






1.2 The eigenvalue problem

For u; v 2 H per(curl; 
) and p; q 2 H1
per(
) we de�ne the sesquilinear forms

m(u; v ) = ( u; v )L 2 =
Z




u � v dx

ak (u; v ) = ( "� 1 r k � u; r k � v )L 2 ;

bk (v ; q) = ( v ; r k q)L 2 ;

ck (p; q) = ( r k p; r k q)L 2 :

We de�ne the constraint space

V k = f v 2 H per(curl; 
) : bk (v ; q) = 0 for all q 2 H1
per(
) g;

soV k = H per(curl; 
) \ (r k H
1
per(
)) ? . The formsm(�; �); ak (�; �); ck (�; �) are

Hermitian, m(�; �) is positive de�nite.
De�ne operatorAk : H per(curl; 
) ! L 2(
) s.t. hAk u; v i = ak (u; v ) for all

v 2 H per(curl; 
). From Corollary 1.2 we have that ker(Ak ) = ker( r k � ) =
r k H

1
per(
), so the operator Ak is positive de�nite on V k if k 6= 0.

Let us prove that ck (�; �) is coercive fork 6= 0. In terms of Fourier basis

q(x) =
X

n2 Z3

qne
2�in �x ; whereqn =

Z



q(x)e� 2�in �x dx ;

we see that
ck (q; q) =

X

n2 Z3

j2�n + kj2q2
n ke2�in �x k2:

Sincek 2 K = [ � �; �]3 the term j2�n + kj is zero only whenk = n = 0, so
for k 6= 0 ck (�; �) is coercive.

1.2.1 Mixed formulation

Problem 1.1. Eigenvalue problem in the mixed form (k 6= 0).
Find triple ( u; p; �) 2 H per(curl; 
) � H1

per(
) � R s.t. (u; p) 6= ( 0;0) and for
all v 2 H per(curl; 
), q 2 H1

per(
)

ak (u; v ) + bk (v ; p) = �m(u; v ); (1.19)
bk (u; q) = 0 : (1.20)
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The advantage of this formulation over one for the spaceV h;k is that
we look for a solution in spaceX h, for which there existsconforming �nite
elements(will be explained later).

We say that a discrete form of the eigenvalue problem is aspectrally
correct approximation of the original eigenvalue problem, if all eigenvectors
and eigenvalues (uh; �h) of the discrete form converge to the eigenvectors and
eigenvalues (u; �) of the original eigenvalue problem whileh ! 0, and vice
versa, all (u; �) are approximated by (uh; �h) respecting their multiplicity.
We want Problem 1.2 to be a spectrally correct approximation of Problem
1.1. In order to analyze the convergence of the discrete eigenvalue solutions
to the continuous ones we apply the abstract theory developed in [7] and [6].

By analogy with the solution operatorT of Problem 1.1 we de�ne the
discrete solution operatorTh : L 2(
) ! X h of Problem 1.2 as follows. For
all f 2 L 2(
), Thf = uh 2 X h, whereuh is from the following problem.

Find (uh; ph) 2 X h � Qh s.t. for all vh 2 X h, qh 2 Qh

ak (uh; vh) + bk (vh; ph) = m(f ; vh);
bk (uh; qh) = 0 :

Theorem 1.5. (see [8, Theorem 2])
If the spacesX h; Qh; V h;k satisfy the conditions below, then the sequenceTh
converges uniformly toT in L (L 2(
) ;H per(curl; 
)) , i.e. there exists�3(h),
tending to zero ash ! 0 s.t.

kT f � Thf kcurl � �3(h)kf k0 for all f 2 L 2(
) :

The conditions are:

1. Ellipticity on V h;k
There existsC > 0 s.t.

ak (uh;uh) � Ckuhk2
L 2 for all uh 2 V h;k ;

2. Weak approximability ofH1
per(
)

There exists�1(h) > 0, tending to zero ash ! 0 s.t.

sup
v h 2 V h; k

bk (vh; q)
kvhkcurl

� �1(h)kqkH1 for all q 2 H1
per(
) ;

3. Strong approximability ofV k

For some r > 0 there exists�2(h) > 0, tending to zero ash ! 0 s.t.
for any u 2 V k \ (H 1+ r(
)) 3

there existsuh 2 V h;k satisfying

ku � uhkcurl � �2(h)kukH 1+r :
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This shows that A �
k : X ! X 0, which is isometric (in the energy norm) and,

in particular, ( A �
k )� 1 : X 0 ! X exists andk(A �

k )� 1kL (X 0;X ) � 1.
Denote the embeddingE : X ! H , then E 0: H ! X 0. SincekukH �

kukX we havekEkL (X;H ) � 1 and sokE 0kL (H;X 0) � 1. Introduce an auxiliary
operator

Bk = E(A �
k )� 1E 0: H ! H:

We have the spectrum� (Bk ) = f 1
� + � j � 2 � (Ak )g. The interval between

the eigenvalues [� k ;l ; � k ;l+1 ] for the operator Ak translates to the interval
[� k ;l+1 ; � k ;l ] for the operator Bk , where� k ;l+1 = 1

� k ;l +1 + � and � k ;l = 1
� k ;l + � .

Theorem 1.7. Perturbation theorem for band gap.
Let B(k; r ) = f k0 2 R3 j j k0 � k j < r g and "min = min x 2 
 " (x). Suppose that
for the operator Ak , there exists an interval[a; b] s.t. for somel 2 N

1. [a; b] � (� k ;l ; � k ;l+1 ) for all k 2 K ,

2. K �
S

k 2K B(k; r k ), wherer k holds

r k <
� k

p
�" minp

(1 + � k )(1 + 2 � k )
;

� k = min
�

a � � k ;l

(a + � )( � k ;l + � )
;

� k ;l+1 � b
(b+ � )( � k ;l+1 + � )

�
:

Then [a; b] is contained in the spectral gap, i.e.[a; b] � (� k ;l ; � k ;l+1 ) for all
k 2 K .

Proof. De�ne the resolvent

Rk (� ) = ( Bk � �I )� 1 : H ! H:

One may show that if � 2 [� k ;l+1 + � k ; � k ;l � � k ], then for any k there exists
Rk (� ) and kRk (� )kH � � � 1

k . Expanding u 2 H with respect to a complete
orthonormal system of eigenfunctionsf uk ;ngn2 N of Bk we estimate

kRk (� )uk2
H =

X

n2 N

1
(� k ;n � � )2

jhu; uk ;n ij 2 �
1
� 2

k

kuk2
H :

Now we considerh s.t. jhj < r k , some small perturbation ofk. We want
to show that Rk + h (� ) exists. First, let us prove the following representation

Rk + h (� ) = Rk (� )
�
I + ( Bk + h � Bk )Rk (� )

� � 1
: (1.21)
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Chapter 2

Finite Elements

2.1 Standard lowest order elements

We are going to recall only necessary facts concerning �nite elements. For
further details we refer to standard text books e.g. [28], but many important
facts are also collected in [17].

