4]}

Karlsruher Institut fur Technologie

Karlsruhe Reports in Informatics 2010,11
Edited by Karlsruhe Institute of Technology,

Faculty of Informatics
ISSN 2190-4782

Dynamic Frames in Java Dynamic
Logic

Formalisation and Proofs

Peter H. Schmitt, Mattias Ulbrich, Benjamin Weil}

2010

KIT — University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

=" Fakultat fur Informatik

Please note:

This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Dynamic Frames in Java Dynamic Logic

Formalisation and Proofs

Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weif3

Karlsruhe Institute of Technology
Institute for Theoretical Computer Science
D-76128 Karlsruhe, Germany
{pschmitt,mulbrich,bweiss}@ira.uka.de

Abstract. This report is a companion to the paper Dynamic Frames
in Java Dynamic Logic [2]. It contains complementary formal definitions
and proofs.

1 Formalisation

1.1 Syntax

Definition 1 (Signatures). A signature X' is a tuple
Y =(T,C,V,PV, F,P,«, Prg)

where T is a finite set of types; where T is a partial order on T called the
subtype relation; where V is a set of (logical) variables; where PV is a set of
program variables; where F is a set of function symbols; where P is a set of
predicate symbols; where « is a static typing function such that a(v) € T for
alveVUPY, a(f) e T*x T foral f € F, and a(p) € T* for allp € P; and
where Prg is some Java program, i.e., a set of Java classes and interfaces.

We wuse the notation v:A for a(v) = A, the notation f:A;,..., A, —
A for a(f) = ((A1,...,An), A), and the notation p:Ay,..., A, for a(p) =
(Ay,...,Ay).

We require that the following types, program variables, function and predicate
symbols are present in every signature:

— Any, Boolean, Int, Null, LocSet, Field, Heap € T

— all reference types of Prg also appear as types in T ; in particular, Object € T

— all local variables a of Prg with Java type T also appear as program variables
a:A € PV, where A = T if T is a reference type, A = Boolean if T =
boolean, and A = Int if T = int (in this paper we do not consider other
primitive types, and we ignore integer overflows)

— heap: Heap € PV

— castp: Any — A € F (for every type A € T)

— TRUE, FALSE : Boolean € F

— select 4 : Heap, Object, Field — A € F (for every type A € T)

— store: Heap, Object, Field, Any — Heap € F

— anon: Heap, LocSet, Heap — Heap € F

— null: Null € F

— all Java fields f of Prg also appear as constant symbols f: Field € F

— arr:Int — Field € F, created: Field € F

— allLocs : LocSet € F, allFields: Object — LocSet € F, freshLocs: Heap —
LocSet € F

— 0 : LocSet € F, singleton : Object, Field — LocSet € F

— U, N, \ : LocSet, LocSet — LocSet € F

— exactInstance s : Any € P (for every type A € T)

— wellFormed : Heap € P

— =:Any,Any € P

€ : Object, Field, LocSet € P, C, disjoint : LocSet, LocSet € P

We also require that Boolean, Int, Object, LocSet T Any; that for all C € T with
C C Object we have Null T C; that for all types A, A’ of Prg we have A’ C A
if and only if A’ is a subtype of A in Prg; that the types explicitly mentioned
in this definition are otherwise unrelated to each other wrt. C; and that the
types Boolean, Int, Null, LocSet, Field and Heap do not have subtypes except
themselves. Finally, we demand that V, PV, F and P each contain an infinite
number of symbols of every typing.

For illustration, the type hierarchy is visualised in Fig. 1. In the following, we
assume a fixed signature X' = (7,C,V, PV, F, P, «, Prg).

