previous experiments.

1.2 The energy spectrum of cosmic rays

The energy spectrum of cosmic rays shows the flux, J , of particles as a function of energy, as
it is observed on Earth. It extends from the solar cosmic rays scale of a few GeV to above
1020 eV. Acceleration mechanism together with propagation processes through the interstellar
medium can explain qualitatively the whole energy range but the acceleration sites are still to
be explained. The energy spectrum has some features which are easily distinguishable because
of its similarity with a human leg, the knee and the ankle. Those features might be interpreted
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1.2 The energy spectrum of cosmic rays
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Figure 1.1: Cosmic ray energy spectrum as measured by many experiments over a wide range in energy.
The lower axis reflects the energy of the primary cosmic ray nuclei Elab, the upper axis denotes the
corresponding center-of-mass energy per nucleon and some typical energies, which can be accessed by
accelerators, are emphasized [21].

either as a change of the acceleration mechanism at sources, as a propagation effect or as a
change of the hadronic interaction cross sections with increasing energy. Figure 1.1 shows
the spectrum multiplied by E2.7 to remove the enormous slope over 15 orders in magnitude
of the flux and to point out the changes of the spectral index (γ), which are identified with
the different features observed. At lower energies the flux is well described by J ∝ E−2.7 and
appears flat. The visible changes and the highest energy region are described in the next
paragraphs.

The knee It is observed at about 3 · 1015 eV [22] where the power-low slope changes from
γ ≃ 2.7 to γ ≃ 3.0 . It is considered that cosmic rays with energies below the knee are
accelerated through diffusive shock acceleration in expanding supernova remnants (SNRs)
located within our galaxy [23]. There is also a coincidence of the knee with a rapid increase
of the mean primary mass. The knee is thus explained to be caused by the galactic cosmic
ray accelerators reaching their maximum energy, or also to be due to the limitation of the
galactic magnetic fields to confine the nuclei in the Galaxy when they reach a given energy.
Since acceleration depends on the charge of particles Z, the knee energy is also proportional
to it. Another concurrent scenario assumes that the knee might be caused by a sudden change
of the hadronic interactions at these energies [24,25]. In this case the energy of the knee for
individual elements would scale with their mass number A and not with Z. The knee can
be interpreted also as a propagation result due to a change in the regime of diffusion in the
galactic magnetic field [26,27]. The KArlsruhe Shower Core and Array DEtector (KASCADE)
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Chapter 1. Ultra high energy cosmic rays

experiment has studied the knee region obtaining energy spectra for different primary mass
groups (proton, helium and CNO) and showing that the position of the individual knees is
shifted to higher energies with increasing atomic number and giving a big support for those
scenarios [28]. This also supports the idea of cosmic rays of this region having a galactic
origin.

A second discontinuity has been observed at energies around 4 · 1017 eV and 6 · 1017 eV [29–
32], the second knee, where the spectral index turns to γ ≃ 3.3 . KASCADE-Grande and
IceTop [33] experiments will clarify this energy range of the cosmic ray flux in the near
future.

It is expected that in the region between the knee and the ankle there is a drop of the heavy
components at an energy scaled with the charge or with the mass and a transition region
from the galactic to extra-galactic origin of cosmic rays.

The ankle It is observed at around 1018 eV [34], where the spectral slope turns again to
γ ≃ 2.7 . There are several theories trying to explain this feature. One of them assumes
that at these energies a transition from the galactic to extra-galactic origin of the cosmic rays
occurs [35–37]. The extra-galactic component is expected to have a pure proton composition.
The position of the ankle would be the energy where the two components contribute equally
to the total flux. The ankle can also be explained considering that the tail of the flux has
a mixed composition and the ankle is still a transition region (Fig. 1.2(a)) [38, 39]. Nuclei
with energies greater than 1019 eV are disintegrated while they are propagating through the
medium. The ankle can also be explained by the hypothesis that the extra-galactic component
composed mainly of protons starts to dominate at lower energies. Thus, in this model, the
transition from galactic to extra-galactic origin occurs at lower energies than the ankle, where
there is no more galactic component (Fig. 1.2(b)) [40, 41]. Protons propagate through the
cosmic microwave background (CMB) over extra-galactic distances and loose energy due to
the Bethe-Heitler e+e− pair production. The resulting flux suppression at higher energies is
identified with the ankle. This is known as the dip model.

Region of ultra-high energies At the end of the spectrum, the flux of cosmic rays
decreases to about 1 − 100 km−2century−1. This cut-off was already predicted after the
discovery of the CMB. It is known as the “GZK cut-off” after the original authors [17, 18].
The prediction explains that ultra-high energy nucleons (E & 50 EeV) traveling through
extra-galactic space interact with photons of the CMB photon field via the formation of
resonances (i.e. N + γCMB → ∆ → N + π), which leads to the emission of pions. This effect
corresponds to an energy loss via pion emission, leading to a strong flux suppression above
about 50 EeV (Fig. 1.3). Due to the lack of statistics in this region, it was not possible to
confirm the observation of the cut-off for many years [42,43]. Nevertheless, from recent results
of the HiRes [44] and Auger [45] experiments show that a GZK-like feature can now be clearly
identified within the corresponding spectra (Fig. 1.1). However, it is still not clear, whether
the observed flux suppression is entirely due to the GZK-effect. Another plausible explanation
of the cut-off at ultra-high energies is that the extra-galactic cosmic ray accelerators run out
of power.
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Figure 1.2: (a) The extra-galactic mixed composition scenario (taken from [35] and modified). (b) The
dip model taken from [40].
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1.3 Acceleration mechanisms and propagation of cosmic rays

Acceleration of cosmic rays is usually explained with the first-order Fermi acceleration, also
known as Diffusive Shock Acceleration (DSA), in shocks produced by astrophysical objects.
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Chapter 1. Ultra high energy cosmic rays

This mechanism was first proposed in the 1970s [47], based on the original work developed
by Enrico Fermi in 1949 [48]. It demonstrated that particles gain energy stochastically when
they pass through a magnetic cloud. On average, cosmic rays gain energy with an efficiency
proportional to β (β = u/c, u = shock velocity). If encounters of particles with shock fronts
are considered, particles are diffusively accelerated while they cross and then re-cross the
shock front many times, due to the deflection of charged particles by magnetic anomalities.
DSA is an extremely efficient mechanism for accelerating cosmic rays because up to 10% of
the shock energy is transferred to the particles. The maximum energy attainable by a particle
due to this process is given by [49,50]:

Emax = kZeBβsR (1.1)

where E is in eV, Z is the atomic number of the nucleus, e is the electron charge, B is the
magnetic field strength in the region of the shock, βs is the velocity of the shock front through
the interstellar medium, k < 1 and R is the size of the shock region. From this mechanism,
particles emerge out with a characteristic power-law spectrum [51,52].

Propagation of cosmic ray through space is affected by several interaction processes. One of
them is the already mentioned GZK-effect which produces a suppression of the flux of cosmic
rays above energies around 5 · 1019 eV.

Protons also interact with the CMB through pair production with an energy threshold of
about 1018 eV (p + γCMB → p + e+ + e−), this interaction is thought to be the dominating
process in the region between the second knee and the ankle (Fig. 1.3).

Heavy nuclei also interact with CMB and intergalactic Infrared Background Radiation (IBR)
through photo-disintegration and pair production with similar energy thresholds (NA +
γCMB → N (A−1) + n or NA + e+ + e−) [50,53,54].

Cosmic rays are also affected by both, galactic and extra-galactic magnetic fields, which bend
their trajectories. These could pass from diffusive to rectilinear propagating [55]. Quantitative
estimations of the deflection angles are not yet possible due to the limited knowledge of the
strength of magnetic fields, the charge of UHECRs and the location of the sources.

1.4 Origin and source identification

Cosmic rays with energies up to some GeV arise predominantly from the Sun since, for
instance, characteristic night-day variations are presented in the spectrum. From these
energies up to a few 1015 eV cosmic rays could be originated by shock acceleration in galactic
SNRs [56,57]. Although there is no experimental evidence, some theories point out that SNRs
could accelerate cosmic rays up to energies of 1018 eV as well [26,58].

The maximum energy that cosmic ray may obtain from a given astronomical object is limited
by the combination of the magnetic field strength and shock size. On this basis and considering
equation 1.1, M. Hillas proposed a simple plot (Fig. 1.4) to show that there are only few
astrophysical objects (AGNs and Gamma-ray bursts) capable to accelerate nuclei and protons
to energies of 1020 eV. There are other non-traditional theories trying to explain the origin
of the extreme energetic particles, the so called top-down models. Some of those models
include production of UHECRs from the decay of exotic particles such as Topological Defects
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Figure 1.4: Hillas Plot showing the required size and magnetic field strength of possible UHECR sources.
Objects below the corresponding lines are not able to accelerate proton or iron nuclei to an energy of
1020eV [68].

(TD) [59], super heavy dark matter (SHDM) particles [60–62], or neutrino interactions with
the relic neutrino background (Z-burst model) [63, 64]. All the top-down models suggest a
large fraction of photons in the flux of UHECRs [65], which can be studied measuring the flux
limits for photons and neutrinos. The Pierre Auger Collaboration has estimated upper limits
on both of them [66,67]. The upper limit set to the flux of photons allowed to constrain certain
top-down models, which can not be considered as plausible scenarios for the production of
UHECRs any more. However, neutrino flux is difficult to be measured due to the low cross
section of neutrino.

The GZK effect also imposes a limit for the distance at which the sources of cosmic rays
above energies of 5 ·1019 eV can be located. For instance, sources of protons observed with an
energy of 1020 eV are not expected to be located at distances larger than 50 Mpc (Fig. 1.5).
Identification of sources of UHECRs by looking directly at their arrival directions is not
easy because at relative low energies, the distribution of the arrival directions is isotropic.
This is due to the effect of the galactic magnetic field. Nevertheless, a lot of effort has been
concentrated to find significant anisotropies, which could help to correlate the flux of UHECRs
with a known astrophysical object. Recently, the Pierre Auger Collaboration has reported
a correlation between the arrival direction of cosmic rays with energies above 57 EeV and
the position of active galactic nuclei (AGNs) lying within ∼75 Mpc [4, 70]. This result is
compatible with a scenario where UHECRs are accelerated in nearby extra-galactic sources,
AGNs or other objects distributed similarly.
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Figure 1.5: Three different initial energies of a proton as a function of the propagation distance through
the CMB [69].

1.5 Extensive air showers

An extensive air shower (EAS) is a cascade of particles generated by a single high energy
primary cosmic ray which interacts with the molecules of the air at about 10 km. The
production of secondary particles reaches a maximum and continues after the total energy
of the primary cosmic ray is distributed to them. Thus, the number of particles reaching
the threshold for further particle production attenuates [71]. A cosmic ray induced EAS has
three main components: hadronic, muonic and electromagnetic (Fig. 1.6(a)). In addition,
there are particles whose contribution to the total energy balance is not big, i.e. UV-
photons (fluorescence and Cherenkov) and radio emission, or which are not detectable and are
therefore called invisible component (neutrinos and very low energy particles) [72]. Hadronic
particles (nucleons and other high energy hadrons) stay close to the shower axis, which is the
direction of motion of the primary cosmic ray particle. After a few hadronic interactions, most
of the hadronic energy is transferred into the electromagnetic and muonic shower parts. Since
the hadronic shower core is long lived and therefore propagates deep into the atmosphere, it
acts as a permanent source of new electromagnetic particles and muons. Muonic component
is generated by the decay of lower energy charged pions and kaons. Only about 10% of
the charged particles in an extensive air shower are muons [73]. They hardly interact and
loose slowly energy due mainly to ionization, being highly penetrating particles. Only lower
energy muons may decay before they reach the detection level. Electromagnetic particles
are produced primarily by photons from decay of neutral pions and eta particles. At each
hadronic interaction, slightly more than a third of the energy goes into the electromagnetic
component, this is the most abundant in the shower and carries the largest fraction of the total
energy (Fig. 1.6(b)). The electromagnetic shower develops fast, mainly by bremsstrahlung
interactions and pair production. Below a certain energy Ecrit, ionization energy losses start
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(a)

(b)

Figure 1.6: (a) Schema of the processes involved in the development of an EAS. (b) Average number
of particles for a proton shower of Eprim = 1019 eV, for the different components [74].

to dominate over new particle production and the shower is absorbed by the atmosphere.

The development of a cascade can be described schematically using the Heitler model.
It describes the production of particles in a purely electromagnetic cascade considering a
branching of particles (e−, e+ and γ) or packets of energy (see Fig. 1.7(a)). The branching
occurs due to a splitting process after an interaction length

λ = X0 ln 2. (1.2)
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The energy of the initial particle is thus distributed equally onto the two interaction products.
The total number of particles doubles after every λ and the total energy E0 is subdivided
equally onto the particles of the cascade

Nn = 2n and En = E0/2n. (1.3)

Once the energy per particle drops below the critical energy Ecrit (85 MeV in air), the
production of new particles stops and the remaining energy is lost by ionization (collisional
energy loss). At this point the cascade reaches its maximum of number of particles and
suddenly dies out:

Nmax = E0/Ecrit and Xmax = X0 ln
E0

Ecrit
∝ ln E0. (1.4)

Some detailed calculations [75] show that X0 can be identified with the electromagnetic
radiation length (Xrad), which depends on the medium in which the shower develops and
is 36 to 37 gcm−2 in air.

The Heitler model can also be extended to hadronic cascades (Fig. 1.7(b)) in this case, the
hadronic interaction length λI = XI ln 2, with XI ≈ 120 gcm−2 for pions in air, is introduced
in analogy to the electromagnetic interaction length λ. In each hadronic interaction Nmult

particles are produced, of which one third are π0 and two thirds are π±. The neutral pions
decay instantly into two photons, initiating an electromagnetic cascade. The hadronic cascade
stops when pions drop below their critical energy, then they decay yielding muons. The critical
energy for pions EI

crit in air depends on the interaction length, the atmospheric density and
the pion decay length, its approximated value is 20 GeV [76]. The total number of produced
muons is identical with the number of π± at their critical energy:

Nµ = Nπ± =

(

2

3
Nmult

)nc

=

(

E0

EI
crit

)β

with nc =
1

ln Nmult
ln

E0

EI
crit

, (1.5)

where β = ln
(

2
3Nmult

)

/ ln(Nmult) ≈ 0.9. For the hadronic Heitler model, only the
electromagnetic showers induced by the first generation of π± are taken into account. It could
result in an underestimation of the real Xmax. This approach also neglects the significant effect
of inelasticity in hadronic interactions, which leads to a not equitable energy distribution
on the secondary particles, in contradiction with the original assumption. However, there
is no simple analytic way to get the result from this complex superposition of cascades.
Furthermore, the hadronic interactions related to the main observables of cascades are still
not well known at the energies of EAS. Models of cascades have to be improved.

1.6 Mass composition of cosmic rays

As mentioned in the introduction, the origin and production mechanisms of UHECRs are
still not well understood. An in-depth knowledge of the mass composition of cosmic rays can
give an important clue for the processes that create the highest energy particles in nature. It
might allow to constrain the sources of UHECRs as well as having a properly interpretation
of the energy spectrum.
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(a) (b)

Figure 1.7: (a) Heitler model for electromagnetic cascades. (b) Extended Heitler model for hadronic
cascades [72].

The abundance of individual elements has been measured with detectors above the atmosphere
at energies below 1014 eV, at higher energies it is at the moment not possible due to the low
flux and the large fluctuations in the development of the extensive air showers. An often-
used quantity to characterize the composition is the mean logarithmic mass, defined as
〈ln A〉 =

∑

i ri ln Ai where ri is the relative fraction of nuclei of mass Ai. There are two
methods to obtain experimentally 〈ln A〉: (i) using its proportionality to the ratio of number
of electrons and muons registered at ground level 〈ln A〉 ∝ log10(Ne/Nµ) and (ii) using its
proportionality to the observed depth of the shower maximum 〈Xmax〉A = Dp ln(E/A) =
〈Xmax〉p − Dp ln A (see Chapter 3). Hence, the maximum of an iron induced shower (XFe

max)
should be about 150 gcm−2 higher in the atmosphere than the one induced by a proton (Xp

max).
Figure 1.8 shows a compilation of measurements compared with predictions of 〈Xmax〉 for
protons and iron nuclei from different experiments and interaction models. Below 4 · 1015 eV,
values obtained by different experiments exhibit a common trend, they seem to increase
faster as function of energy than the simulations, which implies that the average composition
would become lighter. Above the knee, measured values become flat up to around 4 · 1016 eV,
indicating an increase of the average mass in this energy range. Finally, above 4 · 1016 eV,
measured data show an almost constant slope for Xmax as function of energy. Knowing
the average depth of the shower maximum for protons and iron nuclei from simulations,
the mean logarithmic mass is derived in the superposition model of air showers from the
measured Xmeas

max values using the relation 〈ln A〉 = ln AFe · (Xmeas
max − Xp

max)/(XFe
max − Xp

max).
Figure 1.9(a) and 1.9(b) show values of 〈ln A〉 using both methods. Values corresponding to
the Xmax method show that below ∼ 4 · 1015 eV the individual experiments seem to indicate
a decrease of 〈ln A〉 with energy, while above this energy up to ∼ 4 · 1016 eV it is exhibited
an increase with energy. At the highest energies E ≥ 4 · 1016 eV, again a decrease with
energy is observed. Results from the particle ratio method, using measurements at ground
level, show a clear increase of 〈ln A〉 with energy between 1015 and 1016 eV. The decrease
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Figure 1.8: Average depth of the shower maximum Xmax as function of primary energy as obtained
by different experiments and compared with simulations for proton and iron induced showers using the
CORSIKA code with different hadronic interaction models [77].

(a) (b)

Figure 1.9: Mean logarithmic mass of cosmic rays derived from: (a) the average depth of the shower
maximum, and (b) measurements of electrons, muons and hadrons at ground level (for references
see [78]).

as derived from Xmax measurements is not visible in the particle ratio results. There seems
to be some discrepancy between the results obtained from different methods [78]. It is also
interesting to investigate the energy spectra for individual elements or groups of elements.
Figures 1.10(a) and 1.10(b) show results on this issue obtained with the KASCADE hadron
calorimeter. Information on the flux of primary protons can be inferred from the measurement
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(a) (b)

Figure 1.10: Cosmic-ray energy spectrum for five groups of elements as reconstructed by the KASCADE
experiment using the hadronic interaction models: (a) QGSJET 01, and (b) SIBYLL 2.1 to interpret
the measured data [28].

of the flux of unaccompanied hadrons at ground level. Unfolding algorithms were applied to
the correlated frequency distribution of Ne and Nµ to derive energy spectra for elemental
groups. The five mass groups chosen as representative are H, He, C, Si and Fe. The unfolding
was performed using two interaction models, namely QGSJET and SIBYLL. The resulting
all-particle spectra for both models show a knee at about 4 PeV and coincide within their
statistical errors. The decrease of light elements across the knee is revealed independently of
the used simulation code. In contrast, the spectra of silicon and iron groups differ significantly
and look quite unexpected. This leads to conclude that both interaction models fail to
reproduce the overall correlation between log10 Ne and log10 Nµas observed in the data. The
spectra indicate that the knee in the all-particle spectrum is due to fall-offs in the light element
spectra resulting in a heavier composition above the knee.

The EAS-TOP collaboration has measured the proton spectrum in the range 0.5-500 TeV,
being described over the whole energy range by a single power law [79]. The underground
MACRO experiment has studied the helium and CNO fluxes in the energy region from 80
to 200 TeV. After the subtraction of the measured proton flux, the following values were
obtained: ΦHe (80 TeV) = (12.7±4.4) ·10−7 m−2 sr−1 GeV−1 and ΦCNO (250 TeV) = (0.24±
0.19) · 10−7 m−2 sr−1 GeV−1 [80]. In the knee region, intrinsic fluctuations and measurement
accuracies allow a three component analysis: light (protons, and a mixture of 50% proton
and 50% helium), intermediate (CNO) and heavy (Fe) [81]. Other experiments as the Tibet
air shower array [82, 83] and the GRAPES-3 experiment [84] have obtained information on
groups of elements as well.

For the highest energies there are some discrepancies depending on the methods used
for indirectly deducing the mass composition. Analyzing 〈Xmax〉, a change from an iron
dominated composition at 1017 eV to a proton dominated composition at 1019.3 eV was found
by the Fly’s Eye experiment [34]. Using another interaction model, the conclusion holds,
but at 1017 eV a mixed composition is expected. In contrast to the old measurements of
Fly’s Eye and Yakutsk [85], the HiRes data indicate a change from an iron-like to a proton
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dominated composition already at 1018 eV. Also, the muon density measured in the HiRes-
MIA setup indicates a change from heavy to light composition [86]. The observed muon
densities, however, are higher or similar than the expectation for iron primaries and not
compatible with medium or light nuclei [29,87]. The new auger data are, within the systematic
uncertainties, in good agreement with the published HiRes data(see Chapter 3). A re-analysis
of Haverah Park data [88] threw a good description if a two-component composition with
about ((66 ± 2)%) iron in the energy range from 2 · 1017 to 1018 eV is used. At higher energy
(from 1018 to 2 · 1018 eV), indications are seen for a transition to a lighter composition. On
the other hand, a first study of the time structure of Haverah Park showers with zenith angles
less than 45◦ finds a more iron-dominated composition in the same energy range [89]. Also
a re-analysis of Volcano Ranch data favors a large fraction of iron [90]. The discrepancy
between muon density-based composition measurements and others based on features of the
longitudinal profile gives evidence of the problems still presented in the hadronic interaction
models currently available.

