Karlsruher Institut für Technologie

Karlsruhe Reports in Informatics 2010,11

Edited by Karlsruhe Institute of Technology,
Faculty of Informatics
ISSN 2190-4782

Dynamic Frames in Java Dynamic Logic
Formalisation and Proofs

Peter H. Schmitt, Mattias Ulbrich, Benjamin Weiß

Fakultät für Informatik

Please note:
This Report has been published on the Internet under the following Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Dynamic Frames in Java Dynamic Logic Formalisation and Proofs

Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß
Karlsruhe Institute of Technology
Institute for Theoretical Computer Science
D-76128 Karlsruhe, Germany
\{pschmitt, mulbrich, bweiss\}@ira.uka.de

Abstract

This report is a companion to the paper Dynamic Frames in Java Dynamic Logic [2]. It contains complementary formal definitions and proofs.

1 Formalisation

1.1 Syntax

Definition 1 (Signatures). A signature Σ is a tuple

$$
\Sigma=(\mathcal{T}, \sqsubseteq, \mathcal{V}, \mathcal{P} \mathcal{V}, \mathcal{F}, \mathcal{P}, \alpha, \operatorname{Prg})
$$

where \mathcal{T} is a finite set of types; where \sqsubseteq is a partial order on \mathcal{T} called the subtype relation; where \mathcal{V} is a set of (logical) variables; where $\mathcal{P} \mathcal{V}$ is a set of program variables; where \mathcal{F} is a set of function symbols; where \mathcal{P} is a set of predicate symbols; where α is a static typing function such that $\alpha(v) \in \mathcal{T}$ for all $v \in \mathcal{V} \cup \mathcal{P} \mathcal{V}, \alpha(f) \in \mathcal{T}^{*} \times \mathcal{T}$ for all $f \in \mathcal{F}$, and $\alpha(p) \in \mathcal{T}^{*}$ for all $p \in \mathcal{P}$; and where Prg is some Java program, i.e., a set of Java classes and interfaces.

We use the notation $v: A$ for $\alpha(v)=A$, the notation $f: A_{1}, \ldots, A_{n} \rightarrow$ A for $\alpha(f)=\left(\left(A_{1}, \ldots, A_{n}\right), A\right)$, and the notation $p: A_{1}, \ldots, A_{n}$ for $\alpha(p)=$ $\left(A_{1}, \ldots, A_{n}\right)$.

We require that the following types, program variables, function and predicate symbols are present in every signature:

- Any, Boolean, Int, Null, LocSet, Field, Heap $\in \mathcal{T}$
- all reference types of Prg also appear as types in \mathcal{T}; in particular, Object $\in \mathcal{T}$
- all local variables a of Prg with Java type T also appear as program variables $\mathrm{a}: A \in \mathcal{P V}$, where $A=T$ if T is a reference type, $A=$ Boolean if $T=$ boolean, and $A=$ Int if $T=$ int (in this paper we do not consider other primitive types, and we ignore integer overflows)
- heap : Heap $\in \mathcal{P V}$
- cast $_{A}:$ Any $\rightarrow A \in \mathcal{F}$ (for every type $A \in \mathcal{T}$)
- TRUE, FALSE : Boolean $\in \mathcal{F}$
- select $_{A}:$ Heap, Object, Field $\rightarrow A \in \mathcal{F}($ for every type $A \in \mathcal{T})$
- store : Heap, Object, Field, Any \rightarrow Heap $\in \mathcal{F}$
- anon: Heap, LocSet, Heap \rightarrow Heap $\in \mathcal{F}$
- null: Null $\in \mathcal{F}$
- all Java fields f of Prg also appear as constant symbols $f:$ Field $\in \mathcal{F}$
- arr : Int \rightarrow Field $\in \mathcal{F}, \quad$ created $:$ Field $\in \mathcal{F}$
- allLocs $:$ LocSet $\in \mathcal{F}$, allFields $:$ Object \rightarrow LocSet $\in \mathcal{F}$, freshLocs : Heap \rightarrow LocSet $\in \mathcal{F}$
$-\dot{\emptyset}:$ LocSet $\in \mathcal{F}, \quad$ singleton $:$ Object, Field \rightarrow LocSet $\in \mathcal{F}$
$-\dot{U}, \dot{\cap}, \backslash:$ LocSet, LocSet \rightarrow LocSet $\in \mathcal{F}$
- exactInstance $_{A}: A n y \in \mathcal{P}$ (for every type $A \in \mathcal{T}$)
- wellFormed : Heap $\in \mathcal{P}$
$-\doteq: A n y, A n y \in \mathcal{P}$
$-\dot{\in}:$ Object, Field, LocSet $\in \mathcal{P}, \quad \dot{\subseteq}$, disjoint $:$ LocSet, LocSet $\in \mathcal{P}$
We also require that Boolean, Int, Object, LocSet \sqsubseteq Any; that for all $C \in \mathcal{T}$ with $C \sqsubseteq$ Object we have Null $\sqsubseteq C$; that for all types A, A^{\prime} of Prg we have $A^{\prime} \sqsubseteq A$ if and only if A^{\prime} is a subtype of A in Prg; that the types explicitly mentioned in this definition are otherwise unrelated to each other wrt. \sqsubseteq; and that the types Boolean, Int, Null, LocSet, Field and Heap do not have subtypes except themselves. Finally, we demand that $\mathcal{V}, \mathcal{P} \mathcal{V}, \mathcal{F}$ and \mathcal{P} each contain an infinite number of symbols of every typing.

For illustration, the type hierarchy is visualised in Fig. 1. In the following, we assume a fixed signature $\Sigma=(\mathcal{T}, \sqsubseteq, \mathcal{V}, \mathcal{P} \mathcal{V}, \mathcal{F}, \mathcal{P}, \alpha, \operatorname{Prg})$.

Fig. 1. Type hierarchy

Definition 2 (Syntax). The sets $\operatorname{Trm}_{\Sigma}^{A}$ of terms of type A, Fma ${ }_{\Sigma}$ of formulas and $U p d_{\Sigma}$ of updates are defined by the following grammar:

$$
\begin{aligned}
\operatorname{Trm}_{\Sigma}^{A}::= & x|\mathrm{a}| f\left(\operatorname{Trm}_{\Sigma}^{B_{1}^{\prime}}, \ldots, \operatorname{Trm}_{\Sigma}^{B_{n}^{\prime}}\right)\left|i f\left(F m a_{\Sigma}\right) \operatorname{then}\left(\operatorname{Trm} A_{\Sigma}^{A}\right) \operatorname{else}\left(\operatorname{Trm} \Sigma_{\Sigma}^{A}\right)\right| \\
& \left\{U p d_{\Sigma}\right\} \operatorname{Trm} \sum_{\Sigma}^{A} \\
F m a_{\Sigma}::= & t r u e|f a l s e| p\left(\operatorname{Trm}_{\Sigma}^{B_{1}^{\prime}}, \ldots, \operatorname{Trm}_{\Sigma}^{B_{n}^{\prime}}\right)\left|\neg F m a_{\Sigma}\right| F m a_{\Sigma} \wedge F m a_{\Sigma} \mid \\
& F m a_{\Sigma} \vee F m a_{\Sigma}\left|F m a_{\Sigma} \rightarrow F m a_{\Sigma}\right| F m a_{\Sigma} \leftrightarrow F m a_{\Sigma} \mid
\end{aligned}
$$

$$
\begin{aligned}
\forall A x ; F m a_{\Sigma}\left|\exists A x ; F m a_{\Sigma}\right|[\mathrm{p}] F m a_{\Sigma}\left|\langle\mathrm{p}\rangle F m a_{\Sigma}\right|\left\{U p d_{\Sigma}\right\} F m a_{\Sigma} \\
U p d_{\Sigma}::=\mathrm{a}:=\operatorname{Trm}_{\Sigma}^{A^{\prime}}\left|U p d_{\Sigma} \| U p d_{\Sigma}\right|\left\{U p d_{\Sigma}\right\} U p d_{\Sigma}
\end{aligned}
$$

for any variable $x: A \in \mathcal{V}$, any program variable a : $A \in \mathcal{P} \mathcal{V}$, any function symbol $f: B_{1}, \ldots, B_{n} \rightarrow A \in \mathcal{F}$ and any predicate symbol $p: B_{1}, \ldots, B_{n}$ where $B_{1}^{\prime} \sqsubseteq B_{1}$, $\ldots, B_{n}^{\prime} \sqsubseteq B_{n}$, any executable Java fragment p , and any type $A^{\prime} \in \mathcal{T}$ with $A^{\prime} \sqsubseteq A$.
A sequent is a syntactical construct $\Gamma \Rightarrow \Delta$, where $\Gamma, \Delta \in 2^{F m a_{\Sigma}}$ are finite sets of formulas.