Any Field Heap

NN

Boolean Int Object LocSet
e AN

AN e
Null

Fig. 1. Type hierarchy

Definition 2 (Syntax). The sets Trmg of terms of type A, Fmayx of formulas
and Upds, of updates are defined by the following grammar:

Trmy ==z | a | f(Trmgi,..., Trmg:‘) | if (Fmax)then(Trm')else(Trm?) |
{Upd ;} Trms3,
Fmay = true | false | p(Trmgi,..., Trmg;) | —-Fmay; ‘ Fmasx, A Fmasx ’

Fmas vV Fmasx; ’ Fmas — Fmasx ’ Fmas, < Fmasx |

VAz; Fmasx ‘ JAz; Fmas ’ [p|Fmas ‘ (p)Fmasx ’ {Upd s} Fmax
Updsy, :=a:= Trmg/ | Upds. || Updsy, | {Upds}Upds

for any variable x : A € V, any program variable a: A € PV, any function symbol
f:B1,...,B, = A€ F and any predicate symbol p: By, ..., B, where B} C By,
..., Bl, T By, any ezecutable Java fragment p, and any type A" € T with
A'C A

A sequent is a syntactical construct I' = A, where I, A € 2F™2= qre finite
sets of formulas.

We use infix notation for the binary symbols U, N, &, =, and C. Furthermore,
we use the notation (A)t for cast(t), the notation o. f for select 4(heap,o, f)
where f: Field € F is a Java field, the notation a[i] for select 4 (heap, a, arr (7)),
the notation o.* for allFields(o), the notation {(o, f)} for singleton(o, f), the
notation t; # to for —(t; = t2), the notation (o, f) €s for &(o, f,s), and the
notation (o, f) ¢ s for —(o, f) &(s).

1.2 Semantics

Definition 3 (Kripke structures). A Kripke structure K for a signature X
is a tuple
K=(D,41,8,p)

where D is a set of semantical values called the domain; where § is a dy-
namic typing function & : D — T; where (using the definition DA = {d €
D | 6(d) E A}) I is an interpretation function that maps every function symbol
f:AL,...,A, — A € F to a function I(f) : DA1,..., DA — DA and every
predicate symbol p: Ay, ..., A, € P to a relation I(p) C DAt x --- x DAn ; where
S is the set of all states, which are functions s € S mapping every program
variable a: A € PV to a value s(a) € D?; and where p is a function associating
with every executable Java fragment p in the context of Prg a transition relation
p(p) € S? such that (s1,s2) € p(p) iff p, when started in sy, terminates normally
in s2 (according to the Java semantics [1]). We consider Java programs to be
deterministic, so for all program fragments p and all s1 € S, there is at most
one sy such that (s1,s2) € p(p).
We require that every Kripke structure satisfies the following:

_ DBoolean — {tt,ﬁ}, Dlnt — Z, DNull — {I(null)}, DLocSet _ 2D0b]“t><DFidd’
DHeap — DObject X DF'Leld — DAny

—6(d) £ T foralld e D, if T € T represents an interface or an abstract class

— {deD|§(d) =T} is infinite for all T T Object, T # Null not representing
an interface or an abstract class

