

Jens Lemcke

Scalable Ontological EAI and e-Business Integration

Scalable Ontological EAI and
e-Business Integration

by
Jens Lemcke

KIT Scientific Publishing 2010
Print on Demand

ISBN 978-3-86644-521-5

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

Dissertation, Universität Karlsruhe (TH)
Fakultät für Wirtschaftswissenschaften
Tag der mündlichen Prüfung: 17. Juli 2009
Referenten: Prof. Dr. Rudi Studer, Prof. Dr. Tiziana Margaria-Steffen

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Contents

1 Introduction 1
1.1 Problems . 2
1.2 Research questions . 2

1.2.1 Ontological redundancy . 3
1.2.2 Tracking procedural information 3
1.2.3 Designing complex collaborative business procedures 4

1.3 Summary of contributions . 4
1.4 Previous publications . 5
1.5 Thesis structure . 6

I Foundations 9

2 EAI and e-Business Integration 11
2.1 e-Business integration . 12

2.1.1 e-Business . 12
2.1.2 Business process integration 12

2.2 EAI: The basis for modern e-business 13
2.2.1 Business software components 13
2.2.2 Component-based software development 14
2.2.3 Challenge of modularization 15
2.2.4 Layers of EAI integration 15

2.3 Transport integration layer . 16
2.3.1 The peer-to-peer architecture 17
2.3.2 Improving EAI . 18

2.4 Data integration layer . 19
2.4.1 XML: The enabling technology for e-business 20
2.4.2 XML schema . 21

2.5 API integration layer . 22
2.5.1 Structure of Web service descriptions 22
2.5.2 Semantic annotation for Web service descriptions 23

2.6 Business process integration layer 24

VI CONTENTS

3 Problems and Requirements 27
3.1 Free definition of interface objects 27

3.1.1 Maintenance effort . 28
3.1.2 Interrelation of redundancy levels 28
3.1.3 Summary . 29

3.2 Behavioral information only in experts’ heads 31
3.2.1 Technical representation vs. ontological meaning 31
3.2.2 Potential communications 31
3.2.3 Operation interdependencies 31

3.3 Manual exception handling . 33
3.3.1 Desired outcome as a goal 33
3.3.2 Goal includes fall-back outcomes 33

3.4 Deriving requirements . 34
3.4.1 Detect redundant interface objects 35
3.4.2 Track behavioral information through software design phases 36
3.4.3 Mechanically support exception handling 37

4 Shortcomings of Existing Approaches 39
4.1 Detect redundant interface objects 39

4.1.1 XML schema definition and Web service mining 40
4.1.2 Software restructuring . 40
4.1.3 Schema matching and ontology alignment 41
4.1.4 Clustering . 41
4.1.5 Closed frequent itemset mining 42

4.2 Track behavioral information through software design phases 43
4.2.1 Semantic Web services frameworks 44
4.2.2 Model-driven software development approaches 45

4.3 Mechanically support exception handling 46
4.3.1 Manual approaches . 46
4.3.2 Assuming singular Web service response 47
4.3.3 Considering alternative Web service responses 47

4.4 Summary . 52

II Scalable Ontological EAI and e-Business Integration 53

5 Solution Overview 55
5.1 Structuring . 56
5.2 Activities . 58

5.2.1 Analyze . 59
5.2.2 Derive . 59
5.2.3 Join orchestrations . 60

5.3 Schematic run-through . 60

CONTENTS VII

5.3.1 Component perspective . 60
5.3.2 From component perspective to EAI perspective 60
5.3.3 EAI perspective and community perspective 61
5.3.4 From community perspective to e-business perspective 62
5.3.5 e-Business perspective . 62

6 CFIM of Hierarchical Types 65
6.1 Motivating example . 65
6.2 Identifying structural similarities using the miner 67

6.2.1 Definition of a hierarchical type 67
6.2.2 Create itemsets from structural types 68
6.2.3 Interpret the mining result 72
6.2.4 Discussion . 75

6.3 Application on further hierarchical types 76
6.3.1 Message type definitions . 76
6.3.2 Web service definitions . 76

6.4 Using CFIM for ontological alignment 77
6.4.1 Semiotic triangle . 77
6.4.2 Identifying ontological similarities using CFIM 81

7 Transforming Behavioral Models for EAI and e-Business 85
7.1 Web service descriptions and behavioral models 86
7.2 Behavioral models . 89

7.2.1 ASM: A software system specification approach 90
7.2.2 Behavioral model execution semantics 91
7.2.3 Communication execution semantics 95
7.2.4 Orchestration execution semantics 99

7.3 Formalizing requirement . 100
7.4 Convert provided behavioral model to provider view 101
7.5 Excerpt consumed behavioral model fragment 103
7.6 Join orchestrations . 108
7.7 Proving requirement . 109
7.8 Summary . 110

8 Complex-goal-based WS Composition 113
8.1 Student transfer example . 115
8.2 Refining requirements . 116
8.3 Structure of the complex-goal-based WS composer 118
8.4 Dividing the composition problem 119
8.5 Core composition algorithm . 123
8.6 Computing correct orchestrations . 126

8.6.1 Reach goal . 127
8.6.2 Verifying . 128

VIII CONTENTS

8.6.3 Simulation . 134
8.7 Proving requirements . 136

III Application and Evaluation 139

9 Determining Redundancy of SAP ESR Message Types 141
9.1 SAP’s enterprise SOA . 141
9.2 Governance . 142
9.3 Challenges of realignment . 143
9.4 Reducing the challenges using our approach 143

9.4.1 Evaluation configurations 144
9.4.2 Evaluation runs . 145
9.4.3 Discussion of the results . 147

9.5 Assessing the quality of the mining results 148
9.5.1 Adapting precision and recall for CFIM of hierarchical types . 149
9.5.2 Discussion . 152

10 Facilitating Interoperability of SAP Business Partners 155
10.1 Cross-company-code sales order processing 156
10.2 Integrating the EAI perspective . 157

10.2.1 Customer . 157
10.2.2 Seller . 159

10.3 Integrating the e-business perspective 162
10.3.1 Assign communication . 162
10.3.2 Build orchestration . 163

10.4 Executing the joined orchestrations 163
10.5 Summary . 166

11 Evaluating the Composer Against Existing Work 169
11.1 An implementation of complex-goal-based WS composition 169
11.2 Problem case generator . 170
11.3 Evaluation runs . 174
11.4 Discussion . 176
11.5 Comparison with existing approach 177
11.6 Summary . 178

IV Finale 181

12 Conclusions and Future Work 183
12.1 Summary . 183
12.2 Conclusion . 184
12.3 Impact . 185

CONTENTS IX

12.4 Further development . 185
12.4.1 CFIM of hierarchical types 186
12.4.2 Transform behavioral models for EAI and e-business 186
12.4.3 Complex-goal-based WS composition 187

References 189

List of Figures 199

A Core composition algorithm 201
A.1 Formal representation of REACHVARIANT 201
A.2 Input and output assignments . 202
A.3 Copy rule creation . 203
A.4 Adjust output pools . 204
A.5 Subsequent planning state . 204

B Publications 207

Abbreviations

Common abbreviations
AI Artificial intelligence, p. 36

API Application programming interface, p. 22

ASG Adaptive services grid, p. 47

ASM Abstract state machine, p. 48

BAPI Business application programming interface, p. 22

BDI Beliefs, desires, and intentions, p. 48

BM Behavioral model , p. 89

BP Business process, p. 12

BPEL Web services business process execution language, p. 3

BPI Business process integration, p. 24

BPM Business process management, p. 24

BPMN Business process model and notation, p. 3

BPMS Business process management system, p. 25

CBP Collaborative business process, p. 25

CCTS Core components technical specification (ISO 15000-5), p. 149

CE Composition environment, p. 185

CFIM Closed frequent itemset mining, p. 42

CICS Customer information control system, p. 22

XII ABBREVIATIONS

CIDX Chemical industry data exchange, p. 76

CORBA Common object request broker architecture, p. 22

CRM Customer relationship management, p. 49

CTL Computation tree logic, p. 50

DAML-S DARPA agent markup language for services, p. 45

DARPA Defense advanced research projects agency, p. 45

DCOM Distributed component object model, p. 22

DIP Data, information and process integration with semantic Web ser-
vices, p. 48

DL Description logics, p. 45

DTD Document type declaration, p. 20

D-U-N-S Data universal numbering system, p. 30

EaGLe EaGLe goal language, p. 50

EAI Enterprise application integration, p. 13

e-Business Electronic business, p. 12

e-Business XML see ebXML, p. 19

ebXML Electronic business using extensible markup language, p. 19

EIN Employer identification number, p. 30

e-Procurement Electronic procurement, p. 17

ERP Enterprise resource planning, p. 17

e-Sales Electronic sales, p. 17

ESR Enterprise services repository, p. 141

FedEx FedEx Corporation is a logistics services company, p. 28

F-logic Frame logic, p. 45

GEM Goal-driven enterprise management, p. 49

GUI Graphical user interface, p. 144

ABBREVIATIONS XIII

HR Human resources, p. 49

HTTP Hypertext transfer protocol, p. 22

IBM International Business Machines is a multinational computer, tech-
nology and IT consulting corporation, p. 12

ILOG is an IBM company that creates enterprise software products in four
broad areas: supply chain, business rule management, visualization,
and optimization, p. 48

IOPE Input, output, precondition, and effect, p. 45

IT Information technology, p. 13

LCM Linear time closed itemset miner, p. 67

Mbyte Megabyte, p. 145

MDSD Model-driven software development, p. 45

METEOR-S Applying semantics in annotation, quality of service, discovery,
composition, execution; follow-up of the managing end-to-end oper-
ations project (METEOR), p. 45

OWL Web ontology language, p. 45

OWL-S Web ontology language for Web services, p. 45

PLM Product lifecycle management, p. 17

SAP SAP AG is a multinational software development and consulting
corporation, p. 141

SA-WSDL Semantic annotations for WSDL, p. 23

SCM Supply chain management, p. 17

SOA Service-oriented architecture, p. 141

SOAP Simple object access protocol, p. 22

STS State transition system, p. 87

SWSC Semantic Web services challenge, p. 49

Tuxedo Transactions for Unix, extended for distributed operations, p. 22

UDDI Universal description discovery & integration, p. 43

XIV ABBREVIATIONS

UML Unified modeling language, p. 46

UML AD UML activity diagram, p. 48

UN/EDIFACT United Nations/electronic data interchange for administration, com-
merce, and transport, p. 19

UPS United Parcel Service, Inc. is the world’s largest package delivery
company, p. 28

URI Uniform resource identifier, p. 24

W3C World Wide Web consortium, p. 20

WS Web service, p. 22

WSDL Web service definition language, p. 22

WSML Web service modeling language, p. 45

WSML-DL DL dialect of WSML, p. 45

WSML-Flight F-logic dialect of WSML, p. 45

WSML-Rule Rules dialect of WSML, p. 45

WSMO Web service modeling ontology, p. 45

WSMX Web service model execution environment, p. 45

XML Extensible markup language, p. 20

Abbreviations introduced in this dissertation
APR Approval, p. 157

CDT Component design time, p. 14

CUST Consumer view of the customer’s provided behavioral model , p. 157

CUST−1 Provider view of the customer’s provided behavioral model , p. 158

DEL Delivery, p. 159

DONE Positive notification, p. 157

FAIL Failure notification, p. 157

FIN Invoicing, p. 160

ABBREVIATIONS XV

HQ or H Head quarter, p. 33

ID Identification, p. 65

IDT Integration design time, p. 14

INV Invoice, p. 157

NO ASM module NEXTNONDETOPTIONS, p. 129

NS or N New school, p. 33

OCR Order creation, p. 157

OS or O Old school, p. 33

PO Purchase order, p. 157

POM Purchase order management, p. 157

PROD Production, p. 160

REJ Rejection, p. 157

RG ASM module REACHGOAL, p. 129

RT Run time, p. 15

RV ASM module REACHVARIANT, p. 129

SELR Consumer view of the seller’s provided behavioral model , p. 161

SELR−1 Provider view of the seller’s provided behavioral model , p. 161

SO Sales order, p. 159

SOM Sales order management, p. 159

U User, p. 125

Common mathematical symbols
> All, true, p. 51

⊥ Nothing, false, p. 51

= Equal, p. 78

6= Unequal, p. 78

XVI ABBREVIATIONS

∼ Similar, p. 78

¬ Logical not, negation, p. 51

∧ Logical and, conjunction, p. 51

∨ Logical or, disjunction, p. 51

Chapter 1

Introduction

Communication amongst business partners is an inherent characteristics of performing
business. Each business partner can be classified by roles as either seller, buyer, or
market maker. A seller provides goods or services to be consumed by one or a multitude
of buyers. A market maker creates a platform where buyers and sellers can meet to
trade. The seller-buyer relationship holds between a producing company and its end
customers as well as between a supplying and a compiling company. Often, a single
individual—company or person—can exercise multiple roles at once.

With the increased use of computers, the proper execution of formerly entirely
manually executed business procedures has become mechanized and standardized. In
fact, many single steps of a business procedure may still be manual, such as the picking
of goods from a warehouse and their packing to prepare for their transport, but the coor-
dination of the tasks became automated. Mechanical execution of business procedures
frees the human resources that were formerly needed for these pure organizational tasks
that can now concentrate on the core business that creates revenue for a company.

The business procedures of a whole company usually span multiple departments.
In large companies, the single departments use separate computer systems to manage
the local fragments of the company-wide business procedures. Due to that reason, the
integration of different computer systems in a company is necessary. That task is also
called enterprise application integration (EAI).

Through the rise of the Internet, a new platform for business collaboration became
available. The Internet provides a very efficient way to exchange information around
the world at very low costs and high speeds compared to traditional services as, for
example, postal mail. In particular, the Internet allows not only for the communication
between humans, but especially between machines of different companies with humans
or other machines. That is usually referred to as e-business.

The Internet thus delivers a huge potential for competitive benefits when used as a
platform for the collaboration of companies. But also, with such a potential in the market,
the Internet increases the pressure on each single company in the market to quickly
and flexibly adapt their collaboration with business partners to gain competitive benefit.
That results in a need for solutions that support business flexibility and especially scale

2 CHAPTER 1: INTRODUCTION

up to the size and complexity of real-life messages communicated and procedures
performed (Papazoglou and Ribbers, 2006).

1.1 Problems
While communication is essential to perform business, it is at the same time difficult
to be reached by computers. That is illustrated by the fact that nowadays about 40%
of a company’s IT budget are spent on integration (Kastner and Saia, 2006). The main
reasons for the difficulties are listed below.

1. First, the same real-world artifacts often have different computer implementations
if the software was produced independently. That is referred to as structural
difference (see Rahm and Bernstein, 2001, Shvaiko and Euzenat, 2005).

2. Second, parties willing to integrate their computer systems have differing under-
standings of the same concepts of a domain. That is referred to as ontological
difference (see Kalfoglou and Schorlemmer, 2005, Noy, 2004, Staab and Studer,
2004).

3. Third, knowledge about the IT systems that implement a business procedure
fragment is often stored in natural language, if at all, and cannot be accessed
at the time of designing a collaborative business procedure from the fragments.
That is counterproductive as the behaviors a participant can exercise to fulfill
the procedure fragment corresponding to its role in the collaboration is a direct
excerpt from the behavioral capabilities of its IT system components—referred to
as component model. A collaborative business process roughly consists to 80%
of the participants’ component models (see Küster et al., 2007).

4. Fourth, collaborative business procedures are complex and involve non-
deterministic responses from fragment implementations. The manual creation of
a transactionally correct coordination is expensive and error-prone (see Berardi
et al., 2005, Pistore et al., 2005c).

1.2 Research questions
The questions that we deal with in this dissertation seek to improve the situation
described in the previous paragraphs.

1. Can ontologically redundant, but structurally different artifacts involved in busi-
ness collaboration be efficiently detected?

2. What is needed to store knowledge of the generally intended and supported
behavior of a software component such that it can later be used for creating a
partner’s role model and a collaborative business process?

1.2 Research questions 3

3. Can the design of a complex collaborative business procedure with real-world
features be efficiently supported by an automated approach?

Different approaches have been proposed in the past that partly address our research
questions.

1.2.1 Ontological redundancy

Current approaches for detecting ontological differences concentrate on a general prob-
lem such as alignment of arbitrary ontologies and produce rather complex algorithms
that tend to be less efficient (see Kalfoglou and Schorlemmer, 2005, Noy, 2004). Exist-
ing approaches specially targeted at the domain of EAI and e-business, such as Dong
et al. (2004), Wang and Stroulia (2003), perform clustering as opposed to pattern mining.
Clustering is helpful to identify groups of objects or elements were not all elements
necessarily share the same properties. The opposite is the case with pattern mining,
where all elements of a group share the exact same properties. Clustering is rather
useful for retrieval of matches upon a certain request. Pattern mining is rather useful for
identifying common overlap.

As for detecting ontological differences, we restrict the problem to the area of
e-Business and EAI using the currently predominant languages and methods that arose
in the context of the Web services (WS) architecture (see Krafzig et al., 2004). Thus,
we are able to use a tailored algorithm with linear complexity implementing a special
type of pattern mining—the closed frequent itemset mining (CFIM). That technique is
well known and studied. However, its application on the problem of detecting redundant
artifacts involved in business collaboration in order to reach common understanding is
unique.

1.2.2 Tracking procedural information

For tracking procedural information through the software lifecycle, two principal
streams can be identified.

1. Service and collaboration description approaches. In the recent years, ap-
proaches were introduced that allow for the annotation of services, partially
with a model-theoretic semantics. For collaboration languages, such as BPEL1

and BPMN,2 however, no model-theoretic semantic exists. That makes their
interpretation ambiguous. Applications have focused on providing and directly
consuming services. No work considered supporting the whole software develop-
ment lifecycle with service and collaboration description approaches.

1http://www.oasis-open.org/committees/wsbpel/
2http://www.bpmn.org/

http://www.oasis-open.org/committees/wsbpel/
http://www.bpmn.org/

4 CHAPTER 1: INTRODUCTION

2. Software development support tools. Approaches like model-driven software
development (MDSD) focus on the development lifecycle. However, the ap-
proaches in the domain of MDSD have not been applied to business process
modeling for EAI and e-business.

We utilize an established, light-weight language for annotating procedural information
to software components involved in EAI and e-business scenarios. During definition,
we consider that the language used for component description should be deployable to
existing execution infrastructures.

In addition, we provide an execution semantics for procedural information and
for generated collaborative business procedures. We use the coherent semantics of
component behavior, company’s behavior, and collaboration behavior to directly execute
an e-business coordination on the component interfaces, and bypass, yet not break, the
company interfaces.

1.2.3 Designing complex collaborative business procedures
In the area of procedural interoperability there is much work done. However, most of
the work neglects realistic features of single service providers and requirements to the
orchestration—such as transactionality.

Two research groups (Berardi et al., 2005, Pistore et al., 2005c) have presented
interesting results. However, both approaches utilize general-purpose tools and start
from a problem definition that is unnecessarily complex for the setting of EAI and
e-business. In consequence, the approach of Berardi et al. (2005) is of exponential
complexity and the run time of the approach of Pistore et al. (2005c) ranges in the
seconds and minutes for even smaller scenarios.

We argue again that a simplified problem statement can sufficiently deliver on
the needs for EAI and e-business. That allows for the creation of a more efficient
algorithm for complex-goal-based WS composition. Moreover, our algorithm to solve
the procedural integration is specially tailored, as opposed to being general-purpose,
which additionally reduces the run time of our approach compared to the existing
approaches.

1.3 Summary of contributions
To sum up, we contribute to three topics in this thesis.

1. Detect redundant interface objects. Our CFIM of hierarchical types uniquely
solves the task to detect redundant interface objects with linear space and time
consumption.

2. Track behavioral information through software design phases. By our ap-
proach to transform behavioral models for EAI and e-business, we are able to
track behavioral information through software design phases.

1.4 Previous publications 5

3. Mechanically support exception handling. Our complex-goal-based WS com-
position solves a limited problem, yet sufficient in the context of EAI and e-
business, by a targeted algorithm in shorter time than the existing approaches.

1.4 Previous publications
The results of this thesis have been published previously.

In the following book chapter, we introduce our view on the interplay between data
and process semantics with respect to the integration of complex processes. Although
that work provides the basis for the closed frequent itemset mining (CFIM) and the
complex-goal-based WS composition presented in this dissertation, we used schema
matching techniques instead of CFIM and process integration did not yet consider
failure of the integrated systems.

Book chapter:
Drumm, C., J. Lemcke, and D. Oberle. Business process management and
semantic technologies. In J. Cardoso, M. Hepp, and M. D. Lytras, editors,
The Semantic Web: Real-World Applications from Industry, volume 6 of
Semantic Web And Beyond Computing for Human Experience, pages 209–
239. Springer, 2007a. ISBN 978-0-387-48531-7. URL http://dx.doi.
org/10.1007/978-0-387-48531-7_10.

The journal article below advances the process integration presented in the book
chapter above to the complex-goal-based WS composition of this thesis.

Journal article:
Lemcke, J. and A. Friesen. Considering realistic Web service features
for semi-automatic composition. Annals of Mathematics, Computing and
Teleinformatics (AMCT), 1(5):26–35, 2007b.

As a second strand of research, we introduce our first formalization of a process
mediator in the following article. The mediator we define is able to receive an initial
request, transform it to a sequence of parallel sub-requests, forward the sub-requests to
providers, collect and combine the results from the providers, and return the combined
results to the initial requester. As the definition is formal, we are able to formally prove
whether a requested interface can be met by a set of provided interfaces. The specifi-
cation of the mediator in that article builds the basis for the definitions of behavioral
models and the semantics of integration in this thesis.

Journal article:
Altenhofen, M., A. Friesen, J. Lemcke, and E. Börger. A high-level speci-
fication for Virtual Providers. International Journal of Business Process
Integration and Management (IJBPIM), 1(4):267–278, 2006b.

http://dx.doi.org/10.1007/978-0-387-48531-7_10
http://dx.doi.org/10.1007/978-0-387-48531-7_10

6 CHAPTER 1: INTRODUCTION

The following article extends the definition of mediators from the previous article to
the formalization of component behavior as it is used in this thesis. With the extended
definition, we were able to apply the complex-goal-based WS composition from Lemcke
and Friesen (2007b) above, which is part of this thesis, to generate the mediators which
were considered to be manually constructed in the previous paper.

Journal article:
Altenhofen, M., A. Friesen, and J. Lemcke. ASMs in service oriented
architectures. Journal of Universal Computer Science (JUCS), 14(12):2034–
2058, 2008.

Finally, the following book chapter presents how closed frequent itemset mining
(CFIM) and the model-driven approach to transform behavioral models—presented
in this thesis—allow applying the previously presented complex-goal-based WS com-
position to reduce issues of software engineering. The topics of detecting ontological
redundancy and of tracking procedural information of this thesis are covered in that
chapter.

Book chapter:
Lemcke, J. Light-weight semantic integration of generic behavioral com-
ponent descriptions. In G. Mentzas, T. Bouras, P. Gouvas, and A. Friesen,
editors, Semantic Enterprise Application Integration for Business Processes.
IGI Global, Harrisburg, PA, 2009.

Besides the named publications, we contributed with the research for this thesis to
further workshops and symposia. Our full list of publications is given in Appendix B
on page 207.

1.5 Thesis structure
The rest of this thesis is structured into four parts.

I Foundations. The first part contains an introduction to the areas of EAI and
e-business integration in Chapter 2. Chapter 3 describes problems is these areas
and derives requirements on a solution. Chapter 4 reviews the state of the art in
addressing the identified problems.

II Scalable Ontological EAI and e-Business Integration. The second part details
our solution to the problems identified in Part I. Chapter 5 starts with an overview
how the parts of our solution play together. Chapter 6 explains how our CFIM of
hierarchical types tackles the problem of identifying redundant artifacts. Chapter 7
explains how to transform behavioral models for EAI and e-business for tracking
procedural information throughout the software lifecycle. Chapter 8 details
our complex-goal-based WS composition, which semi-automatically generates
transactionally correct business procedures.

1.5 Thesis structure 7

III Application and Evaluation. The third part describes the application of the
concepts developed in Part II to artifacts and procedures of the software vendor
SAP. Chapter 9 applies our CFIM of hierarchical types on SAP’s public interfaces.
We demonstrate in Chapter 10 how our approach to transform behavioral models
for EAI and e-business can be used to consistently create a business procedure
from existing software components. In Chapter 11, we evaluate our complex-
goal-based WS composition against existing work.

IV Finale. The final part contains our conclusions and outlook in Chapter 12.

Part I

Foundations

Chapter 2

EAI and e-Business Integration

This section introduces the fields of enterprise application integration (EAI) and e-
business. The terms discussed in this chapter are collectively displayed in Figure 2.1.

Figure 2.1: Relation of terms in EAI and e-business (suggestive).

This chapter is structured as follows. Since the type of e-business we are considering
bases on EAI, we first introduce e-business in Section 2.1.1 before we explain the layers
of EAI in Section 2.2. Each of the subsequent four sections focuses on one layer of
EAI. While explaining a layer, each section also introduces the technology on that layer
which is relevant for this dissertation. We begin with the lowest technical layer—the
transport integration layer—in Section 2.3. Section 2.4 introduces the data integration
layer. Section 2.5 describes the application programming interface (API) integration
layer and Section 2.6 finalizes with the business process integration (BPI) layer.

The material contained in this chapter is based on Papazoglou and Ribbers (2006),
Ruh et al. (2001), Serain (2002).

12 CHAPTER 2: EAI AND E-BUSINESS INTEGRATION

2.1 e-Business integration
In order to explain the term “e-business integration,” we first present the definitions of
e-business and business process integration (BPI) as found in the literature.

2.1.1 e-Business
The term e-business, or electronic business, was introduced in 1997 by IBM as part of a
marketing campaign (Papazoglou and Ribbers, 2006). By definition, e-business means
solving business problems or implementing functional tasks using Internet technologies.

According to Serain (2002), the Gartner Group classifies an e-business solution
with respect to the business functions that can possibly be offered over the Internet with
growing maturity into four categories (right side of Figure 2.1 on the preceding page).

1. Information publication on the Web, or short “publish.” An e-business solu-
tion of that category allows a user—human or machine—to browse information
provided by a company. The computer system providing the company’s informa-
tion on the Web is called a Web server.

2. A client’s interaction with an enterprise server, or short “interact.” Inter-
acting with an enterprise server includes that users can engage with forums or
place ticket reservations that do not involve payment, and thus do not constitute a
business transaction.

3. The ability to perform transactions, or short “transaction.” In that category,
a user can engage with parts of an application, such as to select multiple goods,
to order, and to pay for them via a Web site. The computer system backing the
Web site is thus called application server.

4. The integration of the Web server with the company’s information struc-
ture, or short “integrate.” Information structure means in the context of that
citation the technical infrastructure that manages a company’s information. “In-
tegrating a Web server with the company’s information structure” means that a
human or mechanical user can operate a set of applications using the same Web
site. The definition implies that the different enterprise applications a user can
interact with are integrated, which is also called enterprise application integration
(EAI, left side of Figure 2.1).

Performing e-business facilitated by enterprise application integration is the maturity
level of business functions we are concerned with in this dissertation.

2.1.2 Business process integration
A business process (BP) is an activity in a company that uses resources and can involve
the activities of different departments. According to Papazoglou and Ribbers (2006),

2.2 EAI: The basis for modern e-business 13

“business process integration (BPI) can be described as the ability to define
a commonly acceptable process model that specifies the sequence, hierar-
chy, events, execution logic and information movement between systems
residing in the same enterprise (viz. EAI) and systems residing in multiple
enterprises (viz. e-Business integration).” (p. 519)

We conclude that business process integration (in the middle of Figure 2.1 on
page 11) is part of the areas of EAI and e-business. In fact, as the following sections
will reveal, business process integration between multiple parties (e-business) requires
a business process view of each participating enterprise to exist. In the case that a
participating enterprise employs EAI, the business process view of that company is
established on the BPI layer of EAI. Details about EAI are given in the following
sections.

e-Business integration can be seen as the intersection of e-business and business process
integration. Thus, e-business integration as considered by this dissertation has the
following properties.

• Processes. e-Business integration is concerned with the integration of business
processes.

• Internet. e-Business integration is performed via the Internet. Thus, Internet
technology is used for communication.

• EAI. Each participant of a concrete e-business integration uses EAI to integrate
their individual systems as a prerequisite to integrate with other companies.

2.2 EAI: The basis for modern e-business
“Application integration means making independently designed systems

work together.”—Gartner Group

The demand for integration has grown with the demand for business flexibility. The
basic driving force behind enterprise applications integration is the fact that a shorter
time from an initial business idea to bringing it to the market directly translates to
competitive advantage in the market economy. As detailed by Papazoglou and Ribbers
(2006), a new business idea often is tightly coupled with a restructuring of the business
itself.

2.2.1 Business software components
In order to support changing business needs and to provide flexibility in the IT infras-
tructure, business software vendors found it a good idea to separate their software to
components—or enterprise applications—in preference to a single monolithic block

14 CHAPTER 2: EAI AND E-BUSINESS INTEGRATION

of software. In particular, the reasons for modularization from a software customer’s
perspective are the following.

First, mostly no one single application may serve all the IT needs of a company alone.
Therefore, the different functionalities needed are usually collected from different
vendors and are then integrated in order to work together.

Second, the initial buying or development cost may be too high for a completely
integrated solution. It may be more convenient for a company to buy or produce
the components of their IT system landscape one after the other. Thus, the
integration of the different components grows over time becoming more and more
expensive if no coherent integration mechanism is chosen.

And third, as market economy companies tend to continuously evolve by, for example,
extending their business to new market areas, selling parts of their business,
cooperating with new business partners to enlarge the offered service portfolio,
or buying other businesses, they usually acquire the components they need for
their operation as they grow.

Different software components are either bought at different times, thus they may be
of different releases, acquired from different software vendors, or even be produced
in-house.

2.2.2 Component-based software development
A company’s IT system landscape supports business execution by storing business
documents and the progress of business processes.

Business components are reusable components that can be assembled together
to form a business application performing a business process. Therefore, the actual
development of the product handling the business process of a customer of a business
software vendor is split into the two main software development phases

• component design time and

• integration design time.

Component design time (CDT) means that part of the development lifecycle that can
also be observed in traditional software development. Component design time is
concerned with developing the components to be offered themselves. That process
surely contains some deviation from classical software development because special
attention has to be paid to the proper alignment of the components in order to cover
the desired domain of functionality. Normally, a special governance process would
accompany a component-based development methodology.

Integration design time (IDT) refers to the application of the components developed
at component design time in a specific integration project of a customer. An integration

2.2 EAI: The basis for modern e-business 15

project is mostly concerned with implementing an existing business process of the cus-
tomer using the software components of the business software vendor. That is the time
when enterprise application integration, and especially business process management,
is relevant.

After integration design time, the integrated software is deployed to the computing
infrastructure of the customer. The phase when business software actually manages
business processes is called run time (RT).

2.2.3 Challenge of modularization
Business activity falls into the two categories: performing the current business model
and changing the business model. A business model can be changed by

• rearranging existing business areas,

• outsourcing existing business areas, or

• acquiring new business areas.

Change of the business model of a company requires changing the way the IT system
facilitates the business procedures.

With modularization, one gains flexibility realigning the components of one or
multiple vendors to implement new business scenarios. The drawback of components
is that communication is needed between the components. Communication between
multiple components causes three effects:

1. If a new business functionality is to be implemented involving n components,
n(n− 1) relations have to be considered.

2. If an existing functionality is to be changed, first the relations being affected have
to be identified among the n(n − 1) relations, and in the worst case n(n − 1)
relations need consistent adaptation.

3. If a new participant should be integrated with a set of n participants, the costs
for adding linearly increase with the original size of the community because that
requires the construction of n new relations in the worst case.

Performing integration efficiently is desirable as, according to Kastner and Saia (2006),
integration activity currently consumes about 40% of a company’s IT budget.

2.2.4 Layers of EAI integration
In the previous section, we spoke about abstract relations between software components.
More specifically, a relation between two components touches many aspects of integra-
tion on different levels that can be organized in a hierarchy (Figure 2.2 on the following
page) including

16 CHAPTER 2: EAI AND E-BUSINESS INTEGRATION

1. transportation layer,

2. data integration layer,

3. application programming interface (API) integration layer, and

4. business process integration (BPI) layer.

Each of the layers addresses an increasingly complex level of integration and builds on
top of the lower layers.

Figure 2.2: The EAI pyramid (from Papazoglou and Ribbers, 2006, p. 512).

2.3 Transport integration layer

The transport integration layer is concerned with the communication channels of the
integration participants as displayed in Figure 2.3 on the next page. There exist three
basic architectures to organize the transportation integration layer:

1. the peer-to-peer architecture,

2. the hub-and-spoke architecture, and

3. the publish-subscribe architecture.

2.3 Transport integration layer 17

Figure 2.3: Transport integration layer.

2.3.1 The peer-to-peer architecture
The reasons for integration in Section 2.2.1 on page 13 have one commonality. In
each of the described cases, it is difficult to plan ahead what the future integration
need will be. In particular, it may be difficult to determine which concrete software
pieces will be integrated in the future. It might even be hard to determine the vendor
of business software components to buy before, as competitors may provide more
attractive solutions over time.

The lack of the ability to plan the future integration needs has mostly resulted in
a costly IT infrastructure in today’s companies. The typical integration architecture
emerging due to the above reasons is called peer-to-peer (see left-hand side of Fig-
ure 2.4). In a peer-to-peer architecture, every integration participant, be it a piece
of internal business software, or the IT system of a collaborating business partner, is
directly integrated with the integration participants it has to communicate to. In the
worst case, there are n(n − 1) directed peer-to-peer connections in a setting with n
integration participants that have to be built and maintained.

Figure 2.4: Peer-to-peer versus centralized approach.

18 CHAPTER 2: EAI AND E-BUSINESS INTEGRATION

2.3.2 Improving EAI

The major motivation to improve the situation of n(n− 1) individual directed connec-
tions of n systems is to lower the high costs of building and maintaining each connection
itself. There are two architectures which may serve that purpose.

The hub-and-spoke architecture places a single information broker in the middle
of the integration participants. It acts as a single communication partner for
each participant and routes incoming requests appropriately to the respective
receiver. The major characteristics of the hub-and-spoke architecture is that the
integration broker contains business logic to orchestrate the participants, it is
responsible for secure and reliable messaging and also for converting data between
the different formats of the participants. The advantage of the hub-and-spoke
architecture is that it acts as a centralized store of integration information, and that
directed connections needed for the integration of n systems are reduced to 2n. It
should be noted that what was said only holds for the number of communication
channels. The number of message mappings remains the same. The drawback
of that architecture is that the information broker quickly becomes a bottleneck
of the integrated system. In addition, that centralized approach seems to pose
specific difficulties to globally distributed companies when they have to route all
communication through the single broker.

The publish-subscribe, or shared bus, architecture tackles the integration challenge
by connecting the integration participants on the technical level, only. The
shared bus architecture requires each participant to handle messaging security
and reliability as well as data conversion locally. Integration is helped by a
potentially distributed shared bus system that the participants connect to on the
messaging layer. Information providers publish their advertisement with the
shared bus middleware and information consumers subscribe to advertisements.
Upon sending data to the message bus, the middleware routes the data to the
appropriate subscribers.

To conclude with a rule of thumb, the hub-and-spoke architecture may be rather
suitable for the integration of fewer participants. Its maintenance is easier as the
integration information resides on a central system. Hub-and-spoke is also more
suitable for a setting with a central point of control, such as a powerful car manufacturer
dominating its smaller suppliers. On the other hand, the shared bus architecture is
more scalable and flexible for larger groups of integration participants. However, the
maintenance of the system is rather difficult as integration information remains scattered
across the single participants.

2.4 Data integration layer 19

2.4 Data integration layer

As different IT systems and, in a large software company even different components
of the same system, are developed and evolve to a large extent independently from
each other, different applications are likely to rely on incoherent representations of
conceptually the same real-life artifact. Different implementations of EAI postulate that
the community needs a means to come up with a shared standard to communicate, and
new integration participants joining the community must ensure their type definitions
match with the standard chosen by the community (see Figure 2.5).

Figure 2.5: Data integration layer.

In principle, data heterogeneity can either be resolved by changing the software
sending or receiving the data, or by mediating between participants through changing
the transmitted data. Mediating data can either be done peer-to-peer, which requires
2n(n − 1) adaptations for n participants. Data mediation can also be done centrally
by each participant conforming to an agreed standard. That reduces the number of
adaptations to 2n.

Examples for data formats used for e-business today are “United Nations/Electronic
Data Interchange For Administration, Commerce, and Transport” (UN/EDIFACT)1

and “Electronic Business using eXtensible Markup Language” (e-business XML, or
ebXML).2 Both describe hierarchical data structures. This dissertation uses the eXtensi-
ble Markup Language (XML)3 for representing data and the XML schema definition
(XSD)4 for describing an XML format. As XML is a model for hierarchical organiza-
tion of data, the results of this dissertation can be transferred to other hierarchical data
representations such as UN/EDIFACT or ebXML.

1http://www.unece.org/trade/untdid
2http://www.ebxml.org/
3http://www.w3.org/XML/
4http://www.w3.org/XML/Schema

20 CHAPTER 2: EAI AND E-BUSINESS INTEGRATION

2.4.1 XML: The enabling technology for e-business
The extensible markup language (XML) builds the foundation for e-business. XML
describes a class of data objects called XML documents. An XML document consists
of storage units, called entities, which can contain parsed or unparsed data. Parsed data
is made up of characters, some of which form character data, and some of which form
markup. Markup encodes a description of the document’s storage layout and logical
structure (Bray et al., 2006).

Figure 2.6 contains an example of an XML document. The first few charac-
ters of an XML document must make up an XML declaration, for example, <?xml
version="1.0" encoding="UTF-8"?>. The XML processing software deter-
mines, based on that declaration, how to proceed with the subsequent XML document.
The second part of an XML document is a single element known as the document,
or root element. A textual unit in an XML document is called element. An ele-
ment is also a structural component. It can contain either text or further elements,
or both. An element is enclosed within a start tag and a corresponding end tag, for
example, <tag>content</tag>. The set of all elements in an XML document
makes up its content. Another way of putting data into an XML document is to
assign attributes to tags. An attribute is a key-value pair as in the example <tag
attribute="value">content</tag>.

<?xml version="1.0" ?>
<note>

<to>Dave</to>
<from>John</from>
<heading>Reminder</heading>
<body lang="en">Did you pay our bill yet?</body>

</note>

Figure 2.6: Example XML document.

An XML document has two central properties.

1. An XML document is well-formed, if its structure follows the production rules in
Bray et al. (2006). A well-formed XML document is also called a data object.

2. An XML document is valid, if it further complies with an associated document
type declaration.

There are multiple contemporary languages to specify a document type. Among
them, the two W3C standards are the document type declaration (DTD)5 and XML
schema (XSD, Fallside and Walmsley, 2004), where XSD is the most prominent schema
language today.

5http://www.w3.org/TR/REC-xml/#dt-doctype

http://www.w3.org/TR/REC-xml/#dt-doctype

2.4 Data integration layer 21

2.4.2 XML schema

XML schema is a language to describe the structure of a set of XML documents that
validate against the schema. An XML schema consists of the following:

• Data types. There are simple and complex data types. The XML schema standard
defines a predefined set of simple types. An extension mechanism allows defining
derived types that extend or restrict another type. Each type consists of a name.
A complex type can further consist of attributes and a particle.

• Attributes. An attribute consists of a name and a simple type. The simple type
determines the values the attribute can take in an XML document validated by
the XSD.

• Particles. A particle either consists of exactly one “model group” or exactly one
element definition.

• Model groups. A model group consists of a vector of particles. A model group
can be either a choice or a sequence. Choice means that an XML document’s
structure can adhere to the definition of any of the particles in the vector. Sequence
means that an XML document must contain all the definitions of the particles in
the order of the vector. By the recursive definition, a specific mixture of choices
and sequences can be defined for the complex type the model group is part of.

• Element definitions. Elements are the basic building blocks of XML documents.
An element consists of a name and a type. The tags of an XML document
validated by an XSD must adhere to the element names of the XSD, where the
structure must correspond with the type definition of the element. Through the
recursive definition of an element, the complex type that element is part of can be
specified.

• Constraints. These are declarations about data types and elements. A constraint
may, for example, define minimal, maximal, and default values.

• Namespaces and import/include options. Each type definition defined in XSD
is associated to a target namespace. The target namespace can be declared
globally for all type definition or individually for each type. Via the import and
include options, an XSD may reference type definitions in other namespaces.
That supports modularization of the XML schemas.

As the definition of XML schema is recursive, we refer to an XML document also
as a hierarchical type. We understand a hierarchical type to be an abstraction of XML
schema. A formal definition of a hierarchical type will be given later.

22 CHAPTER 2: EAI AND E-BUSINESS INTEGRATION

2.5 API integration layer
In contrast to the data integration layer concentrating on the seamless exchange of
data, the application programming interface (API) integration layer concentrates on the
sharing of business logic as displayed in Figure 2.7 on the facing page. In particular,
rather than building the interface of two systems with their databases, the API integration
layer builds the interface with the applications. An invoker may not only access an
application’s data, but also its methods. That means that APIs provide a hook to connect
to an application via its business logic to retrieve its underlying data. Examples for
APIs are

• component interfaces such as CORBA,6 DCOM,7 or JavaBeans,8

• transaction processing interfaces such as IBM’s CICS9 or Tuxedo,10 and

• packaged application interfaces such as SAP’s Business API (BAPI).11

On the interface integration layer, this dissertation uses Web service technology for
interface descriptions. According to the W3C, a Web service

“is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in
a machine-processable format (specifically WSDL).12 Other systems
interact with the Web service in a manner prescribed by its descrip-
tion using SOAP13 messages, typically conveyed using HTTP14 with
an XML serialization in conjunction with other Web-related standards.”
(Booth et al., 2004, Sect. 1.4)

Web service technology comprises more than 100 languages and definitions handling
different aspects of Web services. The Web service description language (WSDL) plays
the central role among them.