We use infix notation for the binary symbols $\dot{\cup}, \dot{\cap}, \dot{\}, \doteq$, and $\dot{\subseteq}$. Furthermore, we use the notation $(A) t$ for $\operatorname{cast}_{A}(t)$, the notation $o . f$ for $\operatorname{select}_{A}($ heap, $o, f)$ where $f:$ Field $\in \mathcal{F}$ is a Java field, the notation $a[i]$ for $\operatorname{select}_{A}($ heap, $a, \operatorname{arr}(i)$), the notation $o . *$ for allFields (o), the notation $\{(o, f)\}$ for $\operatorname{singleton}(o, f)$, the notation $t_{1} \neq t_{2}$ for $\neg\left(t_{1} \doteq t_{2}\right)$, the notation $(o, f) \dot{\in} s$ for $\dot{\in}(o, f, s)$, and the notation $(o, f) \notin s$ for $\neg(o, f) \dot{\in}(s)$.

1.2 Semantics

Definition 3 (Kripke structures). A Kripke structure \mathcal{K} for a signature Σ is a tuple

$$
\mathcal{K}=(\mathcal{D}, \delta, I, \mathcal{S}, \rho)
$$

where \mathcal{D} is a set of semantical values called the domain; where δ is a dynamic typing function $\delta: \mathcal{D} \rightarrow \mathcal{T}$; where (using the definition $\mathcal{D}^{A}=\{d \in$ $\mathcal{D} \mid \delta(d) \sqsubseteq A\}) I$ is an interpretation function that maps every function symbol $f: A_{1}, \ldots, A_{n} \rightarrow A \in \mathcal{F}$ to a function $I(f): \mathcal{D}^{A_{1}}, \ldots, \mathcal{D}^{A_{n}} \rightarrow \mathcal{D}^{A}$ and every predicate symbol $p: A_{1}, \ldots, A_{n} \in \mathcal{P}$ to a relation $I(p) \subseteq \mathcal{D}^{A_{1}} \times \cdots \times \mathcal{D}^{A_{n}}$; where \mathcal{S} is the set of all states, which are functions $s \in \mathcal{S}$ mapping every program variable a : $A \in \mathcal{P} \mathcal{V}$ to a value $s(a) \in \mathcal{D}^{A}$; and where ρ is a function associating with every executable Java fragment p in the context of Prg a transition relation $\rho(\mathrm{p}) \subseteq \mathcal{S}^{2}$ such that $\left(s_{1}, s_{2}\right) \in \rho(\mathrm{p})$ iff p , when started in s_{1}, terminates normally in s_{2} (according to the Java semantics [1]). We consider Java programs to be deterministic, so for all program fragments p and all $s_{1} \in \mathcal{S}$, there is at most one s_{2} such that $\left(s_{1}, s_{2}\right) \in \rho(\mathrm{p})$.

We require that every Kripke structure satisfies the following:
$-\mathcal{D}^{\text {Boolean }}=\{t t, f f\}, \mathcal{D}^{\text {Int }}=\mathbb{Z}, \mathcal{D}^{\text {Null }}=\{I($ null $)\}, \mathcal{D}^{\text {LocSet }}=2^{\mathcal{D}^{\text {Object }} \times \mathcal{D}^{\text {Field }}}$, $\mathcal{D}^{\text {Heap }}=\mathcal{D}^{\text {Object }} \times \mathcal{D}^{\text {Field }} \rightarrow \mathcal{D}^{\text {Any }}$
$-\delta(d) \neq T$ for all $d \in \mathcal{D}$, if $T \in \mathcal{T}$ represents an interface or an abstract class
$-\{d \in \mathcal{D} \mid \delta(d)=T\}$ is infinite for all $T \sqsubseteq$ Object, $T \neq$ Null not representing an interface or an abstract class
$-I\left(\right.$ cast $\left._{A}\right)(d)=d$ for all $d \in \mathcal{D}^{A}$
$-I(T R U E)=t t, I(F A L S E)=f f$
$-I\left(\right.$ select $\left._{A}\right)(h, o, f)=I\left(\right.$ cast $\left._{A}\right)(h(o, f))$ for all $h \in \mathcal{D}^{\text {Heap }}, o \in \mathcal{D}^{\text {Object }}, f \in$ $\mathcal{D}^{\text {Field }}$

$$
-I(\text { store })(h, o, f, d)\left(o^{\prime}, f^{\prime}\right)= \begin{cases}d & \text { if } o=o^{\prime} \text { and } f=f^{\prime} \\ h\left(o^{\prime}, f^{\prime}\right) & \text { otherwise }\end{cases}
$$

for all $h \in \mathcal{D}^{\text {Heap }}, o, o^{\prime} \in \mathcal{D}^{\text {Object }}, f, f^{\prime} \in \mathcal{D}^{\text {Field }}, d \in \mathcal{D}^{\text {Any }}$
$-I($ anon $)\left(h, s, h^{\prime}\right)(o, f)= \begin{cases}h^{\prime}(o, f) & \text { if }((o, f) \in s \text { and } f \neq I(\text { created })) \\ & \text { or }(o, f) \in I(\text { freshLocs })(h) \\ h(o, f) & \text { otherwise }\end{cases}$ for all $h, h^{\prime} \in \mathcal{D}^{\text {Heap }}, s \in \mathcal{D}^{\text {LocSet }}, o \in \mathcal{D}^{\text {Object }}, f \in \mathcal{D}^{\text {Field }}$

- let UniqueFunctions $\subseteq \mathcal{F}$ be the set consisting of the constant symbols representing Java fields, of arr and of created; then we require that for all $f, g \in$ UniqueFunctions the function $I(f)$ is injective, and that the ranges of the functions $I(f)$ and $I(g)$ are disjoint.
$-I($ allLocs $)=\mathcal{D}^{\text {Object }} \times \mathcal{D}^{\text {Field }}, I($ allFields $)(o)=\left\{(o, f) \mid f \in \mathcal{D}^{\text {Field }}\right\}$, $I($ freshLocs $)(h)=\{(o, f) \in I($ allLocs $) \mid o \neq I($ null $), h(o, I($ created $))=f f\}$
$-I(\dot{\emptyset})=\emptyset, I($ singleton $)(o, f)=\{(o, f)\}, I(\dot{\cup})=\cup, I(\dot{\cap})=\cap, I(\dot{\backslash})=\backslash$
$-I\left(\right.$ exactInstance $\left._{A}\right)=\{d \in \mathcal{D} \mid \delta(d)=A\}$
$-I$ (wellFormed $)=\left\{h \in \mathcal{D}^{\text {Heap }} \mid\right.$ for all $o \in \mathcal{D}^{\text {Object }}, f \in \mathcal{D}^{\text {Field }}:$ if $h(o, f) \in \mathcal{D}^{\text {Object }}$, then $h(o, f)=I($ null $)$ or $h(h(o, f), I($ created $))=t t\}$
$-I(\dot{\doteq})=\left\{(d, d) \in \mathcal{D}^{2}\right\}$
$-I(\dot{\epsilon})=\left\{(o, f, s) \in \mathcal{D}^{\text {Object }} \times \mathcal{D}^{\text {Field }} \times \mathcal{D}^{\text {LocSet }} \mid(o, f) \in s\right\}, I(\dot{\subseteq})=\left\{\left(s_{1}, s_{2}\right) \in\right.$ $\left.\left(\mathcal{D}^{\text {LocSet }}\right)^{2} \mid s_{1} \subseteq s_{2}\right\}, I($ disjoint $)=\left\{\left(s_{1}, s_{2}\right) \in\left(\mathcal{D}^{\text {LocSet }}\right)^{2} \mid s_{1} \cap s_{2}=\emptyset\right\}$

Definition 4 (Semantics). Given a Kripke structure $\mathcal{K}=(\mathcal{D}, \delta, I, \mathcal{S}, \rho)$, a state $s \in \mathcal{S}$ and a variable assignment $\beta: \mathcal{V} \rightarrow \mathcal{D}$ (where for every $x: A \in \mathcal{V}$ we have $\beta(x) \in \mathcal{D}^{A}$), we evaluate terms $t \in \operatorname{Trm}_{\Sigma}^{A}$ to a value val $\mathcal{K}_{\mathcal{K}, s, \beta}(t) \in \mathcal{D}^{A}$, formulas $\varphi \in F m a_{\Sigma}$ to a truth value val $\mathcal{K}_{\mathcal{L}, s, \beta}(\varphi) \in\{t t, f f\}$, and updates $u \in U p d_{\Sigma}$ to a state transformer $\operatorname{val}_{\mathcal{K}, s, \beta}(u): \mathcal{S} \rightarrow \mathcal{S}$ as defined below.