— I(castp)(d) = d for all d € DA

— I(TRUE) = tt, I(FALSE) = ff

— I(select4)(h,o, f) = I(casta)(h(o, f)) for all h € DHew o ¢ DObect f ¢
DField

d ifo=0 and f = f’
— I(store)(h,o, f,d)(d, f') = {h(o/) (j;herwise =

fO’I“ all h € fDHeap’ o, o e IDObject7 f7 f/ c DField7 de DAny
W (o, f) if (0. f) € s and f # I(created))
— I(anon)(h,s,h')(o, f) = or (o, f) € I(freshLocs)(h)
h(o, f) otherwise
fOT’ all h,h/ c IDHeap7 s DLocSet’ o¢€ DObject) f c DField
— let UniqueFunctions C F be the set consisting of the constant symbols rep-
resenting Java fields, of arr and of created; then we require that for all
f»g € UniqueFunctions the function I(f) is injective, and that the ranges of
the functions I(f) and I(g) are disjoint.
— I(allLocs) = DOYect x DField | [(gllFields)(0) = {(o, f) | f € DFeld},
I(freshLocs)(h) = {(o, f) € I(allLocs) | 0 # I(null), h(o, I(created)) = ff}
1(0) = 0, I(singleton)(o, f) = {(o,)}, I(U) = U, I(N) =, I(\) =\
— I(exactInstance ») = {d € D | 6(d) = A}
I(wellFormed) = {h € D | for all 0 € DOYeet | f ¢ DFicld;
if h(o, f) € DObJECt then h(o, f) = I(null)
or h(h(o, f)J(created)) = tt}
- I(=) ={(d,d) € D?}

_ I(E) — {(O, f’ 8) c DObject xDFieldXDLocSet | (07 f) c S}, I(Q) — {(81,82) c
(DLoeSet)2 | s) C sy}, I(disjoint) = {(s1,82) € (DFe5¢)2 | 51 N sy = 0}
Definition 4 (Semantics). Given a Kripke structure K = (D,0,1,S,p), a
state s € S and a variable assignment 3 :V — D (where for every x: A € V we
have B(x) € D), we evaluate terms t € Trm%: to a value valk ¢ 5(t) € DA, for-

mulas ¢ € Fmax, to a truth value vali s g(@) € {tt, ff}, and updates u € Upd s,
to a state transformer valx s g(u) : S — S as defined below.

vali,s,p(x) = B(z)
valks,5(a) a)
Uallc,s’ﬁ(f(th..., f ’Ual;g 5.8) .,’l}dl}c’sﬁ(tn))

s(
I((t
lic,s,p(t I s =1t
valk s p(if (@) then(ty)else(tz)) = valic,s,(t1) of vali.s.5(¢)
valic,s,3(t2) otherwise

vali s p({u}t) = valk o p(t), where s" = valx 5 3(u)(s)
tt

Ir

vals,p(true) =
valk s p(false) =
valic,s,3(p(t1, ..., tn)) = tt iff (valk s (t1),. .., valx s g(tn)) € I(p)
vali,s,5(mp) = tt iff valk,s,5(¢) —ﬁ
vali,s,5(1 A p2) = tt iff [f & {vali,s,5(¢1), valics,5(02)}
) =
) =
) =

(
valic,s,3(p1 V @2 tt iff tt € {valk s,5(¢1), vali s 5(p2)}
Ual)c s B(@l — P2 al}C,s,B(_‘Wl \Y QDQ)
val,s,5(p1 <> p2) = vali,s,5(1 = P2 A p2 = 1)

vali s (VA z;) = tt iff ff & {valg s pa(p) | d € DA}
vali s, 5(FAz;) = tt iff tt € {valk 5 5a(p) | d € DAY
)

) =
) = (
vals 5([plp) = tt iff ff & {valx,s,5(¢) | (s,5) € p(p)}
vali,s,5((P)p) = tt iff tt € {valic,s () | (s,5) € p(p)}
valk s,5({utp) = valk s p(p), where s = valic s p(u)(s)

vl (3 = 1)(s')(b) = {val’cvsw@’(t) fo—a

s'(b) otherwise
foralls' €S, b€ PV
vali s,5(u1 || u2)(s") = valk s g(u2)(vali, s g(u1)(s")) for all s € S
vali,s,p({ur tuz) = vali s 5(uz), where s = valic s p(u1)(s)

We sometimes write (K, s,) |= ¢ instead of valx s g(p) = tt. A formula ¢ €
Fmay is called logically valid, in symbols = ¢, iff (K,s,8) = ¢ for all Kripke
structures IC, all states s € S, and all variable assignments (3.

The semantics of a sequent I' = A is the same as that of a formula NT' —

V A, where \/[{e1,...,on}t =p1 V-V, and N{o1,...,ont =01 A App.

1.3 Observations

The propositions below are used as assumptions in the proofs in Sect. 2. We do
not prove them, but consider them obvious.