De�nition 2. The Finite Element Method (FEM) is a Galerkin method
which is characterized by the following principles in the construction of a
discrete subspaceX h:

1. The domain �
 is represented as a �nite union of non-overlapping poly-
hedral elements 
c.

2. X h consists of piecewise polynomials, so that the restriction ofX h onto
an element 
 c is a polynomial space.

3. X h has a basis consisting of functions with local supports, i.e. the
functions are non-zero only on few elements.

De�nition 3. A �nite element is the triplet (
 c;Pc; � c), where

� 
 c � Rd is the element domain, a bounded closed set with non-empty
interior and piecewise smooth boundary,

� P c is the space ofshape functions, a �nite-dimensional space of func-
tions on 
 c,

� � c is the set ofdegrees of freedom, a basis ofP0
c (the dual space).
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de�ne the polynomials on interval [� 1;1] recursively

l0(x) = 1 ;
l1(x) = x;

lj+1 (x) =
1

j + 1
((2j + 1) lj(x)x � jlj� 1(x)) ; j 2 N:

(2.1)

The Legendre polynomialsf ljg0� j� p form a L2([� 1;1])-orthogonal family
spanningP p([� 1;1])

Z 1

� 1
li(x)lj(x) dx =

2
2j + 1

�ij:

In fact we are going to use the integrated Legendre polynomials. They
are de�ned as

Lj(x) =
Z x

� 1
lj� 1(y)dy for x 2 [� 1;1] and j � 2:

As well as the Legendre polynomials they also can be de�ned recursively

~L1(x) = x;

L2(x) =
1
2

(x2 � 1);

Lj+1 (x) =
1

j + 1
((2j � 1)Lj(x)x � (j � 2)lj� 1(x)) ; j � 2:

(2.2)

Note that here ~L1(x) replacesL1(x) = x + 1 in order to make the recursive
de�nition working.

The integrated Legendre polynomialsf Ljg2� j� p form an orthogonal fam-
ily with respect to H1([� 1;1])-seminorm

Z 1

� 1
L0
i(x)L0

j(x) dx = 0 for i 6= j;

moreover, they are \almost"L2-orthogonal
Z 1

� 1
Li(x)Lj(x) dx = 0 for ji � jj > 2:

For j � 2 the polynomials vanish at the boundary points,Lj(� 1) = Lj(1) =
0, sof Ljg2� j� p spanP p

0 [� 1;1].
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support of the global cell-based shape functions is restricted within their own
cells only.

This fact can be used to decrease the size of a problem, e.g. a linear
system. Let us denote quantities related to the cell-based degrees of freedom
with the index C and others with the indexR. After a renumbering a linear
system derived from our �nite element discretization may be written in the
block form �

ARR ARC

ACR ACC

� �
uR

uC

�
=

�
fR

fC

�
:

Since the cell-based degrees of freedom for di�erent cells are decoupled, the
matrix ACC = diag(Ac1

CC ; : : : ; Acn
CC ), wherec1; : : : ; cn 2 Ch and f Acj

CC g are the
element-level matrices. Now we can compute theSchur complementwith
respect to the C-part. It gives the smaller condensed systemAzuR = fz,
where

Az = ARR � ARC A � 1
CC ACR ;

fz = fR � ARC A � 1
CC fC :

After the condensed system was solved the cell-based unknowns can be ob-
tained as

uC = A � 1
CC (fC � ACR uR):

The static condensation is an important tool for �nite elements of order
p � 3 when the fraction of the cell-based degrees of freedom becomes signif-
icant. The condensation can be realized on element level with no expensive
operations. As a result one gets a smaller and better conditioned system
what is advantageous for iterative methods. The condition number is better
because the Schur complement means an orthogonalization of the cell-based
basis functions with respect to the other ones.

2.2.9 Example of shape functions

The de�nition of hierarchical high order �nite elements is rather complex.
As an illustration we provide the exact form of the second orderH 1- and
H (curl)-conforming elements on hexahedra. The shape functions are de�ned
on the reference element̂
 = [0 ; 1]3 according to the local numbering and
notations described in Subsections 2.2.2, 2.2.3 and 2.2.4.

H 1-conforming element, total 27 shape functions:
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2. Edge-based shape functions

 0
e1

= f 2(2x � 1)(y � 1)(z � 1);2(x � 1)x(z � 1);2(x � 1)x(y � 1)g;
 0
e2

= f� 2(y � 1)y(z � 1); � 2x(2y � 1)(z � 1); � 2x(y � 1)yg;

 0
e3

= f� 2(2x � 1)y(z � 1); � 2(x � 1)x(z � 1); � 2(x � 1)xyg;

 0
e4

= f 2(y � 1)y(z � 1);2(x � 1)(2y � 1)(z � 1);2(x � 1)(y � 1)yg;

 0
e5

= f 2(y � 1)(z � 1)z;2(x � 1)(z � 1)z;2(x � 1)(y � 1)(2z � 1)g;
 0
e6

= f� 2(y � 1)(z � 1)z; � 2x(z � 1)z; � 2x(y � 1)(2z � 1)g;
 0
e7

= f 2y(z � 1)z;2x(z � 1)z;2xy(2z � 1)g;
 0
e8

= f� 2y(z � 1)z; � 2(x � 1)(z � 1)z; � 2(x � 1)y(2z � 1)g;
 0
e9

= f� 2(2x � 1)(y � 1)z; � 2(x � 1)xz; � 2(x � 1)x(y � 1)g;
 0
e10

= f 2(y � 1)yz; 2x(2y � 1)z;2x(y � 1)yg;

 0
e11

= f 2(2x � 1)yz; 2(x � 1)xz;2(x � 1)xyg;

 0
e12

= f� 2(y � 1)yz; � 2(x � 1)(2y � 1)z; � 2(x � 1)(y � 1)yg:

3. Face-based shape functions

ψ0;0
1;f1

= 4f� (2x � 1)(y � 1)y(z � 1), � (x � 1)x(2y � 1)(z � 1), � (x � 1)x(y � 1)yg,

ψ0;0
1;f2

= 4f� (2x � 1)(y � 1)(z � 1)z, � (x � 1)x(z � 1)z, � (x � 1)x(y � 1)(2z � 1)g,

ψ0;0
1;f3

= 4f (y � 1)y(z � 1)z, x(2y � 1)(z � 1)z, x(y � 1)y(2z � 1)g,

ψ0;0
1;f4

= 4f (2x � 1)y(z � 1)z, (x � 1)x(z � 1)z, (x � 1)xy(2z � 1)g,

ψ0;0
1;f5

= 4f� (y � 1)y(z � 1)z, � (x � 1)(2y � 1)(z � 1)z, � (x � 1)(y � 1)y(2z � 1)g,

ψ0;0
1;f6

= 4f (2x � 1)(y � 1)yz, (x � 1)x(2y � 1)z, (x � 1)x(y � 1)yg,

 0;0
2;f1

= f� 4(2x � 1)(y � 1)y(z � 1);4(x � 1)x(2y � 1)(z � 1);0g;

