

Karlsruhe Reports in Informatics 2010,11

Edited by Karlsruhe Institute of Technology, Faculty of Informatics ISSN 2190-4782

Dynamic Frames in Java Dynamic Logic

Formalisation and Proofs

Peter H. Schmitt, Mattias Ulbrich, Benjamin Weiß

2010

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Please note:

This Report has been published on the Internet under the following Creative Commons License:

http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Dynamic Frames in Java Dynamic Logic Formalisation and Proofs

Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß

Karlsruhe Institute of Technology Institute for Theoretical Computer Science D-76128 Karlsruhe, Germany {pschmitt,mulbrich,bweiss}@ira.uka.de

Abstract. This report is a companion to the paper *Dynamic Frames* in *Java Dynamic Logic* [2]. It contains complementary formal definitions and proofs.

1 Formalisation

1.1 Syntax

Definition 1 (Signatures). A signature Σ is a tuple

$$\Sigma = (\mathcal{T}, \sqsubseteq, \mathcal{V}, \mathcal{PV}, \mathcal{F}, \mathcal{P}, \alpha, Prg)$$

where \mathcal{T} is a finite set of types; where \sqsubseteq is a partial order on \mathcal{T} called the subtype relation; where \mathcal{V} is a set of (logical) variables; where $\mathcal{P}\mathcal{V}$ is a set of program variables; where \mathcal{F} is a set of function symbols; where \mathcal{P} is a set of predicate symbols; where α is a static typing function such that $\alpha(v) \in \mathcal{T}$ for all $v \in \mathcal{V} \cup \mathcal{P}\mathcal{V}$, $\alpha(f) \in \mathcal{T}^* \times \mathcal{T}$ for all $f \in \mathcal{F}$, and $\alpha(p) \in \mathcal{T}^*$ for all $p \in \mathcal{P}$; and where Prg is some Java program, i.e., a set of Java classes and interfaces.

We use the notation v: A for $\alpha(v) = A$, the notation $f: A_1, \ldots, A_n \to A$ for $\alpha(f) = ((A_1, \ldots, A_n), A)$, and the notation $p: A_1, \ldots, A_n$ for $\alpha(p) = (A_1, \ldots, A_n)$.

We require that the following types, program variables, function and predicate symbols are present in every signature:

- Any, Boolean, Int, Null, LocSet, Field, Heap $\in \mathcal{T}$
- all reference types of Prg also appear as types in \mathcal{T} ; in particular, Object $\in \mathcal{T}$
- all local variables **a** of Prg with Java type T also appear as program variables $a: A \in \mathcal{PV}$, where A = T if T is a reference type, A = Boolean if T = boolean, and A = Int if T = int (in this paper we do not consider other primitive types, and we ignore integer overflows)
- heap: $Heap \in \mathcal{PV}$
- $cast_A : Any \rightarrow A \in \mathcal{F} \ (for \ every \ type \ A \in \mathcal{T})$
- TRUE, FALSE: Boolean $\in \mathcal{F}$
- select_A: Heap, Object, Field $\rightarrow A \in \mathcal{F}$ (for every type $A \in \mathcal{T}$)

```
- store: Heap, Object, Field, Any \rightarrow Heap \in \mathcal{F}
```

- anon: Heap, LocSet, Heap \rightarrow Heap $\in \mathcal{F}$
- null: $Null \in \mathcal{F}$
- all Java fields f of Prg also appear as constant symbols $f: Field \in \mathcal{F}$
- $arr: Int \rightarrow Field \in \mathcal{F}, created: Field \in \mathcal{F}$
- allLocs: LocSet $\in \mathcal{F}$, allFields: Object \rightarrow LocSet $\in \mathcal{F}$, freshLocs: Heap \rightarrow LocSet $\in \mathcal{F}$
- $-\dot{\emptyset}: LocSet \in \mathcal{F}, \quad singleton: Object, Field \rightarrow LocSet \in \mathcal{F}$
- $-\dot{\cup}, \dot{\cap}, \ \ : \ \mathit{LocSet}, \mathit{LocSet} \to \mathit{LocSet} \in \mathcal{F}$
- $exactInstance_A : Any \in \mathcal{P} \ (for \ every \ type \ A \in \mathcal{T})$
- wellFormed : Heap $\in \mathcal{P}$
- $\doteq : Any, Any \in \mathcal{P}$
- $\in : Object, Field, LocSet \in \mathcal{P}, \quad \subseteq, disjoint : LocSet, LocSet \in \mathcal{P}$

We also require that Boolean, Int, Object, LocSet \sqsubseteq Any; that for all $C \in \mathcal{T}$ with $C \sqsubseteq$ Object we have Null \sqsubseteq C; that for all types A, A' of Prg we have $A' \sqsubseteq A$ if and only if A' is a subtype of A in Prg; that the types explicitly mentioned in this definition are otherwise unrelated to each other wrt. \sqsubseteq ; and that the types Boolean, Int, Null, LocSet, Field and Heap do not have subtypes except themselves. Finally, we demand that V, PV, F and P each contain an infinite number of symbols of every typing.