Proposition 1 (Non-occurring program variables). For all Kripke struc-
tures K, all states s,s'" € S, all variable assignments 3, and all t € Trmy U
Fmayx U Upds,: if for all program variables a € PV that syntactically occur in t
we have s(a) = s'(a), then we also have valk s g(t) = valx o (t).

Note that a program variable b not occurring in ¢ can play a role in evaluating
t, namely if ¢ contains a program which calls a method that in turn manipulates
b. Still, in a Java program a called method can never read the value of a local
variable b before assigning to b; thus, the initial value of b as defined by s or
s’ does not matter. We consider heap € PV to implicitly occur in field access
expressions o.f, in array access expressions a[i], and in method calls o.m(...).

Proposition 2 (Non-occurring function and predicate symbols). For all
Kripke structures K = (D,6,1,S,p) and K' = (D,0,1', S, p) differing only in the
interpretation functions I vs. I', all states s € S, all variable assignments (3,
and all t € Trmx U Fmax U Updx: if for all function and predicate symbols
f € FUP that syntactically occur in t we have I(f) = I'(f), then we also have
val,s,3(t) = valir 5 5(t).

Proposition 3 (Overwritten program variables). For all Kripke structures
K, all states s,s" € S, all variable assignments 8, all updates (a :=t") € Upd s,

where a does not occur int', allt € Trmx U Fmax U Updy,, all ¢ € Fmay, and
all program fragments p: if for all program variables b € PV \ {a} which occur
int or ¢ we have s(b) = s'(b), then we also have:

vali s.5({a:=t'}t) = valk s p({a :=t'}t)
valisp([a = t'; plo) = valx,s p([a = t'; plp)
vali,s5((a = 5 p)p) = valc,s p((a = t'; p)o)
Prop. 3 holds because the initial value of the program variable a is overwritten

by the preceding update or assignment, and thus cannot influence the evaluation
of t or ¢, respectively.

Proposition 4 (Method calls). Let p be a method call statement (res =
this.m(py,...,p,);), let hPre: Heap € PV, let reachableState € Fmayx be as in
Def. 3 of [2], let reachableState’ € Fmasy be as in Def. 4, and let noDeallocs €
Fmay be as in Def. 7. Then the following holds:

reachableState — {hPre := hea reachableState’ A noDeallocs
PslP

Prop. 4 is guaranteed by the semantics of Java.

2 Proofs

2.1 Preparation

Lemma 1 (Relation between frame and anon). Let mod € Trm%e5¢,

hPre: Heap € PV, frame € Fmay be as in Def. 8 of [2], noDeallocs € Fmay be
as in Def. 7, and let frame’ € Fmayx be the formula

heap = anon(hPre, {heap := hPre}mod, heap).
Then the following holds:
= (frame A noDeallocs) <> frame'

Proof. Let I be a Kripke structure, s € S be a state, § be a variable as-
signment, h = s(heap), b’ = walk s g(anon(hPre, {heap := hPre}mod, heap),
sP™ = valk s,g(heap := hPre)(s), hP™ = sP"™(heap), mP™ = valk s g(mod),
fi = I(freshLocs)(h), and fi’™ = I(freshLocs)(h?™). Note that h?™ = s(hPre).
By definition of I(anon), we know that the following holds for all o € DObect,
f c DField:

h(o, f) if ((0, f) € mP™ and f # I(created))
hl(ov f) = or (07 f) € fir"e (1)

h?™ (o, f) otherwise

We first show that (K, s,) = frame A noDeallocs implies that (K,s,3) E
frame’, and then the other way round.