Since showers produced by high energetic photons are almost pure electromagnetic cascades,
the predictions related to them are more reliable. Analysis of Havera Park data [91, 92]
suggest that less than 48% of the observed events above 1019 eV can be photons (95% c.l.).
At energies above 4 · 1019 eV the limit is 50%. Based on the analysis of muons observed in
high-energy showers at AGASA, the following upper limits were derived: 34%,59% and 63%
for primary energies above 1019, 1019.25 and 1019.5 eV, respectively (95% c.l.) [93,94]. Using a
new method that accounts for the arrival direction of each individual shower, a limit of 67%
(95% c.l.) could be derived for E > 1.25 · 1020 eV. This new method was also employed in a
recent study of Auger shower longitudinal profile data [95]. No more than 16% photons are
expected (95% c.l.). Analysis taking into account observables sensitive to the longitudinal
shower development, the signal rise time and the curvature of the shower front, based on
measurements with the Auger surface detectors show that the photon fraction is smaller than
2%, 5.1% and 31% above energies of 1019, 2 · 1019 and 4 · 1019 eV respectively (95% c.l.). It
should be noted that these upper limits are already relatively close to the fluxes expected for
photons originating from the GZK effect [66]. Other analysis on showers above 1020 eV from
AGASA and Yakutsk show a photon fraction of less than 36% (95% c.l.) [96].

According to top-down models for ultra-high-energy cosmic rays, a large flux of ultra high
energy neutrinos is expected. Recent results from the Pierre Auger Observatory show that
assuming an E−2

ν differential energy spectrum, a limit of E−2
ν dNντ /dEν < 1.3 · 10−7 GeV

cm−2 s−1 sr−1, in the energy range between 2 · 1017 and 2 · 1019 (90% c.l.), is derived [67].
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The Pierre Auger Observatory

The Pierre Auger Observatory has been conceived to collect unprecedented information about
the flux, arrival direction, distribution and mass composition of cosmic rays from 1018 eV to
the very highest energies with high statistical significance over the whole sky [20]. Its design
was developed between 1992 and 1995 from a proposal by Jim Cronin (Chicago University),
Alan Watson (Leeds University) and Murat Moratav (Paris VI and VII). The current amount
of collaborators in the experiment is around 480 from 18 countries and 105 institutions. It
was motivated by the great controversy generated from data corresponding to the region
of energies around ∼ 5 · 1019 eV, of the Cosmic-Ray spectrum, obtained by the AGASA
surface array and the HiRes fluorescence detector, about the existence, or not, of the
predicted GZK cut-off [42, 97, 98]. Therefore to obtain an accurate measurement of the
spectral shape at those energies and beyond, using both kind of techniques, became crucial.
The full sky coverage is also motivated by studies on anisotropy, point source determination
and correlations with astrophysical objects. Due to the small rate of events above 1020 eV
(1 km−2 sr−1 century−1), vast areas must be monitored to collect a large statistical sample,
covering the full sky. Therefore two sites of the Observatory are planned, one in each of
the Northern and Southern Hemispheres. The Northern site is in its planning stage, in
Colorado at a latitude of 38◦ north. The Southern site was completed in June 2008 near
Malargüe, in Mendoza Province, Argentina, at a latitude of more than 35◦ south. The Auger
South Observatory consists of a surface detector (SD) array of 1600 water Cherenkov stations
covering an area of 3000 km2 and arranged on a triangular grid, with the sides of the triangles
being 1.5 km. Four fluorescence detector stations (FD), each containing six air-fluorescence
light telescopes, are located on the edges of the SD (see Fig. 2.1). The surface detector
stations measure the density distribution of the EAS at ground while the telescopes measure
the light produced by atmospheric nitrogen excited by the particles of the shower. Both kind
of detectors are complementary and conform a hybrid detector. This allows to check data
consistency from two intependent measurements as well as inter-calibration and evaluation
of systematic effects. Besides SD and FD, instrumental enhancements are currently being
installed to measure showers in lower energy ranges and to focuse to other kind of signals.
This includes underground muon detectors and additional water Cherenkov stations with
spacing of 750 m on an infill array (AMIGA), high-elevation fluorescence telescopes for a
larger field-of-view (HEAT) and radio antenna to detect the geo-synchroton emission of air
showers (AERA) [99]. In addition to the detectors in the regular SD array, some locations were
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Figure 2.1: Actual status of the Pierre Auger Observatory, the shaded area are stations in operation and
the “semi-asterisks” are the field of view of the fluorescence telescopes. All instrumental enhancements
are close to the Coihueco FD station.

equipped with two (twins) and three (triplets) nearby detectors, placed at ∼ 11 m from each
other. They provide a very useful testbench for studies of signal fluctuation, timing resolution
and energy and angular reconstruction precision. Specially these stations are important for
estimating the uncertainty of arrival time parameters which is one of the goals of this work
(see Chapter 4). In this chapter it is going to be described the operation of the detectors to
be able to reconstruct EAS in a proper way and to obtain their mean characteristics.

2.1 Surface Detector

Each water Cherenkov station consists of a 3.6 m diameter water tank containing a Tyvek
liner for uniform reflection of the Cherenkov light. The liner contains 12, 000 l of ultra-high
purity water with resistivity typically higher than 5 MΩcm. Three large 9” XP1805 Photonis
photomultiplier tubes (PMTs) are symmetrically distributed at a distance of 1.20 m from the
center of the tank and look downwards through windows of clear polyethylene into the water
to collect the Cherenkov light produced by the passage of relativistic charged particles through
the water. The water height of 1.2 m makes it also sensitive to high energy photons, which
convert to electron-positron pairs in the water volume. A solar power system combined with
batteries provides an average of 10 W for the PMTs and the electronics package consisting of a
processor, GPS (Global Positioning System) receiver, radio transceiver and power controller.
The PMTs are equipped with a resistive divider base having two outputs: anode and an
amplified last dynode. This allows a large dynamic range, totaling 15 bits, extending from
a few to about 105 photoelectrons. The high voltage (HV) is provided locally. The nominal
operating gain of the PMTs is 2 ·105 and can be extended to 106. The base, together with the
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(a) Surface detector unit (b) Vertical equivalent muon

Figure 2.2: (a) A surface detector station showing its main components.(b) Vertical muon data taken
on a test tank on the Southern Auger site. The small rise of the count rate for low charges (less than
107e) is due to a remaining part of the background. One VEM in this setup corresponds to ≈ 2.3×107e,
the production of about 25 photoelectrons in the PMT [100].

HV module, is protected against humidity by silicone potting. The signals from anode and
dynode are filtered and digitized at 40 MHz using six 10 bit Flash Analog Digital Converters
(FADC). A pedestal of 50 channels is added to the signal to observe possible fluctuatuions
of the baseline. The signal recorded by the FADC is referred to in units of channels and is
read by a programmable logic device (PLD) which performs trigger decisions on the signal. A
common time base is established for different detector stations by using the GPS. Each tank
is equipped with a commercial GPS receiver (Motorola OnCore UT) providing one pulse per
second output and software corrections. This signal is used to synchronize a 100 MHz clock
which serves to time-tag the trigger. Each detector station has an IBM 403 PowerPC micro-
controller for local data acquisition, software trigger and detector monitoring, and memory
for data storage. The station electronics is implemented in a single module called the Unified
Board, and mounted in an aluminum enclosure on top of the hatch cover of one of the PMTs
(see Fig. 2.2(a)). All communications are done via WLAN. A set of communication towers
provides the link to the Central Data Acquisition System (CDAS). It is constructed using
a combination of commercial hardware and custom-made, high level software components.
Its primary role is to combine local trigger information from the SD stations and FD eyes
to form the so called ”central trigger”, to request from all detector components the data
relevant to this trigger, and finally to combine and store these data in a timely manner
forming a ”shower event”. For the SD, the system also includes configuration and control
mechanisms, means to monitor its performance and tools to access/down-load the monitoring,
control, and configuration data. Except for the triggering information, the CDAS and the
FD data acquisition systems are completely independent.

Water Cherenkov station calibration The aims of the calibration of each SD station
are: to balance the individual PMTs such that they produce (on the average) the same
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output signal in the high gain channel, to obtain the calibration constants needed to convert
the registered FADC signal into an equivalent signal produced by vertical muons, to measure
the amplification factor of the anode with respect to the last dynode and to set the trigger
levels.

The reference for the absolute calibration of a detector station is the average signal produced
by vertical muons from the cosmic ray background crossing the tank. The majority of
the muons cross the tank and stay relativistic all the way, emitting a constant amount of
Cherenkov light throughout the tank. A fraction of the muons, those with momenta below
300 MeV/c, can stop and decay inside the tank. The resulting charge distribution shows a
peak, which corresponds to 1 vertical equivalent muon (VEM), the signal unit in the water
tank [100](see Fig. 2.2(b)), which corresponds to an energy deposit of 240 MeV. The sum of
the PMTs is a measure of the total signal deposited in the tank, whereas the individual PMTs
are sensitive only to a fraction of the signal, deposited in the proximity. Thus this peak is at
≈ 1.09 VEM for the first case and 1.03±0.02 VEM for individual PMTs [101]. The values were
measured in a special setup consisting of a station equipped with two centered scintillators,
one on top and the other underneath the station, the trigger requiring coincidences within
the two scintillators [102]. By adjusting the trigger rates, the gains of the three PMTs are
matched within 6%. The measurement of the muon charge spectrum from a reference tank
allows us to deduce the charge value for the signal produced by a single, passing vertically
through the center of the tank muon, QV EM , from which the calibration is inferred for the
whole dynamic range. The average number of photoelectrons per muon collected by one PMT
is 95, which means a charge of about 48 FADC channels. The FADC signal have a range of
0-1023 channels, corresponding to an input range of 0-2V. Each FADC bin corresponds to
25 ns. The cross calibration between the anode and dynode output channels is performed by
using small shower signals in the overlap region [101]. The decay constant of the muon signal
is related to the absorption length of the light produced. This depends on various parameters
such as the Tyvek reflectivity and the purity of the water. The signal decay constant correlates
with the so called area-to-peak (A/P) ratio of the signal: A/P = QV EM/IV EM , where IV EM

is the maximum current of the muon signal. This A/P ratio is a routine monitoring quantity
that is directly available from the local station software.

SD triggering system The surface detector triggering system includes the low level trigger
received from the single station (T1,T2), the array trigger (T3) and the physical events trigger
(T4 and T5). The T2 and T3 allow to detect the cosmic rays in a wide range of energies with
an efficiency > 95% for cosmic rays with energies above 1018 eV [103].

Station triggers The local station trigger (T1) is evaluated by the PLD units and identifies
the signals in a tank that could be part of a real air shower. It requires that the stations
have to detect a coincidence between the 3 PMTs crossing the threshold value of 1.75 VEM
above the baseline or a coincidence condition in at least 2 PMTs of more than 12 FADC
bins with a signal of more than 0.2 VEM above the baseline in a window of 120 time bins.
The calibration procedure already described ensures a T1 rate of about 100 Hz. The second
station trigger (T2) is processed by the local software and requires either a threshold trigger
(Thr2) or a time over threshold trigger (ToT). The Thr2 trigger consists of a coincidence of 3
PMTs above 3.2 VEM (fast large signals produced by the particles from either high energetic
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EAS very close to the tank or by the muonic component in horizontal showers) and presents
a rate of ≈ 20 Hz. The ToT trigger consist of a coincidence of 2 PMTs with traces having at
least 13 bins above 0.2 VEM within a sliding window of 3 µs width, which corresponds to 120
bins and presents a rate of 1 Hz (small signals given by particles far from the EAS core or low
energy showers). When a tank trace satisfies both Thr2 and ToT only the latter is marked.
If a tank satisfies the T2 threshold condition then it automatically satisfies the T1 condition.
The Thr1 is usually observed for stations that are not part of an event, these stations are
triggered by accidental muons, having a total signal of around 1-2 VEM.

CDAS trigger The lowest CDAS trigger (T3) identifies time coincidences between the
signals in different tanks that could be associated with a real air shower. However, it does not
guarantee that the data are physical events because a large number of chance coincidences
in accidental tanks is expected due to low energetic showers and to single cosmic muons.
Therefore any of the following requests must be also satisfied:

(a) A 3-fold condition, which requires a coincidence within a time interval depending on the
distance of three tanks passing the Time Over Threshold trigger (ToT) condition.

(b) A 4-fold coincidence which requires the coincidence within a time window depending on
the tank distance among 4 tanks having passed any T2 condition, with 2 tanks inside 2
hexagonal crowns around a central triggered tank and a further one within 4 crowns. A
crown is formed by the stations at equal distance from the central one and are numbered
depending on this separation [104] (see Fig. 2.3(a)).

(c) A 3-fold condition which requires the coincidence of three aligned tanks passing any T2
conditions.

(d) An external condition generated by the Fluorescence Detector (FD).

The trigger time of each station having passed a T2 condition is sent to the CDAS and stored.
All stations within a sliding time window of 50 µs are searched for the above patterns. If a
pattern is found, the search stops and an event with the T3 trigger is formed. Information
of stations from the whole array with trigger times in coincidence with the central station
is also stored in the event file. Trigger times are considered to be in coincidence if they are
within a time window of (6 + 5n) µs from the central triggered station where n indicates the
crown number. Some other information as the station position, identification (id), calibration
histograms and an error code, are also stored in the data file. A large set of events is recorded
even if they are not physical for a subsequent analysis.

Physical trigger The physical trigger (T4) was designed to distinguish air showers from
random coincidences of single atmospheric muons and is the first step to select the vertical
events which can be reconstructed. The requirements are:

(a) At least 3ToT stations forming a triangle of first neighbours (Fig. 2.4(a)). This trigger
is not effective for events with large zenithal angles due to the dominance of the muonic
component in this case, which gives origin to fast and narrow signals, but selects 99% of
the events with zenithal angle less than 60◦ [103,105].
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(a) (b)

Figure 2.3: (a) The hexagon array around the central station taken into account for the T3 trigger.
(b) The T5 Configuration.

(a) (b)

Figure 2.4: (a) Two possible 3TOT compact configurations. (b) The three minimal 4C1 configurations.

(b) 4T2 triggered stations being in a configuration of one station with 3 neighbours in the
first crown as shown in Fig. 2.4(b). This is called 4C1 trigger condition.

The T4 trigger also requires compatibility in time between stations which are part of the
event. The difference in their start time has to be lower than the distance between them
divided by the speed of light, allowing for a marginal limit of 200 ns.

Quality trigger The quality trigger (T5), also called fiducial trigger, has been implemented
to exclude events that fall too close to the edge of the SD array, for which the reconstruction
of the air shower variables may not be reliable. The requirement of this trigger is the existence
of six nearest and functioning (but not necessarily triggered) neighbours, for the station with
the largest signal, at the time of the shower impact (see Fig. 2.3(b)) [106]. This trigger
becomes fundamental for ensuring an easy way to calculate the acceptance of the detector
since it would be hard to obtain taking into account events that are highly energetic but far
away from the array.

The full efficiency of the SD trigger is reached at 3 · 1018 eV for zenithal angles less than
60◦. Above this energy, the calculation of the exposure is based on the determination of the
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geometrical aperture and of the observation time. The aperture of the array is obtained as a
multiple of the aperture of the elemental hexagon cell. The number of cells is not constant
over time and is constantly monitored. The evolution of the number of trigger cells is globally
similar to the evolution of the acceptance. The expected fractional signal loss in 10 years, due
to changes in the liner reflectivity, the water quality, seasonal effects and day-night variations,
is less than 10% which gives confidence in a very good long-term performance of the SD.

Reconstruction of air showers using the Surface Detector

The geometry of the air shower, the estimator of the energy S(1000m) and the mass sensitive
parameters are obtained from the reconstruction of measured signals [107]. This is performed
after the selection of the stations which belong to the event, then, the impact point on the
ground and the arrival direction of the air shower are estimated. At this state, the shape
parameters of the lateral distribution function (LDF), which are dependent on the zenithal
angle, are initialized. Parameter S(1000m) is also initialized as the signal in the station
closest to a distance of 1000 m to the shower center. In the next step the S(1000m) and
core location fitting is performed with a maximum likelihood method and depending on
the number of candidate stations, the LDF parameters are gradually included as variable
parameters. Fixing the core position, the curvature is reconstructed and all the previous
steps are repeated iteratively because the axis of the shower might change in this last step and
therefore the whole configuration of the shower [108]. The energy of the event is determined
calibrating the S(1000m) parameter with the energy measured with the FD.

Station selection The selection of stations which belong to the event is based on algorithms
applied at the level of PMTs and stations. Bad calibrations and/or accidental timing
information can be reasons to reject the station from the reconstruction [108, 109]. On
principle, stations with an external trigger such as FD, stations with lightning like signals,
second doublets of the twins (the one with the higher id), the infill stations and stations with
bad altitude are removed. The accidental triggered stations (given by the atmospheric muons)
are defined according to their distance to the first neighbours, and to their compatibility in
timing information with a planar front derived from a so-called seed. A seed is defined as the
three stations which maximize the size of the signal. Using the Bottom Up algorithm [110], the
time delay of a station to the propagating planar front is computed. If it is between −1000 ns
and 2000 ns, the station is kept. Between −2000 ns and 4000 ns, it is flagged as ambiguous and
outside this window, it is marked as accidental. Accidental stations are considered isolated if
they have no neighbour in 1800 m or only one in 5000 m, then they are rejected.

Geometry reconstruction The simplest model of the shower front is approximated by a
plane, which is a robust estimator of the shower axis direction [107].

A shower track (see Fig. 2.5(a)) can be visualized as a point
y

x(t) moving with the speed of
light c along the straight line with (normalized) axis

⇀
a, which points towards the source, and

passing the origin at time t0,
c(t0 − t) = (

y

x(t) −
y

b)
⇀
a. (2.1)

The origin
y

b from where all the distances are measured is set as the signal-weighted barycentre
of all the stations involved in the fit. The weighted bary-time is set as the time origin, t0.
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The initial impact point on the ground is equal to
y

b and is replaced subsequently by a more
accurate estimation for the lateral distribution function fit.

The shower plane is a plane perpendicular to the shower axis, moving along with the same
speed and containing the shower forehead. To infer on the time t(

y

x) when the shower plane
is passing through some chosen point

y

x on the ground, the point has to be projected to the
shower axis,

ct(
y

x) = ct0 − (
y

x −
y

b)
⇀
a. (2.2)

Assuming that the positions of the stations are given with absolute precision and the only
deviations can be due to the time uncertainty σt of the signal start, the function to minimize
is the squares of the time differences between the measured signal start and the model time
prediction (Eq. (2.2)). Denoting the components of the shower axis

⇀
a = (u, v, w), the station

coordinates
⇀
xi = (xi, yi, zi), and σi the uncertainty of the time multiplied with the speed of

light

χ2 =
∑

i

[cti − ct0 + xiu + yiv + ziw]2

σ2
i

(2.3)

with a constraint of u2 + v2 + w2 = 1 inherited. Due to this constraint, the problem is not
linear, but an approximate solution can be obtained in the ansatz that all stations lay close
to a plane, zi ≪ xi, yi and therefore the z-component can be neglected.

The minimization can fail only in one case, when there is a linear dependence of the station
positions (as when having three stations in a line). For higher station multiplicity the
occurrence of such a situation is highly unlike.

The more realistic shower front model is based on a curved front fit, as illustrated in
Fig. 2.5(b). It is done by extending the plane fit method with a parabolic term that describes
the curvature of the shower front near the impact point

y

c, i.e. ρ ≪ Rc. Using
⇀
x =

y

x − y

c,
Eq. (2.2) can be extended to get

ct(
y

x) = ct0 −⇀
a

⇀
x +

ρ(
⇀
x)2

2Rc
, (2.4)

with perpendicular distance ρ(
⇀
x)2 = (

⇀
a × ⇀

x)2 = x2 − (
⇀
a

⇀
x)2. The first approximation to the

radius of curvature is obtained from a slightly different model in which the time propagation
of the shower front is described as an expanding sphere. The timing information can be
decoupled from any information on the impact point. The fit parameters are the radius of
curvature, Rc and the shower axis. The shower axis is a derived quantity, obtained only after
the position of the impact point is known. Therefore the curvature fit is done only after the
lateral distribution function fit, after the core is known. The solid angle differences between
the plane-fit and curvature-fit axis

⇀
a are of the order of a half degree.

