








1.2 The eigenvalue problem

For u;v 2 Hye(curl; ) and p;q 2 ngr ) we de ne the sesquilinear forms
Z
m(u;v)=(u;v),2= U Vdx

a(Uv)=(" tre ur g Ve
b (Vi) = (Vir «q)Lz;
Ce(P;) =(r kpsr Kk Q)pe:

We de ne the constraint space

Vi =1fv2Hpl(curl;): b(v;q)=0 forall q2 Héer() o;
soVy = Hpe(curl; ) \ (r ¢ Hi, () 7. The formsm(; ); ac(; ); o(; ) are
Hermitian, m( ; ) is positive de nite.
De ne operator Ax : Hper(curl; ) 1 L2()s.t. hAcU; Vi = ac(u;v) forall
V 2 Hpe(curl; ). From Corollary 1.2 ve have that ker(Ay) = ker(r ) =
Ik ngr(), so the operator Ay is positive de nite on V if k 6 0.
Let us prove that ck( ; ) is coercive fork 6 0. In terms of Fourier basis

z
ax)=  .e? ™%, whereg, =  qg(x)e 2" *dx;
n27z3
we see that > |
c(9;0) = j2 n+ Kkj?gike® " ¥k
n273
Sincek 2 K=[ ; JPthetermj2 n+ kj is zero only whenk = n = 0, so

for k & 0 cc( ; ) is coercive.

1.2.1 Mixed formulation

Problem 1.1. Eigenvalue problem in the mixed form K 6 0).
Find triple (u;p; ) 2 Hpe(curl; ) ngr() R s.t. (u;p) 6 (0;0) and for
all v 2 Hpe(curl; ), g2 H, ()

a(u;v) + be(vip) = m(u;v); (1.19)
be(u;q) =0: (1.20)
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The advantage of this formulation over one for the spac¥ . is that
we look for a solution in spaceXy,, for which there existsconforming nite
elements(will be explained later).

We say that a discrete form of the eigenvalue problem is spectrally
correct approximation of the original eigenvalue problem, if all eigenvectors
and eigenvaluesyy; ) of the discrete form converge to the eigenvectors and
eigenvalues \(; ) of the original eigenvalue problem whileh ! 0, and vice
versa, all u; ) are approximated by (Un; ) respecting their multiplicity.
We want Problem[1.2 to be a spectrally correct approximation of Problem
[L.3. In order to analyze the convergence of the discrete eigenvalue solutions
to the continuous ones we apply the abstract theory developed [d [7] and [6].

By analogy with the solution operatorT of Problem 1.1 we de ne the
discrete solution operatorT,: L2() ! Xy of Problem as follows. For
all f 2 L?(), Twf = up 2 Xy, whereuy, is from the following problem.

Find (Uh; ph) 2 Xn Qh s.t. for all Vh 2 Xp, Oh 2 Qh

a(Un;vp) + b(Vh pn) = m(f;vp);
bk(Uh; qh) =0:;

Theorem 1.5. (see [8, Theorem 2])

If the spacesXy; Qn; Vhk Satisfy the conditions below, then the sequente
converges uniformly toT in L(L2() ;Hper(curl; )) , i.e. there exists 3(h),
tending to zero ash! 0O s.t.

KTf  Tafken  a(h)kfko  forall f 2 L2() :

The conditions are:

1. Ellipticity on V px
There existsC > 0 s.t.

ax(up;up)  Ckupk?: for all up 2 Vp;

2. Weak approximability ofH}, ()

per
There exists ;(h) > 0, tending to zero ash! 0 s.t.

bk (Vh; Q)
Su EEEEre—
thVFh);k thkcurI

1(hkgkys — forall g2 Hi. () ;

3. Strong approximability ofV
For somer > 0 there exists ,(h) > 0, tending to zero ash ! 0 s.t.
forany u 2 Vi \ (H¥*7()) ° there existsup 2 V . satisfying

Ku  unKeur o(h)kuky 1+
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This shows thatA, : X | X°© which is isometric (in the energy norm) and,
in particular, (A,) *: X% X exists andk(A,) ki xox) 1.

Denote the embeddingE: X ! H, then E% H | X°% Sincekuky
kukx we havekEk, x4y 1and sokE‘kL(H;x o 1. Introduce an auxiliary
operator

By = E(A,) 'E%H! H:

We have the spectrum (By) = f-2-j 2 (Ax)g. The interval between
the eigenvalues [x.; «.+1] for the operator A¢ translates to the interval
[ ki+1; ;] for the operator By, where . = —~— and ;= —

Kil+1 t kit o

Theorem 1.7. Perturbation theorem for band gap.
Let B(k;r)= fk°2 R®jjk® kj<rgand"m, =miny, "(x). Suppose that
for the operator Ay, there exists an interval[a; b s.t. for somel 2 N

1 [ (ki) forall k 2K,

S
2. K ok B(K;rk), wherer, holds
p n

n k min .
T oa+2 o

k:l k;l+1 b

a ’ .
@+ ) g+ ) (b+ ) ke + )

e <

Kk =min

Then [a; 4 is contained in the spectral gap, i.e[a; (_k;l;_k;,ﬂ) for all
k2K.