2.5.1 Structure of Web service descriptions
WSDL is an XML grammar for describing network services as collections of com-
munication endpoints, called ports, capable of exchanging messages (see Christensen

6http://www.corba.org/
7http://msdn.microsoft.com/library/cc201989.aspx
8http://java.sun.com/products/javabeans/docs/spec.html
9http://www-306.ibm.com/software/htp/cics/library

10http://www.oracle.com/technology/products/tuxedo/index.html
11http://help.sap.com/saphelp_nw04/helpdata/en/e0/

9eb2370f9cbe68e10000009b38f8cf/frameset.htm
12http://www.w3.org/TR/wsdl
13http://www.w3.org/TR/soap/
14http://www.w3.org/Protocols/

http://www.corba.org/
http://msdn.microsoft.com/library/cc201989.aspx
http://java.sun.com/products/javabeans/docs/spec.html
http://www-306.ibm.com/software/htp/cics/library
http://www.oracle.com/technology/products/tuxedo/index.html
http://help.sap.com/saphelp_nw04/helpdata/en/e0/9eb2370f9cbe68e10000009b38f8cf/frameset.htm
http://help.sap.com/saphelp_nw04/helpdata/en/e0/9eb2370f9cbe68e10000009b38f8cf/frameset.htm
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap/
http://www.w3.org/Protocols/

2.5 API integration layer 23

Figure 2.7: API integration layer.

et al., 2001). The abstract definition of endpoints and messages is separated from their
concrete deployment in the network or data format bindings. That allows messages,
port types, and operations to be defined abstractly and reused.

• A message is an abstract description of data being exchanged.

• A port type is an abstract set of operations supported by one or more endpoints.

• An operation is an abstract definition of an action supported by the service.

In addition, a WSDL definition consists of the following concrete elements.

• A type is a container for data type definitions using some type system, for example,
XSD.

• A binding is a concrete protocol and data type specification for a particular port
type.

• A port is a single endpoint defined as a combination of a binding and a network
address.

• A service is a collection of related endpoints.

2.5.2 Semantic annotation for Web service descriptions
SA-WSDL15 is an extension of WSDL by semantic annotations. The structure of an
SA-WSDL document is very similar to the structure of a WSDL document. SA-WSDL
extends WSDL by additional attributes that can be attached to some of the original
WSDL tags. In particular, the attribute modelReference defined in the namespace

15http://www.w3.org/2002/ws/sawsdl/

24 CHAPTER 2: EAI AND E-BUSINESS INTEGRATION

http://www.w3.org/ns/sawsdl may be added to an element definition in an
SA-WSDL file. The attribute’s value is an arbitrary string that can be used for anno-
tation. It is recommended by the SA-WSDL working group that the string contains
an URI identifying a concept of some taxonomy or other term definition system. The
interpretation of the annotation is left open by SA-WSDL with the purpose of flexibility
in adapting the appropriate term definition system for the actual application. Thus, the
interpretation depends on the implementation utilizing the annotation.

2.6 Business process integration layer

The business process integration layer, displayed in Figure 2.8, is primarily concerned
with allowing business processes to bridge multiple applications in a consistent way. BPI
solutions allow enterprises to leverage their investments in legacy systems by automating
and managing the business processes that span these systems. Existing systems may be
interconnected without writing code that replicates existing functionality.

Figure 2.8: Business process integration layer.

Business process integration requires dividing the software into front-office and
back-office. Front-office is exposed to users and utilizes back-office functionality. That
leads to a loose coupling of the applications. A critical element in BPI is the human
involvement. Business processes therefore consist of manual and automatic tasks jointly
managed.

Business process management (BPM)

“extends BPI techniques by including process analysis, process def-
inition and redefinition, resource allocation, scheduling, measure-

2.6 Business process integration layer 25

ment of process quality and efficiency, and process optimization.”
(Papazoglou and Ribbers, 2006, p. 539)

Business process management is sometimes seen as a means to reducing the gap between
the business user and the technician. Although it can be said that organizations have
always been using BPM, new impetus was brought by business process management
systems (BPMS), i. e., software tools that allow for the direct execution of the business
processes without a costly and time intensive development of the required software.
Conventional BPMS are primarily designed for intra-enterprise process management.
They are hardly used to handle processes with tasks and data separated by enterprise
boundaries, for reasons such as security or privacy. However, the nature of most
business processes involves the cooperation of two or more roles to achieve a specific
task. Hence, newer BPMS are increasingly enhanced by corresponding functionality to
manage also collaborative business processes (CBP) that integrate multiple companies
and thus reach to the area of e-business.

Chapter 3

Problems and Requirements

After introducing the fields of e-business and enterprise application integration (EAI) in
the previous chapter, this chapter identifies problems of EAI with respect to business
process integration in e-business. In particular, the problematic situations identified in
this chapter are

1. free definition of interface objects,

2. behavioral information only in experts’ heads, and

3. manual exception handling.

This chapter is structured as follows: Section 3.1, Section 3.2, and Section 3.3
describe the three problematic situations listed above. In Section 3.4, we derive require-
ments for a solution of the three situations.

3.1 Free definition of interface objects
Starting to implement after designing has the highest probability to end up in a high-
quality implementation. However, a thorough design step has disadvantages. It is
costly, and it is not always possible to foresee all potential uses of the artifacts modeled.
Practitioners differ from theoreticians in that they start implementing before a design
is worked out to its ultimate completion. That has been the driver for many years of
research in software engineering which provides tools and procedures to target the
lowest achievable combined effort of design and implementation as a trade-off between
the two. Still, the result are artifacts that are not sufficiently structured to optimally
allow later reuse, and maybe even redundant implementations of the same concepts in
slightly different ways.

While redundancy is not as problematic during software design—except labor that
could have been spared,—the bigger problem starts with using the redundant system,
especially when business partners—customers or other collaborators—heavily rely
on its continuous functioning such as in the area of enterprise software. Albeit many

28 CHAPTER 3: PROBLEMS AND REQUIREMENTS

development support tools, software maintenance is still a big cost driver in IT (see
Mens and Tourw, 2004). We now examine why a redundant system—i. e., a system
containing redundant artifacts—increases the cost of software maintenance.

3.1.1 Maintenance effort
From the release, a software product undergoes two kinds of change. First, bugs are
being fixed, and second, missing features are being added on. Both are problematic in a
redundant system.

Change impact

Adapting a redundant system causes an unnecessary multiplication of the cost of the
change. There are two main reasons for that. Adapting a redundant system yields the
potential of

1. inconsistently changing the redundant assets, and

2. overseeing some assets that also need change.

Reuse

Adding to an existing system raises the similar question

• whether to reuse some existing artifacts, or

• whether to create new artifacts from scratch.

The reuse of artifacts is difficult if there are multiple, obviously related—i. e.,
redundant—versions of the same artifacts because one would like to pick the most
relevant, up-to-date, and appropriate artifact for reuse.

3.1.2 Interrelation of redundancy levels
The redundancy problem gets more complex when we consider that redundancy can
occur at different types of artifacts. Let’s consider Figure 3.1 on the facing page as an
example for a system containing redundant artifacts. The level of IT system interfaces
is the level business partners use to integrate. That means, once an interface of a
provider (for example, a shipper like Amazon1) is exposed to be used by requesters
(for example, a carrier like FedEx,2 or UPS3), it must be maintained throughout all
subsequent releases. That becomes an unnecessary burden if the same functionality

1http://www.amazon.com/
2http://www.fedex.com/
3http://www.ups.com/

http://www.amazon.com/
http://www.fedex.com/
http://www.ups.com/

3.1 Free definition of interface objects 29

1. is presented via alternative interfaces (the code fragment 1 provides the redundant
interfaces 1 and 2 in Figure 3.1), or even

2. is redundantly implemented (the redundant code fragments 1 and 2 provide the
redundant interfaces 1 and 2 in Figure 3.2 on the next page), or moreover

3. is implemented using different internal data types (the redundant code fragments 1
and 2 provide the redundant interfaces 1 and 2, and use the redundant types 1
and 2 in Figure 3.3 on the following page).

A change of the functionality reflects in the need to unnecessarily adapt

• interface 2 in the first case,

• interface 2 and code fragment 2 in the second case, and

• interface 2, code fragment 2, and type 2 in the third case.

Figure 3.1: System with redundancy caused on interface level.

3.1.3 Summary
The main challenge on the data integration layer (see Figure 2.2 on page 16) for
enterprise integration in e-business is that different enterprises, and even different
applications within the same enterprise, may use different data types for the same
real-life object they refer to. In a community of willing integration participants, the
problem multiplies. On the API integration layer (see Figure 2.2 on page 16), different
Web services and operations may have been defined to access the same, equivalent, or
similar implementations.

In addition to syntactic mismatches like different languages used to name tags, there
are semantic mismatches. Two tags carrying the same name may indeed mean different
things in the different contexts they are used. A very unnatural, but unfortunately

30 CHAPTER 3: PROBLEMS AND REQUIREMENTS

Figure 3.2: System with redundancy caused on implementation level.

Figure 3.3: System with redundancy caused on data type level.

very common semantic mismatch is the misuse of a field by filling it with data of a
completely disjoint domain. That mostly happens due to the lack of a field of the needed
domain.

The third form of mismatches concerns implementation-level mismatches. The
most prominent cause for implementation-level mismatches are different value lists.
For example, in the United States, mostly the employer identification number (EIN)4

is used for referring to an institution, whereas in the European area more commonly
the data universal numbering system (D-U-N-S)5 is used. An employer active in both
markets may have a different reference number depending on the context where it is
referred.

4http://www.irs.gov/businesses/small/article/0,,id=98350,00.html
5http://www.dnb.com/us/duns_update/index.html

3.2 Behavioral information only in experts’ heads 31

3.2 Behavioral information only in experts’ heads

There are two main challenges with contemporary Web service descriptions: the gap
between technical and ontological representation, and a lack of information on operation
interdependencies. Both can be subsumed under unmodeled information.

3.2.1 Technical representation vs. ontological meaning

A Web service description as provided by the prominent technology WSDL describes
what is needed to technically invoke a Web service. Although a WSDL document
describes the types of operations, its parameters and their detailed structure, it lacks
to state the different potential meanings of an operation for a business process. It is
very common that such information is hidden in specific values of a message. Thus, a
different instantiation of the abstract message type “purchase order” may actually once
be a purchase order request, another time a purchase order acceptance, and a third time
a purchase order cancellation, depending on, for example, a type code field which might
be part of the purchase order message (Fensel and Bussler, 2002).

3.2.2 Potential communications

A prerequisite for complex workflow integration is enumerating the potential commu-
nications between the IT systems to be integrated. That is one of the two by far most
work-intense tasks in IT system integration besides the actual design of the collaborative
business process (Küster et al., 2007, Pistore et al., 2005c). That information is normally
not stored. It resides in the heads of experts who know what the potential connections
are, or they detect them from looking at the message types.

3.2.3 Operation interdependencies

The second challenge of Web service descriptions for e-business is that there is no
machine-interpretable information on how different operations included in the descrip-
tion may depend on each other. For example, an online purchasing system may provide
three Web services: login, search, and order. Whereas the owner of the system does
not care whether the customer directly orders without searching for products, they may
indeed care that a customer is logged into the system before they place an order.

The current take on the matter is that Web services are said to be stateless. That
means, that a Web service may be invoked at any time without breaking the system.
However, that definition does not say how a Web service may successfully be invoked.
In practice, a wrong execution order of Web service operations results in a failure
response. Receiving a failure response at run time is neither helpful for an automated
system nor an unskilled human trying to generate a meaningful execution sequence of
the Web service’s operations at design time.

32 CHAPTER 3: PROBLEMS AND REQUIREMENTS

From an architectural point of view, a Web service is an interface to manipulating
data objects in the background. Thus, the operations of a Web service are lifecycle
methods of the underlying data object. The lifecycle, and thus the sequencing of Web
service operations, is constrained by the following three factors:

1. An obvious reason for the need for sequencing is a message dependency of two
operations. If an operation oreceive requires an input which can only be provided
by another operation osend, then osend must be executed some time before oreceive.

2. Business requirements may be the reason for a mandatory operation sequencing
although technically a concurrent execution would be possible. For example, a
buying service may state that it would give its credit card information only after
an offer was made and accepted. Another example is the two-step authorization
procedure where a purchase order, before being issued, first needs to be checked
by a representative of the financial department and subsequently, depending on the
amount, also by the representative’s manager. The business reason for sequencing
is clearly to reduce the amount of authorization requests that hit the financial
department representative’s manager.

3. Finally, the most profound reason for the need to sequence at the interface level is
that a Web service may be implemented in a way that the invocation of operations
in the wrong order will always fail. There does not even need to be any reason for
that—it suffices that the implementation cannot cope with any other invocation
order. Such an inflexible implementation may be due to a poor software design
which may be due to cost constraints during software development.

A practical observation is that about 80% of integration code manages the sequen-
tially correct invocation of lifecycle methods of the underlying data objects, and only
20% are actual business logic. A company’s IT system’s lifecycle information is being
established at component design time and must be observed for each integration with
partners. That information needs to be re-engineered for each integration project at
integration design time, if no proper reuse mechanism is in place.

Example

Let’s consider the example of a consortium of schools managed by a common head
quarter. The collaborative business process to compose is the transfer of a student from
one to another school in the consortium. The desired process depicted in Figure 3.4
on the next page involves the retrieval of active student enrollment information from
the old school, the matriculation at the new school, and the removal from the register
of students at the old school. Now assume, that upon removal from the register of
students, the old school actually deletes the student’s record. Thus, any subsequent
invocation of the retrieval operation will fail. The knowledge that retrieval must always
be invoked before deletion is established during component design time. In addition, we
observe that the student matriculation service at the new school also accesses student

3.3 Manual exception handling 33

information. Since old and new school however play different roles in the student
transfer process, the invocation of the enrollment operation of new school is completely
independent of the retrieval and deregistration at the old school. The information that
student information is managed at two independent locations, and thus creation at new
school can be invoked after deletion at old school is only available at integration design
time.

Figure 3.4: Desired business process. HQ: Head quarter, OS: Old school, NS: New
school.

3.3 Manual exception handling
As elaborated before, EAI faces the challenge to overcome semantic, syntactic and
implementation heterogeneities. Business process management systems support the
design, execution and monitoring of business processes. The only manual part is the
design of business processes, which in fact is a relevant research topic as a multitude
of research publications in the area of process integration indicate. The challenges of
business process design involve multiple integration participants, whose IT systems
must coherently evolve during the execution of a business process. The core is that all
participants coherently have to pursue some common goal in the collaborative process.
Such a goal may either exclusively concentrate on the desired outcome of the process,
or also state acceptable fall-back outcomes.

3.3.1 Desired outcome as a goal
Commonly pursuing a goal means that all participants have to cooperate in a way that
activities being required by a later process step have been executed by a participant in a
former process step. Here, activities includes operation interdependencies discussed
before with the addition that such interdependencies can now span multiple participants,
and with the difference that only interdependencies that affect the business goal need to
be considered. Cross-participant operation interdependencies are inherent to business
integration, as the reason for cooperation is to achieve a common business goal by
combining the capabilities of the partners. A collaborative business process must have
the potential to achieve the business goal when executing the process.

3.3.2 Goal includes fall-back outcomes
Correctly treating fall-back outcomes becomes important as soon as operations in a
process have side effects, which is the standard case in business processes. For example,

34 CHAPTER 3: PROBLEMS AND REQUIREMENTS

consider a process step that takes money from a customer’s bank account and books a
flight ticket for the customer. That shall, for example, only happen if another process
step successfully rented a hotel room for the customer. Here, it is important that the
participating process steps are either both completed or none of them. That behavior
is also known as transactionality. We are able to specify transactionality by explicitly
stating the desired and the acceptable outcomes of a business process. That definition
includes that no other outcomes are ever produced by the business process.

A subproblem of transactionality is called exception handling. Exception handling
is ensuring transactionality in the presence of undesired IT system responses that may
hinder the achievement of the primary business goal. Undesired system responses may
result from

non-deterministically observable system implementations, such as a flight booking
service may either respond positively or negatively;

faulty implementation exceeding the system’s interface contract, for example, a system
proposing to always accept a reservation, but at execution time responds with a
decline message; or

system failure on a lower level, for example, the invoker of a flight-booking service
does not receive its answer in the case the network connection dropped due to
hardware failure or break-down of a network connection.

Common practice proposes to handle issues on the level they occur. As business process
management relies on the contracts Web service descriptions provide, the issues of
faulty implementation and system failure are out of the scope for this dissertation.

3.4 Deriving requirements
As discussed in this chapter, the causes for challenges of business process integration
reach down to the layers of business process, API, and data integration. In particular,
we identified the challenges of

• free definition of interface objects,

• behavioral information only in experts’ heads, and

• manual exception handling.

A free definition of interface objects yields the risk of inconsistency among different
object types that are used for the same purpose. In the case of change, the redundant
object types have to be altered correspondingly. That makes their maintenance expensive
as explained in Section 3.1 on page 27.

Information residing only in the heads of experts, and thus especially being not
accessible for machines, tends to be forgotten. That results in redundant behavioral

3.4 Deriving requirements 35

models that require expensive maintenance. The later in the software production process
an error is detected after the introduction of the error, the more costly is the correction.

Manual exception handling is a difficult job to perform, and therefore may yield the
risk of a low-quality implementation that can, of course, be countered by more expenses
for the development or testing. However, some failures will only show up at run time,
which reduces customer satisfaction.

From the challenges identified, we derive the following requirements for our solu-
tion:

• detect redundant interface objects,

• track behavioral information through software design phases, and

• mechanically support exception handling.

The challenges, risks, problems, and requirements named in this section are also
collectively displayed in Table 3.1.

Table 3.1: Requirements

Situation Risk Problem Requirement

Free definition of
interface objects

Inconsistency
through
redundancy

Expensive
maintenance

Detect redundant
interface objects

Behavioral
information only
in experts’ heads

Forgetting
knowledge &
redundant
models

Expensive
reengineering &
late corrections

Track behavioral
information through
software design phases

Manual
exception
handling

Low quality of
implementation

Development
expensive, failures
only at run time

Mechanically support
exception handling

In the rest of this section, we further detail the requirements. The elaboration brings
together the facts from Chapter 2 with the challenges from the beginning of this chapter.

3.4.1 Detect redundant interface objects
Interface objects relevant for business process integration can be grouped into

• data types and

• Web service definitions.

36 CHAPTER 3: PROBLEMS AND REQUIREMENTS

Both groups have in common that they are hierarchical types. In particular, a data
type can contain complex elements that are defined as data types themselves. A Web
service definition consist of operations. Operations consist of messages. Messages are
structured according to data types.

Using the available information, detecting redundant interface objects means to
search for overlap in the technical definitions of the interface object types. How that
is related to finding ontological redundancy will be detailed later. Different redundant
interface object types can be uniquely identified by their overlap. As the task is to
identify redundant interface object types among a possibly large set of interface object
types, a solution is sought that computes all unique overlap groups at once as that
is expected to yield a better performance over a one-to-one comparison and later
integration of the single results.

Reviewing the literature on methods in artificial intelligence (AI) reveals that the
method of closed frequent itemset mining (CFIM) solves a very similar task. Therefore,
the more refined problem of this dissertation is to utilize and adapt CFIM to detect
redundant interface object types. Details on the technique follow in a separate chapter
on the structural alignment part of our solution.

3.4.2 Track behavioral information through software design
phases

The challenge with behavioral information only in experts’ heads is

1. to cover the information in a form that it can be further used by a machine and

2. to keep and transform the information over the different phases of component-
based software development.

Covering the behavioral information means to introduce a model that is capable of
storing or deducing

• ontologically different outcomes of a service,

• operation sequences that must be followed, and

• potential data flow between different services.

In addition, the model of behavioral information must be mapped to the definition of
the respective Web service operation.

Keeping and transforming behavioral information during the software development
lifecycle means to have a representation for behavioral information during

• component design time,

• integration design time, and

3.4 Deriving requirements 37

• run time.

The model at component design time contains a description of the general back-
office capabilities of a software component. The integration design time model uses a
fragment of the behavioral model at component design time and may introduce new
behavioral constraints to the model. However, no operation execution sequences that
were not allowed in the component design time model must be allowed in the integration
design time model.

As an integration design time model can be understood as a view of the component
design time model, it is desired that there is no duplicate implementation of functionality
in the integration design time that existed in the component design time model.

The behavioral model at run time in the Web service architecture is an orchestration
of Web services. Again, the orchestration is a view of a set of participating behavioral
models. It should thus not exceed the restrictions imposed by the integration design time
models. In the best case, the orchestration is directly executable to minimize consistency
problems that would arise if executable code was built based on the orchestration model,
which could then separately being altered.

As integration design time and run time models are views, an ideal solution would
produce a directly executable orchestration that crosses the integration design time
model and directly utilize the preferably executable component design time model.

3.4.3 Mechanically support exception handling
Realistic Web services have alternative outcomes. For example, approval or denial
may be communicated via the same response message type by setting a flag inside the
concrete message object at run time. However, a human process designer starts not
with looking at particular Web services, but thinking of the business goal a business
process should pursue. Based on that goal, the human process designer seeks for
services that contribute to the goal. After identification, the Web services need to be
ordered according to their behavioral requirements. When a preliminary sequencing is
done, the used Web services are checked whether their contract, or their Web service
description, contain information about responses alternative to the responses desired for
pursuing the business process goal. If such responses exist, the human business process
designer would create compensation Web service operation sequences that handle the
exception and bring the running business process instance to a controlled, consistent
end. Building the compensation sequences may affect the initial sequencing that was
chosen for the other Web service operations. In conjunction with realigning the whole
business process, also the data flow between the Web service operations needs to be
defined.

With the behavioral information described in Section 3.4.2 on the facing page,
an automatic proposal for the sequencing should be feasible. In addition, the CFIM-
like message type analysis from Section 3.4.1 on page 35 could be used to propose
potential communications. In an ideal solution, the human would need to define the

38 CHAPTER 3: PROBLEMS AND REQUIREMENTS

process goal with respect to the behavioral model and check and correct the potential
communications found from the message type analysis. A semi-automatic process
designer would prepare a business process proposal that the human process designer
could again check and adapt. Additionally, an ideal solution would only allow those
adaptations by the human that conform with the behavioral models of the participating
operations.

Chapter 4

Shortcomings of Existing Approaches

In this thesis, we consider the three challenges of free definition of interface objects,
behavioral information only in experts’ heads, and manual exception handling. We start
with a restatement of the requirements on the properties an ideal solution would have.
Afterwards, we assess the current state of the art with respect to the requirements.

An ideal solution to the support of business process integration should address the
issues discussed in the previous chapter. That is,

1. detect redundant interface objects, or otherwise ontologically and technically
tackle the free definition of interface objects on the data and API integration layer,

2. track behavioral information through software design phases, or make behavioral
information only in experts’ heads otherwise manageable, and

3. mechanically support exception handling, or otherwise support manual exception
handling, including

• respecting each partner’s operation invocation sequencing requirements,

• ensuring that the desired outcome may be achieved, and

• ensuring that only desired or acceptable outcomes are the result of every
execution.

We structure this chapter based on the requirements listed above. Section 4.1,
Section 4.2, and Section 4.3 discuss existing approaches that work toward the listed
requirements. Section 4.4 summarizes the existing approaches and states how our
solution builds upon the existing work.

4.1 Detect redundant interface objects
The closest existing, related work to detecting redundant interface objects can be found
in the areas of

40 CHAPTER 4: SHORTCOMINGS OF EXISTING APPROACHES

• XML schema definition and Web service mining,

• software restructuring,

• schema matching and ontology alignment,

• clustering, and

• data mining.

4.1.1 XML schema definition and Web service mining

There exists work for the explicit mining of XML schema definitions (see Dong,
2005, Termier, 2004). However, that work considers the tree structure of XML during
mining. We argue that the approach is too fine-grained for an ontological analysis as
the structuring of certain elements may be for the whole sake of grouping and does
not contribute to the meaning of the single sub-elements. Moreover, although efficient
algorithms exist, mining trees adds computational expense (Zaki, 2002). As our focus is
both on an ontological and a scalable approach, we will rather analyze the substructure
as a plain set as we will detail later.

In Web service mining, approaches are to our knowledge either based on some
distance calculation (see, for example, Wang and Stroulia, 2003), thus rather belong to
the clustering domain, or perform an analysis of operation and parameter names (see,
for example, Dong et al., 2004) without considering the data structures.

As we could not identify appropriate methods to address our requirement to detect
redundant interface objects in its natural domain, we widen our view to other domains
of computer science in order to find related concepts.

4.1.2 Software restructuring

In the field of software restructuring and refactoring, formal concept analysis is used
for the mining of redundancies in data types (see Mens and Tourw, 2004). Formal
concept analysis bases on the lattice theory performing graph operations to identify
concepts out of sets of objects that share common attributes (see Ganter and Godin,
2005, Snelting and Tip, 1998, Stumme et al., 2002). Work in that area looks promising
from the performance perspective. There was also research performed using clustering
for data reorganization (see McCormick et al., 1972). However, as concluded in a more
recent work, clustering is different from frequent itemset mining and less appropriate
for the task of detecting redundant interface objects (see van Deursen and Kuipers,
1999).

4.1 Detect redundant interface objects 41

4.1.3 Schema matching and ontology alignment
There is a lot of work done in the areas of schema matching (see Rahm and Bernstein,
2001, Shvaiko and Euzenat, 2005) and ontology alignment (see Kalfoglou and Schor-
lemmer, 2005, Noy, 2004). A rather new approach is a combination of both, which is
concerned with using an ontology to improve schema matching, performed by Drumm
et al. (2007b).

The main setting for schema matching and ontology alignment is the respective
existence of two schemas or ontologies that are being tried to align using an automated
procedure. First approaches on schema matching focused on seeking structural similari-
ties of the two schemas. Later, the labels of schema entities were considered as well.
Ontology alignment expands the similarity measures by using ontology reasoning.

The contemporary schema matching tools follow the same procedure:

1. A similarity matrix is defined as the cross product of the set of all schema entities
with itself.

2. A set of matchers is employed. Each matcher creates values for the similarity
matrix.

3. The different values of the similarity matrix that originated from the different
matchers are combined using an aggregation function, such as the average func-
tion.

The aggregated similarity matrix is the result of the schema matching and presented to
the user. The result of a schema matcher must always be checked by a human since the
matcher results represent probability values that suggest the similarity of the entities.

However, work in that area may not solve the problem of free definition of types
or the requirement of detecting redundant interface objects. The reason is that the
approaches in the area of schema matching consider two interface objects at a time and
deeply analyze their similarity. However, for solving the named problem, it is important
to identify a common overlap of multiple interface objects. A one-to-one comparison
cannot directly serve that purpose. It could, of course, be used to compare each pair
of messages which adds up to n(n−1)

2
computations for n message types. However,

the complexity of the matcher adds to the complexity which makes the approach less
feasible.

4.1.4 Clustering
Clustering relies on a similarity measure between pairs of entities that is used to group
entities into clusters so that entities within a cluster have high similarity in comparison
to one another, but are very dissimilar to entities in other clusters (Han and Kamber,
2006). However, the contributions in the area of clustering cannot be applied to the
challenge of detecting redundancy as a similarity measure considers the properties of

42 CHAPTER 4: SHORTCOMINGS OF EXISTING APPROACHES

single entities, but not properties of clusters. We demonstrate the difference with the
following example.

Let’s consider the sets S1 = {a, b, e, f}, S2 = {a, b, c, d}, and S3 = {c, d, e, f}. A
similarity measure d for clustering sets with redundant elements could be defined as the
size of the intersection of two sets. Calculating the similarity measures for all pairs of
sets yields

d(S1, S2) =|S1 ∩ S2|= |{a, b}| = 2,
d(S2, S3) =|S2 ∩ S3|= |{c, d}| = 2, and
d(S1, S3) =|S1 ∩ S3|= |{e, f}| = 2.

As all pairs have the same similarity measure, which is also larger than 0, all sets—S1,
S2, and S3—are determined equally similar to each other and would therefore be
clustered together in one cluster in our example. That is however not the desired result
because for detecting redundancy, it is important to discover that S1 and S2 contain
{a, b}; S2 and S3 contain {c, d}; and S1 and S3 commonly contain {e, f}. Instead
of a similarity value calculated in a pairwise manner, the exact commonality of the
entities should be the measure used to form groups in order to be useful for detecting
redundancy. That type of analysis is natively achieved by closed frequent itemset
mining, which is presented in the following section.

4.1.5 Closed frequent itemset mining
A lot of work has been carried out in the area of pattern mining. The technique most
appropriate for the requirement to detect redundant interface objects is closed frequent
itemset mining because it returns a maximum overlap between flat structures. The
problem is defined as follows:

Transactions and items. A set of transactions P and a set of items A are given.

Itemsets. Each transaction P ∈ P is defined as a subset of A. A subset of A is also
called an itemset.

Occurrences. Every transaction P containing the itemset A is called an occurrence of
A. The set of occurrences of A is denoted by P(A).

Frequency and support. An itemset A ⊆ A is frequent, if there are at least φ transac-
tions in P that subsume A. We call φ the minimum support.

Closed frequent itemset. An itemset A ⊆ A is a frequent closed itemset if there is no
other A′ with P(A) = P(A′) and A ⊂ A′.

Closed frequent itemset mining. Closed frequent itemset mining discovers all closed
frequent itemsets of a given set of transactions P .

4.2 Track behavioral information through software design phases 43

However, the traditional closed frequent itemset mining does not exactly meet the
requirement. Part of the reason is that its original purpose was market basket analysis.
Market basket analysis mines the selling transactions of a retail store. It reports patterns
in the purchasing behavior of the store’s customers. A result of market basket analysis
might, for example, be that 70% of the customers have bought bread, butter, and cheese
together. If there was an online store of that company, it could use that information
by proposing a customer to add butter to their cart, if the cart just contained bread and
cheese. That application is very targeted and does, for example, neglect structured
transactions.

Fortunately, closed frequent itemset mining was deeply studied during the Internet
boom in the early 2000s and an abstract description can be found in several textbooks
Berry and Linoff (2004), Han and Kamber (2006), Petersohn (2005), Witten and Frank
(2005). The naming of its elements as transactions and items still reminds of its origin.

Efficient algorithms exist for the mining of closed frequent itemsets. For example,
formal concept analysis uses lattice theory, a special graph theory, for the representation
of common attributes of objects. It has led to the development of efficient closed
frequent itemset mining algorithms (Zaki et al., 2005).

4.2 Track behavioral information through software de-
sign phases

Research for the purpose of e-business in the recent years focused on creating a holistic
approach to tackle the challenges jointly under a common umbrella—a framework. Two
major kinds of framework can be identified. The semantic Web services frameworks
and the grid frameworks. Both share the common target of increasing automation of
main tasks of the Web service lifecycle.

• Automated discovery should improve the features of today’s Web service reg-
istries, particularly UDDI (Clement et al., 2004), by going beyond keyword-based
discovery.

• Automated selection should support choosing one Web service for invocation
of a set of functionally equivalent services. Thus, properties considered during
selection are non-functional.

• Automated composition should simplify the procedural connection of different
business partners.

• Automated execution and automated monitoring should improve the running
and maintenance of IT systems by reusing gathered information for standard
activities.

44 CHAPTER 4: SHORTCOMINGS OF EXISTING APPROACHES

4.2.1 Semantic Web services frameworks
Semantic Web services is an area of research triggered by the research area of the
semantic Web as the application of semantic Web concepts in the area of Web services.
The idea behind semantic Web services is to add further information to the information
available in industrial Web service descriptions as, for example, in WSDL. A number
of competing frameworks has been proposed: OWL-S, WSMO, and METEOR-S.

Ontologies: The foundation of the semantic Web

The term ontology has been widely used by many communities using different def-
initions. The origin of the term ontology is in philosophy. Here, ontology means
the science of being (see Rosenkrantz, 1998). Ontology discovers approaches to sort
out what things and kinds of things exist. The first to perform ontology research was
Aristotle who introduced the notion of 10 different categories of being, namely, sub-
stance, quantity, quality, relation, place, time, posture, possession/habit, action, and
passion (receiving). In computer science, the term ontology is used to refer to one
understanding of the things in the world. As one computer program is a model, by
definition, it only works on a subset of the world (see Stachowiak, 1973). Therefore,
the ontology it utilizes needs only describe parts of the whole set of existing things.
Other programs may describe a different set of things needed for their purposes, and
again other programs may use a different conceptualization to categorize existing things
as there were more than one basic category proposals in philosophy as well. For the
sake of computing with ontologies, Gruber (1995), Staab and Studer (2004) introduce a
definition of ontology as “a formal, explicit specification of a shared conceptualization.”

In this thesis, we use the weaker, more abstract, definition of the term ontology as

“a set of vocabulary definitions that expresses a community’s consensus
knowledge about a domain. This body of knowledge is meant to be stable
over time and can be used to solve multiple problems.” (Gruber, 1995)

That definition contains two features:

1. Community. The term “community’s consensus knowledge” refers to a group of
users of the ontology that agree upon the assertions the ontology makes.

2. Definitions. An ontology constitutes a specification that is binding to the members
of the community.

In contrast to the original definition of Gruber (1995), Staab and Studer (2004), the
definition of this thesis does not include a formal model-theoretic semantics of the
ontology and no methodologically well-designed conceptualization of the matter of
discourse. Whenever we use the term ontology in conjunction with external work, the
definition of Gruber (1995), Staab and Studer (2004) is meant. Whenever we use the
term ontology in the context of the contribution in this dissertation, the definition of
this thesis is meant.

4.2 Track behavioral information through software design phases 45

OWL-S

The Web ontology language for Web services (OWL-S)1 originated from the DARPA2

agent markup language for services (DAML-S).3 OWL-S is an ontology expressed in
the Web ontology language (OWL).4 OWL-S describes three facets of Web services:
profile, process, and binding. The profile contains general input, output, precondition,
and effect (IOPE) definitions of a Web service. In addition, a category and a function
can be annotated to a Web service by linking it to one concept of any OWL ontology.
The process describes how the IOPEs distribute over the single operations of the Web
service. The binding describes how the Web service endpoint connected to the semantic
Web service description can be invoked.

WSMO

The Web service modeling ontology (WSMO)5 provides a general, conceptual model
for specific Web service models, a concrete language for Web service descriptions (the
Web service modeling language WSML),6 and the reference implementation WSMX
(the Web service model execution environment).7 There are different dialects of WSML,
among them are WSML-DL, which bases on description logics (DL, see Baader et al.,
2007), WSML-Flight, which bases on F-logic (Kifer and Lausen, 1989), and WSML-
Rule, which allows for the specification of rules executed similar to the Rete algorithm
(Lausen et al., 2005).

METEOR-S

Unlike OWL-S and WSMO, which were motivated top-down from a conceptual model
toward the concrete implementation, the approach of the METEOR-S framework
(Verma et al., 2005) is to start from widely accepted languages, such as WSDL, and
add semantic annotation only where needed. One of the results of that approach is
semantically annotated WSDL (SA-WSDL). SA-WSDL is WSDL plus the possibility
to add an annotation to each part of the WSDL description.

4.2.2 Model-driven software development approaches
The need for appropriate documentation of software behavior is well-known in the
field of software engineering. However, documentation produced throughout software
design is stored in natural language. The model-driven software development (MDSD)

1http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
2http://www.darpa.mil/
3http://www.daml.org/services/
4http://www.w3.org/TR/owl-features/
5http://www.wsmo.org/
6http://www.wsmo.org/wsml/
7http://www.wsmx.org/

http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.darpa.mil/
http://www.daml.org/services/
http://www.w3.org/TR/owl-features/
http://www.wsmo.org/
http://www.wsmo.org/wsml/
http://www.wsmx.org/

46 CHAPTER 4: SHORTCOMINGS OF EXISTING APPROACHES

approach aims at producing machine-interpretable documentation in the form of models
which can then be transformed to other models or executable code (Stahl and Voelter,
2006). Unfortunately, many different models addressing different purposes exist in
different phases in the development process, for example, use case, component, object,
or collaboration models (Booch et al., 2005). Furthermore, many of the popular models
in software engineering, as, for example, UML8 activity and class diagrams, have no
well-defined semantics, which makes the interpretation of their integration difficult.
MDSD rather focuses on helping the software engineer with maintaining consistency
between the models instead of performing higher-order services, such as generating
transactionally correct orchestrations, as we do.

4.3 Mechanically support exception handling
Different approaches have been proposed to support procedural interoperability. The
approaches range from no automation to mechanically support exception handling of
complex services with complex goal requirements (see Rao and Su, 2004).

4.3.1 Manual approaches

The majority of contemporary BPMS provides no mechanic means to support the
design of collaborative business processes. They rather allow asserting activities, data
transformations, and data and control flow. Research in the area of manual approaches
keeps the human task of manually sequencing the business process constituents, but
supports that task by

• utilizing patterns or templates (see Benatallah et al., 2002, Karastoyanova and
Buchmann, 2004, van der Aalst et al., 2003),

• utilizing knowledge from existing processes via recombination (see Bernstein
et al., 1999), or

• allowing specification and verification of interesting properties of the objects
involved in a business process and on the business process itself (see Gerede and
Su, 2007, Salaun et al., 2006).

The clear advantage of the manual approach is that human users are kept tightly in
the modeling loop and have a good chance to trust the result as they observed the whole
manual creation procedure.

The disadvantage of the manual approach is that the human user has no support
in assessing whether the created business process correctly handles all known error
situations, or each execution always arrives at some acceptable outcome.

8http://www.uml.org/

http://www.uml.org/

4.3 Mechanically support exception handling 47

4.3.2 Assuming singular Web service response
The first kind of automatic approaches assumes that a Web service only responds in
one possible way when invoked. Approaches generating business processes from Web
services under that assumption mostly make use of goal-driven AI planning to plan for
a simple goal to achieve. Examples for that approach are e-workflow of Cardoso and
Sheth (2003), the ASG composer from Meyer et al. (2005), and others (see Doshi et al.,
2004, Kim et al., 2004, Mayer et al., 2003).

AI planning needs the following prerequisites:

• A semantic description of an operation consists of its preconditions and effects.
Preconditions and effects are characteristics of the world before and after the
execution of the operation.

• The current situation is a description of the current state of the world of discourse.

• The goal describes the characteristics of a desired world.

The task of AI planning is to find such a partial-order sequence, or plan, of instantiated
operations, called actions, that, when executed, transforms the current world into a
world meeting the goal description.

The advantage of primary goal approaches is that the generated action sequence by
construction is correct and consistent in that it is guaranteed to reach the desired final
state if the operations work as described.

However, for planning with IT systems, managing exceptional situations due to a
non-deterministic answer of a service must be taken into consideration. That is dealt
with by approaches presented in the following section.

4.3.3 Considering alternative Web service responses
Further work considers that a Web service call can have a multitude of alternative
responses. As invokers of a Web service usually do not know which of the alternative
kinds of responses they will receive, we call the Web service behavior non-deterministic.
Automatic approaches to create a business process considering non-deterministic Web
service behavior differ in whether they try to reach a simple goal or a complex goal.

Simple-goal-based approaches

Simple-goal-based approaches can be further split to design-time and run-time ap-
proaches based on the time when a composition is generated.

Design-time approaches. Among the design time approaches, one set of approaches
assumes an annotation attached to each operation of each participant that states its
relation to other operations. These approaches add rules or preconditions and effects to

48 CHAPTER 4: SHORTCOMINGS OF EXISTING APPROACHES

atomic tasks which express certain dependencies between the single tasks (see Chun
et al., 2002, Laukkanen and Helin, 2003).

The second set of approaches assumes an explicit workflow representation of each
participant’s software system. The composer from ILOG9 presented by Albert et al.
(2005a;b) is an example of the second group.

The ILOG composer origins from the DIP10 project which operates upon the WSMO
language. Although WSMO uses abstract state machines (ASM, Börger and Stärk,
2003) to express one participant’s behavioral interface, ILOG’s approach foots on a
translation from ASM to UML activity diagrams (UML AD). The ILOG composer
takes two or more UML ADs and combines them to a unified UML AD containing the
process steps of all participants’ behavior descriptions.

The composition is performed by reducing the composition problem to a config-
uration problem. That is done in such a way that a configuration engine performs a
backward chaining of operations based on their inputs and outputs. An output can
be assigned to an input if both are annotated by the same WSMO concept. Thus, a
semantic alignment has to be done upfront.

Run time process generation. The research area of business process generation
during run time can be further separated into approaches which create partial action
plans and steer the process based on the plan and approaches that create no plans, but
rather align the separately executing business processes without intervention.

The work of Cimpian (2007) is an example for run time process generation without
intervention. The approach bases on the WSMO framework. The business process
is generated by observing the messaging of the business process at each participant’s
system and routing the messages appropriately. The drawback of that approach is that
the potential of alignment that can be achieved is limited because routing decisions
earlier in the process execution can not be made considering routing options later in the
process execution.

The paradigm of software agents, especially the beliefs, desires, and intentions
agents (BDI agents), can be understood as an example for run time process generation
with intervention. In that paradigm, a software agent is an autonomous entity that
observes its environment, pursues goals, changes the environment through actions,
and communicates with peer agents or humans. A BDI agent is imbued with mental
attitudes.

• Beliefs represent the agent’s view of the world.

• Desires represent the goals an agent may pursue in general.

• Intentions are goals the agent has committed to pursue.

• Plans are action sequences achieving goals by changing the environment.
9http://www.ilog.com/

10http://dip.semanticweb.org/

http://www.ilog.com/
http://dip.semanticweb.org/

4.3 Mechanically support exception handling 49

A plan may contain further goals for which another plan needs to be built as soon as
execution reaches such a step. The BDI agent thus computes a plan at run time which
may be incomplete. The agent executes its plan and thus steers the business process.
The BDI agent may react to non-deterministically behaving IT systems through its
observations and may adapt its plan accordingly.

We have participated in an effort to use a technology inspired by the BDI agent
paradigm to perform flexible and consistent enterprise management—called “goal-
driven enterprise management” (GEM, see Kaiser, 2007, Kaiser and Lemcke, 2008,
Kubczak et al., 2008, Lemcke et al., 2008). In the GEM approach, each software agent
has a clearly defined scope to observe and influence the environment. For enterprise
management, the scope should be matched with the business areas of a company, such as
CRM, SCM, and HR. That way, the maintenance of the semantic declarations remains
restricted to a manageable size and the planning remains feasible due to the restricted
set of operations an agent may utilize. GEM deals with non-deterministic systems
by replanning. That method does not ensure that an acceptable outcome may always
be reached. For these cases, forward conflict resolution must be performed which is
common to today’s business software. Although we could show that GEM may manage
the near-real-life systems at the semantic Web services challenge (SWSC, see Kubczak
et al., 2008, Lemcke et al., 2008), the run time approach yields the disadvantages we
discuss in the following section.