An exact three-dimensional minimization of a function

χ2 =
∑

i

[c(ti − t0) − |Rc
⇀
a − ⇀

xi|]2
c2σ2

ti

(2.5)

is also attempted with accurate zi 6= 0 treatment. The differences between the approximate
estimation of Rc and this one are of the order of few 10 m, while the solid angle difference
between the axes is of the order of a few 0.1◦.
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(a) (b)

Figure 2.5: (a) Schematic of the plane front arrival. (b) Schematic of the spherical shower front
development. Taken from [108].

The intrinsic time variance is modelled estimating the number of particles (muons) n in the
signal, from the VEM station signal S, corrected for the zenithal angle dependence of the
average track length L̄,

n =
S

ℓ(θ)
, ℓ =

L̄(θ)

L̄(0)
, L̄(θ) =

π

π cos θ + 2(h/r) sin θ
(2.6)

where h and r are tank height and radius, respectively [111,112].

Lateral distribution function The surface detector samples only a part of the particles
arriving at the ground, showing a specific stage of the lateral development of the shower,
therefore a fit of the lateral distribution of the particles is necessary. The lateral dependence
of the signal measured in tanks is modeled as

S(r) = S(1000 m) fLDF(r), (2.7)

where fLDF(r) is a particular shape parameterisation normalized to S(1000 m) , the signal
at 1000 m from the shower core. As shown in Fig. 2.6(a), in the case of 1.5 km spacing of
individual tanks, the fluctuations of the particle density are minimized about 1000 m from
the shower core [113–115], therefore it is called the optimal distance ropt and depends mainly
on the spacing of the array. The uncertainty of the signal [116–118] is taken as

σS(θ) = (0.32 + 0.42 sec θ)
√

S. (2.8)

The shower impact point must be accurately defined since it is directly related to S(1000 m)
and also to the definition of the χ2 function used for obtaining the best fit of the LDF [107]. It
is defined to lie in the plane tangent to the Earth’s reference ellipsoid containing the barycentre
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Figure 2.6: (a) Reconstructed LDFs using different values of β, variations lead to the same S(r) at
ropt [123]. (b) Parameterisation of the LDF parameter β on S(1000 m) [120].

of the stations. The core location
y

c, obtained by the previous stages in the reconstruction chain
is projected along the shower axis

⇀
a towards the plane defined by the barycentre

y

b = (0, 0, 0)
and a normal

⇀
n = (0, 0, 1)

y

c′ =
y

c +
⇀
n(

y

b −y

c)
⇀
n

⇀
a

⇀
a. (2.9)

Several functional forms of the LDF have been investigated in [119, 120]. It turned out that
the best description is given by a power-law-like function and a modified Nishimura Kamata
Greisen (NKG) function [121,122]. The function used by the Pierre Auger Observatory is a
slightly modified NKG function

fLDF(r) =
( r

1000 m

)β
(

r + 700 m

1700 m

)β

, (2.10)

with the slope β fixed according to the following parameterisation

β(θ) =

{

a + b(sec θ − 1), sec θ < 1.55 (θ ≥ 50◦),

a + b(sec θ − 1) + f(sec θ − 1.55)2, sec θ ≥ 1.55.
(2.11)

with

a = 2.26 + 0.195 lg e, b = −0.98,

c = 0.37 − 0.51 sec θ + 0.30 sec2 θ, e = c (S1000)d (energy estimate),

d = 1.27 − 0.27 sec θ + 0.08 sec2 θ, f = −0.29.

(2.12)

The parameterisation evolved meanwhile adding a quadratic term in Eq. (2.11). The increase
of event statistics made a more accurate parameterisation possible [120]. A comparison to
the default values is shown in Fig. 2.6(b).
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If β is estimated to be larger than −1, it is fixed to this value. The LDF is divergent at r = 0,
because of negative value of β. The reconstruction of the LDF is done only with three free
parameters: S(1000 m) and the core location (two components, x and y). The uncertainties
on S(1000 m) from fixing β are obtained doing two additional reconstructions with β ± 3%.

A Maximum likelihood method applied to calculate the LDF parameters allows to include
zero-signal stations, small signals (i.e. small particle densities) and large signals into the fit
as well as to handle the signal of saturated stations. The first step is to define an effective
particle number. The water-Cherenkov tanks provide information about Cherenkov photons,
which are released by muons, electrons, or converted photons when passing the tanks. The
total signal measured in a tank has two major contributions: electromagnetic part and the
muonic part

S = Sµ + Se/γ (2.13)

in the assumption that a single converted photon and a single electron, equally energetic,
deposit the same mean signal in a tank. A muon is considered to deposit 1 VEM irrespective
of incoming angle, distance, etc.

The signal Se/γ is much smaller on average than Sµ and the mean conversion factor for
electrons and photons to signal is smaller than 1 VEM. The total number of particles that
have produced the signal is then estimated as

n = p(r, θ|E,A) S, (2.14)

where p(r, θ|E,A), the so-called Poisson factor, is approximated to 1 for σS(θ) ≥ 1 and
1/
√

σS(θ) otherwise. It is independent of primary energy and mass as well as core distance
and zenithal angle [116]. The signals recorded in tanks close to the trigger threshold Sthresh,
typically at larger distance from the shower core, have a large muon content, and therefore p
is taken to be 1. Assuming that the transition to half-signal electron deposit content takes
place when the signal exceeds the threshold SG

thresh, the final simplified conversion between
signal and particles is

n(r, θ|E,A) = n =

{

S(r, θ|E,A) ; S < SG
thresh

2S(r, θ|E,A) ; S ≥ SG
thresh

. (2.15)

where SG
thresh = 15 VEM corresponding to an estimated number of particles of ≈ 30.

The likelihood function, gathering the sampled information of tank i at distance ri to be
maximized is

L =
∏

i

fP(ni, µi)
∏

i

fG(ni, µi)
∏

i

Fsat(ni, µi)
∏

i

Fzero(ni, µi) (2.16)

and thus the log likelihood function gives

ℓ =
∑

i

ln fP(ni, µi) +
∑

i

ln fG(ni, µi) +
∑

i

ln Fsat(ni, µi) +
∑

i

ln Fzero(ni, µi), (2.17)

with ni the effective number of particles detected in the tank and µi the corresponding
theoretical expectation. The different contributions are as following:
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(a) Small signals, n < 30 particles, which have a Poisson distribution

ln fP(ni, µi) = ni ln µi − µi −
ni
∑

j=1

ln j. (2.18)

(b) Large signals, n > 30 particles, with Gaussian distribution

ln fG(ni, µi) = −(ni − µi)
2

2σ2
i

− ln σi − ln
√

2π. (2.19)

(c) Stations without signal. The assumed threshold to trigger a tank is nthresh ≥ 3, i.e. at
least 3 muons hitting the tank. Therefore their contribution is a sum over all Poissonian
probabilities with a predicted particle number µi and actual particle number ni ≤ nthresh

ln Fzero(nthresh, µi) = −µi + ln

(

nthresh
∑

n=0

µn
i

n!

)

. (2.20)

There might be a slight complication due to different local trigger algorithms. In a first
approximation the threshold trigger (Si ≃ 3 VEM) fulfills the nthresh condition, while a
time over threshold (ToT) has certainly a lower threshold (Si ≃ 1.7 VEM) but is unlikely
to be the trigger at larger radii.

(d) Saturated signal, for which ni represents a lower limit on the actual signal. Integrating
fG over all possible values larger than ni, an estimate of the probability detecting a signal
larger than ni is obtained as

Fsat(ni, µi) =

∫ ∞

ni

fG(n, µi) dn =
1

2
Erfc

(

ni − µi√
2σi

)

, (2.21)

where Erfc() = 1 − Erf() is the complementary error function.

The missing signal can be recovered and included in the LDF fitting procedure as it is
described in the next lines.

The signal reconstruction of one half of the showers with energies above 30 EeV is affected
by the saturated readouts from the dynodes and anodes in tanks within 600 m from the core.
There are two methods to recover the saturated signal, which are combined and employed for
estimating the true signal [108,124]. The first method uses the undershoot of the anode signal,
Ua, caused by the variation of the baseline after the signal due to the coupling capacitors
attached to the anodo circuits. Ua is linearly correlated with the total charge, Qa. The
second method considers a Moyal function, which precisely describes the signal distribution
in time. A fitting of a Moyal function to the non-saturated parts of the signals is performed:

Qa(t) = A · e
−1/2

„

t−t0
σ

+e−
t−t0

σ

«

,
(2.22)

where t is the time after the start of the signal. The parameters t0 and σ are the time of
maximum and spread in the signal, respectively and they are parameterised in non-saturated
traces in terms of reconstructed zenithal angle and core distance. Since in events with
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saturated signals the reconstruction of r and θ will be less accurate, t0 and σ are parameterised
in terms of Ua. In this manner the two methods are combined and the dynamic range at which
signal can be measured is extended from ∼ 1000 VEM to 106 VEM. The uncertainties in the
recovered signal, estimated using twin stations located at ∼ 10 m from each other, rise from
∼ 10% at 1000 VEM to ∼ 70% at 106 VEM. The recovered signal, with its uncertainty is used
in the lateral distribution fitting procedure. However, the LDF is not known in the region
close to the core, in such cases the recovered signal should be used as a lower limit until better
knowledge of the LDF is achieved. For this purpose an empirical cut on the second derivative
of the LDF normalized to S(1000 m) has been implemented: if LDF ′′(rsat)/S(1000 m) > 1
the signal is treated as a lower limit, then the first estimation of the LDF and the saturated
station distance is obtained using the standard procedure. The impact on S(1000 m) is on
average smaller than 1% at low energies and about −3% at high values of S(1000 m). The
saturation recovery method also has a positive impact improving the shower reconstruction
of golden hybrid data.

Although the recovered signals are used as part of the event reconstruction, the time spreads
of the recovered signals have not been studied and they are not used in risetime analysis in
this thesis.

Determination of the energy The calibration of the energy scale for the SD array is
determined using the correlation between the energy measured by FD and the parameter
S(1000 m) for a subset of hybrid events [125]. It must be guaranteed (using the T5 trigger
described before) for each event, that the intersection of the axis of the shower with the ground
is within the array, and that the shower is sampled sufficiently to make reliable reconstruction
of S(1000 m) and of the shower axis. From the analysis of hybrid events, using only the fall
of the signal size with distance, these criteria result in a combined trigger and reconstruction
efficiency greater than 99% for energies above ∼ 3 · 1018 eV; at ∼ 2.5 · 1018 eV it is 90%. The
sensitive area has been calculated from the total area of the active hexagons. The decrease of
S(1000 m) with zenithal angle arising from the attenuation of the shower and from geometrical
effects is quantified by applying the Constant Intensity Cut (CIC) method [126]. The surface
detector will measure different particle densities for the same energy of the primary particle,
depending on zenithal angle. In order to correct for geometrical as well as for attenuation
effects, the CIC method assumes that the flux, or the intensity (integrated flux above a certain
energy) is isotropic for all energy ranges. The attenuation curve CIC(θ) is parameterised as

CIC(θ) = 1 + a · (cos2 θ − cos2 38◦) + b · (cos2 θ − cos2 38◦)2. (2.23)

An energy estimator for each event, independent of θ, is S38◦ , the S(1000 m) that would be
measured if the air shower comes from a zenithal angle of 38◦. This angle is selected because
it is the mean value for measurements, therefore the impact of the correction function is
minimized. For a given shower, the corresponding S38◦ is obtained as

S38◦ =
S(1000 m)

CIC(θ)
. (2.24)

Using information from the fluorescence detectors the energy corresponding to each S38◦ can
be estimated almost entirely from data except for assumptions about the missing energy
(the energy carried into the ground by muons and neutrinos). The geometry of each event
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Figure 2.7: (a) Correlation between log EFD and log S38◦ . (b) Fractional difference between the
calorimetric energy, EFD, and the energy estimate of the surface detector E [127].

is determined from the times recorded by individual pixels at an FD, supplemented by the
time information from triggered station with the highest signal. For the calibration it is
also required for the FD measurements, that a reduced χ2 is less than 2.5 for the fit of the
longitudinal profile and that the depth of shower maximum is within the field of view of the
telescopes. The fraction of the signal attributed to Cherenkov light must be less than 50%.
Statistical uncertainties in S38◦ and the energy of FD (EFD)are assigned to each event. The
correlation of S38◦ with EFD is shown in Fig. 2.7(a), together with the least-squares fit of the
data to a power-law, EFD = A ·SB

38◦ . The best fit yields A = (1.51±0.06(stat)±0.12(syst))×
1017 eV and B = 1.07±0.01(stat)±0.04(syst) [127]. The parameter S38◦ grows approximately
linearly with energy, with a = 0.90 ± 0.05 and b = −1.26 ± 0.21 [127]. The energy resolution,
estimated from the fractional difference between EFD and the derived SD energy is shown
in Fig. 2.7(b). Systematic uncertainties on the energy scale due to the calibration procedure
are 7% at 1019 eV and 15% at 1020 eV, while a 22% systematic uncertainty in the absolute
energy scale comes from the FD energy measurement.

2.2 Fluorescence Detector

Each of the four FD stations contain six individual air-fluorescence light telescopes (see
Fig. 2.8(a) [128]) consisting of a spherical mirror of radius 3.4 m, the aperture opening (radius
1.1 m) with a ring-shaped corrector lens on its outer (25 cm) and a spherical pixel camera
(radius 1.7 m). The camera is equipped with 440 hexagonal PMTs (or pixels, Photonis XP-
3062), arranged in a 22 × 20 matrix. Programmable potentiometers equalize the gains of
the PMTs to guarantee an uniform time response and amplitude. The the mirror and the
camera are both placed at the center of the aperture, resulting in a fully concentric setup (see
Fig. 2.8(b)). All detectors take data independently having a field-of-view (FOV) of about
30◦ × 30◦ in azimuth and zenith. There are four layers of trigger algorithms to be passed
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for an event to qualify for readout [129]. The first level trigger (FLT) works on the level of
individual pixels and requires the sum over 10 consecutive time bins of the FADC trace to be
above the FLT threshold. The threshold is dynamically adjusted to produce a 100 Hz FLT
trigger rate per pixel. A fast hardware-implemented second level trigger (SLT) collects all
FLTs from one camera and searches for geometric patterns (see Fig. 2.9). The third level
trigger (TLT) is a software trigger which checks the time structure of an event on telescope
level. After the TLT is measured all data from the telescopes of one eye are collected by the
eyePC. On the eyePC, the combined mirror events have to pass the eye level trigger (T3),
which performs a rudimentary event reconstruction to calculate the direction and time of
impact on the ground. This information is sent to the CDAS in order to trigger data readout
of the corresponding parts of the SD array.

Calibration Data from the telescopes are calibrated using the end-to-end calibration
technique [130] in the sense that it accounts for all the components of the system from filters
to mirrors to PMTs to the readout electronics. A uniform Lambertian light emitter (drum)
is mounted directly in front of the aperture of a telescope and the response of each pixel is
measured. The calibration constant is then calculated as the ratio of the known number of
photons entering the diaphragm and the total signal recorded in the pixel. Any signal recorded
during shower observation is multiplied with this calibration constant to yield the number of
photons entering the diaphragm without needing to know the details of the telescope optics
or electronics. There is also a relative calibration procedure [131] that is runned nightly to
monitor any changes in the system. The absolute calibration of the detector has currently an
uncertainty of about 10 %.

Atmospheric monitoring The condition of the atmosphere plays an essential role since
EAS are produced and propagated through it. Therefore its monitoring has to be done
permanently. The total integrated amount of airmass, scattering and attenuation of
ultraviolet photons, as well as the detailed density profile have a significant effect on the
air shower measurement. The monitoring data are processed and stored in SQL databases to
make them easily accessible during reconstruction and simulation tasks. Following atmosphere
monitoring devices are used at the Pierre Auger Observatory.

Radio sondes are used to measure vertical temperature and density profiles [132].

Cloud cameras perform a full sky infrared imaging to detect clouds and are installed on
top of each telescope building.

LIDAR (Light Detection And Ranging) are steerable UV lasers located at each FD eye,
they scan the sky for clouds and measure aerosol backscattering [133].

CLF and XLF (Central Laser Facility and Extra Laser Facility) provide a test beam to
cross-check geometric alignment, relative timing between SD and FD [134], and aerosol.
The laser light is scattered by the air and detected by some telescopes.

HAMs (Horizontal Attenuation Monitors) measure the horizontal attenuation length at
near ground level between the FDs. Each HAM system consists of a continuous light
source, located at one FD, and a receiver located at another FD.
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(a) Schematic layout of the building with six fluorescence telescopes

(b) Schematic view of a fluorescence telescope

Figure 2.8: Setup of the fluorescence detector.

APF (Aerosol Phase Function) are designed to measure the aerosol differential scattering
cross-section. Lasers shoot horizontally in front of the FD detectors to observe scattered
laser light over a large scattering angle range. This is used to measure the Mie scattering
phase function [135] to study the contamination of the fluorescence signal by Cherenkov
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Figure 2.9: Fundamental types of pattern regarded as straight track segments.

photons.

FRAM (Fotometric Robotic Telescope for Atmospheric Monitoring) observes bright
ultraviolet stars of known magnitude. Measurements of the aerosol attenuation,
extinction coefficient and presence of clouds is obtained [136].

Reconstruction of air showers using the Fluorescence Detector

The reconstruction of air showers in the Pierre Auger Observatory is hybrid as mentioned
before. With the FD it is possible to estimate the energy, needed for the energy calibration
of the SD, and the geometry of the shower can be improved with the help of the timing from
one SD station. Both procedures are part of the event reconstruction with the FD.

Pulse finder and geometry reconstruction The ADC-counts of the fluorescence
detector are written by the data taking software for a period of 100 µs. The pulse related
to the detection of fluorescence light from an air shower is obtained from the ADC trace
by means of a signal over noise ratio (S/N). Starting from the first triggered time bin, the
boundaries of the suspected pulse are shifted to find the maximal S/N-ratio

S/N =
S(∆t)√

∆t × RMS
. (2.25)

S(∆t) is the total signal within the tested pulse length and RMS is the fluctuation of the
trace baseline. In order to reject accidental noise from pixels triggered by background light
a minimum requirement on this ratio is set and usually only pixels with pulses having a S/N
greater than 5 are kept for the subsequent analysis. The variables used in the reconstruction
are the pulse time, tmeas

i , for each pixel i, and the total integrated signal, wi. To determine all
pixels connected to the shower image and further suppress noise pixels, a pattern recognition
algorithm is used. The geometrical pointing direction,

⇀
pi together with the signals determines

the plane containing both the air shower and the track on the camera called Shower Detector
Plane (SDP)

Q2 =
∑

i

wi[
⇀
pi · ⇀

n], (2.26)

where
⇀
n denotes the searched vector normal to the SDP. The Q2 should be 0 in the ideal

case. An illustration of the SDP is given in Fig. 2.10.
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Figure 2.10: Illustration of the hybrid shower detector plane.

In order to determine the position of the shower within the SDP it is necessary to estimate
the impact parameter Rp (i.e. the position of the shower core) , the corresponding time T0

and the angle between the shower axis and the ground plane χ0. The pointing directions of
the pixels can be translated into an elevation angle χ̃i. The minimization of the following χ2

leads to the determination of the position of the shower axis inside the SDP [137]

χ2 =
∑

i

(

ti − tmeas
i

σti

)

, (2.27)

where ti is the theoretical expectation for the pulse time

ti = T0 +
Rp

c
· tan

(

1

2
· (χ0 − χ̃i)

)

(2.28)

given by geometrical considerations. The correlation between the variables is large, a slight
deviation in the elevation angle χ0 induces a big change of the other two parameters. This
degeneracy can be broken by adding timing information from a single SD station. Assuming
a plane shower front, the expected trigger time of the station is given by:

tmeas
i = T0 +

1

c

⇀

R · ⇀
n, (2.29)

where
⇀

R is the position of the station with respect to the eye and
⇀
n is the shower direction.

The station is chosen from those that are within 2 km from the intersection of the axis and
the ground. In most cases the station with the highest signal satisfies these requirements.

The analysis of laser shots [138] suggests that the directional uncertainties of the SDP
reconstruction are of an order of 0.1 degree in the case of hybrid events.
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Figure 2.11: Illustration of the light flux received at the FD. Green: Isotropic fluorescence light, red:
forward direct Cherenkov light, blue: Rayleigh-scattered Cherenkov light, and magenta: Mie-scattered
Cherenkov light [144].

Energy reconstruction The two major contributions to the light at the FD aperture are
the fluorescence light from nitrogen molecules and Cherenkov radiation photons [139–143].
Both contributions are affected by scattering and absorption in the atmosphere. The
important scattering processes are Rayleigh scattering, when photons are scattered by
particles much smaller than their wavelength, and Mie scattering, from particles larger than
about tenfold of the light wavelength.

The amount of fluorescence light is directly proportional to the energy deposited by the air
shower along its path in the atmosphere. Given the fluorescence yield Y f

i [145–147] at a point
in the atmosphere, the number of photons produced by the shower is

N f
γ(Xi) = Y f

i dE/dXi , (2.30)

where dE/dXi denotes the energy deposited at slant depth Xi.