 0;0
2;f2

= f� 4(2x � 1)(y � 1)(z � 1)z;0;4(x � 1)x(y � 1)(2z � 1)g;

 0;0
2;f3

= f 0;4x(2y � 1)(z � 1)z; � 4x(y � 1)y(2z � 1)g;

 0;0
2;f4

= f 4(2x � 1)y(z � 1)z;0; � 4(x � 1)xy(2z � 1)g;

 0;0
2;f5

= f 0; � 4(x � 1)(2y � 1)(z � 1)z;4(x � 1)(y � 1)y(2z � 1)g;

 0;0
2;f6

= f 4(2x � 1)(y � 1)yz; � 4(x � 1)x(2y � 1)z;0g;
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 � ;0
3;f1

= f 4(y � 1)y(z � 1);0;0g;  0;�
3;f1

= f 0; � 4(x � 1)x(z � 1);0g;
 � ;0

3;f2
= f� 4(y � 1)(z � 1)z; 0;0g;  0;�

3;f2
= f 0;0; � 4(x � 1)x(y � 1)g;

 � ;0
3;f3

= f 0;4x(z � 1)z;0g;  0;�
3;f3

= f 0;0;4x(y � 1)yg;
 � ;0

3;f4
= f� 4y(z � 1)z;0;0g;  0;�

3;f4
= f 0;0;4(x � 1)xyg;

 � ;0
3;f5

= f 0;4(x � 1)(z � 1)z;0g;  0;�
3;f5

= f 0;0; � 4(x � 1)(y � 1)yg;
 � ;0

3;f6
= f 4(y � 1)yz; 0;0g;  0;�

3;f6
= f 0;4(x � 1)xz;0g:

4. Cell-based shape functions

 0;0;0
1;c =8 f (2x � 1)(y � 1)y(z � 1)z; (x � 1)x(2y � 1)(z � 1)z;

(x � 1)x(y � 1)y(2z � 1)g;
 0;0;0

21;c =8 f (2x � 1)(y � 1)y(z � 1)z; � (x � 1)x(2y � 1)(z � 1)z;
(x � 1)x(y � 1)y(2z � 1)g;

 0;0;0
22;c =8 f (2x � 1)(y � 1)y(z � 1)z; (x � 1)x(2y � 1)(z � 1)z;

� (x � 1)x(y � 1)y(2z � 1)g;
 � ;0;0

3;c = f 4(y � 1)y(z � 1)z;0;0g;

 0;� ;0
3;c = f 0;4(x � 1)x(z � 1)z;0g;

 0;0;�
3;c = f 0;0;4(x � 1)x(y � 1)yg:

2.3 Modi�ed elements

Following [13] and [8] we introducek-modi�ed �nite elements. We will con-
sider the lowest order elements �rst and then indicate changes for the high
order elements.

The nodal basesf  e;0g and f �v;0g of the standard lowest order elements
de�ned in Section 2.1 are modi�ed by the multiplication by an exponential
factor

 e;k (x) = e � ik �(x � m e) e;0(x) e 2 Eh;
�v;k (x) = e � ik �(x � zv )�v;0(x) v 2 Vh:

In practice it can be attained by multiplying the corresponding shape func-
tions during assembling of the global �nite element spaces. Note that every
basis function gets its own shiftm e or zv depending on the nodal point. The
modi�ed bases form new �nite elements

X h;k = spanf  e;k : e 2 Ehg;

Qh;k = spanf �v;k : v 2 Vhg:
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To keep the duality the inverse exponential factor is used for the degrees
of freedom

‘e;k (u) =
Z y e

x e

eik �(x � m e)u � t eds; (2.3)

‘v;k (q) =
�
eik �(x � zv )q(x)

�
jx = zv = q(zv) = ‘v;0(q): (2.4)

Again, the shift is di�erent for every degree of freedom. From (2.4) one may
notice that due to our choice of the shift the degrees of freedom forQh;k are
actually not changed. Since the exponential factor is shifted with respect to
the nodal point, periodic �elds q 2 H1

per(
) and u 2 H per(curl; 
) have the
same degrees of freedom on the identi�ed elements of the periodic boundary.

By the construction there exists a nice property connecting the standard
and modi�ed elements

‘e;k ( e;k ) =
Z y e

x e

eik �(x � m e)e� ik �(x � m e) e;0(x) � t eds = ‘e;0( e;0) = 1 ;

‘v;k (�v;k ) = e � ik �(x � zv )�v;0(x)jx = zv = �v;0(zv) = ‘v;0(�v;0) = 1 :
(2.5)

Interpolation operators to the modi�ed elements are de�ned as usual

� X h; k (u) =
X

e2Eh

‘e;k (u) e;k ;

� Qh; k (q) =
X

v2V h

‘v;k (q)�v;k :

Doing straightforward computations one can easily check that the bases
f  e;k g and f �v;k g have the following properties

r k �v;k (x) = e � ik �(x � zv )r �v;0(x);

r k �  e;k (x) = e � ik �(x � m e)r �  e;0(x):
(2.6)

The approach presented above can be generalized to high order �nite
elements. One needs to modify the shape functions and degrees of freedom
in the same way as it was done for the lowest order elements. So we put
the multiplier e� ik �(x � s) in front of the shape functions and put the inverse
multiplier e ik �(x � s) under the integrals for the degrees of freedom. Since the
high order elements have a more complex V-E-F-C structure, the exponential
multiplier e � ik �(x � s) should have a di�erent shift s for vertex-, edge-, face-
and cell-based basis functions and degrees of freedom. The shift has to be a
point on the corresponding element of the mesh, e.g. the midpoints of faces.

43



It guarantees that periodic �eldsq 2 H 1
per(
) and u 2 H per(curl; 
) have the

same degrees of freedom on the identi�ed elements of the periodic boundary.
Remember that there could be many basis functions corresponding to one
element of the mesh. They can have the same shift or di�erent shifts inside
the element, both are correct. For the shift we use the nodal point which is
unique for every basis function.