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{K}, s, \beta}(x)=\beta(x) \\
& \operatorname{val}_{\mathcal{K}, s, \beta}(\mathrm{a})=s(\mathrm{a}) \\
& \operatorname{val}_{\mathcal{K}, s, \beta}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=I(f)\left(\operatorname{val}_{\mathcal{K}, s, \beta}\left(t_{1}\right), \ldots, \operatorname{val}_{\mathcal{K}, s, \beta}\left(t_{n}\right)\right) \\
& \operatorname{val}_{\mathcal{K}, s, \beta}\left(\text { if }(\varphi) \text { then }\left(t_{1}\right) \text { else }\left(t_{2}\right)\right)=\left\{\begin{array}{l}
\operatorname{val}_{\mathcal{K}, s, \beta}\left(t_{1}\right) \text { if } \operatorname{val}_{\mathcal{K}, s, \beta}(\varphi)=t t \\
\operatorname{val}_{\mathcal{K}, s, \beta}\left(t_{2}\right) \text { otherwise }
\end{array}\right. \\
& \operatorname{val}_{\mathcal{K}, s, \beta}(\{u\} t)=\operatorname{val}_{\mathcal{K}, s^{\prime}, \beta}(t) \text {, where } s^{\prime}=\operatorname{val}_{\mathcal{K}, s, \beta}(u)(s) \\
& \operatorname{val}_{\mathcal{K}, s, \beta}(\text { true })=t t \\
& v a l_{\mathcal{K}, s, \beta}(\text { false })=f f \\
& \operatorname{val}_{\mathcal{K}, s, \beta}\left(p\left(t_{1}, \ldots, t_{n}\right)\right)=t t \operatorname{iff}\left(\operatorname{val}_{\mathcal{K}, s, \beta}\left(t_{1}\right), \ldots, \operatorname{val}_{\mathcal{K}, s, \beta}\left(t_{n}\right)\right) \in I(p) \\
& \operatorname{val}_{\mathcal{K}, s, \beta}(\neg \varphi)=\text { tt iff } \operatorname{val}_{\mathcal{K}, s, \beta}(\varphi)=\text { ff } \\
& \operatorname{val}_{\mathcal{K}, s, \beta}\left(\varphi_{1} \wedge \varphi_{2}\right)=\text { tt iff ff } \notin\left\{\operatorname{val}_{\mathcal{K}, s, \beta}\left(\varphi_{1}\right), \operatorname{val}_{\mathcal{K}, s, \beta}\left(\varphi_{2}\right)\right\} \\
& \operatorname{val}_{\mathcal{K}, s, \beta}\left(\varphi_{1} \vee \varphi_{2}\right)=t t \text { iff } t t \in\left\{\operatorname{val}_{\mathcal{K}, s, \beta}\left(\varphi_{1}\right), \operatorname{val}_{\mathcal{K}, s, \beta}\left(\varphi_{2}\right)\right\} \\
& \operatorname{val}_{\mathcal{K}, s, \beta}\left(\varphi_{1} \rightarrow \varphi_{2}\right)=\operatorname{val}_{\mathcal{K}, s, \beta}\left(\neg \varphi_{1} \vee \varphi_{2}\right) \\
& \operatorname{val}_{\mathcal{K}, s, \beta}\left(\varphi_{1} \leftrightarrow \varphi_{2}\right)=\operatorname{val}_{\mathcal{K}, s, \beta}\left(\varphi_{1} \rightarrow \varphi_{2} \wedge \varphi_{2} \rightarrow \varphi_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{val}_{\mathcal{K}, s, \beta}(\forall A x ; \varphi)=\text { tt iff ff } \notin\left\{\operatorname{val}_{\mathcal{K}, s, \beta_{x}^{d}}(\varphi) \mid d \in \mathcal{D}^{A}\right\} \\
& \operatorname{val}_{\mathcal{K}, s, \beta}(\exists A x ; \varphi)=t t \text { iff } t t \in\left\{\operatorname{val}_{\mathcal{K}, s, \beta_{x}^{d}}(\varphi) \mid d \in \mathcal{D}^{A}\right\} \\
& \operatorname{val}_{\mathcal{K}, s, \beta}([\mathrm{p}] \varphi)=\text { tt iff ff } \notin\left\{\operatorname{val}_{\mathcal{K}, s^{\prime}, \beta}(\varphi) \mid\left(s, s^{\prime}\right) \in \rho(\mathrm{p})\right\} \\
& \operatorname{val}_{\mathcal{K}, s, \beta}(\langle\mathrm{p}\rangle \varphi)=t t \text { iff } t t \in\left\{\operatorname{val}_{\mathcal{K}, s^{\prime}, \beta}(\varphi) \mid\left(s, s^{\prime}\right) \in \rho(\mathrm{p})\right\} \\
& \operatorname{val}_{\mathcal{K}, s, \beta}(\{u\} \varphi)=\operatorname{val}_{\mathcal{K}, s^{\prime}, \beta}(\varphi) \text {, where } s^{\prime}=\operatorname{val}_{\mathcal{K}, s, \beta}(u)(s) \\
& \operatorname{val}_{\mathcal{K}, s, \beta}(\mathrm{a}:=t)\left(s^{\prime}\right)(\mathrm{b})= \begin{cases}\operatorname{val}_{\mathcal{K}, s, \beta}(t) & \text { if } \mathrm{b}=\mathrm{a} \\
s^{\prime}(\mathrm{b}) & \text { otherwise }\end{cases} \\
& \text { for all } s^{\prime} \in \mathcal{S}, \mathrm{b} \in \mathcal{P} \mathcal{V} \\
& \operatorname{val}_{\mathcal{K}, s, \beta}\left(u_{1} \| u_{2}\right)\left(s^{\prime}\right)=\operatorname{val}_{\mathcal{K}, s, \beta}\left(u_{2}\right)\left(\operatorname{val}_{\mathcal{K}, s, \beta}\left(u_{1}\right)\left(s^{\prime}\right)\right) \text { for all } s^{\prime} \in \mathcal{S} \\
& \operatorname{val}_{\mathcal{K}, s, \beta}\left(\left\{u_{1}\right\} u_{2}\right)=\operatorname{val}_{\mathcal{K}, s^{\prime}, \beta}\left(u_{2}\right) \text {, where } s^{\prime}=\operatorname{val}_{\mathcal{K}, s, \beta}\left(u_{1}\right)(s)
\end{aligned}
$$

We sometimes write $(\mathcal{K}, s, \beta) \models \varphi{\text { instead of } \operatorname{val}_{\mathcal{K}, s, \beta}(\varphi)=t \text {. A formula } \varphi \in, ~(\mathcal{L}}$ Fma ${ }_{\Sigma}$ is called logically valid, in symbols $\models \varphi$, iff $(\mathcal{K}, s, \beta) \models \varphi$ for all Kripke structures \mathcal{K}, all states $s \in \mathcal{S}$, and all variable assignments β.

The semantics of a sequent $\Gamma \Rightarrow \Delta$ is the same as that of a formula $\bigwedge \Gamma \rightarrow$ $\bigvee \Delta$, where $\bigvee\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}=\varphi_{1} \vee \cdots \vee \varphi_{n}$, and $\bigwedge\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}=\varphi_{1} \wedge \cdots \wedge \varphi_{n}$.