Proof. De ne the resolvent
Re()=(Bx 1) *M™H! H:

One may show thatif 2 [ yjs1 + «; ki k], then for any k there exists
Rk( ) and kRy( )ky .+ Expanding u 2 H with respect to a complete
orthonormal system of eigenfunction§uy.,gn2n Of B we estimate

X 1
kR ( )uk? = Sihu; Uinij? Skukg:
n2N( kin ) k
Now we consideth s.t. jhj <r, some small perturbation ofk. We want
to show that R+ ( ) exists. First, let us prove the following representation

l-

Rk+h( )= Re( ) I +(Bk+n  By)Rk( ) (1.21)
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Chapter 2

Finite Elements

2.1 Standard lowest order elements

We are going to recall only necessary facts concerning nite elements. For
further details we refer to standard text books e.gl 28], but many important
facts are also collected if17].

De nition 2. The Finite Element Method (FEM) is a Galerkin method
which is characterized by the following principles in the construction of a
discrete subspace& y:

1. The domain is represented as a nite union of non-overlapping poly-
hedral elements ..

2. Xy consists of piecewise polynomials, so that the restriction ¥f, onto
an element . is a polynomial space.

3. X1, has a basis consisting of functions with local supports, i.e. the
functions are non-zero only on few elements.

De nition 3. A nite element is the triplet ( ;P¢; ), Where

¢ RYis the element domain, a bounded closed set with non-empty
interior and piecewise smooth boundary,

P . is the space olhape functionsa nite-dimensional space of func-
tions on o,

. is the set ofdegrees of freedoma basis ofP? (the dual space).
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de ne the polynomials on interval [ 1; 1] recursively

lo(X) = 1;
Il(x) = X (21)
1100= (@ DX il 100 J2 N

The Legendre polynomialsfljgo j , form a L?([ 1;1])-orthogonal family
spanningPP([ 1;1])
Z 1

li(x)1(x) dx = 2
1

2j+1

In fact we are going to use the integrated Legendre polynomials. They
are de ned as
z

X

Lj(x) = l; 1(y)dy forx2[ L;1]andj 2
1

As well as the Legendre polynomials they also can be de ned recursively

Ci(X) = X;
Lo(X) = %(x2 1); (2.2)
(0= 7@ DLMX G2l 00 2

Note that here C;(X) replacesL (x) = x + 1 in order to make the recursive
de nition working.
The integrated Legendre polynomial$L;g, ; , form an orthogonal fam-
ily with respect to HY([ 1;1])-seminorm
VA 1
1 LYX)LY(x)dx =0 for i 6 j;

moreover, they are \almost" L?-orthogonal
yA 1
Li(x)Lj(x)dx=0 for ji jj>2
1

For j 2 the polynomials vanish at the boundary pointsl;( 1) = L;(1) =
0, sofL;jg, j p spanP§[ 1;1].
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support of the global cell-based shape functions is restricted within their own
cells only.

This fact can be used to decrease the size of a problem, e.g. a linear
system. Let us denote quantities related to the cell-based degrees of freedom
with the index C and others with the indexR. After a renumbering a linear
system derived from our nite element discretization may be written in the

block form
Arr Arc ur _ fr

Acr Acc uc  fc

Since the cell-based degrees of freedom for di erent cells are decoupled, the

element-level matrices. Now we can compute th&chur complementwith
respect to the C-part. It gives the smaller condensed system,ug = f,,
where

A; = Agrr ARCAcéACR;
fz = fR ARCAC(]:ij:

After the condensed system was solved the cell-based unknowns can be ob-
tained as

uc = Act(fc  AcrUR):

The static condensation is an important tool for nite elements of order
p 3 when the fraction of the cell-based degrees of freedom becomes signif-
icant. The condensation can be realized on element level with no expensive
operations. As a result one gets a smaller and better conditioned system
what is advantageous for iterative methods. The condition number is better
because the Schur complement means an orthogonalization of the cell-based
basis functions with respect to the other ones.

2.2.9 Example of shape functions

The de nition of hierarchical high order nite elements is rather complex.
As an illustration we provide the exact form of the second ordeH - and
H (curl)-conforming elements on hexahedra. The shape functions are de ned
on the reference elemenf'= [0 ;1P according to the local numbering and
notations described in Subsections 2.2, 2..3 and 2]2.4.

H -conforming element, total 27 shape functions:
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2. Edge-based shape functions

g=f22x 1y 1z 12x Dx(z 1x2x Dx@y g
S=f 2y Ly(z 1y 2x@y Dz 1); 2y yg
o=f 2 Ly@z 1) 2(x Dx@z 1) 2(x 1xyg;
n=f2y Dy(z 1x2x DRy DE 12x 1)y yg
o=f2y D Dz2x 1z Dz2x Ly 12z g
S=f 2y 1 1z 2x(z 1z x(y 1)z 1)y
S=f2y(@z Lzix(z 1z;2xy(2z  1)g;

o=t 2yz 1z; 2(x 1@ 1z 2x 1y@z g
o=f 2 1y 1z; 2(x Lxz; 2(x Lxy g

oo = f2(y  Dyzi2x(2y 1L)z;2x(y 1)yg;

€10

0 =f2(2x 1yz;2(x 1)xz;2(x 1)xyg;

€11

o,=f 2y 1lyz; 2(x 1)y 1z; 2(x Dy Lyg
3. Face-based shape functions

Vi, =4 @z D@ Dy D, @ D@y DE 1), @ Dy g,
Ure =4 Qe D@y D Dz @ D 1z (@ Dy DER: 1g,
YR =4 Dyiz Dzay D Dzl Dy@z g,
Uie =4Qr Dyz Dz Doz Dz Daye g,
Vi, =4 (b Dy Dz @ DRy DE Dz @ D@ y@e g,
Yig =4 Qe Dy Dyz @ D@y Dz Daly Ly,