For illustration, the type hierarchy is visualised in Fig. 1. In the following, we assume a fixed signature $\Sigma = (\mathcal{T}, \sqsubseteq, \mathcal{V}, \mathcal{PV}, \mathcal{F}, \mathcal{P}, \alpha, Prg)$.

Fig. 1. Type hierarchy

Definition 2 (Syntax). The sets Trm_{Σ}^{A} of terms of type A, Fma_{Σ} of formulas and Upd_{Σ} of updates are defined by the following grammar:

$$\mathit{Trm}_{\Sigma}^{A} ::= x \mid \mathbf{a} \mid f(\mathit{Trm}_{\Sigma}^{B'_{1}}, \dots, \mathit{Trm}_{\Sigma}^{B'_{n}}) \mid if(\mathit{Fma}_{\Sigma})then(\mathit{Trm}_{\Sigma}^{A})else(\mathit{Trm}_{\Sigma}^{A}) \mid \{\mathit{Upd}_{\Sigma}\}\mathit{Trm}_{\Sigma}^{A}$$

$$Fma_{\Sigma} ::= true \mid false \mid p(Trm_{\Sigma}^{B'_{1}}, \dots, Trm_{\Sigma}^{B'_{n}}) \mid \neg Fma_{\Sigma} \mid Fma_{\Sigma} \wedge Fma_{\Sigma} \wedge Fma_{\Sigma} \mid Fma_{\Sigma} \wedge Fm$$

$$\begin{split} \forall A\,x; Fma_{\varSigma} \ \big| \ \exists A\,x; Fma_{\varSigma} \ \big| \ [\mathtt{p}]Fma_{\varSigma} \ \big| \ \langle \mathtt{p} \rangle Fma_{\varSigma} \ \big| \ \{\mathit{Upd}_{\varSigma}\}Fma_{\varSigma} \\ \mathit{Upd}_{\varSigma} ::= \mathtt{a} := \mathit{Trm}_{\varSigma}^{A'} \ \big| \ \mathit{Upd}_{\varSigma} \ \big| \ \{\mathit{Upd}_{\varSigma} \ \big| \ \{\mathit{Upd}_{\varSigma} \} \mathit{Upd}_{\varSigma} \end{split}$$

for any variable $x: A \in \mathcal{V}$, any program variable $a: A \in \mathcal{PV}$, any function symbol $f: B_1, \ldots, B_n \to A \in \mathcal{F}$ and any predicate symbol $p: B_1, \ldots, B_n$ where $B'_1 \sqsubseteq B_1, \ldots, B'_n \sqsubseteq B_n$, any executable Java fragment p, and any type $A' \in \mathcal{T}$ with $A' \sqsubseteq A$.

A sequent is a syntactical construct $\Gamma \Rightarrow \Delta$, where $\Gamma, \Delta \in 2^{Fma_{\Sigma}}$ are finite sets of formulas.

We use infix notation for the binary symbols $\dot{\cup}$, $\dot{\cap}$, $\dot{\setminus}$, $\dot{=}$, and $\dot{\subseteq}$. Furthermore, we use the notation (A)t for $cast_A(t)$, the notation o.f for $select_A(\texttt{heap}, o, f)$ where $f: Field \in \mathcal{F}$ is a Java field, the notation a[i] for $select_A(\texttt{heap}, a, arr(i))$, the notation o.* for allFields(o), the notation $\{(o, f)\}$ for singleton(o, f), the notation $t_1 \neq t_2$ for $\neg(t_1 \doteq t_2)$, the notation $(o, f) \in s$ for $\dot{\in} (o, f, s)$, and the notation $(o, f) \not\in s$ for $\neg(o, f) \dot{\in} (s)$.

1.2 Semantics

Definition 3 (Kripke structures). A Kripke structure \mathcal{K} for a signature Σ is a tuple