The high order modi�ed elements hold the property (2.6) and a property
similar to (2.5). If we denote sets of the non-modi�ed high order shape
functions and degrees of freedom asf  j; 0g and f ` j; 0g, then they are connected
with the modi�ed sets as

` j; k ( j; k ) = ` j; 0( j; 0) for all j:

In the thesis we use the same notationsX h;k and Qh;k for the modi�ed
high order elements. If in a certain place it is not indicated which type
we consider then it means that it does not matter, otherwise it is given a
separate explanation.

The property (2.6) is a key which makes it possible to prove the next
lemmas for both the lowest and high order elements.

Lemma 2.5. (see [8, Lemma 4])
Let k 6= 0, the spacesQh;k and X h;k satisfy the following commuting diagram
(functions must be chosen such that the interpolation operators make sense)

H 1
per(
)

r k�! H per(curl; 
)
# � Qh; k # � X h; k

Qh;k
r k�! X h;k :

In addition, the spaces and operators above form the exact sequences hori-
zontally.

Lemma 2.6. Discrete Helmholtz decomposition (see [8, Lemma 7]).
For given uh 2 X h;k , there existvh 2 X h;k and qh 2 Qh;k s.t.

uh = vh + r k qh;

(vh; r k ph)L 2 = 0 for all ph 2 Qh;k :

The last line implies thatvh 2 V h;k .

Lemma 2.7. (see [8, Lemmas 8 { 10])
The modi�ed elements do provide ellipticity onV h;k , weak approximability of
H 1

per(
) and strong approximability ofV k .
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Combined with Theorems 1.5 { 1.6 it follows that the modi�ed elements
can be used to get a spectrally correct approximation of our eigenvalue prob-
lem.

Practical e�ciency of the modi�ed elements was proved in [12], where
they were applied to Problem 1.2.

2.4 Implementation of the modi�ed elements

For solving a problem with the modi�ed elements we need to assemble ma-
trices related to operators of the original problem. The assembling implies
a numerical integration of the basis functions. For the modi�ed elements a
direct numerical integration is problematic since the shape functions include
the exponential multiplier and so are not polynomial anymore. To overcome
this di�culty we need to make an important observation about how the
sesquilinear forms look on the bases ofX h;k and Qh;k .

Using the property (2.6) one obtains

ak ( e1 ;k ;  e2 ;k ) = ( " � 1 r k �  e1 ;k ; r k �  e2 ;k )L 2

=
Z




" � 1e� ik �(x � m e1 )r �  e1 ;0 � e� ik �(x � m e2 )r �  e2 ;0 dx

= e ik �(m e1 � m e2 )(" � 1r �  e1 ;0; r �  e2 ;0)L 2

= e ik �(m e1 � m e2 )a0( e1 ;0;  e2 ;0);

m( e1 ;k ;  e2 ;k ) = e ik �(m e1 � m e2 )m( e1 ;0;  e2 ;0);

bk ( e;k ; � v;k ) = e ik �(m e � zv )b0( e;0; � v;0) ;

ck (� v1 ;k ; � v2 ;k ) = e ik �(zv1 � zv2 )c0(� v1 ;0; � v2 ;0) :

One may notice that the matrices fork 6= 0 are obtained from the ma-
trices for k = 0 by multiplication of their coe�cients by a phase shift factor,
only the standard shape functions are actually used in the computations.

Although the formulas are given for the lowest order elements the same
holds true for the high order ones. To assemble the matrices we go along all
pairs of the basis functionsf  i; k g, every function has its own shiftsi , so the
exponential factor is eik �(si � sj ) for any sesquilinear form�( i; k ;  j; k ).
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1. "div".
The operatorBh;k : X h;k ! Q0

h;k is de�ned as follows, for a givenvh 2
X h;k computeBh;k vh 2 Q0

h;k by

hBh;k vh; �v;k i = bk (vh; �v;k ); for all v 2 Vh: (3.6)

2. "Laplace� 1".
The operatorC � 1

h;k : Q0
h;k ! Qh;k is the inverse of operatorCh;k : Qh;k !

Q0
h;k , which is de�ned as follows, for a givenqh 2 Qh;k computeCh;k qh 2

Q0
h;k by

hCh;k qh; �v;k i = ck (qh; �v;k ); for all v 2 Vh: (3.7)

The operator C � 1
h;k exists, becauseck (�; �) is coercive fork 6= 0 (see

Section 1.2).

3. "grad".
The operatorSh;k : Qh;k ! X h;k is de�ned as follows, for anyqh 2 Qh;k
computeSh;k qh = � X h; k (r k qh) 2 X h;k , the operator is given by nodal
evaluation

Sh;k qh =
X

e=( x e;y e)2Eh

�
‘y e;k (qh)eik �(y e � m e) � ‘x e;k (qh)eik �(x e � m e)

�
 e;k :

(3.8)

Proof. For any uh 2 X h;k , from the discrete Helmholtz decomposition (Lemma
2.6) we have

uh = r k qh + vh;

wherevh 2 V h;k , qh 2 Qh;k . It follows that for all fh 2 Qh;k

(uh; r k fh)L 2 = ( r k qh; r k fh)L 2 + 0 : (3.9)

Since (3.9) is true for anyfh 2 Qh;k , it is also true for all basis functions
f �v;k g, so (3.9) may be rewritten as following. For allv 2 Vh

(r k qh; r k �v;k )L 2 = ( uh; r k �v;k )L 2 ; (3.10)
ck (qh; �v;k ) = bk (uh; �v;k ); (3.11)

hCh;k qh; �v;k i = hBh;k uh; �v;k i : (3.12)

Equation (3.12) in operator form gives

Ch;k qh = Bh;k uh;

qh = C � 1
h;kBh;k uh:
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3.2.1 The gradient operator for high order elements

For the high order elements the projection can be done similarly. The only
change is that the operatorSh;k is more complex. Here we exploit the local
exact sequence property and the fact that by constructionX h;k explicitly
contains gradients ofQh;k .

Let we representQh;k and X h;k according to the V-E-F-C (N-E-F-C) basis
structure as

Qh;k = QV � QE � QF � QC ;

X h;k = X N � X E � X F g � X F n � X Cg � X Cn ;

whereFg and Cg are the parts formed by the gradient basis functions (see
Subsection 2.2.4),Fn and Cn are the remaining ones. Assume that the
coe�cients have the same notations, then the operatorr k can be written in
the block form

0

B
B
B
B
B
B
@

uN

uE

uF g

uF n

uCg

uCn

1

C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
@

SN;k 0 0 0
0 Id 0 0
0 0 Id 0
0 0 0 0
0 0 0 Id
0 0 0 0

1

C
C
C
C
C
C
A

0

B
B
@

qV

qE

qF

qC

1

C
C
A ;

where (qV ; qE ; qF ; qC ) are the coe�cients of a vector fromQh;k , (uN ; uE ; uF g,
uF n ; uCg; uCn ) are the coe�cients of the resulting vector in X h;k , SN;k is the
operator Sh;k for the lowest order elements.