Due to Rayleigh and Mie attenuation only a fraction of the photons, Ti, can be detected at
the aperture, as sketched in Fig. 2.11. The direct fluorescence light emitted at this slant depth
is measured at the detector at time ti. Given the light detection efficiency of ε and aperture
A, the fluorescence light flux yf

i measured at the FD is

yf
i =

AεTi

4 π r2
i

Y f
i dE/dXi , (2.31)

The number of photons emitted through Cherenkov radiation is proportional to the number
of charged particles above a certain energy cutoff, which is in a good approximation just the
number of electrons and positrons,

NC
γ (Xi) = Y C

i Ne(Xi). (2.32)
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The threshold energy with the height is included in the Cherenkov yield Y C
i [148–151]. Given

the fraction fC(βi) of photons emitted at an angle βi with respect to the shower axis, the
light flux at the FD aperture originated from direct Cherenkov light is

yCd
i =

AεTi

4 π r2
i

fC(βi) Y C
i Ne(Xi). (2.33)

Although the Cherenkov photons are emitted in a narrow cone along the particle direction,
they cover a considerable angular range with respect to the shower axis, because the charged
particles are deviated from the primary particle direction due to multiple scattering. Due
to the forward peaked nature of the Cherenkov light production, an intense Cherenkov light
beam can build up along the shower as it traverses the atmosphere (cf. Fig. 2.11(b)). If a
fraction fs(βi) of the beam is scattered towards the detector it can contribute significantly
to the total light received. In a simple one-dimensional model the number of photons in the
beam at depth Xi is just the sum of Cherenkov light produced at all previous depths Xj

attenuated on the way from Xj to Xi by Tji:

Nbeam
γ (Xi) =

i
∑

j=0

Tji Y
C
j Ne(Xj). (2.34)

In analogy to Eq. 2.33 the scattered Cherenkov light received at the detector is

yCs
i =

AεTi

4 π r2
i

fS(βi)N
beam
γ (Xi). (2.35)

The total light received at the detector at the time ti is obtained by adding the scattered and
direct light contributions:

yi = yCs
i + yCd

i + yf
i . (2.36)

To obtain the shower energy from the light at the aperture, the energy deposited in the
atmosphere has to be determined. The total energy deposit is just the sum of the energy loss
of electrons in the atmosphere, dE/dXi which is related to the number of electrons Ne(Xi)
via

dE/dXi = Ne(Xi)

∫ ∞

0
fe(E,Xi) dE/dXe(E,Xi) dE, (2.37)

where fe(E,Xi) denotes the normalized electron energy distribution and dE/dXe(E,Xi) is
the energy loss of a single electron with energy E. The electron energy spectrum fe(E,Xi) is
universal in shower age [148,150,151], i.e. it does not depend on the primary mass or energy
and since the electron energy loss depends only weakly on the local density, Eq. (2.37) is
simplified to

dE/dXi = Ne(Xi) αi. (2.38)

Here αi is the average energy deposit per electron at shower age si = 3/(1+2Xmax/Xi), where
Xmax denotes the shower maximum. It is parameterised from simulations as given in [151].

In general the FD will not be able to observe the full profile because of its limited field of
view. Since for the calculation of the Cherenkov beam and the shower energy the full profile
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(a) (b)

Figure 2.12: (a) Example of a golden stereo hybrid event (id 200923507306). (b) Corresponding
longitudinal profiles.

is required, the extrapolation to depths outside the field of view is done with a Gaisser-Hillas
function [152]. This function gives a good description of existing fluorescence data [153]

fGH(X) = dE/dXmax ·
(

X − X0

Xmax − X0

)(Xmax−X0)/λ

e(Xmax−X)/λ , (2.39)

where Xmax is the depth where the shower reaches its maximum energy deposit dE/dXmax,
X0 and λ are shape parameters.

The electromagnetic energy is given by the integral over the energy deposit profile

Eem =

∫ ∞

0
fGH(X) dX . (2.40)

Not all of the energy of a primary cosmic ray particle is going into the electromagnetic part
of an air shower. Neutrinos escape undetected and muons need long path lengths to release
their energy. This invisible energy is usually accounted for by multiplying the electromagnetic
energy Eq. (2.40) with a correction factor finv determined from shower simulations to obtain
the total primary energy

Etot = finv Eem. (2.41)

Due to the energy dependence of the meson decay probabilities in the atmosphere, and thus
the neutrino and muon production probabilities, the correction depends on the energy [154]
and is also subject to shower-to-shower fluctuations [155].
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Statistical uncertainties of the total energy The uncertainties of dE/dXmax, Xmax,
X0 and λ obtained after the fit of the profile with Eq. (2.39), reflect only the statistical
uncertainty of the light flux, σflux(Eem). Additional uncertainties arise from the uncertainties
on the core location and shower direction (σgeo) and the correction of invisible energy (σinv).
The statistical variance of the total energy is

σstat(Etot)
2 = E2

totσ(finv)2 +

(

dfinv

dEem
Eem + finv

)2
(

σgeom(Eem)2 + σflux(Eem)2
)

. (2.42)

Air showers detected with more than one eye (Fig. 2.12(a)) offer the opportunity to compare
two independent energy estimations of the same event. The energy resolution deduced from
these so-called stereo events is about 9 − 10%, independent of the availability of the Mie
calibration constants. It was shown that the energy resolution from simulated data is of
about 8% [144].

Systematic uncertainties of the energy scale The dominating source of systematic
uncertainty for the energy estimation is the absolute fluorescence yield (14% [145, 147]).
Further systematic uncertainties are related to the absolute detector calibration (9.5% [156])
and its wavelength dependence (3%). The lateral distribution Cherenkov light leads to a
5% increase of the reconstructed energy [157]. Correcting the finite spot size of the optical
systems and its halo leads to an additional 3− 5% increase. A small energy bias of about 3%
has been observed in the reconstruction of MC simulations. It is related to the uncertainty
in the constrains imposed to the Gaisser-Hillas parameters λ and X0. The correction for the
invisible energy is known to 4% [158]. Atmospheric effects like the temperature and humidity
dependence of the fluorescence yield leads to a combined altitude dependence of about 10%.
The uncertainties of the aerosol content of the atmosphere contribute 5% [135]. The total
systematic uncertainty of the energy determination can be estimated as 22% [125,127,159].

Offline software framework

The Offline software framework has been developed within the Pierre Auger Collaboration
to perform the computing tasks [107, 160, 161]. It is designed to provide all functionality
for processing data from the shower detector, including simulation and reconstruction,
implemented in C++. All parts of the detector can be asked for their detailed status and
configuration for all times the experiment was taking data. This includes configuration and
size of the surface array, the status of each individual surface station, detailed configuration
of the FD detector, uptime information for all relevant parts of the detector and all kind
of atmospheric monitoring data. The data needed to retrieve the information are stored
in XML files, if they are static and in SQL databases if they vary. The Offline framework
provides an easy-to-use interface, making possible to modify the codes and to include new
tasks, completely hiding the detailed internal mechanisms of how and where the data are
taken from. In this way the users can contribute to the development of the software. There
is also a general purpose ROOT-based [162] file format to store the results from SD, FD as
well as hybrid event reconstruction, called advanced data summary trees (ADST) [163,164]. It
allows all members of the Auger Collaboration to work with up-to-date reconstructed data,
without requiring to install, configure and run the heavy Offline framework. Only a valid
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ROOT installation is necessary. All reconstructed and simulated data used for the analysis
done in this work are in the ADST format.
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Chapter 3

Studies of mass composition of
ultra high energy cosmic rays with
the Pierre Auger observatory

As it was mentioned in Chapter 1, it is possible to infer the composition of UHECRs from the
characteristics the air-showers they produce when they interact with the atmosphere. The
capabilities of the detectors of the Pierre Auger Observatory make it possible to find several
observables which can give information about the nature of the primary cosmic ray. In this
chapter the mass composition sensitive parameters provided by the FD and by the SD are
discribed and some of the preliminary results are given.

3.1 The depth of the shower maximum, Xmax

The depth of the shower maximum, Xmax, is defined as the depth in the atmosphere at which
the maximum number of particles in the shower is reached. It is the most mass-sensitive
observable and is obtained directly from the longitudinal profiles observed by the fluorescence
telescopes. Since heavy primary particles produce a greater amount of secondary particles
than the light ones at a certain depth, Xmax is reached later for the light masses than for the
heavy ones. Thus Xmax can be used to infer the mass of the primay particle comparing its
value for different showers as shown in Fig. 3.1.

A technique to study changes in the mass composition of cosmic rays involves the rate of
change of the mean value of Xmax with the energy. This is the so called elongation rate D10,
which depends on the mean logarithmic primary mass 〈ln A〉. This definition comes from
cascade theory and the simple Heitler model already mentioned in Chapter 1, which predict
that the average depth of shower maximum is proportional to ln E [75, 166–168]

〈Xmax〉γ = Dγ ln E + cγ , (3.1)

where Dγ is the electromagnetic elongation rate which corresponds to the radiation length
Xrad in air for low energies, and cγ is the corresponding absolute depth scale. It is possible
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Figure 3.1: Comparison of longitudinal energy deposit profiles between a measurement (red squares)
with proton (black solid lines) and iron (blue dotted lines) CONEX simulations [165].

to derive a similar form for proton initiated showers

〈Xmax〉p = Dp ln E + cp, (3.2)

where Dp =
d〈Xmax〉p

d lnE
is the proton elongation rate and is related to Dγ by the elongation

rate theorem
Dp ≤ Dγ , (3.3)

which establish the assumption that in hadronic interactions the multiplicity and the
interaction length never decrease with energy [169]. Taking into account the superposition
model, in which a nucleus with mass A and energy E is equivalent to A protons with energy
E
A , the mean Xmax becomes

〈Xmax〉A = Dp ln

(

E

A

)

+ cp (3.4)

and for a mixed primary composition with average logarithmic mass 〈ln A〉 one obtains

〈Xmax〉 = Dp(ln E − 〈ln A〉) + cp. (3.5)

The above equations are still valid if the fragmentation of nuclei is also taken into account,
through the semi-superposition model [170].

That means that given the values of Dp and cp from high energy interaction models, 〈ln A〉 can
be derived from the measurement of Xmax. Since it was deduced that the absolute depth scale
cp is more uncertain than its energy dependence Dp [171], it is possible to use the observed
elongation rate to measure the change in composition with energy independently of cp by

D10 =
d〈Xmax〉

d ln E
= Dp

(

1 − d〈ln A〉
d ln E

)

. (3.6)
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3.1 The depth of the shower maximum, Xmax

Figure 3.2: The average Xmax as a function of energy (black dots) plotted with predictions of protons
and iron nuclei from four hadronic interaction models (lines) [173].

For instance, if an elongation rate D10 > Dγ is observed it follows from equations 3.3 and 3.6

that a transition to lighter elements
(

d〈ln A〉
d ln E

< 0
)

can be concluded independently from details

of hadronic interaction models [172]. Figure 3.2 [173] shows the latest results measured by the
Pierre Auger Observatory, it suggests that the composition is getting heavier at high energies
but it still remains a mixed mass composition.

Fluctuations in 〈Xmax〉 It was deduced from the semi-superposition model, that taking
into account a realistic distribution of the positions of the first interactions of nucleon showers,
there are wide fluctuations. Those fluctuations can reflect correlations among nucleons in
the same nucleus. Each interaction of nucleons can be considered as producing a separate
sub-shower. Therefore heavy nuclei will produce more interactions, resulting in smaller
fluctuations in the first part of the shower but also in the later part, than light nuclei, which
will present more fluctuations. Since the shower size and Xmax are fully determined by the
energy of the primary nucleus in this model, the fluctuations of the first interaction induce
corresponding fluctuations in Xmax [170]. Also hadronic interaction features extrapolated
from accelerator data to ultra-high energies for air shower development have shown to have
a large impact on air shower observables, more than fluctuations induced by just considering
the properties of the single first interaction [174]. Thus, fluctuations on Xmax can be also used
to distinguish between different primary masses. Figure 3.3 [173] shows fluctuations of Xmax

obtained by the Pierre Auger Observatory. It also suggests a heavy composition at highest
energies, even heavier that the one inferred from the mean Xmax. The discrepancy is smallest
for EPOS model, for which the two measurements could be consistently interpreted within
their systematic uncertainties. Given the unexpected trend to heavier composition and the

43



Chapter 3. Studies of mass composition of ultra high energy cosmic rays

Figure 3.3: Fluctuations on Xmax as a function of energy plotted with predictions of protons and iron
nuclei from four hadronic interaction models (as in Fig. 3.2) [173].

difficulty of reconciling models with FD measurements it is important to verify the results on
Xmax obtained from the FD, taking the advantage of the high statistics of the SD detectors.
In this thesis a method to infer Xmax from SD is proposed.

3.2 Ratio of muon to electromagnetic particles in the shower

Muons produced in EAS can be used to study the chemical composition of primary cosmic
rays because their multiplicity depends on the atomic number of the primary particle [143].
This dependence can be explained from the development of the shower in the atmosphere.
Muons are produced from the decay of charged pions. The rate of decay depends on its
energy, as this determines the decay length, λ, and on the density of the atmosphere, ρ, as
this determines the likelihood that the particle will interact before decaying. The probabilities
to decay and interact become equal when

Γτc =
λ

ρ
, (3.7)

where Γ is the Lorentz factor and τ is the pion lifetime [175]. Because of this competition
between interaction and decay, as the pion energy increases, higher energy pions are less likely
to decay. Energy conservation requires that, if the muon number increases, the number of
electromagnetic particles in the shower must be reduced and one would expect an increase in
the ratio of muons to electrons in showers initiated from more massive primaries. This can
be seen most simply by comparing what one expects for protons and iron primaries. In the
simple superposition model of nuclear interactions, an interacting Fe nucleus of energy E0
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breaks up and produces 56 individual EAS, each of which is generated by a nucleon of energy
E0/56. The resulting pions in each EAS will have smaller average energies than they would
for a proton induced EAS of the same energy. More of such low energy pions will decay to
muons before interacting because the decay length has decreased while the interaction length
is approximately the same. One may also expect that the pion multiplicity will be larger
for Fe initiated showers. Furthermore, since Fe nuclei interact higher in the atmosphere
than protons, Fe and p nuclei of the same energy will not produce the same number of
electromagnetic particles. In general, Fe nuclei will produce less than p nuclei.

Composition studies using data of the Pierre Auger Observatory can exploit the response
of the SD detectors to single muons. The time structure of the FADC traces shows peaks
corresponding to muonic signals, which can be well distinguished. Using this characteristic it
is possible to count the number of muons. Examples of methods to analyze the FADC traces
are the use of deconvolution algorithms to remove the electromagnetic signal [176] and the
identification of jumps in the FADC traces induced by single muons [177]. Simulations are
important to compare the obtained results.

3.3 The lateral development of the shower

Showers arriving at the ground are detected at a specific stage of lateral development. This
stage is observed in the lateral particle density as a function of the distance to the shower
axis. This density distribution is determined by the distribution of the transverse momenta of
the pions ancestors of the ground particles and the multiple scattering of the electromagnetic
component of the shower [143]. The particle density decreases with the distance to the shower
axis because the electromagnetic component becomes more attenuated at larger distances. In
the case of late interacting showers this decrease occurs faster than in the case of early
interacting showers of the same energy. In the Pierre Auger Observatory the lateral particle
density is parameterised by a lateral distribution function (LDF), which is based on the one
used by the Haverah Park experiment [178]. The advantage of that experiment for developing
an experimentally verified LDF parameterisation was its dense array of detectors in the center
of the experiment. The Haverah Park experiment used water Cherenkov detectors, as the
Pierre Auger Observatory does [120]. This LDF has an NKG-type, as described in Chapter 2

S(r) = S1000

( r

1000 m

)β
(

r + 700 m

1700 m

)β

, (3.8)

where S(r) is the particle density at a given distance r to the core, and β is the steepness
parameter. The β parameter and its fluctuations are sensitive to mass composition because
they must change with Xmax. The LDF has primarily been used to estimate the energy of
the shower from SD data, and in such analysis it was useful to keep β fixed. Furthermore the
spacing of 1500 m between the tanks on the SD makes the measurement of β on an event by
event basis difficult. But at the present there are some studies to determine the LDF using
the recently deployed infill array [179], which will allow using β for mass composition studies
in the future.
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Figure 3.4: Diagram of Rc. Left: light mass primary particle shower. Right: heavy mass primary
particle [175].

3.4 Radius of curvature Rc

We model the shower front as a sphere which is propagating along the shower development
following the geometrical paths of the muons produced at a point source at the shower axis (see
Chapter 2). That sphere has a radius of curvature Rc, which increases with the propagation
of the surface of the sphere to the ground (Fig. 3.4). Even though the spherical model is an
ideal approximation of the shower front, it can be used to reproduce the height of production
of muons in the shower, to estimate the arrival times of particles at the stations [180] and to
correct the reconstruction of the arrival direction of the showers [181]. Furthermore, since Rc

is directly related to the depth of the first interaction X0, it can be used as a parameter to
infer the mass composition. For example, an iron primary has a shorter mean free path in air
than proton or photon primaries. The initial point of the shower is higher in the atmosphere,
resulting in a shallower Xmax and a larger Rc. Photon showers develop closer to the ground
and have a smaller radius of curvature [182]. A plot with the first results using Rc as mass
composition parameter is shown in (Fig. 3.5).

3.5 Time structure of the signal of air shower particles

The time structure of the signal has been studied extensively. At the Volcano Ranch array
it was discovered that the arrival times of particles were spread out over several hundred
nanoseconds at several hundred meters from the shower axis, a spread that increased with
distance. At Haverah Park it was possible to study the time structure of the shower front on
an event by event basis, and to establish that the temporal fluctuations were correlated with
fluctuations in the lateral distribution of the water Cherenkov signal; showers with steeper
than average lateral distributions had broader time spreads than on average [50]. Since the
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3.5 Time structure of the signal of air shower particles

Figure 3.5: Rc from Monte Carlo predictions and data. Blue lines show proton, red lines show iron
(solid = QGSJET01, dashed = Sibyll 2.1),and black dashed line shows data [183].

steepness changes with Xmax as mentioned in Section 3.3, the spread in arrival times of
particles is larger for showers which develop later in the atmosphere than their shallower
counterparts.

Besides the studies mentioned in Section 3.2 the detailed time structure of the FADC traces
provide additional composition sensitive information which are defined from the FADC trace
itself. Here two of these are described: the risetime t 1

2

and parameters derived from it as the

“Time Asymmetry Parameters”, as well as 〈∆i〉 and 〈∆1000〉.

Risetime t1

2

and t1

2

(1000 m) The risetime is defined as the time for the integrated signal

in an SD tank to rise from 10% to 50% of the final value (Fig. 3.6(a)). The study of the
evolution with time of this fixed segment of the integrated signal allows the measurement of
the spread in arrival times of cascade particles. It reflects the depth of the shower development
and the ratio of muon to electromagnetic particles. Muons travel in approximately straight
lines through the atmosphere and arrive earlier than the electromagnetic particles which
scatter multiple times before they reach the ground (Fig. 3.6(b)). Therefore, the most of the
particles which compose the early signal of an SD tank are muons while the later signal is
composed of electromagnetic particles. If a shower has more muons, as for example an iron
shower, it will have a shorter risetime than a proton induced shower. Furthermore when a
primary penetrates deep in the atmosphere, as a proton does, it will have a longer risetime
than a shallow primary, like iron. The possibility to distinguish between different kinds of
shower primary particles from the risetime leads to use it as a mass composition parameter.

The first studies of t 1

2

using data of the Pierre Auger Observatory were based on the risetime
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Figure 3.6: (a) Risetime of a simulated signal [185]. (b) Particles traveling different paths.

at 1000 m from the shower core, t 1

2

(1000 m) [184], obtainded from the parameterisation

t1/2(r, θ) = 40 + a(θ)r + b(θ)r2 [ns]. (3.9)

It was expected that t 1

2

(1000 m) changed with the energy but results showed that apparently

there is no energy dependence (see Fig. 3.7). The results could also indicate that mass
composition becomes heavier with energy [183]. Nevertheless this is not completely reliable
because the flat distribution might be due to large fluctuations on the fit of the risetime as
a function of the distance to the shower core on an event-by-event basis. Furthermore biases
and deeper studies on the uncertainty of t 1

2

were not taken into account. Hence more studies

on parameterisations of risetime are necessary (see Chapter 4) as well as the use of other
parameters different from t 1

2

(1000 m) but related to the risetime. The next paragraphs are

dedicated to those new parameters.

Time Asymmetry parameters The azimuthal symmetry of particle distributions in the
shower plane, is broken when they are projected to the ground. As a consequence there is
an azimuthal asymmetry on the signal features. This is due mainly to the different amounts
of atmosphere traversed by different parts of the shower. More explanations on the origin of
the asymmetry are given in Chapter 4. The azimuthal asymmetry is observed in t 1

2

, thus,

for a given primary energy E, the asymmetry depends on zenithal angle θ of the primary
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3.5 Time structure of the signal of air shower particles

Figure 3.7: t 1

2

(1000 m) as a function of the energy compared with Monte Carlo predictions. Blue =
proton, red = iron, solid = QGSJET01, dashed = Sibyll 2.1, and black dashed line = data.

cosmic ray in such a way that its behavior versus sec θ is reminiscent of the longitudinal
development of the shower. This “longitudinal development of the asymmetry” is strongly
dependent on the nature of the primary particle. Studies based on Monte Carlo simulations
exploiting parameters related to the azimuthal asymmetry of t 1

2

have been performed [186].