1. Let o € DOWect f ¢ DField Using the definitions of frame, noDeallocs and
frame’, we assume

(0, f) € m"™ U fIF™ or h(o, f) = h*"(o, f) (2)
if (o, f) € fi, then (o, f) € fi?™ (3)
h(I(null), I(created)) = hP™(I(null), I (created)) (4)

and aim to show
h'(o, f) = h(o. f). ()
From (2) we get that one of the following three cases must apply:

— (o, f) € mPre. If f # I(created) or (o, f) € fi’, then (5) immediately
follows from (1). We thus assume

f = I(created) (6)
(0, f) & fIF"™. (7)

Now, (1) yields
(o, f) = h*™(o, f). (8)

If o = I(null), then we get from (4) that h(o, f) = h?™(o, f), which
together with (8) immediately yields (5). Thus we assume

0 # I(null). 9)
From (3) and (7) we get that

(0,f) & fl.

This, (9), and the definition of I(freshLocs) imply h(o, I(created)) = tt.
Analogously, (7) and (9) imply h?™(o,I(created)) = tt. Together, we
have h(o, I(created)) = h¥" (o, I(created)), which because of (6) can be
written as h(o, f) = h?™ (o, f). We combine this with (8) to get (5).

— (o, f) € fi’™. Then (1) immediately yields (5).

— h(o, f) = hP™(o, f). If (o, f) € mP™ or (o, f) € fi’™, then the proof
proceeds as for the respective case above. Otherwise, (1) guarantees that
b (o, f) = hP"™(o, f), and thus we have (5).

2. Let o € DO%Weet| f ¢ DField We assume (5), and show first (2), then (3),

and finally (4).

(a) If (o, f) € mP™ or (o, f) € fIP™, then (2) holds trivially. Otherwise, (5)
and (1) imply h(o, f) = h?™(o, f), which also implies (2).

(b) We prove (3) by contradiction: we assume that (o, f) € fI\fI*". By defini-
tion of I(freshLocs), this means that o # I(null), that h(o, I(created)) =
ff, and that h?™(o,I(created)) = tt. From (5) and (1) we get that
h(o,I(created)) = hP™ (o, I(created)). Together, we have ff = tt.

(¢) The definition of I(freshLocs) tells us that (I(null), I(created)) & fI¥™.
Thus, (5) and (1) immediately guarantee (4). O

2.2 Method Contracts

Theorem 1 (Soundness of useMethodContract). Let I, A € 2fmaz 4 €
Upds, [-] € {[1.("}, r € PV, o € Trmy, the method m, py,...,p, € Trms,
w € Fmay, A € T, mct = (m, this, (py,...,p,),res,hPre, pre, post, mod,),
reachableState, reachableState’ € Fmayx, v,w € Upds., and h,r' € F all be as in

Def. 4 of [2]. If

E I' = {u}{w}(pre A reachableState), A (10)
= I' = {u}{w}{hPre := heap}{v}(post A reachableState’ — [...Jp), A (11)

and if for all types B T A we have
= CorrectMethodContract(mct, B), (12)

then the following holds:

EI= {u}[r = o.m(p],...,p,); ...], A.

Proof. Let (10), (11) and (12) hold. Let furthermore KX = (D,4,1,S,p) be a
Kripke structure, s € S, and 3 be a variable assignment. Our goal is to show

(K,s,8) E I'= {u}[r = o.m(p],...,p.); ...Jp, A.

If there is v € I" with valk s g(y) = ff or if there is § € A with valk s g(0) = tt,
then this is trivially true. We therefore assume that

(K.5,8) = \I'U=2), (13)

and aim to show that (K, s, 8) E {u}[r = o.m(p],...,p,); -..Je
Let s1 = valk,s,3(u)(s). Then our goal is to show

(K,Sl,ﬁ)): [[I' = o.m(p’l,,,,,p;);]]SO

Let so = valk,s, g(w)(s1). Because of the definition of w, it holds for all a €
PV \ {this,p;,...,p,} that s1(a) = sa(a). Since by Def. 4 neither this nor
Pis-- ., P, occur in the above formula, Prop. 1 tells us that the interpretation of
this formula is the same in s; and s5. It is therefore sufficient if we show

(K.s2,8) F [r = o.m(py,...,pp)5 - Jo

The definition of w and Prop. 1 ensure that sy(this) = valk s, (o), and that

s2(py) = valk,s,.58(P)), - s2(p,) = valk s, 5(p). Thus, we can aim to prove
the formula below instead of the formula above:

(K, s2,0) = [r = this.m(py,...,p,); --.Je.