$$\mathcal{K} = (\mathcal{D}, \delta, I, \mathcal{S}, \rho)$$

where \mathcal{D} is a set of semantical values called the domain; where δ is a dynamic typing function $\delta: \mathcal{D} \to \mathcal{T}$; where (using the definition $\mathcal{D}^A = \{d \in \mathcal{D} \mid \delta(d) \sqsubseteq A\}$) I is an interpretation function that maps every function symbol $f: A_1, \ldots, A_n \to A \in \mathcal{F}$ to a function $I(f): \mathcal{D}^{A_1}, \ldots, \mathcal{D}^{A_n} \to \mathcal{D}^A$ and every predicate symbol $p: A_1, \ldots, A_n \in \mathcal{P}$ to a relation $I(p) \subseteq \mathcal{D}^{A_1} \times \cdots \times \mathcal{D}^{A_n}$; where \mathcal{S} is the set of all states, which are functions $s \in \mathcal{S}$ mapping every program variable $\mathbf{a}: A \in \mathcal{PV}$ to a value $s(a) \in \mathcal{D}^A$; and where ρ is a function associating with every executable Java fragment \mathbf{p} in the context of Prg a transition relation $\rho(\mathbf{p}) \subseteq \mathcal{S}^2$ such that $(s_1, s_2) \in \rho(\mathbf{p})$ iff \mathbf{p} , when started in s_1 , terminates normally in s_2 (according to the Java semantics [1]). We consider Java programs to be deterministic, so for all program fragments \mathbf{p} and all $s_1 \in \mathcal{S}$, there is at most one s_2 such that $(s_1, s_2) \in \rho(\mathbf{p})$.

We require that every Kripke structure satisfies the following:

- $\begin{array}{l} \ \mathcal{D}^{Boolean} = \{tt, ff\}, \ \mathcal{D}^{Int} = \mathbb{Z}, \ \mathcal{D}^{Null} = \{I(\mathtt{null})\}, \ \mathcal{D}^{LocSet} = 2^{\mathcal{D}^{Object} \times \mathcal{D}^{Field}}, \\ \mathcal{D}^{Heap} = \mathcal{D}^{Object} \times \mathcal{D}^{Field} \rightarrow \mathcal{D}^{Any} \end{array}$
- $-\delta(d) \neq T$ for all $d \in \mathcal{D}$, if $T \in \mathcal{T}$ represents an interface or an abstract class
- $\{d \in \mathcal{D} \mid \delta(d) = T\}$ is infinite for all $T \sqsubseteq Object, T \neq Null$ not representing an interface or an abstract class
- $-I(cast_A)(d) = d \text{ for all } d \in \mathcal{D}^A$
- -I(TRUE) = tt, I(FALSE) = ff
- $I(select_A)(h, o, f) = I(cast_A)(h(o, f))$ for all $h \in \mathcal{D}^{Heap}$, $o \in \mathcal{D}^{Object}$, $f \in \mathcal{D}^{Field}$

$$-I(store)(h, o, f, d)(o', f') = \begin{cases} d & \text{if } o = o' \text{ and } f = f' \\ h(o', f') & \text{otherwise} \end{cases}$$

$$for all \ h \in \mathcal{D}^{Heap}, \ o, o' \in \mathcal{D}^{Object}, \ f, f' \in \mathcal{D}^{Field}, \ d \in \mathcal{D}^{Any} \end{cases}$$

$$-I(anon)(h, s, h')(o, f) = \begin{cases} h'(o, f) & \text{if } ((o, f) \in s \text{ and } f \neq I(created)) \\ or \ (o, f) \in I(freshLocs)(h) \end{cases}$$

$$h(o, f) & \text{otherwise} \end{cases}$$

$$for all \ h, h' \in \mathcal{D}^{Heap}, \ s \in \mathcal{D}^{LocSet}, \ o \in \mathcal{D}^{Object}, \ f \in \mathcal{D}^{Field} \end{cases}$$

$$- let \ UniqueFunctions \subseteq \mathcal{F} \ be \ the \ set \ consisting \ of \ the \ constant \ symbols \ representing \ Java \ fields, \ of \ arr \ and \ of \ created; \ then \ we \ require \ that \ for \ all \ f, g \in UniqueFunctions \ the \ function \ I(f) \ is \ injective, \ and \ that \ the \ ranges \ of \ the \ functions \ I(f) \ and \ I(g) \ are \ disjoint.$$

$$-I(allLocs) = \mathcal{D}^{Object} \times \mathcal{D}^{Field}, \ I(allFields)(o) = \{(o, f) \mid f \in \mathcal{D}^{Field}\}, \ I(freshLocs)(h) = \{(o, f) \in I(allLocs) \mid o \neq I(null), h(o, I(created)) = ff\}$$

$$-I(\dot{\emptyset}) = \emptyset, \ I(singleton)(o, f) = \{(o, f)\}, \ I(\dot{\cup}) = \cup, \ I(\dot{\cap}) = \cap, \ I(\dot{\setminus}) = \setminus I(\text{wellFormed}) = \{h \in \mathcal{D}^{Heap} \mid for \ all \ o \in \mathcal{D}^{Object}, \ f \in \mathcal{D}^{Field}: \ if \ h(o, f) \in \mathcal{D}^{Object}, \ then \ h(o, f) = I(null) \ or \ h(h(o, f), I(created)) = tt\}$$

$$-I(\dot{=}) = \{(d, d) \in \mathcal{D}^2\}$$

$$-I(\dot{=}) = \{(d, d) \in \mathcal{D}^2\}$$

$$-I(\dot{=}) = \{(d, d) \in \mathcal{D}^2\}$$

$$-I(\dot{=}) = \{(d, d) \in \mathcal{D}^2\}, \ I(disjoint) = \{(s_1, s_2) \in (\mathcal{D}^{LocSet})^2 \mid s_1 \cap s_2 = \emptyset\}$$