1.3 Observations

The propositions below are used as assumptions in the proofs in Sect. 2. We do not prove them, but consider them obvious.

Proposition 1 (Non-occurring program variables). For all Kripke structures \mathcal{K}, all states $s, s^{\prime} \in \mathcal{S}$, all variable assignments β, and all $t \in \operatorname{Trm} \mathrm{~T}_{\Sigma} \cup$ $F m a_{\Sigma} \cup U p d_{\Sigma}:$ if for all program variables $\mathrm{a} \in \mathcal{P} \mathcal{V}$ that syntactically occur in t we have $s(\mathrm{a})=s^{\prime}(\mathrm{a})$, then we also have $\operatorname{val}_{\mathcal{K}, s, \beta}(t)=\operatorname{val}_{\mathcal{K}, s^{\prime}, \beta}(t)$.

Note that a program variable b not occurring in t can play a role in evaluating t, namely if t contains a program which calls a method that in turn manipulates b. Still, in a Java program a called method can never read the value of a local variable b before assigning to b ; thus, the initial value of b as defined by s or s^{\prime} does not matter. We consider heap $\in \mathcal{P} \mathcal{V}$ to implicitly occur in field access expressions o.f, in array access expressions a[i], and in method calls o.m(...).

Proposition 2 (Non-occurring function and predicate symbols). For all Kripke structures $\mathcal{K}=(\mathcal{D}, \delta, I, \mathcal{S}, \rho)$ and $\mathcal{K}^{\prime}=\left(\mathcal{D}, \delta, I^{\prime}, \mathcal{S}, \rho\right)$ differing only in the interpretation functions I vs. I^{\prime}, all states $s \in \mathcal{S}$, all variable assignments β, and all $t \in \operatorname{Trm}_{\Sigma} \cup \operatorname{Fma}_{\Sigma} \cup U p d_{\Sigma}$: if for all function and predicate symbols $f \in \mathcal{F} \cup \mathcal{P}$ that syntactically occur in t we have $I(f)=I^{\prime}(f)$, then we also have $\operatorname{val}_{\mathcal{K}, s, \beta}(t)=\operatorname{val}_{\mathcal{K}^{\prime}, s, \beta}(t)$.

Proposition 3 (Overwritten program variables). For all Kripke structures \mathcal{K}, all states $s, s^{\prime} \in \mathcal{S}$, all variable assignments β, all updates $\left(\mathrm{a}:=t^{\prime}\right) \in U p d_{\Sigma}$
where a does not occur in t^{\prime}, all $t \in \operatorname{Trm}_{\Sigma} \cup \operatorname{Fma}_{\Sigma} \cup U p d_{\Sigma}$, all $\varphi \in F m a_{\Sigma}$, and all program fragments p : if for all program variables $\mathrm{b} \in \mathcal{P} \mathcal{V} \backslash\{\mathrm{a}\}$ which occur in t or φ we have $s(\mathrm{~b})=s^{\prime}(\mathrm{b})$, then we also have:

$$
\begin{aligned}
\operatorname{val}_{\mathcal{K}, s, \beta}\left(\left\{\mathrm{a}:=t^{\prime}\right\} t\right) & =\operatorname{val}_{\mathcal{K}, s^{\prime}, \beta}\left(\left\{\mathrm{a}:=t^{\prime}\right\} t\right) \\
\operatorname{val}_{\mathcal{K}, s, \beta}\left(\left[\mathrm{a}=t^{\prime} ; \mathrm{p}\right] \varphi\right) & =\operatorname{val}_{\mathcal{K}, s^{\prime}, \beta}\left(\left[\mathrm{a}=t^{\prime} ; \mathrm{p}\right] \varphi\right) \\
\operatorname{val}_{\mathcal{K}, s, \beta}\left(\left\langle\mathrm{a}=t^{\prime} ; \mathrm{p}\right\rangle \varphi\right) & =\operatorname{val}_{\mathcal{K}, s^{\prime}, \beta}\left(\left\langle\mathrm{a}=t^{\prime} ; \mathrm{p}\right\rangle \varphi\right)
\end{aligned}
$$

Prop. 3 holds because the initial value of the program variable a is overwritten by the preceding update or assignment, and thus cannot influence the evaluation of t or φ, respectively.

Proposition 4 (Method calls). Let p be a method call statement (res = this.m $\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right)$; , let hPre: Heap $\in \mathcal{P} \mathcal{V}$, let reachableState $\in F m a_{\Sigma}$ be as in Def. 3 of [2], let reachableState ${ }^{\prime} \in F m a_{\Sigma}$ be as in Def. 4, and let noDeallocs \in Fma_{Σ} be as in Def. 7. Then the following holds:

$$
\models \text { reachableState } \rightarrow\{\text { hPre }:=\text { heap }\}[\mathrm{p}]\left(\text { reachableState }{ }^{\prime} \wedge \text { noDeallocs }\right)
$$

Prop. 4 is guaranteed by the semantics of Java.

2 Proofs

2.1 Preparation

Lemma 1 (Relation between frame and anon). Let mod $\in \operatorname{Trm}{ }_{\Sigma}^{\text {LocSet }}$, hPre: Heap $\in \mathcal{P V}$, frame $\in F m a_{\Sigma}$ be as in Def. 3 of [2], noDeallocs $\in F m a_{\Sigma}$ be as in Def. 7, and let frame ${ }^{\prime} \in F m a_{\Sigma}$ be the formula

$$
\text { heap } \doteq \operatorname{anon}(\mathrm{hPre},\{\text { heap }:=\mathrm{hPre}\} \text { mod }, \text { heap })
$$

Then the following holds:

$$
\models(\text { frame } \wedge \text { noDeallocs }) \leftrightarrow \text { frame }^{\prime}
$$

Proof. Let \mathcal{K} be a Kripke structure, $s \in \mathcal{S}$ be a state, β be a variable assignment, $h=s$ (heap), $h^{\prime}=\operatorname{val}_{\mathcal{K}, s, \beta}$ (anon(hPre, $\{$ heap $:=$ hPre $\}$ mod, heap), $s^{\text {pre }}=\operatorname{val}_{\mathcal{K}, s, \beta}($ heap $:=\mathrm{hPre})(s), h^{\text {pre }}=s^{\text {pre }}($ heap $), m^{\text {pre }}=\operatorname{val}_{\mathcal{K}, s^{\text {pre }, \beta}}(\bmod)$, $f l=I($ freshLocs $)(h)$, and $f^{\text {pre }}=I($ freshLocs $)\left(h^{\text {pre }}\right)$. Note that $h^{\text {pre }}=s($ hPre $)$. By definition of I (anon), we know that the following holds for all $o \in \mathcal{D}^{\text {Object }}$, $f \in \mathcal{D}^{\text {Field }}$:

$$
h^{\prime}(o, f)= \begin{cases}h(o, f) & \text { if }\left((o, f) \in m^{\text {pre }} \text { and } f \neq I(\text { created })\right) \tag{1}\\ & \text { or }(o, f) \in f^{p r e} \\ h^{p r e}(o, f) & \text { otherwise }\end{cases}
$$

We first show that $(\mathcal{K}, s, \beta) \models$ frame \wedge noDeallocs implies that $(\mathcal{K}, s, \beta) \models$ frame ${ }^{\prime}$, and then the other way round.