S0 =f 4@ 1y Ly 14 Lx@y 1)z 1);0g;
o =1 4@ 1y D@ 1z04x Lx@y 1@z g
00 = f04x@2y D@ Lz 4x(y 1y@z g
of, = f4@x y(z 1)z;00 4(x Dxy(2z 1)g;
00 = f0; 4x D@ DE DzAx Dy Ly@z g
00 =fax 1)y 1lyz 4x Lx@2y 1)z;0g;
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1

3};1 = f4y 1y(z 1);0,0g % f0; 4(x 1)x(z 1);0g;
af, = f 4y 1(z 1)z,000, 3¢ = f00 4(x L)x(y 1)g;

oW O

3%3 = f0;4x(z 1)z;0g; %;fs = f0;0;4x(y 1)yg;
3 " f 4y(z 1)z;0;00; 36 = f0O;0;4(x  1)xyg;
3555 = fO;4(x 1)(z 1)z;0g; %ifs = f0;0;, 4(x 1)(y 1yg;
3f; = f4ly 1)yz;0;0g; 3, = f0;4(x 1)xz;0q:

4. Cell-based shape functions

Pe0=gt(x 1)y 1y Dz(x xRy D 1z
(x 1x(y y@z 1)g;

oo=8f(2x 1)y 1yz )z (x Lx@y @z 1z
(x 1x(y y@z 1L)g;

o=gf(2x 1)y yz z(x x@y @z 1z
(x 1Ix(y 1y@z 1)g;

220=fay 1y(z 1)z;00g;

9:.°0=104x 1x(z 1)z;0g;

3o =f0:04(x  Dx(y lyg

2.3 Modi ed elements

Following [13] and [8] we introduce&k-modi ed nite elements. We will con-
sider the lowest order elements rst and then indicate changes for the high
order elements.

The nodal based .ogandf ,.0g of the standard lowest order elements
de ned in Section[Z2.] are modi ed by the multiplication by an exponential

factor .

In practice it can be attained by multiplying the corresponding shape func-
tions during assembling of the global nite element spaces. Note that every
basis function gets its own shifim, or z, depending on the nodal point. The
modi ed bases form new nite elements

Xhk =spanf ¢x:e2Eng;
Qnk =spanf x:Vv2Vyg:
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To keep the duality the inverse exponential factor is used for the degrees
of freedom
Z Ye
ex(u)y= @My tods; (2.3)

Xe

‘vik(0) = gk x ZV)q(X) Jx=2, = A(zv) = “v0(9): (2.4)

Again, the shift is di erent for every degree of freedom. Fro4) one may
notice that due to our choice of the shift the degrees of freedom Q¥ are
actually not changed. Since the exponential factor is shifted with respect to
the nodal point, periodic eldsq 2 Hr}er ) and u 2 He(curl; ) have the
same degrees of freedom on the identi ed elements of the periodic boundary.
By the construction there exists a nice property connecting the standard

and modi ed elements

Z
Ye .
‘e;k( e;k) — . ék (x me)e ik (x me) e;O(X) teds = ‘e;O( e;O) = 1’ (25)
‘v;k( v;k) =g K 2) v;O(X)jx:zV = v;O(Zv) = ‘v;O( v;O) =1:

Interpolation operators to the modi ed elements are de ned as usual

X

Xh;k(u) = ‘e (U) e
xR

Qn; k (q) = V(@) vk
V2V

Doing straightforward computations one can easily check that the bases
f exgandf g have the following properties

r w(X)=e KO (x);
k v,k( ) y v,O( ) (26)
Ik e;k(x) =€ th (x me)r e;O(X):

The approach presented above can be generalized to high order nite
elements. One needs to modify the shape functions and degrees of freedom
in the same way as it was done for the lowest order elements. So we put
the multiplier e & 9 in front of the shape functions and put the inverse
multiplier e’ * ) under the integrals for the degrees of freedom. Since the
high order elements have a more complex V-E-F-C structure, the exponential
multiplier e * & %) should have a di erent shift s for vertex-, edge-, face-
and cell-based basis functions and degrees of freedom. The shift has to be a
point on the corresponding element of the mesh, e.g. the midpoints of faces.
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It guarantees that periodic eldsq 2 ngr() and u 2 Hpe(curl; ) have the
same degrees of freedom on the identi ed elements of the periodic boundary.
Remember that there could be many basis functions corresponding to one
element of the mesh. They can have the same shift or di erent shifts inside
the element, both are correct. For the shift we use the nodal point which is
unique for every basis function.

The high order modi ed elements hold the property[(2)6) and a property
similar to (.5). If we denote sets of the non-modied high order shape
functions and degrees of freedom &sj. (g andf ;. o9, then they are connected
with the modi ed sets as

ik( k) = Tjo( o) forallj:

In the thesis we use the same notationX ., and Qy. for the modi ed
high order elements. If in a certain place it is not indicated which type
we consider then it means that it does not matter, otherwise it is given a
separate explanation.

The property ) is a key which makes it possible to prove the next
lemmas for both the lowest and high order elements.

Lemma 2.5. (see [38, Lemma 4])
Let k 6 O, the space®n.x and Xy satisfy the following commuting diagram
(functions must be chosen such that the interpolation operators make sense)

Hie() " Hpelecur;)
# Qh; k # Xh: k

r
Qn:k P X

In addition, the spaces and operators above form the exact sequences hori-
zontally.

Lemma 2.6. Discrete Helmholtz decomposition (see [8, Lemma 7]).
For given u, 2 Xy, there existvy 2 X« and ¢, 2 Qpk S.t.

Uph = Vh + T k G,
(VhsT kpn)2=0 for all pn 2 Qnyk:

The last line implies thatvy, 2 V..