Definition 4 (Semantics). Given a Kripke structure $\mathcal{K} = (\mathcal{D}, \delta, I, \mathcal{S}, \rho)$, a state $s \in \mathcal{S}$ and a variable assignment $\beta : \mathcal{V} \to \mathcal{D}$ (where for every $x : A \in \mathcal{V}$ we have $\beta(x) \in \mathcal{D}^A$), we evaluate terms $t \in Trm_{\Sigma}^A$ to a value $val_{\mathcal{K},s,\beta}(t) \in \mathcal{D}^A$, formulas $\varphi \in Fma_{\Sigma}$ to a truth value $val_{\mathcal{K},s,\beta}(\varphi) \in \{tt,ff\}$, and updates $u \in Upd_{\Sigma}$ to a state transformer $val_{\mathcal{K},s,\beta}(u) : \mathcal{S} \to \mathcal{S}$ as defined below.

$$val_{\mathcal{K},s,\beta}(x) = \beta(x)$$

$$val_{\mathcal{K},s,\beta}(\mathbf{a}) = s(\mathbf{a})$$

$$val_{\mathcal{K},s,\beta}(f(t_1,\ldots,t_n)) = I(f)(val_{\mathcal{K},s,\beta}(t_1),\ldots,val_{\mathcal{K},s,\beta}(t_n))$$

$$val_{\mathcal{K},s,\beta}(if(\varphi)then(t_1)else(t_2)) = \begin{cases} val_{\mathcal{K},s,\beta}(t_1) & \text{if } val_{\mathcal{K},s,\beta}(\varphi) = tt \\ val_{\mathcal{K},s,\beta}(t_2) & \text{otherwise} \end{cases}$$

$$val_{\mathcal{K},s,\beta}(\{u\}t) = val_{\mathcal{K},s',\beta}(t), \text{ where } s' = val_{\mathcal{K},s,\beta}(u)(s)$$

$$val_{\mathcal{K},s,\beta}(true) = tt$$

$$val_{\mathcal{K},s,\beta}(false) = ff$$

$$val_{\mathcal{K},s,\beta}(f(t_1,\ldots,t_n)) = tt \text{ iff } (val_{\mathcal{K},s,\beta}(t_1),\ldots,val_{\mathcal{K},s,\beta}(t_n)) \in I(p)$$

$$val_{\mathcal{K},s,\beta}(\varphi) = tt \text{ iff } val_{\mathcal{K},s,\beta}(\varphi) = ff$$

$$val_{\mathcal{K},s,\beta}(\varphi_1 \wedge \varphi_2) = tt \text{ iff } ff \notin \{val_{\mathcal{K},s,\beta}(\varphi_1),val_{\mathcal{K},s,\beta}(\varphi_2)\}$$

$$val_{\mathcal{K},s,\beta}(\varphi_1 \vee \varphi_2) = tt \text{ iff } tt \in \{val_{\mathcal{K},s,\beta}(\varphi_1),val_{\mathcal{K},s,\beta}(\varphi_2)\}$$

$$val_{\mathcal{K},s,\beta}(\varphi_1 \to \varphi_2) = val_{\mathcal{K},s,\beta}(\neg \varphi_1 \vee \varphi_2)$$

$$val_{\mathcal{K},s,\beta}(\varphi_1 \leftrightarrow \varphi_2) = val_{\mathcal{K},s,\beta}(\varphi_1 \to \varphi_2 \wedge \varphi_2 \to \varphi_1)$$

$$val_{\mathcal{K},s,\beta}(\forall A\,x;\varphi) = tt \; iff \; ff \not\in \{val_{\mathcal{K},s,\beta_x^d}(\varphi) \mid d \in \mathcal{D}^A\}$$

$$val_{\mathcal{K},s,\beta}(\exists A\,x;\varphi) = tt \; iff \; tt \in \{val_{\mathcal{K},s,\beta_x^d}(\varphi) \mid d \in \mathcal{D}^A\}$$

$$val_{\mathcal{K},s,\beta}([\mathbf{p}]\varphi) = tt \; iff \; ff \not\in \{val_{\mathcal{K},s',\beta}(\varphi) \mid (s,s') \in \rho(\mathbf{p})\}$$

$$val_{\mathcal{K},s,\beta}(\langle \mathbf{p}\rangle\varphi) = tt \; iff \; tt \in \{val_{\mathcal{K},s',\beta}(\varphi) \mid (s,s') \in \rho(\mathbf{p})\}$$