1. Let $o \in \mathcal{D}^{\text {Object }}, f \in \mathcal{D}^{\text {Field }}$. Using the definitions of frame, noDeallocs and frame ${ }^{\prime}$, we assume

$$
\begin{align*}
& (o, f) \in m^{p r e} \cup f l^{\text {pre }} \text { or } h(o, f)=h^{\text {pre }}(o, f) \tag{2}\\
& \text { if }(o, f) \in f l, \text { then }(o, f) \in f l^{\text {pre }} \tag{3}\\
& h(I(\text { null }), I(\text { created }))=h^{\text {pre }}(I(\text { null }), I(\text { created })) \tag{4}
\end{align*}
$$

and aim to show

$$
\begin{equation*}
h^{\prime}(o, f)=h(o, f) \tag{5}
\end{equation*}
$$

From (2) we get that one of the following three cases must apply:
$-(o, f) \in m^{\text {pre }}$. If $f \neq I($ created $)$ or $(o, f) \in f l^{\text {pre }}$, then (5) immediately follows from (1). We thus assume

$$
\begin{gather*}
f=I(\text { created }) \tag{6}\\
(o, f) \notin f^{p r e} . \tag{7}
\end{gather*}
$$

Now, (1) yields

$$
\begin{equation*}
h^{\prime}(o, f)=h^{p r e}(o, f) \tag{8}
\end{equation*}
$$

If $o=I$ (null), then we get from (4) that $h(o, f)=h^{\text {pre }}(o, f)$, which together with (8) immediately yields (5). Thus we assume

$$
\begin{equation*}
o \neq I(\text { null }) \tag{9}
\end{equation*}
$$

From (3) and (7) we get that

$$
(o, f) \notin f l
$$

This, (9), and the definition of $I($ freshLocs $)$ imply $h(o, I($ created $))=t t$. Analogously, (7) and (9) imply $h^{p r e}(o, I($ created $))=t t$. Together, we have $h(o, I($ created $))=h^{\text {pre }}(o, I($ created $))$, which because of (6) can be written as $h(o, f)=h^{p r e}(o, f)$. We combine this with (8) to get (5).
$-(o, f) \in f l^{p r e}$. Then (1) immediately yields (5).
$-h(o, f)=h^{p r e}(o, f)$. If $(o, f) \in m^{\text {pre }}$ or $(o, f) \in f l^{p r e}$, then the proof proceeds as for the respective case above. Otherwise, (1) guarantees that $h^{\prime}(o, f)=h^{p r e}(o, f)$, and thus we have (5).
2. Let $o \in \mathcal{D}^{\text {Object }}, f \in \mathcal{D}^{\text {Field }}$. We assume (5), and show first (2), then (3), and finally (4).
(a) If $(o, f) \in m^{p r e}$ or $(o, f) \in f^{p r e}$, then (2) holds trivially. Otherwise, (5) and (1) imply $h(o, f)=h^{p r e}(o, f)$, which also implies (2).
(b) We prove (3) by contradiction: we assume that $(o, f) \in f \backslash \backslash f^{\text {pre }}$. By definition of $I($ freshLocs $)$, this means that $o \neq I($ null $)$, that $h(o, I($ created $))=$ $f f$, and that $h^{\text {pre }}(o, I($ created $))=t t$. From (5) and (1) we get that $h(o, I($ created $))=h^{\text {pre }}(o, I($ created $))$. Together, we have $f f=t t$.
(c) The definition of I (freshLocs) tells us that $\left(I\right.$ (null),I (created)) $\notin f^{\text {pre }}$. Thus, (5) and (1) immediately guarantee (4).

2.2 Method Contracts

Theorem 1 (Soundness of useMethodContract). Let $\Gamma, \Delta \in 2^{F m a_{\Sigma}}, u \in$ $\operatorname{Upd}_{\Sigma}, \llbracket \cdot \rrbracket \in\{[\cdot],\langle\cdot\rangle\}, \mathrm{r} \in \mathcal{P V}, o \in \operatorname{Tr} m_{\Sigma}$, the method $\mathrm{m}, \mathrm{p}_{1}^{\prime}, \ldots, \mathrm{p}_{n}^{\prime} \in \operatorname{Tr} m_{\Sigma}$, $\varphi \in F m a_{\Sigma}, A \in \mathcal{T}, m c t=\left(m\right.$, this,$\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right)$, res, hPre, pre, post, mod, $\left.\tau\right)$, reachableState, reachableState ${ }^{\prime} \in \operatorname{Fma}_{\Sigma}, v, w \in U p d_{\Sigma}$, and $h, r^{\prime} \in \mathcal{F}$ all be as in Def. 4 of [2]. If

$$
\begin{align*}
& \equiv \Gamma \Rightarrow\{u\}\{w\}(\text { pre } \wedge \text { reachableState }), \Delta \tag{10}\\
& \vDash \Gamma \Rightarrow\{u\}\{w\}\{\text { hPre }:=\text { heap }\}\{v\}\left(\text { post } \wedge \text { reachableState }^{\prime} \rightarrow \llbracket \ldots \rrbracket \varphi\right), \Delta \tag{11}
\end{align*}
$$

and if for all types $B \sqsubseteq A$ we have

$$
\begin{equation*}
\models \text { CorrectMethodContract }(m c t, B) \text {, } \tag{12}
\end{equation*}
$$

then the following holds:

$$
\vDash \Gamma \Rightarrow\{u\} \llbracket \mathrm{r}=\circ . \mathrm{m}\left(\mathrm{p}_{1}^{\prime}, \ldots, \mathrm{p}_{n}^{\prime}\right) ; \ldots \rrbracket \varphi, \Delta
$$

Proof. Let (10), (11) and (12) hold. Let furthermore $\mathcal{K}=(\mathcal{D}, \delta, I, \mathcal{S}, \rho)$ be a Kripke structure, $s \in \mathcal{S}$, and β be a variable assignment. Our goal is to show

$$
(\mathcal{K}, s, \beta) \models \Gamma \Rightarrow\{u\} \llbracket \mathrm{r}=\mathrm{o} . \mathrm{m}\left(\mathrm{p}_{1}^{\prime}, \ldots, \mathrm{p}_{n}^{\prime}\right) ; \ldots \rrbracket \varphi, \Delta .
$$

If there is $\gamma \in \Gamma$ with $\operatorname{val}_{\mathcal{K}, s, \beta}(\gamma)=f f$ or if there is $\delta \in \Delta$ with $v a l_{\mathcal{K}, s, \beta}(\delta)=t t$, then this is trivially true. We therefore assume that

$$
\begin{equation*}
(\mathcal{K}, s, \beta) \models \bigwedge(\Gamma \cup \neg \Delta) \tag{13}
\end{equation*}
$$

and aim to show that $(\mathcal{K}, s, \beta) \models\{u\} \llbracket \mathrm{r}=0 . \mathrm{m}\left(\mathrm{p}_{1}^{\prime}, \ldots, \mathrm{p}_{n}^{\prime}\right) ; \ldots \rrbracket \varphi$.
Let $s_{1}=\operatorname{val}_{\mathcal{K}, s, \beta}(u)(s)$. Then our goal is to show

$$
\left(\mathcal{K}, s_{1}, \beta\right) \models \llbracket \mathrm{r}=0 . \mathrm{m}\left(\mathrm{p}_{1}^{\prime}, \ldots, \mathrm{p}_{n}^{\prime}\right) ; \ldots \rrbracket \varphi
$$

Let $s_{2}=\operatorname{val}_{\mathcal{K}, s_{1}, \beta}(w)\left(s_{1}\right)$. Because of the definition of w, it holds for all $\mathrm{a} \in$ $\mathcal{P} \mathcal{V} \backslash\left\{\right.$ this, $\left.\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right\}$ that $s_{1}(\mathrm{a})=s_{2}(\mathrm{a})$. Since by Def. 4 neither this nor $\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}$ occur in the above formula, Prop. 1 tells us that the interpretation of this formula is the same in s_{1} and s_{2}. It is therefore sufficient if we show

$$
\left(\mathcal{K}, s_{2}, \beta\right) \models \llbracket \mathrm{r}=\mathrm{o} . \mathrm{m}\left(\mathrm{p}_{1}^{\prime}, \ldots, \mathrm{p}_{n}^{\prime}\right) ; \ldots \rrbracket \varphi
$$

The definition of w and Prop. 1 ensure that $s_{2}($ this $)=v a l_{\mathcal{K}, s_{2}, \beta}(\mathrm{o})$, and that $s_{2}\left(\mathrm{p}_{1}\right)=\operatorname{val}_{\mathcal{K}, s_{2}, \beta}\left(\mathrm{p}_{1}^{\prime}\right), \ldots, s_{2}\left(\mathrm{p}_{n}\right)=\operatorname{val}_{\mathcal{K}, s_{2}, \beta}\left(\mathrm{p}_{n}^{\prime}\right)$. Thus, we can aim to prove the formula below instead of the formula above:

$$
\left(\mathcal{K}, s_{2}, \beta\right) \models \llbracket r=\text { this. } \mathrm{m}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) ; \ldots \rrbracket \varphi .
$$