Lemma 2.7. (see [8, Lemmas 8 { 10])
The modi ed elements do provide ellipticity orV ., weak approximability of
ngr() and strong approximability ofV .
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Combined with Theoremd1b {16 it follows that the modi ed elements
can be used to get a spectrally correct approximation of our eigenvalue prob-
lem.

Practical e ciency of the modi ed elements was proved in[IR], where
they were applied to Problen{ 1.p.

2.4 Implementation of the modi ed elements

For solving a problem with the modi ed elements we need to assemble ma-
trices related to operators of the original problem. The assembling implies
a numerical integration of the basis functions. For the modi ed elements a
direct numerical integration is problematic since the shape functions include
the exponential multiplier and so are not polynomial anymore. To overcome
this di culty we need to make an important observation about how the
sesquilinear forms look on the bases ¥f,.x and Qp.x.

Using the property (2.6) one obtains

ak( ek ez;k) = (Z" 1y Kk erkil Kk ez;k)L2

= " lg ik me)y o0 € K me)y &0 OX

:eik (mel meZ)(" 1r el;O;r 82;0)L2
= e Me Me2dag( 600 e0);

M( ek ez;k):eik (Mey mez)m( €107 €:0);

b&( ek v;k):elk(me Zv)tb( e0; v;O);

G vk vZ;k):elk(Zvl 2v2) co( V0 v20) -

One may notice that the matrices fork 6 0 are obtained from the ma-
trices for k = 0 by multiplication of their coe cients by a phase shift factor,
only the standard shape functions are actually used in the computations.

Although the formulas are given for the lowest order elements the same
holds true for the high order ones. To assemble the matrices we go along all
pairs of the basis functiond ;.xg, every function has its own shifts;, so the
exponential factor is & (S s for any sesquilinear form (' .x; j«)-
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1. "div".
The operator Bpx : Xk ! Qﬂ;k is de ned as follows, for a givenvy, 2
Xhx compute Bpyvn 2 Qp, by

rBh;th; v;ki = bk(Vh; v;k); forall v 2 Vh: (36)

2. "Laplace 1"
The operatorCh;li: Qﬂ;k ' Qnk is the inverse of operatoCh.k : Qnx !
ﬂ;k, which is de ned as follows, for a givem, 2 Qn.x computeCh.«qp 2

ﬂ;k by
PChikGn; viki = Ck(On; vik); forall v 2 Vy: (3.7)

The operator Chj exists, becausey( ; ) is coercive fork 6 0 (see

Section[1.}).

3. "grad".
The operatorSh.x: Qnk ! Xhi is de ned as follows, for anyg, 2 Qnk
compute Spkdh = x,. (" k dh) 2 Xnx, the operator is given by nodal

evaluation
=< ik ik
ShikGh = *Veik (On)€ (e me) “xeik (On)€ (xe me) ek -

e=(Xe;ye)2En

(3.8)

Proof. Foranyuy 2 Xn, from the discrete Helmholtz decomposition (Lemma

[2.6) we have

Uh =T k0nh* Vh,
wherevy 2 Vi, 0h 2 Qnk. It follows that for all f, 2 Qn
(uh;r kfh)LZ =(r kOn, I kfh)L2+O: (39)

Since ) is true for anyf,, 2 Qnk, it is also true for all basis functions
f vk0, so (3.9) may be rewritten as following. For all 2 V,

(r k@nsl x vz = (Un Tk vik)Lz; (3.10)
Ck(On; vik) = be(un; vik); (3.11)
PChikOn; viki = MBhxUn; vii: (3.12)

Equation (3.12) in operator form gives

ChikGh = BhkUn;
Oh = ChixBrikUn:
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3.2.1 The gradient operator for high order elements

For the high order elements the projection can be done similarly. The only
change is that the operatorSy.x is more complex. Here we exploit the local
exact sequence property and the fact that by constructioX . explicitly
contains gradients ofQy.x .

Let we represeniQy.x and X y,.x according to the V-E-F-C (N-E-F-C) basis
structure as

Qnk = Qv Qe Qr Qc;
Xnk=Xn Xeg Xgg Xpn Xcg  Xecns

whereFg and Cg are the parts formed by the gradient basis functions (see
Subsection[2.2}4),Fn and Cn are the remaining ones. Assume that the
coe cients have the same notations, then the operator  can be written in
the block form

0 1 0 1
Un SN;k 0 0 0 0 1
Ug O Id 0 O Qv
Urg &« _B O 0 Id 0 %qg §
Ugn 0 0O 0 O (0 ’
Ucg 0O 0 0 Id %
Ucn 0 0 0 0

where @v; G ; G ; oc) are the coe cients of a vector from Qn.x, (Un; Ug; Urg,
Ugn; Ucg; Ucn) are the coe cients of the resulting vector in X p.x, Sn: is the
operator Sy, for the lowest order elements.

One may see that the operatoiS,.x has a very simple sparse structure
and so it allows the e cient computation.

3.3 Preconditioned gradient eigenvalue solver

Having a given basis of the nite element spacX . on hand, e.g.f ¢«0
from Section 2.3, the Problen 3]1 turns into

Problem 3.2. Hermitian generalized matrix eigenvalue problem.
Find a pair of (u; )2 CN R st

Au= M u;

whereA andM beN N sparse complex matrices corresponding to sesquilin-
ear formsac(; )andm(;),A=A" O,M =MH > 0.
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Such preconditioned gradient methods have an important advantage in the
implementation, they only require matrix-vector multiplication, a precondi-
tioner routine and almost no extra memory.