One may see that the operatorSh;k has a very simple sparse structure
and so it allows the e�cient computation.

3.3 Preconditioned gradient eigenvalue solver

Having a given basis of the �nite element spaceX h;k on hand, e.g.f  e;k g
from Section 2.3, the Problem 3.1 turns into

Problem 3.2. Hermitian generalized matrix eigenvalue problem.
Find a pair of (u; � ) 2 CN � R+ s.t.

Au = �M u;

whereA andM beN � N sparse complex matrices corresponding to sesquilin-
ear formsak (�; �) and m(�; �), A = AH � 0, M = M H > 0.
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Such preconditioned gradient methods have an important advantage in the
implementation, they only require matrix-vector multiplication, a precondi-
tioner routine and almost no extra memory.

[24] proposes the Locally Optimal Block Preconditioned Conjugate Gra-
dient Method based on the three main ideas

� three-term recurrence for the next approximation
Instead of two terms in (3.13) one may use three terms

uk+1 = 
 k
1w k + 
 k

2uk + 
 k
3uk� 1;

w k = T(Auk � � (uk) M uk);

where
 k
1 ; 
 k

2 ; 
 k
3 are some real numbers selected to improve convergence.

This scheme is better because it provides more \extrapolation points".

� use the Rayleigh-Ritz procedure to choose the optimal parameters
The goal is to choose
 k

1 ; 
 k
2 ; 
 k

3 s.t. they minimize the Rayleigh quo-
tient for uk+1 . The problem Au = � M u is restricted to the space
spanf w k ; uk ; uk� 1g. Let us de�ne 3 by 3 matrices

Â = [ w k ; uk ; uk� 1]H A[w k ; uk ; uk� 1];

M̂ = [ w k ; uk ; uk� 1]H M [w k ; uk ; uk� 1];

then we solve a small dense eigenvalue problem̂Aû = �̂ M̂ û with a
direct eigenvalue solver. The eigenvector̂u1 = [ 
 k

1 ; 
 k
2 ; 
 k

3 ]T correspond-
ing to the smallest eigenvaluê� 1 implicitly provides the optimal choice
of the parameters. Settinguk+1 = [ w k ; uk ; uk� 1]û1, what is actually
a sum ofw k ; uk ; uk� 1 with the weights from û1, we provide the mini-
mal Rayleigh quotient available for givenw k ; uk ; uk� 1. The Rayleigh-
Ritz method is also used in the preconditioned steepest descent method
(3.13), the di�erence is that only the two-dimensional subspace [w k ; uk ]
is used and the resulting parameter� k can be expressed explicitly by
a formula.

� simultaneous iterations over a block of orthogonal vectors
The method we have considered allows to �nd only the smallest eigen-
vector. One may keep about the same algorithm, but iterate a block of
n M -orthogonal vectors. It requires to change the Rayleigh-Ritz pro-
cedure in order to minimize the Rayleigh quotients of all vectors over
an extended 3n-dimensional subspace [w k

1; uk
1; uk� 1

1 ; : : : ;w k
n ; uk

n , uk� 1
n ].

This block algorithm let us �nd a few �rst eigenvectors at once. The
details will be explained in Section 3.4.
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3.4 The Projected LOBPCG

To simplify our explanation we have supposed that the matrixA is positive
de�nite, but in fact it is positive de�nite only on V h;k for k 6= 0 and in
X h;k it has a large kernel. In practice it may be di�cult to apply standard
preconditioners or direct solvers for such a matrix. We can make the problem
a bit easier by using a shift.

Let A � = A + �M , where � > 0 is some small regularization parameter.
As a result, A � is Hermitian and positive de�nite matrix on the entire X h;k .
Now a lot of preconditioners and direct solvers will work withA � . Let T
be a preconditioner for the matrixA � , in general it may not be Hermitian.
All eigenvectors of the problemA � u = � � M u are eigenvectors of the original
problem Au = �M u with the shifted eigenvalues� = � � � � . So, this shift
let us solve the eigenvalue problem with positive de�nite matrices, while we
still can obtain the solution of the original problem.

We modify the LOBPCG algorithm by including the projectionP : X h;k !
V h;k described in Section 3.2. The projection is required to overcome the dif-
�culties described in Section 3.1, when an iterative eigenvalue solver tends
to converge to eigenvectors for� = 0 �rst. See the Projected LOBPCG algo-
rithm at Figure 3.1, remember that n is the number of eigenvalues we need
(a small number).

In practice, we use a more sophisticated algorithm to avoid unnecessary
computations and improve stability, the details will be explained later in
Section 3.7. Now we comment the main algorithm. The steps 4-6 and 11-13
represent the Rayleigh-Ritz method, in the latter case a wider 3n-dimensional
subspace is used, but only then smallest eigenvalues and eigenvectors are
taken. Moreover, on the very �rst iteration the matrix Z , which represents
[p1; : : : ; pn ] (the method's \memory") is unavailable, so in fact one solves the
2n � 2n subproblem.

Although T is the preconditioner for the matrix A � , in the eigensolver
we do not use the matrixA � itself, but use the matrix A instead. Since the
residual can be computed as follows

r j = ( A � � � �
j M )u j = ( A + �M � (� j + � )M )u j = ( A � � M )u j ;

it is more convenient to useA on all steps and not substract� from resulted
eigenvalues. Mathematically it is the same as usingA � .

In the algorithm we apply the projector only for the starting vectors
and the preconditioned residualsW, once per eigensolver iteration. Using
mathematical induction we prove that not onlyW, but all vectors ofV belong
to V h;k . Let current U and Z belong to V h;k , by the de�nition the new U

54



1. Fill starting vectors u1; : : : ;un with random numbers or put some good
eigenvector approximations, store them as a matrixU := [ u1; : : : ;un].

2. Project f ujg onto V h;k , U := PU .

3. Orthonormalizef ujg with respect toM -based scalar product using the
Gram-Schmidt procedure, s.t.UHMU = I.

4. Construct the restricted matrix, Â := UHAU (Â 2 Cn;n).

5. Solve dense eigenvalue problem,
ÂÛ = Û diagf �̂1; : : : ; �̂ng (Û 2 Cn;n; ÛHÛ = I).

6. Construct the �rst approximations, U := UÛ , �j := �̂j.

7. Calculate residual,R := AU � MU diagf �1; : : : ; �ng (R = [ r 1; : : : ; rn]).

8. If all converged,kr jkM−1 < �E for all j, then stop, else continue.

9. Apply preconditioner, W := TR; T � (A + �M )� 1 (W =
[w1; : : : ;wn]).

10. Project f w jg onto V h;k . W := PW .

11. Construct the restricted matrices,
Â := V HAV and M̂ := V HMV (Â; M̂ 2 C3n;3n; V = [U;W;Z]).

12. Solve dense eigenvalue problem,ÂV̂ = M̂V̂ diagf �̂1; : : : ; �̂3ng
(V̂ = [ Û ; Ŵ ; Ẑ] 2 C3n;3n consists ofÛ ; Ŵ ; Ẑ 2 C3n;n, V̂ HM̂V̂ = I).