Since by Def. 4 the program variable res does not occur in the above formula, the Java semantics allows us to instead show

$$
\left(\mathcal{K}, s_{2}, \beta\right) \models \llbracket \text { res }=\text { this.m }\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) ; \mathrm{r}=\mathrm{res} ; \ldots \rrbracket \varphi .
$$

Let $s_{3}=\operatorname{val}_{\mathcal{K}, s_{2}, \beta}($ hPre $:=$ heap $)\left(s_{2}\right)$. Since by Def. 4 the program variable hPre does not occur in the above formula, by Prop. 1 it is sufficient if we prove

$$
\left(\mathcal{K}, s_{3}, \beta\right) \models \llbracket \text { res }=\text { this. } \mathrm{m}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) ; \mathrm{r}=\text { res } ; \ldots \rrbracket \varphi . \quad \text { (thm1-goal) }
$$

We combine (13) with (10) to get

$$
(\mathcal{K}, s, \beta) \models\{u\}\{w\}(\text { pre } \wedge \text { reachableState }),
$$

which by definition of s_{2} is the same as

$$
\begin{equation*}
\left(\mathcal{K}, s_{2}, \beta\right) \models \text { pre } \wedge \text { reachableState } . \tag{14}
\end{equation*}
$$

Let $C=\delta\left(s_{2}\right.$ (this) $)$. This means that

$$
\begin{equation*}
\left(\mathcal{K}, s_{2}, \beta\right) \models \text { exactInstance }_{C} \text { (this). } \tag{15}
\end{equation*}
$$

Since α (this) $=A$, we have $C \sqsubseteq A$ because of well-typedness. Instantiating (12) with C and s_{2} yields

$$
\begin{aligned}
\left(\mathcal{K}, s_{2}, \beta\right) \models & \text { pre } \wedge \text { reachableState } \wedge \text { exactInstance }{ }_{C}(\text { this }) \\
& \rightarrow\{\text { hPre }:=\text { heap }\} \llbracket \text { res }=\text { this. } m\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) ; \rrbracket^{\prime}(\text { post } \wedge \text { frame })
\end{aligned}
$$

where $\llbracket \cdot \rrbracket^{\prime}$ is $\langle\cdot\rangle$ if $\llbracket \cdot \rrbracket$ is $\langle\cdot\rangle$, and where $\llbracket \cdot \rrbracket^{\prime}$ is either $\langle\cdot\rangle$ or $[\cdot]$ otherwise. Together with (14) and (15), this implies

$$
\left(\mathcal{K}, s_{2}, \beta\right) \models\{\text { hPre }:=\text { heap }\} \llbracket \text { res }=\text { this. } \mathrm{m}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) ; \rrbracket^{\prime}(\text { post } \wedge \text { frame }) .
$$

With the definition of s_{3}, this becomes

$$
\begin{equation*}
\left(\mathcal{K}, s_{3}, \beta\right) \models \llbracket \text { res }=\text { this. } \mathrm{m}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) ; \rrbracket^{\prime}(\text { post } \wedge \text { frame }) . \tag{16}
\end{equation*}
$$

If there is no $s_{4} \in \mathcal{S}$ such that $\left(s_{3}, s_{4}\right) \in \rho\left(\right.$ res $=$ this. $m\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right)$;) (i.e., if the method call does not terminate when started in s_{3}), then (16) implies that $\llbracket \cdot \rrbracket^{\prime}$ must be $[\cdot]$, and thus $\llbracket \cdot \rrbracket$ also must be $[\cdot]$. Then, (thm1-goal) holds trivially, because there is no final state which would have to satisfy φ.

We can thus find $s_{4} \in \mathcal{S}$ such that $\left(s_{3}, s_{4}\right) \in \rho\left(\right.$ res $=$ this.m $\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) ;$). As our programs are deterministic, s_{4} is the only such state. Our proof goal (thm1-goal) now becomes

$$
\left(\mathcal{K}, s_{4}, \beta\right) \models \llbracket r=\text { res } ; \ldots \rrbracket \varphi . \quad(\text { thm1-goal') }
$$

From (16) and the definition of s_{4} we get

$$
\begin{equation*}
\left(\mathcal{K}, s_{4}, \beta\right) \models \text { post } \wedge \text { frame } . \tag{17}
\end{equation*}
$$

Let noDeallocs $\in F m a_{\Sigma}$ be as in Def. 7. Prop. 4 tells us that

$$
\begin{aligned}
\left(\mathcal{K}, s_{2}, \beta\right) \models & \text { reachableState } \\
& \rightarrow\{\text { hPre }:=\text { heap }\}[\text { res }= \\
& \text { this } \left.. \mathrm{m}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n} ;\right)\right] \\
& (\text { reachableState } \wedge \text { noDeallocs }) .
\end{aligned}
$$

Together with (14) and the definition of s_{4}, this turns into

$$
\begin{equation*}
\left(\mathcal{K}, s_{4}, \beta\right) \models \text { reachableState }{ }^{\prime} \wedge \text { noDeallocs } . \tag{18}
\end{equation*}
$$

Let $\mathcal{K}^{\prime}=\left(\mathcal{D}, \delta, I^{\prime}, \mathcal{S}, \rho\right)$ be a Kripke structure identical to \mathcal{K}, except that $I^{\prime}(h)=s_{4}($ heap $)$, and except that $I^{\prime}\left(r^{\prime}\right)=s_{4}$ (res). Since by Def. 4 the symbols h and r^{\prime} do not occur in Γ nor in Δ, we get from (13) that ($\left.\mathcal{K}^{\prime}, s, \beta\right) \models \bigwedge(\Gamma \cup \neg \Delta)$. This and (11) imply

$$
\left(\mathcal{K}^{\prime}, s, \beta\right) \models\{u\}\{w\}\{\text { hPre }:=\text { heap }\}\{v\}\left(\text { post } \wedge \text { reachableState }{ }^{\prime} \rightarrow \llbracket \ldots \rrbracket \varphi\right) .
$$

As h and r^{\prime} do not occur in u, in w or in hPre $:=$ heap, the above and Prop. 2 imply that

$$
\left(\mathcal{K}^{\prime}, s_{3}, \beta\right) \models\{v\}\left(\text { post } \wedge \text { reachableState }^{\prime} \rightarrow \llbracket \ldots \rrbracket \varphi\right) .
$$

Let $s_{4}^{\prime}=\operatorname{val}_{\mathcal{K}^{\prime}, s_{3}, \beta}(v)\left(s_{3}\right)$. Then the above implies

$$
\left(\mathcal{K}^{\prime}, s_{4}^{\prime}, \beta\right) \models \text { post } \wedge \text { reachableState }{ }^{\prime} \rightarrow \llbracket \ldots \rrbracket \varphi .
$$

Since h and r^{\prime} do not occur in the above formula, by Prop. 2 we get that

$$
\begin{equation*}
\left(\mathcal{K}, s_{4}^{\prime}, \beta\right) \models \text { post } \wedge \text { reachableState }{ }^{\prime} \rightarrow \llbracket \ldots \rrbracket \varphi \tag{19}
\end{equation*}
$$

Given the definition of s_{4}, the semantics of Java tells us that for all $a \in$ $\mathcal{P} \mathcal{V} \backslash\{$ heap, res $\}$ we have $s_{3}(\mathrm{a})=s_{4}(\mathrm{a})$. Similarly, the definition of s_{4}^{\prime} implies that for all $\mathrm{a} \in \mathcal{P} \mathcal{V} \backslash\{$ heap, $\mathrm{r}, \mathrm{res}\}$ we have $s_{3}(\mathrm{a})=s_{4}^{\prime}(\mathrm{a})$. Together, we have

$$
\begin{equation*}
\text { for all } \mathrm{a} \in \mathcal{P} \mathcal{V} \backslash\{\text { heap }, \mathrm{r}, \mathrm{res}\}: s_{4}^{\prime}(\mathrm{a})=s_{4}(\mathrm{a}) \tag{20}
\end{equation*}
$$