$$val_{\mathcal{K},s,\beta}(\{u\}\varphi) = val_{\mathcal{K},s',\beta}(\varphi), \; where \; s' = val_{\mathcal{K},s,\beta}(u)(s)$$

$$val_{\mathcal{K},s,\beta}(\mathbf{a} := t)(s')(\mathbf{b}) = \begin{cases} val_{\mathcal{K},s,\beta}(t) & \text{if } \mathbf{b} = \mathbf{a} \\ s'(\mathbf{b}) & \text{otherwise} \end{cases}$$

$$for \; all \; s' \in \mathcal{S}, \; \mathbf{b} \in \mathcal{PV}$$

$$val_{\mathcal{K},s,\beta}(u_1 \parallel u_2)(s') = val_{\mathcal{K},s,\beta}(u_2)(val_{\mathcal{K},s,\beta}(u_1)(s')) \; for \; all \; s' \in \mathcal{S}$$

$$val_{\mathcal{K},s,\beta}(\{u_1\}u_2) = val_{\mathcal{K},s',\beta}(u_2), \; where \; s' = val_{\mathcal{K},s,\beta}(u_1)(s)$$

We sometimes write $(K, s, \beta) \models \varphi$ instead of $val_{K,s,\beta}(\varphi) = tt$. A formula $\varphi \in Fma_{\Sigma}$ is called logically valid, in symbols $\models \varphi$, iff $(K, s, \beta) \models \varphi$ for all Kripke structures K, all states $s \in S$, and all variable assignments β .

The semantics of a sequent $\Gamma \Rightarrow \Delta$ is the same as that of a formula $\Lambda \Gamma \rightarrow V \Delta$, where $V \{\varphi_1, \ldots, \varphi_n\} = \varphi_1 \vee \cdots \vee \varphi_n$, and $\Lambda \{\varphi_1, \ldots, \varphi_n\} = \varphi_1 \wedge \cdots \wedge \varphi_n$.

1.3 Observations

The propositions below are used as assumptions in the proofs in Sect. 2. We do not prove them, but consider them obvious.

Proposition 1 (Non-occurring program variables). For all Kripke structures K, all states $s, s' \in S$, all variable assignments β , and all $t \in Trm_{\Sigma} \cup Fma_{\Sigma} \cup Upd_{\Sigma}$: if for all program variables $a \in PV$ that syntactically occur in t we have s(a) = s'(a), then we also have $val_{K,s,\beta}(t) = val_{K,s',\beta}(t)$.

Note that a program variable b not occurring in t can play a role in evaluating t, namely if t contains a program which calls a method that in turn manipulates b. Still, in a Java program a called method can never read the value of a local variable b before assigning to b; thus, the initial value of b as defined by s or s' does not matter. We consider $\mathtt{heap} \in \mathcal{PV}$ to implicitly occur in field access expressions $\mathtt{o.f}$, in array access expressions $\mathtt{a[i]}$, and in method calls $\mathtt{o.m}(\ldots)$.

Proposition 2 (Non-occurring function and predicate symbols). For all Kripke structures $K = (\mathcal{D}, \delta, I, \mathcal{S}, \rho)$ and $K' = (\mathcal{D}, \delta, I', \mathcal{S}, \rho)$ differing only in the interpretation functions I vs. I', all states $s \in \mathcal{S}$, all variable assignments β , and all $t \in Trm_{\Sigma} \cup Fma_{\Sigma} \cup Upd_{\Sigma}$: if for all function and predicate symbols $f \in \mathcal{F} \cup \mathcal{P}$ that syntactically occur in t we have I(f) = I'(f), then we also have $val_{K,s,\beta}(t) = val_{K',s,\beta}(t)$.

Proposition 3 (Overwritten program variables). For all Kripke structures K, all states $s, s' \in S$, all variable assignments β , all updates $(a := t') \in Upd_{\Sigma}$

where a does not occur in t', all $t \in Trm_{\Sigma} \cup Fma_{\Sigma} \cup Upd_{\Sigma}$, all $\varphi \in Fma_{\Sigma}$, and all program fragments p: if for all program variables $b \in \mathcal{PV} \setminus \{a\}$ which occur in t or φ we have s(b) = s'(b), then we also have:

$$\begin{aligned} val_{\mathcal{K},s,\beta}(\{\mathtt{a}:=t'\}t) &= val_{\mathcal{K},s',\beta}(\{\mathtt{a}:=t'\}t) \\ val_{\mathcal{K},s,\beta}([\mathtt{a}=t';\;\mathtt{p}]\varphi) &= val_{\mathcal{K},s',\beta}([\mathtt{a}=t';\;\mathtt{p}]\varphi) \\ val_{\mathcal{K},s,\beta}(\langle\mathtt{a}=t';\;\mathtt{p}\rangle\varphi) &= val_{\mathcal{K},s',\beta}(\langle\mathtt{a}=t';\;\mathtt{p}\rangle\varphi) \end{aligned}$$

Prop. 3 holds because the initial value of the program variable **a** is overwritten by the preceding update or assignment, and thus cannot influence the evaluation of t or φ , respectively.