Discussion. The design time and run time approaches differ in when they construct
the business process. Using the design time approach, the business process is generated
before being executed. The advantage is that all non-deterministic branches could be
commonly evaluated—although not done by the approaches presented in this section.
Thus, the composition algorithm could deal with all known exceptions consistently.
Consequently, once a business process was created, it is known to consistently deal with
all situations arising from non-determinism.

On the other hand, the design time approach needs an extra mechanism to deal
with unknown exceptions. Additionally, a change in business policies or operation
definitions needs the explicit recreation of all touched business processes at once. That
may be unfortunate in an environment that changes very often.

These shortcoming are at the same time the advantages of the run time approach. As
it does not compute business processes upfront, changes of the environment—policies
and operations—are incorporated without extra effort in newly requested business
processes. Unknown exceptions need no extra treatment compared to known exceptions.
The disadvantage of the run time approach is that upon occurrence of an exception, it is
not guaranteed that a solution can be found at all that leads to an acceptable final state.

The solution we are going to present in the following chapters is a design time
approach following the main ideas of the work from Pistore et al. (2005c). In contrast
to the top-down approach from Pistore et al. (2005c), we use a minimalistic approach
starting bottom-up by only adding features definitely needed to tackle the procedural

50 CHAPTER 4: SHORTCOMINGS OF EXISTING APPROACHES

integration problem. These solutions belong to the complex-goal-based approaches,
which we review in the following.

Complex-goal-based approaches

For dealing with fall-back goals, two systems have been proposed in the literature.
Berardi et al. (2005) propose a complex-goal-based Web service composition that allows
a rich description of the participating components including internal state transitions of
components in addition to the globally observable behavior. In addition, a building block
principle is incorporated that allows building a behavioral model out of common atomic
services. Due to the complex description of services and orchestration requirements,
the composer described by Berardi et al. (2005) runs in exponential time.

As we seek for a scalable solution, we abandon the approach of Berardi et al. (2005)
and have a closer look on a composition approach developed by Pistore et al. (2005c),
whose evaluations suggest to run in polynomial time. We highlight its architecture and
features in order to give an assessment of its capabilities.

General set-up. The composition system of Pistore et al. (2005c) starts from a set of
behavioral descriptions of Web services described using abstract BPEL. The result of
their algorithm is a new BPEL file that orchestrates the given Web services according to
their behavioral description and a complex goal formulated by the integration expert.

Architecture. The algorithm sequentially undergoes two major computations: (1) The
abstract BPEL descriptions of the participating Web services are transformed to labeled
state transition systems ΣW1, . . . ,ΣWn. A combined state chart Σ|| is generated that
joins the state transition systems. That expresses all potential executions of the combined
system. As the behavioral descriptions of the Web services are assumed to include
information internal and external to the Web service, the externally observable behavior
of the Web services has to be extracted before the integration can be started. For that
purpose, the labeling function of Σ|| is adapted so that the label of each state of Σ||
is merged with the labels of all externally observable states of each Web service—
also called “belief”—that are reachable from that state. (2) Σ|| and the orchestration
requirements—expressed as an “EaGLe” formula g, which is explained below—are fed
to a model-based planner. The planner is an extended model checker used to identify
a fragment of Σ|| whose belief adheres to g. In the first versions, there was a strict
separation of the two phases. Thus, the algorithm of Pistore et al. (2005c) had to
compute a complete joined state machine upfront which costs much computation time.
During further research of Bertoli et al. (2006), the upfront state combination became
interlinked with the composition procedure. However, extracting the belief information
for the joined state transition system is still expensive.

Features. The desired and acceptable outcomes of the integration are specified using
the EaGLe language by Lago et al. (2002). EaGLe is motivated as an extension of CTL.

4.3 Mechanically support exception handling 51

A formula consists of propositional formulas p := > |⊥ | b | ¬p | p ∧ p | p ∨ p, where b
is a basic proposition. The propositional formulas are connected to other propositional
formulas via extended goals (g) as follows.

g := p | g And g | g Then g | g Fail g |Repeat g |
DoReach p |TryReach p |DoMaint p |TryMaint p

The specialty of EaGLe is the Fail goal constructor, which allows recovering from
failure, and the distinction between the prefixes Do (“strong”) and Try (“weak”).
In combination, the constructors allow for the flexible definition of complex goals.
For example, the goal TryReach a Fail DoReach b creates a plan that first tries to
achieve a. During the execution of the plan, a state may be reached from that it is not
possible to reach a. For such a state, TryReach a fails and DoReach b is considered.

The remaining task is the definition of potential output and input matches. The
mapping from an output to an input message can be simple or complex as well. A simple
mapping directly assigns the value of the output to the input. A complex mapping uses
some transformation function to compute the input from the assigned output. Examples
for predefined transformation functions are the extraction of message parts and the
merge of multiple outputs to one input. Hoffmann et al. (2007) propose to tackle the
message assignment problem by using a planner.

Discussion. In this thesis, we seek for an integrated solution for business process
integration that is able to track behavioral information through software design phases
and mechanically support exception handling. As the work of Pistore et al. (2005c) is
promising, we are going to reuse their ideas of how a complex goal should be specified.

However, the existing work expects initial process descriptions to exist, which need
to be created from scratch in reality although 80% of the behavioral information is
already known at integration design time. We do not attempt using abstract BPEL to
cover the existing behavioral information, as the existing work does, due to the lack of
formal semantics of abstract BPEL. The lack of formal semantics implies that different
users of the models could have different interpretations of their meaning. Therefore,
the work cannot be directly applied in our solution as we argue to reuse behavioral
information from an earlier development phase, and only a view of the behavior exists at
integration design time. An executable orchestration must be mapped back to the earlier
behavioral models, which cannot be done by the solution of Pistore et al. (2005c).

In addition to the practical constraints named above, the way the existing approach
describes behavior is rather complex which results in a slower run time of that approach
compared to the solution we will describe in this dissertation. A performance evaluation
will follow in the third part of this dissertation.

52 CHAPTER 4: SHORTCOMINGS OF EXISTING APPROACHES

4.4 Summary
Existing approaches provide interesting ideas to address the requirements expressed
in Table 3.1 on page 35, but the existing approaches do not meet the requirements
satisfactorily as discussed in this chapter. We summarize how we advance the state of
the art in the following.

Ontology research creates rich languages and general purpose reasoners which are
too complex and slow for mass-data handling in e-business. We use the ontology
notion of a shared, explicit, central representation of common understanding as
introduced in Section 4.2.1 on page 44 and apply more targeted high-performance
algorithms.

Semantic Web services research did not achieve automation, but they understand the
need for more machine-interpretable descriptions. We use light-weight semantic
annotations for WSDL (SA-WSDL) and different kinds of transformable models
for the different stages of the software development lifecycle to achieve reuse and
facilitate the semi-automatic generation of reliable business processes.

Pistore et al. (2005c) could compose Web services, but they use general-purpose model
checking implying an exploding joined state space and an overly complex goal
definition, which is not necessary in practice. We use a targeted composition
algorithm operating on less expressive descriptions of composition goals and
yield a reasonable speed-up.

Our solutions are presented in the following chapters. We begin with the presentation
of how our solutions interact in the subsequent section.

Part II

Scalable Ontological EAI and
e-Business Integration

Chapter 5

Solution Overview

In this chapter, we introduce the overall concept of how the parts of our solution play
together. With the uniform framework presented here, we also address parts of the
requirement to track behavioral information through software design phases.

Roughly, our CFIM of hierarchical types facilitates that the understanding and
technical representation of the integration participants converge on the data integration
layer and the API integration layer of the EAI pyramid (see Figure 2.2 on page 16).
The convergence is a prerequisite for our complex-goal-based WS composition to
mechanically support exception handling for business process integration. CFIM of
hierarchical types and complex-goal-based WS composition are embedded in a common
approach to transform behavioral models for EAI and e-business. Table 5.1 summarizes
the solutions we provide for the requirements defined in Chapter 3 on page 27.

Table 5.1: Solutions

Requirement Solution

Detect redundant interface objects CFIM of hierarchical types

Track behavioral information through
software design phases

Transform behavioral models for
EAI and e-business

Mechanically support exception handling Complex-goal-based WS
composition

This chapter is structured as follows: Section 5.1 partitions our solution to the per-
spectives taken by different peers involved in business process integration. Section 5.2
details the types of activities that are performed on the different perspectives. As the
same types of activities take place on different perspectives, Section 5.3 provides the
complete picture by presenting the perspectives and activities in the chronological order
they would occur naturally.

56 CHAPTER 5: SOLUTION OVERVIEW

5.1 Structuring
For the solution of the integration problem on the levels of EAI and e-business integra-
tion,

1. we extend the way software components are described at component design time
by a formal representation of behavioral information—the behavioral models—
which will be described in Chapter 7,

2. we introduce new, model-driven transformations to utilize behavioral models in
the different stages of the integration design time without loosing or violating any
behavioral information of earlier stages, and

3. we utilize closed frequent itemset mining (CFIM) to support the human task
between the transformations of identifying ontologically equivalent objects that
are represented differently.

For our approach, we need to take a more fine-grained view on the business pro-
cess integration (BPI) layer than we did in Chapter 2 on page 11. Figure 5.1 on
the facing page displays the four perspectives of how people who are involved with
component-based software development come in touch with behavioral information
about components. We detail these perspectives in the following. Thereby, we address
four phases of component-based software development:

1. component design,

2. EAI,

3. e-business integration, and

4. execution.

The two hatched boxes in company 1 and company 2 represent the BPI layer of
EAI as it was introduced in Section 2.6 on page 24. In the BPI layer, we distinguish the
component perspective and the EAI perspective.

• Component perspective. The component perspective consists of the message
types, Web service definitions, and information about operation dependencies
that describe the interface of one software component. We can say that the
information contained in the component perspective describes a component’s
basic capabilities. That perspective is created during component design time and
it is the basis for integration at EAI time.

• EAI perspective. The EAI perspective contains the integrated view over all
components in a company. It is used as a basis to start EAI at integration design
time. However, that view is not just the sum of the information on all components
because it is usually the case that a company—for example, company 1—does

5.1 Structuring 57

Figure 5.1: Integration layers with detailed BPI layer.

not use all the capabilities of each component—for example, of component 1 in
Figure 5.1. Rather, it is likely that company 1 only uses that part which is needed
to implement its specific business procedures. Furthermore, company 1 may also
choose to restrict any flexibility of Web service operation sequences to the very
specific sequence that is sufficient or required for its procedures. The restriction is
also called an orchestration of the components—or, more specifically, of the Web
services providing the components’ functions. The orchestration is illustrated in
Figure 5.1 by the circle connecting component perspective and EAI perspective
artifacts.

Finally, the EAI perspective contains also a description of the behavior that it
expects business partners to follow when performing e-business. That is also
called the public interface of the company’s IT systems. It is obvious that the
public interface is closely connected to the integrated components as public
interface and components have to interact to implement the business procedures
of, for example, company 1. The public interface is represented as the box in the
EAI perspective in Figure 5.1.

The hatched box in the upper part of Figure 5.1 denotes the level of e-business inte-
gration, which we refine to the community perspective and the e-business perspective:

• Community perspective. The community perspective is used during e-business
integration time. The community perspective is the union of all potential in-
tegration participants’ EAI perspectives looked at from the perspective of all
participants as a community of potential collaborators. Companies participat-
ing in that perspective do not necessarily have to build a collaborative business
process together. That perspective rather groups companies with the potential to
interact. That perspective can also be seen as a market of available functionality.

58 CHAPTER 5: SOLUTION OVERVIEW

If a company needs some services to engage in a new business process, they
would search for the available functions on that market and start integration.

• e-Business perspective. The e-business perspective is created during e-business
integration time. It is concerned with the particular integration goal that a subset
of the potential integration participants in the community perspective share. The
target of that perspective is to produce a concrete collaboration materializing in
an executable orchestration of the collaborative business process.

Furthermore, the orchestration generated as a result of e-business integration is
also part of that perspective. Therefore, that perspective is also active at run time.

All perspectives and their relevance at certain times in the development lifecycle
are displayed in Figure 5.2. The picture also includes the activities that we present in
this thesis to support the different phases of software and integration development. The
activities are explained in the following section.

Figure 5.2: Activities and perspectives mapped on development lifecycle.

5.2 Activities

In our solution, three basic activities are performed on the perspectives introduced
above. The activities are

• analyze,

• derive, and

• join orchestrations.

Each activity is supported by one of the solutions, or techniques, presented in this thesis.
The mapping between activities and techniques is shown in Figure 5.3 on the facing
page, where nesting boxes denote sub-activities.

5.2 Activities 59

Figure 5.3: Overview of activities.

5.2.1 Analyze
The analyze activity can be performed on the data and message types and Web service
definitions that appear in the behavioral models in the component perspective, EAI
perspective, and e-business perspective. The analyze activity utilizes the CFIM of
hierarchical types to reduce redundancy in the different perspectives. That activity will
be explained in Chapter 6.

5.2.2 Derive
The derive activity is used to connect the behavioral models between different perspec-
tives. The derive activity produces an orchestration that consumes the behavioral models
of the lower perspective and provides a behavioral model to the superior perspective.
The derive activity consists of the following three sub-activities:

1. Extract consumed and define provided behavioral models. The consumed
behavioral models are extracted from behavioral models of the lower perspective.
The provided behavioral model is to be defined by the human process designer.
As these steps are part of transforming behavioral models for EAI and e-business,
they will be explained in Chapter 7.

2. Assign communication. That activity supports the human process designer in
identifying potential communication by again utilizing the CFIM of hierarchical
types explained in Chapter 6.

3. Build orchestration. That activity involves the definition of a complex business
process goal by a human integration expert and the automated creation of an or-
chestration considering consistent transactional compensation. That activity uses
the complex-goal-based WS composition which will be explained in Chapter 8.

The first activity is only relevant when deriving the EAI perspective from the component
perspective because only in that derivation step, the consumed behavioral model does
not describe a single transaction. When deriving the e-business perspective from the

60 CHAPTER 5: SOLUTION OVERVIEW

community perspective, the behavioral model of each EAI perspective in the community
perspective constitutes a transaction with all or nothing semantics.

5.2.3 Join orchestrations
That activity is concerned with combining the orchestrations generated in the commu-
nity perspective and the e-business perspective. The requirement to track behavioral
information through software design phases is tackled by transforming behavioral mod-
els for EAI and e-business. That includes jointly executing the orchestrations to achieve
model-based e-business interoperability relying on component Web service interfaces
only, and not requiring a redundant implementation of the EAI perspective interfaces.
Our approach to transform behavioral models for EAI and e-business is described in
Chapter 7.

5.3 Schematic run-through
This section brings together perspectives and activities. That is done by walking through
the different perspectives and by mapping the activities to the respective perspective
according to our solution (see Figure 5.2 on page 58).

5.3.1 Component perspective
In the component perspective, the focus lies on one company and the software develop-
ment activities inside the company. Heterogeneous definitions of the same

• data type,

• message type, or

• operation definition

complicate the reuse and maintenance of the artifacts.
The activity performed on the component perspective is to analyze the interface

objects used inside one company in order to hint at redundancy. The analysis thus
helps to reduce redundancy and therefore improves the decision support for reuse of
interface objects and to lower maintenance costs as in the ideal case one functionality
is implemented exactly once. That activity fulfills the requirement to detect redundant
interface objects for the component perspective.

5.3.2 From component perspective to EAI perspective
Only a part of the interface objects in the component perspective are available to
collaborators in realistic settings. Also, an enterprise may provide a set of business
processes that base on the same component perspective interface objects. To address

5.3 Schematic run-through 61

the separation of component perspective and EAI perspective behavioral models, the
behavioral model of the component perspective is used to derive a behavioral model
in the EAI perspective. The derivation of an EAI perspective behavioral model from
component perspective behavior may be expensive as it is concerned with correctly
handling a business transaction including manual exception handling. Therefore, we
use the complex-goal-based WS composition to fulfill the requirement to mechanically
support exception handling for the transition from the component perspective to the
EAI perspective. The derivation implicitly defines the set of interface objects that is
exposed to partners.

5.3.3 EAI perspective and community perspective
The EAI perspective consists of the behavioral model and thus the interface objects of
an enterprise exposed to integration partners. The community perspective is the union
of all participants’ EAI perspectives. Therefore, the same interface objects appear in
the EAI perspective and the community perspective.

In our approach, the activity performed on the EAI perspective and community
perspective is an analysis of the interface objects. The analysis of the interface objects
pursues different goals for both perspectives.

Goals of analyzing the EAI perspective

Analyzing the EAI perspective means to compare interface objects in order to detect
redundancy. Redundancy of exposed interfaces means increased maintenance effort,
as in the event of a functionality change, all redundant interfaces offering the same
functionality have to be adapted, or even multiple redundant implementations of the
same functionality must be adapted correctly and consistently. The effects of redundancy
were detailed in Section 3.1 on page 27.

Goals of analyzing the community perspective

Analyzing the community perspective means to increase collaboration potential for the
members of the community perspective. The goals of the analysis are different for

• data and message types and

• operations.

If the data and message types of two or more members can be identified to be onto-
logically equivalent, the partners may work toward making the interface objects also
technically equivalent to enable cooperation.

Identifying ontologically equivalent operations in the community perspective discov-
ers competitors providing the same or similar functionality. If both competitors provide
the same ontological functionality, each provider may choose to align their interfaces

62 CHAPTER 5: SOLUTION OVERVIEW

in order to actually compete for the whole customer base. Despite their similarities,
a distinction of the competitors still exists due to the potentially different behavioral
models that guide their operations. Thus, the sequencing of operations required before
or following the operation in question may be different.

In the case of similar but not equivalent functionality of two competitors, both
providers may offer the same service with slight variations in some options of the
service. In that case, the operation interfaces have to remain as they are. The analysis
helps requesters in that case to identify providers with similar offerings.

The analysis activities discussed in this section address the requirement to detect
redundant interface objects in the EAI perspective and community perspective.

5.3.4 From community perspective to e-business perspective

The e-business perspective is fed from the community perspective when establishing
a collaborative business process. Members provide their EAI perspective behavioral
models, which have to be combined with other members’ behavioral models. The
integration of the behavioral models must consider transactional properties because a
collaborative business process establishes a business transaction.

With the derivation process, we fulfill the requirement to mechanically support ex-
ception handling by using the complex-goal-based WS composition for the community
perspective.

5.3.5 e-Business perspective

The e-business perspective contains the orchestration of the EAI perspective behavioral
models of the integration participants. As the connection between the behavioral models
in the component perspective and the e-business perspective is kept, the execution
of the collaborative business process can directly utilize the original Web service
interfaces in the component perspectives of the participants. That means that the
functionality to implement the Web service definitions of the EAI perspective does
not need to be implemented as a whole. As the implementation usually consists to
80% of existing components’ lifecycle information, which is covered in the component
perspective behavioral models, an implementation would largely be redundant with the
components’ implementation. Through directly accessing the generated orchestration
of the component perspective Web services in the orchestration in the e-business
perspective, our approach avoids redundancy in implementation, which would otherwise
lead to higher maintenance costs. Transforming behavioral models for EAI and e-
business addresses the requirement to track behavioral information through software
design phases.

5.3 Schematic run-through 63

The following three chapters detail each part of our solution. As sketched in this
chapter, each part of the solution supports one of the activities shown in Figure 5.3 on
page 59.

Chapter 6

CFIM of Hierarchical Types

In this chapter, we apply closed frequent itemset mining (CFIM) introduced in Sec-
tion 4.1.5 on page 42 to hierarchical types, in particular data types and message types
on the data integration layer, and Web service definitions on the API integration layer
of the EAI pyramid (see Figure 2.2 on page 16). As discussed in the previous chapter,
CFIM appears in many places in our solution. However, the core algorithm is always
the same.

After a motivating example in Section 6.1, this chapter starts with utilizing CFIM of
hierarchical types for exploring structural overlap of data type definitions in Section 6.2.
Section 6.3 extends our approach to also mine message type and Web service definitions.
Section 6.4 maps our solution for discovering structural overlap to exploring ontological
similarities.

6.1 Motivating example
Table 6.1 shows a set of types as it could be used in a company to describe the structure
of their data storage or messages exchanged.

Table 6.1: Sample types

Type Elements

BuyerParty {ID, Phone, Address}
Partner {ID, Phone, DateOfBirth, Location}
Person {ID, Address, DateOfBirth}

Each of the types has certain elements. On a first glance, one recognizes some
overlap in the element sets of the different types. The task of CFIM is to identify these
redundancies. Table 6.2 on the next page shows the redundancy, i. e., all sets of common
elements of the given types.

66 CHAPTER 6: CFIM OF HIERARCHICAL TYPES

Table 6.2: Redundancy groups determined from sample types

Redundancy group Redundant types Common elements

g1 {BuyerParty, Partner, Person } {ID}
g2 {BuyerParty, Partner } {ID, Phone}
g3 {BuyerParty, Person } {ID, Address}
g4 {Partner, Person } {ID, DateOfBirth}

Based on that analysis, one could improve the design of the types in a couple of
ways: For example, one could build a new type containing the common elements of
BuyerParty and Partner and only refer to that new type in BuyerParty and Partner. Or,
one could find some redundancy by looking at the non-common elements of redundancy
group members (see Figure 6.1). Thus, a human could find out that Address and
Location are two different representations of spatial information. The types could then
be redesigned such that address information will be equally represented in BuyerParty
and Partner.

Figure 6.1: Detailed view of redundancy group g2.

Besides containing some interesting redundancies, the members of the result set
in Table 6.2 are not equally interesting. The degree of interest depends on domain-
dependent facts and on generic facts: As an example for a generic fact, consider the first
redundancy group which states that all types share a field ID. That is not as interesting
as, for example, the redundancy group g2 because it contains more common elements,
however, shared by less types.

In a large result set of a CFIM run on real-world data there may be a lot of interesting,
but also many less interesting redundancy groups. Therefore, as a service to the user, it is
desirable to rank potentially interesting results—like the redundancy group g2—higher
than others—like the redundancy group g1. For that purpose, we will provide a rank
that considers three properties of redundancy groups later in this chapter.

6.2 Identifying structural similarities using the miner 67

6.2 Identifying structural similarities using the miner
In this section, we reduce the problem of detecting redundant interface objects to
CFIM of hierarchical types. In particular, we adopt the LCM algorithm from Uno et al.
(2004a;b). The problem reduction consists of two steps:

1. create itemsets from structural types and

2. interpret the mining result.

Before we start with the problem reduction, we give a definition of hierarchical types
that we derive from the definition of XML schema. Although the problem reduction is
applicable to hierarchical types in general, we take the XML schema definition again as
an example in the subsequent sections. The adoption of the concepts presented in this
section to further hierarchical types is shown in Section 6.3.

6.2.1 Definition of a hierarchical type
We now develop a conceptual definition of hierarchical types as an abstraction of XML
schema, which was explained in Section 2.4.2 on page 21. We introduce the following
abstractions:

1. As the import and include of namespaces are a mechanism for ease of use, but
not conceptually necessary for our purposes, we abstract from namespaces. That
is, we assume that all definitions reside in the same namespace.

2. It is a common practice for XML documents transferred in EAI settings to
only specify sequences and neglect choices in the complex type definitions. The
reason is that business software is commonly based on databases with fix database
schemas. Therefore, we abstract from choices.

3. Finally, our approach does not consider differences of constraints and different or-
derings of the sequences of different schemas. Thus, we abstract from constraints
and sequences as well.

The remaining conceptual structure consists of a hierarchy of elements of either
simple or complex type having names. We formalize that as follows:

Definition 6.1 (Hierarchical type schema). Let CT be a set of complex types, ST a
set of simple types, N a set of names, ∆ a relation of types and elements, where the
type is said to directly contain the element, then a hierarchical type schemaH is a tuple
defined as follows:

H := 〈CT, ST,N,∆〉
T = CT ∪ ST (hierarchical types), CT ∩ ST = ∅
E = N× T (elements)
∆ : T× E

68 CHAPTER 6: CFIM OF HIERARCHICAL TYPES

Definition 6.2 (Sub-element). LetH = 〈CT, ST,N,∆〉 be a hierarchical type schema.
An element c = (nc, tc) is called a direct sub-element or direct child of an element
e = (ne, te) with respect toH, iff

(te, (nc, tc)) ∈ ∆ (ne, nc ∈ N, te ∈ CT, tc ∈ CT ∪ ST).

6.2.2 Create itemsets from structural types
For creating itemsets from structural types, the transformation mainly consists in
reverting the natural “top-down” representation of hierarchical types to the inverse
“bottom-up” representation of the vertical itemset mining format required by LCM. We
start with the basic transformation and handle further aspects thereafter.

Basic transformation

The vertical data structure for a structured XSD element e containing the child elements
c1, . . . , ci, . . . , cn, where 1 < i < n (see left-hand side of Figure 6.2 on the next page),
is

(cI
1, {eT}), . . . , (cI

i, {eT}), . . . , (cI
n, {eT}),

illustrated in the form of a table,

cI
1 . . . cI

i . . . cI
n

eT . . . eT . . . eT
,

where eT denotes the transaction that corresponds to element e and cI denotes the item
that corresponds to element c. If another XSD element f becomes added to the same
vertical data structure with the child elements ci, . . . , cn, . . . , cm, where n < m (see
right-hand side of Figure 6.2), the data structure is

(cI
1, {eT}), . . . , (cI

i−1, {eT}),
(cI
i, {eT, fT}), . . . , (cI

n, {eT, fT}),
(cI
n+1, {fT}), . . . , (cI

m, {fT}).

In the form of a table:

cI
1 . . . cI

i−1 cI
i . . . cI

n cI
n+1 . . . cI

m

eT . . . eT eT, fT . . . eT, fT eT . . . eT
.

In addition to the basic transformation presented, further aspects need to be considered:

• mapping between elements, items, and transactions,

• domain of analysis, and

• analysis range.

6.2 Identifying structural similarities using the miner 69

Figure 6.2: Sample abstract hierarchical data structures.

Mapping between elements, items, and transactions

For the basic transformation presented above, we have neglected the question of how
exactly an element relates to an item or a transaction. That question is important
because elements have both a name and a type. Let nx be the name, for example,
“TaxableAmount,” and tx the type of an element ex, for example, “AmountType.” There
are obviously three ways to map a complex element ex to mining items or transactions.
If ex appears as item, the item may be defined as

1. the name: eI
x = nx, for example, “TaxableAmount,”

2. the type: eI
x = tx, for example, “AmountType,” or

3. a combination of name and type: eI
x = (nx, tx), for example, “TaxableAmount-

AmountType,”

of the corresponding element. Likewise, if ex appears as transaction, the transaction
may be defined as the name, the type, or a combination of both. In our solution, we
only use the element’s type if an element is mapped to a transaction. The reason is that
the transaction is not subject to analysis, but the transaction needs to unambiguously
identify a set of items. Only the type—and not the name—of a complex element of
hierarchical data structures identifies the set of its child elements unambiguously.

To give an example for the relevant mapping alternatives, a complex XML schema
element e named n of type t may contain the sub-elements c1, c2, . . . , ci, where cx is
named nx and of complex type tx, for all x = 1, . . . , i. The corresponding vertical data
structures would be

(n1, {t}), (n2, {t}), . . . , (ni, {t}) for alternative 1,
(t1, {t}), (t2, {t}), . . . , (ti, {t}) for alternative 2, and

((n1, t1), {t}), ((n2, t2), {t}), . . . , ((ni, ti), {t}) for alternative 3.

The choice above determines when the miner would treat two elements appearing
as items to be equal. The most precise estimation is surely performed by alternative 3
because the most information is used for the determination of equality. Therefore,
alternative 3 might be a good choice in an already very much aligned repository.
Contrarily, alternative 1 may even find matches in not so much aligned repositories as
just names, which may be given arbitrarily by a human, are considered for matching.

70 CHAPTER 6: CFIM OF HIERARCHICAL TYPES

The precision of alternative 2 lies in between the ones of alternative 1 and 3 because
elements of the same type are equal per definition. However, they may be used in
different contexts which may be differentiated by the elements’ names, which is not
considered in alternative 2.

Analysis range

In the paragraphs above, we have explained how a single complex type may be trans-
formed to the vertical data structure. One more decision needs to be taken about the set
of types to be analyzed—the analysis range. The alternatives are whether to consider

1. only the complex top-level elements of the given XML schemas, or

2. the top-level plus all contained complex elements.

The rationale for the first option is to only compare the given types. The rationale for the
second is that it may detect similar complex types that were used to build up the given
XML schemas. We call the second option for that reason building block analysis.

Let’s consider the complex type s consisting of the complex elements e1 and e2,
where e1 and e2 are complex, and e1 consists of c1 and c2, and e2 consists of c3 and c4.
Let’s further consider that another complex type t consists of c1, c3, and c4. Both s and
t are displayed in Figure 6.3.

Figure 6.3: Further sample abstract hierarchical data structures.

Building the vertical data structure for option 1 considers the structures circled in
Figure 6.4 on the next page.

The vertical data structure for option 1 is

(eI
1, {sT}), (eI

2, {sT}), (cI
1, {tT}), (cI

3, {tT}), (cI
4, {tT}), (6.1)

and in tabular form

eI
1 eI

2 cI
1 cI

3 cI
4

sT sT tT tT tT
.

6.2 Identifying structural similarities using the miner 71

Figure 6.4: Structures considered without building block analysis.

Figure 6.5: Structures considered for building block analysis.

Since no two pairs contain s and t together, the miner will not discover that related
complex types were used to construct the both—as long as e1, e2, c1, c3, and c4 have
different types and names. In contrast, building the vertical data structure for option 2
considers the structures circled in Figure 6.5.

The vertical data structure for option 2 is

(eI
1, {sT}), (eI

2, {sT}), (cI
1, {eT

1 , t
T}), (cI

2, {eT
1 }), (cI

3, {eT
2 , t

T}), (cI
4, {eT

2 , t
T}),

and in tabular form

eI
1 eI

2 cI
1 cI

2 cI
3 cI

4

sT sT eT
1 , t

T eT
1 eT

2 , t
T eT

2 , t
T

.

In that case, the miner will discover that both e2 and t share c3 and c4 and thus are
related. The miner will also conclude that e1 and t are related as they share c1.

Domain of analysis

Another variation of transforming multiple complex element definitions to the vertical
data structure is the completeness their substructure is being considered—the domain
of the analysis. The two options are to consider

1. just the directly contained subelements, and

2. all directly and indirectly contained subelements.

72 CHAPTER 6: CFIM OF HIERARCHICAL TYPES

The rationale for the first option is to perform a faster mining as less detail is being
considered. That may be useful when the types to analyze are already strongly aligned.
The rationale for the second is that it may detect complex type definitions with different
granularity. We therefore call the second option granularity-agnostic analysis.

Let’s consider the same example as before. The vertical data structure for option 1 is
shown in (6.1) above. In contrast, building the structure for option 2—without building
block analysis—considers the structures circled in Figure 6.6.

Figure 6.6: Structures considered for granularity-agnostic analysis.

The data structure for option 2 is

(eI
1, {sT}), (eI

2, {sT}), (cI
1, {sT, tT}), (cI

2, {sT}), (cI
3, {sT, tT}), (cI

4, {sT, tT}),

and in tabular form

eI
1 eI

2 cI
1 cI

2 cI
3 cI

4

sT sT sT, tT sT sT, tT sT, tT
.

In that case, the miner would determine that schema s and t are similar as they share c1,
c3, and c4.

The granularity-agnostic analysis is especially useful when different partners used
different approaches to structure the same kind of data. For example, one partner
may have chosen to create a type “PurchaseOrderType” that contains ordered goods,
taxable and total gross amounts, contact and delivery addresses without any substructure
directly below the top-level element (see left-hand side of Figure 6.7 on the facing
page). Another partner may have chosen to create a similar type “OrderType” with the
same data, but grouped the data into the complex subelements “Goods,” “Amounts,”
and “Addresses” (right-hand side of Figure 6.7). Using granularity-agnostic analysis,
“PurchaseOrderType” and “OrderType” can be determined to be similar.

6.2.3 Interpret the mining result
The result of the mining is a set of redundancy groups. Each redundancy group consists
of a set of types that have some overlap. After mining, the computer has to present the
redundancy groups to the user. As there are more interesting and less interesting results,
we introduce a generic rank that gives a measure for the confidence that can be derived
from the overlap that a specific redundancy group contains redundant types.

6.2 Identifying structural similarities using the miner 73

Figure 6.7: Advantage of granularity-agnostic analysis.

Rank

We now develop a rank that takes into account properties of a redundancy group that
make it likely to contain redundant elements. Throughout this section, we use the
notation of transactions and items introduced in Section 4.1.5 on page 42.

It follows from the definition of redundancy that we are looking for a redundancy
group that at the same time is large in the number of types τ = |T (A)| as well as in
the number of common elements κ = |A|. Let’s now consider two redundancy groups
g1 and g2 with equal number of types and common elements τg1 = 2, κg1 = 3, and
τg2 = 2, κg2 = 3. Considering these two measures, both groups would have the same
rank. However, if every type of g1 contains more elements than every type of g2, we
would like to rank g2 higher because its ratio of potentially redundant to potentially
unique elements is higher. That situation is depicted in Figure 6.8 on the following page.
For comparing redundancy groups’ sizes, we look at the average number of elements of
all types of T (A), denoted by α = ||T (A)||. Putting κ in relation to α yields the ratio
of common elements to the average number of elements υ = κ

α
.

Definition 6.3 (Interesting redundancy groups). We define a set of redundancy
groups G1 = {g1,1, . . . , g1,n1} to be a more interesting redundancy group than
G2 = {g2,1, . . . , g2,n2} if

1. G1 is larger than G2, τ1 > τ2

2. G1’s types have absolutely more common constituents, κ1 > κ2; and

3. G1’s redundancy groups contain a higher average percentage of common con-
stituents, υ1 > υ2.

We calculate a redundancy group’s rank ρ as a combination of the three components
τ , κ, and υ. To be comparable, we normalize each component by its maximum value
among all redundancy groups, respectively denoted by τ̂ , κ̂, and υ̂. It follows that each
component τ

τ̂
, κ
κ̂
, and υ

υ̂
is in range [0, 1]. For combining the components, we use the

74 CHAPTER 6: CFIM OF HIERARCHICAL TYPES

Figure 6.8: Example for rank calculation.

product operation which produces a higher rank the more the components’ values are
balanced as opposed to the sum operation. Let’s consider the two redundancy groups
g1 with τ

τ̂
= 10

10
, κ
κ̂

= 2
10
, υ
υ̂

= 3
10

, and g2 with τ
τ̂

= 5
10
, κ
κ̂

= 5
10
, υ
υ̂

= 5
10

. Both would
be treated the same using the sum operation: 10+2+3

10
= 5+5+5

10
= 15

10
. However, g1 is

a rather large group with a relatively and absolutely rather small number of common
elements. On the other hand, g2 is not as large as g1, but has a relatively and absolutely
larger core than g1 which makes it more likely to contain redundancy. Combining the
components of the rank via a product, we boost g2 over g1, as its properties are more
balanced: 10

10
· 2

10
· 3

10
= 60

1000
< 5

10
· 5

10
· 5

10
= 125

1000
. The interrelation between the balance

of two components and the resulting product is depicted in Figure 6.9 on the next page.
After scaling the product of the components by factor σ, rank ρ is in range [0, σ].

ρ = σ
(τ
τ̂
· κ
κ̂
· υ
υ̂

)
Theorem 6.4 (Correctness of rank). The formula for ρ produces a larger rank for
a redundancy group G1 than for G2 if G1 is more interesting than G2 as defined in
Definition 6.3.

Proof. We must prove σ
(
τ1
τ̂
· κ1

κ̂
· υ1

υ̂

)
> σ

(
τ2
τ̂
· κ2

κ̂
· υ2

υ̂

)
, which is equivalent to τ1

τ2
· κ1

κ2
·

υ1

υ2
> 1. That is true when τ1 > τ2, κ1 > κ2, and υ1 > υ2, which is the definition of a

more interesting redundancy group.

Determining the redundancy

In principle, redundancy can be determined by analyzing the

• common, and the

6.2 Identifying structural similarities using the miner 75

Figure 6.9: Product of two factors with constant sum.

• uncommon items in a redundancy group.

Obviously, the common elements identified by the miner point out some definite
redundancy of the elements of the redundancy group.

But also the uncommon elements of a redundancy group provide an interesting
insight. Let’s assume that two business partners are willing to agree on common data
types to exchange. In that setting, both business partners may contribute some kind
of a business partner type to the community. If these partners worked together before,
some of the data types deeper in the nesting will already be aligned. Consequently,
the miner will be able to determine that match based on the common, already aligned
elements. As, in that setting, both partners really talk about the same kind of business
partner type, the fields not known for the miner to be common may indeed be just
different representations of the same things. Therefore, it might be interesting for the
human integration experts to also look at the uncommon elements as these may contain
matching pairs.

6.2.4 Discussion
In order for the algorithm to find redundancy groups, we assume that the data types fed
to the miner are aligned to a certain extent already. That means that two conceptually
equivalent data types also carry the same label. That assumption can be made because,
when acting in the realm of a single company, at least some basic data types will be
consistent with a common model that other data types are built upon. In SAP, for
example, data type labels conform to the naming conventions of the core component
technical specification (CCTS). That might be a difficult assumption when dealing with
multiple companies in a community. The best thing our solution can contribute here
is to support the process of aligning the technical structures of multiple companies
by hinting at definitions that have been manually aligned to a certain extent, but need
further alignment work. Such a situation is actually likely to be found as communities

76 CHAPTER 6: CFIM OF HIERARCHICAL TYPES

form in order to perform similar tasks, for example, shippers and carriers will probably
talk about location, package types, and dates. If some members of a community already
worked together, they might even have aligned their types with existing standards for
communication, such as RosettaNet or CIDX.1 However, a well-known difficulty with
such industry standards is the high degree of freedom the standards allow for. That
means that although two partners implement, for example, RosettaNet, they may still
have different custom extensions of the standard. In that very common situation, the
algorithm is expected to perform well due to the existing alignment.

6.3 Application on further hierarchical types
The mining described above can not only be applied to XML schema, but any other
hierarchical data structure, in particular WSDL’s

• message type definitions and

• Web service definitions.

In order to make closed frequent itemset mining applicable to message type and Web
service definitions, it suffices to explain how message type and Web service definitions
are hierarchical types.

6.3.1 Message type definitions
Conceptually, a message type definition in WSDL consists of a name and a set of parts.
Each part consists of a name and an XML schema element. Therefore, the application of
closed frequent itemset mining to message type definitions is quite straightforward. The
name of the message type itself is used to identify a transaction. Each of the following
becomes an item of the transaction:

1. each part’s name,

2. each part’s element name, and

3. all XML schema elements, which are handled as described for XML data types
above.

6.3.2 Web service definitions
Conceptually, a Web service interface contains a set of operations. Each operation can
communicate at most one input, one output, and a fault message. Each message type
consists of a set of parts as explained above. In general, there are two options to apply
closed frequent itemset mining on Web service definitions. One could look for

1http://www.cidx.org/

http://www.cidx.org/

6.4 Using CFIM for ontological alignment 77

1. Web service operations having redundant signatures or

2. Web service definitions having redundant operations.

Web service operations with redundant signatures

The analysis of Web service operations having redundant signatures is relevant because
actually not Web services, but Web service operations are the entities to be orchestrated
in business process integration. For applying closed frequent itemset mining to Web
service operations, the name of each Web service operation becomes a transaction. The
items of a transaction are made up of

1. the name of each message potentially communicated by the operation

2. the constituents of a message as explained above.

Web service definitions with redundant operations

Web service definitions are used to structure operations of related functionality together.
Therefore, it is reasonable to mine for redundant Web service definitions as they could
hint on redundant functionality bundles exposed to partners.

For mining Web service definitions, the name of a Web service definition becomes
a transaction. The following makes up the items of a transaction:

1. the name of each operation in the Web service definition and

2. the constituents of an operation, which are handled as described above.

6.4 Using CFIM for ontological alignment
Although ontological alignment brings many advantages, it is very rarely reached in
computer science. In contrast, we repeatedly observe certain situations of lacking
alignment in integration scenarios. In the following sections, common situations of
misalignment are systematically presented based on the concept of the semiotic triangle
(Ogden and Richards, 1923).

6.4.1 Semiotic triangle
At least part of the reason for ambiguity is that things of common interest materialize as
different objects (for example, as t, u) and are referred to via some terms, or denotations
(such as l, m). That facilitates misunderstanding of the objects, or materializations,
because there is actually no direct connection between a term and an object as the
research fields of linguistics and semiotics have revealed. Rather, both are connected
via a concept (such as c) that the term stimulates in the imagination of a human peer,

78 CHAPTER 6: CFIM OF HIERARCHICAL TYPES

or in the implementation of a computer. These relations, shown on the left-hand side
of Figure 6.10, are called the semiotic triangle. Whereas a term can be used to refer to
multiple types of objects and an object may be referred to by multiple terms, a concept
is always unique.

Concept

Term Object

nnnnnnn (h(h(h(h
Concept

Complex
type’s
name

Complex
type’s

structure

qqqqqqqq &f&f&f&f&f

Figure 6.10: The semiotic triangle and its application to complex types.

In this thesis, we use the semiotic triangle to investigate the theoretically possible
reasons for the misalignment of complex types (see right-hand side of Figure 6.10).
For that purpose, we compare the semiotic triangles of two different types with each
other. The potential interrelations between objects, terms, and concepts of two types
are depicted in Figure 6.11 on the next page. In order to cope with the misalignment,
we are going to separately address all these cases. But before, we give a systematic
overview over the situations of lacking alignment. During the rest of this chapter, we
use single quotes (‘. . . ’) to refer to concrete concepts and double quotes (“. . . ”) to refer
to concrete terms.

Redundancy / synonym vs. parallel

A known type t once called l may be referred to as m at another time or in another place.
That may be an indication that l and m are just two synonymous denotations for the
same concept (6.11c), such as “purchase order” and “procurement request.”