The definition of s_{4}^{\prime} also guarantees that

$$
\begin{align*}
s_{4}^{\prime}(\text { heap }) & =\operatorname{val}_{\mathcal{K}^{\prime}, s_{3}, \beta}(\text { anon }(\text { heap }, \bmod , h)) \tag{21}\\
s_{4}^{\prime}(\mathrm{r}) & =I^{\prime}\left(r^{\prime}\right)=s_{4}(\text { res }) \tag{22}\\
s_{4}^{\prime}(\mathrm{res}) & =I^{\prime}\left(r^{\prime}\right)=s_{4}(\text { res }) \tag{23}
\end{align*}
$$

Using (17) and (18), Lemma 1 tells us that

$$
\left(\mathcal{K}, s_{4}, \beta\right) \models \text { heap } \doteq \operatorname{anon}(\text { hPre },\{\text { heap }:=\text { hPre }\} \bmod , \text { heap }),
$$

which we can also express as

$$
s_{4}(\text { heap })=\operatorname{val}_{\mathcal{K}, s_{4}, \beta}(\text { anon }(\text { hPre },\{\text { heap }:=\text { hPre }\} \text { mod }, \text { heap }))
$$

Since by Def. 4 the function symbols h and r^{\prime} do not occur in the above formula, and since \mathcal{K}^{\prime} is otherwise identical to \mathcal{K}, Prop. 2 yields

$$
s_{4}(\text { heap })=\operatorname{val}_{\mathcal{K}^{\prime}, s_{4}, \beta}(\text { anon }(\text { hPre },\{\text { heap }:=\text { hPre }\} \text { mod }, \text { heap }))
$$

As we defined \mathcal{K}^{\prime} such that $I^{\prime}(h)=s_{4}$ (heap), this implies

$$
s_{4}(\text { heap })=\operatorname{val}_{\mathcal{K}^{\prime}, s_{4}, \beta}(\operatorname{anon}(\mathrm{hPre},\{\text { heap }:=\mathrm{hPre}\} \bmod , h)) .
$$

Since s_{3} and s_{4} are identical except for heap and res, and since res does not occur in $\{$ heap $:=\mathrm{hPre}\} \bmod$, Prop. 3 tells us that $\operatorname{val}_{\mathcal{K}, s_{4}, \beta}(\{$ heap $:=$ hPre $\}$ mod $)=v a l_{\mathcal{K}, s_{3}, \beta}(\{$ heap $:=$ hPre $\}$ mod $)$. As heap and res do not occur in the other arguments of anon, we can transform the statement above into

$$
s_{4}(\text { heap })=\operatorname{val}_{\mathcal{K}^{\prime}, s_{3}, \beta}(\operatorname{anon}(\mathrm{hPre},\{\text { heap }:=\mathrm{hPre}\} \bmod , h)) .
$$

The definition of s_{3} implies s_{3} (heap) $=s_{3}$ (hPre). Thus, the update heap $:=\mathrm{hPre}$ has no effect in s_{3}. This allows simplifying the above into

$$
s_{4}(\text { heap })=\operatorname{val}_{\mathcal{K}^{\prime}, s_{3}, \beta}(\operatorname{anon}(\text { hPre }, \bmod , h))
$$

and replacing hPre with heap to get

$$
s_{4}(\text { heap })=\operatorname{val}_{\mathcal{K}^{\prime}, s_{3}, \beta}(\operatorname{anon}(\text { heap }, \bmod , h))
$$

This, together with (21), implies that s_{4} (heap) $=s_{4}^{\prime}$ (heap). Combining this result with (20) and (23) yields that s_{4} and s_{4}^{\prime} differ at most in r. Since by Def. 4 the program variable r does not occur in post, (17) and Prop. 1 imply

$$
\begin{equation*}
\left(\mathcal{K}, s_{4}^{\prime}, \beta\right) \models \text { post. } \tag{24}
\end{equation*}
$$

As r also does not occur in reachableState', we get from (18) that

$$
\left(\mathcal{K}, s_{4}^{\prime}, \beta\right) \models \text { reachableState }{ }^{\prime} .
$$

This, (24) and (19) together imply

$$
\left(\mathcal{K}, s_{4}^{\prime}, \beta\right) \models \llbracket \ldots \rrbracket \varphi .
$$

By (22) and (23), we know that $s_{4}^{\prime}($ res $)=s_{4}^{\prime}(r)$. Thus, the Java semantics allows us to rewrite the above statement into

$$
\left(\mathcal{K}, s_{4}^{\prime}, \beta\right) \models \llbracket r=\text { res } ; \ldots \rrbracket \varphi
$$

Finally, as s_{4} and s_{4}^{\prime} differ at most in r, Prop. 3 tells us that

$$
\left(\mathcal{K}, s_{4}, \beta\right) \models \llbracket \mathrm{r}=\mathrm{res} ; \ldots \rrbracket \varphi
$$

and this is property (thm1-goal') which we aimed to show.

2.3 Dependency Contracts

Theorem 2 (Soundness of useDependencyContract). Let $\Gamma, \Delta \in 2^{F m a_{\Sigma}}$, obs $\in \mathcal{F} \cup \mathcal{P}, h^{\text {new }}=\left(f_{1}\left(f_{2}\left(\ldots\left(f_{m}\left(h^{\text {base }}, \ldots\right)\right)\right)\right), \circ, \mathrm{p}_{1}^{\prime}, \ldots, \mathrm{p}_{n}^{\prime}\right) \in \operatorname{Trm}_{\Sigma}, A \in \mathcal{T}$, depct $=\left(o b s\right.$, this, $\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right)$, pre, dep $)$, hPre $\in \mathcal{P} \mathcal{V}, \bmod =$ allLocs $\backslash \mathrm{dep}$,
reachableState, frame, noDeallocs $\in F m a_{\Sigma}, w \in U p d_{\Sigma}$, guard, equal $\in F m a_{\Sigma}$ all be as in Def. 7 of [2]. If

$$
\begin{equation*}
\models \Gamma, \text { guard } \rightarrow \text { equal } \Rightarrow \Delta \tag{25}
\end{equation*}
$$

and if for all types $B \sqsubseteq A$ we have

$$
\begin{equation*}
\models \text { CorrectDependencyContract }(\text { depct }, B) \text {, } \tag{26}
\end{equation*}
$$

then the following holds:

$$
\models \Gamma \Rightarrow \Delta
$$

Proof. Let (25) and (26) hold, and let $\mathcal{K}=(\mathcal{D}, \delta, I, \mathcal{S}, \rho)$ be a Kripke structure. Our goal is to show $(\mathcal{K}, s, \beta) \models \Gamma \Rightarrow \Delta$. We will do a proof by contradiction and assume that this does not hold, or in other words, that $(\mathcal{K}, s, \beta) \models \Lambda(\Gamma \cup \neg \Delta)$ holds. This and (25) imply $(\mathcal{K}, s, \beta) \vDash \neg$ (guard \rightarrow equal), which means that ($\mathcal{K}, s, \beta) \models$ guard $\wedge \neg$ equal. If we insert the definitions of guard and equal, and distribute the update w over the conjuncts of guard, then this reads as

$$
\begin{align*}
& (\mathcal{K}, s, \beta) \models\{w\}\left\{\text { heap }:=h^{\text {base }}\right\}(\text { pre } \wedge \text { reachableState }) \\
& (\mathcal{K}, s, \beta) \models\{w\}\left\{\text { hPre }:=h^{\text {base }} \| \text { heap }:=h^{\text {new }}\right\}(\text { frame } \wedge \text { noDeallocs }) \\
& (\mathcal{K}, s, \beta) \neq \neg\left(o b s\left(h^{\text {new }}, \mathrm{o}, \mathrm{p}_{1}^{\prime}, \ldots, \mathrm{p}_{n}^{\prime}\right) \equiv \text { obs }\left(h^{\text {base }}, \mathrm{o}, \mathrm{p}_{1}^{\prime}, \ldots, \mathrm{p}_{n}^{\prime}\right)\right) \tag{27}
\end{align*}
$$

Let $s_{1}=\operatorname{val}_{\mathcal{K}, s, \beta}(w)(s)$. Then the first two statements above become

$$
\begin{aligned}
& \left(\mathcal{K}, s_{1}, \beta\right) \models\left\{\text { heap }:=h^{\text {base }}\right\}(\text { pre } \wedge \text { reachableState }) \\
& \left(\mathcal{K}, s_{1}, \beta\right) \models\left\{\text { hPre }:=h^{\text {base }} \| \text { heap }:=h^{\text {new }}\right\}(\text { frame } \wedge \text { noDeallocs })
\end{aligned}
$$