[24] proposes the Locally Optimal Block Preconditioned Conjugate Gra-
dient Method based on the three main ideas

three-term recurrence for the next approximation

Instead of two terms in [3.18) one may use three terms
= kwk+ kuks kgk L
T(AUK (U MUb);

u k+1

k

W

where ¥; X, X are some real numbers selected to improve convergence.
This scheme is better because it provides more \extrapolation points".

use the Rayleigh-Ritz procedure to choose the optimal parameters
The goal is to choose ¥; %; X s.t. they minimize the Rayleigh quo-

tient for uk*'. The problem Au = M u is restricted to the space
sparf wk; uk; u* 'g. Let us de ne 3 by 3 matrices
A — [Wk;Uk;Uk 1]HA[Wk;Uk;Uk 1]’

M

[Wk; Uk; uk l]H M [Wk, Uk; uk 1],

then we solve a small dense eigenvalue probleftt = “ M@ with a
direct eigenvalue solver. The eigenvectdr, =[ ; %; X7 correspond-
ing to the smallest eigenvalué\l implicitly provides the optimal choice

of the parameters. Settingu**! = [wk;u*;u* a,, what is actually

a sum ofwk; uk; uk * with the weights from Yy, we provide the mini-
mal Rayleigh quotient available for giverw*; u%;uk *. The Rayleigh-
Ritz method is also used in the preconditioned steepest descent method
[B.13), the di erence is that only the two-dimensional subspacev{; u]

is used and the resulting parameter ¥ can be expressed explicitly by
a formula.

simultaneous iterations over a block of orthogonal vectors

The method we have considered allows to nd only the smallest eigen-
vector. One may keep about the same algorithm, but iterate a block of
n M -orthogonal vectors. It requires to change the Rayleigh-Ritz pro-
cedure in order to minimize the Rayleigh quotients of all vectors over
an extended B-dimensional subspacens;uX;uk 1;:::;

This block algorithm let us nd a few rst eigenvectors at once. The

details will be explained in Section 3.4.
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3.4 The Projected LOBPCG

To simplify our explanation we have supposed that the matriXA is positive
de nite, but in fact it is positive de nite only on V for k 6 0 and in
Xhk it has a large kernel. In practice it may be di cult to apply standard
preconditioners or direct solvers for such a matrix. We can make the problem
a bit easier by using a shift.

Let A = A+ M, where > 0is some small regularization parameter.
As a result, A is Hermitian and positive de nite matrix on the entire X, .
Now a lot of preconditioners and direct solvers will work withA . Let T
be a preconditioner for the matrixA , in general it may not be Hermitian.
All eigenvectors of the problemA u = M u are eigenvectors of the original
problem Au = M u with the shifted eigenvalues = . So, this shift
let us solve the eigenvalue problem with positive de nite matrices, while we
still can obtain the solution of the original problem.

We modify the LOBPCG algorithm by including the projectionP : X . !

V n;k described in Sectiof 3]2. The projection is required to overcome the dif-
culties described in Section 3.1, when an iterative eigenvalue solver tends
to converge to eigenvectors for = 0 rst. See the Projected LOBPCG algo-
rithm at Figure 3.1, remember thatn is the number of eigenvalues we need
(a small number).

In practice, we use a more sophisticated algorithm to avoid unnecessary
computations and improve stability, the details will be explained later in
Section 3.7. Now we comment the main algorithm. The steps 4-6 and 11-13
represent the Rayleigh-Ritz method, in the latter case a widem3dimensional
subspace is used, but only th@ smallest eigenvalues and eigenvectors are
taken. Moreover, on the very rst iteration the matrix Z, which represents

2n  2n subproblem.

Although T is the preconditioner for the matrix A , in the eigensolver
we do not use the matrixA itself, but use the matrix A instead. Since the
residual can be computed as follows

rn=(A Myy=(A+ M (;+ M)y =(A M)u;

it is more convenient to useA on all steps and not substract from resulted
eigenvalues. Mathematically it is the same as using .

In the algorithm we apply the projector only for the starting vectors
and the preconditioned residualdV, once per eigensolver iteration. Using
mathematical induction we prove that not onlyW, but all vectors ofV belong
to Vh.«. Let current U and Z belong to V .x, by the de nition the new U
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eigenvector apprOX|mat|ons store them as a matrik :=[uq;:::;up].
2. Projectfujgonto Vi, U := PU.

3. Orthonormalizef u;g with respect to M-based scalar product using the
Gram-Schmidt procedure, s.tU"MU = 1.

4. Construct the restricted matrix, A := UHAU (A 2 cmn).

5. Solve dense elgenvalue problem,
A0 = Odiagf"1;:::; g (O 2 cmn; OHO = 1)
6. Construct the rst approximations, U := U0, ;:= 7.
7. Calculate residualR := AU MU diagf 1;:::; ng(R=1[rg;:::;rn))-
8. If all converged,krjkm-» < g for all j, then stop, else continue.
9. Apply preconditioner, W = TR; T A+ M)t (W =

10. Projectfwjgonto V. W := PW.,

11. Construct the restricted matrices,
A:= VHAV and M = VMV (A;M 2 C33n: v = [U; W; Z)).

12. Solve dense elgenvalue problenﬁ\’) I\’A\? diagf " 1; 10" 3ng

13. Assume” I 3n and vectors from() correspond tof " 1000000,
Let Oy 2 C™" be the upper part andQy~z 2 C2"" be the lower part
of 0, then construct the next approximations

=[W;Z]0wz, U= U0+ 2Z, j:=",j=1;:::n.