Since by Def. 4 the program variable res does not occur in the above formula,
the Java semantics allows us to instead show

(K, s2,8) = [res = this.m(py,...,p,); ¥ = res; ...Jp.

Let s3 = valk s, g(hPre := heap)(s2). Since by Def. 4 the program variable hPre
does not occur in the above formula, by Prop. 1 it is sufficient if we prove

(K,s3,8) = [res = this.m(py,...,p,); ¥ = res; ...Je. (thm1-goal)
We combine (13) with (10) to get
(K, s, 8) E {u}{w}(pre A reachableState),
which by definition of so is the same as
(K, s2,8) [= pre A reachableState. (14)
Let C' = 6(s2(this)). This means that
(K, s2,0) = exactInstancec(this). (15)

Since a(this) = A, we have C C A because of well-typedness. Instantiating
(12) with C and so yields

(K, s2, 8) = pre A reachableState A exactInstancec(this)
— {hPre := heap}[res = this.m(p,,...,p,);] (post A frame)

where [-]" is (-) if [-] is (-), and where [-]’ is either () or [-] otherwise. Together
with (14) and (15), this implies

(K, s2, 8) = {hPre := heap}[res = this.m(p;,...,p,) ;] (post A frame).
With the definition of sz, this becomes
(K, ss3,B) | [res = this.m(py,...,p,) ;] (post A frame). (16)

If there is no s4 € S such that (s3,s4) € p(res = this.m(py,...,p,);) (e,
if the method call does not terminate when started in sg), then (16) implies that
[[] must be [-], and thus [-] also must be [-]. Then, (thml-goal) holds trivially,
because there is no final state which would have to satisfy .

We can thus find s4 € S such that (s3,s4) € p(res = this.m(py,...,p,) ;).
As our programs are deterministic, s4 is the only such state. Our proof goal
(thm1-goal) now becomes

(K,84,8) E [r = res; ..] (thm1-goal’)
From (16) and the definition of s4 we get
(K, s4,8) & post A frame. (17)

Let noDeallocs € Fmasx be as in Def. 7. Prop. 4 tells us that

(K, s2,) [= reachableState
— {hPre := heap}[res = this.m(p,,...,p,;)]
(reachableState’ A noDeallocs).

Together with (14) and the definition of s4, this turns into
(K, s4, B) |= reachableState’ A noDeallocs. (18)

Let K' = (D,6,I',S, p) be a Kripke structure identical to K, except that
I'(h) = s4(heap), and except that I’(r') = s4(res). Since by Def. 4 the symbols
h and r" do not occur in I nor in A, we get from (13) that (K', s, 8) = A(I'U-A).
This and (11) imply

(K, s5,8) = {u}{w}{hPre := heap}{v}(post A reachableState’ — [...]¢).

As h and r’ do not occur in u, in w or in hPre := heap, the above and Prop. 2
imply that

(K', 53, 8) = {v}(post A reachableState’ — [...]Jp).