Let $s_{1}^{\text {base }}=\operatorname{val}_{\mathcal{K}, s, \beta}\left(\right.$ heap $\left.:=h^{\text {base }}\right)\left(s_{1}\right), s_{1}^{\text {new }}=\operatorname{val}_{\mathcal{K}, s, \beta}\left(\right.$ hPre $:=h^{\text {base }} \|$ heap $:=$ $\left.h^{\text {new }}\right)\left(s_{1}\right)$. Then the statements above turn into

$$
\begin{align*}
\left(\mathcal{K}, s_{1}^{\text {base }}, \beta\right) & \models \text { pre } \wedge \text { reachableState } \tag{28}\\
\left(\mathcal{K}, s_{1}^{\text {new }}, \beta\right) & \models \text { frame } \wedge \text { noDeallocs } \tag{29}
\end{align*}
$$

As this, $\mathrm{p}_{1}, \ldots, \mathrm{p}_{n}$ do not occur in (27), and as s and s_{1} are otherwise identical, we get by Prop. 1 that

$$
\left(\mathcal{K}, s_{1}, \beta\right) \models \neg\left(o b s\left(h^{n e w}, \mathrm{o}, \mathrm{p}_{1}^{\prime}, \ldots, \mathrm{p}_{n}^{\prime}\right) \equiv \operatorname{obs}\left(h^{\text {base }}, \mathrm{o}, \mathrm{p}_{1}^{\prime}, \ldots, \mathrm{p}_{n}^{\prime}\right)\right),
$$

which because of the definition of s_{1} implies that

$$
\begin{equation*}
\left(\mathcal{K}, s_{1}, \beta\right) \models \neg\left(o b s\left(h^{\text {new }}, \text { this }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) \equiv \text { obs }\left(h^{\text {base }}, \text { this }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right)\right) \tag{30}
\end{equation*}
$$

Lemma 1 and (29) tell us that

$$
\left(\mathcal{K}, s_{1}^{\text {new }}, \beta\right) \models \text { heap } \doteq \operatorname{anon}(\text { hPre },\{\text { heap }:=\text { hPre }\} \bmod , \text { heap }),
$$

which because of the definition of $s_{1}^{n e w}$ is the same as

$$
\begin{equation*}
\left(\mathcal{K}, s_{1}, \beta\right) \models h^{\text {new }} \doteq \operatorname{anon}\left(h^{\text {base }},\left\{\text { heap }:=h^{\text {base }}\right\} \bmod , h^{\text {new }}\right) . \tag{31}
\end{equation*}
$$

Let $C=\delta\left(s_{1}^{\text {base }}(\right.$ this $\left.)\right)$. This means that

$$
\begin{equation*}
\left(\mathcal{K}, s_{1}^{\text {base }}, \beta\right) \models \text { exactInstance }_{C} \text { (this) } \tag{32}
\end{equation*}
$$

Let $\mathcal{K}^{\prime}=\left(\mathcal{D}, \delta, I^{\prime}, \mathcal{S}, \rho\right)$ be a Kripke structure identical to \mathcal{K}, except that $I^{\prime}(h)=v a l_{\mathcal{K}, s_{1}, \beta}\left(h^{\text {new }}\right)$. Since α (this) $=A$, we have $C \sqsubseteq A$. Instantiating (26) with C, \mathcal{K}^{\prime} and $s_{1}^{\text {base }}$ yields

$$
\begin{aligned}
& \left(\mathcal{K}^{\prime}, s_{1}^{\text {base }}, \beta\right) \models \text { pre } \wedge \text { reachableState } \wedge \text { exactInstance }{ }_{C}(\text { this }) \\
& \rightarrow \text { obs (heap, this, } \mathrm{p}_{1}, \ldots, \mathrm{p}_{n} \text {) } \\
& \equiv\{\text { heap }:=\operatorname{anon}(\text { heap }, \bmod , h)\} \\
& \text { obs(heap, this, } \mathrm{p}_{1}, \ldots, \mathrm{p}_{n} \text {). }
\end{aligned}
$$

As h does not occur in (28) or (32), we have $\left(\mathcal{K}^{\prime}, s_{1}^{\text {base }}, \beta\right) \models$ pre \wedge reachableState \wedge exactInstance $_{C}$ (this) by Prop. 2, which we can combine with the statement above to get

$$
\begin{aligned}
\left(\mathcal{K}^{\prime}, s_{1}^{\text {base }}, \beta\right) \models & \text { obs }\left(\text { heap }, \text { this, }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) \\
& \equiv\{\text { heap }:=\operatorname{anon}(\text { heap }, \bmod , h)\} o b s\left(\text { heap }, \text { this }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right)
\end{aligned}
$$

Applying the update yields

$$
\begin{aligned}
\left(\mathcal{K}^{\prime}, s_{1}^{\text {base }}, \beta\right) \models & o b s\left(\text { heap }, \text { this }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) \\
& \equiv \operatorname{obs}\left(\operatorname{anon}(\text { heap }, \bmod , h), \text { this }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) .
\end{aligned}
$$

Because of the definition of $s_{1}^{\text {base }}$, this is the same as

$$
\begin{aligned}
\left(\mathcal{K}^{\prime}, s_{1}, \beta\right) \models & \text { obs }\left(h^{\text {base }}, \text { this }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) \\
& \equiv \text { obs }\left(\text { anon }\left(h^{\text {base }},\left\{\text { heap }:=h^{\text {base }}\right\} \bmod , h\right), \text { this }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right)
\end{aligned}
$$

By definition of \mathcal{K}^{\prime}, we have $I^{\prime}(h)=v a l_{\mathcal{K}, s_{1}, \beta}\left(h^{\text {new }}\right)$. As h does not occur in $h^{\text {new }}$, and as \mathcal{K} and \mathcal{K}^{\prime} are otherwise identical, Prop. 2 guarantees that $\operatorname{val}_{\mathcal{K}, s_{1}, \beta}\left(h^{\text {new }}\right)=\operatorname{val}_{\mathcal{K}^{\prime}, s_{1}, \beta}\left(h^{\text {new }}\right)$. Thus, we have $I^{\prime}(h)=\operatorname{val}_{\mathcal{K}^{\prime}, s_{1}, \beta}\left(h^{\text {new }}\right)$, and can thus write the statement above as

$$
\begin{aligned}
\left(\mathcal{K}^{\prime}, s_{1}, \beta\right) \models & \text { obs }\left(h^{\text {base }}, \text { this }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) \\
& \equiv \text { obs }\left(\text { anon }\left(h^{\text {base }},\left\{\text { heap }:=h^{\text {base }}\right\} \bmod , h^{\text {new }}\right), \text { this }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right)
\end{aligned}
$$

As the function symbol h does not occur in the above formula, ans as \mathcal{K} and \mathcal{K}^{\prime} are otherwise identical, Prop. 2 tells us that

$$
\begin{aligned}
\left(\mathcal{K}, s_{1}, \beta\right) \models & \text { obs }\left(h^{\text {base }}, \text { this }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) \\
& \equiv \operatorname{obs}\left(\text { anon }\left(h^{\text {base }},\left\{\text { heap }:=h^{\text {base }}\right\} \bmod , h^{\text {new }}\right), \text { this }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right)
\end{aligned}
$$

We can combine this with (31) to get

$$
\left(\mathcal{K}, s_{1}, \beta\right) \models o b s\left(h^{\text {base }}, \text { this }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right) \equiv \text { obs }\left(h^{\text {new }}, \text { this }, \mathrm{p}_{1}, \ldots, \mathrm{p}_{n}\right)
$$

which contradicts (30).

References

1. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, Second Edition. Addison-Wesley, 2000.
2. P. H. Schmitt, M. Ulbrich, and B. Weiß. Dynamic frames in Java dynamic logic. In B. Beckert and C. Marché, editors, Proceedings, International Conference on Formal Verification of Object-Oriented Software (FoVeOOS 2010), LNCS. Springer, 2010. To appear.