The asymmetry is parameterised using the following function

t 1

2

(r, θ, ζ) = a + b cos θ [ns]. (3.10)

Parameters a and b define the “Time Asymmetry Parameters” as indicated in Fig. 3.8:
XAsymMax, the position of the maximum asymmetry, i.e. the sec θ value for which b/a is a
maximum; AsymHeight, the height at maximum, and XAsymWidth, the half width at half
maximum of the Gaussian function. The most sensitive of these parameters is XAsymMax
which can be used to discriminate between heavy and light composition (see Fig. 3.9(a)). A
correlation of XAsymMax with Xmax was found and used to infer the mass composition of
showers. Plots in Fig. 3.9 show a mixed mass composition [187].

〈∆i〉 parameter The first step to defining this parameter is obtaining the so called
benchmark, which is the average value of t 1

2

as a function of the core distance and the

zenith angle for a given reference energy (1019 eV). Then, for each selected detector in a given
event, the deviation of the measured t 1

2

from the benchmark function is calculated in units

of measurement uncertainty, and averaged for all detectors in the event

〈∆i〉 =
1

N

N
∑

i=1

ti1
2

− t 1

2

(r, θ,Eref )

σi
1/2(θ, r, S)

, (3.11)
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Figure 3.8: Parameters describing the asymmetry longitudinal development.

(a) (b)

Figure 3.9: (a) XAsymMax parameter vs logE . (b) 〈Xmax〉 vs logE inferred from XAsymMax and
Monte Carlo predictions (red lines: proton, blue lines: iron) from QGSJETII-03 (solid lines) and
Sibyll 2.1 (dashed lines).

where σi
1/2(θ, r, S) stands for the uncertainty parameterised as function of zenithal angle,

distance to the core and signal, S, of each detector. The 〈∆i〉 is found to increase with energy
as the showers become more penetrating in the atmosphere. Using hybrid events it can be
shown that 〈∆i〉 is proportional to Xmax [188]. At present the uncertainties are quite large
to be used in composition measurements on an event-by-event basis. Despite this, there is a
clear correlation between the average 〈∆i〉 and Xmax for groups of showers, which means that,
on an average basis, the XSD

max, obtained from that correlation, can be used for composition
analysis. Figure 3.10 shows the first results obtained from this parameter where a mixed mass
composition of cosmic rays at very high energies is suggested [175].

〈∆1000〉 parameter This parameter is one of the main topics of this thesis. It is defined
similarly to 〈∆i〉 but using stead one, several benchmarks and taking into account the
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3.5 Time structure of the signal of air shower particles

Figure 3.10: The average XSD
max as a function of energy plotted with predictions of protons and iron

nuclei from two hadronic interaction models. The numbers denote the events in the given bins and
the black arrows are the estimated corrections required due to loss of sensitivity to events at the lower
energies.

corresponding risetime at 1000 m from the shower core. It is going to be explained with
more detail in Chapter 5.
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Chapter 4

The Risetime t1/2, its uncertainty
and asymmetry

The Risetime t1/2 is one of the most studied mass-sensitive observables concerning the SD
as mentioned in Chapter 3. In this chapter, the most important treatments, necessary for
the correct use of this observable, are explained. These are basically the calculation of a
proper uncertainty, σt1/2

, and the correction of the azimuthal asymmetry. A brief statement
of t1/2(1000 m) as mass-sensitive observable is presented.

4.1 Uncertainty of risetime σt1/2

The use of a properly defined and understood uncertainty of t1/2 is crucial for obtaining
reliable results. It must be taken into consideration to quantify shower-to-shower fluctuations,
or to test the agreement between the observed and predicted t1/2 made by using Monte Carlo
simulations. The uncertainty, σt1/2

, is an empirical approach proposed in Ref. [189]. The
sources of σt1/2

are detector effects and data treatment. As detector effects, the digitising of
the signal by the FADCs [190] and the data sampling, can be mentioned. The reconstruction
procedures performed by the software, as well as the asymmetry correction (explained in the
next section), are additional sources of uncertainty.

Definition Stations belonging to different showers and located at different distances from
the shower core, r, register different signals, S. The muon to electromagnetic ratio of the
shower front changes with the zenith angle, θ, of the event, when it is registered at ground.
The corresponding risetime presents fluctuations which may not be directly compared to
calculate a measurement uncertainty. Therefore, only risetimes from stations within an event,
and located at the same r can be directly compared. This is equivalent to compare risetime
measurements with similar S, r and θ. Stations which present a similar r, and thus, a similar
S, are the twins and triplets sets available in the SD array. These provide doublets stations
separated by 11 m and located, 12 twins and 7 triplets, on a hexagonal grid, plus 3 more
twins located on the standard grid [191]. Nevertheless, statistics from twins and triplets are
not large enough, being necessary to devise the concept of pairs [192]. A pair consists of two
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Chapter 4. The Risetime t1/2, its uncertainty and asymmetry

Figure 4.1: Diagram of the pairs of stations considered for the uncertainty of risetime σt1/2
, taken

from [189].

stations belonging to the same event, having a difference in r of less than 100 m (see Fig. 4.1).
The difference of risetime concerning the azimuthal angle of pair stations is removed by doing
a preliminary asymmetry correction. Having two measurements of the same parameter from
multiple observations, as in the case of t1/2 from doublets, the measurement uncertainty can
be calculated using

σpair =

√
π

2
· 〈| ∆t1/2 |〉, (4.1)

where 〈| ∆t1/2 |〉 is the average absolute difference in the risetimes recorded by the doublet
stations [193]. The uncertainty introduced due to the differences in r of pairs can be taken
into account using

σ2
pair = 2 · σ2

t1/2
+ σ2

∆r, (4.2)

where σ∆r is given by

σ∆r =
∂t1/2

∂r
· 〈| ∆r |〉, (4.3)

being 〈| ∆r |〉 the average absolute difference in distance. The risetime is parameterised as a
function of r, as explained in Section 4.3, using

t1/2(r, θ) = 40 + a · r + b · r2, (4.4)

resulting σ∆r in

σ∆r = (a + 2 · b · r) · 〈| ∆r |〉, (4.5)
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4.1 Uncertainty of risetime σt1/2
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Figure 4.2: Dependence of the measurement uncertainty on the signal, as obtained from calculation of
σt1/2

. The green line shows a fit using a function of the form σt1/2
= j

S + k.

the measurement uncertainty of risetime can therefore be found from equation 4.2 obtaining

σt1/2
=

√

σ2
pair − σ2

∆r

2
, (4.6)

which is the expected value to be compared with observations.

Calculation The uncertainty is calculated for a set of pairs (from now on, this name refers
to doublets and pairs), using the equation 4.6. The stations must have a signal above 10 VEM,
not being saturated and have to be located within 2000 m of the shower core. The events
containing the pairs must have an energy above 3 EeV, with zenith angles below 60◦, the
number of candidate stations (stations used for the shower reconstruction) must be above
5. The T4 trigger, defined in Chapter 2 is also required to ensure enough statistics. These
conditions ensure that events of good quality are used for the analysis. The data are split
into 5 bins of sec θ and 8 bins of r. The measurement uncertainty of the risetime is observed
to be strongly dependent on signal size. This is expected since fluctuations in risetime will
be larger when fewer particles contribute towards the signal. Therefore, this dependence is
used to explore the behavior of σt1/2

. The dependence of σt1/2
on S for a given zenith angle

and distance range is shown in Fig. 4.2.

The function used to describe the dependence is

σt1/2
(S) =

j(r, sec θ)

S
+ k(r, sec θ). (4.7)

The measurement uncertainty is also dependent on r, as shown in Figs. 4.3(a), 4.3(b)
and 4.3(c). It is observed that for large distances, σt1/2

increases, not only due to a drop
in signal size, but due to the different composition of the shower front for different distances
at a given signal size. A dependence on zenith angle is also observed since σt1/2

decreases
as sec θ increases. It can be explained considering that showers produce shorter signals after
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Figure 4.3: σt1/2
(S) for three ranges of sec θ. The ranges of r shown correspond to the best fits obtained.

For getting representative points in each bin of σt1/2
, the condition: σt1/2

(S) ∈ [〈σt1/2
〉−2σ, 〈σt1/2

〉+2σ],
is imposed. 〈σt1/2

〉 is the mean value of the uncertainty in the bin and σ its spread. A minimum number
of five entries per bin is required.

crossing greater atmospheric depths. This leads to a smaller uncertainty for more inclined
showers.

All dependencies of σt1/2
have to be taken into account for finding an adequate fit. Using a very

first fit (the one shown in Fig. 4.3), the type of function which describes each dependence
of the parameters, is found. The dependence on r of parameter j is described by a cubic
polynomial as shown in Fig. 4.4(a). For parameter k, this dependence is described by a linear
function as shown in Fig. 4.5(a). For both parameters, the dependence on zenith angle is
described by a linear function, as shown in Figs. 4.4(b) - 4.4(d) and 4.5(b) - 4.5(c).

Thus, the final fit is obtained using the function 4.7, with

j(r, sec θ) = ja1 + ja2 · sec θ + (jb1 + jb2 · sec θ) · r2 + (jc1 + jc2 · sec θ) · r3 (4.8)

and
k(r, sec θ) = ka1 + ka2 · sec θ + (kb1 + kb2 · sec θ) · r. (4.9)
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4.1 Uncertainty of risetime σt1/2
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Figure 4.4: j parameter as a function of: (a) distance to the core, with a cubic polynomial fit and
(b)-(d) zenith angle, with a linear function, respectively.

All available points contained in plots of σt1/2
(S) for 8 ranges of r and 5 ranges of zenith

angle, are considered at the same time. The plots must fulfill the condition σt1/2
(S) ∈

[〈σt1/2
〉 − 3σ, 〈σt1/2

〉 + 3σ] for each bin, where 〈σt1/2
〉 is the mean value of the uncertainty in

the bin and σ is the spread. This condition eliminates points which are far from the mean
value and reduces the spread caused by those points. A minimum number of five entries per
bin and 40 points per plot are also required. The best fit is the one which minimizes the χ2.
The obtained values are shown in table 4.1. Figure 4.6 shows the new parameterisation for
four ranges of zenith angle. Using all available points at the same time to perform the fit,
allows to obtain an estimation of the proper curve corresponding to each range of r, even if
the statistics in that range is low.

An overall average fractional difference between each individual estimate of σt1/2
and the

parameterised value, σp
t1/2

, for all zenith angles and distance bins is shown in Fig. 4.7(a). The

distribution is centered on 0. Figure 4.7(b) shows a comparison of σt1/2
and the expected

value σp
t1/2

. The points are in good agreement within the spread.
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Figure 4.5: k parameter as a function of: (a) distance to the core, and (b)-(c) zenith angle, with linear
fits.

The average fractional differences (see Fig. 4.8) are found to be 7% as a function of S, 7%
as a function of r, 2% as a function of E and 20% as a function of sec θ. No systematic bias
with S, r and E is observed. Nevertheless, a systematic bias with sec θ is observed. This
is most likely due to uncertainties introduced by the asymmetry correction and to the lack
of statistics. For vertical showers this is due to the removal of saturated stations while for
the inclined ones the number of stations fulfilling the cuts is small. An improvement of the
statistics reduces the bias as it can be observed in Appendix A, Fig. A.3(d).
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4.1 Uncertainty of risetime σt1/2

Parameter Value Error

ja1 969.1 8.9
ja2 -492 4.8
jb1 -8.7×10−4 8.5×10−6

jb2 5.3×10−4 5.12×10−6

jc1 8.2×10−7 5.9×10−9

jc2 -4.4×10−7 3.6×10−9

ka1 -36.1 0.35
ka2 16.5 0.19
kb1 0.08 4.1×10−4

kb2 -0.03 2.6×10−4

Table 4.1: Parameters for σt1/2
with χ2/ndf = 8.08.
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4.1 Uncertainty of risetime σt1/2

Comparison with Monte Carlo simulations The results of the method are confirmed
using Monte Carlo simulations containing a ring of stations located at 1000 m from the
shower core. The pairs correspond to the stations located at ζ = ±90◦, angle where
no azimuthal asymmetry correction is necessary (see next section). Stations have to
fulfill also the conditions imposed for measurements. The simulations are performed with
CORSIKA [194, 195] (QGSJET II model) and Offline (Geant4Fast [196, 197]), having as
primary particles proton (801 showers) and iron (1223 showers), generated with isotropic
arrival directions within a zenith angle range from 0 to 65◦ and an energy distribution following
a power law with a spectral index of -3 below 3 EeV and -2.5 above this energy. Figure 4.9
shows the comparison of the expected σt1/2

for three ranges of zenith angle, with the value
obtained from measurements (about 7000 showers). The agreement between simulations and
measurements is good, validating the method within the very limited statistics. This also
validates the use of the σt1/2

obtained from measurements, by Monte Carlo simulations, as is
going to be used later in this thesis. It is interesting to see that the agreement for the first bin
of signal improves with the zenith angle. This suggests that the minimum requested signal
may be greater than 10 VEM for vertical showers, to be able to compare with simulations.
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Figure 4.9: Comparison of σt1/2
with Monte Carlo simulations. Values are of the same order and are

in good agreement for almost all signals.
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Chapter 4. The Risetime t1/2, its uncertainty and asymmetry

4.2 Asymmetry correction

As mentioned in Chapter 3, the distribution of shower particles arriving at ground presents
an azimuthal asymmetry which is observed in the risetime. Figures 4.10(a) and 4.10(b)
show the asymmetry of the risetime according to the azimuthal angle, ζ, as registered by the
SD. The azimuthal asymmetry is due to the following factors: the difference in the muon to
electromagnetic ratio during the longitudinal evolution of the shower produces an asymmetry
in particle densities and arrival times. Therefore, the risetime measured in the early part
of the shower (upstream) is larger than in the late part (downstream). Electrons which
travel long distances through the air before arriving at the ground, which is the case of the
late part of the shower, can be attenuated producing an almost pure muonic signal on the
detectors. Whereas particles arriving from the early part of the shower were not attenuated
(see Fig. 4.11). Geometrical effects related to the incidence angles of the particles on the walls
of the tanks are other factors which contribute to the asymmetry [198].

(a) Asymmetry on the ground (b) Direction of azimuthal angle

Figure 4.10: Footprint of a shower. (a) Showing its asymmetry according to the arrival direction,
colors show different t1/2 for early particles (cold color) and late particles (hot color). (b) The arrow
on the circle shows the direction of the azimuthal angle.

The asymmetry has to be corrected to allow the proper use of t1/2 for further analysis,
avoiding the effects introduced by the characteristics of the detector. It is equivalent to
translate the plane of the detector to be parallel to that of the shower front. The same set
of data used for studies on the measurement uncertainty of risetime is used in this analysis.
The parameterisation of σt1/2

(S) obtained in the last section is taken into account. In order
to observe and characterize the asymmetry for later correction, it is necessary to split the
data in ranges of r (8 bins) and θ (5 bins). Figure 4.12 shows the asymmetry for some of
the ranges of distance from the shower core and zenith angle. The asymmetry is large for
ζ = 0◦, where t1/2 corresponds to the early part of the shower, as it is expected. It is observed
that the asymmetry decreases with the zenith angle, showing the effect of the attenuation of
particles in the signal. As discussed in the last section, the risetime and in consequence the
asymmetry, is larger for stations located far from the shower core, which can be also observed.

The parametrization of the asymmetry is made with the following function:
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4.2 Asymmetry correction

Figure 4.11: Diagram of the arrival of particles. Particles in the downstream part travel longer
distances (pink line) than those in the upstream part (dark blue line).

t1/2(r, θ, ζ) = f + g · cos(ζ), (4.10)

this expression has to be subtracted from the measured value of risetime, m(r, θ, ζ)

m(r, θ, ζ) − (f + g · cos(ζ)) = 0, (4.11)

resulting in the following expression for the corrected risetime, f

f = m(r, θ, ζ) − g · cos(ζ), (4.12)

where the parameter g is the correction factor. The correction factor has to be parameterised
taking into account the dependence on r and θ. Figure 4.12(d) shows the dependence on r,
which is parameterised with a quadratic polynomial

g(r, sec θ) = ǫ(sec θ) + δ(sec θ) · r2. (4.13)

The dependence on θ of the parameters is then described with a Landau function, it is shown
in Figs. 4.13. The obtained parameters are shown in table 4.2.

After applying the correction to the data set, a suppression of the asymmetry is observed
in Figs. 4.14. The effectiveness of the parameterisation can be observed taking the extreme
value of t1/2 at 0◦ of azimuthal angle, and comparing it with the expected value of t1/2 at 90◦,
where the correction does not apply (see equation 4.12). It is found that the correction works
properly, the bias is between 1% and < 5% for distances in the range of [600 m, 1800 m], and
∼ 12% for extreme distances, as shown in Fig. 4.14(d).
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Figure 4.12: (a)-(c) Asymmetry observed in the risetime for different ranges of r and θ. (d) Correction
factor g as a function of the distance from the shower core.
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Figure 4.13: Parameters ǫ (a) and δ (b), of the correction factor, as a function of sec θ.
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4.2 Asymmetry correction

Parameter Value Error

ǫmpv 1.6 0.024
ǫσ 0.19 0.027
ǫC 59.75 4.2

δmpv 1.3 5.7×10−3

δσ 0.15 3.7×10−3

δC 3.0×10−4 6.7×10−6

Table 4.2: Values for ǫ and δ parameters as a function of sec θ. For the Landau function, mpv means
the most probable value, σ is a scale parameter and C is a constant.
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Figure 4.14: (a)-(c) Risetime corrected for the azimuthal asymmetry for different ranges of r and θ.
(d) Bias of the parameterised azimuthal asymmetry correction with respect to the expected value as a
function of the distance from the shower core.
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4.3 Parameterisation of risetime

Until now, the parameterisation of t1/2 was made based on its dependence on the distance
from the shower core with a function of the form

t1/2(r) = 40 + a · r + b · r2 [ns], (4.14)

where 40 ns was fixed based on studies with inclined showers [182, 199]. It is an artificial
lower limit for the risetime introduced to the time trace by the limitation of the bin width
of recorded FADC traces, which is 25 ns, and by the effect of the detector response, which is
convoluted with the arrival times of particles. This effect is called the Single Particle Response
(SPR) [189] and results in a lengthened time trace for each particle being detected.

Nevertheless, there are dependencies of risetime on zenith angle and energy, which must
be taken into account for the main studies presented in this thesis, being based on the
parameterisation of t1/2. The same sample of events used for the last two sections is analyzed.

The dependence of risetime on θ is shown in Fig. 4.15 and is described with the function

t1/2(r, θ) = 40 + α(θ) · r + β(θ) · r2 [ns]. (4.15)

The parameters are described by a Gaussian function (parameter α)

α = a1 · e−λ, (4.16)

where λ is

λ =
1

2

(

sec θ − a2

a3

)2

, (4.17)

and a quadratic polynomial (parameter β)

β = b1 + b2 · sec θ + b3 · sec θ2. (4.18)

These dependencies are shown in Fig. 4.16.

The dependence of risetime on the energy E is shown in Fig. 4.17 and is described with the
function

t1/2(r,E) = 40 + A(E) · r + B(E) · r2 [ns]. (4.19)

The parameteres are described with linear functions (see Fig. 4.18)

A(E) = εa1 + εa2 · log E (4.20)

and
B(E) = εb1 + εb2 · log E, (4.21)

where log refers to the decadic logarithm, log10.

The final function to fit, which is dependent of zenith angle, energy and distance from the
shower core, has the following form

t1/2(r, θ,E) = 40 + A(E) · α(θ) · r + B(E) · β(θ) · r2 [ns]. (4.22)
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Figure 4.15: Risetime as a function of distance from the shower core for five intervals in zenith angle.
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Figure 4.16: (a) Parameter α as a function of zenith angle, (b) Parameter β as a function of zenith
angle.

With the purpose of obtaining parameters which describe the behavior of a fit according to a
typical event, a simultaneous fit is performed. This fit takes into account all valid points of all
events, such that the parameters are reasonable initial values when performing individual fits,
even if a standard event-by-event fit can not be performed. However, to fix all parameters
would not allow us to perform a fit of each specific event. For this reason, the parameter εa1

(which is the most significant parameter in the function) is considered as a free parameter
which is going to describe each individual event. In order to find the optimum distance from
the shower core for which the fit works within the uncertainty, the stations belonging to the
events considered are investigated. It turns out that most of the stations are located within
the range ∼ [600 m, 1500 m] as shown in Fig. 4.19.