Let s} = valgs s4,8(v)(s3). Then the above implies

(K', sy, B) |= post A reachableState’ — [.. Jp.
Since h and r’ do not occur in the above formula, by Prop. 2 we get that

(K, s}y, B) = post A reachableState’ — [..] (19)

Given the definition of s4, the semantics of Java tells us that for all a €

PV \ {heap, res} we have s3(a) = s4(a). Similarly, the definition of s} implies
that for all a € PV \ {heap, r,res} we have s3(a) = s}(a). Together, we have

for all a € PV \ {heap,r,res} : s)(a) = s4(a). (20)

The definition of s)j also guarantees that

sy (heap) = valxs s, p(anon(heap, mod, h)) (21)
sy(xr) =I'(r") = s4(res) (22)
sy(res) =I'(r") = sy(res) (23)

Using (17) and (18), Lemma 1 tells us that
(K, s4,0) |= heap = anon(hPre, {heap := hPre}mod, heap),
which we can also express as
s4(heap) = valk s, s(anon(hPre, {heap := hPre}mod, heap)).

Since by Def. 4 the function symbols i and 7' do not occur in the above formula,
and since K’ is otherwise identical to K, Prop. 2 yields

s4(heap) = valks s, g(anon(hPre, {heap := hPre}mod, heap)).

10

As we defined K’ such that I'(h) = s4(heap), this implies
s4(heap) = valk: s, g(anon(hPre, {heap := hPre}mod, h)).

Since s3 and s4 are identical except for heap and res, and since res does
not occur in {heap := hPre}mod, Prop. 3 tells us that valg s, g({heap :=
hPre}mod) = valk s, s({heap := hPre}mod). As heap and res do not occur
in the other arguments of anon, we can transform the statement above into

s4(heap) = valk: s, g(anon(hPre, {heap := hPre}mod, h)).

The definition of s3 implies s3(heap) = s3(hPre). Thus, the update heap := hPre
has no effect in s3. This allows simplifying the above into

sa(heap) = valxs s, g(anon(hPre, mod, h)),
and replacing hPre with heap to get
s4(heap) = valk: s, g(anon(heap, mod, h)).
This, together with (21), implies that s4(heap) = s)(heap). Combining this

result with (20) and (23) yields that s4 and s} differ at most in r. Since by
Def. 4 the program variable r does not occur in post, (17) and Prop. 1 imply

(K, sy, B) = post. (24)
As r also does not occur in reachableState’, we get from (18) that
(K, s}, B) = reachableState’.
This, (24) and (19) together imply
(K50 8) = I .

By (22) and (23), we know that s} (res) = s} (r). Thus, the Java semantics allows
us to rewrite the above statement into

(K,s,8) E[r = res;...Je.
Finally, as s4 and s} differ at most in r, Prop. 3 tells us that
(K.51,8) =[x = res; ..]p,

and this is property (thml-goal’) which we aimed to show. O

2.3 Dependency Contracts

Theorem 2 (Soundness of useDependencyContract). Let I, A € 2fmas,
obs € FUP, h"® = (f1(f2(... (fm(R*®¢, ..), 0,7),.-.,P,) € Trmx, AeT,
depct = (obs,this, (py,...,p,),pre, dep), hPre € PV, mod = allLocs \ dep,

11

reachableState, frame, noDeallocs € Fmay, w € Upds,, guard, equal € Fmay all
be as in Def. 7 of [2]. If

E I, guard — equal = A (25)
and if for all types B C A we have
= CorrectDependencyContract(depct, B), (26)

then the following holds:
EI= A

Proof. Let (25) and (26) hold, and let K = (D, 0,1, S, p) be a Kripke structure.
Our goal is to show (K, s, 8) E I' = A. We will do a proof by contradiction and
assume that this does not hold, or in other words, that (K,s,8) E A(I" U-A)
holds. This and (25) imply (K,s,8) | —(guard — equal), which means that
(K, s,8) = guard A —equal. If we insert the definitions of guard and equal, and
distribute the update w over the conjuncts of guard, then this reads as

(K,s,8) = {w}{heap := h**¢}(pre A reachableState)
(K,s,8) = {w}{hPre := h’*¢ || heap := h™*“}(frame A noDeallocs)

(K,s,8) = ﬁ(obs(h"e“’, 0,P],---sPh) = obs(hb®se, 0,p},--- ,p;l)) (27)
Let s1 = vals,3(w)(s). Then the first two statements above become