Proposition 4 (Method calls). Let p be a method call statement (res = this.m(p₁,...,p_n);), let hPre: Heap $\in \mathcal{PV}$, let reachableState $\in Fma_{\Sigma}$ be as in Def. 3 of [2], let reachableState' $\in Fma_{\Sigma}$ be as in Def. 4, and let noDeallocs $\in Fma_{\Sigma}$ be as in Def. 7. Then the following holds:

$$\models reachableState \rightarrow \{\mathtt{hPre} := \mathtt{heap}\}[\mathtt{p}](reachableState' \land noDeallocs)$$

Prop. 4 is guaranteed by the semantics of Java.

2 Proofs

2.1 Preparation

Lemma 1 (Relation between frame and anon). Let $mod \in Trm_{\Sigma}^{LocSet}$, hPre: $Heap \in \mathcal{PV}$, frame $\in Fma_{\Sigma}$ be as in Def. 3 of [2], noDeallocs $\in Fma_{\Sigma}$ be as in Def. 7, and let frame' $\in Fma_{\Sigma}$ be the formula

$$heap \doteq anon(hPre, \{heap := hPre\} mod, heap).$$

Then the following holds:

$$\models (frame \land noDeallocs) \leftrightarrow frame'$$

Proof. Let \mathcal{K} be a Kripke structure, $s \in \mathcal{S}$ be a state, β be a variable assignment, $h = s(\text{heap}), \ h' = val_{\mathcal{K},s,\beta}(anon(\text{hPre},\{\text{heap} := \text{hPre}\}mod,\text{heap}), s^{pre} = val_{\mathcal{K},s,\beta}(\text{heap} := \text{hPre})(s), \ h^{pre} = s^{pre}(\text{heap}), \ m^{pre} = val_{\mathcal{K},s^{pre},\beta}(mod), \ fl = I(freshLocs)(h), \ and \ fl^{pre} = I(freshLocs)(h^{pre}). \ Note that \ h^{pre} = s(\text{hPre}). \ By definition of \ I(anon), \ we know that the following holds for all \ o \in \mathcal{D}^{Object}, \ f \in \mathcal{D}^{Field}$:

$$h'(o, f) = \begin{cases} h(o, f) & \text{if } ((o, f) \in m^{pre} \text{ and } f \neq I(created)) \\ & \text{or } (o, f) \in fl^{pre} \\ h^{pre}(o, f) & \text{otherwise} \end{cases}$$
 (1)

We first show that $(K, s, \beta) \models frame \land noDeallocs$ implies that $(K, s, \beta) \models frame'$, and then the other way round.

1. Let $o \in \mathcal{D}^{Object}$, $f \in \mathcal{D}^{Field}$. Using the definitions of frame, noDeallocs and frame', we assume

$$(o, f) \in m^{pre} \cup fl^{pre} \quad \text{or} \quad h(o, f) = h^{pre}(o, f)$$
 (2)

if
$$(o, f) \in \mathcal{H}$$
, then $(o, f) \in \mathcal{H}^{pre}$ (3)

$$h(I(\text{null}), I(created)) = h^{pre}(I(\text{null}), I(created))$$
 (4)

and aim to show

$$h'(o, f) = h(o, f). \tag{5}$$

From (2) we get that one of the following three cases must apply:

 $-(o, f) \in m^{pre}$. If $f \neq I(created)$ or $(o, f) \in fl^{pre}$, then (5) immediately follows from (1). We thus assume

$$f = I(created) (6)$$

$$(o, f) \notin fl^{pre}$$
. (7)

Now, (1) yields

$$h'(o,f) = h^{pre}(o,f). \tag{8}$$

If o = I(null), then we get from (4) that $h(o, f) = h^{pre}(o, f)$, which together with (8) immediately yields (5). Thus we assume

$$o \neq I(\text{null}).$$
 (9)

From (3) and (7) we get that

$$(o, f) \notin fl$$
.

This, (9), and the definition of I(freshLocs) imply h(o, I(created)) = tt. Analogously, (7) and (9) imply $h^{pre}(o, I(created)) = tt$. Together, we have $h(o, I(created)) = h^{pre}(o, I(created))$, which because of (6) can be written as $h(o, f) = h^{pre}(o, f)$. We combine this with (8) to get (5).