‘Purchase order’

“PurchaseOrderType”
OrderedGoods,

TotalGrossAmount,
DeliveryAddress

iiiiiiiiiiiiiiii
*j*j*j*j*j*j

‘Purchase order’

“ProcurementRequestType”
OrderedGoods,

TotalGrossAmount,
DeliveryAddress

hhhhhhhhhhhhhhhhhh
*j*j*j*j*j*j

6.4 Using CFIM for ontological alignment 79

c

l t
= ∼
l′ t′

ooooooooooooo 'g'g'g'g'g'g'g'g

(a) Clean repetition

c

l t
= 6=
l′ u

qqqqqqqqqqqqq

*j*j*j*j*j*j*j

"b
"b

"b
"b

"b
"b

"b
"b

"b

(b) Inconsistency

c

l t
6= ∼
m t′

iiiiiiiiiiii

xxxxxxxxxxxxxxx

&f&f&f&f&f&f&f&f

(c) Redundancy / synonym

c

l t
6= 6=
m u

iiiiiiiiiiii

wwwwwwwwwwwwwww

*j*j*j*j*j*j*j

#c
#c

#c
#c

#c
#c

#c
#c

#c

(d) Heterogeneity

c1 6= c2

l t
= ∼
l′ t′

��������

jjjjjjjjjjjjjjjjjjjjjjj

*j*j*j*j

*j*j*j*j*j*j*j*j*j*j

�_
�_

�_
�_

�_

(e) Illusive friend

c1 6= c2

l t
= 6=
l′ u

���������

kkkkkkkkkkkkkkkkkkkkkkk

'g'g'g

'g'g'g'g'g'g'g'g'g'g'g $d
$d

$d
$d

(f) False friend

c1 6= c2

l t
6= ∼
m t′

uuuuuuu

oooooooooooooooooooooooo

)i)i)i)i)i

)i)i)i)i)i)i)i)i)i

�^
�^

�^
�^

�^

(g) Parallel

c1 6= c2

l t
6= 6=
m u

uuuuuuu

nnnnnnnnnnnnnnnnnnnnnnn

'g'g'g'g

'g'g'g'g'g'g'g'g'g'g $d
$d

$d
$d

(h) Clean distinction

Figure 6.11: Potential semiotic triangles for two repetitive observations.

Vice versa, l and m may indeed denote disjoint concepts and just happen to be
materialized by a type t′ similar to t (6.11g), such as ‘purchase order’ and ‘sales order.’
As a sales order is the seller’s view on the buyer’s purchase order, both types are likely
to have a similar structure in current systems.

80 CHAPTER 6: CFIM OF HIERARCHICAL TYPES

‘Purchase order’

“PurchaseOrderType”
OrderedGoods,

TotalGrossAmount,
DeliveryAddress

iiiiiiiiiiiiiiii
*j*j*j*j*j*j

‘Sales order’

“SalesOrderType”
OrderedGoods,

TotalGrossAmount,
DeliveryAddress

kkkkkkkkkkkkkk
)i)i)i)i)i

Inconsistency vs. false friend

We could furthermore come across two situations where the term l is used the first time
to address a type t and a second time l′, equivalent to l, refers to a type u. Again, it
might be the case that t and u are two different materializations of l in different contexts
(6.11b) as for two different representations of ‘purchase order.’

‘Purchase order’

“PurchaseOrderType”
OrderedGoods,

TotalGrossAmount,
DeliveryAddress

iiiiiiiiiiiiiiii
*j*j*j*j*j*j

‘Purchase order’

“PurchaseOrderType”
LineItems,

Price,
ContactPerson

iiiiiiiiiiiiiiii
)i)i)i)i)i)i

Conversely, that case might be an indication that l is inconsistently used: once to
refer to t and another time to refer to u (6.11f).

Clean repetition vs. illusive friend

Finally, we observe a very cumbersome situation when a type t is once called l and at
another time or in another place a type t′, similar to t, is also called l′, equal to l. That
might of course indicate that t′ was referred to as l′ with the same background as when

6.4 Using CFIM for ontological alignment 81

t was called l (6.11a). However, it might also be the case that in the first place term l
was used to reference t, but the second time just the same term l′ was used to refer to an
equally appearing type t′ which indeed might be totally different from t (6.11e) in its
use or in its meaning in the second context.

Clean distinction vs. heterogeneity

We may also observe the opposite to the previous when in the first place l is used to
refer to t, and in the second place u is called m. On the one hand, that might indicate
that t and u are completely different and thus the different denotations l and m are
used to refer to them (6.11h). On the other hand, it might also be the case that l and
m are just different terms for the same thing, which, unfortunately, is heterogeneously
materialized at the two distinct observations as t and u (6.11d), such as “LocationType”
and “PlaceType” could both stand for ‘address.’

‘Address’

“LocationType”
City,

Street,
ZIPCode

mmmmmmmmmmmm
'g'g'g'g'g

‘Address’

“PlaceType”
AddressLine1,
AddressLine2,

Comments

nnnnnnnnnnn
(h(h(h(h(h

6.4.2 Identifying ontological similarities using CFIM
In the realm of closed frequent itemset mining,

• a transaction is a denotation and

• the items of a transaction are a materialization.

When comparing transactions in the mining database, a transaction and its items can
be understood as an observation of a denotation and a materialization in terms of the
semiotic triangle. Therefore, the cases depicted in Figure 6.11 on page 79 can be applied
to every two transactions in the mining database. The different cases of misalignment
are all handled by the way closed frequent itemset mining is applied on hierarchical
types

• during populating the mining database and

• during performing the mining.

82 CHAPTER 6: CFIM OF HIERARCHICAL TYPES

Populating the mining database

When types are going to be analyzed, they are first loaded to the mining database.
Various options during that process were described in Section 6.2.2 on page 68. Now
we focus on cases of existing alignment or misalignment.

During population, more and more transactions are loaded to the mining database.
A case of existing alignment or misalignment is observed when a transaction to be
loaded is already contained in the mining repository. Therefore, the cases with similar
denotations, i. e.,

• clean repetition (6.11a),

• inconsistency (6.11b),

• illusive friend (6.11e), and

• false friend (6.11f),

can be addressed during the population of the mining database (left-hand side of
Figure 6.11 on page 79).

To determine one of the above cases, we only need to compare the name of the
new transaction to the names of existing transactions. As the transactions in the mining
database are per definition organized as a set, the addition of an existing transaction is
actually a violation to the definition of the closed frequent itemset mining.

For the resolution of these cases, it is important to differentiate the cases depending
on whether the two transactions with similar denotations, i. e., complex types with same
names, stem from

• the same or

• different partners.

Same partner. In the case that the conflicting types stem from the same partner, we
assume that one partner always uses the same denotation (term) to refer to the same
concept (upper left part of Figure 6.11 on page 79). In that case, only one version should
be kept in the data structure because either

1. the structure of both types is equal (clean repetition, 6.11a), or

2. an inconsistency in the partner’s own data model was discovered (inconsistency,
6.11b).

In the first case, it is irrelevant which type is added to the structure. In the second case,
the partner should first resolve their inconsistency internally, before trying to align with
other partners.

6.4 Using CFIM for ontological alignment 83

Different partners. In the case the conflicting types s and s′ stem from different
partners, we have to assume that same denotations (terms) are potentially used for
different things (lower left part of Figure 6.11 on page 79). Both types should be added
to the structure as the mining procedure should determine whether both schemas are
really already aligned or actually different. Therefore, we transform the case

• illusive friend (6.11e) to parallel (6.11g) and

• false friend (6.11f) to clean distinction (6.11h).

In other words, the equal transaction representations sT and s′T must be made unequal
before being added to the mining database. We propose to add a unique distinguisher to
s′T and to perform the transformation to the item representation afterwards as described
in the previous sections.

It is to be noted that the procedure only applies to conflicting transactions,
not to their constituents with equal item representation as equal item
representations are used to determine the similarity of the transactions.

After populating the mining database, it only contains the cases of the right-hand side
of Figure 6.11 on page 79, i. e.,

• redundancy / synonym (6.11c),

• heterogeneity (6.11d),

• parallel (6.11g), and

• clean distinction (6.11h).

Performing the mining

The closed frequent itemset mining determines the similarity of materializations in
the mining database. A redundancy group stands for a set of mutually similar types.
According to Figure 6.11 on page 79, two observations may either

1. belong to the same concept, i. e., have the same ontological meaning (redundancy
/ synonym, 6.11c), or

2. belong to distinct concepts, i. e., the similar structures are used to materialize
ontologically different things (parallel, 6.11g).

The distinction must clearly be made by a human utilizing the closed frequent itemset
mining.

84 CHAPTER 6: CFIM OF HIERARCHICAL TYPES

Same concepts. In the first case, it is advisable that the differently named, but struc-
turally similar types become named the same. In addition, it should be a goal to not
only homogenize the names, but also make both types use the same complex type
definition. As the miner detects technical overlap, the decision is not necessarily correct
for the other members of the redundancy group. In order to support the homogenization,
further closed frequent itemset mining runs can be applied on only the members of the
redundancy group. That serves two purposes:

First, further detection of ontologically equivalent types that appear as subtypes in the
elements of the redundancy group.

Second, if no more types are ontologically equivalent, technically equivalent types can
be identified.

The first case would facilitate the alignment of terms and thus bring forward a common
understanding. The second case would foster the alignment of type structures and
therefore lower efforts for later maintenance.

Distinct concepts. In the case that two observations belong to different concepts, the
analysis revealed that although being ontologically distinct, the materializations have
some commonality. By further closed frequent itemset mining runs on the members of
the redundancy group, it should be determined, whether more similar subtypes of the
members can be identified whose definitions can be merged.

The remaining cases of misalignment in Figure 6.11 on page 79, namely

1. heterogeneity (6.11d) and

2. clean distinction (6.11h),

are not detected by the closed frequent itemset mining. For the second case, that is
perfectly fine as a clean distinction (6.11h) actually contains no redundancy. Thus, the
only case which can not correctly be handled is heterogeneity (6.11d). The reason
is that there is no information at all which a machine could use in order to draw any
conclusions on the potential similarity in that case. That is the spot where always human
intelligence is needed in alignment. Due to that finding, a solution using closed frequent
itemset mining to detect redundant interface objects should always allow a human in
the loop to manually point out similarity. We facilitate that in our solution as the closed
frequent itemset mining only supports the human analysis of the type repository. Our
solution seeks to point out the most that could possibly be done automatically and
always leaves room for human adaptation.

Chapter 7

Transforming Behavioral Models for
EAI and e-Business

In Section 3.4.2 on page 36, an ideal solution to the business process integration problem
was described as a directly executable orchestration that circumvents the integration
design time model and directly utilizes the executable component design time model.
In this section, we describe how our solution can integrate component design time and
integration design time models and, based on that, run the executable orchestration of
the e-business perspective using the executable models in the component perspective.

As described in Section 5.2 on page 58 and displayed in Figure 7.1 on the following
page, the relevant activities to track behavioral information through software design
phases are the following:

1. Extract consumed and define provided behavioral models is a sub-activity of
the derive activity when derive is applied on the component perspective. That
activity consists of the following three steps:

(a) Define consumer view of provided behavioral model. The behavioral
model that should be provided on the superior perspective needs to be man-
ually defined as a requirement for building an orchestration. The behavioral
model must follow the definition for behavioral models given later in this
chapter.

(b) Convert provided behavioral model to provider view. The provided
behavioral model is initially modeled from the consumer view in step (a).
However, for building an orchestration, the provider view is needed.

(c) Excerpt consumed behavioral model fragment. That activity is used to
specify the part of a consumed behavioral model that is used in the derived
model.

2. Join orchestrations.

This chapter is structured as follows: First, we establish the connection between
Web service definitions of the API integration layer with behavioral models of the BPI

86 CHAPTER 7: TRANSFORMING BEHAVIORAL MODELS FOR EAI AND E-BUSINESS

Figure 7.1: Detailed view of activities transforming behavioral models.

layer in Section 7.1. In Section 7.2, we formally introduce behavioral models. That is
the basis for step (a) above. In Section 7.3, we formally define our requirement to track
behavioral information through software design phases. The following three sections
detail the remaining steps and activities. Namely, Section 7.4 tackles the activity to
convert a provided behavioral model to the provider view (step b). Section 7.5 presents
an algorithm to excerpt a consumed behavioral model fragment (step c) and Section 7.6
explains how orchestrations are joined in our solution (activity 2 above). Section 7.7
names the conditions under which the identified requirement can be fulfilled. We
conclude in Section 7.8.

7.1 Web service descriptions and behavioral models
We introduce a behavioral model as an abstraction of Web service operations. As
introduced in Section 2.5.1 on page 22, a Web service operation consists of at most

• one input,

• one output, and

• one fault message.

However, the Web service definition does not mention the intent of the Web service
provider about the process-relevant semantics an invocation of a Web service operation
may have. For example, a purchase order notification message may contain a whole
purchase order document for reference plus a code identifying the acceptance status of
the purchase order. In that case, only the acceptance status contains the data relevant for
the subsequent flow. In addition, no assertion is made about sequencing of operations
that may be required to perform successfully. That information is today normally given
as natural language documentation.

In our behavioral models, we allow a Web service provider to specify their intention
regarding potential process flows as a set of potential outcomes of an operation. In

7.1 Web service descriptions and behavioral models 87

addition, a pre-state is assigned to an operation and a posterior state to each operation
outcome.

In our solution, a behavioral model (BM) is described by SA-WSDL. We use the
semantic annotation hooks—the modelReference attributes—in SA-WSDL to add
the state information to the operations. As SA-WSDL allows for the same operation
types as WSDL, multiple outcomes of an operation can also not directly be specified in
SA-WSDL. We overcome that limitation be redefining the interpretation of SA-WSDL
in the following way:

• An operation’s output must consist of a special complex type—the container
type—which we use to group and attach alternative outcomes to an operation.

• A container type contains one choice particle. Each element of the choice is
annotated with the posterior state of the respective outcome.

• The type of a choice’s element defines the message type that is communicated by
the operation for the particular outcome.

It should be noted that an SA-WSDL file does not refer to an external
state transition system (STS). Rather, the SA-WSDL contains the state
transition system.

The use of SA-WSDL to define operation semantics is practical because it can be
used in all places where WSDL can be used, for example, in the definition of business
processes using contemporary business process definition languages such as BPEL or
BPMN.

In Figure 7.2 on the following page, we introduce a shorter graphical representation
for an SA-WSDL file containing a state transition system. We use here for illustration
parts of the example which will be given in detail in Chapter 10. The text on top of the
graphical representation is used to name the component the behavioral model belongs
to. Each box in the graphical representation is a state and each arrow is a state transition.
We model a request-response operation via two transitions: the first for receiving the
input—for example, from state init to processing in Figure 7.2—and the second for
sending the output—for example, the transition from processing to created in the figure.
The newly introduced state—“processing” in the example—is only implicitly defined
in SA-WSDL. Although these states do not exist in SA-WSDL, we name them in
the graphical representation to ease the reading of graphical behavioral models. Text
next to an arrow denotes the message type communicated by the state transition. The
communication mode may be either input or output. Input is denoted by a smaller or
greater than relation symbol with the closed end pointing toward the arrow. Output is
denoted the opposite way. In the rest of this thesis, we use the graphical representation
of SA-WSDL and their contained behavioral models for brevity.

In our solution, the SA-WSDL does not only play the role of capturing process-
relevant semantics of Web service operations. In addition, an SA-WSDL interface is

88 CHAPTER 7: TRANSFORMING BEHAVIORAL MODELS FOR EAI AND E-BUSINESS

Figure 7.2: A graphical notation for SA-WSDL containing a behavioral model.

expected to be implemented in a specific way: We assume that the implementation
makes use of the WSDL interface that is originally provided for the described software
component. We call the implementation an adapter. The connection between Web
service descriptions in the API integration layer and behavioral models in the BPI layer
is depicted in Figure 7.3.

Figure 7.3: Integrating technical and ontological level.

7.2 Behavioral models 89

7.2 Behavioral models
In order to be able to identify a single behavioral model in a set of behavioral models,
we introduce a set of identifiers (ID).

Definition 7.1 (Behavioral model identifiers). Each identifier from the set ID identifies
exactly one behavioral model.

ID . . . set of unique identifiers for behavioral models

We define a behavioral model via a set of states (Q), a set of possible input and output
messages, referred to as input and output variables (Σ and Z), and a state transition
function (δ). The definition includes the behavioral information via the state transition
function. We restrict δ to describe a bipartite graph. Bipartite means that input and
output transitions alternate. An exemplary behavioral model is shown on the right-hand
side of Figure 7.2 on the facing page.

Definition 7.2 (Behavioral model).

BM := 〈Q,Σ,Z, δ, q0〉
q0 ∈ Q

δ = δin ∪ δout

δin : Q× (2Σ \ {∅})→ Q

δout : Q× (2Z \ {∅})→ Q

We use the superscript notations Qbm , Σbm , Zbm , qbm0 , δbm , δbmin , and δbmout to refer
to the components of the behavioral model identified by bm ∈ ID when reference
otherwise would be ambiguous.

To give an example, we express the behavioral model from Figure 7.2 using the
notation above (compare with the behavioral model on the right-hand side of Figure 7.2
on the preceding page):

QSOM = {init, processing, created, closed}
ΣSOM = {PO,DEL, INV}
ZSOM = {SO}

δSOM
in = q1 ∈ QSOM inputs q2 ∈ QSOM

init {PO } processing

created {DEL, INV } closed

δSOM
out = q1 ∈ QSOM outputs q2 ∈ QSOM

processing {SO } created

qSOM
0 = init

90 CHAPTER 7: TRANSFORMING BEHAVIORAL MODELS FOR EAI AND E-BUSINESS

We refer to a state with at least one leaving output transition or with at least one
entering input transition as operation. Therefore, processing and closed would be the
two states that represent operations in the example.

Multiple input transitions leaving the same state stand for the capability of the
system to receive any of the inputs. Thus, the decision how to proceed the execution
is determined by the communication partner of the system. Therefore, we talk of
deterministic behavior.

Contrarily, multiple output transitions leaving the same state enumerate the set of
possible responses of the system at a specific time of execution. Thus, the decision how
to proceed the execution is determined by the system, and not by the communication
partner of the system. Therefore, we talk in that respect of non-deterministic behavior.

Please note the difference of that intuition from the interpretation of a
state transition system as a finite state machine.

We explicitly refuse business logic encoded into behavioral models because that is an
implementation detail which should only appear in the implementation of a component,
but not in its behavioral model. That means that the behavioral model does not contain
the information how the implementation decides which of the output alternatives will
be given for a specific input. In related workflow specification languages like BPEL or
BPMN, explicit conditions can be specified that examine data contained in messages.
In our approach, we explicitly forbid the examination of messages because that would
make the behavioral model dependent on the complete message type. Instead, we only
allow the behavioral model to refer to an abstraction of the data transported in a message
by allowing the explicit output alternatives defined in SA-WSDL to be differentiated.

As behavioral models do not contain business logic, messages whose content
influences subsequent behavioral models must be classified into different variables. We
are hence only interested in a variable’s status rather than its value and introduce the
varState function.

Definition 7.3 (Variable status).

varState : { (bm, v) 7→ status : bm ∈ ID, v ∈ (Σbm ∪ Zbm),

status ∈ {undef, initialized, processed} }

Before we define an execution semantics for behavioral models expressed as described
above, we introduce the abstract state machine (ASM) formalism, which we will utilize
for defining the execution semantics.

7.2.1 ASM: A software system specification approach
Abstract state machines (ASM Börger and Stärk, 2003) is a formalism for the specifica-
tion of software systems and a method for software system design. We chose ASM to

7.2 Behavioral models 91

express the operational semantics of behavioral models because of the following two
features:

1. The ASM notation is intuitive because it reads like pseudo-code over abstract
data.

2. An ASM specification is theoretically executable due to its formal semantics.
Concrete implementations exist to simulate ASM specifications—for example,
CoreASM (Farahbod et al., 2007).

The main concept of an ASM is the transition rule of the form if <condition>
then <updates> which transforms abstract states. The condition is an arbitrary
predicate logic formula without free variables whose interpretation evaluates to true
or false. The updates are a set of assignments of the form f(p1, . . . , pn) := v that take
place concurrently. An update is to be understood as the definition of the value of the
function f with the parameters p1, . . . , pn to v. f(p1, . . . , pn) is also called location.
The set of all locations makes up the abstract state of an ASM. The condition of a
transition rule checks for properties of the current state of the ASM. A rule is called
active if its condition evaluates to true. The run of an ASM is defined as the parallel
firing of all active rules. Firing means a state transition where the following state is
equivalent to the current state after applying the update assignments of the active rules.

There are two additional constructs to group rules of common form. The first
states the concurrent execution of multiple rules: forall <x> with <ψ> do <R>,
where usually x has unbound occurrences in R. The second states the non-deterministic
execution of one rule out of R: choose <x> with <ψ> do <R>.

The complete, formal execution semantics of ASM may be found in Börger and
Stärk (2003). Due to the execution semantics, the readable ASM pseudo-code may be
used for formal software specification as it allows proving interesting properties of the
specified software system. The ASM method supports rigorous software design as its
formal grounding allows for the formal definition of refinement as detailed in Börger
(2003).

7.2.2 Behavioral model execution semantics
We now define the execution of behavioral models presented in Section 7.2 on page 89
in terms of ASMs. The involved information artifacts of the structural and execution
world and their relations are depicted in Figure 7.4 on the next page.

A Web service interface is abstracted by the ASMs SEND and RECEIVE. The
contained ASMs INVOKEWS and WSRESPONSE access the adapter that connects the
ontological definitions with the technical WSDL interface and thus with the component’s
implementation.

The definition of the SEND machine is parameterized by the ID of a behavioral
model. We use the set notation to express that the SEND machine of a behavioral model
consists of one if -then rule per input transition of the behavioral model.

92 CHAPTER 7: TRANSFORMING BEHAVIORAL MODELS FOR EAI AND E-BUSINESS

Figure 7.4: Structure and execution of the behavioral model.

SEND(bm) ≡
{

if bmState(bm) = qpost

and varState(bm, i1) = initialized and . . .
and varState(bm, i|I|) = initialized

then
INVOKEWS(bm, I)
forall i ∈ I do varState(bm, i) := processed

:
(qpre, I, qpost) ∈ δbmin ,
ix ∈ I, x = 1 .. |I|
}

To give an example, we explicate SEND(SOM) below.

SEND(SOM) ≡
if bmState(SOM) = processing

and varState(SOM,PO) = initialized
then

INVOKEWS(SOM, {PO})

7.2 Behavioral models 93

forall i ∈ {PO} do varState(SOM, i) := processed

if bmState(SOM) = closed
and varState(SOM,DEL) = initialized
and varState(SOM, INV) = initialized

then
INVOKEWS(SOM, {DEL, INV})
forall i ∈ {DEL, INV} do varState(SOM, i) := processed

The activation of a rule of the SEND machine depends on the current state of the
execution of the behavioral model—namely, after an input transition—and on the
availability of the necessary input data. The availability of input data is handled by the
orchestration, which we will explain later. Once the input data for the current state is
available, SEND fires and calls the component’s implementation through the adapter
via INVOKEWS(SOM, . . .). At the same time, SEND marks the input data sent to the
component as processed in order to not fire over and over again.

In contrast, the RECEIVE machine handles the response of the component’s imple-
mentation.

RECEIVE(bm) ≡
{

if bmState(bm) = qpre

and varState(bm, o1) 6= initialized and . . .
and varState(bm, o|O|) 6= initialized
and WSRESPONSE(bm, O)

then
forall o ∈ O do varState(bm, o) := initialized

:
(qpre, O, qpost) ∈ δbmout

ox ∈ O, x = 1 .. |O|
}

RECEIVE fires when the execution of the behavioral model is before an output tran-
sition and when the component’s implementation has responded, which is recognized
via WSRESPONSE(bm, . . .) = true. After firing a rule in RECEIVE, the data received
from the component are initialized. That means, they are from now on available to other
components in the orchestration. We also list RECEIVE(SOM) here as an example.

RECEIVE(SOM) ≡
if bmState(SOM) = processing

and varState(SOM,SO) 6= initialized
and WSRESPONSE(SOM, {SO})

then
forall o ∈ {SO} do varState(SOM, o) := initialized

94 CHAPTER 7: TRANSFORMING BEHAVIORAL MODELS FOR EAI AND E-BUSINESS

As we have seen, SEND and RECEIVE expect the state of the behavioral model to
be either after an input or before an output transition. SEND and RECEIVE only change
the state of variables, but not the state of the behavioral model. That is done by the
ADVANCEBM machine.

ADVANCEBM(bm) ≡
{

if bmState(bm) = qpre

and varState(bm, v1) = initialized and . . .
and varState(bm, v|V |) = initialized

then
bmState(bm) := qpost

:
(qpre, V, qpost) ∈ δbm ,
vx ∈ V, x = 1 .. |V |
}

ADVANCEBM advances the state of a behavioral model according to the availabil-
ity of data—either made available by the orchestration or a component’s response—
and to the state transition function of the behavioral model. The concrete machine
ADVANCEBM(SOM) is given below as an example.

ADVANCEBM(SOM) ≡
if bmState(SOM) = init

and varState(SOM,PO) = initialized
then

bmState(SOM) := processing

if bmState(SOM) = processing
and varState(SOM,SO) = initialized

then
bmState(SOM) := created

if bmState(SOM) = created
and varState(SOM,DEL) = initialized
and varState(SOM, INV) = initialized

then
bmState(SOM) := closed

We illustrate the interplay of SEND, RECEIVE, and ADVANCEBM below by pre-
senting their activity sequence when executing the behavioral model of SOM.

7.2 Behavioral models 95

bmState varState varState varState varState

ASM SOM PO SO DEL INV

(orchestration) init initialized (unset) (unset) (unset)

ADVANCEBM processing initialized (unset) (unset) (unset)

SEND processing processed (unset) (unset) (unset)

RECEIVE processing processed initialized (unset) (unset)

ADVANCEBM created processed initialized (unset) (unset)

(orchestration) created processed processed initialized initialized

ADVANCEBM closed processed processed initialized initialized

SEND closed processed processed processed processed

The SOM behavioral model is triggered when it is in its initial state and the PO
has been made available by the orchestration. That is recognized by the ADVANCEBM
machine which advances SOM’s state. In the new state, processing, the SEND machine
becomes active as the execution is behind an input transition and the data has not yet
been sent to the component. After that is done, the RECEIVE machine awaits an answer
from the component and marks the variables representing the received data as available,
or initialized. ADVANCEBM recognizes the completion of the communication with
the component and advances the behavioral model’s state to created. Now, the control
is again at the orchestration, which will be focus of the following section. When the
orchestration is ready to perform SOM’s final operation, it initializes the variables DEL
and INV. That is again recognized by ADVANCEBM, which advances SOM’s state to
closed. Finally, the SEND machine recognizes that there is data to be forwarded to the
component, which is finished by marking the variables DEL and INV as processed.

7.2.3 Communication execution semantics

In the previous section, we introduced a mathematical definition of behavioral models.
As we finally target to describe orchestrations of multiple behavioral models, we
describe in this section, how we represent communication between different behavioral
models. The definition of communication will be the basis for the definition of an
orchestration.

Consequently, we now have to refer to behavioral models and their variables in a
global manner. Thus, we need to add a unique identification to behavioral models and
variables. Therefore, we introduce two sets that uniquely identify states and variables
of specific behavioral models.

96 CHAPTER 7: TRANSFORMING BEHAVIORAL MODELS FOR EAI AND E-BUSINESS

Definition 7.4 (Global states and variables).

B := { bm 7→ bmState : bm ∈ ID, bmState ∈ Qbm }
Variable := { (bm, v) : bm ∈ ID, v ∈ (Σbm ∪ Zbm) }

We would now, for example, refer to the states and variables of SOM as

(SOM, init), (SOM, processing), (SOM, created), (SOM, closed) ∈ B
(SOM,PO), (SOM,SO), (SOM,DEL), (SOM, INV) ∈ Variable

Correspondingly, we define a possible communication as a tuple of a globally unique
output variable of one behavioral model and a globally unique input variable of another
behavioral model.

Definition 7.5 (Communication).

K := { ((bm1, o), (bm2, i)) : bm1, bm2 ∈ ID,

bm1 6= bm2, o ∈ Zbm1 , i ∈ Σbm2 }

When we consider the three behavioral models in Figure 7.5, we can write down
the following potential communications.

1 :((SOM, SO), (PROD, SO)), 4 :((PROD, INV), (SOM, INV)),

2 :((PROD, DEL), (FIN, DEL)), 5 :((PROD, DEL), (SOM, DEL)),

3 :((PROD, INV), (FIN, INV)), 6 :((FIN, INV), (SOM, INV))

Figure 7.5: Three behavioral models with potential communications.

7.2 Behavioral models 97

Please note that not all potential communications necessarily have to
participate in an orchestration. Which of the technically possible commu-
nications actually take place in an orchestration depends on the specific
integration purpose the orchestration is built for. In Chapter 8, we explain
when and how that decision is made.

Based on the definitions of state and communication, we now define a copy rule
being a communication (see Definition 7.5) linked to a specific time when executing an
orchestration—identified via states of the behavioral models (see Definition 7.4). We
chose the name “copy rule” because the execution of a copy rule stands for assigning,
or copying, the value of a variable of one behavioral model to a variable of another
behavioral model. We call it a rule because the state information can be interpreted as a
guard that enables the enactment of the communication.

Definition 7.6 (Copy rules).

C := 〈S,K〉 , S ⊆ B, K ⊆ K

The following are examples for copy rules for communications appearing in Fig-
ure 7.5 on the preceding page.

c1 =({(SOM, created), (FIN, init), (PROD, init)},
{((SOM, SO), (PROD, SO))})

c2 =({(SOM, created), (FIN, waiting), (PROD, done)},
{((FIN, INV), (SOM, INV))})

The first copy rule c1 states that the value of SO should be copied from SOM to PROD
when the behavioral model of SOM is in the state created and the other behavioral
models are in their initial states. Thus, c1 assigns a concrete time in the execution of the
three behavioral models to communication 1 above. The second copy rule c2 assigns
another execution time point to communication 6.

It shall be noted that the copy rules are not meant to be created manu-
ally in our approach. That is the task of our complex-goal-based WS
composition which will be presented in Chapter 8. Also, enumerating
potential communications is not an entirely manual task, but supported
by our CFIM of hierarchical types presented in Chapter 6 on page 65.

After defining copy rules, we now specify their execution semantics. As said, a
copy rule can be understood as a rule which becomes active when the time point in the
execution—represented by states of each behavioral model—is reached. In addition,
we have to check whether the variables that should be read from are initialized and the
variables that should be written to are not yet initialized. As denoted, the execution of

98 CHAPTER 7: TRANSFORMING BEHAVIORAL MODELS FOR EAI AND E-BUSINESS

a copy rule corresponds to changing the states of the variables involved. Since a copy
rule contains multiple assignments of variables, that may trigger the further sending of
multiple messages via the respective SEND ASMs as explained above by marking the
input data as available.

COPY ≡
{

if bmState(bm1) = s1 and . . .
and bmState(bm |states|) = s|states|
and varState(bmout1 , o1) = initialized and . . .
and varState(bmout|comms| , o|comms|) = initialized
and varState(bm in1 , i1) 6= initialized and . . .
and varState(bm in|comms| , i|comms|) 6= initialized

then
do forall ((bmout, o), (bm in, i)) ∈ comms

varState(bmout, o) := processed
varState(bm in, i) := initialized

:
(states , comms) ∈ Rules,
(bmk, sk) ∈ states , k = 1 .. |states|
((bmoutn , on), (bm inn , in)) ∈ comms , n = 1 .. |comms|
}

To give an example, we explicitly formulate the concrete COPY machine for the set
Rules = {c1} (see above).

COPY ≡
if bmState(SOM) = created

and bmState(FIN) = init
and bmState(PROD) = init
and varState(SOM,SO) = initialized
and varState(PROD,SO) 6= initialized

then
do forall ((bmout, o), (bm in, i)) ∈ {((SOM, SO), (PROD, SO))}

varState(bmout, o) := processed
varState(bm in, i) := initialized

The rule contained in that machine becomes activated when the behavioral model of
SOM is in the state created, both FIN and PROD are in their initial states, and the value
of variable SO in the behavioral model SOM is available and was not yet copied to
variable SO of PROD. When fired, the rule marks SO in SOM as processed and SO in
PROD as available, or initialized, in order to not fire over and over again and to trigger
subsequent ASMs.

7.2 Behavioral models 99

The interplay of the ASMs representing behavioral models—i. e., SEND, RECEIVE,
and ADVANCEBM—and their communication—i. e., COPY—for the sake of forming
an orchestration is summarized in the following section.

7.2.4 Orchestration execution semantics

In the former sections, we have presented mathematical models for behavioral models
and their communication. An orchestration of a set of behavioral models can be
understood as a set of communications happening at specific time points. Therefore, we
use copy rules to express an orchestration.

The ASMs involved in defining the execution semantics of one behavioral model
were displayed in Figure 7.4 on page 92. In order to express an orchestration of two
behavioral models, we have to, informally speaking, duplicate Figure 7.4 and combine
the two ADVANCEBM machines via a COPY machine. That is displayed in Figure 7.6.

Figure 7.6: ASMs involved in executing an orchestration.

Although the picture shows the interplay of just two behavioral models, one COPY

machine can cope with an arbitrary number of parallelly evolving executions of behav-
ioral models.

We have already defined all ASMs participating in the execution of an orchestration.
What is missing is a machine that invokes one ASM after the other. However, instead of
providing one such machine, we incrementally combine the ASMs in two machines.
We make that distinction because it allows us to extend our approach from EAI to
e-business later in this chapter.

The incremental combination of machines is connotated at the bottom of Figure 7.6.
First, we bundle all ADVANCEBM and the COPY ASM together. The new machine
invoking the ADVANCEBM and COPY machines is the ADVANCEORCHESTRATION

machine.

ADVANCEORCHESTRATION(IDs) ≡
choose {M : M ≡ ADVANCEBM(bm) ∨M ≡ COPY, bm ∈ IDs }
M

100 CHAPTER 7: TRANSFORMING BEHAVIORAL MODELS FOR EAI AND E-BUSINESS

The ADVANCEORCHESTRATION machine chooses an ASM from a set of ASMs
that contains an activated rule—i. e., a rule that may fire. That is done by the non-
deterministically choose construct in the ASM formalism.

In the second step, we bundle the ADVANCEORCHESTRATION machine with all
SEND and RECEIVE machines to be alternatingly invoked by the MEDIATOR machine.

MEDIATOR ≡
choose {M : M ≡ ADVANCEORCHESTRATION(ID) ∨

M ≡ SEND(bm) ∨ M ≡ RECEIVE(bm), bm ∈ ID }
M

In this section, we defined a notation for behavioral knowledge that

• is connected to technical Web service descriptions—and thus can be applied on
existing Web service infrastructure,

• is capable to express operation dependencies in a formal way which is done today
ambiguously in the form of natural language,

• can be interlinked to form orchestrations, and

• can be executed by simulation engines such as CoreASM.

In the rest of this chapter, we present a method for transforming behavioral knowledge
in the form of behavioral models between the phases of software development to benefit
from the formal explication. For that purpose, our method involves storing behavioral
models when components are developed and adapting the stored behavioral models
to the needs of integration experts for the two integration stages EAI and e-business
integration without losing any of the behavioral knowledge on the way—even not when
the final orchestration is deployed for execution.

7.3 Formalizing requirement
Before we present our method to track behavioral information through software design
phases, we formalize that requirement. In the definition, we use a transitive closure of
edges in a behavioral model. Therefore, we first define the transitive closure.

Definition 7.7 (Transitive closure). Let Q be a set of states of a behavioral model, L a
set of labels. Let δ be a set of labeled transitions of the form δ : Q×L→ Q connecting
the states. Then, the transitive closure of all edges T (δ) is defined as follows:

(q1, l, q2) ∈ δ ⇒ 〈q1, q2〉 ∈ T (δ)

〈q1, q2〉 ∈ T (δ) ∧ 〈q2, q3〉 ∈ T (δ)⇒ 〈q1, q3〉 ∈ T (δ)

7.4 Convert provided behavioral model to provider view 101

In Section 3.4.2 on page 36, we stated as a requirement to track behavioral informa-
tion through software design phases that no operation execution sequences that were
not allowed in the component design time model must be allowed in the integration
design time model. We formally express that condition as follows.

Definition 7.8 (Correct overall sequencing). Whenever a sequence of operation invoca-
tions (o1, o2) is observed during the execution of an orchestration of copy rules, then
the operations should appear in the respective community perspective behavioral model
C in the same order on some path calculated using the transitive closure of all edges of
the community perspective behavioral model: 〈o1, o2〉 ∈ T (δC).

In order to check for the proper sequencing of operations in the orchestration and
in the community perspective behavioral model, we need to check that property on all
intermediate model transitions. That is done in the following sections.

7.4 Convert provided behavioral model to provider
view

As depicted in Figure 7.7, every interface can in general be seen from the

• consumer view and the

• provider view.

The peer implementing an interface takes the provider view and a peer using an interface
takes the consumer view. For example, if a piece of software makes use of an interface
by reading information from the interface (consumer view), then some piece of software
implementing the interface must send that information to the interface (provider view).
Vice versa, if a piece of software makes use of an interface by writing data to the
interface (consumer view), then some piece of software implementing the interface
must be ready to absorb and process the data (provider view). In that sense, the consumer
view of an interface is the opposite of the provider view.

Figure 7.7: Interface provider and consumer perspectives. Provider and consumer
have opposite behavior. The provider first sends then receives. The consumer first
receives then sends.

102 CHAPTER 7: TRANSFORMING BEHAVIORAL MODELS FOR EAI AND E-BUSINESS

In other words, the concept of the opposite of an interface allows us to connect the
consumer and the provider view. The opposite of an interface acts as a gateway between
the implementation of the provider and the consumer. That is the key idea behind our
solution transforming behavioral models for EAI and e-business.

Definition 7.9 (Opposite behavioral model). We define the opposite behavioral model
BM−1 of an original behavioral model BM = 〈Σ, Z, Q, q0, δ〉 as

BM−1 := 〈Z, Σ, Q, q0, δ〉 .

The only difference between a behavioral model and its opposite is the mutual
substitution of inputs and outputs. As an example, we show the provided behavioral
model of a selling company in Figure 7.8. As said, the provided behavioral model can
be seen from the consumer view (SELR)—which is used for e-business by business
partners like CUST to connect—and the provider view (SELR−1)—which is used for
EAI to integrate with the components of the seller (i. e., SOM, FIN, and PROD).

Figure 7.8: Interface of the seller.

In order to demonstrate the difference, we present the behavioral models in formal
notation below.

QSELR = {init,waiting, done} QSELR−1

= {init,waiting, done}
ΣSELR = {PO} ΣSELR−1

= {INV}
ZSELR = {INV} ZSELR−1

= {PO}

δSELR = q1 I/Os q2

init {PO } waiting

waiting {INV } done

δSELR−1

= q1 I/Os q2

init {PO } waiting

waiting {INV } done

qSELR
0 = init qSELR−1

0 = init

It is obvious that creating the opposite of a behavioral model does not violate the
proper sequencing of operations as was demanded in Section 7.3 on page 100.

7.5 Excerpt consumed behavioral model fragment 103

Lemma 7.10 (Proper sequencing of opposite behavioral models). Two operations that
appear in a behavioral model BM appear in the same order in the opposite behavioral
model BM−1.

Proof. That is trivial because QBM = QBM
−1

.

7.5 Excerpt consumed behavioral model fragment
The behavioral model of a software component in the component perspective describes

• the potential operations the component may perform,

• potential alternative outcomes of an operation invocation, and

• sequencing constraints that are required for a successful operation invocation.

However, the operations are general and need to be applied in the context of a business
process in order to perform some meaningful task. For that purpose, a business process
expert may define a view of the components to participate in the enterprise-internal
business process (EAI). As not the full functionality of the components may be needed
in the context of the business process, the business process expert first has to define
the relevant fragment of the component perspective behavioral models. Of course, the
relevant fragment must be in concordance with the component perspective behavioral
models to meet the requirement of preserving operation sequences stated in Section 7.3
on page 100.

Before we can present an algorithm how to construct a concordant fragment from a
behavioral model, we introduce some preliminaries.

The first is a notational convention which we introduce to differentiate between states
of a component perspective behavioral model C and a fragment behavioral model F .
We represent a state of the component perspective behavioral model using superscript
as qC and a state of the fragment behavioral model as qF .

Second, we define a relation between states of a component perspective behavioral
model and states of a fragment—the “originating state”—to enable later comparison of
the two behavioral models.

Definition 7.11 (Originating state). We denote the originating component perspective
behavioral model state qC for a fragment state qF as

qC = σ(qF).

As an example, let’s assume the left-hand side of Figure 7.9 on the following
page would be the component perspective behavioral model of the seller’s finance
component (FINC) and the right-hand side would be the derived fragment FINF . The
component perspective behavioral model describes two operations: First, an operation
to create an invoice (INV) from a delivery (DEL). The operation is represented by the

104 CHAPTER 7: TRANSFORMING BEHAVIORAL MODELS FOR EAI AND E-BUSINESS

state processingC . Second, an operation to pay an invoice (INV) without any output,
represented by the state initC .

In the fragment behavioral model, the loops in the state transition system are
unfolded. Here, the first operation is represented by state processingF , the second by
doneF .

Between both behavioral models, the originating state function is displayed by the
dashed arrows (Figure 7.9) which we formally explicate below.

processingC = σ(processingF)

initC = σ(initF)

initC = σ(waitingF)

initC = σ(doneF)

Figure 7.9: Originating states of the seller’s financial component.

Third, we pose the restriction on fragment behavioral models to be trees only,
which allows us later—in Chapter 8—to define an efficient complex-goal-based WS
composition. Despite the restriction to trees, we will show in Chapter 10 that our
fragments still allow expressing real-life business processes.

A handy property of trees is that one can always name the parent node of each node
except for the root node. We are interested in that property to define the “enabling state”
of an operation.1

Definition 7.12 (Enabling state). For every fragment behavioral model F , δF forms a
rooted tree. Thus, we can uniquely name the enabling state φoF at which the specific
operation oF can be invoked.