Events containing at least one station in this range are analyzed. The residuals of the fit,
indicate that the fit is well within a ±1σ band in the range of [600 m, 1200 m]. Figure 4.20
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Figure 4.17: Risetime as a function of distance from the shower core for five intervals in energy.
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Figure 4.18: (a) Parameter A as a function of energy, (b) Parameter B as a function of energy.
Notation log refers to the decadic logarithm, log10.

shows two of the five ranges of zenith angles, for the rest, the residuals are also within ±1σ
in the same range of r.

A comparison of different kinds of fits for a single extreme event is shown in Fig. 4.21. The
event has only two candidate stations in the considered range of distances, which results in
zero degrees of freedom left for the standard fit (Eq. 4.14). The situation is different for the
fit proposed in this section (One free parameter in the figure) since there is still one degree
of freedom left. In this case, the event seems to be described in a more realistic way being
possible that the fit almost matches the remaining candidate station, which is located below
400 m.
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Figure 4.19: Distance from the shower core of stations belonging to the sample of events used for the
analysis. The second bump in (a) is due to the removal of saturated stations, which are typically at
the early part of the shower, leaving as the first available stations those located farther.
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the fitting range, close to match the remaining station.
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4.4 t1/2(1000 m) as a mass composition parameter

As mentioned in Chapter 3, t1/2(1000 m) has been used as a mass-sensitive observable using
the function 4.14. In this section, a cross-check of the results obtained in Ref. [183], using
the function proposed in the last section (Eq. 4.22 with εa1 free) and taking into account
the measurement uncertainty, σt1/2

, is done. The events considered for this study are having
an energy above 3 EeV, zenith angles below 60 ◦, T4 trigger condition fulfilled, they may not
be lightning, and having at least one station in the range [600 m, 1200 m] of distance from
the shower core is necessary. The stations must have a signal above 15 VEM, and not be
saturated. The selection of 1000 m obeys the need to use a unique representative value of the
shower, instead of several values corresponding to each station. This simplifies the analysis
and reduces the introduced fluctuations. Furthermore, most showers present signal around
that distance from the shower core as shown in Fig. 4.19(c). This corresponds also to the
distance at which the fluctuations of the particle density are the smallest (see Chapter 2). The
value of t1/2(1000 m) is obtained by interpolation. The same procedure is made for Monte
Carlo simulations, which are used to compare with measurements. Comparisons may allow
to obtain an estimation of the mass composition.

Comparison with Monte Carlo simulations The same set of simulations already used
for σt1/2

studies is taken into account. In principle, the risetime at 1000 m from the shower
core seems to be useful for discriminating between different primary particles as shown in
Fig. 4.22. The comparison of measurements with the values obtained from Monte Carlo
simulations shows that risetimes of iron primaries are smaller than the ones corresponding
to proton as expected, even though the estimation for composition of measurements is not
clear. However, in figure 4.23(a), the values of t1/2(1000 m) as a function of zenith angle
reveal more details about the validity of the comparison. Monte Carlo data are not in the
range given by measurements, suggesting a heavy mass composition for all ranges of sec θ.
This may not be the case according to predictions and results using other mass-composition
sensitive observables as Xmax (see Chapter 3). This contradiction is explained since it was
recently found that QGSJET II model predicts less muons than recorded in SD tanks [200,
201]. Using the factors reported in Ref. [200] the muonic component of the time trace is
corrected and a new FADC trace is built, from which the risetime is recalculated. A farther
comparison is obtained in Fig. 4.23(b). Measurements are now within the limits given by
predictions. Nevertheless, this correction can not be used because it does not only depend
on the predictions of the hadronic interaction model, but also on the reliability of the model
used for calculating the electromagnetic interactions. There is also an effect observed at
sec θ > 1.5 for Monte Carlo and at sec θ > 1.7 for measurements, which indicates that for
inclined showers the value of the risetime is limited by the minimum value of 40 ns imposed
in the fit and the corresponding faster traces are not described properly. This introduces a
strong bias with respect to the zenith angle. A comparison of t1/2(1000 m) as a function of the
energy may give information about the evolution of the mass composition according to the
observed dependence on the energy. Figure 4.24 shows the corresponding plot using the set
of Monte Carlo data described in Section 6.2, for three ranges of zenith angle. Unfortunately,
no clear dependence on the energy is observed. This result might indicate that fluctuations
on the fit are still significant, as observed in the corresponding RMS(t1/2(1000 m)) plots.
Simulations and measurements have the same order, however, a dependence of t1/2(1000 m)
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Figure 4.22: Comparison of t1/2(1000 m) of measurements with Monte Carlo simulations. The
histograms are normalized to unity.
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Figure 4.23: Comparison of t1/2(1000 m) as a function of the zenith angle using a parameterisation as
the one proposed in this chapter. (a) Showing the result using Monte Carlo simulations. (b) Showing
the result using corrected Monte Carlo simulations.

with zenith angle is observed. Nevertheless, qualitatively a mass composition getting heavier
with energy is observed. Results shown in Fig. 3.7 are confirmed as shown in Fig. 4.25, and
it can be concluded that t1/2(1000 m) is not a suitable mass composition observable, when
Monte Carlo data are used as a reference.
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Figure 4.24: Left: comparison of t1/2(1000 m) as a function of the energy of measurements with Monte
Carlo simulations (QGSJET II model) for three ranges of zenith angles. The dashed line is a linear fit
to the measured data, shown also as gray circles, the error bars correspond to the spread of the data.
Right: the corresponding fluctuations of t1/2(1000 m). Values are zenith angle dependent.
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Figure 4.25: Comparison of t1/2(1000 m) as a function of the energy of measurements with Monte
Carlo simulations (QGSJET II model). The dashed line is a linear fit to the measured data, showing
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Chapter 5

∆1000 as a mass composition
sensitive parameter

The Pierre Auger Observatory offers the possibility to study the risetime in several manners
due to the huge amount of data available. To take advantage of this situation, the use of
observables based on risetime becomes crucial. One of the first parameters used for studying
mass composition with the SD is t 1

2

(1000 m). Nevertheless, as confirmed in Chapter 4, this

is not a suitable observable, leading to the necessity of finding more parameters based on
risetime. In this chapter a new parameter, ∆1000, is proposed. The correlation of this new
observable with Xmax is explored to obtain an estimation of a depth of the shower maximum
based on SD measurements, namely XSD

max. Results on evolution of this parameter with energy
as well as systematics errors are also shown.

5.1 Definition

The ∆1000 parameter is defined as the difference of the t 1

2

(1000 m) value in an event, to the

average risetime at 1000 m from the shower core as obtained from fits to the risetime as a
function of core distance for all events belonging to each one of five energy ranges. This
difference is normalized to the measurement uncertainty, σt 1

2

(S, r, θ) calculated in Chapter 4,

with S =S(1000 m). Each fit in a specific energy range represents a so called benchmark and
the corresponding value at 1000 m is called tBM

1

2

(1000 m). The proposed ∆1000 parameter is

represented as

∆1000(r, θ, S,E) =
t 1

2

(1000 m) − tBM
1

2

(1000 m)

σt 1
2

. (5.1)

A schematic representation of ∆1000 is shown in Fig. 5.1. The ∆1000 parameter as well as
t 1

2

(1000), allows to obtain a single value per event. It is defined with the goal to avoid the

fluctuations introduced by fitting t 1

2

(r) on an event-by-event basis regardless of the arrival

direction and signal position. The use of benchmarks for several energy ranges to calculate
the differences allows to avoid a bias with energy. Each benchmark provides t 1

2

(1000) for

showers having similar depth of the shower maximum, because it is calculated for a specific
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Figure 5.1: Schematic representation of ∆1000 parameter, the deviation is going to be expressed in
units of measurement uncertainty.

energy range. Since the risetime increases with Xmax, as shown with Monte Carlo simulations
in Ref. [202], the variation in risetimes is also related to changes in the atmospheric depths
of observation (this assumption was proved by studying changing weather conditions [175]).
Thus, the difference about the benchmark function, ∆1000, is expected to present also a
correlation with Xmax.

The Benchmark Function For obtaining ∆1000 it is necessary to perform a fit of the
risetime as a function of distance from the shower core for every single event, and also an
average fit for all events contained in each energy range, i.e. the benchmark function.

To get the benchmark, a function as the one proposed in equation 4.22 is used. This allows to
obtain a value for ∆1000 from events having only one station located into the range of distances
taken into account for the fit, which is [600 m, 1200 m]. The events considered for this analysis
fulfill the same conditions as for the calculation of t 1

2

(1000), mentioned in Section 4.4, but

changing the condition of T4 trigger to T5 trigger, to ensure a high qualitative reconstruction
of the shower. Events from log (E/eV) = 18.4 on, are taken into account since the SD detector
is sensitive to all showers at these energies for θ < 60◦ as shown in Fig. 5.2(a) [203]. Figure
5.2(b) shows the efficiency of the SD detector to T5 events passing the requested cuts for
θ < 60◦. The detection efficiency is ∼ 70% at 1018.4 eV and reaches ≥ 95% at 1019 eV.
The benchmarks are obtained considering five ranges of energy, from log (E/eV) = 18.4 up
to energies above log (E/eV) = 20. The notation log refers to the decadic logarithm, log10,
for all the analysis. After the selection cuts, a sample of 45951 events out of the available
data between January 2004 and November 2009 is obtained. All stations fulfilling the cuts, of
events in the same range are taken into account. Figure 5.3 shows the obtained benchmarks
for θ = 38◦.

For every event, the risetime function defined in equation 4.20 is fitted to the station data. All
parameters are fixed to the values of the benchmark except εa1, which is the free parameter
of the fit.
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Figure 5.2: (a) Detection efficiency of proton showers for T5 trigger condition [203]. (b) Efficiency
of the SD detector of T5 showers fulfilling the conditions imposed for the analysis, θ < 60◦.
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Figure 5.3: The five benchmarks obtained for the calculation of ∆1000 parameter at sec θ = 1.3.

∆1000 as a function of Zenith Angle The risetime is affected by the limitation of the
bin size of recorded data and by the SPR effect, leading to a minimum value of 40 ns, as
explained in Section 4.3. The parameter t 1

2

(1000) is also affected by this limitation as can

be observed in Fig. 4.23. Signals become faster with increasing θ, which can not be properly
reflected. The line corresponding to measured data has a different slope from ∼ sec θ = 1.7
on, which is an artefact of the experiment limitations. For simulations, the increase appears
already at ∼ sec θ = 1.5. The parameter ∆1000 is still affected, which is shown in Fig. 5.4.
Four ranges of energy are explored, each one has an offset of 0.5 units to make its behavior
more visible. The dotted line represents a constant fit to the points and the solid line shows
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Figure 5.4: ∆1000 parameter as a function of zenith angle for four ranges of energy. Solid lines are
the expected value and the dotted lines are fits of a constant to the points. The behavior is constant up
to ∼ sec θ = 1.4.

the expected value of zero, according to the definition of ∆1000. The parameter is found to
be constant with θ until ∼ sec θ = 1.4 above which a small bias and larger fluctuations for
energies between log (E/eV) = 18.9 and log (E/eV) = 19.2 can be observed. Therefore, only
showers with zenith angles up to ∼ sec θ = 1.4 are taken into account to define an appropriate
parameter which behaves constant with zenith angle as expected for calibrating with Xmax.

∆1000 as a function of Energy After applying all cuts including 1.0 ≤ sec θ ≤ 1.4, the
efficiency of the SD detector to T5 events fulfilling the conditions is shown in Fig. 5.5(a). The
T5 detection efficiency is ∼ 65% at 1018.4 eV and reaches ≥ 78% at 1018.5 eV.

According to the definition of ∆1000 (Eq. 5.1), its fluctuations should be minimized. This will
allow to measure the relation between Xmax and ∆1000 with small statistical uncertainties
during the calibration procedure. Figure 5.5(b) shows ∆1000 parameter as a function of
energy. As can be seen, the measured ∆1000 is constant over all energies as it should be by
construction. With respect to three ranges of zenith angle, the values agree with uncertainties
and no systematic trend with θ is observed as shown in Fig. 5.6(a). The shape of the different
samples can be better observed in Fig. 5.6(b), where values are having an offset of 0.5 units
for every range of zenith angle. The evolution of ∆1000 with the energy is stable for every
range of zenith angle up to log (E/eV) = 19.6.
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Figure 5.5: (a) Efficiency of the SD detector to T5 showers fulfilling the conditions imposed for the
analysis, θ < 44◦ (∼ sec θ = 1.4). (b)∆1000 parameter as a function of energy. The notation log refers
to the decadic logarithm, log10.
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Figure 5.6: (a) ∆1000 parameter as a function of energy for three ranges of zenith angle. (b) Showing
an offset of 0.5 units to allow the observation of the shape of the distributions. The line shows the fit
of a constant to the data.
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Chapter 5. ∆1000 as a mass composition sensitive parameter

5.2 Calibration of ∆1000 with Xmax

The SD detector take data with a duty cycle of 100% while in the case of the FD detector the
data taking is restricted to clear, moonless nights and moreover the atmospheric conditions
have to be monitored very precisely. This reduces the FD duty cycle to 13% [165]. The
result is a lower FD statistics in comparison with the one available from SD. Studies on
Xmax parameter may become more robust at energy bins for which FD statistics is low if SD
observables calibrated with Xmax are used. The observable to be considered for this purpose
is ∆1000. The sample of 3754 hybrid data explored in Ref. [3] for studies on depth of maximum
of extensive air showers above log (E/eV) = 18, is taken into account. After applying the SD
cuts to the sample, 1022 events are left, from which 506 events above log (E/eV) = 18.4 are
selected for the present analysis. The 〈Xmax〉 as a function of energy is shown in Fig. 5.7
for all FD events and for only the events selected for this analysis. As can be seen the two
samples are in good agreement above the energy threshold of 1018.4 eV considered here and it
can be concluded, that the additional SD requirements do not introduce a bias in the 〈Xmax〉
(and hence in the mass compositon).

A correlation of ∆1000 with the depth of the shower maximum is expected, as it was explained
in Section 5.1. This correlation is shown in Fig. 5.8(a). The correlation coefficient is r = 0.3
for all available events. The lines corresponding to the uncertainties of Xmax are given by the
measurement made with the FD detector. To minimize the correlation of the fit parameters, a
translation with respect to the mean value, 〈Xmax〉 of all data is plotted, allowing to consider
only the correlation with ∆1000 out of statistical fluctuations. The correlation is still observed
in Fig. 5.8(b), only the origin ordinate changes as it was expected.

The calibration is made with a linear function ∆1000 = a+ b · (Xmax −〈Xmax〉) which is found
to be sensitive to the energy as shown in Fig. 5.9, where the corresponding slope differs from
0.0078 cm2g−1 at log (E/eV) = 18.5 to 0.012 cm2g−1 at log (E/eV) = 18.6. Therefore, the
calibration is done for eight energy ranges and the corresponding parameters are expressed as a
function of the energy as shown in Figs. 5.10(a) and 5.10(b). The energies for which the linear
fits are performed are 18.5 < log (E/eV) < 19.6. The lower limit is chosen since the detection
of showers fulfilling the conditions imposed for the analysis is ∼ 78% at log (E/eV) = 18.5 for
sec θ < 1.4 as shown in Fig. 5.5(a), ensuring reliable results. The upper limit of the energy is
based on the distribution of ∆1000 parameter shown in Fig. 5.6(b) where values are stable up
to log (E/eV) = 19.6. Moreover, the statistics for higher energies is low according to Fig. 5.10.
∆1000 parameter as a function of Xmax is thus expressed as following:

∆1000(E,Xmax) = a(E) + b(E) · (Xmax − 〈Xmax〉), (5.2)

where 〈Xmax〉 is chosen to be the mean value of the depth of the shower maximum
corresponding to the 388 hybrid data having 18.5 < log (E/eV) < 19.6, which were taken
into account for the calibration procedure, the value is ∼ 745 gcm−2. The parameters are
found to be: a(E) = (4.74 ± 2.13) + (−0.25 ± 0.11) · log(E) and b(E) = (0.047 ± 0.051) +
(−0.002 ± 0.0027) · log(E) 1.

1The point at ∼ 1019.1 eV could be an outlier. It has been verified that excluding this point from the
calibration does change the results by only less than 10 gcm−2.
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5.2 Calibration of ∆1000 with Xmax

Identification of possible biases in the calibration It is necessary to prove that the
calibration is able to reflect the trend of Xmax with the energy, through the ∆1000 parameter.
The evaluation of residuals between ∆1000 and ∆Cal

1000, the value obtained from the calibration,
gives information about the reliability of the result. Residuals are shown in Fig. 5.11(a) as
a function of the energy, for 18.5 < log (E/eV) < 19.6. No bias with increasing energy is
observed within statistical uncertainties. Residuals do not show any bias with respect to the
zenith angle either, as it can be seen in Fig. 5.11(b). Only an overestimation in the first
bin, corresponding to few vertical showers is observed. Hence, it can be concluded that the
method is reliable for studies on Xmax.
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Figure 5.11: Comparison of ∆1000 value with the one obtained from the calibration procedure, ∆Cal
1000,

(a) as a function of the energy and (b) as a function of the zenith angle.
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Chapter 5. ∆1000 as a mass composition sensitive parameter

5.3 The SD depth of the shower maximum, XSD
max

The depth of the shower maximum obtained from SD measurements is calculated using the
inverse of equation 5.2, applied to all SD available data fulfilling the required cuts, between
January 2004 and November 2009 (45951 events). The value for events with energy above
log (E/eV) = 19.6 are obtained from extrapolation. A comparison of XSD

max with XFD
max as a

function of the energy shows a good agreement between both kind of depth of the shower
maximum on average basis, as can be seen in Fig. 5.12. It is clear that the statistics for
energies above 1019.4 eV increases about 15 times for SD measurements with respect to FD
data. This allows to get more information concerning this observable at such high energies, at
least in a conservative sense regarding the statistical uncertainties, which correspond to the
error of the mean value in each bin. Moreover, the energy range of measurements for Xmax of
the Pierre Auger Observatory has been extended to energies of 1019.9 eV, i.e., by a factor of
2.3 with respect to the range of energies reached for the FD analysis, which is of about 1019.5

eV only.

As shown in Fig. 5.13, XSD
max is stable with the zenith angle. This means that no bias with

zenith angle is introduced by obtaining XSD
max from using the inverse of the calibration. This

is expected since ∆1000 and ∆Cal
1000 do not exhibit any bias with zenith angle, as discussed in

Sections 5.1 and 5.2.

The agreement between SD and FD data can be illustrated better by comparing the fractional
residuals between the average Xmax at given energies, 〈Xmax〉(E), and the average over
all energies, 〈Xmax〉 for both kind of measurements. Fig. 5.14 shows that the residuals in
XSD

max and XFD
max, for the data used in the calibration procedure, do also agree, having a

maximum difference up to 3% within the errors bars, which confirms that XFD
max and ∆1000

evolve similarly with the energy. This conclusion is important for the use of XSD
max in mass

composition studies, as will be discussed in Chapter 6. Nevertheless, the fluctuations of Xmax,
RMS(Xmax), are not comparable as shown in Fig. 5.15. The SD sample is enriched for stations
triggered by heavy nuclei at low energies, leading to small fluctuations in that region, while
for energies above log (E/eV) = 18.5, fluctuations are larger than the corresponding to FD
data. The difference can be understood if the detector resolution, effects due to the event
selection and measurement uncertainties are taken into account. In Section 5.4 some results
on this topic are discussed.
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Figure 5.12: Comparison of the depth of the shower maximum obtained from FD and SD
measurements. The agreement between both kind of values is clear. The numbers indicate the number
of events in the corresponding energy bin.
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max

5.4 Estimation of Uncertainties in XSD
max

The uncertainties involved in the method used for obtaining XSD
max based on ∆1000 parameter

have several sources. Some of them are related with the detector itself, that means, the
contributions from SD and FD measurements. Others are related with the treatment of
risetime for defining the ∆1000 observable and all required calibration procedures. In this
section the sources of uncertainties are explored and some estimations of their contributions
are deduced.

Systematics from FD measurements The measurement of the FD energy scale, as
mentioned in Section 2.2, is having a systematic uncertainty of 22%, being dominated by the
contribution of the fluorescence yield. In the case of uncertainties corresponding to Xmax,
the sources are calibration, atmospheric conditions, reconstruction and event selection. All
contributions give rise to a systematic uncertainty of ≤ 13 gcm−2 for the average depth of the
shower maximum, 〈Xmax〉, and ≤ 6 gcm−2 for the shower to shower fluctuations, RMS(Xmax).
The measured 〈Xmax〉 and RMS values are independent of zenith angle, time periods and FD
stations [3].

Systematics from SD measurements For the SD energy scale, as mentioned in
Section 2.1, there are additional systematic uncertainties due to the calibration procedure.
They amount to 7% at 1019 eV and 15% at 1020 eV, while the difference between the energy
obtained from SD with respect to the one corresponding to FD is on average 2%, as shown
in Figure 2.7(b).