- $-(o, f) \in \mathbb{R}^{pre}$. Then (1) immediately yields (5).
- $-h(o,f)=h^{pre}(o,f)$. If $(o,f)\in m^{pre}$ or $(o,f)\in fl^{pre}$, then the proof proceeds as for the respective case above. Otherwise, (1) guarantees that $h'(o,f)=h^{pre}(o,f)$, and thus we have (5).
- 2. Let $o \in \mathcal{D}^{Object}$, $f \in \mathcal{D}^{Field}$. We assume (5), and show first (2), then (3), and finally (4).
 - (a) If $(o, f) \in m^{pre}$ or $(o, f) \in fl^{pre}$, then (2) holds trivially. Otherwise, (5) and (1) imply $h(o, f) = h^{pre}(o, f)$, which also implies (2).
 - (b) We prove (3) by contradiction: we assume that $(o, f) \in fl \setminus fl^{pre}$. By definition of I(freshLocs), this means that $o \neq I(\text{null})$, that h(o, I(created)) = ff, and that $h^{pre}(o, I(created)) = tt$. From (5) and (1) we get that $h(o, I(created)) = h^{pre}(o, I(created))$. Together, we have ff = tt.
 - (c) The definition of I(freshLocs) tells us that $(I(null), I(created)) \notin fl^{pre}$. Thus, (5) and (1) immediately guarantee (4).

2.2 Method Contracts

Theorem 1 (Soundness of useMethodContract). Let $\Gamma, \Delta \in 2^{Fma_{\Sigma}}, u \in Upd_{\Sigma}, [\![\cdot]\!] \in \{[\cdot], \langle \cdot \rangle\}, \mathbf{r} \in \mathcal{PV}, \mathbf{o} \in Trm_{\Sigma}, the method <math>\mathbf{m}, \mathbf{p}'_1, \ldots, \mathbf{p}'_n \in Trm_{\Sigma}, \varphi \in Fma_{\Sigma}, A \in \mathcal{T}, mct = (\mathbf{m}, \mathbf{this}, (\mathbf{p}_1, \ldots, \mathbf{p}_n), \mathbf{res}, \mathbf{hPre}, pre, post, mod, \tau), reachableState, reachableState' \in Fma_{\Sigma}, v, w \in Upd_{\Sigma}, and h, r' \in \mathcal{F} all be as in Def. 4 of [2]. If$

$$\models \Gamma \Rightarrow \{u\}\{w\}\{pre \land reachableState\}, \Delta \tag{10}$$

$$\models \Gamma \Rightarrow \{u\}\{w\}\{\text{hPre} := \text{heap}\}\{v\}(post \land reachableState' \rightarrow \llbracket...\rrbracket\varphi), \Delta \quad (11)$$

and if for all types $B \sqsubseteq A$ we have

$$\models CorrectMethodContract(mct, B),$$
 (12)

then the following holds:

$$\models \Gamma \Rightarrow \{u\} \llbracket \mathbf{r} = \mathbf{o.m}(\mathbf{p}'_1, \dots, \mathbf{p}'_n); \dots \rrbracket \varphi, \Delta.$$

Proof. Let (10), (11) and (12) hold. Let furthermore $\mathcal{K} = (\mathcal{D}, \delta, I, \mathcal{S}, \rho)$ be a Kripke structure, $s \in \mathcal{S}$, and β be a variable assignment. Our goal is to show

$$(\mathcal{K}, s, \beta) \models \Gamma \Rightarrow \{u\} \llbracket \mathbf{r} = \mathbf{o.m}(\mathbf{p}'_1, \dots, \mathbf{p}'_n); \dots \rrbracket \varphi, \Delta.$$

If there is $\gamma \in \Gamma$ with $val_{\mathcal{K},s,\beta}(\gamma) = ff$ or if there is $\delta \in \Delta$ with $val_{\mathcal{K},s,\beta}(\delta) = tt$, then this is trivially true. We therefore assume that

$$(\mathcal{K}, s, \beta) \models \bigwedge(\Gamma \cup \neg \Delta), \tag{13}$$

and aim to show that $(\mathcal{K}, s, \beta) \models \{u\} \llbracket \mathbf{r} = \mathsf{o.m}(\mathbf{p}'_1, \dots, \mathbf{p}'_n); \dots \rrbracket \varphi$. Let $s_1 = val_{\mathcal{K}, s, \beta}(u)(s)$. Then our goal is to show

$$(\mathcal{K}, s_1, \beta) \models \llbracket \mathbf{r} = \mathbf{o.m}(\mathbf{p}'_1, \dots, \mathbf{p}'_n); \dots \rrbracket \varphi.$$