1Operation was defined in Section 7.2 on page 90 to be a state with at least one leaving output
transition or with at least one entering input transition.

7.5 Excerpt consumed behavioral model fragment 105

To give an example, we enumerate the enabling states of both behavioral models in
Figure 7.9 on the preceding page.

φprocessingF = initF

φdoneF = waitingF

Finally, we need to define what it means to preserve the knowledge of proper
operation sequencing between component perspective behavioral models and fragments.
Whenever we observe two operations o1, o2 on any path in a fragment F calculated
using the transitive closure (T) of all edges, i. e.,

A = 〈o1, o2〉 ∈ T (δF),

and these operations appear in any order on a common path in the respective component
perspective behavioral model C, i. e.,

B = 〈σ(o1), σ(o2)〉 ∈ T (δC) or

C = 〈σ(o2), σ(o1)〉 ∈ T (δC),

then they should appear in the same order in C as they appear in F :

B = 〈σ(o1), σ(o2)〉 ∈ T (δC).

Thus, the following should hold at all times:

A ∧ (B ∨ C)→ B

We can transform the formula using the rules of propositional logic:

A ∧ (B ∨ C)→ B

⇒ ¬A ∨ (¬B ∧ ¬C) ∨ B

⇒ ¬A ∨ [(¬B ∨ B) ∧ (¬C ∨ B)]

⇒ ¬A ∨ ¬C ∨ B

⇒ A ∧ C→ B

We can now introduce a definition for the “accordance of excerpted and original
behavioral model.”

Definition 7.13 (Accordance of excerpted and original behavioral model). Let C be a
component perspective behavioral model, F a fragment behavioral model excerpted
from C, o1, o2 ∈ QF operations of F , and T the transitive closure. Then,

〈o1, o2〉 ∈ T (δF) ∧ 〈σ(o2), σ(o1)〉 ∈ T (δC)→ 〈σ(o1), σ(o2)〉 ∈ T (δC).

106 CHAPTER 7: TRANSFORMING BEHAVIORAL MODELS FOR EAI AND E-BUSINESS

We can say that two behavioral models are accordant, if for every two operations
in the excerpted behavioral model whose originating states appear in a different order
in the original behavioral model, the originating states must be also in the order of
the excerpted behavioral model. That is, both orders must be allowed in the original
behavioral model.

As an example, let’s check whether the two behavioral models in Figure 7.9 on
page 104 are in accordance. For that, we first list their transition functions.

δFINC = q1 ∈ QFINC I/Os q2 ∈ QFINC

initC {DEL } processingC

processingC {INV } initC

initC {INV } initC

δFINF = q1 ∈ QFINF I/Os q2 ∈ QFINF

initF {DEL } processingF

processingF {INV } waitingF

waitingF {INV } doneF

Second, we compute the transitive closure of their transition functions.

T (δFINC) = {
〈
initC, processingC

〉
,
〈
processingC, initC

〉
,〈

initC, initC
〉
,

〈
processingC, processingC

〉
}

T (δFINF) = {
〈
initF , processingF

〉
,
〈
processingF ,waitingF

〉
,〈

waitingF , doneF
〉
,

〈
initF ,waitingF

〉
,〈

initF , doneF
〉
,

〈
processingF , doneF

〉
}

Third, we find a sequence of operations in FINF :〈
processingF , doneF

〉
∈ T (δFINF).

Fourth, the originating states of FINF were shown above. We can now identify the
opposite order of o1 and o2 in the component perspective behavioral model FINC:〈

initC, processingC
〉
∈ T (δFINC)

Finally, we need to check whether the reverse order also appears in FINC .〈
processingC, initC

〉 !
∈ T (δFINC)

As that is the case, we have shown that the behavioral models FINC and FINF are in
accordance, and thus FINF is a proper excerpt of FINC .

7.5 Excerpt consumed behavioral model fragment 107

However, the above was just an example of a behavioral model and one possible
excerpt. We are now prepared to describe the algorithm a business process expert
should have performed to excerpt FINF from FINC to ensure by construction that both
behavioral models are in accordance.

1. An excerption step begins with picking an operation oC from C.

2. (a) If F does not contain any states yet, oC must have an incoming transition
from qC0 , or oC must be the initial state oC = qC0 . The new states qF0 with
qC0 = σ(qF0) and oF with oC = σ(oF) build the first operation in F .

(b) i. If F already contains operations, the new state oF with oC = σ(oF)
becomes integrated into F . That is done by unifying oF ’s enabling
state φoF with an existing state s in F that has the same origin in C as
φoF , i. e.,

σ(s) = σ(φoF).

ii. If the former step is not possible, oC cannot be added at this time.

Whenever an operation oC is added to a fragment F , oC becomes unfolded. That means
that the state oF and all states that oF ’s output transitions directly link to are new,
separate states in F .

Lemma 7.14. The described construction procedure only produces trees which are in
accordance with their respective community perspective behavioral model.

Proof of trees. It is exactly one tree generated due to two reasons: First, the enabling
state φoF of a newly added operation oF unifies with an existing state in F if oF is not
the first operation. Second, all states except for φoF are new states that were not present
in F before.

Proof of accordance. Let’s assume the negation of Definition 7.13.

¬(A ∧ C→ B) = A ∧ C ∧ ¬B

= 〈o1, o2〉 ∈ T (δF) ∧ 〈σ(o2), σ(o1)〉 ∈ T (δC) ∧ ¬ 〈σ(o1), σ(o2)〉 ∈ T (δC)

The formula states that in C, there is a connection from the originating state of o2 to the
originating state of o1, but not vice versa. Additionally, in F , o2 is behind o1. If we can
show that our algorithm cannot produce such a situation, we have proven that it only
creates according excerpts.

In our algorithm, operations are being added one after the other to F . Therefore, we
must differentiate between two cases:

1. o1 is added first, o2 afterwards. With regards to our algorithm, an operation can
only be added if its enabling state is already in F . However, if o2 is going to
be added in the same path below o1, a state sF must be created in F whose

108 CHAPTER 7: TRANSFORMING BEHAVIORAL MODELS FOR EAI AND E-BUSINESS

originating state is at the same time behind the originating state of o1 and before
the originating state of o2: 〈

σ(o1), σ(sF)
〉
∈ T (δC)

∧
〈
σ(sF), σ(o2)

〉
∈ T (δC).

That implies 〈σ(o1), σ(o2)〉 ∈ T (δC), which contradicts the assumption.

2. o2 is added first, o1 afterwards. If o1 is added after o2 then all the states directly
following o1 are new states in F which can never be linked to operations already
existing in F . Thus, for every state sF with〈

o1, s
F〉 ∈ T (δF) :〈

sF , o2

〉
/∈ T (δF).

Therefore, 〈o1, o2〉 /∈ T (δF), which contradicts the assumption.

By contradiction we have shown that our algorithm preserves operation order.

7.6 Join orchestrations
Let’s assume that there is an orchestration Oebus of the e-business perspective. Let the
set of identifiers of behavioral models in Oebus be PID. Let’s further assume that for
each behavioral model BM in Oebus with identifier bm there exists an orchestration
Obm of the EAI perspective that contains BM−1. In order to deliver on the promise
to track behavioral information through software design phases, we have to define a
composition of orchestrations. We define the joined orchestration Ojoin of Oebus and all
Obm by joining their copy rules.

Definition 7.15 (Joined orchestration).

Ojoin := RulesOebus ∪
⋃

bm∈PID

RulesObm

The execution semantics of the joined orchestration illustrated in Figure 7.10 on the
next page is a slight modification to the MEDIATOR ASM.

MEDIATOR∗ ≡
choose {M : M ≡ ADVANCEORCHESTRATION(ID ∪ PID) ∨

M ≡ SEND(bm) ∨ M ≡ RECEIVE(bm), bm ∈ ID }
M

The parameters of ADVANCEORCHESTRATION differentiate MEDIATOR∗ from
MEDIATOR: In the joined orchestration, the behavioral models of all Web services and
all behavioral models in the e-business perspective orchestration have to be advanced.

7.7 Proving requirement 109

Figure 7.10: ASMs involved in execution in the e-business perspective.

Lemma 7.16. Let o be an orchestration consisting of a set of copy rules C. Let o′ be an
orchestration that consists of two sets of copy rules C ′ and C ′′ that are joined by C. Let
o′′ be an orchestration consisting of C ′. Two operations that are triggered to be executed
in a sequence by advancement of C ′ through o′ can also be triggered in sequence by o′′.

Proof. As we have defined, each copy rule c of an orchestration p contains only states
of behavioral models that participate in p and for each behavioral model that participates
in p, there is exactly one state in the state component of c. Further, two orchestrations p
and p′ are joined when they share exactly one participating behavioral model.

The COPYASM performing o′ from the lemma executes C ′, which is contained in o′,
as if C ′ was the single set of copy rules of an orchestration, such as in o′′. Thus, every
pair of operations triggered in a sequence by o′ would also be triggered in the same
sequence by o′′. From the perspective of C ′, the joining orchestration o just appears as a
participant of o′′.

7.7 Proving requirement
We can now prove the requirement defined in Section 7.3 on page 100. The proof directly
follows from the lemmas that were presented in this chapter under two circumstances:

1. The transformations from this chapter are employed based on the procedure
described in Chapter 5 on page 55.

2. The orchestration established through the copy rules is correct in that it guaran-
tees the same sequence of operation invocations as defined in each community
perspective behavioral model. That property will be proved in the following
chapter.

110 CHAPTER 7: TRANSFORMING BEHAVIORAL MODELS FOR EAI AND E-BUSINESS

Theorem 7.17. Under the named conditions, each sequence of operation invocations
(o1, o2) observed during the execution of an orchestration, consisting of a set of copy
rules, also appears in a community perspective behavioral model C in the same order
(oC1 , o

C
2) on some path, calculated using the transitive closure (T) of all edges

〈
oC3 , o

C
4

〉
∈

T (δC).

Proof. Follows from the lemmas in this chapter.

7.8 Summary
In this chapter, we have detailed the derive and join orchestrations activities that were
first introduced in the overview in Chapter 5 on page 55. With the techniques presented
here, it is now possible to express behavioral knowledge at component design time and
use it during integration design time through model-driven transformations. That is a
benefit compared to what needs to be done currently to achieve process integration:

First, the capabilities in terms of operation dependencies are today not expressed
formally—as, for example, using our behavioral models,— but in a natural language
documentation. That yields much room for interpreting the natural language documen-
tation when an integration team works on integrating different components.

Second—in addition to interpreting natural language documentation,—the integra-
tion team also has to restrict the potentially very flexible capabilities of the components
to the operations and the flows that are actually needed to implement a business process.
That—in our solution supported by the derive activity—is today done manually, mostly
together with the first step—the interpretation of the natural language documentation.
Performing that task manually can not ensure that the behavioral constraints given by
the capabilities of the component are actually observed in the restricted behaviors that
are used to build the integration.

Third, the integration team has to combine the restricted capabilities of the com-
ponents to a single orchestration. That includes not only combining the components
to achieve a desired outcome. Also, undesired responses from components must be
managed consistently across all components. That error-prone, today manual task is
called exception handling. Our behavioral models and their transformations build the
basis to apply our complex-goal-based WS composition—which will be presented in
Chapter 8—to support that task with formal methods to increase consistency.

Fourth, in large integration projects, business processes are modeled first using
pen and paper or using business process modeling tools. As these models are mostly
informal, it is not guaranteed that the process steps can directly be mapped on, for
example, Web service operations. When modeling has finished, the—informal—models
are handed over to developers who perform that mapping. The developers may recognize
technical difficulties connecting the operations as depicted in the process models.
Therefore, developers have to take decisions or ask modelers back for resolution.
Consequently, the media break between models and implementation is likely to result
in a divergence between modeled and implemented process. Our solution overcomes

7.8 Summary 111

that media break as behavioral model and copy rules have operational semantics which
can be either directly simulated or transformed to an implementation, such as BPEL.

Fifth, after integration has been achieved internally (EAI), a company might decide
to engage in e-business. Again, a collaborative business process needs to be built which
considers and does not break the partial business procedures of the partners. Apparently,
ensuring consistency in e-business integration strongly depends on the EAI of each
partner. As today, the business process a company reveals to its partners is, if at all,
documented in natural language, manually integrating different partners (e-business
integration) is as error-prone and costly as manually integrating enterprise applications
inside one company (EAI). Fortunately, the integration of enterprise applications using
formal methods explicates the capabilities of each company. Having that, our same
tools can support e-business integration similar to supporting EAI. Our activity “join
orchestration” is the key enabler for the formal integration of different orchestrations.

And finally, it is to be remarked that all the steps explained above are today often
considered as one single step. One whole step from existing component’s Web service
interfaces and natural language documentation to an executable integration, expressed,
for example, in BPEL. Therefore, today all the different aspects above have to be
considered together. With our approach, we raise awareness of the single aspects.
Moreover, we pursue the divide-and-conquer approach in that we separate the different
aspects to single steps which can be solved one after the other with the support of
formal methods to increase understanding, maximize reuse of existing knowledge, and
to ensure overall consistency.

Chapter 8

Complex-goal-based WS Composition

In this chapter, we refine the “derive” activity explained in Section 5.2.2 on page 59, in
particular the “build orchestration” sub-activity, which was not addressed in this thesis
so far (see Figure 8.1). The purpose of the build orchestration activity is to mechanically
support exception handling. That is done by our complex-goal-based WS composition.

Figure 8.1: Detailed view of the build orchestration sub-activity.

As depicted in Figure 8.2 on the next page, the core of the complex-goal-based WS
composer takes as input:

• a set of behavioral models,

• a composition goal, and

• a set of variable assignments.

In addition to the core algorithm, which we call compose, the two preparatory steps
involving human intervention

1. define composition goal and

114 CHAPTER 8: COMPLEX-GOAL-BASED WS COMPOSITION

2. refine communications

are necessary. These steps transform the results from the “excerpt consumed behavioral
model fragment” activity (sub-activity of “extract consumed and define provided behav-
ioral models,” see Chapter 7 on page 85) and the assign communication sub-activity to
the inputs of compose—namely, the sets of behavioral models and communications.

The output is an orchestration represented via a set of copy rules as introduced in
Section 7.2.3 on page 95. Depending on whether the orchestration was created for EAI
or e-business integration, it is—as described in Chapter 5 on page 55—either joined
with other orchestrations by the “join orchestrations” activity or directly deployed and
executed.

Figure 8.2: Architecture of complex-goal-based WS composition.

The central element of the complex-goal-based WS composition is a repository to
store the set of behavioral models to be composed. The repository assigns a unique ID
to each behavioral model contained.

Definition 8.1 (Repository).

Repository := {ID→ BM}

Figure 8.3 on the next page shows a set of behavioral models that make up an
exemplary repository. We choose an example here to demonstrate the computation
of the composer which is different from the one used in Chapter 7 because it is more
complex. We introduced the student transfer example in Section 3.2.3 on page 32.
The collaborative business process to compose is the transfer of a student from one
to another school in a consortium of schools which are managed by a common head
quarter.

The rest of this chapter is structured as follows: Section 8.1 explains the behavioral
model of the student transfer in more detail. Section 8.2 describes how the requirement
of correct exception handling can be formally stated. In Section 8.3 to Section 8.6, we
present the main features of a composition algorithm that is able to generate an orches-
tration that guarantees correct exception handling. Its detail is given in Appendix A.
Section 8.7 proves the properties of the composer.

8.1 Student transfer example 115

Figure 8.3: Behavioral models for student transfer example.

8.1 Student transfer example

To explain the behavioral models involved in the student transfer process, we list the
states representing operations1 and describe the respective operation verbally below.

User:

• init. That is a notification operation which starts the execution of the student
transfer process by sending a transfer request consisting of customer ID and
new school ID.

• failed. That is a one-way operation which receives the reason for failure of
the process.

• done. That one-way operation is called to inform of successful transfer by
reporting the new student ID.

Head quarter:

1Operation was defined in Section 7.2 on page 90 to be a state with at least one leaving output
transition or with at least one entering input transition.

116 CHAPTER 8: COMPLEX-GOAL-BASED WS COMPOSITION

• requested. That request-response operation returns the enrollment
information—school ID and student ID—about where the user (customer)
is currently enrolled.

• done. That one-way operation updates the records of the customer to their
new school ID and student ID.

Old school:

• requested. That request-response operation returns the detailed registration
information about the courses the student is enrolled in at the old school.
That operation may fail non-deterministically for the invoker if the student
is not know at that school.

• done. That one-way operation unregisters the student from the old school.

New school:

• requested. That request-response operation registers a student at the new
school. The operation may fail non-deterministically if, for example, the
school does not offer the courses the student is currently enrolled in.

8.2 Refining requirements

In Section 3.4.3 on page 37, it was stated that a correct orchestration should ensure
consistent transactional compensation. The correctness of a composition can be defined
based on the states that all participating behavioral models can potentially reach in
the end of the execution of the orchestration. Such a set of states is called Goal. We
differentiate between primary goals (P) and recovery goals (R). Both types of goals
are used to describe the requirements of a correct orchestration (Γ).

Definition 8.2 (Correct orchestration). We define an orchestration to be correct if and
only if it has the following properties:

• Each execution results in a system state that is part of the composition goal.

• There must be a theoretic execution that leads to a system state defined as one of
the primary goals.

By that definition, we ensure transactionality of the behavioral models. One thus has
the possibility to specify that either all behavioral models have to reach a successful
state or no behavioral model must reach a successful state. For our student transfer
example, it would be bad if the Old School successfully unregistered a student, but the
New School failed in registering the student.

8.2 Refining requirements 117

Definition 8.3 (Goals).

Γ := 〈P ,R〉
P ⊆ Goal . . . set of primary goals
R ⊆ Goal . . . set of recovery goals

Goal := { goal : goal = { (bm, bmState) : bm ∈ ID, bmState ∈ Qbm }
∀bm ∈ ID : (bm, bmState) ∈ goal,
|goal| = |ID| }

We illustrate the goal definition by giving possible primary and recovery goals for the
behavioral models of our example repository in Table 8.1 on the next page.

The only desired state is that all participants can successfully finish their transactions.
That is, the student (user) is told their new student ID, the old school successfully
unregistered the student, the new school successfully registered the student, and the
head quarter record contains the up-to-date student enrollment information.

The combination of all other non-operation states, initial states, and leaf states
makes up the recovery goals (please note that only an excerpt of the recovery goals is
listed in Table 8.1 to limit the table’s size). Let’s consider the example of the old school.
The following old school states appear in the recovery goals:

• init. A recovery goal containing that state defines an outcome of an execution to
be acceptable—though not desirable—if no operation of the old school has been
triggered at all.

• failed. A recovery goal containing that state defines an outcome to be acceptable if
the old school does not have the student on record and no deregistration operation
was executed for that student.

• found. A recovery goal containing that state defines an outcome to be acceptable
if the old school could retrieve student information, but it is not deleted. That
state is not desired as it did not complete the student transfer, but it is okay to
leave the old school in that state where only information has been requested, but
no deregistration has been performed. Having that state in the recovery goal
allows for the failure of other participants without ending in an unacceptable state.
For example, the new school could deny to register the student. In that case, the
orchestration our complex-goal-based WS composition generates would leave
old school in the state found and would not unregister the student from the old
school.

In addition to the goals, also the set of communications to be considered is input
to the composer and thus belongs to the composition requirements. We call the set
of communications to be considered by the composer variable assignments. Variable
assignments are a subset of communications (see Definition 7.5 on page 96).

118 CHAPTER 8: COMPLEX-GOAL-BASED WS COMPOSITION

Table 8.1: Exemplary goals.

ID User OldSchool HeadQuarter NewSchool

pg1 done done done done

rg8 failed init failed init

rg10 failed failed failed init

rg12 failed found failed init

rg16 failed failed found init

rg26 failed init failed failed

rg28 failed failed failed failed

rg30 failed found failed failed

rg34 failed failed found failed

rg36 failed found found failed

Definition 8.4 (Variable assignment).

A ⊆ K

According to the approach of this thesis, the modeler is supported in identifying
possible communications during the assign communication activity (see Figure 8.1 on
page 113) by our CFIM of hierarchical types described in Chapter 6. During complex-
goal-based WS composition, in particular during the refine communications activity
(see Figure 8.2 on page 114), the set of possible communications is reduced to the set
of allowable variable assignments for the orchestration. As the naming of the allowable
communications depends on the concrete purpose, the orchestrated business process
should serve, that reduction is a manual task which can only be done by a human
integration expert.

We would like to note that through our approach, we reduced the man-
ual effort by proposing potential communications using our CFIM of
hierarchical types to a minimum.

8.3 Structure of the complex-goal-based WS composer
The complex-goal-based WS composer implements the compose box displayed in
Figure 8.2 on page 114. The general idea of the composer is to perform a backward
chaining of matching inputs and outputs.

8.4 Dividing the composition problem 119

The initial backward chaining starts from a primary goal, for example, pg1 from
Table 8.1 on the preceding page. If the chaining was successful, the generated copy
rules are simulated.

If the simulation detects a situation where one behavioral model has non-
deterministic output alternatives, for example, when the operation represented by the
requested state of the head quarter is invoked, the algorithm performs a backward
chaining for any goal—primary or recovery goal—that is reachable on that alternative
path. That is, the composer tries to reach the state failed of the head quarter in our
example. Therefore, it tries to chain backwards for the goals in Table 8.1 on the facing
page that contain the state failed of the head quarter.

Chaining the alternative path also produces copy rules which are merged with the
copy rules from the chaining for the primary goal. The algorithm recurses as long as
non-deterministic output alternatives are detected either in the chain for the primary
goal or in any chain that needed to be generated for an output alternative.

The composition algorithm is described by a set of ASMs.2 Each ASM represents a
module of the algorithm. The dependencies of the modules are depicted in Figure 8.4 on
the following page. The figure also groups the modules with respect to their purposes.

Based on the grouping, we structure the following sections. Section 8.4 reduces the
problem of composing complex behavioral models to the composition of smaller units.
The smaller units are then composed by the core composition algorithm highlighted
in Section 8.5. We give only as much detail as needed to understand the idea. The
details of the core composition algorithm are described in Appendix A. Section 8.6
explains how the algorithm ensures a correct composition by properly ordering the
composition of the smaller units. The modules residing in the utility group of the picture
are explained upon their first usage.

8.4 Dividing the composition problem

In this section, we show how to break down the composition problem into smaller pieces.
The definition of these pieces bases on the different execution paths each behavioral
model can possibly take to reach a goal. We call the set consisting of exactly one
potential execution path of each participating behavioral model a variant. Figure 8.5
on page 121 displays a variant which leads to pg1. We can define a domain to store
variants as follows.

2ASMs were introduced in Section 7.2.1 on page 90.

120 CHAPTER 8: COMPLEX-GOAL-BASED WS COMPOSITION

Figure 8.4: Invocation dependencies of ASMs. Each box represents an ASM, each
arrow denotes the dependency of an ASM from another. The underlying boxes group
the modules based on their purposes.

Definition 8.5 (Variant).

Variant := { variant :

goal ∈ P ∪R, Γ = 〈P ,R〉 ,
variant = { (bm, T ranss) : bm ∈ ID, T ranss ⊆ δbm ,

(qbm0 , V1, q1) ∈ Transs, . . . (qbm0 is initial state)
(q2, V2, qgoal) ∈ Transs, (bm, qgoal) ∈ goal,
|{ (q3, V3, q4) ∈ Transs : 6 ∃(q4, V4, q5) ∈ Transs }| = 1,

|{ (q7, V5, q8) ∈ Transs : 6 ∃(q6, V6, q7) ∈ Transs }| = 1,

∀s ∈ Qbm : |{(q, V7, q9) ∈ Transs}| ≤ 1,

|{(q10, V8, q) ∈ Transs}| ≤ 1

},
∀bm ∈ ID : (bm, T ranss) ∈ variant,
|variant| = |ID| }

Please note that a variant always leads to exactly one goal.

The ASM starting the composition is called REACHCOMPGOAL. The purpose of
the REACHCOMPGOAL machine is to initialize our composition algorithm. First, it
identifies possible behavioral model executions (CALCVARIANTS) and hands them
over to REACHGOAL. Second, it defines that the composition can only be successful if
at least one primary goal can be achieved by providing the primary goals as the second

8.4 Dividing the composition problem 121

Figure 8.5: Variant leading to pg1 in the student transfer example.

parameter to REACHGOAL. It also ensures that every possible execution of the resulting
copy rules ends in one of the composition goals (Γ) by assigning allowedGoals as
the fourth parameter to REACHGOAL. A more detailed examination of the parameters
of REACHGOAL follows in the next section. If it is not possible to generate a correct
orchestration for any of the primary goals, the result is the empty set. Third, since
REACHGOAL is invoked recursively for some kind of simulation that is introduced later
on, we need to keep track of the current state of the simulation and thus introduce the
simulation state (SimState).

Definition 8.6 (Simulation state).

SimState := 2B

The computation is started by calling REACHGOAL with the initial states of all behav-
ioral models as a starting point (initialSs).

REACHCOMPGOAL(cg ∈ Γ, A ⊆ A) ≡
return copyRules in let

pgs = primaryGoals(cg),
initialSs = { bm 7→ s : bm ∈ ids(pg), pg ∈ pgs, s = qbm0 }
allowedGoals = primaryGoals(cg) ∪ recoveryGoals(cg)

122 CHAPTER 8: COMPLEX-GOAL-BASED WS COMPOSITION

vnts =
⋃
goals∈ allowedGoals CALCVARIANTS(goals) in

(fail, copyRules) :=

REACHGOAL(vnts, pgs, initialSs, allowedGoals, A, initialSs)

The first activity of REACHCOMPGOAL is the calculation of all variants. A variant is
computed as the cross product (crossProduct) of all possible execution paths of the
behavioral models involved in a goal (g) to reach g.

CALCVARIANTS(g ∈ Goal) ≡
return crossProduct in seq

forall (bm, s) ∈ g do paths(bm) := CALCPATHS(δbm , s)

crossProduct := ×bm ∈ ids(g) [{bm} × paths(bm)]

The possible execution paths to reach a specific state (s) of a behavioral model (bm) are
computed as follows: In the end, the paths location will contain a set of paths, where
each path is a set of transition rules. In the beginning, the paths location is initialized
with exactly one path consisting of the one transition that directly leads to the specified
state. Now, those transitions directly leading to an existing transition in a path in paths
are iteratively added to that path. The calculation is performed as long as some paths
grow. Therefore, we store the overall size of all paths (calcSumOfLengths) during the
preceding iteration in oldSumOfLengths.

CALCPATHS(T ⊆ δbm , s ∈ Qbm) ≡
step

oldSumOfLengths := 0

paths := {{ (qpre, V, qpost) ∈ T : qpost = s }}
step while calcSumOfLengths(paths) > oldSumOfLengths do

oldSumOfLengths := calcSumOfLengths(paths)

forall path ∈ paths do

step paths := paths \ {path}
step do forall rule ∈ { (qpre, V1, qpreex

) ∈ T :

(qpreex
, V2, qpostex) ∈ path }

paths := paths ∪ {path ∪ rule}
step result := paths

where

calcSumOfLengths(paths) ≡
|path1|+ |path2|+ . . .+ |path|paths||

pathx ∈ paths, x = 1 .. |paths|

8.5 Core composition algorithm 123

8.5 Core composition algorithm
In this section, we give a high-level explanation of the core composition algorithm
(upper right part of Figure 8.4 on page 120). Due to its length, the formal ASM
description of the core composition algorithm and all nested modules is not given here,
but in Appendix A on page 201.

The core composition algorithm works iteratively from the final states of each
behavioral model to their initial states. Therefore, we need to keep track of the current
state of the backchaining and thus introduce the planning state (PlState).

Definition 8.7 (Planning state).

PlState := 2B×{IN,OUT,undef}

The planning state consists of a set where each member consists of two components:
a behavioral model state (B) and a mode (IN , OUT , undef). The state component
can only contain a behavioral model state directly behind an output transition. The
planning state referred to by that representation is the state of the behavioral model
state component in the case of mode OUT , and the directly preceding state in the case
of mode IN . The states in an exemplary behavioral model and in the corresponding
PlState are displayed in Figure 8.6.

Figure 8.6: Planning state and corresponding state of the behavioral model.

An exception to the above is made for the final state of a behavioral model. The
final state may as well be the content of the behavioral model state component. The
mode in that case is OUT if the directly preceding transition is an output transition.
The mode is IN in the case of a directly preceding input transition.

Another exception is that the behavioral model state component can take the initial
state of a behavioral model (qbm0). In that case, the mode is undef. The planning state
for a behavioral model represented by the behavioral model state component and the
mode component equals the behavioral model state component in the exceptional cases.

The composition algorithm takes the following inputs:

124 CHAPTER 8: COMPLEX-GOAL-BASED WS COMPOSITION

• A variant of the possible behavioral model executions, i. e. a specific execution
path for each participating behavioral model. For example, the variant shown in
Figure 8.5 on page 121.

• An initial planning state derived from the given goal, for example, from pg1.

• A set of possible variable assignments.

In our example, we used equal variable names in the different behavioral models to
denote types that can be mapped on each other. Thus, for example,

((User, customerID), (HeadQuarter, customerID))

would be one of the variable assignments in Figure 8.5 on page 121. We explicitly list
the two exceptions where we did not follow the convention of equal names.

((HeadQuarter, custRegNA), (User, regDeniedInfo))

((OldSchool, regInfoNA), (User, regDeniedInfo))

The general idea of the composition is to create copy rules for matching outputs
and inputs of different behavioral models in the current planning state (ps) and to add
them to the set copyRules (CREATECOPYRULE). So, for example, in the initial call,
the planning state corresponds to the primary goal pg1. In that state, the copy rule cpg1
is generated—a more exact description of generating copy rules follows later. After that
has been done, the planning state proceeds toward the initial states of the behavioral
models (CREATENEWPLANNINGSTATE)—let’s call that state ps1—and the algorithm
reiterates. Thus, a copy rule cps1 is generated for ps1, cps2 for ps2, and so on.

The composition of a variant is aborted if no valid composition could be achieved
(fail), the planning state consists of only initial states (done), or the composition came
to a dead end, i. e., the planning state remained the same for two iterations. The latter
case may occur if not all output variables of a behavioral model are consumed by other
behavioral models. During composition, such a behavioral model’s planning state will
not proceed any further toward its initial state.

For the creation of the copy rules in the current planning state as highlighted above,
some preliminary calculations have to be performed.

First, we identify all output variables of all behavioral models that are available
for that variant (outPool). As an example, we assume that planning is still in at the
state corresponding to the primary goal pg1. We give the outPools of the variant in
Figure 8.5 on page 121 below.

Behavioral model outPool

User {customerID, newSchoolID}
OldSchool {studentRegInfo}
HeadQuarter {oldSchoolID, oldStudentID}
NewSchool {newStudentID}

8.5 Core composition algorithm 125

Second, we identify all input transitions of all behavioral models that directly lead
to the current planning state (adjInTrans).

Note that for one behavioral model there is exactly one such transition
because the calculation bases on a variant.

For the planning state corresponding to the primary goal pg1, the direct input transitions
are the following.

adjInTrans

Behavioral model q1 ∈ Qbm inputs q2 ∈ Qbm

User requesting {newStudentID} done

OldSchool found {oldSchoolID, oldStudentID} done

HeadQuarter found {newSchoolID, newStudentID} done

NewSchool ∅

Third, we match all inputs of the identified input transitions with available out-
puts (CALCINPUTSSERVED). The correspondences for that matching are taken from
the given, possible variable assignments (A). In our example, all input variables in
adjInTrans can be served. Therefore, we create the copy rule below. As a state compo-
nent of the copy rule, we take the states from the current planning state—in our case, the
planning state corresponds to pg1—with the exception that for the behavioral models
whose planning state was directly behind an input transition, we take the state before
the input transition. For brevity, we refer to the names of behavioral models by their
first letter, only.

cpg1 = ({(U, requesting), (O, found), (H, found), (N, done)},
{((N, newStudentID), (U, newStudentID)),

((H, oldSchoolID), (O, oldSchoolID)),

((H, oldStudentID), (O, oldStudentID)),

((U, newSchoolID), (H, newSchoolID))}),
((N, newStudentID), (H, newStudentID))

The rationale for the computation of the state component is that the state in the copy
rule now describes the global system state at which the variables are actually copied
during execution. Namely, execution of the copy rule must occur

• after all outputs are available—therefore, we take the planning state when it is
behind an output transition—and

• before inputs can be received—therefore, we take the state before the planning
state when it is behind an input transition.

126 CHAPTER 8: COMPLEX-GOAL-BASED WS COMPOSITION

After creating the copy rule, the new planning state is computed based on which
output still need to be consumed. The planning state for input transitions is always
advanced toward the initial state. Therefore, the new planning state ps1 now refers to
the following behavioral model states.

{(U, requesting), (O, found), (H, found), (N, requested)}

Finally, we update the outPools in order to only contain all output variables that
will be consumed at a later stage of the composition—i. e., by inputs before the current
planning state. We give the updated outPools for our example below.

Behavioral model outPool

User {customerID, newSchoolID}
OldSchool {studentRegInfo}
HeadQuarter {oldSchoolID, oldStudentID}
NewSchool ∅

The subsequent iterations of the composition would, for our example, result in the
following copy rules before the composer reaches all behavioral models’ initial states.

cps1 = ({(U, requesting), (O, found), (H, found), (N, init)},
{((O, studentRegInfo), (N, studentRegInfo)),

((U, newSchoolID), (N, newSchoolID))});
cps2 = ({(U, requesting), (O, init), (H, found), (N, init)},

{((H, oldSchoolID), (O, oldSchoolID)),

((H, oldStudentID), (O, oldStudentID))});
cps3 = ({(U, requesting), (O, init), (H, init), (N, init)},

{((U, customerID), (H, customerID))})

Please note that the four generated copy rules already constitute an
orchestration for the behavioral models in Figure 8.3 on page 115 for the
case that all operations respond as depicted in Figure 8.5 on page 121.

We manage the cases when not all operations respond as desired in the following
section.

8.6 Computing correct orchestrations
For one variant, the creation of copy rules can be achieved by our core composition
algorithm (REACHVARIANT), which was explained in the previous section. The copy

8.6 Computing correct orchestrations 127

rules created by REACHVARIANT ensure that the given goal can be reached in that
variant. As we have demonstrated with our example, the first call to REACHVARIANT

creates a set of copy rules to orchestrate the behavioral models if their executions would
behave according to the variant shown in Figure 8.5 on page 121.

Due to potential non-deterministic behavior of the participating behavioral models,
it may happen that the execution of the orchestration leaves one of the behavioral
models’ path along the variant, or even leave the path to its final state that is part of the
defined goal. For example, the customer ID sent from the user to the head quarter could
be declined be the head quarter.

The result of our composition has to ensure that in such a case an alternative
path is taken that leads to any other desired final state. That would, for example,
include informing the user of the failure. That is ensured by VERIFYING. With the
high-level understanding, we step one level up and go in detail through the imple-
mentation of REACHGOAL (compare Figure 8.4 on page 120), which internally calls
REACHVARIANT described in the last section. Second, we explain VERIFYING—
another constituent of REACHGOAL—and third, we detail the simulation of the created
copy rules that is part of VERIFYING.

8.6.1 Reach goal
The aim of REACHGOAL is to return copy rules ensuring a correct orchestration for at
least one of the given goals only considering the given variants (vnts). For that, it first
identifies all variants (goalV nt) that lead to the goals (CALCVARIANTS). Second, it
tries to compose each of the variants (REACHVARIANT). That results in some copy rules
(regCopyRules). Third, the algorithm creates copy rules (altCopyRules) for each non-
deterministic branch in the theoretic execution of regCopyRules (VERIFYING). The
created copy rules either provide a correct orchestration of that branch, or VERIFYING

fails (altFail). If a correct orchestration could be generated for at least one variant in
the end, the corresponding copy rules (oneV ariantCopyRules) are finally returned.

REACHGOAL(vnts ⊆ Variant, mandatGoals ⊆ Goal, ss ∈ SimState,
allowedGoals ⊆ Goal, A ⊆ A, startstate ∈ SimState) ≡ return
(fail, copyRules) in

if mandatGoals = ∅ then fail :=falsepar copyRules := ∅
else

step fail :=truepar copyRules := ∅ par variantCopyRules := ∅
step do forall goalV nt ∈ PICKVARIANTS(vnts, ss, mandatGoals)

step (regFail, regCopyRules) :=
REACHVARIANT(goalV nt, finState(goalV nt), A, startstate)

step if not regFail then
step (altFail, altCopyRules) :=

VERIFYING(vnts, goalV nt, regCopyRules, startstate, allowedGoals, A)
step if not altFail then

128 CHAPTER 8: COMPLEX-GOAL-BASED WS COMPOSITION

fail :=false
variantCopyRules := variantCopyRules

∪ {filterRules(regCopyRules, altCopyRules)}
step if variantCopyRules 6= ∅ then

choose oneV ariantCopyRules ∈ variantCopyRules
copyRules := oneV ariantCopyRules

where
filterRules(C1, C2) := { c : c1 ∈ C1, c2 ∈ C2,

c =

{
c2, 6 ∃ c1 : states(c1) = states(c2)

c1, otherwise
}

finState(vnt ∈ Variant) := { (bm, s) : (qpre, V, qpost) ∈ T,
(bm, T) ∈ vnt, 6 ∃ (qpost, V, snext) ∈ T }

As an optimization, not all variants (vnts) are considered during computation, but only
those (pickedV nts) that pass the given state (ss) and lead to the given goal.

PICKVARIANTS(vnts ⊆ Variant, ss ∈ SimState, goals ⊆ Goal) ≡
return pickedV nts in
pickedV nts := { vnt ∈ vnts : ∀ path ∈ vnt, bm = id(path),

F = transs(path), (qpre1
, V1, qpost1) ∈ F, (bm, qpre1

) ∈ ss,
(qpre2

, V2, qpost2) ∈ F, (bm, qpost2) ∈ goal, goal ∈ goals }

Both REACHVARIANT and VERIFYING are contained in REACHGOAL, which was
just presented. We discussed REACHVARIANT as part of Section 8.5 on page 123. In
the following section, we present VERIFYING.

8.6.2 Verifying
Through REACHVARIANT in REACHGOAL, we ensure that a composition can be
generated that steers the execution along the specific variant as discussed. However, the
path of execution may depend on the non-deterministic behavior of other behavioral
models that cause a deviation from the path. For that case, VERIFYING ensures that
there exists a successful composition for each non-deterministically deviating path.
The result of VERIFYING is either the set of copy rules that ensure the successful
composition or a notification of failure if no successful composition exists for all
non-deterministic deviations.

We now detail the functioning of VERIFYING. In order to give the full picture,
we link our description to REACHGOAL where necessary. The overall process is
schematically depicted in Figure 8.7 on the next page.

First, REACHGOAL tries to reach a variant (REACHVARIANT).

8.6 Computing correct orchestrations 129

Figure 8.7: Recursive computation of REACHGOAL. The abbreviations rep-
resent the modules REACHVARIANT (RV), NEXTNONDETOPTIONS (NO), and
REACHGOAL (RG). A circle or diamond next to an abbreviation denotes the simu-
lation state that was the input or the output of the respective module. The perpendicular
line end denotes the initial simulation state. Each circle denotes a simulation state
prior to some non-deterministic options. Each diamond denotes a goal. A solid line
represents copy rules ensuring a correct, partial orchestration from its upper to its lower
simulation state. A dashed line stands for copy rules to be elaborated on. The legend on
the right-hand side presents the sequence of module invocations corresponding to the
picture.

Second, VERIFYING simulates the execution of the given copy rules (cr) starting from
the given state ss (NEXTNONDETOPTIONS). The simulation stops at the first point of
non-determinism and returns all different, non-deterministic options that can occur at
the current point of execution (options).

Simulating the copy rules generated in our example, we find out that the first non-
determinism occurs in the head quarter’s behavioral model after executing cps1 . In
particular, the operation represented by the state requested of head quarter in Figure 8.3
on page 115 may result in fail instead of the desired state found. Thus, the non-
deterministic option is

{(U, requesting), (O, init), (H, failed), (N, init)}.

Third, our objective implies that there must be a successful composition for each of the
options. The different options are depicted in Figure 8.7 by the multiple lines leaving
“2. NO.” Since each option may be reached through different variants (optionVnts), we
need to ensure that there exists a successful composition for at least one of the variants
for each option (optionV nt).

130 CHAPTER 8: COMPLEX-GOAL-BASED WS COMPOSITION

Ensuring successful composition for a variant is exactly the objective of the ASM
REACHGOAL presented in Section 8.4 on page 119. Such a call is represented by
“3.2. RG” in the figure. In contrast to the initial call of REACHGOAL, we now only
care about reaching one of our allowedGoals. We therefore provide allowedGoals
as second and fourth parameter of REACHGOAL. In our example, the allowed goals
reachable from

{(U, requesting), (O, init), (H, failed), (N, init)}

are rg8, rg10, rg12, rg26, rg28, and rg30. These are all goals from Table 8.1 on page 118
which are “execution-wise behind” the option and where head quarter is failed.

allowedGoal1 = rg8 = {(U, failed), (O, init), (H, failed), (N, init)}
allowedGoal2 =rg10= {(U, failed), (O, failed), (H, failed), (N, init)}
allowedGoal3 =rg12= {(U, failed), (O, found), (H, failed), (N, init)}
allowedGoal4 =rg26= {(U, failed), (O, init), (H, failed), (N, failed)}
allowedGoal5 =rg28= {(U, failed), (O, failed), (H, failed), (N, failed)}
allowedGoal6 =rg30= {(U, failed), (O, found), (H, failed), (N, failed)}

Also, as an optimization, we want to restrict the variants to be considered by
REACHGOAL to the variants relevant for the current option (optionVnts). Finally, we
provide the simulation state of the non-deterministic option (option) as the starting state
for REACHGOAL.

For our example, REACHGOAL finds out that composition is possible only for rg8.
The respective variant is shown in Figure 8.8 on the next page. We present the resulting
copy rules for the variant below.

crg8 = ({(U, requesting), (O, init), (H, failed), (N, init)},
{((H, custRegNA), (U, regDeniedInfo))});

cps4 = ({(U, requesting), (O, init), (H, init), (N, init)},
{((U, customerID), (H, customerID))})

Please note that the call to REACHGOAL is recursive. That is depicted
by the labels starting with “3.1.” in Figure 8.7.