14. Goto 7.

Figure 3.1: Basic algorithm of the LOBPCG eigenvalue solver with the pro-
jection.
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and Z are just a linear combination ofW and the oldU and Z, so they also
belong toV h.

An important point is when to stop the iteration. How can we control
eigenvalue precision? Fortunately it is relatively easy, sindeu}‘k.v. =1 (due
to the step 5 and 12), then theM *-norm of the residualr = Auk  kMu¥
and the eigenvalue approximation}‘ obtained in the Rayleigh-Ritz procedure
give a simple bound for the exact eigenvaluej. According to [34] it is
guaranteed that

i2] j‘ k r}(kal; }‘+ kr}‘kal]:

Moreover, one can use just one Gauss-Seidel step to approximMe !, be-
cause the matrix M is well-conditioned. This yields a quantity which is
equivalent to the M -norm independent of mesh. Altogether we obtain a
simple and e cient termination criterion.

3.5 Discussion of the algorithm

The original LOBPCG algorithm described in [24] and [23] is designed for
a positive de nite operator. In [41, Section 7.3] it is given a modi cation
of the LOBPCG with the inexact projection, which allows the method to
be applied to the Maxwell problem. In Section§ 34, 3.7 we presented our
implementation of the eigensolver. In our opinion, this implementation has
some advantages over the one frofnJ41]. We will discuss them in details.

First, we apply the projection only to the vectorsW, while [41] applies it
to the vectorsU and P. It results in doubling of the projection computations.

Second, [[4l1] does not projec¥V, instead it relies on the assumption
that the preconditioner T (A) ! providesTr 2 V. We know that
(A) r 2 Vi, but for an inexact inversion this cannot be guaranteed. In
[41] the assumption is based on the following points:

T is a two-level multigrid method resulting from the V-E-F-C splitting
of the high order nite elements (the same as we use),

the coarse level is the lowest order elements and the coarse level cor-
rection is solved exactly,

the ne level is the higher order elements, the smoother is based on
the E-F-C splitting with a \reduced" basis (gradient basis functions
are ignored).

From these assumptions it does not follow thalr 2 V., although it could
be close and the eigensolver may work. Another weak point is that it re-
quires an exact solving at the coarsg-multigrid level (the lowest order nite
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elements). It means that a very ne mesh cannot be treated, because the
coarse space is too large. Without the exact solution the method from [41]
is unreliable.

3.6 Inexact projection

In Section 3.2 we mentioned that the projectiorP : X« ! V. IS exact, if
the corresponding Poisson problem is solved exactly. Although it is possible,
it is not our goal. We are interested in a projection precision as far as it
helps to make the eigenvalue solver working. In practice the LOBPCG does
not require the exact projection, that we can allow an approximated solution
and improve speed.

How precise must the projection be? It is an important question, in order
to understand it we shall consider the following example. Assume that we
apply an inexact projectorP: Xpx ! Xpk s.t. P P. It means that for
anyw 2 X h:k

Pw=u=v+rq;

wherev 2 V., q 2 Qnk andkr gk 1. Itis the Helmholtz decomposition
with a very small gradient eld. Now let us try to compute the Rayleigh
guotient

ufAU (" re ouire W . (M tre o virg V)2
uHMu (u;u)2 (Viv)z+(r wO;r Q)2

If v is the exact eigenvector with eigenvalue, kvk - = 1, then

~(u) =

= <
1+ku vkZ, 1+kr qk?,

As we see, in the case of inexact projection the Rayleigh quotient and the
Rayleigh-Ritz method always give a bit smaller eigenvalues. It is acceptable
since we only look for an approximated solution of the eigenvalue problem
and already have some tolerance. But a problem can occur, if the projection
error is much greater than this tolerance. The LOBPCG works as follows, it
starts with large eigenvalue approximations and then converges down towards
the exact eigenvalues until the residual achieves the tolerance. It may happen
that due to inexact projection ~ jumps over and continue to go down to
zero, to the kernel. To prevent this the projection error must be small enough.

As far as we know, for the LOBPCG with the projection there is no theory
to predict safe projection error. In [18] the authors developed such theory,
but for the Projected Preconditioned INverse ITeration(PPINVIT). Since
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Inserting the formular = Axju M u=Au ( + )Mu we obtain
krkio=Mu ( + )Mu;u ( + )A) Mui
= A u;ui 2( + )Musui +( + ) (A) Mui
=( + ) 20+ )+( + )hu;(A) Mu
=( + ) ( + )u(A) ‘Mui  1:

iy P
Now we use the Helmholtz decomposition and let= ", g v; be the repre-
sentation in eigenfunctions of the operatoAy, then

2 1 2 X
krkZo=( + ) ( + ) “kugk®+

(14 ) (14 ) T2 2

kuk> 1 uz:cgz:

O

Theorem 3.4. Safe iteration condition.
Let u = v + ugy be the Helmholtz decomposition, where 2 V, ugq 2
r « Hi() . Assume thatkuk = 1, kugk for a small > 0, also as-

per

sume thatkAxu M ukyxo> Cgy with Cy = -#~. Then we have > ;.

Proof. If we assume that 1, then Lemma[3.3 givekAyu M ukyo
Co . But this is a contradiction with the assumptionkAyu M ukyxo>Cyq ,
and hence > . O

3.7 Implementation

The basic algorithm of the Projected LOBPCG is presented in Figurg 3.1.
In practice we have many optimizations, some of them improve speed by
precomputing and reusing data, others take care of numerical stability. The
detailed algorithm is presented in Figurg 3]2.