(K, s1,8) = {heap := h***¢}(pre A reachableState)
(K, s1,8) = {hPre := h?**¢ | heap := " }(frame A noDeallocs)

Let s3%%¢ = valx s g(heap := h®®¢)(s1), s7°” = valk s 5(hPre := h%*¢ | heap :=
h™")(s1). Then the statements above turn into

(K, s%%¢, B) k= pre A reachableState (28)
(K, s7¢¥, B) &= frame A noDeallocs (29)
As this, p,,...,p,, do not occur in (27), and as s and s; are otherwise iden-

tical, we get by Prop. 1 that
(K, 51,B) = =(0bs(h™",0,p},...,p},) = 0bs(h***,0,p),...,P})),
which because of the definition of s; implies that
(K,s1,08) E ﬂ(obs(h"“"“’7 this,py,...,p,) = 0bs(h%**¢ this, p,,... ,pn)). (30)
Lemma 1 and (29) tell us that

(K, s7¢", B) = heap = anon(hPre, {heap := hPre}mod, heap),

12

which because of the definition of s} is the same as

(K, s1,8) = ™" = anon(h**°, {heap := h****}mod, h™*"). (31)
Let C' = §(s2%*¢(this)). This means that
(K, sb%¢ B) |= exactInstancec(this). (32)

Let K' = (D,6,I',S,p) be a Kripke structure identical to I, except that
I'(h) = valk, s, g(R™"). Since a(this) = A, we have C' C A. Instantiating (26)
with C, K’ and s2%°¢ yields

(K, sb35¢ B |= pre A reachableState A exactInstancec(this)
— obs(heap, this,py,...,p,)
= {heap := anon(heap, mod, h)}
obs(heap, this,p;,...,p,)-

As h does not occur in (28) or (32), we have (K, s%3%¢, B8) = pre AreachableState \
exactInstancec(this) by Prop. 2, which we can combine with the statement
above to get

(K', s8¢ B) |= obs(heap, this,py, Pn)
= {heap := anon(heap, mod, h)}obs(heap, this,p;,...,p,,)-

Applying the update yields
(K',sb25¢ B) |= obs(heap, this,p;,---,p,)
= obs(anon(heap, mod, h), this,py,...,p,,)-
Because of the definition of s%2%¢, this is the same as
(K',s1,B) = obs(h*¢ this,p;,...,p,)
= obs(anon(h’**®, {heap := h"***}mod, h), this,p,, . .,p,)-

By definition of K', we have I'(h) = walks, g(h"*"). As h does not occur
in h"" and as K and K’ are otherwise identical, Prop. 2 guarantees that
vali,s,,3(h™") = valir s, g(A""). Thus, we have I'(h) = valx 5, g(R™"), and
can thus write the statement above as

(K, 51, 8) = obs(h"*¢ this,p,,...,p,)
= obs(anon(h®®, {heap := h****}mod, h"°"), this,p,,...,Pp,)-

As the function symbol i does not occur in the above formula, ans as K and K’
are otherwise identical, Prop. 2 tells us that

(K, s1,8) = obs(h®*¢ this,p,,...,p,)
= obs(anon(h®®®, {heap := h"***}mod, h"*"), this,p,,...,Pp,)-
We can combine this with (31) to get
(K, s1,8) = obs(h*¢ this, P1s---,P,) = 0bs(h™®, this,py,...,DP,),
which contradicts (30). O

13

References

1. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification,
Second Edition. Addison-Wesley, 2000.

2. P. H. Schmitt, M. Ulbrich, and B. Weifl. Dynamic frames in Java dynamic logic. In
B. Beckert and C. Marché, editors, Proceedings, International Conference on Formal
Verification of Object-Oriented Software (FoVeOOS 2010), LNCS. Springer, 2010.
To appear.

14

	2010,11_Titelbl.pdf
	techrep_pdfa.pdf