For our example, the simulation of the copy rules above reveals no more non-
determinism.

In the case that REACHGOAL was successful, we collect the copy rules generated
(optionCopyRules) in the return variable copyRules.

Fourth, we continue the original simulation up to the next point of non-determinism
deviating from the original variant (vnt). That would, in our example, be the operation

8.6 Computing correct orchestrations 131

Figure 8.8: Variant leading to rg8 in the student transfer example.

represented by state requested of old school because our copy rules for the primary
goal—presented in Section 8.5 on page 123—first ask the head quarter for the customer
data and second gather enrollment information of that customer from old school. The
respective non-deterministic option is

{(U, requesting), (O, failed), (H, found), (N, init)}.

The allowed, reachable goals are rg16 and rg34.

allowedGoal7 = rg16 = {(U, failed), (O, failed), (H, found), (N, init)}
allowedGoal8 = rg34 = {(U, failed), (O, failed), (H, found), (N, failed)}

Fifth, each non-determinism found is elaborated as described before. The process
continues for all non-deterministic deviations from the original variant.

From the above goals in our example, only rg16 can be reached. The respective
variant is displayed in Figure 8.9 on the next page. We give the respective copy rules

132 CHAPTER 8: COMPLEX-GOAL-BASED WS COMPOSITION

below.

crg16 = ({(U, requesting), (O, failed), (H, found), (N, init)},
{((O, regInfoNA), (U, regDeniedInfo))});

cps5 = ({(U, requesting), (O, init), (H, found), (N, init)},
{((H, oldSchoolID), (O, oldSchoolID)),

((H, oldStudentID), (O, oldStudentID))});
cps6 = ({(U, requesting), (O, init), (H, init), (N, init)},

{((U, customerID), (H, customerID))})

Figure 8.9: Variant leading to rg16 in the student transfer example.

Simulating the copy rules above yields no more non-determinism. Thus, we continue
the simulation of the original copy rules and find the last non-deterministic option

{(U, requesting), (O, found), (H, found), (N, failed)}.

The only reachable, allowed goal is rg36. We give the copy rules resulting from its
composition below. The variant is displayed in Figure 8.10 on the facing page. The
copy rules for that option do not contain any new non-determinism.

allowedGoal9 = rg36 = {(U, failed), (O, found), (H, found), (N, failed)}

8.6 Computing correct orchestrations 133

crg36 = ({(U, requesting), (O, found), (H, found), (N, failed)},
{((N, regDeniedInfo), (U, regDeniedInfo))});

cps7 = ({(U, requesting), (O, found), (H, found), (N, init)},
{((O, studentRegInfo), (N, studentRegInfo)),

((U, newSchoolID), (N, newSchoolID))});
cps8 = ({(U, requesting), (O, init), (H, found), (N, init)},

{((H, oldSchoolID), (O, oldSchoolID)),

((H, oldStudentID), (O, oldStudentID))});
cps9 = ({(U, requesting), (O, init), (H, init), (N, init)},

{((U, customerID), (H, customerID))})

Figure 8.10: Variant leading to rg36 in the student transfer example.

Finally, the verifying is done when the simulation stagnates (oldss = ss) or the
generation of alternative copy rules fails (globalFail). Stagnation may happen when
simulation reached an allowedGoal. In that case, we return the collected copyRules.
In every other case of stagnation and in any case of failure, we return an empty set of
copyRules and a failure notification (fail).

134 CHAPTER 8: COMPLEX-GOAL-BASED WS COMPOSITION

VERIFYING(vnts ⊆ Variant, vnt ∈ Variant, cr ⊆ C, ss ∈ SimState,
allowedGoals ⊆ Goal, A ⊆ A) ≡ return (fail, copyRules) in

step
oldss := ∅
globalFail :=false

step while oldss 6= ss and not globalFail do
step

oldss := ss
(beforeOpts, ss, options) := NEXTNONDETOPTIONS(vnt, cr, ss)

step if oldss 6= ss then do forall option ∈ options
step optionVnts := PICKVARIANTS(vnts, option, allowedGoals)
step

if optionVnts 6= ∅ then
step (optionUncomposable, optionCopyRules) :=

REACHGOAL(optionVnts, allowedGoals, option,
allowedGoals, A, beforeOpts)

step
copyRules := copyRules ∪ optionCopyRules
if optionUncomposable then globalFail :=true

else globalFail :=true
step

if not globalFail and ss ∈ allowedGoals then fail :=false
else
fail :=true
copyRules := ∅

At that stage, the algorithm has ensured that the primary goal for the example (pg1)
could be reached and there exist deterministic resolutions for each non-deterministic
deviation from the intended execution path to an allowed recovery goal. Therefore, we
can claim that the example can be successfully composed. The copy rules returned
by our algorithm contain the copy rules for reaching the primary goal and for all
non-deterministic deviations from the intended path, i. e., all copy rules shown in this
section.

8.6.3 Simulation
The NEXTNONDETOPTIONS machine performs a simulation of the current copy rules
in order to determine the next non-determinism in their application on a real, collabora-
tive behavioral model execution starting from simulation state ss. That functionality
was assumed in the previous section, but not explained in detail.

The next non-determinism is identified by simulating the firing of all ADVANCEBM
machines of all behavioral models alternated with applying the copy rules
(FIRECOPYRULES).

8.6 Computing correct orchestrations 135

NEXTNONDETOPTIONS(vnt ∈ Variant, cr ⊆ C,
ss ∈ SimState) ≡ return (beforeOpts, ss, options) in

step oldss := ss par options := ∅
step (beforeOpts, ss, dummy) :=

FIREEXECUTES(vnt, ss, cr, ∅) // start initiator
step while oldss 6= ss and options = ∅ do

oldss := ss
step inputs := FIRECOPYRULES(ss, cr) // these should be deterministic
step (beforeOpts, ss, options) := FIREEXECUTES(vnt, ss, cr, inputs)

The main task when simulating copy rules is to identify the inputs that are served by the
copy rules applicable in the current simulation state (ss).

FIRECOPYRULES(ss ∈ SimState, cr ⊆ C) ≡ return inputs in
inputs := { (bmin, i) : ((bmout, o), (bmin, i))

∈ assignments(copyRule), ss = states(copyRule), copyRule ∈ cr }

During simulating the ADVANCEBM rules of all behavioral models, we identify non-
deterministic options as follows: First, we advance the simulation state for all input
transitions with all inputs served. Second, we examine all the states (S ∈ ndStates)
for each behavioral model with non-deterministic branches that can be directly reached
at the current state of simulation (ss) and that do not appear in the transitions (T) of
the current variant (vnt). Third, we collect the states of the behavioral models without
non-determinism (detStates). Fourth, we calculate all non-deterministic deviations
from the current variant (vnt) by creating the cross product of the states in ndStates
and detStates. Finally, we calculate the simulation state (ss) for each behavioral model
that has to be evaluated by the verification after the non-deterministic options were
checked. We set the next state to the directly following simulation state (qpost) of the
current variant (vnt) if there are no active transition alternatives directly following the
current simulation state. A transition is active in the following cases:

• It is an output transition.

• It is an input transition and all of its input variables can be served.

FIREEXECUTES(vnt ∈ Variant, ss ∈ SimState,
cr ⊆ C, inputs ⊆ Variable) ≡ return (beforeOpts, ss, options) in

step ss := { (bm, s) : (bm, qss) ∈ ss, (bm, T) ∈ vnt, t ∈ T,
t = (qss, V, qpost),

s =

{
qpost, V ⊆ Σbm , ∀ i ∈ V : (bm, i) ∈ inputs
qss, otherwise

}

step
ndStates := { (bm, S) : (bm, qss) ∈ ss, (bm, T) ∈ vnt,

136 CHAPTER 8: COMPLEX-GOAL-BASED WS COMPOSITION

tvnt ∈ T, tnd ∈ δbm ,
tvnt = (qss, Ovnt, qpostvnt

), tnd = (qss, Ond, qpostnd
),

qpostvnt
6= qpostnd

, qpostnd
∈ S, Ovnt, Ond ∈ Zbm }

detStates := { (bm, S) : (bm, qss) ∈ ss, (bm, T) ∈ vnt,
tvnt ∈ T, tvnt = (qss, Vvnt, qpostvnt

),
[Vvnt ∈ Σbm , qss ∈ S] ∨ [Vvnt ∈ Zbm , 6 ∃ tnd ∈ δbm ,
tnd = (qss, Ond, qpostnd

), qpostvnt
6= qpostnd

, qpostvnt
∈ S] }

step
options := ×(bm, S) ∈ (ndStates ∪ detStates) [{bm} × S]
ss := { (bm, s) : (bm, qss) ∈ ss, (bm, T) ∈ vnt, t ∈ T,

t = (qss, V, qpost), s =

{
qpost, V ⊆ Zbm

qss, otherwise
}

beforeOpts := { (bm, s) : (bm, qss) ∈ ss, (bm, T) ∈ vnt, t ∈ T,
t = (qss, V, qpost),

s =

{
qpost, V ⊆ Zbm ∧ (bm, Sdet) ∈ detStates
qss, otherwise

}

8.7 Proving requirements
In this section, we prove the requirements defined in Section 8.2 on page 116 and in
Section 7.7 on page 109.

Theorem 8.8 (Termination). The composition terminates.

Proof. The composer works on a set of trees. The planning state is initialized as a set of
states, one in each tree. For each tree, the “initial state” is assumed to be some state on
the path from the root to the state that is part of the planning state. In each composition
step, at least one tree’s planning state is advanced toward the root state of that tree.
Otherwise, the composition terminates.

When the composer reaches or passes the initial state, it terminates. When the
composer has reached the initial state, composition was successful. If the composer
passes the initial state, composition failed. Thus, a composer run that does not hit
non-deterministic branching points terminates.

When reaching a non-deterministic branching point, the composer recurses. During
recursion, only branches that were not considered so far are considered in the recursive
call. As the considered state transition systems are finite, there is a finite number of
non-deterministic branches. Therefore, each recursion reduces the number of branches
to consider. A recursion that only has to consider a single branch terminates as stated
above. Thus, the complete algorithm terminates.

Theorem 8.9 (Correctness). The composer is correct. Correctness consists of three
sub-properties:

8.7 Proving requirements 137

1. Each orchestration contains one path to a primary goal.

2. Each orchestration only reaches primary or recovery goals.

3. The composer maintains the sequence of operations as defined in the participating
behavioral models.

Proof for primary goal. The composition is initialized to start from the primary goal
and generates copy rules while proceeding backwards until reaching or passing the
“initial state.” The composition only terminates when the initial state is reached or
passed.

In the case of passing without reaching, the composition fails and does not generate
an orchestration. In the case of reaching the initial state, the composer succeeds and
outputs the set of copy rules that were generated during computation. As the composer
started from a primary goal, the so far generated copy rules describe a path to the
primary goal. Thus, each generated orchestration always contains a path to a primary
goal.

Proof for always reaching some goal. As proven above, an orchestration always con-
tains a path to a primary goal when the composer succeeds. When a non-deterministic
branch is detected that would be hit by the so far generated orchestration, the composer
recurses. For recursion, the composer is configured as for reaching a primary goal,
but the parameter that was formerly initialized with the primary goal is in the case of
recursion the set of all primary and recovery goals. Therefore, as before, a recursion
will either fail if no orchestration could be found for the recursion or the generated
copy rules will describe an execution to reach one of the given primary or recovery
goals. Thus, when the composer generates an orchestration, each execution always
either reaches a primary or recovery goal under the assumption that the participating
implementations follow the contract of their respective behavioral model.

Proof for proper sequencing. The composer operates on a set of given behavioral mod-
els. Whenever the planning state is advanced during composition, each behavioral
model is traversed toward its root. Each generated copy rule always contains a state
for each behavioral model according to the current planning state. Therefore, each set
of copy rules generated guarantees a proper sequencing of operations belonging to the
same behavioral model.

Part III

Application and Evaluation

Chapter 9

Determining Redundancy of SAP ESR
Message Types

As expressed in Table 9.1, we prove the applicability of the mining component to an
industrial setting by exposing it to the enterprise SOA landscape of SAP.

Table 9.1: Proof of concepts

Requirement Solution Proof of concept

Detect redundant
interface objects

CFIM of
hierarchical types

CFIM of message types
exposed by SAP

This chapter is structured as follows: Section 9.1 introduces SAP’s implementation
of SOA—called enterprise SOA,—which is the basis for our evaluation. Section 9.2
highlights the objectives of governance within SAP’s enterprise SOA. The challenges
of governance in enterprise SOA to be tackled by our CFIM of hierarchical types are
explained in Section 9.3. Section 9.4 describes how our solution reduces the described
challenges and Section 9.5 assesses the quality of CFIM of hierarchical types.

9.1 SAP’s enterprise SOA
In 2004, SAP committed to deliver on its enterprise SOA roadmap. The basis for
enterprise SOA is the business process platform. The business process platform consists
of the technology platform and the application platform. The technology platform
provides a technical infrastructure to manage a service-oriented architecture (SOA).
The application platform provides predefined business content. Such content are best
practice building blocks to define custom business processes. The interface objects used
in the application platform are centrally managed in the enterprise service repository
(ESR). The enterprise services repository consist of a design time and a run time

142 CHAPTER 9: DETERMINING REDUNDANCY OF SAP ESR MESSAGE TYPES

repository. The design time repository contains the interface objects needed to create
Web service interfaces. The run time repository is a UDDI repository. As we are mostly
concerned with the design time view, we use the term enterprise service repository also
to refer to the design time repository.

On top of enterprise SOA, a specialized business solution may be developed to
address the very specific needs of one company or a set of companies in a specific
business domain. Such a solution is SAP Business ByDesign, which is targeted to
mid-size companies. As one of its specialties, SAP Business ByDesign hides much of
the capability actually provided by the business process platform and thus reduces the
complexity the SAP Business ByDesign customer has to cope with.

9.2 Governance

With the development of enterprise SOA, SAP has established an internal governance
process for the application platform to

1. ensure that newly added interface objects do not resemble existing objects, and

2. detect overlapping interface objects in the repository and propose a realignment
to the development organization.

Governance is only relevant to parts of a software that end up in the application
platform. Therefore, in the beginning of every software development project, it needs
to be decided whether the software contains parts that are relevant for more than one
customer. If so, the relevant parts become integrated into the application platform, and
thus have to pass the governance process.

The governance process is based on the exchange of governance documents. For
example, there is a separate governance document for creating

• a data type and

• a Web service operation.

The developer creates a governance document and hands it over to the governance team.
The governance team responds within a couple of weeks with an approval or a request
for change.

Among the two initially identified activities of the governance process, our approach
supports the second, i. e., “detect overlapping interface objects.” Therefore, we explain
both activities in little more detail—with an emphasis on the second activity,—and we
highlight its challenges before we present how our approach helps to reduce the burden
of the challenges.

9.3 Challenges of realignment 143

9.3 Challenges of realignment
The decision of the governance team depends on the similarity of the interface object
described in the governance document to existing interface objects in the enterprise
service repository. Today, that is a manual endeavor. With their expertise in their mind,
the governance expert browses the enterprise service repository with the aim to find out
that either

• some existing interface object has some overlap with the proposed one or

• the proposed interface object is distinct from all others.

That decision is taken on both the ontological and the technical level. If the proposed
interface object is distinct from all others, the governance expert acknowledges the
application. If there is some overlap, they either

• request the interface object to be changed or

• acknowledge the interface object application and request the overlapping interface
object to be changed.

The decision whether other interface objects than the one applied for need change
is complicated. The reason is that not only the interface object that was applied for
and the one it overlaps with influence the decision, but also other relevant interface
objects in the repository need to be kept consistent with the, for example, new modeling
convention just introduced. We describe how our approach supports that task in the
following section.

9.4 Reducing the challenges using our approach
For the proof of concept, we implemented a prototype for structural analysis. The
prototype consists of the components

• WSDL exporter,

• WSDL loader,

• Mining configuration, and

• Frequent itemset mining for structural types.

The WSDL exporter connects to the enterprise service repository of an SAP system and
reads the WSDL files of the public Web service interfaces from the repository.

The WSDL loader is capable of reading WSDL files and creating a first internal
representation. For the tests, the WSDL loader was configured to read the message
types from the WSDLs.

144 CHAPTER 9: DETERMINING REDUNDANCY OF SAP ESR MESSAGE TYPES

The miner configuration component presents the user with a graphical user interface
to pick from options that influence the conversion from the internal representation to
the mining database.

The closed frequent itemset mining component bases on the concepts described by
Uno et al. (2004a;b). The mining component takes multiple XML schema definitions as
input and creates a set of redundancy groups as a result.

9.4.1 Evaluation configurations

The miner configuration component allows for configurations of three categories (see
GUI in Figure 9.1 on the facing page):

1. WSDL files to analyze,

2. granularity of analysis, and

3. populating the mining database.

All WSDL files to be analyzed must reside in a specific directory on the computer. The
choice in the first category determines whether

• all files will be analyzed at once or

• subsequent mining runs will use more and more files starting from one file in the
first run and ending with all available files in the final run.

Through configuration in the granularity of analysis category, one can determine

• an initial minimum support,

• a final minimum support, and

• an increment on the minimum support between subsequent runs.

In addition, the minimum support may be defined as an absolute integer or as a percent-
age ranging from 0% for the lowest minimum support of 2 and 100% for a minimum
support equal to the number of transactions in the mining database.

In the category populating the mining database, the user may choose how the first
internal model is transformed to the mining database. The two orthogonal options,
already explained in Section 6.2.2 on page 68, are

1. the analysis range and

2. the domain of analysis.

9.4 Reducing the challenges using our approach 145

Figure 9.1: Miner configuration.

9.4.2 Evaluation runs
The purpose of the evaluation is to determine whether our concepts can be applied in an
industrial context. In the context of SAP, it is important to determine ontological and
technical overlap of exposed interface objects. Therefore, we performed test runs using
the following configurations.

No Range Domain Minimum support Mining DB size

1 Top-level All subelements 10% increasing

2 Top-level All subelements decreasing fix

3 All types Direct subelements decreasing fix

The first two test settings aim at exploring ontological overlap because all given
(top-level) types are evaluated based on their whole substructure.

In order to assess the performance of the mining component, a set of test runs was
performed with increasing size of the mining database and a fix minimum support ratio
of 10% of the current test’s database size. The result is depicted in Figure 9.2 on the
following page. The same runs were used to plot the time used for mining against the
number of redundancy groups generated by the miner in Figure 9.3 on the next page.
An interpretation of the results follows in the subsequent section.

The second test setting was chosen to assess the performance with respect to the
desired granularity of the results—the minimum support. Therefore, the minimum
support was decreased in the subsequent evaluation runs on a fix mining database. The
mining database was generated using the 689 message types that appear in Web service
definitions exposed by the SAP’s enterprise SOA. The 689 message types are provided
via 389 WSDL files with a total size of 55.4 Mbyte which makes about 1.77 messages

146 CHAPTER 9: DETERMINING REDUNDANCY OF SAP ESR MESSAGE TYPES

Figure 9.2: Mining time per input size.

Figure 9.3: Mining time per output size.

per WSDL file. The resulting mining database contains 165783 items. We can compute
from that that each message type contains about 239.61 fields. For the classical task
of market basket analysis, these are rather large transactions. The 165783 items of
the mining database consist of 5526 unique items. For a minimum support of 13%,
891 redundancy groups were found. The mining times for the second test setting are
depicted in Figure 9.4 on the facing page together with the result size on the secondary
axis.

The third evaluation setting aims at exploring technical overlap of message types in
the enterprise service repository. Therefore, all complex types used in the definitions
of the message types build up the mining database. As again all types are used in the
mining database, it again consists of 165783 items. There are 10054 unique items in
5220 transactions because each complex type now appears as an own transaction. The
average transaction size is now much smaller with about 31.8 items. For a minimum

9.4 Reducing the challenges using our approach 147

Figure 9.4: Top-level, all subelements mining.

support of 4 (0.08% of 5220 transactions), 5389 redundancy groups were found. The
mining times together with the result size of that setting are depicted in Figure 9.5.

Figure 9.5: All types, direct subelements mining.

9.4.3 Discussion of the results
The first performance evaluation in Figure 9.3 on the facing page shows that the
implementation of the frequent itemset mining has linear complexity with the size of
the result. That feature was proven for the original algorithm by Uno et al. (2004a;b).
The algorithm also yields linear performance with respect to the input size as can be
interpreted from Figure 9.2 on the preceding page.

These results imply that a quickly growing result size also impacts the run time
of the mining. The minimum support can be understood as a granularity cut-off for

148 CHAPTER 9: DETERMINING REDUNDANCY OF SAP ESR MESSAGE TYPES

the results. A lower minimum support yields more results. Therefore, the test runs in
the second setting, depicted in Figure 9.4 on the preceding page, take longer with a
decreasing minimum support. That is unfortunate in an industrial setting where large
messages are handled, which means that the mining database contains large transactions.
The evaluations in the related work, such as Uno et al. (2004b), mainly focus on the
range from 90% to 20%. With large database sizes, a minimum support of 20% (i. e.,
138 of 689 transactions) is still very rough because 138 message types would have to
contain the same overlap. We expect more interesting results in the lower minimum
supports. However, the mining result with minimum support of 93 (i. e., 13% of 689
transactions) can be obtained in fewer than an hour.

In contrast to mining large transactions, multiple transactions of smaller size, as in
the third evaluation setting, can be mined much faster. In that setting, the miner takes
longer than 1 minute the first time for a minimum support of 12 (i. e., 0.23% of 5220
transactions).

As the discovery of ontological and technical overlap provides support for decisions
on a rather strategical level, the time needed to obtain the mining result is not critical.
As the interfaces in an enterprise are not expected to change very quickly, the mining in
a realistic setting would also be rather infrequent which makes it feasible to wait for the
mining result. The only remaining important issue of the mining is that it can scale up
well to large mining database sizes. Therefore, the linear time and space complexity of
the algorithm as presented in Figure 9.2 on page 146 and Figure 9.3 on page 146 and
proven by Uno et al. (2004a;b) is essential and makes closed frequent itemset mining fit
well to detecting redundant interface objects in realistic settings.

9.5 Assessing the quality of the mining results

In this section, we investigate the quality of the mining results. For that purpose, we
utilize the two measures precision and recall:

1. Precision. That measure assesses the exactness or fidelity of a method. In
information retrieval, the precision is the relation of the number of retrieved
relevant documents to the number of all retrieved documents. A method achieves
the ideal value of 1.0 when it retrieves no irrelevant documents. However, the
precision measure does not state whether a method fails to retrieve some further
relevant documents.

2. Recall. That measure assesses the completeness of a method. Recall is defined in
information retrieval as the relation of the number of retrieved relevant documents
to the number of all relevant documents. An ideal value of 1.0 states that all rele-
vant documents were retrieved. The recall measure however neglects how many
irrelevant documents were also retrieved together with all relevant documents.

9.5 Assessing the quality of the mining results 149

In order to make use of precision and recall for the assessment of our CFIM of
hierarchical types, we need to define the notion of relevant document in the context of
this work.

9.5.1 Adapting precision and recall for CFIM of hierarchical types
The result of the CFIM of hierarchical types is given as a ranked list of redundancy
groups. A redundancy group is to be interpreted by the user as a set of redundant
elements. We therefore need to define relevancy based on the structuring of elements
in redundancy groups. In particular, it is desirable that in one redundancy group only
ontologically similar elements reside.

Ontological relatedness

For the definition of ontological similarity, we use the fact that we are working on a
data set of SAP which follows the strict naming convention of the core component
technical specification (CCTS).1 In CCTS, a type’s name can be constructed from four
components:

1. Object class term. That term specifies the logical data grouping or aggregation
to which a property belongs, for example, Person.

2. Property term. That component represents the distinguishing characteristic of
the object class, for example, Residence.

3. Representation term. That term describes the form in which the type is repre-
sented, for example, Address.

4. Qualifier term. That term can be given to further differentiate a type from other
types.

In SAP’s exposed interface objects, the components of CCTS type names are represented
in camel case, for example, PersonResidenceAddress.

The definition of a type’s name is subject to the governance process at SAP. We
can assume that a type’s name consists of meaningful parts due to the special care
that is taken in defining and approving the definition of names and their parts. Ex-
amples for parts are Property, Inventory, Lead, Payment, Withholding,
Transportation, Item, and Date.

The special care taken for name and parts definition reflects in the fact that only
546 unique parts are used in the 689 examined message type names. From analyzing
the message names we found that on average, 4.98 parts make up one name. If one
wanted to define type names of 4.98 parts per name without repeating any parts in two

1http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?
CSNUMBER=41022

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=41022
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=41022

150 CHAPTER 9: DETERMINING REDUNDANCY OF SAP ESR MESSAGE TYPES

names, one could only build 109 names instead of 689. We conclude that the examined
message type names share certain parts. We assume that two types sharing the same
part are ontologically related.

Precision based on ontological relatedness

When we analyze the elements of a redundancy group, we may find that some elements
are ontologically related as defined above. That is, the elements’ names share some
common parts. If not all elements of a redundancy group are ontologically related, one
may identify multiple disjoint sets whose member are

• ontologically related with the other members of the set and

• not ontologically related with any member of any other set.

As we expect a redundancy group to only contain ontologically related elements, we
define the precision measure as the ratio of the size of the largest set of related elements
to the size of the redundancy group. We can simply calculate the measure by counting
for each part how many of the redundancy group’s element names contain the part.
The largest number divided by the size of the redundancy group yields the precision
measure.

With that definition, we are able to calculate the precision for one redundancy
group. In order to assess the evolution of the precision when viewing the ranked list
of redundancy groups from the highest to the lowest rank, we additionally introduce
a window of redundancy groups. A window always includes the redundancy group
gtop with the highest rank. Furthermore, a window is a set of redundancy groups that
are adjacent in the ranked list of redundancy groups. Thus, each redundancy group g
uniquely identifies a window, namely the window ranging from g to gtop.

We calculate the precision of a window as the average of the contained redundancy
groups’ precision values. The precision evolution for the windows of the second and
third mining setting described in the previous section are depicted in Figure 9.6 on the
next page and Figure 9.7 on the facing page. A discussion of the graphs follows later.

Recall based on ontological relatedness

Assessing the recall means to evaluate the ratio of the retrieved relevant documents to
all relevant documents. In our evaluation environment, we start analyzing the mining
database for ontological similarities. That means, we analyze the parts of the names of
all message types that are fed to our mining database. Message types whose names share
parts are said to be ontologically related. We expect that our CFIM of hierarchical types
finds all sets of ontological related types. For simplicity, we define sets of ontologically
related types based on single parts their names consist of.

Concretely, we define a set of ontologically related types as all types whose names
share a specific part. It follows that each part uniquely identifies a set of ontologically
related types.

9.5 Assessing the quality of the mining results 151

Figure 9.6: Precision evolution for mining with high minimum support of 13%.

Figure 9.7: Precision evolution for mining with low minimum support of 0.23%.

We define the recall measure based on the degree to which a redundancy group g
contains a set of ontologically related types t identified by part p. We thus first count
the number n of elements in g whose name contains p. Second, we divide n by the size
of t. That yields the degree to which g contains t. We repeat the computation for all
parts contained in a redundancy group’s elements’ names.

The recall of a redundancy group g is the average of the degrees to which g contains
a part p, for every part p. Parts that are not contained in g’s elements’ names contribute
0 to the average.

The recall of a window is defined in the same way except for the computation of the
degree to which a redundancy group contains a set of ontologically related types: For
the computation of the degree, the redundancy group with the largest degree is chosen
from the redundancy groups in the window. Intuitively, one could say that in a window,

152 CHAPTER 9: DETERMINING REDUNDANCY OF SAP ESR MESSAGE TYPES

we can pick for each part p the redundancy group that contains most of the ontologically
related types for p.

The evolution of recall is depicted in Figure 9.8 and Figure 9.9 for the second and
third mining setting.

Figure 9.8: Recall evolution for top-level, all subelements mining.

Figure 9.9: Recall evolution for all types, direct subelements mining.

9.5.2 Discussion
Evaluating the precision diagrams Figure 9.6 and Figure 9.7 on the previous page has
two major purposes: assessing the approach of CFIM of hierarchical types in general
and assessing the ranking function in particular.

For a positive assessment of CFIM of hierarchical types, we would expect that the
precision our approach can achieve closely reaches 100% as occurs in the case of mining

9.5 Assessing the quality of the mining results 153

SAP’s interface objects considering all types but only direct subelements (Figure 9.7).
The precision of mining only top-level types but all subelements, as presented in
Figure 9.6, reaches just 52.6% for the window identified by the 23rd redundancy group.
That is because the result was taken for a minimum support of 13%, which is, as already
denoted in Section 9.4.3 on page 147, still too rough to produce results of acceptable
precision. However, it is to be noted that in the case where mining was performed with
a lower minimum support, a precision can be reached by our CFIM of hierarchical types
that is above 79.3% for all redundancy groups as depicted in Figure 9.7. Thus, it turns
out that CFIM of hierarchical types with only considering direct subelements seems
to be a good method when time is an issue and precise results are desired. Based on
our definitions above, a lower precision of about 50% means that a redundancy group
consists to 50% of ontologically related types. It is unknown whether the remaining
50% belong to one or more other sets of related types. That situation may be desirable
for an integration expert who would like to perform a deeper manual analysis and who
appreciates a wider range of potentially matching types. In any case, it is ensured that
all types of a redundancy group share a technical commonality which provides valuable
input when technical harmonization of the types is aspired.

For a positive assessment of the ranking function, we would expect to see a rather
high precision in the beginning of a graph which may decrease toward its end. That is
the case in Figure 9.7 where mining was performed with a low minimum support. For
the mining with high minimum support where the precision is always in the range of
46.6% and 52.6%, our ranking seems to perform not ideally as the peek precision is
only reached for the window including the 23rd redundancy group of 1050 in total. It
seems to be a good rule of thumb to consider the first 2–3% of the returned redundancy
groups as rather relevant results. Indeed, the precision leaves its higher-level plateau
after about 45 redundancy groups (4.3% of 1050) in Figure 9.6 and 180 (2.9% of 6113)
in Figure 9.7. That is a very good finding as with the creation of our rank, we intended
to present the relevant results the expert should look at upfront in the results list.

Looking at the recall diagrams in Figure 9.8 and Figure 9.9 on the preceding page,
we make the interesting observation that, although the minimum support for the mining
in Figure 9.9 was low, only 50.4% of the ontological information could be discovered.
Surprisingly, the mining with a relatively high minimum support in Figure 9.8 could
discover 86.3% of the ontological information. Obviously, the reason for the higher
recall is our specific approach to consider mining the whole substructure of hierarchical
types even when an unfortunate, relatively high minimum support is given. That finding
justifies to state that structural mining is capable of identifying ontological redundancy.

As a general conclusion, we have identified in this section, as expected, that mining
with a lower minimum support consumes more time but yields a higher precision and
vice versa. Orthogonally, mining with a limited consideration of substructure still yields
ontologically correct results in a shorter time, though with a lower recall. If a higher
recall is desired and time is not an issue, as, for example, in offline mining, the complete
substructure should be considered by choosing the respective option for the CFIM of
hierarchical types.

Chapter 10

Facilitating Interoperability of SAP
Business Partners

In this chapter, we implement SAP’s best practice business process “cross-company-
code sales order processing” using our solution to transform behavioral models for EAI
and e-business and the complex-goal-based WS composition as denoted by Table 10.1.
Parts of the example have been used to demonstrate the concepts of Chapter 7 on
page 85. SAP’s best practices1 are a collection of standard configurations for SAP
systems. The aim of the best practices is to shorten the time needed to implement an
SAP solution in an enterprise that performs mostly standard processes.

Table 10.1: Proof of concepts

Requirement Solution Proof of concept

Track behavioral
information
through software
design phases

Transform
behavioral
models for EAI
and e-business

Model-driven derivation of a standard
business process from SAP’s best
practice library and executing the
generated orchestration

This chapter is structured as follows: In Section 10.1, we introduce the integra-
tion scenario including the participating roles and their respective components. In
Section 10.2, we assume the existence of component perspective behavioral models
describing the components and derive EAI perspective behavioral models from the
component perspective behavioral models to participate in the e-business perspective
business process. In Section 10.3 we integrate the EAI perspective behavioral models
into an e-business perspective orchestration. Section 10.4 presents the copy rules of the
generated e-business perspective orchestration and exemplarily executes the orchestra-
tion directly utilizing the exposed components step by step. Section 10.5 concludes this
chapter.

1http://www.sap.com/bestpractices

http://www.sap.com/bestpractices

156 CHAPTER 10: FACILITATING INTEROPERABILITY OF SAP BUSINESS PARTNERS

10.1 Cross-company-code sales order processing
The e-business process “cross-company-code sales order processing” depicted in Fig-
ure 10.1 consists of two participants:

1. Customer.

2. Seller. The seller is further split to its divisions

• sales center and

• production plant.

In business terms, each division has a unique company code. Therefore, cross-company-
code sales order processing means the selling procedure involving multiple departments.

Figure 10.1: Cross-company-code sales order processing.

The business process of cross-company-code sales order processing works as fol-
lows: A customer orders goods from the sales organization of their vendor. The vendor
has a distribution plant that belongs to a different company code. The goods are deliv-
ered from the distribution plant directly to the customer. The customer receives their
invoice from the sales organization. Intercompany billing takes place between the two
company codes.

Following the premise of this dissertation, we assume that customer and seller are
companies willing to engage in e-business. It is common for a company purchasing
goods to execute an internal purchasing process. Therefore, in addition to the cross-
company-code sales order processing best practice business process, we assume that
the customer follows a complex purchasing business process internally. The business
process of the customer involves the creation of a purchase order and its approval by an
appropriate person.

We conclude that the scenario consists of two participants willing to perform e-
business integration, i. e., to integrate their EAI perspective behavioral models to an
orchestration in the e-business perspective. As a prerequisite, each of the partners has to
perform EAI, i. e., to define their EAI perspective behavioral models as an integration
of their component perspective behavioral models.

10.2 Integrating the EAI perspective 157

10.2 Integrating the EAI perspective
We assume that each component of the participants is described via a behavioral model.
For simplicity of the behavioral models presented in this chapter, we further assume
that no activities fail during cross-company-code sales order processing at the seller.
However, as we want to demonstrate the ability of our approach to deal with failing
activities, we keep failing activities in the purchasing process at the customer.

10.2.1 Customer
The customer’s purchasing business process internally communicates with two compo-
nents depicted on the left-hand side of Figure 10.2 on the next page:

1. Order creation (OCR). That component consists of a user interface that allows
entering the goods a human needs to order. When the user is done, the system
outputs a purchase order (PO). In order to update the user about the status of the
order, the component may either receive a failure notification (FAIL) or a positive
notification (DONE).

2. Purchase order management (POM). That component is capable of performing
two functions:

(a) A given purchase order is approved or declined by a representative of the
finance department. Therefore, the component takes a purchase order (PO)
as an input and may communicate an approval (APR) or rejection message
(REJ) in response.

(b) In the case a purchase order was approved, the purchase order management
component handles the payment of the ordered goods once an appropriate
invoice was received. Therefore, the final operation of that component is to
accept an invoice (INV).

We now follow the steps of our solution for deriving the EAI perspective of the
customer from the component perspective as introduced in Section 5.2.2 on page 59.

Extract consumed and define provided behavioral models

The first step consists of three sub-activities:

1. Define consumer view of provided behavioral model. The externally observ-
able interface (CUST)—or the provided behavioral models—of the customer’s
purchasing business process consists of

(a) sending a purchase order (PO) and

(b) expecting an invoice (INV) or a failure notification (FAIL) in response.

158 CHAPTER 10: FACILITATING INTEROPERABILITY OF SAP BUSINESS PARTNERS

Figure 10.2: Customer components and provided interface.

That is depicted on the right-hand side of Figure 10.2.

2. Convert provided behavioral model to provider view. We construct the oppo-
site behavioral model (CUST−1) from the provided behavioral model in order to
yield the following consumer view which is the remaining behavioral model of
Figure 10.2.

(a) A purchase order is received.

(b) An invoice or a failure notification are given in response.

3. Excerpt consumed behavioral model fragment. That step is trivial as the
components correspond to the behavioral fragments we need for integrating the
component behavioral models with the provided behavioral model.

Assign communication

An integration expert defines the following assignments of variables:

((OCR, PO), (POM, PO)), ((OCR, PO), (CUST−1, PO)),

((POM, REJ), (OCR, FAIL)), ((POM, APR), (OCR, DONE)),

((CUST−1, FAIL), (OCR, FAIL)), ((CUST−1, INV), (POM, INV))

Build orchestration

In order to build the orchestration, the integration expert has to define desired and
acceptable outcomes of the orchestration, namely, the composition goal consisting of
primary and recovery goals:

• Primary goal. A desired final state is reached when OCR has received DONE,
POM has received INV, and CUST−1 sent INV.

10.2 Integrating the EAI perspective 159

• Recovery goals. It is acceptable that

– OCR receives FAIL when POM sent REJ and CUST−1 is still in its initial
state and

– OCR receives FAIL when POM sent APR, but did not receive INV and
CUST−1 sent FAIL.

We only give the resulting copy rules of the subsequent complex-goal-based WS
composition because the composition procedure explained in Chapter 8 on page 113 is
not the main focus of this chapter.

c1 = ({(OCR, waiting), (POM, approved), (CUST−1, done)},
{((CUST−1, INV), (POM, INV)), ((POM, APR), (OCR, DONE))})

c2 = ({(OCR, waiting), (POM, approved), (CUST−1, init)},
{((OCR, PO), (CUST−1, PO))})

c3 = ({(OCR, waiting), (POM, init), (CUST−1, init)},
{((OCR, PO), (POM, PO))})

c4 = ({(OCR, waiting), (POM, declined), (CUST−1, init)},
{((POM, REJ), (OCR, FAIL))})

c5 = ({(OCR, waiting), (POM, approved), (CUST−1, failed)},
{((CUST−1, FAIL), (OCR, FAIL))})

After performing the above steps, we have succeeded in linking the customer’s
provided EAI perspective behavioral model to its component perspective behavioral
models. We continue with the same procedure for the seller.

10.2.2 Seller
The business process the seller exposes as its part of the cross-company-code sales
order processing scenario internally communicates with three components as depicted
in Figure 10.3 on the following page:

1. Sales order management (SOM). The sales order is the seller’s counterpart of
the buyer’s purchase order. As both purchase order and sales order share a lot of
similar fields, a sales order is normally constructed from a purchase order (PO).
The first component of the seller is thus capable to receive a purchase order and
output the newly derived sales order (SO) for internal use.

The sales order is used to keep track of the selling process. When the selling
process is done, a sales order becomes closed. In the seller’s component of our
example, that is expressed by a second operation taking a delivery (DEL) and an
invoice (INV) as inputs. The sales order management component is located at the
sales center department of the seller.

160 CHAPTER 10: FACILITATING INTEROPERABILITY OF SAP BUSINESS PARTNERS

2. Invoicing (FIN). Similar to the sales order, a “delivery” (DEL) is used to keep
track of the activities to prepare the final shipment of goods. These activities
normally include the picking of the goods from a storage, packing the goods,
labeling the package, and posting the goods issue. After posting the goods issue, a
delivery can be used to generate an invoice from its data. Therefore, the invoicing
component in our example takes as input a delivery and outputs an invoice (INV).

Additionally, an incoming invoice can be paid by the invoicing component. There-
fore, another one-way operation takes an invoice as an input.

No ordering of the two operations is prescribed. That means that the component’s
implementation can cope with any sequential invocation of both operations.
Determining the operations’ sequence in that case means adding further business
logic and depends on their use in an integration scenario.

The invoicing component is as well part of the seller’s sales center.

3. Production (PROD). The production component is part of the seller’s production
plant department. For simplicity, we assume that the component has a single
operation that receives a sales order (SO) as an input and returns a delivery (DEL)
and an invoice (INV) upon completion. We thus abstract from the complex internal
communication that manages the production procedure.

Figure 10.3: Seller components, derived behavioral models, and provided interface.

10.2 Integrating the EAI perspective 161

We now again follow the steps of our solution for deriving the EAI perspective of
the seller from the component perspective as introduced in Section 5.2.2 on page 59.

Extract consumed and define provided behavioral models

The first step consists of three sub-activities:

1. Define consumer view of provided behavioral model. The externally observ-
able interface (SELR)—or the provided behavioral models—of the seller’s busi-
ness process first expects a purchase order (PO) and answers with an invoice
(INV).

2. Convert provided behavioral model to provider view. The opposite behavioral
model (SELR−1) of the provided behavioral model first sends a purchase order
and afterwards expects an invoice as input.

3. Excerpt consumed behavioral model fragment. That step is trivial for the sales
order management component because SOM’s behavioral model already is a tree.

For the invoicing component, we need to sequence and unfold the two components.
We place the operation taking a delivery and returning an invoice in the sequence
before the one-way operation that takes an invoice.

Through the sequencing, we introduce business logic that will be completed by
the subsequent variable assignments. In particular, we use the first operation to
create the invoice for the customer. The second operation pays the intercompany
bill from the production plant.

The production component’s behavioral model just needs to be unfolded to yield
the fragment to consume.

Assign communication

An integration expert defines the following assignments of variables according to the
desired business logic described above:

((SELR−1, PO), (SOM, PO)), ((SOM, SO), (PROD, SO)),

((PROD, DEL), (FIN, DEL)), ((PROD, INV), (FIN, INV)),

((PROD, DEL), (SOM, DEL)), ((FIN, INV), (SELR−1, INV)),

((FIN, INV), (SOM, INV))

Build orchestration

As we consider a simplified process for the seller whose execution may not fail, we only
need to define a primary goal and no recovery goals. The desired final state is reached
when

162 CHAPTER 10: FACILITATING INTEROPERABILITY OF SAP BUSINESS PARTNERS

• SELR−1 has received INV,

• SOM received DEL and INV,

• FIN received INV, and

• PROD sent DEL and INV.