Resolution of SD measurements Uncertainties from the treatment of risetime for
obtaining ∆1000 are explored. Based on the method proposed in Ref. [175], to estimate
the measurement uncertainty for individual values of ∆1000, σ∆1000

, it is necessary to obtain
estimates of the contributions to this quantity from other sources. The expected contributions
are described as following

• Random fluctuations introduced from uncertainties in the measurements of t1/2,

tBM
1/2 (r, θ,E) and σ

t1/2

∆1000
.

• Random deviations introduced from uncertainties in the reconstruction procedure,
σrec

∆1000
.

• Intrinsic fluctuations in the shower development, σint
∆1000

.

Contributions due to the estimation of the benchmark function for different energy ranges
are not taken into account since they are < 1%, as demonstrated later in this section.
Contributions due to weather effects for this kind of study were demonstrated to be
insignificant already in [175].

The quantity σ∆1000
is estimated from the residuals between measurements of ∆1000 and

the average at a given shower energy range (ranges with E ≥ 3 EeV): ∆i
1000 − 〈∆1000〉(E).

The mean value of the residuals at a given number of triggered stations, NS, corresponds
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to σ∆1000
. It is expected that σ∆1000

will be reduced in showers with increasing NS as well
as with increasing number of stations considered for the fit of t1/2(r, θ,E), NF . Figure 5.16
shows the parameterisation of σ∆1000

in terms of NS , for events which satisfy the conditions

for obtaining σ
t1/2

∆1000
and XSD

max, with parameters A and B being a function of NF as shown in
Fig. 5.17. It follows the form

σ∆1000
= A + BNS, (5.3)

where
A = (0.48 ± 0.003) + 1.10±0.105√

NF

B = (−0.15 ± 0.011) + 0.12±0.025√
NF
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From the parameterisations it is possible to estimate some of the contributions to σ∆1000
.

Contribution σint
∆1000

can be estimated considering that fluctuations introduced by sampling
and measurement uncertainties would be insignificant if Ns and the number of stations
considered for the fit were infinite

σint
∆1000

∼ lim
NF→∞

σ∆1000
= 0.48 ± 0.003 ∼ 44.8 ± 0.3 gcm−2. (5.4)

The conversion from ∆1000 to XSD
max is made using the calibration obtained in Section 5.2 for

the average energy of all considered SD events (〈log (E/eV)〉 = 18.6). This is already a first

estimation of the fluctuations of Xmax. The contribution of σ
t1/2

∆1000
is by definition 1 and the

minimum value of σ∆1000
should come from the simplest scenario where NS = 3 (the minimum

necessary for SD event reconstruction) and NF = 1. In this case σ∆1000
= 1.49. Contributions

of σrec
∆1000

are estimated as following:

σrec
∆1000

∼
√

σ2
∆1000

− (σ
t1/2

∆1000
)2 − (σint

∆1000
)2

∼
√

(1.49)2 − 12 − (0.48)2

∼ 0.995

The fraction of each contribution to σ∆1000
is: 12

1.492 = 45% (for σ
t1/2

∆1000
), 0.9952

1.492 = 44.6% (for

σrec
∆1000

) and 0.482

1.492 = 10.4% (for σint
∆1000

). The dominant contribution to the uncertainty is
coming from the measurement of risetime and from the reconstruction procedure, a cross-
check on this issue done with simulations, is discussed in Chapter 6.

Using this parameterisation for σ∆1000
it is possible to compare the fluctuations of the ∆Cal

1000

obtained from the calibration of σ∆1000
with Xmax, from the residuals between ∆1000 and the

predicted ∆Cal
1000. Residuals are having a standard deviation of σMeas

∆1000
= 1.1 ± 0.04 (see

Fig. 5.18) while values obtained from equation 5.3, taking into account that for the same
sample, 〈NS〉 = 2.75 and 〈NF 〉 = 1.92, σ∆1000

= 1.1 ± 0.09. Both values are consistent.
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Figure 5.19: Comparison of range in σXFD
max

with fluctuations resulting from calibration of ∆1000 as a
function of the energy. Parameter “b” is the slope of the calibration of ∆1000 with Xmax

Fluctuations in XSD
max can be also estimated from the fluctuations observed in the calibration

of ∆1000 as evaluated from the slope, i.e. σ∆1000
/σXSD

max
= b. This fluctuations are compared

with the corresponding range in σXFD
max

as shown in Fig. 5.19. For 19 < log (E/eV) fluctuations
in calibration are around two times the FD fluctuations and for energies above, this value is at
least three times larger. From this informtation, an estimation of the uncertainty introduced
by extrapolation of the calibration can be obtainded for the highest energy bin, it may
introduce uncertainties of at least three times the fluctuations observed in XFD

max. According
to the corresponding σXSD

max
for the σ∆1000

, described before in this section, it is observed in

Fig. 5.20 that σXSD
max

also decreases with increasing NF . Values are going from ∼ 160 gcm−2

to ∼ 60 gcm−2. Nevertheless, since the average difference in Xmax between protons and iron
at UHEs is ∼ 80 gcm−2, the measurement uncertainty in XSD

max is too large to be used in
composition measurements on an event-by-event basis.

Fluctuations in σXSD
max

shown in Fig. 5.20 can be also interpreted as the XSD
max resolution, which

is having a minimum value of ∼ 60 gcm−2. This is large compared with the resolution for
XFD

max, which is at the level of ∼ 20 gcm−2 [3]. This difference explains the separation between
RMS(XSD

max) and RMS(XFD
max) observed in Fig. 5.15. Using the function obtained from the

relation between σXSD
max

and NF , the resolution of the SD detector as a function of the energy

can be seen in Fig. 5.21. The mean value is around 100 gcm−2 at high energies. Another
estimation of the SD resolution can be done observing the fluctuations of XSD

max with respect
to the corresponding FD data. The plot in Fig. 5.22 shows these fluctuations as a function of
energy, the mean value is about 100 gcm−2, which is in good agreement with the estimation
obtained in Fig. 5.21.
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Figure 5.22: Estimation of the resolution of the SD detector for XSD
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Chapter 5. ∆1000 as a mass composition sensitive parameter

The event selection in SD is such that several events with particular non standard conditions
passed the cuts contributing to the large fluctuations observed. Some examples are presented
in the next lines. Since it is possible to use only one station to perform the fit of risetime as
a function of the distance from the shower core, it can be the case that this unique station is
an outlier of the event, resulting in a big value of ∆1000. Figure 5.23 shows an example of this
kind of events, the risetimes are non corrected for azimuthal asymmetry and the error bars
are the measurement uncertainties. The unique station fulfilling the cuts is an outlier. The
FADC traces for two of the PMTs contain contributions from incidental particles, resulting
in an enormous measurement error. The corresponding ∆1000 = 20 is also big. Figure 5.24
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Figure 5.23: Event containing one station fulfilling the cuts, which is an outlier risetime (id
200717103531). The error bars correspond to the measurement uncertainty.

shows another example of events where the uncertainty of t1/2 of some of the stations is huge,
it corresponds to the outlier of the plots in Fig. 5.6, which has a ∆1000 = 11.4. There are
two stations fulfilling the conditions between 600 m and 1200 m but one of these has a big
t1/2 produced by accidental particles in one of its PMTs as it can be seen in the FADC trace.
Since there is no cut on the measurement uncertainty of t1/2, the event was not rejected.
The fit of risetime as a distance from the shower core takes into account the parameterisation
σt1/2

but not the measurement uncertainty, thus, the event was properly processed. Another
special event is shown in Fig. 5.25, values of risetime are all too large, corresponding to the
case of lightning according to the VEM traces. The surrounding stations are reported as
lightning as well. Nevertheless, the event passed the cut against lightning stations and was
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max

still reconstructed as a T5.

Fluctuations of ∆1000 still need to be properly understood finding the ideal cuts for event
selection such as the cuts needed on the measurement uncertainty of risetime, which has been
observed in the exposed examples. This may allow an accurate deduction of the resolution
of the SD detector and thus, to correct the RMS(Xmax) for estimating the shower to shower
fluctuations.
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Figure 5.24: Event containing one outlier risetime passing the analysis cuts (id 200823705096).
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Figure 5.25: Event containing stations type lightning but passing the analysis cuts (id 200902604794).
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Chapter 5. ∆1000 as a mass composition sensitive parameter

Systematics from benchmarks The use of several benchmarks for five ranges of energy
could introduce bias in the transition region from one to the other range. To explore this
possibility, the parameters of the five benchmarks are expressed as function of energy. Using
this continuous parameterisation, XSD

max(BM), the analysis is repeated and the results are
compared to the non-parametric approach.

The best parameterisation found agrees well with the original mean values of XSD
max as shown

in Fig. 5.26. The fractional difference between both kind of quantities is in average less than
1%. The difference can be up to ∼ 6% for high energies, where the statistics is low, but
it is within the statistical uncertainties. It can be concluded that no significant systematic
uncertainty is introduced by using several ranges for calculating the benchmark functions.
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Figure 5.26: Comparison of XSD
max obtained from several fixed benchmarks, with the values obtained by

using the parameterisation of the benchmarks as a function of the energy.
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max

Systematics from Calibration of ∆1000 with XFD
max Uncertainties introduced by the

calibration procedure of ∆1000 with XFD
max are estimated using the mean value of ∆Cal

1000, the
value obtained from equation 5.2. The same events used for obtaining the calibration are
considered. Seven bins of Xmax − 〈Xmax〉 are taken into account for obtaining the mean
value and the corresponding statistical error in ∆Cal

1000. The statistical uncertainties from the
calibration are obtained by fluctuating each one of the seven points in Fig. 5.27 within a
Gaussian centered on the average ∆Cal

1000 value as suggested in Ref. [175, 187]. The standard
deviation is given by the statistical error of the point. The procedure is repeated 1000 times.
By each fluctuation a linear fit over all points is made and some values of Xmax−〈Xmax〉 along
the whole range are evaluated. The corresponding ∆Cal

1000 are stored in histograms which give
the information about minimum and maximum values necessary to estimate an area bounding
the fitted lines. The calculation is made for two areas, the 1σ area (continuous line in the plot)
corresponds to the Gaussian with one standard deviation order and the 2σ area corresponds
to two standard deviation order (dashed line in the plot).

A comparison of XFD
max with XSD

max showing the uncertainties introduced by the calibration
procedure (1σ area) is shown in Fig. 5.28. Both samples are in good agreement within
statistical and systematic uncertainties. Thus, it can be concluded that the calibration of
∆1000 with XFD

max is a reliable method on average basis within statistical and systematic
uncertainties. Deductions about mass composition using the ∆1000 method are made in the
next chapter.
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Figure 5.27: ∆Cal
1000 as a function of Xmax − 〈Xmax〉. The error bars show the spread of data and the

lines show the areas 1σ and 2σ obtained from fluctuations over the statistical errors of each point.
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Chapter 6

Estimation of the mass composition
of ultra high energy cosmic rays
using ∆1000

The parameter ∆1000 has been used to estimate the depth of the shower maximum from
measurements of the SD detector, XSD

max. In this chapter this method is used to determine the
mass composition of Cosmic Rays using some of the techniques which include the treatment
of Xmax. The rate of change of the mean XSD

max with the energy is compared with results
obtained from FD measurements. This technique is also used with Monte Carlo SD data and
compared with results from Monte Carlo FD data. The mean logarithmic mass calculation
for estimating the mass composition, based on Monte Carlo data is also explored. Discussions
about the ∆1000 parameter and depth of the shower maximum of some of the events which
have been studied for finding correlations with AGNs by the Auger experiment are presented
as well.

6.1 Determination of the mass composition of cosmic rays
using the Elongation Rate, D10

Comparison with simulated air showers The rate of change of 〈Xmax〉 with the energy
is used for studying changes in the mass composition of cosmic rays as explained in Chapter 3.
In Fig. 6.1 the mean depth of the shower maximum obtained from SD measurements using
the method ∆1000 is compared with air shower simulations for different hadronic interaction
models [173,205–208]. The gray lines in every point correspond to the uncertainty introduced
by the calibration of ∆1000 with Xmax. It can be seen that there are considerable differences
for different hadronic interaction models. These differences are not totally exhaustive, since
the hadronic interaction models do not cover the full range of possible extrapolations of low
energy accelerator data. Nevertheless, assuming that the models provide a realistic description
of hadronic interactions at ultra high energies, the comparison with SD data leads to conclude
that the mass increases gradually with energy for 18.5 ≥ log (E/eV) (log refers to the decadic
logarithm, log10). As seen in Fig. 5.13, there is no systematic trend with zenith angle. The
corresponding elongation rate is calculated above the energy at which the SD reaches the full
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Figure 6.1: Comparison of the rate of change of 〈XSD
max〉 with the energy, with different hadronic

interaction models. The numbers attached to the last two bins show the number of events at the given
energy.

efficiency, 18.4 ≈ log (E/eV), as mentioned in Chapter 2. Values of D10 for the whole sample
and for three different ranges of zenith angle do agree within the uncertainties as shown in
Fig. 6.2. For the whole sample, D10 = 27 ± 3 gcm−2decade−1, which is comparable with
the values corresponding to the same range of energies for QGSJET01, Sibyll2.1, EPOS1.99
and QGSJET II models [209], as shown in table 6.1. Values of the models are calculated by
averaging the predictions for pure iron and pure proton in each case. The values corresponding
to pure composition are higher than the one from measurements, which can be interpreted as
an increase of the average mass with energy.

D10 (gcm−2decade−1)

SD data FD data QGSJET01 Sibyll2.1 EPOS1.99 QGSJET II

27 ± 3 24 ± 3 52 ± 0.13 58 ± 0.01 62 ± 0.08 47 ± 0.2

Table 6.1: Values of the elongation rate for SD and FD data and for different models.

Comparison with FD measurements The mean depth of the shower maximum
obtained from SD measurements, using the method ∆1000, is compared with the latest
FD measurements shown in Ref. [3], and with air shower simulations in Fig. 6.3. There
is agreement between SD and FD measurements as shown before. The elongation rate
of FD events for energies above log (E/eV) = 18.24, according to Ref. [3] is D10 =
24 ± 3 gcm−2decade−1, which is quite close to the value obtained for SD measurements, of
D10 = 27 ± 3 gcm−2, for energies above log (E/eV) = 18.4 calculated in the last paragraph.
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6.1 Mass composition using the Elongation Rate, D10
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Figure 6.2: 〈XSD
max〉 as a function of the energy for three ranges of zenith angle. The corresponding

elongation rate for energies above log (E/eV) = 18.4 are shown.

The similar evolution with energy of both kind of measurements is supported by the fractional
residuals shown in Fig. 5.14. The conclusion is, as mentioned before, that there is a gradual
increase of the average mass of cosmic rays with the energy.

Nevertheless, no conclusions about the change of D10 below and above log (E/eV) = 18.24
observed in FD, can be drawn because the SD detector is not fully efficient for those low
energies and the corresponding extrapolation of the calibration may not be reliable.
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Figure 6.3: Comparison of the rate of change of 〈XSD
max〉 with 〈XFD

max〉 and with different hadronic
interaction models, with energy.
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6.2 A Monte Carlo Study of ∆1000

6.2 A Monte Carlo Study of ∆1000

Given that the XSD
max obtained with the method proposed in this work is comparable with FD

results on average basis, the use of Monte Carlo air showers to cross-check its aplicability is
preserved after inaccuracies in the estimation of risetime (and thus, of ∆1000) due to effects
present in simulations as the shower thinning [210] and the lack of predicted muons in certain
models [200,201]. Comparisons of calculated XSD

max with the XMC
max set in the simulated shower

may give information about the accuracy of the method. Contributions to the systematic
uncertainty due to the reconstruction procedure of the shower can be also estimated.

The Monte Carlo framework used for this study is CORSIKA (COsmic Ray SImulations for
KAscade, version 6735) [194,195]. It is a four-dimensional particle transport code that handles
interactions and decays of particles in the atmosphere. Proton and iron were considered
as primary particles, generated with fixed zenith angles and fixed energies as shown in
Appendix B. The number of available showers after application of the required cuts for
calculation of ∆1000 is shown in tables 6.2 and 6.3. The description of hadronic interactions

Energy (eV)

Primary No.Ev 1 · 1018 3.16 · 1018 1 · 1019 3.16 · 1019 1 · 1020 3.16 · 1020

SD

proton 4003 70 325 2773 230 383 222
iron 4156 106 397 2796 235 402 220

Hybrids (out of SD)

proton 2383 3 99 1739 146 242 154
iron 2495 1 104 1816 162 257 155

Table 6.2: Number of available simulated air showers after application of cuts required for ∆1000

calculaton according to the energy.

sec θ

Primary 1. 1.1 1.26 1.3 1.4 1.5 1.7 1.9

SD

proton 132 241 279 265 2368 261 242 215
iron 168 275 282 297 2368 271 258 237

Hybrids (out of SD)

proton 0 0 160 163 1558 186 175 141
iron 0 0 164 175 1626 181 175 174

Table 6.3: Number of available simulated air showers after application of cuts required for ∆1000

calculaton according to the zenith angle.

is divided in two parts, low and high energetic hadron interactions with a transition energy
of 200 GeV. The high energy hadronic simulations are simulated with the QGSJET II
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Chapter 6. Estimation of the mass composition of UHECR using ∆1000

model [206, 211] and at low energies the FLUKA model [212] is used. The electromagnetic
component is described by EGS4 [213] implemented in CORSIKA. The detector simulation
is included in the Offline framework as it is for data reconstruction [214]. The FD part of
the simulation is obtained from ray-tracing of generated photons through the telescope optics
to the camera response to generate a trigger. The background light is calculated from the
recorded variance of the ADC traces after substracting the electronic noise [215]. The SD part
is done using the GEANT4 [196, 197] software package, which provides an abundant set of
physics processes to handle interactions of particles with matter across a wide energy range.

Systematics from measurement Before using simulations to verify the method on
average basis, it is still necessary to explore how the uncertainties due to the measurement are
reproduced in Monte Carlo air showers. Four benchmarks for calculating ∆1000, according to
the fixed energies given for the Monte Carlo procedure are used. As discussed in Chapter 5, the
measurement uncertainty is given by σ∆1000

. The contributions to this quantity are coming

from σ
t1/2

∆1000
, σrec

∆1000
and σint

∆1000
, random fluctuations introduced from uncertainties in the

measurements of t1/2 and tBM
1/2 (r, θ,E), random deviations introduced from uncertainties in the

reconstruction procedure and intrinsic fluctuations in the shower development, respectively.
In order to cross-check the fraction of each contribution, these are calculated using simulated
iron and proton showers. The contributions are in good agreement with the values obtained
from measurements as shown in Fig. 6.4 and in the Table 6.4. The contribution coming from
the measurement of risetime and from the reconstruction procedure are dominating.
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Figure 6.4: σ∆1000
as a function of Ns for simulated showers.

A cross-check with simulations is also done for the fluctuations σXSD
max

. Figure 6.5 shows that

fluctuations in proton showers are decreasing from ∼ 110 gcm−2 to ∼ 60 gcm−2. In the case
of iron showers, fluctuations are in the range from ∼ 90 gcm−2 to ∼ 40 gcm−2, lower than for
proton and measured showers, which reflects the difference in the fluctuations introduced in
simulations by the superposition model (See Chapter 3). It leads to expect less fluctuations
of ∆1000 for the case of iron.
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6.2 A Monte Carlo Study of ∆1000

σint
∆1000

σrec
∆1000

σ
t1/2

∆1000

Cont. Frac. Cont. Frac. Cont. Frac.

Measurements 0.48 10.4% 0.995 44.6% 1 45%
proton 0.38 9% 0.73 32% 1 59%

iron 0.4 10% 0.66 27% 1 63%

Table 6.4: Estimated contribution to the uncertainty in ∆1000 from the three considered sources.
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Figure 6.5: Uncertainties of XSD
max for data with energies between log (E/eV) = 18.5 and log (E/eV) =

19.6, and 1.0 ≤ sec θ ≤ 1.4, arising from measurement of ∆1000, compared with the fluctuations
obtained from simulated events.

Use of Monte Carlo Simulations for estimating systematic errors Values for ∆1000

for simulations of proton and iron showers were obtained. The four benchmarks were
calculated according to the Monte Carlo energy scale, BM(EMC). The corresponding XSD

max

was calculated following the same procedure as for measurements, for showers having energies
above log (E/eV) = 18.5. Figure 6.6 shows the lines obtained for XSD

max, the lines are fitted
to five mean values of XSD

max corresponding to each one of five energy ranges (for proton
χ2/ndf = 1.15 and for iron χ2/ndf = 3.4). The comparison with the lines of QGSJET II
shows that results of both masses are close to the model prediction. In the case of proton,
the difference with the model is up to ∼ 20 gcm−2. In the case of iron, the line is having
almost the same behavior as the model. For testing the self-consistency of the method, the
benchmarks corresponding to iron and proton are interchanged and the calibration for proton
and iron showers is applied to the other sample of mass respectively. The behavior of the
obtained lines (for proton χ2/ndf = 3.4 and for iron χ2/ndf = 2.15) is again similar to the
one of the model in both cases but an offset of around 10 gcm−2 is observed.