When eigenvectors are converging, the matrices and M become more
and more ill-conditioned. It happens becauspf, rf and sow} go to zero,

while kujk+1 u}‘k I 0. Another problem occurs due to the inexact pro-
jection, following Sectior| 3.p, if we iterate an already converged eigenvector
further, it may \jump over" the exact one and converge to zero. To address
these issues one needs to remowg and p; corresponding to a converged
u; from further processing. It should be done without changing the general

LOBPCG algorithm.
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As a solution we employ thede ation workaround to improve both sta-
bility and speed. After an eigenvectom; has convergedKr(u;)ky : < ),
it and the correspondingp;, w; are excluded from the iterations andy; is

a ect the algorithm since all eigenvectors are naturallyM -orthogonal. Be-
cause of this step the remaining vectors cannot converge to the old ones and
the iteration continues safely.

The new projection step is performed by the simple formuls/ := W
D(DH"MW). It must be applied to the preconditioned residuals w;g on
every iteration and once toZ, when a new vector has converged. There is
no need to de ateU since the vectors areéM -orthonormal after the solution
of the dense eigenvalue problem, so one can simply remayerom U. Since
we iterate progressively less and less vectors the de ation also makes the
algorithm faster.

Due to the de ation one should be careful with clustered eigenvalues and
the order in which the eigenvectors converge. In the algorithm we require
that they converge in increasing order, i.e. even if the residual fof.; is

below the threshold it is \converged" only after ;;:::; ; have converged,
otherwise the algorithm may fail. Usually this modi cation gives enough
protection.

According to [24], the blocksizen should be more thang, the number of
eigenvectors we actually need. In general, the blocksize should be as large as
it is needed to contain a possible eigenvalue cluster. One may gset 2g, as
a start point.

We have stated that the regularization parameter must be positive, it
guarantees thatA > 0 and allows us to use any available preconditioner.
But some preconditioners can work with an inde nite operator as well. In this
case convergence of the eigenvalue solver can be improved. Assume that the
lowest positive eigenvalue is 1, then the preconditionerT (A M) 1,
where 0< Ty < 4, may provide faster convergence, i.e. the eigenvalue solver
requires less iterations. This can be explained as followsyif= sz1 auj is
a representation in the eigenvector basis of the problefku; = ;Mu;, then

1 _X\I 1 .
A ™M)= ——au:
j=1 ]

When ~is close to some, then the corresponding eigenvector component is
ampli ed, while the others are diminished. So the preconditionef (A
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™ ) ! can be used to improve convergence assuming that all not converged
j are greater than™ and the preconditioner works well for the inde nite

operator. Our multigrid preconditioner (described in Chapter|:|4) can be

applied to the inde nite operator provided that the coarse grid problem has

a relatively ne mesh (see [9]).

This observation leads to an \adaptive preconditioner” strategy. We start
the computations with T (A + M) ! with some positive , after the
eigenvalue ; has convergedT is changed toT (A ;M) 1, where ™
may be e.g. ® ;. This step can be used many times and wheny;:::; .
are converged the preconditionef may be setto @ ~M) !, where ™ =

¢ 110:9( . ¢ 1). Itis hard to predict the exact advantage provided by this
step since the e ect depends on many factors: quality of the preconditioner,
structure of the spectrum, number of the searched eigenvalues and etc. One
has to be aware that the e ect can be even negative. Optimal parameters
should be chosen experimentally and validated in practice.

In case of very ill-conditioned matrices or to get the eigenvectors in high
precision it is recommended to apply the Gram-Schmidt orthogonalization to
the vectors fromV on every iteration. It makes the method more robust, but

For solving the dense eigenvalue problems in steps 6 and 14 we use the
ZHEGYbutine from the LAPACK software package[L].
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4.1 The problem with smoothing

The application of the multigrid method to the Maxwell problem to the
H (curl)-conforming nite element discretization is not straightforward. A
problem arises because the operatdy, ., of the linear problem scales di er-
ently on di erent components of the Helmholtz decomposition. In that case,
standard smoothers like Jacobi or Gauss-Seidel do not provide an appropriate
smoothing.

To illustrate this more clearly, let us assume more regularity for a moment
and consider the simpli ed case of Problerh 4.1.

Problem 4.2. Associated di erential form of Problem 4.1.
Operator A, : C3,() ! Ci.() is dened by

Au=r, ("tre w+ ou

We assume that" 2 Cger(). The problem is,
for a givenf 2 CJ. () to nd &2 CJ () s.t.

Aca = f:

Here we mention the di erential problem only to better illustrate some
simple ideas behind theory and reveal a problem with smoothing.

Let us assume’'(x) = 1. For u 2 Cger() we have the Helmholtz decom-
position in form

u=v+w,; VT QW=ryg 0

whereq 2 Cl, () and g2 C3, ().
Sincer  w =0, the di erential operator for w = r g gives

AW=ry, (rg w)+ w= KW+ W

One may see that on a solenoidal eld the operato, behaves as a second
order elliptic di erential operator. The spectrum of A, is just the spectrum
of the Laplace operator shifted by a small regularization parameter.
Sincer v = 0, for the another part of the decompositiorv = r  q we
obtain
AV = v,

it is clear that in this case the operator has the absolutely di erent spectrum.
The di erent behavior of the operator on the parts of the Helmholtz decom-
position causes a problem for the multigrid, namely, standard smoothers do
not work properly.
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Here we need the Helmholtz decomposition, a property that we do have for
X |’k .