13. Assumê�1 � : : : � �̂3n and vectors fromÛ correspond tof �̂1; : : : ; �̂ng.
Let ÛU 2 Cn;n be the upper part andÛWZ 2 C2n;n be the lower part
of Û , then construct the next approximations,
Z := [W;Z]ÛWZ , U := UÛU + Z, �j := �̂j, j = 1 ; : : : ; n.

14. Go to 7.

Figure 3.1: Basic algorithm of the LOBPCG eigenvalue solver with the pro-
jection.
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and Z are just a linear combination ofW and the oldU and Z, so they also
belong toV h;k .

An important point is when to stop the iteration. How can we control
eigenvalue precision? Fortunately it is relatively easy, sincekukjkM = 1 (due
to the step 5 and 12), then theM � 1-norm of the residualr kj = Aukj � �kjMukj
and the eigenvalue approximation�kj obtained in the Rayleigh-Ritz procedure
give a simple bound for the exact eigenvalue�j. According to [34] it is
guaranteed that

�j 2 [�kj � k r kjkM−1 ; �kj + kr kjkM−1]:

Moreover, one can use just one Gauss-Seidel step to approximateM � 1, be-
cause the matrixM is well-conditioned. This yields a quantity which is
equivalent to the M � 1-norm independent of mesh. Altogether we obtain a
simple and e�cient termination criterion.

3.5 Discussion of the algorithm

The original LOBPCG algorithm described in [24] and [23] is designed for
a positive de�nite operator. In [41, Section 7.3] it is given a modi�cation
of the LOBPCG with the inexact projection, which allows the method to
be applied to the Maxwell problem. In Sections 3.4, 3.7 we presented our
implementation of the eigensolver. In our opinion, this implementation has
some advantages over the one from [41]. We will discuss them in details.

First, we apply the projection only to the vectorsW , while [41] applies it
to the vectorsU andP . It results in doubling of the projection computations.

Second, [41] does not projectW , instead it relies on the assumption
that the preconditioner T � (A�)� 1 provides T r 2 V h;k . We know that
(A�)� 1r 2 V h;k , but for an inexact inversion this cannot be guaranteed. In
[41] the assumption is based on the following points:

� T is a two-level multigrid method resulting from the V-E-F-C splitting
of the high order �nite elements (the same as we use),

� the coarse level is the lowest order elements and the coarse level cor-
rection is solved exactly,

� the �ne level is the higher order elements, the smoother is based on
the E-F-C splitting with a \reduced" basis (gradient basis functions
are ignored).

From these assumptions it does not follow thatT r 2 V h;k , although it could
be close and the eigensolver may work. Another weak point is that it re-
quires an exact solving at the coarsep-multigrid level (the lowest order �nite
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elements). It means that a very �ne mesh cannot be treated, because the
coarse space is too large. Without the exact solution the method from [41]
is unreliable.

3.6 Inexact projection

In Section 3.2 we mentioned that the projectionP : X h;k ! V h;k is exact, if
the corresponding Poisson problem is solved exactly. Although it is possible,
it is not our goal. We are interested in a projection precision as far as it
helps to make the eigenvalue solver working. In practice the LOBPCG does
not require the exact projection, that we can allow an approximated solution
and improve speed.

How precise must the projection be? It is an important question, in order
to understand it we shall consider the following example. Assume that we
apply an inexact projector ~P : X h;k ! X h;k s.t. ~P � P . It means that for
any w 2 X h;k

~Pw = u = v + r k q;

wherev 2 V h;k , q 2 Qh;k andk r k qk � 1. It is the Helmholtz decomposition
with a very small gradient �eld. Now let us try to compute the Rayleigh
quotient

~�(u) =
uHAu
uHMu

=
("� 1 r k � u; r k � u)L 2

(u;u)L 2

=
("� 1 r k � v ; r k � v )L 2

(v ; v )L 2 + ( r k q; r k q)L 2

:

If v is the exact eigenvector with eigenvalue�, kvkL 2 = 1, then

~�(u) =
�

1 + ku � vk2
L 2

=
�

1 + kr k qk2
L 2

< �:

As we see, in the case of inexact projection the Rayleigh quotient and the
Rayleigh-Ritz method always give a bit smaller eigenvalues. It is acceptable
since we only look for an approximated solution of the eigenvalue problem
and already have some tolerance. But a problem can occur, if the projection
error is much greater than this tolerance. The LOBPCG works as follows, it
starts with large eigenvalue approximations and then converges down towards
the exact eigenvalues until the residual achieves the tolerance. It may happen
that due to inexact projection ~� jumps over � and continue to go down to
zero, to the kernel. To prevent this the projection error must be small enough.

As far as we know, for the LOBPCG with the projection there is no theory
to predict safe projection error. In [18] the authors developed such theory,
but for the Projected Preconditioned INverse ITeration (PPINVIT). Since
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Inserting the formula r = Ak u � �M u = A�
k u � (� + � )M u we obtain

krk2
X 0 = hA�

k u � (� + � )M u; u � (� + � )(A�
k )� 1M ui

= hA�
k u; ui � 2(� + � )hM u; ui + ( � + � )2hu; (A�

k )� 1M ui

= ( � + � ) � 2(� + � ) + ( � + � )2hu; (A�
k )� 1M ui

= ( � + � )
�
(� + � )hu; (A�

k )� 1M ui � 1
�
:

Now we use the Helmholtz decomposition and letv =
P

j aj v j be the repre-
sentation in eigenfunctions of the operatorAk , then

krk2
X 0 = ( � + � )

�
(� + � )

 
1
�

kugk2 +
X

j

1
� j + �

a2
j

!

� 1
�

� (� 1 + � )
�
(� 1 + � )

�
1
�

� 2 +
1

� 1 + �
kuk2

�
� 1

�
�

(� 1 + � )2

�
� 2 = C2

0 � 2:

Theorem 3.4. Safe iteration condition.
Let u = v + ug be the Helmholtz decomposition, wherev 2 V k , ug 2
r k H 1

per(
) . Assume thatkuk = 1, kugk � � for a small � > 0, also as-
sume thatkAk u � �M ukX 0 > C 0� with C0 = � 1+ �p

�
. Then we have� > � 1.