The corresponding relative errors, calculated event-by-event with respect to the MC value of
Xmax, XMC

max are shown in figure 6.7. Errors are around 3% for the proton sample and for
the iron one the errors are less than 2%. It means that the average Xmax can be described
with an error of ∼ 3.6% (adding the errors in quadrature) by using the ∆1000 method. For
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Figure 6.6: Comparison of XSD
max obtained from simulated showers with XFD

max from the QGSJET II
model as a function of the Monte Carlo Energy.

the values obtained by interchanging the benchmarks, values are up to 3% for energies above
log (E/eV) = 19 and up to 6% for lower energies for the proton sample. For the iron sample,
errors are up to 6% for energies above log (E/eV) = 19 and around 2% for lower energies.
These values show that both kind of masses can be described by any of the both calibrations
with an error of ∼ 6%, regarding the right use of the benchmarks, demonstrating the self-
consistency of the method.

Since the estimation of errors in XSD
max is done by using the Monte Carlo energy, EMC, as well

as in the calculation of the benchmarks, systematics introduced by the SD energy calibration
are not taken into account. Thus, the main sources of uncertainty left and described by
this estimation are those corresponding to the reconstruction procedure, the calculation of
risetime and its uncertainty, the calculation of ∆1000 and the intrinsic shower fluctuations, as
well as the uncertainties from the calibration procedure of ∆1000 with XFD

max. The estimation
of the uncertainty from these sources is found to be ∼ 3.6%, regarding the assumption that
the model provides a realistic description of hadronic interactions at ultra high energies.

The shower to shower fluctuations, RMS(XSD
max), can be calculated for iron and proton showers

and compared with the results obtained from measurements. Fluctuations related to the
reconstruction procedure as well as those related to the calibration of ∆1000 with XFD

max and the
resolution of the detector, are present in both kind of samples. The measurements are close to
the proton sample according to Fig. 6.8(a) but no conclusion can be drawn since fluctuations
in measurements still need to be properly understood as discussed in Section 5.4. Studies
about how this fluctuations are reproduced in simulations are also necessary. Nevertheless,
the difference between proton and iron showers is around 40 gcm−2, which can be observed in
Fig. 6.8(b) from a linear fit to the points shown in Fig. 6.8(a). This difference is comparable
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Figure 6.7: Relative error of XSD
max with respect to XMC

max as a function of log(EMC).

with the one founded for RMS(XFD
max) shown in Fig. 3.3.

The ∆1000 method has been tested with Monte Carlo showers, its robustness to reproduce
Xmax on average basis has been proved leading to the same conclusion obtained from
comparisons with XFD

max, namely a gradual increase of the mass with the energy. However,
the fluctuations obtained from simulations do not provide reliable information to draw any
conclusion about the mass composition of the measured showers yet since fluctuations in
measurements still need to be studied.
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Figure 6.8: Comparison of shower to shower fluctuations for XSD
max from simulations and

measurements.
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6.3 Determination of the mass composition of cosmic rays using 〈ln A〉

6.3 Determination of the mass composition of cosmic rays
using the mean logarithmic mass, 〈ln A〉

As described in Section 1.6, the mean logarithmic mass is proportional to the average depth
of the shower maximum of protons and iron nuclei, and to the measured one with the relation

〈ln A〉 = ln AFe ·
Xmeas

max − Xp
max

XFe
max − Xp

max
. (6.1)

Using the XSD
max obtained from the ∆1000 method applied to measurements and the

corresponding values of XFe
max and Xp

max from different hadronic interaction models, several
estimations of the mean logarithmic mass can be done.

Figure 6.9 shows 〈ln A〉 of the SD data displayed in Fig. 6.1 with reference to three hadronic
interaction models. The linear fits show that the estimated values of the mass are increasing

at a constant rate of d lnA
d log E

= 1.24 ± 0.15 decade−1, d lnA
d log E

= 0.89 ± 0.19 decade−1 and

d lnA
d log E

= 1.12 ± 0.16 decade−1 when the EPOS, QGSJET II and SIBYLL models are used

respectively. The absolute values of the logarithmic mass are intermediate between protons
(ln A = 0) and iron (ln A ≃ 4). A comparison of this values with hybrid events is shown
in Appendix C. Applying the ∆1000 method it is possible to obtain values for Xp

max and
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Figure 6.9: The mean logarithmic mass of UHECR measured with the SD detector, using the XSD
max

parameter with reference to three different hadronic interaction models.

XFe
max as shown in Section 6.2. The values obtained for the QGSJET II model (Fig. 6.6) are

used for estimating the mean logarithmic mass for the SD sample. A comparison with the
results obtained from three choices for Xp

max and XFe
max is shown in Fig. 6.10. The reference

Xp
max and XFe

max is either taken from the model itself or from the reconstructed XSD
max for

pure proton and iron simulation. The third option is given by the interchanged benchmarks.
The mass increases in all three cases. The increase in the case of interchanged benchmarks
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( d ln A
d log E

= 0.71 ± 0.19 decade−1) is similar to the one presented for the model itself. In

the case of the results obtained with reference to the ∆1000 method, the increase is faster

( d ln A
d log E

= 1.35 ± 0.19 decade−1). The apparent difference in 〈ln A〉 for the three cases are an

estimate of the systematic uncertainty of the whole calibration procedure.
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Figure 6.10: The mean logarithmic mass based on XSD
max parameter with reference to the QGSJET II

hadronic model and with reference to the values obtained applying the ∆1000 method to Monte Carlo
air showers (lines shown in Fig. 6.6).
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6.4 Analysis on AGN correlated events

The Pierre Auger Collaboration has reported a correlation between the arrival direction of
cosmic rays with energies above 57 EeV and the position of active galactic nuclei (AGNs)
lying within ∼ 75 Mpc. This result demonstrates the anisotropy of the arrival directions of
the highest energy cosmic rays and their extragalactic origin. The most of the cosmic rays
reaching Earth in that energy range are, thus, protons from nearby astrophysical sources [4].
Figure 6.11 shows an Aitoff projection of the celestial sphere in galactic coordinates with
circles of radius 3.1◦ centered at the arrival directions of the 27 cosmic rays with highest
energy explored. The positions of the 472 AGN within ∼ 75 Mpc derived from the 12th
edition of the Veron-Cetty catalog are indicated by red asterisks. The dashed line is the
super-galactic plane. The shading indicates the relative exposure of the sky to the Auger
Observatory.

Figure 6.11: Aitoff projection of the 27 events with energy above ∼ 57 EeV used in the search for
correlation with AGN by the Auger Collaboration [4].

Studies on Xmax show, however, an increase of the mass with the energy, as it was also
observed from the estimations of XSD

max. This would indicate the intervention of magnetic fields
much weaker than current estimates, or that the magnetic fields may be structured in such
a way as to preserve correlation with the distribution of nearby matter even if the observed
arrival directions are far from the positions of the actual sources. Further measurements
of the anisotropy of the arrival directions of UHECRs, complemented with studies on mass
composition should provide more information about the nature of their sites of acceleration,
as well as about properties of galactic and intergalactic magnetic fields. With this motivation,
the ∆1000 is used to obtain information on the primary mass of the AGN events.

A sample of events detected until March 2009, which has been used by the Auger Collaboration
for updating the studies on the correlation of the highest energy cosmic rays with nearby
extragalactic matter are explored. Only 39 of those events fulfill the conditions for obtaining
∆1000.

The values of XSD
max are shown in Fig. 6.12 as a function of the energy in comparison with the

models QGSJET01, SIBYLL 2.1, EPOS 1.99 and QGSJETII. The uncertainties of the points
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Figure 6.12: XSD
max of the 39 high energy cosmic rays explored by the Pierre Auger Collaboration

for studies on correlation with nearby extragalactic matter, the errors are too large to draw a firm
conclusion on an event-by-event basis.
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Figure 6.13: Comparisons of ∆1000 values for correlated and non correlated events.

are those obtained from the calibration of ∆1000 with XFD
max. The black and green dashed

lines show the average value for correlated (802 ± 14 gcm−2) and non correlated (782 ± 17
gcm−2) events respectively. The difference is not large and is within the errors, moreover, the
calculation of the corresponding XSD

max is conservative since the uncertainties are such that it
is not possible to draw a firm conclusion on an event-by-event basis analysis.

Furthermore, there are no significant differences between the ∆1000 values of both samples as
observed in Fig. 6.13(a). But the corresponding ∆1000 distributions may give more information
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6.4 Analysis on AGN correlated events

about the difference with respect to the mass composition of the events. As shown in
Fig. 6.13(b), the spread of the correlated events is slightly smaller than that for the non
correlated ones, but the difference in the estimated RMS values is only 1.6σ. Thus, it can be
concluded that there is no significant difference between both samples of events.

113



114



Summary and Conclusions

In the present work, the mass composition of Ultra High Energy Cosmic Ray has been
investigated. The capacity of the Pierre Auger Observatory as hybrid detector has provided
the opportunity to define a mass-sensitive parameter based on the time traces of the surface
detector and at the same time, the possibility of calibrating it with the depth of the shower
maximum measured by the fluorescence detector. The estimations of the mass composition
derived from the elongation rate, as obtained from the surface detector data, offer results
supported by high statistics. The results are in good agreement with the ones obtained from
the fluorescence detector, concluding a gradual increase of the average mass of cosmic rays
with the energy. The main procedures performed to achieve that result are described in the
following paragraphs.

Treatment of risetime The risetime, t1/2, is the feature of the time trace from which
the new mass-sensitive observable is defined. For obtaining a well described risetime, some
treatments were needed.

• Definition and parameterisation of the risetime uncertainty, σt1/2, based on the
characteristics of the surface detector and data treatment. The parameterisation has
at most a 7% error with respect to the value obtained from the data. The result was
confirmed with Monte Carlo showers validating the use of the parameterisation for
simulations.

• Correction of the azimuthal asymmetry observed in t1/2 with a bias of less than 5%
for distances between 600 m and 1800 m from the shower core and less than ∼ 12% for
larger distances.

• Parameterisation of risetime as a function of the distance from the shower core, taking
into account the existing dependence of t1/2 on the zenith angle and on the energy of
the shower. An average parameterisation was obtained for all valid points of all events,
giving reasonable initial values when performing individual fits, even if a standard event-
by-event one can not be performed ensuring the increase of statistics.

• Studies on the parameter t1/2(1000 m) as mass composition sensitive parameter. No
clear dependency on the energy is observed, a bias with respect to the zenith angle for
inclined showers is observed and comparisons with Monte Carlo showers are not reliable.
This leads to conclude that t1/2(1000 m) is not a suitable mass composition sensitive
observable, when Monte Carlo Data are used as reference.

115



Definition and treatment of the parameter ∆1000 The parameter ∆1000 is proposed
as an alternative for exploiting the mass sensitivity of the risetime of FADC traces, since the
direct use of t1/2 parameter has been demonstrated to be limited. A method for finding its
correlation with Xmax has been developed.

• The observable ∆1000 measures the difference of t1/2 at 1000 m between two fits to
the risetime as a function of the distance from the shower core, normalized to the
measurement uncertainty, σt1/2

. The parameter does not present a bias until sec θ = 1.4
and for energies between log (E/eV) = 18.4 and log (E/eV) = 19.6.

• A calibration of ∆1000 with Xmax considering the data set used for the latest results
on Xmax presented by the Pierre Auger Collaboration is performed. The fit does not
show any bias with respect to the energy (energies between log (E/eV) = 18.5 and
log (E/eV) = 19.6) and zenith angle (1.0 ≤ sec θ ≤ 1.4).

• The parameter XSD
max, obtained from the calibration is compared with the estimation

of Xmax obtained from measurements of the fluorescence detector for energies above
log (E/eV) = 18.4. Both observables agree well on average. The parameter XSD

max

does not present any systematic trend with the zenith angle. The Xmax fluctuations
RMS(XSD

max) and RMS(Xmax) are, nevertheless not comparable. Corrections with
respect to effects of the event selection, measurement uncertainties and detector
resolution have still to be taken into account.

• The uncertainties of the parameter XSD
max come from several sources, being the mean

contributions due to the measurement and treatment of t1/2 and to the reconstruction
procedure according to studies with fluctuations of ∆1000.

• The resolution of SD measurements as estimated from fluctuations of ∆1000 gives a
minimum value of ∼ 60 gcm−2 and a mean value of ∼ 100 gcm−2, which are large
compared with ∼ 20 gcm−2 corresponding to FD measurements. The measurement
uncertainty in XSD

max is too large to be used in composition measurements on an event-
by-event basis.

• Studies about fluctuations of the parameter ∆1000 related to the event selection are
needed. For instance, the conditions for selecting adequate t1/2 values have to be
improved. That may allow to deduce more accurately the resolution of the SD detector
and thus, to correct for RMS(XSD

max). An improvement of the calibration obtained
by using the ∆1000 method and of estimations about systematic uncertainties are also
expected.

Mass composition using XSD

max
The main goal of this work, estimations of the mass

composition supported by high statistics, can be performed using the ∆1000 method.

• Results using the elongation rate, D10, point to a gradual increase of the average mass
of cosmic rays with the energy. The value obtained from SD measurements for energies
above log (E/eV) = 18.4 is D10 = 27 ± 3 gcm−2 which is similar to the one obtained
from FD measurements D10 = 24 ± 3 gcm−2decade−1.
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• Using the ∆1000 method it is possible to reproduce the 〈Xmax〉 value provided by Monte
Carlo simulations with an error of ∼ 3.6%. The self-consistency of the method on
average was also demonstrated.

• A gradual increase of the mean logarithmic mass, 〈ln A〉, with the energy is also found
by using several hadronic interaction models and XSD

max.

• No significant difference in mass composition of the highest energy events which were
analyzed for anisotropy studies by the Pierre Auger Collaboration, by using the ∆1000

method was found. Both, correlating and non-correlating events have a similar ∆1000

within statistical uncertainties.

• The ∆1000 method allows to obtain results on Xmax from SD measurements with 15 times
more events than those obtained from FD measurements for energies above 1019.4 eV.

• The energy range of measurements for Xmax of the Pierre Auger Observatory has been
extended to 1019.9 eV i.e. by a factor of 2.3 with respect to the one reached with FD
analysis, which is of about 1019.5 eV.

• The data of the Pierre Auger Observatory suggest that for energies above 1019.6 eV
the average mass is getting heavier with energy but it still remains in a mixed mass
composition.
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Acronyms

ADST Advanced Data Summary Tree

AERA Auger Engineering Radio Array

AGN Active Galactic Nuclei

AMIGA Auger Muons and Infill for the Ground Array

asl above sea level

CDAS Central Data Acquisition System

CLF Central Laser Facility

CMB Cosmic Microwave Background

CORSIKA COsmic Ray SImulations for KAscade

DSAs Diffusive Shock Acceleration

EAS Extensive Air Showers

FADC Flash Analog Digital Converter

FD Fluorescence Detector

FOV Field of view

GPS Global Positioning System

GZK Greisen Zatsepin Kuzmin

HEAT High Elevation Auger Telescopes

HV High Voltage

IBR Infrared Background Radiation

KASCADE KArlsruhe Shower Core and Array DEtector

LDF Lateral Distribution Function

LED Light-Emitting Diode

LHC Large Hadron Collider

LIDAR Light Detection and Ranging

LTP Lateral Trigger Probability

NIST National Institute of Standards and Technology

NKG Nishimura Kamata Greisen lateral distribution function

PLD Programmable Logic Device
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PMT PhotoMultiPlier

SD Surface Detector

SDP Shower Detector Plane

SHDM Super Heavy Dark Matter

SNRs Super Nova Remnants

SPR Single Particle Response

T1 local station trigger

T2 second station trigger

T3 second level lowest Central Data Acquisition System (CDAS) trigger

T4 physics trigger

T5 quality trigger

TD Topological Defects

Thr2 second level threshold trigger

ToT Time Over Threshold trigger

UHECR Ultra High Energy Cosmic Ray

UV Ultra Violet

VAOD Vertical Aerosol Optical Depth

VCT Vertical and Central Through-going muon

VEM Vertical Equivalent Muon

4C1 configuration of one station with 3 close neighbors
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Appendix A

Validation of risetime results for
data used in ∆1000 analysis

FADC trace structure Since the time when risetime studies of measurement uncertainty
calculation and asymmetry correction (Chapter 4) were performed, the FADC traces have been
restructured in the Offline software framework [161]. It may affect the value of risetime. The new
structure is used for the ∆1000 analysis, therefore the observation of differences between both kinds of
risetimes is important. A set of traces containing the old and the new FADC structure are used for this
purpose. Figure A.1 show the relative difference of risetimes for the range of zenith angles used in the
∆1000 analysis (sec θ ∈ [1.0, 1.4]). Since the difference is ∼ 2% the use of the current risetime results
for ∆1000 analysis is justified. A more detailed verification concerning the measurement uncertainty is
shown in the next paragraph.
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Figure A.1: The relative difference between risetimes from old and new structure of FADC trace in
the range sec θ ∈ [1.0, 1.4].
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Measurement uncertainty In order to verify the use of the measurement uncertainty, σt1/2
,

calculated in Chapter 4, the average fractional difference with respect to the parameterisation, σp
t1/2

,
is analyzed for a set of data fulfilling the conditions for the ∆1000 analysis. Events must have
energies higher than 1 EeV and sec θ ∈ [1.0, 1.4], containing at least one station with S > 15 VEM
located between 600 m and 1200 m. According to Fig. A.2(a), the distribution is centred around 0.
Figure A.2(b) shows good agreement between expected and measured value of σt1/2

within the spread.
No systematic bias with S,r and E is observed (see Fig. A.3). The bias with sec θ already found in
Chapter 4 is reduced as shown in Fig. A.3(d). The set of data presents the same behavior than the
data used for obtaining σp

t1/2
, meaning that the use of parameterised σt1/2

for ∆1000 analysis is valid.
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Figure A.2: (a) The average fractional difference in σt1/2
for data fulfilling conditions for ∆1000

analysis. (b) Comparison between measured and expected value of σt1/2
.
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Figure A.3: The average fractional difference in σt1/2
as a function of : (a) signal, (b) distance to the

core, (c) energy of the shower and (d) sec θ for data fulfilling conditions for ∆1000 analysis.
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Appendix B

Information about simulated
showers for studies of ∆1000
parameter

Monte Carlo showers simulated with CORSIKA for comparison of results about ∆1000 parameter
described in Chapter 6, before application of required cuts.

Energy (eV)

Primary No.Ev 1 · 1018 3.16 · 1018 1 · 1019 3.16 · 1019 1 · 1020 3.16 · 1020

SD

proton 5043 700 600 2850 240 420 233
iron 5055 700 600 2850 240 435 230

Table B.1: Number of available simulated air showers before application of cuts required for ∆1000

calculaton according to the energy.

sec θ

Primary 1. 1.1 1.26 1.3 1.4 1.5 1.7 1.9

SD

proton 264 399 396 396 2390 400 398 400
iron 278 398 397 397 2390 398 399 398

Table B.2: Number of available simulated air showers before application of cuts required for ∆1000

calculaton according to the zenith angle.
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Appendix C

Comparison of results of 〈ln A〉

Comparisons of the mean logarithmic mass of the sample of hybrid events used for obtaining the
calibration of ∆1000 with XFD

max, with the results of the whole SD sample is shown in Fig. C.1. The FD
results are calculated using the XFD

max and the SD ones are calculated using the XSD
max with reference

to three hadronic interaction models. The FD sample shows also an increase of the mass with the

energy but at a faster rate ( d ln A

d log E
= 1.96±0.23 decade−1, d ln A

d log E
= 1.81±0.29 decade−1 and d ln A

d log E
=

1.88±0.24 decade−1 for EPOS, QGSJET II and SIBYLL respectively) in comparison with the SD one.

 log(E/eV) 
18.6 18.8 19 19.2 19.4 19.6 19.8 20

〉
 ln

 A
 

〈

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
FD
maxX

SD
maxX

4.40 )±0.23 )log(E/eV) + (-34.81 ±ln A = (1.96 

2.89 )±0.15 )log(E/eV) + (-21.18 ±ln A = (1.24 

/ndf = 3.272χ

/ndf = 1.262χ

(a) Epos 1.99

 log(E/eV) 
18.6 18.8 19 19.2 19.4 19.6 19.8 20

〉
 ln

 A
 

〈

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 FD
maxX

 SD
maxX

5.44 )±0.29 )log(E/eV) + (-32.78 ±ln A = (1.81 

3.64 )±0.19 )log(E/eV) + (-15.16 ±ln A = (0.89 

/ndf = 3.382χ

/ndf = 1.262χ

(b) QGSJET II

 log(E/eV) 
18.6 18.8 19 19.2 19.4 19.6 19.8 20

〉
 ln

 A
 

〈

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FD
maxX

SD
maxX

4.57 )±0.24 )log(E/eV) + (-33.85 ±ln A = (1.88 

3.02 )±0.16 )log(E/eV) + (-19.36 ±ln A = (1.12 

/ndf = 3.312χ

/ndf = 1.242χ

(c) SIBYLL 2.1

Figure C.1: The mean logarithmic mass, using the XSD
max parameter compared with the one obtained

using XFD
max with reference to three different hadronic interaction models.
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