We give the resulting copy rules of the complex-goal-based WS composition in the
following:

c6 = ({(SELR−1, waiting), (SOM, waiting), (FIN, waiting), (PROD, done)},
{((PROD, INV), (FIN, INV)), ((PROD, DEL), (SOM, DEL)),

((FIN, INV), (SOM, INV)), ((FIN, INV), (SELR−1, INV))})
c7 = ({(SELR−1, waiting), (SOM, waiting), (FIN, init), (PROD, done)},

{((PROD, DEL), (FIN, DEL))})
c8 = ({(SELR−1, waiting), (SOM, waiting), (FIN, init), (PROD, init)},

{((SOM, SO), (PROD, SO))})
c9 = ({(SELR−1, waiting), (SOM, init), (FIN, init), (PROD, init)},

{((SELR−1, PO), (SOM, PO))})

10.3 Integrating the e-business perspective
In the e-business perspective, the behavioral models to integrate are the consumer views
of the provided behavioral models of the customer (CUST) and the seller (SELR).

We follow again the respective steps of our solution—this time for deriving the
e-business perspective from the community perspective as introduced in Section 5.2.2
on page 59. For deriving the e-business perspective from the community perspective,
only two of the three sub-activities of the derive activity are relevant.

10.3.1 Assign communication

In our cross-company-code sales order processing scenario, the customer possesses
non-deterministic behavior: The first time, non-determinism occurs when the purchase
order management component may approve or decline the purchase order. The second
time, the provided behavioral model may not be able to deliver the requested purchase
order and answer with a failure notification. Whereas that appears as non-deterministic
behavior to the customer, the opposite behavioral model in the e-business perspective is
deterministic. Namely, the orchestration in the e-business perspective can determine
whether to send an invoice or a failure notification to the customer. The customer can
cope with both answers.

10.4 Executing the joined orchestrations 163

However, in our example, the seller always succeeds and thus never sends a failure
notification. Consequently, only one branch of the customer’s provided behavioral
model will be used. As the branching decision is deterministic, we need not connect
variable assignments to the unused branch. The complex-goal-based WS composition
would never visit that branch.

Finally, the integration expert defines the following variable assignments:

((CUST, PO), (SELR, PO)), ((SELR, INV), (CUST, INV))

10.3.2 Build orchestration
The orchestration requirement consists of only one primary goal: The desired final state
is reached when CUST has received INV and SELR sent INV.

The following copy rules result from the subsequent complex-goal-based WS com-
position:

c10 = ({(CUST, waiting), (SELR, done)},
{((SELR, INV), (CUST, INV))})

c11 = ({(CUST, waiting), (SELR, init)},
{((CUST, PO), (SELR, PO))})

We have now generated orchestrations for each of the participants in the EAI per-
spective and for the e-business perspective in a model-driven manner. In the subsequent
section, we jointly execute the generated orchestrations without having to write any
implementation for the EAI perspective.

10.4 Executing the joined orchestrations
As described in Section 7.6 on page 108, we can jointly execute the EAI perspective
orchestration and the e-business perspective orchestration by merging their copy rules.
In this section, we walk through the copy rules in the natural order of their execution.
But before we start, let’s have a closer investigation of the MEDIATOR∗ ASM that
defines the execution semantics of a set of joined copy rules.

The definition of the MEDIATOR∗ ASM contains two sets of identifiers:

1. ID. That set contains the identifiers of behavioral models in the component
perspective. That is, OCR and POM from the customer and SOM, FIN, and PROD
from the seller.

2. PID. That set contains the identifiers of the e-business perspective behavioral
model. That is, CUST and SELR.

The execution of MEDIATOR∗ triggers in alternation

164 CHAPTER 10: FACILITATING INTEROPERABILITY OF SAP BUSINESS PARTNERS

• ADVANCEBM through ADVANCEORCHESTRATION for the members of PID ∪
ID and

• SEND and RECEIVE for the members of ID.

As δCUST = δCUST−1
and δSELR = δSELR−1

(see Section 7.4 on page 101), we can treat
CUST and CUST−1 as well as SELR and SELR−1 the same in the joined orchestration
and when given as an argument to an ASM. These behavioral models act as the syn-
chronizing interfaces between the EAI perspective and the e-business perspective. To
illustrate that, we walk through the execution of the joined copy rules in the following.

Table 10.2 on the next page shows the states of all participating behavioral models
during the execution of the joined orchestration.

Initially, all behavioral models are in their initial states. OCR initiates the collabora-
tion by sending a PO. That happens non-deterministically from the perspective of the
orchestration, totally depending on the underlying Web service performing the operation.
The receipt of the PO by the RECEIVE(OCR) ASM allows ADVANCEBM(OCR) to set
OCR’s state to waiting. That triggers the first copy rule:

c3 = ({(OCR, waiting), (POM, init), (CUST−1, init)},
{((OCR, PO), (POM, PO))})

Forwarding the PO to POM triggers SEND(POM) to invoke the underlying im-
plementation of POM. As the implementation is known to be non-deterministic,
RECEIVE(POM) may trigger ADVANCEBM(POM) to set POM’s state to either
declined or approved.

In the first case, the following copy rule is triggered which generates a failure
notification from REJ and forwards it to OCR.

c4 = ({(OCR, waiting), (POM, declined), (CUST−1, init)},
{((POM, REJ), (OCR, FAIL))})

The receipt of FAIL by OCR triggers OCR’s state to be changed to failed. That is an
acceptable recovery goal. Thus, the execution came to a consistent end.

In the case that POM’s state was set to approved by the non-deterministic imple-
mentation, the following copy rule is triggered:

c2 = ({(OCR, waiting), (POM, approved), (CUST−1, init)},
{((OCR, PO), (CUST−1, PO))})

Thus, the approved PO is now forwarded to the external interface of CUST.
The receipt of PO triggers ADVANCEBM(CUST) to set CUST’s state to waiting.

We switch now from the customer’s EAI perspective to the e-business perspective as
the state change is recognized by the following copy rule:

c11 = ({(CUST, waiting), (SELR, init)},
{((CUST, PO), (SELR, PO))})

10.4 Executing the joined orchestrations 165

Table 10.2: State transitions for joined orchestration

Pr
ev

.N
o

N
o

C
p.

ru
le

O
C

R
P

O
M

C
U

S
T

S
E

LR
S

O
M

FI
N

P
R

O
D

0
w

ai
tin

g
in

it
in

it
in

it
in

it
in

it
in

it

0
1

c 3
w

ai
tin

g
de

cl
in

ed
in

it
in

it
in

it
in

it
in

it

1
2

c 4
fa

ile
d

de
cl

in
ed

in
it

in
it

in
it

in
it

in
it

0
3

c 3
w

ai
tin

g
ap

pr
ov

ed
in

it
in

it
in

it
in

it
in

it

3
4

c 2
w

ai
tin

g
ap

pr
ov

ed
w

ai
tin

g
in

it
in

it
in

it
in

it

4
5

c 1
1

w
ai

tin
g

ap
pr

ov
ed

w
ai

tin
g

w
ai

tin
g

in
it

in
it

in
it

5
6

c 9
w

ai
tin

g
ap

pr
ov

ed
w

ai
tin

g
w

ai
tin

g
cr

ea
te

d
in

it
in

it

6
7

c 8
w

ai
tin

g
ap

pr
ov

ed
w

ai
tin

g
w

ai
tin

g
cr

ea
te

d
in

it
do

ne

7
8

c 7
w

ai
tin

g
ap

pr
ov

ed
w

ai
tin

g
w

ai
tin

g
cr

ea
te

d
w

ai
tin

g
do

ne

8
9

c 6
w

ai
tin

g
ap

pr
ov

ed
w

ai
tin

g
do

ne
cl

os
ed

do
ne

do
ne

9
10

c 1
0

w
ai

tin
g

ap
pr

ov
ed

do
ne

do
ne

cl
os

ed
do

ne
do

ne

10
11

c 1
do

ne
do

ne
do

ne
do

ne
cl

os
ed

do
ne

do
ne

Executing the copy rule triggers SELR’s state to change from init to waiting which
is recognized by the following rule from the seller’s EAI perspective:

c9 = ({(SELR−1, waiting), (SOM, init), (FIN, init), (PROD, init)},
{((SELR−1, PO), (SOM, PO))})

166 CHAPTER 10: FACILITATING INTEROPERABILITY OF SAP BUSINESS PARTNERS

The seller’s components’ states are subsequently advanced by the following copy
rules:

c8 = ({(SELR−1, waiting), (SOM, waiting), (FIN, init), (PROD, init)},
{((SOM, SO), (PROD, SO))})

c7 = ({(SELR−1, waiting), (SOM, waiting), (FIN, init), (PROD, done)},
{((PROD, DEL), (FIN, DEL))})

c6 = ({(SELR−1, waiting), (SOM, waiting), (FIN, waiting), (PROD, done)},
{((PROD, INV), (FIN, INV)), ((PROD, DEL), (SOM, DEL)),

((FIN, INV), (SOM, INV)), ((FIN, INV), (SELR−1, INV))})

The latter copy rule triggers SELR’s state to be set to done. That triggers the following
copy rule from the e-business perspective:

c10 = ({(CUST, waiting), (SELR, done)},
{((SELR, INV), (CUST, INV))})

After performing the previous copy rule, ADVANCEBM(CUST) sets CUST’s state
to done. That triggers the final copy rule:

c1 = ({(OCR, waiting), (POM, approved), (CUST−1, done)},
{((CUST−1, INV), (POM, INV)), ((POM, APR), (OCR, DONE))})

Finally, ADVANCEBM(OCR) sets OCR’s state to done. Now, the primary goal is
achieved. Our exemplary execution ended successfully and consistently.

Please note that the copy rule c5 was never triggered. The reason is that
the seller acts deterministically in our example and never responds to a
purchase order with a failure notification.

10.5 Summary
We have shown in this chapter how our solution to transform behavioral models for EAI
and e-business is capable of reusing behavioral knowledge at run time and integration
design time which was gathered at component design time.

Current approaches to store behavioral information such as UML activity diagrams,
OWL-S, BPEL, and BPMN lack a formal semantics as part of their specification. That
implies that the models are not exchangeable across multiple tools making use of them.
In particular, model-to-model and model-to-code transformations are essential in a
model-driven approach. Without proper semantics, there is a risk to loose or falsify
behavioral information throughout the transformations.

10.5 Summary 167

With our approach, behavioral knowledge is uniformly represented throughout the
software lifecycle. Due to the uniform representation and the execution semantics
given via ASM, our behavioral models can interact with orchestrations generated by
our approach at run time. When our complex-goal-based WS composition is used to
generate the orchestrations, a transactionally correct execution of an e-business scenario
can be guaranteed by construction based on our solution to transform behavioral models
for EAI and e-business.

Today, all steps presented in this chapter are manual and involve the interpretation of
natural language. That is one of the main reasons for integration projects today lasting
between 6 months and a year. Especially, smaller customers of enterprise software
cannot afford that much expenses. Our approach supports the storage and transformation
of behavioral knowledge which is essential to integration in the area of Web services
architecture.

Chapter 11

Evaluating the Composer Against
Existing Work

This chapter demonstrates the scalability of our complex-goal-based WS composition.
For that purpose, this chapter is structured as follows: In Section 11.1, we present
an implementation of our complex-goal-based WS composition. In Section 11.2, we
introduce a problem case generator that is capable to generate arbitrarily complex
input for the composition component. In Section 11.3, the generator is used to execute
performance tests with the composer implementation. Section 11.4 discusses the results
of the test runs and Section 11.5 compares our implementation with existing work.

11.1 An implementation of complex-goal-based WS
composition

We have implemented a proof-of-concept prototype of our complex-goal-based WS
composition. For the explanation, we present screenshots that were taken when com-
posing the behavioral models of the transfer student example depicted in Figure 8.3 on
page 115. When executed, the program first asks the user to determine a “locations file”
via a file chooser dialog which must contain URL addresses of SA-WSDL files to load.
Afterwards, the program loads the SA-WSDL files denoted in the locations file.

The implementation of our complex-goal-based WS composition supports that the
generated orchestration is later used in a collaborative business process in the e-business
perspective. Therefore, on the subsequent screen, our implementation asks the user to
specify which—if any—of the loaded SA-WSDL files acts as the behavioral model that
should be provided by the orchestration (Figure 11.1 on the next page). Following the
procedure defined in the introduction to Chapter 7 on page 85, the provided behavioral
model is given in the consumer view. Therefore, the implementation of our complex-
goal-based WS composition converts the provided behavioral model to the provider
view by computing the opposite behavioral model as defined in Section 7.4 on page 101.

170 CHAPTER 11: EVALUATING THE COMPOSER AGAINST EXISTING WORK

Figure 11.1: Determining the provided behavioral model.

The behavioral models loaded from the SA-WSDLs are displayed on the right-hand
side of the subsequent screen (displayed on the following page). The tool uses color
coding to differentiate between input and output which cannot be reproduced in a
grayscale print. However, as the same example was used as displayed in Figure 8.3 on
page 115, that figure may be used as a reference for the direction of communication.
Each gray ellipse denotes a state. Each pink word denotes an output variable. Each
blue word denotes an input variable. That screen is used to annotate the goals and the
variable assignments.

A goal is annotated by selecting one state of each behavioral model and pushing
either the “Add New Primary Goal” or the “Add New Recovery Goal” button. After that
is done for all goals, the variable assignments can be annotated by drag and drop. A
variable assignment is displayed by a dashed arrow starting from an output ending in an
input variable. The completely annotated example is depicted on the subsequent page.

When the annotation is done, the composition can be started. When composition is
possible given the orchestration requirements, a set of copy rules is generated. In the
case that composition was not possible given the orchestration requirements, the failure
is reported.

11.2 Problem case generator

To execute the performance test of the implementation of our complex-goal-based WS
composition, we introduce a problem case generator. We have developed the problem
case generator to construct arbitrarily complex composition problem cases.

In order to define the complexity of a problem, we introduce three key figures of a
composition problem:

1. Participants (P). The number of participants states how many behavioral models
are being combined to an orchestration.

2. Branches (B). The number of branches determines how many non-deterministic
decision points each behavioral model has on average.

11.2 Problem case generator 173

3. Length (L). The mean length denotes the average number of transitions of one
path in a behavioral model’s state transition system.

The problem case generator performs the steps enumerated below. Step 1 initializes
the P behavioral models constructed by the algorithm.

Steps 2 and 3 generate a path that leads to a primary goal consisting of L state
transitions in each behavioral model. In one construction step, we always generate a
pair of input and output state transitions that exchange the same variable. Therefore, we
need P ·L

2
construction steps in total.

Step 4 is concerned with generating B branches non-deterministically deviating
from the path to the primary goal. The construction procedure for each branch is
explained in the steps 4a to 4c. As a path to a recovery goal deviates from the path to
the primary goal, we pick an arbitrary planning state that would be reachable by the
composer and extend each behavioral model by half as many transitions as we did for
the primary goal. Concretely, we extend each model by L

2
transitions which corresponds

to a total of P ·L
4

construction steps for adding one branch to P participants.
Step 5 returns the generated behavioral models.

1. Create P initial behavioral models, each consisting of an initial state.

2. (a) Pick a behavioral model p1 whose leaf state is after an input transition or
after the initial state.

(b) Pick a behavioral model p2 6= p1 whose leaf state is after an output transition
or after the initial state.

(c) Introduce a new variable v. Add an output transition sending v to p1’s leaf
state. Add an input transition receiving v to p2’s leaf state.

Perform that step P ·L
2

times in total.

3. Store all leaf states as the primary goal.

4. (a) Simulate the execution of the path to the primary goal for the so far generated
behavioral models. That is, start from the initial states and advance those
pairs of states that communicate the same variable. Stop at an arbitrary
point and note the current state sx for each behavioral model px.

(b) i. Pick a behavioral model p1 where s1 is after an input transition, before
an output transition, or, when p1 only consists of the initial state, s1 is
the initial state.

ii. Pick a behavioral model p2 6= p1 where s2 is after an output transition,
before an input transition, or, when p2 only consists of the initial state,
s2 is the initial state.

iii. Introduce a new variable v. Add an output transition t1 sending v to s1.
Add an input transition t2 receiving v to s2.

174 CHAPTER 11: EVALUATING THE COMPOSER AGAINST EXISTING WORK

iv. Let s1 be the sink state of t1 and s2 be the sink of t2.
Perform that step P ·L

4
times in total.

(c) Store {(p1, s1), . . . , (pP , sP)} as new recovery goal.

Perform that step B times in total.

5. Output the P behavioral models, the primary goal and the B recovery goals.

We give an example of a generated composition problem in Figure 11.2. States are
represented via boxes. Output and input is denoted by text next to edges with a “–>” or
a “<–” sign to denote the direction. An arrow pointing toward the transition arc means
input, the opposite means output. Goals are marked by the smaller, labeled boxes within
the state boxes.

Figure 11.2: Generated composition problem (P :3, B:4, L:4).

11.3 Evaluation runs
In order to assess the quality of our complex-goal-based WS composition implementa-
tion, we perform test runs with the following configurations.

No Participants (P) Branches (B) Length (L)

1 5, . . . , 80 0 4

2 10 0 5, . . . , 80

3 10 1, . . . , 20 10

4 10 1, . . . , 20 20

11.3 Evaluation runs 175

We separately assess the performance of our implementation with respect to the
key figures. Therefore, the first set of test runs is fed with an increasing number of
behavioral models. In order to reduce the impact of the other key figures, the test
behavioral models have no branches and are of a short length. The results are displayed
in Figure 11.3.

Figure 11.3: Composition time with increasing participants (B:0, L:4).

The second set of tests runs on a fix number of behavioral models without branches.
This time, the mean length of the paths is increased for each test run. The results are
shown in Figure 11.4.

Figure 11.4: Composition time with increasing length (P :10, B:0).

The third and fourth set of test runs are two variations of the same setting. The
number of behavioral models and the length are kept fix. This time, the number of

176 CHAPTER 11: EVALUATING THE COMPOSER AGAINST EXISTING WORK

branches is increased for each test run. The two variations introduced for the test setting
differ on the fix, mean path length of each behavioral model. The run times of the two
sets of evaluation runs are displayed in Figure 11.5.

Figure 11.5: Composition time with increasing branches.

11.4 Discussion
For determining the complexity class, we use the data regression analysis technique.
During data regression analysis, the data is approximated by a function. Different
types of functions may be compared during regression analysis based on the quality
of their approximation. The quality of approximation can be determined using the
“coefficient of determination.” The coefficient of determination ranges between 0 and
1. The closer the coefficient to 1, the better the approximation. The following table
presents the coefficient of determination for different function types for the test runs
explained before. For each test run, the best fitting functional type was underlined.

Figure Linear Logarithmic Polynomial Potential Exponential

11.3 0.9512 0.7532 0.9765 0.895 0.9729

11.4 0.7701 0.6559 0.7707 0.896 0.8477

11.5 (L:10) 0.7443 0.614 0.759 0.8809 0.7965

11.5 (L:20) 0.7328 0.5499 0.773 0.9359 0.8488

The above table indicates that the development of the run time of our complex-goal-
based WS composition with respect to the three key figures can be best approximated

11.5 Comparison with existing approach 177

by polynomial or potential (power) functions. A power function has the form

f : x→ axn a, n ∈ R.

A polynomial is built as a sum of power functions with natural number exponents.
Both polynomial and power functions grow slower than the exponential function.
Thus, we can say that the computation time consumed by our complex-goal-based WS
composition grows less than exponentially with an increasing number of participants,
length, and branches.

11.5 Comparison with existing approach
In Pistore et al. (2005c), the authors use an increasing number of simple Web services
to determine the time needed for composition with their approach. The services to
compose follow the request-response pattern. In the request-response pattern, a Web
service receives a message and either answers normally or terminates with a failure
message. The primary goal of the orchestration is that the normal answers of all
participating Web services are communicated to an invoker. In the case that at least one
Web service fails, a failure notification is forwarded to the invoker.

We now express the evaluation setting of Pistore et al. (2005c) using our key figures:
The number of participants increases from 1 to 24. The resulting orchestration consists
of as many non-deterministic decision points as Web services participate besides the
invoker: B = P − 1. Each Web service consists of two transitions, thus L = 2.

We perform one further set of evaluation runs in order to compare our complex-
goal-based WS composition to the existing approach of Pistore et al. (2005c).

No Participants (P) Branches (B) Length (L)

5 2, . . . , 24 1, . . . , 23 2

We use the data of the evaluation graph given in Pistore et al. (2005c) to compare
our complex-goal-based WS composition against the existing approach. Figure 11.6
displays the run times of our composer plotted above the ones of Pistore et al. (2005c).

We can conclude that our complex-goal-based WS composition runs at least one
magnitude of scale faster than the composer presented by Pistore et al. (2005c). The
main reasons for that result are that our composer omits the construction of a belief-level
model as done by Pistore et al. (2005c) and the more restricted goal definition.

In the approach of Pistore et al. (2005c), a belief-level model is constructed from
the joined, original behavioral models by removing all non-observable states. A non-
observable state is a state before an output transition or after an input transition if it is
not a leaf or initial state. In contrast to the work of Pistore et al. (2005c), our complex-
goal-based WS composition operates on the whole behavioral models including non-
observable states. Therefore, the expensive computation of the belief-level model can
be omitted.

178 CHAPTER 11: EVALUATING THE COMPOSER AGAINST EXISTING WORK

Figure 11.6: Comparison of our complex-goal-based WS composition with existing
approach.

As explained in Section 4.3.3 on page 50, the composition goal is stated as a complex
logic expression by Pistore et al. (2005c). Our restriction of the composition goal to
nominate a primary and recovery goal instead of a complex logic expression allows
for a more efficient implementation of the composition algorithm. However, as we
could show in Chapter 10 on page 155, even with the more restrictive goal definition,
real-life business processes with non-determinism spanning multiple participants can
be successfully composed using our complex-goal-based WS composition.

11.6 Summary
As discussed in the literature review in Section 4.3.3 on page 50, the two closest
approaches to our complex-goal-based WS composition are the work performed by
Berardi et al. (2005) and by Pistore et al. (2005c). The approach of Berardi et al.
(2005) considers very complex descriptions of the participating components. Due to
the complexity of the problem description, the approach of Berardi et al. (2005) has
exponential complexity. In contrast, we have shown in this chapter, that our approach
has polynomial complexity.

The approach presented by Pistore et al. (2005c) utilizes abstract BPEL files to
describe the participating components. Comparing such an abstract BPEL description
to the behavioral models we describe using SA-WSDL reveals that the abstract BPEL
description contains for the same business process about 3 times as many nodes and
transitions. The reason is that internal operations, such as assign, prepare for output,
and process input are contained in the abstract BPEL description. That extra burden of
information multiplies in the construction of the belief model and in the computation

11.6 Summary 179

of the joined state space of all participants. In contrast, our work uses a more targeted
participant description without internal operations. Additionally, there is no necessity to
generate a belief model in our approach, the goal definition is not as rich, and the type
of participant descriptions is restricted to trees. These restrictions cause a performance
gain of at least one magnitude of scale compared to the closest related work performed
by Pistore et al. (2005c).

Part IV

Finale

Chapter 12

Conclusions and Future Work

This chapter serves many purposes: First, we sum our contributions in Section 12.1.
Second, we present our conclusions in Section 12.2 by answering the research ques-
tions we posed in the introduction. Third, we name relevant activities within SAP in
Section 12.3 that benefit from the works presented in this thesis. And finally, we present
the further potential of our work in Section 12.4.

12.1 Summary

In this dissertation, we have presented a method and a system for EAI and e-business
integration that considers besides technical also ontological aspects in a scalable way.
In particular, we identified three current integration challenges that we address with the
parts of our solution:

1. Free definition of interface objects. The mostly unrestricted definition of in-
terface objects in the past—also supported by technologies such as XML that
tremendously simplify the definition of new data types—has led to high mainte-
nance costs. The reason is that redundantly introduced interface object types tend
to be inconsistent from the time of their definition or become inconsistent upon
change. To tackle our requirement to detect redundant interface objects, we have
introduced our CFIM of hierarchical types. We have also evaluated its scalability
to the large data sets of the public interfaces of SAP’s business software.

2. Behavioral information only in experts’ heads. The knowledge about the
intended behavior of software modules created at component design time is
today only—if at all—kept in natural language documentation. That has led
to expensive reengineering of the behavioral information at integration design
time because knowledge stored in natural language leads to different, mostly
incompatible interpretations. As a requirement, we formulated to track behavioral
information through software design phases. We have proven in this thesis that

184 CHAPTER 12: CONCLUSIONS AND FUTURE WORK

our solution transforming behavioral models for EAI and e-business is able to
track behavioral information through software design phases.

3. Manual exception handling. Identifying the relevant exceptional situations and
consistently managing them has been identified as the most expensive part of
building an orchestration consuming 80% of the development cost. In addi-
tion, if wrongly composed, an orchestration fails only at run time as opposed to
already finding errors at integration design time with automated support. There-
fore, we require our solution to mechanically support exception handling. Our
complex-goal-based WS composition is able to mechanically support exception
handling and outperforms related approaches with respect to computation speed
as evaluated in this thesis.

12.2 Conclusion
In this thesis, we have answered the three research questions posed in the introduction.

1. Can ontologically redundant, but structurally different artifacts involved in busi-
ness collaboration be efficiently detected?

We examined the possible relations between structural and ontological similarity
based on the theory of the semiotic triangle. It turned out that we can use a
structural analysis to detect potential ontological redundancy. We have adapted
an efficient CFIM method to be used with hierarchical types. Our CFIM of
hierarchical types scales up to inspecting the large data type repository of SAP’s
public interface objects.

2. What is needed to store knowledge of the generally intended and supported
behavior of a software component such that it can later be used for creating a
partner’s role model and a collaborative business process?

We defined a solution to transform behavioral models for EAI and e-business as
a means to store intended and supported software component behavior. In our
solution, behavioral models are considered in EAI when connecting the compo-
nents of a company to be available for e-business. In e-business, our behavioral
models are considered when a collaborative business process is built. As opposed
to current practice, no explicit implementation of a company’s interface is needed
because on orchestration utilizes the components of a company’s software directly
at run time in our solution.

3. Can the design of a complex collaborative business procedure with real-world
features be efficiently supported by an automated approach?

We provide a complex-goal-based WS composition in this thesis that is capable
of handling real-world features of collaborative business procedures such as non-
deterministic Web service responses and consistent transactions. Our evaluation

12.3 Impact 185

shows that our complex-goal-based WS composition outperforms the fastest
existing approach with the named features. We have also shown that our complex-
goal-based WS composition can be used to build a realistic best practice business
process supported by SAP.

12.3 Impact

The work presented in this dissertation contributes to two activities in SAP:

1. CCTS Modeler Warp 10. The core component type specification (CCTS)1

provides a method, a naming convention, and a schema to define types of data and
to cover their intended meaning. The aim is to improve the alignment between
technical data types of different collaborators. The CCTS Modeler Warp 10 is a
software tool developed at SAP that allows the CCTS-based definition of data
types in conjunction with existing types defined by others before (Stuhec, 2007).
Our CFIM of hierarchical types successfully contributed to a prototype of the
CCTS Modeler. Our CFIM of hierarchical types is used in an offline extension
to the CCTS Modeler prototype that detects redundant data type definitions and
proposes a restructuring of the CCTS Modeler’s data type repository in order to
establish a normal form of the overall schema.

2. SAP NetWeaver CE. The composition environment (CE) of SAP NetWeaver
is a software tool to develop, run, and manage composite applications using
SAP’s enterprise SOA. A composite application, or composite, accesses existing
software via Web service technology to achieve new functionality. It was an-
nounced that a future version of SAP NetWeaver CE will provide a BPMN-based
modeling environment to integrate software based on Web service technology
purely by modeling without the necessity to write code. We could show how a
proof-of-concept implementation of our complex-goal-based WS composition
can semi-automatically support the manual modeling in SAP NetWeaver CE.

12.4 Further development

In this section, we present how our work could be extended in the future. We advocate
the vision that our work could be extended to bring forth a new kind of middleware for
improved collaboration. To serve that purpose, the three main topics of this thesis could
be further developed in the ways described in this section.

1http://www.untmg.org/specifications/

http://www.untmg.org/specifications/

186 CHAPTER 12: CONCLUSIONS AND FUTURE WORK

12.4.1 CFIM of hierarchical types
That solution detects redundant interface objects. In addition to the detection, an au-
tomated support for the alignment of the two technically different, but ontologically
redundant interface objects could be given. Alignment could be reached by the re-
definition of some of the redundant interface objects. That involves reprogramming
of software. Alternatively, alignment could be reached by introducing adapters and,
thus, leaving existing software untouched. The creation of adapters could further be
supported by the result of the CFIM of hierarchical types because a redundancy group
contains information about already matching elements.

In the case that a way can be found to create adapters that work in both directions
“from the old to the new” and “from the new to the old” interface object, a middleware
can be defined with the following characteristics:

• Publish interface objects. Potential collaborators can connect to the middleware
by publishing their interface objects.

• Identify redundancy. Our CFIM of hierarchical types can be used to iden-
tify ontologically redundant interface objects. That is a major prerequisite for
collaboration as discussed in this thesis.

• Wrap collaborators. Collaborators establish a connection with other collab-
orators exclusively through the middleware. That means in particular that a
collaborator perceives the other collaborators’ interfaces through the view pro-
vided by the middleware.

• Manage versions. A new, aligned version of an interface object can be defined
from redundant interface objects. All newly established connections only use
the most recent version of an interface object. Collaborators already connected
to elderly versions of interface objects keep working because the middleware
cares for proper conversion between the different versions of interface objects the
collaborators rely on.

• Remove obsolete versions. When a collaborator permanently disconnects from
the community of potential collaborators, the middleware checks whether the
interfaces used by the leaving collaborator have been replaced by newer versions
in the meantime. If that is the case and no other collaborator relies on the old
interface object, the object definition plus all respective adapters become removed
from the middleware.

12.4.2 Transform behavioral models for EAI and e-business
When we introduced behavioral models, we provided a formal model of behavioral
knowledge. However, a business user with little technical expertise could be challenged
to use the state transition system notation for defining collaborative business process

12.4 Further development 187

requirements including goal definition and variable assignments in an e-business setting.
Therefore, further development should provide a more usable notation of behavioral
models, variable assignments, and composition goals.

12.4.3 Complex-goal-based WS composition
The middleware we described above establishes a common language among all potential
collaborators. That is the prerequisite for collaboration. We envision our complex-
goal-based WS composition to be a further feature of the middleware that allows the
potential collaborators—based on the common understanding reached by our CFIM of
hierarchical types—to connect their companies’ behavioral models to a collaborative
business process.

To increase the usability of our complex-goal-based WS composition, we envision
that our complex-goal-based WS composition could be extended in the following ways:

• Iterative definition of recovery goals. Currently, the orchestration requirements,
i. e., variable assignments and goals, need to be given before our composer is
started. Especially, the recovery goals may contain many situations that never
occur in an orchestration. Therefore, one could redefine the composer to perform
an interactive composition:

The initial input for the composer would be the primary goal. The composer
would start to chain an orchestration backward for the primary goal. Whenever
the composer reaches a point of non-determinism, the composer would ask the
user to specify allowable recovery goals. The advantage of that technique is that
at the time the composer asks to define recovery goals, it may present a restricted
graph to the user that only contains those branches that could still be traversed
from the current state of backchaining.

In addition, the composer could first check whether reaching the primary goal
is possible in principle, i. e. without considering non-determinism. Thus, the
composer would not bother the user with defining recovery goals if in the end it
turns out that even trying to reach the primary goal fails.

• Explanation of composition failures. As described in this thesis, the complex-
goal-based WS composition either generates an orchestration that consistently
ensures transactionality or it fails. In the case of failure, one could imagine that a
detailed failure report could be generated to hint a human user at the reason for
the failure of composition. Potential reasons for failure include

– incompatible sequencing of messages among the participating behavioral
models,

– inputs that cannot be matched with outputs, and

– that a consistent outcome cannot be guaranteed for each execution.

188 CHAPTER 12: CONCLUSIONS AND FUTURE WORK

A failure report may state the category of failure including information

– about the sequences that did not match,

– the inputs with cannot be served, and respectively

– the branches whose composition fails.

• Generating mediator stub upon composition failure. In the case that compo-
sition was not possible, a sophisticated extension to our complex-goal-based WS
composition could try to generate a mediating behavioral model that, for example,
resolves improper sequencing of messages. Such a mediating behavioral model
would have to be backed with an appropriate implementation to perform the
behavior imposed by the mediating behavioral model in order to be executable at
run time.

The named extensions of our solutions presented in this thesis and the middleware
described in the outlook target at ensuring and improving the quality and maintainability
of integration. As especially our experiments on real interface data from industry have
shown, scalability is key to be applicable in reality. Although a linear time and space
mining algorithm was used, with increasing granularity of the mining, the run time also
increased quickly due to the fast increase of the problem size.

The other essential aspect of supporting integration is considering the intentions
the creators had when designing their interface objects. It is mandatory to make that
knowledge explicit and to preserve it as complete and as durable as possible during the
lifecycle of the objects. An ontological approach is key for later integration because the
probably largest cost driver in software and integration development is misunderstanding
and forgetting relationships between software artifacts.

In this thesis, we proposed a method and tools to acquire knowledge about software
components and make it available to people involved in EAI and e-business integration.
We turned our attention to provide an ontological approach. In some points, we accepted
reduced expressivity for the sake of scalability. That is where future research may
contribute.

References

Albert, P., L. Henocque, and M. Kleiner. Configuration-based workflow composition.
In ICWS, pages 285–292. IEEE Computer Society, 2005a. ISBN 0-7695-2409-5.

Albert, P., L. Henocque, and M. Kleiner. A constrained object model for configuration
based workflow composition. In Bussler and Haller (2006), pages 102–115.

Altenhofen, M., E. Börger, and J. Lemcke. An abstract model for process mediation.
In K.-K. Lau and R. Banach, editors, Formal Methods and Software Engineering,
7th International Conference on Formal Engineering Methods, ICFEM, volume
3785 of Lecture Notes in Computer Science, pages 81–95. Springer, 2005a. ISBN
3-540-29797-9. URL http://dx.doi.org/10.1007/11576280_7.

Altenhofen, M., E. Börger, and J. Lemcke. An execution semantics for mediation
patterns. In Proc. of 2nd WSMO Implementation Workshop (WIW). CEUR Workshop
Proceedings, Innsbruck, Austria, 2005b. ISSN 1613-0073. URL CEUR-WS.org/
Vol-134/lemcke-wiw05.pdf.

Altenhofen, M., E. Börger, and J. Lemcke. A high-level specification for mediators
(Virtual Providers). In Bussler and Haller (2006), pages 116–129. URL http:
//dx.doi.org/10.1007/11678564_11.

Altenhofen, M., A. Friesen, and J. Lemcke. ASMs in service oriented architectures.
Journal of Universal Computer Science (JUCS), 14(12):2034–2058, 2008.

Altenhofen, M., A. Friesen, J. Lemcke, and E. Börger. A high-level specification
for Virtual Providers. International Journal of Business Process Integration and
Management (IJBPIM), 1(4):267–278, 2006b.

Antoniou, G. and F. v. Harmelen. A semantic Web primer. MIT Press, 2004. ISBN
0-262-01210-3.

Baader, F., D. Calvanese, and D. McGuinness. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge Univ. Press, second edition,
2007. ISBN 978-0-521-87625-4.

http://dx.doi.org/10.1007/11576280_7
CEUR-WS.org/Vol-134/lemcke-wiw05.pdf
CEUR-WS.org/Vol-134/lemcke-wiw05.pdf
http://dx.doi.org/10.1007/11678564_11
http://dx.doi.org/10.1007/11678564_11

190 REFERENCES

Benatallah, B., M. Dumas, M. Fauvet, and F. Rabhi. Towards patterns
of Web services composition. 2002. URL citeseer.ist.psu.edu/
benatallah02towards.html.

Berardi, D., D. Calvanese, G. D. Giacomo, R. Hull, and M. Mecella. Automatic
composition of transition-based semantic Web services with messaging. In K. Böhm,
C. S. Jensen, L. M. Haas, M. L. Kersten, P.-Å. Larson, and B. C. Ooi, editors, 31st
International Conference on Very Large Data Bases (VLDB), pages 613–624. ACM,
2005. ISBN 1-59593-154-6, 1-59593-177-5.

Bernstein, A., M. Klein, and T. W. Malone. The process recombinator: a tool for
generating new business process ideas. In International Conference on Informa-
tion Systems (ICIS), pages 178–192. 1999. URL citeseer.ist.psu.edu/
bernstein99proces.html.

Berry, M. J. A. and G. S. Linoff. Data Mining Techniques. Wiley Publishing, Inc.,
second edition, 2004.

Bertoli, P., M. Pistore, and P. Traverso. Automated Web service composition by on-the-
fly belief space search. In D. Long, S. F. Smith, D. Borrajo, and L. McCluskey, editors,
16th International Conference on Automated Planning and Scheduling (ICAPS),
pages 358–361. AAAI, 2006. ISBN 978-1-57735-270-9.

Booch, G., J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. The Addison-Wesley Object Technology Series. Addison-Wesley Professional,
second edition, 2005.

Booth, D., H. Haas, F. McCabe, E. Newcomer, M. Champion, et al. Web services
architecture – W3C working group note. Technical report, W3C, 2004. URL
http://www.w3.org/TR/ws-arch/.

Börger, E. The ASM refinement method. Formal Aspects of Computing, 15:237–257,
2003.

Börger, E. and R. F. Stärk. Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, 2003.

Bray, T., J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
markup language (XML) 1.0 (fourth edition). Technical report, W3C, 2006. URL
http://www.w3.org/TR/xml/.

Bussler, C. and A. Haller, editors. Business Process Management Workshops, BPM
2005 International Workshops, BPI, BPD, ENEI, BPRM, WSCOBPM, BPS, Nancy,
France, September 5, 2005, Revised Selected Papers, volume 3812. 2006. ISBN
3-540-32595-6.

citeseer.ist.psu.edu/benatallah02towards.html
citeseer.ist.psu.edu/benatallah02towards.html
citeseer.ist.psu.edu/bernstein99proces.html
citeseer.ist.psu.edu/bernstein99proces.html
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/xml/

REFERENCES 191

Cardoso, J. and A. Sheth. Semantic e-workflow composition. J. Intell. Inf. Syst.,
21(3):191–225, 2003. ISSN 0925-9902.

Christensen, E., F. Curbera, G. Meredith, and S. Weerawarana. Web services description
language (WSDL) 1.1. Technical report, W3C, 2001. URL http://www.w3.
org/TR/wsdl.

Chun, S. A., V. Atluri, and N. R. Adam. Domain knowledge-based automatic work-
flow generation. In Database and Expert Systems Applications : 13th International
Conference, DEXA 2002 Aix-en-Provence, France, September 2-6, 2002. Proceed-
ings, page 81ff. 2002. URL http://www.springerlink.com/content/
55ra4dhu04wfxnq1.

Cimpian, E. Process mediation in semantic Web services. In E. P. B. Simperl,
J. Diederich, and G. Schreiber, editors, Knowledge Web PhD Symposium (KWEPSY),
volume 275 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

Clement, L., A. Hately, C. von Riegen, and T. Rogers. UDDI version 3.0.2, UDDI spec
technical committee draft, dated 20041019. Technical report, OASIS, 2004. URL
http://uddi.org/pubs/uddi_v3.htm.

Dong, A. XML tree finder system: A first step towards XML data mining – final report.
Technical report, CS Department, Univ of Calgary, 2005.

Dong, X., A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity search for Web
services. In 30th International Conference on Very Large Data Bases (VLDB). 2004.

Doshi, P., R. Goodwin, R. Akkiraju, and K. Verma. Dynamic workflow composition
using markov decision processes. In ICWS ’04: Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS’04), page 576. IEEE Computer Society,
Washington, DC, USA, 2004. ISBN 0-7695-2167-3.

Drumm, C., J. Lemcke, E. Dorner, and L. Heuser. Enterprise services architecture &
semantic Web services. In S. Reich, G. Günter, T. Pellegrino, and A. Wahler, editors,
Semantic Content Engineering, volume 17 of Schriftenreihe Informatik, pages 28–37.
Trauner, 2006a. ISBN 3854879792.

Drumm, C., J. Lemcke, and K. Namiri. Integrating semantic Web services
and business process management: A real use case. In Semantics for Busi-
ness Process Management, Workshop at 3rd European Semantic Web Confer-
ence (ESWC). 2006b. URL http://jobfunctions.bnet.com/abstract.
aspx?promo=50002&docid=276296.

Drumm, C., J. Lemcke, and D. Oberle. Business process management and semantic
technologies. In J. Cardoso, M. Hepp, and M. D. Lytras, editors, The Semantic
Web: Real-World Applications from Industry, volume 6 of Semantic Web And Beyond

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.springerlink.com/content/55ra4dhu04wfxnq1
http://www.springerlink.com/content/55ra4dhu04wfxnq1
http://uddi.org/pubs/uddi_v3.htm
http://jobfunctions.bnet.com/abstract.aspx?promo=50002&docid=276296
http://jobfunctions.bnet.com/abstract.aspx?promo=50002&docid=276296

192 REFERENCES

Computing for Human Experience, pages 209–239. Springer, 2007a. ISBN 978-0-387-
48531-7. URL http://dx.doi.org/10.1007/978-0-387-48531-7_
10.

Drumm, C., M. Schmitt, H. H. Do, and E. Rahm. Quickmig: automatic schema matching
for data migration projects. In M. J. Silva, A. H. F. Laender, R. A. Baeza-Yates,
D. L. McGuinness, B. Olstad, Ø. H. Olsen, and A. O. Falcão, editors, 16th ACM
Conference on Information and Knowledge Management (CIKM), pages 107–116.
ACM, 2007b. ISBN 978-1-59593-803-9.

Fallside, D. C. and P. Walmsley. XML schema part 0: Primer second edition – W3C
recommendation. Technical report, W3C, 2004.

Farahbod, R., V. Gervasi, and U. Glässer. Coreasm: An extensible asm execution engine.
Fundam. Inform., 77(1-2):71–103, 2007.

Fensel, D. and C. Bussler. The web service modeling framework wsmf. Electronic
Commerce Research and Applications, 1(2):113–137, 2002.

Fensel, D., H. Lausen, A. Polleres, M. Stollberg, D. Roman, et al. Enabling semantic
Web services. Springer, 2007. ISBN 3-540-34519-1, 978-3-540-34519-0.