Proof. If we assume that� � � 1, then Lemma 3.3 giveskAk u � �M ukX 0 �
C0� . But this is a contradiction with the assumptionkAk u � �M ukX 0 > C 0� ,
and hence� > � 1.

3.7 Implementation

The basic algorithm of the Projected LOBPCG is presented in Figure 3.1.
In practice we have many optimizations, some of them improve speed by
precomputing and reusing data, others take care of numerical stability. The
detailed algorithm is presented in Figure 3.2.

When eigenvectors are converging, the matriceŝA and M̂ become more
and more ill-conditioned. It happens becausepk

j , r k
j and sow k

j go to zero,
while kuk+1

j � uk
j k ! 0. Another problem occurs due to the inexact pro-

jection, following Section 3.6, if we iterate an already converged eigenvector
further, it may \jump over" the exact one and converge to zero. To address
these issues one needs to removew j and p j corresponding to a converged
u j from further processing. It should be done without changing the general
LOBPCG algorithm.
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As a solution we employ thede
ation workaround to improve both sta-
bility and speed. After an eigenvectoru j has converged (kr (u j )kM � 1 < � E ),
it and the correspondingp j , w j are excluded from the iterations andu j is
moved to a \de
ation set" D = [ d1; : : : ; dc], which builds a matrix. So we add
one more projection step, every vector fromV = [ U; W; Z] is replaced with its
M -orthogonal projection to spanf d1; : : : ; dcg? , so it removes all components
related to the already converged vectorsu1; : : : ; uc (d1; : : : ; dc), but does not
a�ect the algorithm since all eigenvectors are naturallyM -orthogonal. Be-
cause of this step the remaining vectors cannot converge to the old ones and
the iteration continues safely.

The new projection step is performed by the simple formulaW := W �
D(D H MW ). It must be applied to the preconditioned residualsf w j g on
every iteration and once toZ , when a new vector has converged. There is
no need to de
ateU since the vectors areM -orthonormal after the solution
of the dense eigenvalue problem, so one can simply removeu j from U. Since
we iterate progressively less and less vectors the de
ation also makes the
algorithm faster.

Due to the de
ation one should be careful with clustered eigenvalues and
the order in which the eigenvectors converge. In the algorithm we require
that they converge in increasing order, i.e. even if the residual for� j +1 is
below the threshold it is \converged" only after� 1; : : : ; � j have converged,
otherwise the algorithm may fail. Usually this modi�cation gives enough
protection.

According to [24], the blocksizen should be more thang, the number of
eigenvectors we actually need. In general, the blocksize should be as large as
it is needed to contain a possible eigenvalue cluster. One may setn � 2g, as
a start point.

We have stated that the regularization parameter� must be positive, it
guarantees thatA � > 0 and allows us to use any available preconditioner.
But some preconditioners can work with an inde�nite operator as well. In this
case convergence of the eigenvalue solver can be improved. Assume that the
lowest positive eigenvalue is� 1, then the preconditionerT � (A � ~� 1M )� 1,
where 0< ~� 1 < � 1, may provide faster convergence, i.e. the eigenvalue solver
requires less iterations. This can be explained as follows, ifv =

P N
j =1 aj u j is

a representation in the eigenvector basis of the problemAu j = � j M u j , then

(A � ~�M )� 1v =
NX

j =1

1

� j � ~�
aj u j :

When ~� is close to some� j , then the corresponding eigenvector component is
ampli�ed, while the others are diminished. So the preconditionerT � (A �
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~�M )� 1 can be used to improve convergence assuming that all not converged
� j are greater than ~� and the preconditioner works well for the inde�nite
operator. Our multigrid preconditioner (described in Chapter 4) can be
applied to the inde�nite operator provided that the coarse grid problem has
a relatively �ne mesh (see [9]).

This observation leads to an \adaptive preconditioner" strategy. We start
the computations with T � (A + �M )� 1 with some positive � , after the
eigenvalue� 1 has converged,T is changed toT � (A � ~� 1M )� 1, where ~� 1

may be e.g. 0:9� 1. This step can be used many times and when� 1; : : : ; � c

are converged the preconditionerT may be set to (A � ~� cM )� 1, where~� c =
� c� 1+0:9(� c� � c� 1). It is hard to predict the exact advantage provided by this
step since the e�ect depends on many factors: quality of the preconditioner,
structure of the spectrum, number of the searched eigenvalues and etc. One
has to be aware that the e�ect can be even negative. Optimal parameters
should be chosen experimentally and validated in practice.

In case of very ill-conditioned matrices or to get the eigenvectors in high
precision it is recommended to apply the Gram-Schmidt orthogonalization to
the vectors fromV on every iteration. It makes the method more robust, but
slower. SinceM̂ = I the problem ÂV̂ = M̂ V̂ diagf �̂ 1; : : : ; �̂ 3ng is simpli�ed
to ÂV̂ = V̂ diagf �̂ 1; : : : ; �̂ 3ng.

For solving the dense eigenvalue problems in steps 6 and 14 we use the
ZHEGVroutine from the LAPACK software package [1].
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4.1 The problem with smoothing

The application of the multigrid method to the Maxwell problem to the
H (curl)-conforming �nite element discretization is not straightforward. A
problem arises because the operatorA�h;k of the linear problem scales di�er-
ently on di�erent components of the Helmholtz decomposition. In that case,
standard smoothers like Jacobi or Gauss-Seidel do not provide an appropriate
smoothing.

To illustrate this more clearly, let us assume more regularity for a moment
and consider the simpli�ed case of Problem 4.1.

Problem 4.2. Associated di�erential form of Problem 4.1.
Operator A�k : C3

per(
) ! C1
per(
) is de�ned by

A�k u = r k � ("� 1 r k � u) + �u:

We assume that" 2 C2
per(
). The problem is,

for a given f 2 C1
per(
) to �nd ~u 2 C3

per(
) s.t.

A�k ~u = f :

Here we mention the di�erential problem only to better illustrate some
simple ideas behind theory and reveal a problem with smoothing.

Let us assume"(x) = 1. For u 2 C1
per(
) we have the Helmholtz decom-

position in form

u = v + w ; v = r k q; w = r k � g;

whereq 2 C2
per(
) and g 2 C2

per(
).
Sincer k �w = 0, the di�erential operator for w = r k � g gives

A�k w = r k � (r k � w ) + �w = � � k w + �w :

One may see that on a solenoidal �eld the operatorA�k behaves as a second
order elliptic di�erential operator. The spectrum of A�k is just the spectrum
of the Laplace operator shifted by a small regularization parameter�.