The idea is the following: we represenX .k, our nite element space on
the nest level as a multilevel nodal decomposition

X X XX
Xmk = Xok + sparf oxg+ sparfr y k0 (4.5)
I=1 e2E, 1=1 v2Vv,

The part with spanfr  .xg represents the potential part of the Helmholtz
decomposition, while the part with spah Qg represents the solenoidal part.
It is a hint that the multiplicative Schwarz frameworkof (4.5) gives us a
multigrid V-cycle with a sort of Gauss-Seidel smoother. Some fundamentals
of a multilevel nodal decomposition and its connection with multigrid and
Gauss-Seidel is well explained i J40].

First we have to prove that this decomposition guarantees a su cient
decoupling of subspaces in terms of energy, independenthaf To show this
we need to prove two properties.

Let us formally denote the subspaces frorh (4.5) ag' , then we can rewrite

(4.5) in form
X X X X
Xmk = YO+ YL+ Y!;

e
I=1 e2E, I=1 v2v,
wherefY ,g denotes the set of ally, and Y!, so that any Y, corresponds
to someY, Y! or Y©.
The rst property to be proven is a stability estimate

( )

X X
inf kvnk3 . i Va=Vivp2Y, CstankVKZ k forall v 2 X m:
n ' n "
(4.6)
We need to de ne subspacekU ,g. First we distribute all basis functions
f exgof Xox::iii Xmk andfr  ykgofr « Qok;:iiir k Qm:k among small

number of classes, s.t. the supports of the functions inside every particular
class are mutually nonoverlapping. Then, building the span of all functions
for each class we get the subspacédl,g. On each level of re nementl a
xed small number of suchU, is enough to cover the whole spacg,..
The second property to be proven is atrengthened Cauchy-Schwarz in-
equality
JPA LV VRl Conn U Mky; Ko  kVoka 4.7)

m; k
forall v 2 Uj;v, 2 U, and some s.t. O < 1.
It is important that Cggp and Cony have to be independent oh and m.
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Theorem 4.1. (see [16, Theorem 3.1])
Provided that properties(4.6) and (@.7) hold, the convergence rate of the
multigrid V-cycle in norm k kAm-k is bounded by

1 1 With = Cyg =7
Cstab(1+ )2 - Orthl .

In [I§] it was proven that the properties ) and7), and hence The-
orem 4.1 are valid for the standard Necelec nite elements K = 0) and
Dirichlet boundary condition. The arguments can also be transfered to the
modi ed nite elements.

4.3 The hybrid smoother

Let Shik: Qnk ! Xhk and Cp: Qnik ! Qﬂ;k be the gradient and Laplacian
operators de ned in Section 3.2A,,: Xnx ! X}, be the problem opera-
tor. Following [40] we derive a Gauss-Seidel type smoother asaccessive
subspace correctioralgorithm for the space decomposition

< < XK BRI
Xhk = sparf oxQg+ sparfr y k0= Y+ Yij: (4.8)
e2E v2v j=1 j=jEj+1

Note that (£.8) is just one layer of the multilevel nodal decomposition (4.5)
corresponding to some levdl Therefore, the SSC algorithm for (4.8), which
builds a smoother, is a part of the SSC algorithm for (4]5), which builds
multigrid with the smoother. The SSC iterations are described in Figule 4.1.

Denote ajj = PA, ek; ¢xi to be the matrix entries of the operator
A, in the basisf ¢xg of Xpk, fj = f( ¢x) and Xx; be the coordinate
vectors off and x in the same basis. The step 3 of the SSC algorithm for
the subspaceY ,, = spanf ., .«g gives

— . - . P = 1. i
Xnann = hAh;k(Xn en;k)a enikl = h.n’ enikl = Hf Ah;an v oenkl
or

Xn = apa(fa anjXj);  n=1;:::5N;
i=1
so it is just Gauss-Seidel for the matrixa;;.
Next we proceed with the SSC algorithm for the second part of (4.8).
From the previous part we have the current approximatiorx 2 X . and the
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by analogy |
‘eak( ex) =0 5k (Me Mey)-

Similar changes are required for the interpolation and restriction opera-
tors in Qn.x space. For simplicity we consider an edge2 E, with two vertices
vi1; Vo 2 V. After re nement we get verticesvis;Vyy;Vas 2 Vw1 on the ne
mesh, their coordinates are

Zyi, = Zuys Zuyy = Zyys Zyy, = 0:5(2y, + 2y,) = Me:

All vertices have the corresponding degrees of freedom

‘vl;k; ‘vz;k; ‘vll;k; ‘sz;k; ‘vlz;k
and the nodal bases

vl;k; vz;k; vll;k; vzz;k; v12;k:
Simple calculations give, fok = 0

‘V12;0( V1;0) = ‘vlz;O( vz;O) =0 :5‘\/1;0( V1;0) =0 15‘\/2;0( V2;0) =0:5;

fork 6 0

. o ik — ik
V12;k( vl;k) = Vlz;k(e ke (x 2vq) vl;O) =g K@iy 2vy) V1;O(ZV12)
=e ke (2viz 2v1) ‘v12:0( V1;O) =0 :Sék (2es Zvlz);

ik vik) = vik(Zug) = vik(2v) = 15
by analogy

‘Vlz;k( vz;k) =0 :5ék (zvy ZV12);

“Vaork ( vaik) = 1

Similar formulas can be derived for other cases of interpolation. One
may notice that the interpolation weights include a phase shift factor related
to shift (if any) between the nodal points of coarse and ne nite element
spaces.

4.5 The h-multigrid implementation

We have described all parts needed for construction a multigrid framework.
Multigrid may be implemented as a linear solver, but we prefer to use it as a
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