Friesen, A. and J. Lemcke. Composing Web-service-like abstract state machines
(ASM). In J. Koehler, M. Pistore, A. P. Sheth, P. Traverso, and M. Wirsing, edi-
tors, Autonomous and Adaptive Web Services, volume 07061 of Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2007. URL http://drops.dagstuhl.
de/opus/volltexte/2007/1034.

Fronk, M. and J. Lemcke. Expressing semantic Web service behavior with de-
scription logics. In Semantics for Business Process Management, Workshop at
3rd European Semantic Web Conference (ESWC). 2006. URL http://km.aifb.
uni-karlsruhe.de/ws/sbpm2006/papers/sbpm06_Fronk.pdf.

Ganter, B. and R. Godin. Formal Concept Analysis. Springer, 2005.

Gerede, C. E. and J. Su. Specification and verification of artifact behaviors in business
process models. In B. J. Krämer, K.-J. Lin, and P. Narasimhan, editors, 5th Interna-
tional Conference on Service-Oriented Computing (ICSOC), volume 4749 of Lecture
Notes in Computer Science, pages 181–192. Springer, 2007. ISBN 978-3-540-74973-
8.

Gmez-Prez, A., M. Fernndez-Lpez, and O. Corcho. Ontological engineering. Springer,
2004. ISBN 1-85233-551-3.

Gorton, I. Essential Software Architecture. Springer, 2006. ISBN 3-540-28713-2,
978-3-540-28713-1.

http://dx.doi.org/10.1007/978-0-387-48531-7_10
http://dx.doi.org/10.1007/978-0-387-48531-7_10
http://drops.dagstuhl.de/opus/volltexte/2007/1034
http://drops.dagstuhl.de/opus/volltexte/2007/1034
http://km.aifb.uni-karlsruhe.de/ws/sbpm2006/papers/sbpm06_Fronk.pdf
http://km.aifb.uni-karlsruhe.de/ws/sbpm2006/papers/sbpm06_Fronk.pdf

REFERENCES 193

Gruber, T. R. Toward principles for the design of ontologies used for knowledge
sharing? Int. J. Hum.-Comput. Stud., 43(5-6):907–928, 1995.

Han, J. and M. Kamber. Data Mining. Concepts and Techniques. Morgan Kaufmann
Publishers, 2006. ISBN 1558609016.

Hoffmann, J., P. Bertoli, and M. Pistore. Web service composition as planning, revisited:
In between background theories and initial state uncertainty. In AAAI, pages 1013–
1018. AAAI Press, 2007. ISBN 978-1-57735-323-2.

Kaiser, M. Toward the realization of policy-oriented enterprise management. IEEE
Computer, 40(11):57–63, 2007.

Kaiser, M. and J. Lemcke. Towards a framework for policy-oriented enterprise man-
agement. In K. Hinkelmann, editor, Papers from the AAAI Spring Symposium. 2008.
ISBN 978-1-57735-357-7. Technical Report SS-08-01.

Kalfoglou, Y. and W. M. Schorlemmer. Ontology mapping: The state of the art. In
Y. Kalfoglou, W. M. Schorlemmer, A. P. Sheth, S. Staab, and M. Uschold, edi-
tors, Semantic Interoperability and Integration, volume 04391 of Dagstuhl Seminar
Proceedings. IBFI, Schloss Dagstuhl, Germany, 2005.

Karastoyanova, D. and A. P. Buchmann. Automating the development of Web service
compositions using templates. In GI Jahrestagung (2), pages 517–523. 2004.

Kastner, P. S. and R. Saia. The composite applications benchmark report. Technical
report, Aberdeen Group, 2006.

Kifer, M. and G. Lausen. F-logic: A higher-order language for reasoning about
objects, inheritance, and scheme. In J. Clifford, B. G. Lindsay, and D. Maier, editors,
Proceedings of the 1989 ACM SIGMOD International Conference on Management
of Data, pages 134–146. ACM Press, 1989.

Kim, J., M. Spraragen, and Y. Gil. An intelligent assistant for interactive workflow
composition. In IUI ’04: Proceedings of the 9th international conference on Intelli-
gent user interface, pages 125–131. ACM Press, New York, NY, USA, 2004. ISBN
1-58113-815-6.

Krafzig, D., K. Banke, and D. Slama. Enterprise SOA : Service-Oriented Archi-
tecture Best Practices (The Coad Series). Prentice Hall PTR, 2004. ISBN
0131465759. URL http://www.amazon.ca/exec/obidos/redirect?
tag=citeulike09-20%&path=ASIN/0131465759.

Kubczak, C., T. Margaria, M. Kaiser, J. Lemcke, and B. Knuth. Abductive synthesis of
the mediator scenario with jABC and GEM. In R. Garcia-Castro, A. Gómez-Pérez,

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20% &path=ASIN/0131465759
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20% &path=ASIN/0131465759

194 REFERENCES

C. J. Petrie, E. D. Valle, U. Küster, M. Zaremba, and M. O. Shafiq, editors, 6th Inter-
national Workshop on Evaluation of Ontology-based tools and the Semantic Web Ser-
vice Challenge (EON-SWSC), volume 359 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008. URL http://ceur-ws.org/Vol-359/Paper-5.pdf.

Küster, J. M., K. Ryndina, and H. Gall. Generation of business process models for
object life cycle compliance. In G. Alonso, P. Dadam, and M. Rosemann, editors,
5th International Conference on Business Process Management (BPM), volume
4714 of Lecture Notes in Computer Science, pages 165–181. Springer, 2007. ISBN
978-3-540-75182-3.

Lago, U. D., M. Pistore, and P. Traverso. Planning with a language for extended goals.
In AAAI Innovative Applications of Artificial Intelligence (IAAI), pages 447–454.
2002.

Laukkanen, M. and H. Helin. Composing workflows of semantic Web services. In
Proceedings of the Workshop on Web-Services and Agent-based Engineering. 2003.
URL http://jmvidal.cse.sc.edu/library/laukkanen03a.pdf.

Lausen, H., J. de Bruijn, A. Polleres, and D. Fensel. The wsml rule languages for the
semantic web. In W3C Workshop on Rule Languages for Interoperability. W3C,
2005.

Lemcke, J. Light-weight semantic integration of generic behavioral component de-
scriptions. In G. Mentzas, T. Bouras, P. Gouvas, and A. Friesen, editors, Semantic
Enterprise Application Integration for Business Processes. IGI Global, Harrisburg,
PA, 2009.

Lemcke, J. and C. Drumm. Semantic technologies for enterprise ser-
vices. In Semantic Web Days. Online Proceedings, 2005. ISSN 1613-
0073. URL http://www.semantic-web-days.net/proceedings/
SAP_SemanticWebDays2005.pdf.

Lemcke, J. and C. Drumm. Semantic business automation. In A. Leger, A. Kulas,
L. Nixon, and R. Meersman, editors, How Business application challenges Semantic
Web Research – European Semantic Web Conference (ESWC) Industry Forum, vol-
ume 194. CEUR Workshop Proceedings, Budva, Montenegro, 2006. ISSN 1613-0073.
URL CEUR-WS.org/Vol-194/paper7.pdf.

Lemcke, J. and A. Friesen. Composing Web-service-like abstract state machines
(ASMs). In IEEE International Conference on Services Computing - Workshops
(SCW), pages 262–269. IEEE Computer Society, 2007a. URL http://doi.
ieeecomputersociety.org/10.1109/SERVICES.2007.24.

Lemcke, J. and A. Friesen. Considering realistic Web service features for semi-
automatic composition. Annals of Mathematics, Computing and Teleinformatics
(AMCT), 1(5):26–35, 2007b.

http://ceur-ws.org/Vol-359/Paper-5.pdf
http://jmvidal.cse.sc.edu/library/laukkanen03a.pdf
http://www.semantic-web-days.net/proceedings/SAP_SemanticWebDays2005.pdf
http://www.semantic-web-days.net/proceedings/SAP_SemanticWebDays2005.pdf
CEUR-WS.org/Vol-194/paper7.pdf
http://doi.ieeecomputersociety.org/10.1109/SERVICES.2007.24
http://doi.ieeecomputersociety.org/10.1109/SERVICES.2007.24

REFERENCES 195

Lemcke, J. and A. Friesen. Considering realistic Web service features for semi-
automatic composition. In 3rd South-East European Workshop on Formal Methods
(SEEFM). Springer, 2007c.

Lemcke, J. and A. Friesen. Semi-automatic design of collaborative business pro-
cesses in FUSION. In Demonstrating Research Results on Enterprise Interoper-
ability, Workshop at Int’l Conf. Interoperability for Enterprise Software (i-ESA).
2008. URL http://www.genesis-ist.eu/LinkClick.aspx?link=
iESA_2008_ProceedingsBerlin.pdf&tabid=79&mid=413.

Lemcke, J., M. Kaiser, C. Kubczak, T. Margaria, and B. Knuth. Advances in solving
the mediator scenario with jABC and jABC/GEM. In 7th Semantic Web Services
Challenge Workshop, part of the 7th International Semantic Web Conference ISWC.
2008.

Mayer, A., S. McGough, N. Furmento, W. Lee, S. Newhouse, et al. Iceni dataflow and
workflow: Composition and scheduling in space and time. 2003. URL citeseer.
ist.psu.edu/mayer03iceni.html.

McCormick, W. T., P. J. Schweitzer, and T. W. White. Problem decomposition and
data reorganization by a clustering technique. Operation Research, 20(5):993–1009,
1972.

Melzer, I. Service-orientierte Architekturen mit Web Services. Elsevier, Spektrum Akad.
Verl., second edition, 2007. ISBN 978-3-8274-1885-2, 3-8274-1885-2.

Mens, T. and T. Tourw. A survey of software refactoring. In IEEE Transactions on
Software Engineering. 2004.

Meyer, H., H. Overdick, and M. Weske. Plngine: A system for automated service
composition and process enactment. In Proceedings of the 14th International Confer-
ence on World Wide Web (WWW), Service Composition with Semantic Web Services
(wscomps05), pages 3–12. University of Technology of Compiegne, Compiegne,
France, 2005. ISBN 2-913923-18-6.

Noy, N. F. Semantic integration: A survey of ontology-based approaches. SIGMOD
Record, 33(4):65–70, 2004.

Ogden, C. K. and I. A. Richards. The Meaning of Meaning: A Study of the Influence of
Language Upon Thought and of the Science of Symbolism. London: Routledge &
Kegan Paul, 1923.

Papazoglou, M. P. and P. Ribbers. e-Business: Organizational and Technical Founda-
tions. Wiley, 2006. ISBN 0470843764.

Petersohn, H. Data Mining – Verfahren, Prozesse, Anwendungsarchitektur. Oldenbourg
Wissenschaftsverlag, 2005.

http://www.genesis-ist.eu/LinkClick.aspx?link=iESA_2008_ProceedingsBerlin.pdf&tabid=79&mid=413
http://www.genesis-ist.eu/LinkClick.aspx?link=iESA_2008_ProceedingsBerlin.pdf&tabid=79&mid=413
citeseer.ist.psu.edu/mayer03iceni.html
citeseer.ist.psu.edu/mayer03iceni.html

196 REFERENCES

Pistore, M., F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and moni-
toring Web service composition. In C. Bussler and D. Fensel, editors, 11th Inter-
national Conference on Artificial Intelligence: Methodology, Systems, and Applica-
tions (AIMSA), volume 3192 of Lecture Notes in Computer Science, pages 106–115.
Springer, 2004. ISBN 3-540-22959-0.

Pistore, M., A. Marconi, P. Bertoli, and P. Traverso. Automated composition of Web
services by planning at the knowledge level. In L. P. Kaelbling and A. Saffiotti, editors,
IJCAI, pages 1252–1259. Professional Book Center, 2005a. ISBN 0938075934.

Pistore, M., P. Roberti, and P. Traverso. Process-level composition of executable
Web services: “on-the-fly” versus “once-for-all” composition. In A. Gómez-Pérez
and J. Euzenat, editors, 2nd European Semantic Web Conference (ESWC), volume
3532 of Lecture Notes in Computer Science, pages 62–77. Springer, 2005b. ISBN
3-540-26124-9.

Pistore, M., P. Traverso, P. Bertoli, and A. Marconi. Automated synthesis of executable
Web service compositions from BPEL4WS processes. In A. Ellis and T. Hagino,
editors, 14th International Conference on World Wide Web (WWW), Special interest
tracks and posters, pages 1186–1187. ACM, 2005c. ISBN 1-59593-051-5.

Rahm, E. and P. A. Bernstein. A survey of approaches to automatic schema matching.
The International Journal on Very Large Data Bases, 10(4):334–350, 2001.

Rao, J. and X. Su. A survey of automated Web service composition methods. In
J. Cardoso and A. P. Sheth, editors, 1st International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC), volume 3387 of Lecture Notes
in Computer Science, pages 43–54. Springer, 2004. ISBN 3-540-24328-3.

Rosenkrantz, G. The science of being. Erkenntnis, 48:251–255(5), 1998.
URL http://www.ingentaconnect.com/content/klu/erke/1998/
00000048/F0020002/00183913.

Ruh, W. A., F. X. Maginnis, and W. J. Brown. Enterprise application integration. Wiley,
2001. ISBN 0-471-37641-8.

Salaun, G., L. Bordeaux, and M. Schaerf. Describing and reasoning on Web services
using process algebra. International Journal of Business Process Integration and
Management (IJBPIM), 1(2):116–128, 2006.

Serain, D. Middleware and enterprise application integration. Springer, 2002. ISBN
1-85233-570-X.

Sharman, R., R. Kishore, and R. Ramesh, editors. Ontologies. Springer, 2007. ISBN
0-387-37019-6, 978-0-387-37019-4.

http://www.ingentaconnect.com/content/klu/erke/1998/00000048/F0020002/00183913
http://www.ingentaconnect.com/content/klu/erke/1998/00000048/F0020002/00183913

REFERENCES 197

Shvaiko, P. and J. Euzenat. A survey of schema-based matching approaches. Technical
report, Informatica e Telecomunicazioni, University of Trento, 2005.

Snelting, G. and F. Tip. Reengineering class hierarchies using concept analysis. In
Foundations of Software Engineering, pages 99–110. 1998.

Staab, S. and R. Studer, editors. Handbook on ontologies. Springer, 2004. ISBN
3-540-40834-7.

Stachowiak, H. Allgemeine Modelltheorie. Springer-Verlag, Wien New York, 1973.

Stahl, T. and M. Voelter. Model-Driven Software Development: Technology, Engineer-
ing, Management. Wiley, 2006.

Stojanovic, L. Methods and tools for ontology evolution. Ph.D. thesis, University of
Karlsruhe, Germany, 2004.

Studer, R., S. Grimm, and A. Abecker, editors. Semantic Web Services: Concepts,
Technologies, and Applications. Springer, 2007. ISBN 978-3-540-70893-3, 3-540-
70893-6.

Stuhec, G. Using CCTS Modeler Warp 10 to customize business infor-
mation interfaces. Technical report, SAP AG, 2007. URL https:
//www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/
library/uuid/70d6c441-507e-2a10-7994-88f6f769d6e8.

Stumme, G., R. Taouil, Y. Bastide, N. pasquier, and L. Lakhal. Computing iceberg
concept lattices with TITANIC. Data & Knowledge Engineering, 42:189–222, 2002.

Termier, A. Extraction of frequent trees in an heterogeneous corpus of semi-structured
data: application to XML documents mining. Ph.D. thesis, Paris-South University,
2004.

Trainotti, M., M. Pistore, G. Calabrese, G. Zacco, G. Lucchese, et al. ASTRO: Sup-
porting composition and execution of Web services. In B. Benatallah, F. Casati,
and P. Traverso, editors, 3rd International Conference on Service-Oriented Comput-
ing (ICSOC), volume 3826 of Lecture Notes in Computer Science, pages 495–501.
Springer, 2005. ISBN 3-540-30817-2.

Traverso, P. and M. Pistore. Automated composition of semantic Web services into
executable processes. In S. A. McIlraith, D. Plexousakis, and F. van Harmelen,
editors, International Semantic Web Conference, volume 3298 of Lecture Notes in
Computer Science, pages 380–394. Springer, 2004. ISBN 3-540-23798-4.

Uno, T., T. Asai, Y. Uchida, and H. Arimura. An efficient algorithm for enumerating
closed patterns in transaction databases. In Discovery Science, pages 16–31. 2004a.

https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/70d6c441-507e-2a10-7994-88f6f769d6e8
https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/70d6c441-507e-2a10-7994-88f6f769d6e8
https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/70d6c441-507e-2a10-7994-88f6f769d6e8

198 REFERENCES

Uno, T., M. Kiyomi, and H. Arimura. LCM ver. 2: Efficient mining algorithms for
frequent/closed/maximal itemsets. In IEEE International Conference on Data Mining,
Workshop on Frequent Itemset Mining Implementations (FIMI). 2004b.

van der Aalst, W. M. P., A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

van Deursen, A. and T. Kuipers. Identifying objects using cluster and concept analysis.
In 21st International Conference on Software Engineering, pages 246–255. 1999.

Verma, K., K. Gomadam, A. P. Sheth, J. A. Miller, and Z. Wu. The meteor-s approach
for configuring and executing dynamic web processes. Technical report, University
of Georgia, Athens, 2005. URL http://lsdis.cs.uga.edu/projects/
meteor-s/techRep6-24-05.pdf.

Wang, Y. and E. Stroulia. Semantic structure matching for assessing Web service
similarity. In 1st International Conference on Service-Oriented Computing (ICSOC),
volume 2910 of LNCS, pages 194–207. Springer, 2003.

Witten, I. H. and E. Frank. Data Mining. Elsevier Inc., second edition, 2005.

Zaki, M. J. Efficiently mining frequent trees in a forest. 2002. In KDD’02, URL
citeseer.ist.psu.edu/zaki02efficiently.html.

Zaki, M. J., N. Parimi, N. De, F. Gao, B. Phoophakdee, et al. Towards generic pattern
mining. In Formal Concept Analysis. 2005.

http://lsdis.cs.uga.edu/projects/meteor-s/techRep6-24-05.pdf
http://lsdis.cs.uga.edu/projects/meteor-s/techRep6-24-05.pdf
citeseer.ist.psu.edu/zaki02efficiently.html

List of Figures

2.1 Relation of terms in EAI and e-business (suggestive) 11
2.2 The EAI pyramid (from Papazoglou and Ribbers, 2006, p. 512) 16
2.3 Transport integration layer . 17
2.4 Peer-to-peer versus centralized approach 17
2.5 Data integration layer . 19
2.6 Example XML document . 20
2.7 API integration layer . 23
2.8 Business process integration layer 24

3.1 System with redundancy caused on interface level 29
3.2 System with redundancy caused on implementation level 30
3.3 System with redundancy caused on data type level 30
3.4 Desired business process . 33

5.1 Integration layers with detailed BPI layer 57
5.2 Activities and perspectives mapped on development lifecycle 58
5.3 Overview of activities . 59

6.1 Detailed view of redundancy group g2 66
6.2 Sample abstract hierarchical data structures 69
6.3 Further sample abstract hierarchical data structures 70
6.4 Structures considered without building block analysis 71
6.5 Structures considered for building block analysis 71
6.6 Structures considered for granularity-agnostic analysis 72
6.7 Advantage of granularity-agnostic analysis 73
6.8 Example for rank calculation . 74
6.9 Product of two factors with constant sum 75
6.10 The semiotic triangle and its application to complex types. 78
6.11 Potential semiotic triangles for two repetitive observations. 79

7.1 Detailed view of activities transforming behavioral models 86
7.2 A graphical notation for SA-WSDL containing a behavioral model . . 88
7.3 Integrating technical and ontological level 88
7.4 Structure and execution of the behavioral model 92

200 LIST OF FIGURES

7.5 Three behavioral models with potential communications 96
7.6 ASMs involved in executing an orchestration 99
7.7 Interface provider and consumer perspectives 101
7.8 Interface of the seller . 102
7.9 Originating states of the seller’s financial component 104
7.10 ASMs involved in execution in the e-business perspective 109

8.1 Detailed view of the build orchestration sub-activity 113
8.2 Architecture of complex-goal-based WS composition 114
8.3 Behavioral models for student transfer example 115
8.4 Invocation dependencies of ASMs 120
8.5 Variant leading to pg1 in the student transfer example 121
8.6 Planning state and corresponding state of the behavioral model 123
8.7 Recursive computation of REACHGOAL 129
8.8 Variant leading to rg8 in the student transfer example 131
8.9 Variant leading to rg16 in the student transfer example 132
8.10 Variant leading to rg36 in the student transfer example 133

9.1 Miner configuration . 145
9.2 Mining time per input size . 146
9.3 Mining time per output size . 146
9.4 Top-level, all subelements mining 147
9.5 All types, direct subelements mining 147
9.6 Precision evolution for mining with high minimum support of 13% . . 151
9.7 Precision evolution for mining with low minimum support of 0.23% . 151
9.8 Recall evolution for top-level, all subelements mining 152
9.9 Recall evolution for all types, direct subelements mining 152

10.1 Cross-company-code sales order processing 156
10.2 Customer components and provided interface 158
10.3 Seller components, derived behavioral models, and provided interface 160

11.1 Determining the provided behavioral model 170
11.2 Generated composition problem (P :3, B:4, L:4) 174
11.3 Composition time with increasing participants (B:0, L:4) 175
11.4 Composition time with increasing length (P :10, B:0) 175
11.5 Composition time with increasing branches 176
11.6 Comparison of our complex-goal-based WS composition with existing

approach . 178

Appendix A

Core composition algorithm

In this chapter, we detail the core composition algorithm initially mentioned in Sec-
tion 8.5 on page 123.

A.1 Formal representation of REACHVARIANT

We formally define the computation of REACHVARIANT below. In the following
section, we present the contained high-level steps in more detail.

REACHVARIANT(vnt ∈ Variant, g ∈ Goal, A ⊆ A, ss ∈ SimState) ≡
return (fail, copyRules) ∈

step
oldps := ∅
fail :=false
copyRules := ∅
ps := { (bm, s, m) ∈ PlState : (bm, s) ∈ g,

m =

OUT, hasAdjacentOutTrans(bm, s)

IN, hasAdjacentInTrans(bm, s)

undef,s = qbm0

}

forall bm ∈ ids(ps) do outPool(bm) := { o ∈ O :
(qpre, O, qpost) ∈ Rules, (bm, Rules) ∈ vnt, O ⊆ OUTbm,
∃ ((bmout, o), (bmin, i)) ∈ A, but only what lies between
the initial state and the goal state in this variant }

step while not fail and not done(ps, ss) and not ps = oldps do
oldps := ps
step do forall bm ∈ ids(ps)

adjInTrans(bm) := { (qpre, I, qpost1) ∈ Rules : I ∈ INbm,
(bm, Rules) ∈ vnt, [(bm, qpost2 , IN) ∈ ps,
(qpost1 , O, qpost2) ∈ Rules] ∨ [(bm, qpost1 , IN) ∈ ps] }

step (fail, currAss) :=

202 APPENDIX A: CORE COMPOSITION ALGORITHM

CALCINPUTSSERVED(ids(ps), A, adjInTrans, outPool)
step if not fail then
copyRules :=

copyRules ∪ {CREATECOPYRULE(ps, currAss, adjInTrans)}
step outPool := UPDATEOUTPOOLS(vnt, ps, currAss, A, outPool)
step ps :=

CREATENEWPLANNINGSTATE(vnt, ps, adjInTrans, outPool, ss)
step if not done(ps, ss) then fail :=true

where
done(ps ∈ PlState, ss ∈ SimState) ≡ ∀ (bm, qps, m) ∈ ps :

[m ∈ {undef, OUT} ∧ (bm, qps) ∈ ss] ∨
[m = IN ∧ (bm, qss) ∈ ss ∧ (qss, V, qps) ∈ δbm ∧ V ⊆ OUTbm]

hasAdjacentOutTrans(bm, qpost) := ∃ (qpre, O, qpost) ∈ δbmout

hasAdjacentInTrans(bm, qpost) := ∃ (qpre, I, qpost) ∈ δbmin

In the following, we go in detail through the individual steps of the core composition
algorithm as presented in Section 8.5 on page 123. Each of these steps is presented as
an ASM.

A.2 Input and output assignments
The matching of input variables in adjInTrans and output variables in the different
outPools is specified in CALCINPUTSSERVED. First, we build the subset of all possible
variable assignments (A) that can be assigned in the current planning state (currAss).
Second, we check whether all input transitions (adjInTrans) of all behavioral models
can be served by the currAss. If that is not the case, the composition of the variant
has failed. That is because the outPools can only shrink during the iterations of
REACHVARIANT. Thus, input variables that cannot be served right away cannot be
served at any time during composition.

We assume that for each input variable of each behavioral model in a
repository there must be at most one corresponding output variable.

CALCINPUTSSERVED(models ⊆ ID, A ⊆ A, adjInTrans, outPool) ≡
return (fail, currAss) in

step currAss := { ((bmout, o), (bmin, i)) ∈ A : i ∈ I,
(qprein

, I, qpostin) ∈ adjInTrans(bmin), o ∈ outPool(bmout) }
step

if 6 ∃ ((bmout1 , o1), (bm in1 , i1)) ∈ A :
((bmout2 , o2), (bm in1 , i1)) ∈ A :

A.3 Copy rule creation 203

bmout1 6= bmout2 ∨ o1 6= o2 then

do forall bm in ∈ models
let unservedV ars = { i : (qpre, I, qpost) ∈ adjInTrans(bmin),

i ∈ I, ((bmout, o), (bmin, i)) /∈ currAss } in

if unservedV ars 6= ∅ then fail :=true

else fail :=true

A.3 Copy rule creation

A copy rule contains information about all variable assignments that are possible in the
current planning state (ps). The first component of a copy rule contains the states of all
involved behavioral models that are a prerequisite for the copy rule to be applied in an
execution. That is calculated as follows. The line numbers refer to CREATECOPYRULE

below.

• Line 3 ensures that only states for involved behavioral models are collected.

• If a behavioral model acts as the source of a variable assignment, its state must
be its current planning state. That is because the behavioral model must be in the
state following the output transition in order to have that output available during
execution (line 4).

• If a behavioral model acts as the target of a variable assignment, its state must be
the state preceding the input transition served (line 5).

The second component of a copy rule consists of the currAss themselves.

CREATECOPYRULE(ps ∈ PlState, currAss ⊆ A, adjInTrans) ≡
return (states, currAss) in

let states = { (bm, s) ∈ B : (bm, qps, m) ∈ ps,
([adjInTrans(bm) = ∅ ∧ s = qps]

∨ [(qpre, I, qpost) ∈ adjInTrans(bm) ∧ s = qpre]) } in

skip

204 APPENDIX A: CORE COMPOSITION ALGORITHM

A.4 Adjust output pools
The output pools are used to keep track of available output variables for the variable
assignments and to determine whether each output variable has at least been assigned
once to another behavioral model during composition. Therefore, we remove an output
variable from the output pool only if no behavioral model (bmany) relies on it in any
of its input transitions ((qpre, I, qpost)) with respect to possible variable assignments
(A) on the way back from the current planning state (s) to the initial state (path). Only
if no output variables of an output rule appear in a behavioral model’s output pool,
the planning state can proceed over such an output transition rule as explained in the
following section.

UPDATEOUTPOOLS(vnt ∈ Variant, ps ∈ PlState, currAss ⊆ A,
A ⊆ A, outPool) ≡ return outPool in

do forall { (bmout, o) : ((bmout, o), (bmin, i)) ∈ currAss }
let futureUse = { i ∈ I : ((bmout, o), (bmin, i)) ∈ A, (qpre, I, qpost)

∈ path, path ∈ CALCPATHS(T, s), (bmany, T) ∈ vnt,
(bmany, s, m) ∈ ps, qpost 6= s } in

if futureUse = ∅ then outPool(bmout) := outPool(bmout) \ {o}

A.5 Subsequent planning state
At the end of an iteration of REACHVARIANT, the new planning state is calculated
based on the current planning state (ps) as defined in CREATENEWPLANNINGSTATE.
We differentiate the following cases which correspond to the alternatives for allocating
variable s in CREATENEWPLANNINGSTATE below:

1. The planning state for a behavioral model in output mode whose all outputs of
its adjacent output transition are not members of its own outPool proceeds one
step toward the initial state. The rationale for that is that a behavioral model must
already have reached the state after an output if the output shall be accessed by
other behavioral models.

2. The planning state for a behavioral model in output mode where some of the
outputs of its adjacent output transition are members of its own outPool remains
at the current planning state.

3. The planning state for a behavioral model in input mode proceeds one step toward
the initial state.

4. If the planning state for a behavioral model represents its initial state, it remains
as it is.

A.5 Subsequent planning state 205

CREATENEWPLANNINGSTATE(vnt ∈ Variant, ps ∈ PlState, adjInTrans,
outPool, startstate) ≡ return newPs in

step do forall bm ∈ ids(ps)
adjOutTrans(bm) := { (qpre, O, qpost) ∈ Rules : (bm, Rules)

∈ vnt, (bm, qpost, OUT) ∈ ps, O ∈ OUTbm }
step newPs := { (bm, s, m) : (bm, qps, mps) ∈ ps,

(bm, qss) ∈ startstate,

(s, m) =

(qps, IN) : (qpre, O, qpost) ∈ adjOutTrans(bm),

O ∩ outPool(bm) = ∅,
not stateEquiv(bm, (qps, mps), qss)

(qps, OUT): (qpre, O, qpost) ∈ adjOutTrans(bm),

O ∩ outPool(bm) 6= ∅
(qpre,OUT): (qpre, I, qpost) ∈ adjInTrans(bm),

not stateEquiv(bm, (qps, mps), qss)

(qps, mps) : [adjInTrans(bm) = ∅,
adjOutTrans(bm) = ∅]

∨ stateEquiv(bm, (qps, mps), qss)

}
where

stateEquiv(bm, (qps, mps), qss)←
[mps ∈ {undef, OUT} ∧ qps = qss] ∨
[mps = IN ∧ (qss, V, qps) ∈ δbm ∧ V ⊆ OUTbm]

Appendix B

Publications

Journal articles

1. Altenhofen, M., A. Friesen, J. Lemcke, and E. Börger. A high-level specification
for Virtual Providers. International Journal of Business Process Integration and
Management (IJBPIM), 1(4):267–278, 2006b

2. Lemcke, J. and A. Friesen. Considering realistic Web service features for semi-
automatic composition. Annals of Mathematics, Computing and Teleinformatics
(AMCT), 1(5):26–35, 2007b

3. Altenhofen, M., A. Friesen, and J. Lemcke. ASMs in service oriented archi-
tectures. Journal of Universal Computer Science (JUCS), 14(12):2034–2058,
2008

Book chapters

1. Drumm, C., J. Lemcke, and D. Oberle. Business process management and
semantic technologies. In J. Cardoso, M. Hepp, and M. D. Lytras, editors, The
Semantic Web: Real-World Applications from Industry, volume 6 of Semantic
Web And Beyond Computing for Human Experience, pages 209–239. Springer,
2007a. ISBN 978-0-387-48531-7. URL http://dx.doi.org/10.1007/
978-0-387-48531-7_10

2. Lemcke, J. Light-weight semantic integration of generic behavioral component
descriptions. In G. Mentzas, T. Bouras, P. Gouvas, and A. Friesen, editors,
Semantic Enterprise Application Integration for Business Processes. IGI Global,
Harrisburg, PA, 2009

http://dx.doi.org/10.1007/978-0-387-48531-7_10
http://dx.doi.org/10.1007/978-0-387-48531-7_10

208 APPENDIX B: PUBLICATIONS

Conference papers
1. Altenhofen, M., E. Börger, and J. Lemcke. An abstract model for process me-

diation. In K.-K. Lau and R. Banach, editors, Formal Methods and Software
Engineering, 7th International Conference on Formal Engineering Methods,
ICFEM, volume 3785 of Lecture Notes in Computer Science, pages 81–95.
Springer, 2005a. ISBN 3-540-29797-9. URL http://dx.doi.org/10.
1007/11576280_7

Workshop papers
1. Altenhofen, M., E. Börger, and J. Lemcke. An execution semantics for mediation

patterns. In Proc. of 2nd WSMO Implementation Workshop (WIW). CEUR
Workshop Proceedings, Innsbruck, Austria, 2005b. ISSN 1613-0073. URL
CEUR-WS.org/Vol-134/lemcke-wiw05.pdf

2. Altenhofen, M., E. Börger, and J. Lemcke. A high-level specification for medi-
ators (Virtual Providers). In Bussler and Haller (2006), pages 116–129. URL
http://dx.doi.org/10.1007/11678564_11

3. Lemcke, J. and C. Drumm. Semantic business automation. In A. Leger, A. Kulas,
L. Nixon, and R. Meersman, editors, How Business application challenges Se-
mantic Web Research – European Semantic Web Conference (ESWC) Industry
Forum, volume 194. CEUR Workshop Proceedings, Budva, Montenegro, 2006.
ISSN 1613-0073. URL CEUR-WS.org/Vol-194/paper7.pdf

4. Drumm, C., J. Lemcke, and K. Namiri. Integrating semantic Web services and
business process management: A real use case. In Semantics for Business Process
Management, Workshop at 3rd European Semantic Web Conference (ESWC).
2006b. URL http://jobfunctions.bnet.com/abstract.aspx?
promo=50002&docid=276296

5. Fronk, M. and J. Lemcke. Expressing semantic Web service behavior with descrip-
tion logics. In Semantics for Business Process Management, Workshop at 3rd Eu-
ropean Semantic Web Conference (ESWC). 2006. URL http://km.aifb.
uni-karlsruhe.de/ws/sbpm2006/papers/sbpm06_Fronk.pdf

6. Lemcke, J. and A. Friesen. Composing Web-service-like abstract state machines
(ASMs). In IEEE International Conference on Services Computing - Workshops
(SCW), pages 262–269. IEEE Computer Society, 2007a. URL http://doi.
ieeecomputersociety.org/10.1109/SERVICES.2007.24

7. Lemcke, J. and A. Friesen. Considering realistic Web service features for semi-
automatic composition. In 3rd South-East European Workshop on Formal Meth-
ods (SEEFM). Springer, 2007c

http://dx.doi.org/10.1007/11576280_7
http://dx.doi.org/10.1007/11576280_7
CEUR-WS.org/Vol-134/lemcke-wiw05.pdf
http://dx.doi.org/10.1007/11678564_11
CEUR-WS.org/Vol-194/paper7.pdf
http://jobfunctions.bnet.com/abstract.aspx?promo=50002&docid=276296
http://jobfunctions.bnet.com/abstract.aspx?promo=50002&docid=276296
http://km.aifb.uni-karlsruhe.de/ws/sbpm2006/papers/sbpm06_Fronk.pdf
http://km.aifb.uni-karlsruhe.de/ws/sbpm2006/papers/sbpm06_Fronk.pdf
http://doi.ieeecomputersociety.org/10.1109/SERVICES.2007.24
http://doi.ieeecomputersociety.org/10.1109/SERVICES.2007.24

209

8. Kaiser, M. and J. Lemcke. Towards a framework for policy-oriented enterprise
management. In K. Hinkelmann, editor, Papers from the AAAI Spring Symposium.
2008. ISBN 978-1-57735-357-7. Technical Report SS-08-01

9. Kubczak, C., T. Margaria, M. Kaiser, J. Lemcke, and B. Knuth. Abductive
synthesis of the mediator scenario with jABC and GEM. In R. Garcia-Castro,
A. Gómez-Pérez, C. J. Petrie, E. D. Valle, U. Küster, M. Zaremba, and M. O.
Shafiq, editors, 6th International Workshop on Evaluation of Ontology-based
tools and the Semantic Web Service Challenge (EON-SWSC), volume 359 of
CEUR Workshop Proceedings. CEUR-WS.org, 2008. URL http://ceur-ws.
org/Vol-359/Paper-5.pdf

10. Lemcke, J., M. Kaiser, C. Kubczak, T. Margaria, and B. Knuth. Advances in
solving the mediator scenario with jABC and jABC/GEM. In 7th Semantic
Web Services Challenge Workshop, part of the 7th International Semantic Web
Conference ISWC. 2008

Symposium contributions, non-refereed
1. Lemcke, J. and C. Drumm. Semantic technologies for enterprise ser-

vices. In Semantic Web Days. Online Proceedings, 2005. ISSN 1613-0073.
URL http://www.semantic-web-days.net/proceedings/SAP_
SemanticWebDays2005.pdf

2. Drumm, C., J. Lemcke, E. Dorner, and L. Heuser. Enterprise services archi-
tecture & semantic Web services. In S. Reich, G. Günter, T. Pellegrino, and
A. Wahler, editors, Semantic Content Engineering, volume 17 of Schriftenreihe
Informatik, pages 28–37. Trauner, 2006a. ISBN 3854879792

3. Friesen, A. and J. Lemcke. Composing Web-service-like abstract state machines
(ASM). In J. Koehler, M. Pistore, A. P. Sheth, P. Traverso, and M. Wirsing,
editors, Autonomous and Adaptive Web Services, volume 07061 of Dagstuhl
Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI), Schloss Dagstuhl, Germany, 2007. URL http://drops.
dagstuhl.de/opus/volltexte/2007/1034

4. Lemcke, J. and A. Friesen. Semi-automatic design of collaborative business
processes in FUSION. In Demonstrating Research Results on Enterprise Inter-
operability, Workshop at Int’l Conf. Interoperability for Enterprise Software (i-
ESA). 2008. URL http://www.genesis-ist.eu/LinkClick.aspx?
link=iESA_2008_ProceedingsBerlin.pdf&tabid=79&mid=413

http://ceur-ws.org/Vol-359/Paper-5.pdf
http://ceur-ws.org/Vol-359/Paper-5.pdf
http://www.semantic-web-days.net/proceedings/SAP_SemanticWebDays2005.pdf
http://www.semantic-web-days.net/proceedings/SAP_SemanticWebDays2005.pdf
http://drops.dagstuhl.de/opus/volltexte/2007/1034
http://drops.dagstuhl.de/opus/volltexte/2007/1034
http://www.genesis-ist.eu/LinkClick.aspx?link=iESA_2008_ProceedingsBerlin.pdf&tabid=79&mid=413
http://www.genesis-ist.eu/LinkClick.aspx?link=iESA_2008_ProceedingsBerlin.pdf&tabid=79&mid=413

	Introduction
	Problems
	Research questions
	Ontological redundancy
	Tracking procedural information
	Designing complex collaborative business procedures

	Summary of contributions
	Previous publications
	Thesis structure

	I Foundations
	EAI and e-Business Integration
	e-Business integration
	e-Business
	Business process integration

	EAI: The basis for modern e-business
	Business software components
	Component-based software development
	Challenge of modularization
	Layers of EAI integration

	Transport integration layer
	The peer-to-peer architecture
	Improving EAI

	Data integration layer
	XML: The enabling technology for e-business
	XML schema

	API integration layer
	Structure of Web service descriptions
	Semantic annotation for Web service descriptions

	Business process integration layer

	Problems and Requirements
	Free definition of interface objects
	Maintenance effort
	Interrelation of redundancy levels
	Summary

	Behavioral information only in experts' heads
	Technical representation vs. ontological meaning
	Potential communications
	Operation interdependencies

	Manual exception handling
	Desired outcome as a goal
	Goal includes fall-back outcomes

	Deriving requirements
	Detect redundant interface objects
	Track behavioral information through software design phases
	Mechanically support exception handling

	Shortcomings of Existing Approaches
	Detect redundant interface objects
	XML schema definition and Web service mining
	Software restructuring
	Schema matching and ontology alignment
	Clustering
	Closed frequent itemset mining

	Track behavioral information through software design phases
	Semantic Web services frameworks
	Model-driven software development approaches

	Mechanically support exception handling
	Manual approaches
	Assuming singular Web service response
	Considering alternative Web service responses

	Summary

	II Scalable Ontological EAI and e-Business Integration
	Solution Overview
	Structuring
	Activities
	Analyze
	Derive
	Join orchestrations

	Schematic run-through
	Component perspective
	From component perspective to EAI perspective
	EAI perspective and community perspective
	From community perspective to e-business perspective
	e-Business perspective

	CFIM of Hierarchical Types
	Motivating example
	Identifying structural similarities using the miner
	Definition of a hierarchical type
	Create itemsets from structural types
	Interpret the mining result
	Discussion

	Application on further hierarchical types
	Message type definitions
	Web service definitions

	Using CFIM for ontological alignment
	Semiotic triangle
	Identifying ontological similarities using CFIM

	Transforming Behavioral Models for EAI and e-Business
	Web service descriptions and behavioral models
	Behavioral models
	ASM: A software system specification approach
	Behavioral model execution semantics
	Communication execution semantics
	Orchestration execution semantics

	Formalizing requirement
	Convert provided behavioral model to provider view
	Excerpt consumed behavioral model fragment
	Join orchestrations
	Proving requirement
	Summary

	Complex-goal-based WS Composition
	Student transfer example
	Refining requirements
	Structure of the complex-goal-based WS composer
	Dividing the composition problem
	Core composition algorithm
	Computing correct orchestrations
	Reach goal
	Verifying
	Simulation

	Proving requirements

	III Application and Evaluation
	Determining Redundancy of SAP ESR Message Types
	SAP's enterprise SOA
	Governance
	Challenges of realignment
	Reducing the challenges using our approach
	Evaluation configurations
	Evaluation runs
	Discussion of the results

	Assessing the quality of the mining results
	Adapting precision and recall for CFIM of hierarchical types
	Discussion

	Facilitating Interoperability of SAP Business Partners
	Cross-company-code sales order processing
	Integrating the EAI perspective
	Customer
	Seller

	Integrating the e-business perspective
	Assign communication
	Build orchestration

	Executing the joined orchestrations
	Summary

	Evaluating the Composer Against Existing Work
	An implementation of complex-goal-based WS composition
	Problem case generator
	Evaluation runs
	Discussion
	Comparison with existing approach
	Summary

	IV Finale
	Conclusions and Future Work
	Summary
	Conclusion
	Impact
	Further development
	CFIM of hierarchical types
	Transform behavioral models for EAI and e-business
	Complex-goal-based WS composition

	References
	List of Figures
	Core composition algorithm
	Formal representation of ReachVariant
	Input and output assignments
	Copy rule creation
	Adjust output pools
	Subsequent planning state

	Publications