Sincer k � v = 0, for the another part of the decompositionv = r k q we
obtain

A�k v = �v ;

it is clear that in this case the operator has the absolutely di�erent spectrum.
The di�erent behavior of the operator on the parts of the Helmholtz decom-
position causes a problem for the multigrid, namely, standard smoothers do
not work properly.
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Here we need the Helmholtz decomposition, a property that we do have for
X l;k .

The idea is the following: we representX m;k , our �nite element space on
the �nest level as a multilevel nodal decomposition

X m;k = X 0;k +
mX

l=1

X

e2El

spanf  e;k g +
mX

l=1

X

v2V l

spanfr k � v;k g: (4.5)

The part with spanfr k � v;k g represents the potential part of the Helmholtz
decomposition, while the part with spanf  e;k g represents the solenoidal part.
It is a hint that the multiplicative Schwarz frameworkof (4.5) gives us a
multigrid V-cycle with a sort of Gauss-Seidel smoother. Some fundamentals
of a multilevel nodal decomposition and its connection with multigrid and
Gauss-Seidel is well explained in [40].

First we have to prove that this decomposition guarantees a su�cient
decoupling of subspaces in terms of energy, independent ofm. To show this
we need to prove two properties.

Let us formally denote the subspaces from (4.5) asY l
j , then we can rewrite

(4.5) in form

X m;k = Y 0 +
mX

l=1

X

e2El

Y l
e +

mX

l=1

X

v2V l

Y l
v;

where f Y ng denotes the set of allY l
e and Y l

v, so that any Y n corresponds
to someY l

e, Y l
v or Y 0.

The �rst property to be proven is a stability estimate

inf

(
X

n

kvnk2
A �

m; k
j
X

n

vn = v; vn 2 Y n

)

� Cstabkvk2
A �

m; k
for all v 2 X m;k :

(4.6)
We need to de�ne subspacesf U ng. First we distribute all basis functions

f  e;k g of X 0;k ; : : : ;X m;k and fr k � v;k g of r k Q0;k ; : : : ; r k Qm;k among small
number of classes, s.t. the supports of the functions inside every particular
class are mutually nonoverlapping. Then, building the span of all functions
for each class we get the subspacesf U ng. On each level of re�nementl a
�xed small number of suchU n is enough to cover the whole spaceX l;k .

The second property to be proven is astrengthened Cauchy-Schwarz in-
equality

jhA �
m;k v j ; vn ij � Corth 
 j j � njkv j kA �

m; k
kvnkA �

m; k
; (4.7)

for all v j 2 U j ; vn 2 U n and some
 s.t. 0 � 
 < 1.
It is important that Cstab and Corth have to be independent ofh and m.
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Theorem 4.1. (see [16, Theorem 3.1])
Provided that properties(4.6) and (4.7) hold, the convergence rate� of the
multigrid V-cycle in norm k � kA�

m; k
is bounded by

� � 1 �
1

Cstab(1 + �)2
with � = Corth

1 + 


1 � 

:

In [16] it was proven that the properties (4.6) and (4.7), and hence The-
orem 4.1 are valid for the standard N�ed�elec �nite elements (k = 0) and
Dirichlet boundary condition. The arguments can also be transfered to the
modi�ed �nite elements.

4.3 The hybrid smoother

Let Sh;k : Qh;k ! X h;k andCh;k : Qh;k ! Q0
h;k be the gradient and Laplacian

operators de�ned in Section 3.2,A�h;k : X h;k ! X 0
h;k be the problem opera-

tor. Following [40] we derive a Gauss-Seidel type smoother as asuccessive
subspace correctionalgorithm for the space decomposition

X h;k =
X

e2E

spanf  e;k g +
X

v2V

spanfr k �v;k g =
jEjX

j=1

Y j +
jEj+ jVjX

j= jEj+1

Y j: (4.8)

Note that (4.8) is just one layer of the multilevel nodal decomposition (4.5)
corresponding to some levell. Therefore, the SSC algorithm for (4.8), which
builds a smoother, is a part of the SSC algorithm for (4.5), which builds
multigrid with the smoother. The SSC iterations are described in Figure 4.1.

Denote aij = hA�h;k ei ;k ;  ej ;k i to be the matrix entries of the operator
A�h;k in the basis f  e;k g of X h;k , fj = f ( ej ;k ) and xj be the coordinate
vectors of f and x in the same basis. The step 3 of the SSC algorithm for
the subspaceY n = spanf  en ;k g gives

xnann = hA�h;k (xn en ;k );  en ;k i = hrn;  en ;k i = hf � A�h;k xn� 1;  en ;k i

or

xn = a� 1
nn(fn �

n� 1X

j=1

anjxj); n = 1 ; : : : ; N;

so it is just Gauss-Seidel for the matrixaij.
Next we proceed with the SSC algorithm for the second part of (4.8).

From the previous part we have the current approximationx 2 X h;k and the
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by analogy
‘e2;k ( e;k ) = 0 :5eik �(m e � m e2 ) :

Similar changes are required for the interpolation and restriction opera-
tors in Qh;k space. For simplicity we consider an edgee 2 El with two vertices
v1; v2 2 Vl. After re�nement we get verticesv11; v22; v33 2 Vl+1 on the �ne
mesh, their coordinates are

zv11 = zv1 ; zv22 = zv2 ; zv12 = 0 :5(zv1 + zv2) = m e:

All vertices have the corresponding degrees of freedom

‘v1;k ; ‘v2;k ; ‘v11;k ; ‘v22;k ; ‘v12;k

and the nodal bases

�v1;k ; �v2;k ; �v11;k ; �v22;k ; �v12;k :

Simple calculations give, fork = 0

‘v12;0(�v1;0) = ‘v12;0(�v2;0) = 0 :5‘v1;0(�v1;0) = 0 :5‘v2;0(�v2;0) = 0 :5;

for k 6= 0

‘v12;k (�v1;k ) = ‘v12;k (e� ik �(x � zv1 )�v1;0) = e � ik �(zv12 � zv1 )�v1;0(zv12)

= e � ik �(zv12 � zv1 )‘v12;0(�v1;0) = 0 :5eik �(zv1 � zv12 ) ;

‘v11;k (�v1;k ) = �v1;k (zv11) = �v1;k (zv1) = 1 ;

by analogy

‘v12;k (�v2;k ) = 0 :5eik �(zv2 � zv12 ) ;

‘v22;k (�v2;k ) = 1 :

Similar formulas can be derived for other cases of interpolation. One
may notice that the interpolation weights include a phase shift factor related
to shift (if any) between the nodal points of coarse and �ne �nite element
spaces.

4.5 The h-multigrid implementation

We have described all parts needed for construction a multigrid framework.
Multigrid may be implemented as a linear solver, but we prefer to use it as a
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