Let $s_2 = val_{\mathcal{K}, s_1, \beta}(w)(s_1)$. Because of the definition of w, it holds for all $\mathbf{a} \in \mathcal{PV} \setminus \{\mathtt{this}, \mathtt{p}_1, \ldots, \mathtt{p}_n\}$ that $s_1(\mathbf{a}) = s_2(\mathbf{a})$. Since by Def. 4 neither this nor $\mathtt{p}_1, \ldots, \mathtt{p}_n$ occur in the above formula, Prop. 1 tells us that the interpretation of this formula is the same in s_1 and s_2 . It is therefore sufficient if we show

$$(\mathcal{K}, s_2, \beta) \models \llbracket \mathbf{r} = \mathbf{o.m}(\mathbf{p}_1', \dots, \mathbf{p}_n'); \dots \rrbracket \varphi.$$

The definition of w and Prop. 1 ensure that $s_2(\mathtt{this}) = val_{\mathcal{K}, s_2, \beta}(\mathtt{o})$, and that $s_2(\mathtt{p}_1) = val_{\mathcal{K}, s_2, \beta}(\mathtt{p}'_1), \ldots, s_2(\mathtt{p}_n) = val_{\mathcal{K}, s_2, \beta}(\mathtt{p}'_n)$. Thus, we can aim to prove the formula below instead of the formula above:

$$(\mathcal{K}, s_2, \beta) \models \llbracket \mathbf{r} = \mathtt{this.m}(\mathbf{p}_1, \dots, \mathbf{p}_n); \dots \rrbracket \varphi.$$

Since by Def. 4 the program variable res does not occur in the above formula, the Java semantics allows us to instead show

$$(\mathcal{K}, s_2, \beta) \models \llbracket \text{res = this.m}(p_1, \dots, p_n); \text{ r = res; } \dots \rrbracket \varphi.$$

Let $s_3 = val_{\mathcal{K}, s_2, \beta}(\text{hPre} := \text{heap})(s_2)$. Since by Def. 4 the program variable hPre does not occur in the above formula, by Prop. 1 it is sufficient if we prove

$$(\mathcal{K}, s_3, \beta) \models [res = this.m(p_1, \dots, p_n); r = res; \dots] \varphi.$$
 (thm1-goal)

We combine (13) with (10) to get

$$(\mathcal{K}, s, \beta) \models \{u\}\{w\}(pre \land reachableState),$$

which by definition of s_2 is the same as

$$(\mathcal{K}, s_2, \beta) \models pre \land reachableState. \tag{14}$$

Let $C = \delta(s_2(\mathtt{this}))$. This means that

$$(\mathcal{K}, s_2, \beta) \models exactInstance_C(\mathsf{this}). \tag{15}$$

Since $\alpha(\mathtt{this}) = A$, we have $C \sqsubseteq A$ because of well-typedness. Instantiating (12) with C and s_2 yields

$$(\mathcal{K}, s_2, \beta) \models \mathit{pre} \land \mathit{reachableState} \land \mathit{exactInstance}_C(\mathtt{this}) \\ \rightarrow \{\mathtt{hPre} := \mathtt{heap}\}[\![\mathtt{res} = \mathtt{this.m}(\mathtt{p}_1, \dots, \mathtt{p}_n) \, ;]\!]'(\mathit{post} \land \mathit{frame})$$

where $\llbracket \cdot \rrbracket'$ is $\langle \cdot \rangle$ if $\llbracket \cdot \rrbracket$ is $\langle \cdot \rangle$, and where $\llbracket \cdot \rrbracket'$ is either $\langle \cdot \rangle$ or $[\cdot]$ otherwise. Together with (14) and (15), this implies

$$(\mathcal{K}, s_2, \beta) \models \{\mathtt{hPre} := \mathtt{heap}\} \llbracket \mathtt{res} = \mathtt{this.m}(\mathtt{p}_1, \dots, \mathtt{p}_n) \, ; \rrbracket'(\mathit{post} \wedge \mathit{frame}).$$

With the definition of s_3 , this becomes

$$(\mathcal{K}, s_3, \beta) \models [res = this.m(p_1, \dots, p_n);]'(post \land frame).$$
 (16)

If there is no $s_4 \in \mathcal{S}$ such that $(s_3, s_4) \in \rho(\mathtt{res} = \mathtt{this.m}(\mathtt{p}_1, \ldots, \mathtt{p}_n);)$ (i.e., if the method call does not terminate when started in s_3), then (16) implies that $\llbracket \cdot \rrbracket'$ must be $\llbracket \cdot \rrbracket$, and thus $\llbracket \cdot \rrbracket$ also must be $\llbracket \cdot \rrbracket$. Then, (thm1-goal) holds trivially, because there is no final state which would have to satisfy φ .

We can thus find $s_4 \in \mathcal{S}$ such that $(s_3, s_4) \in \rho(\texttt{res} = \texttt{this.m}(\texttt{p}_1, \dots, \texttt{p}_n);)$. As our programs are deterministic, s_4 is the only such state. Our proof goal (thm1-goal) now becomes

$$(\mathcal{K}, s_4, \beta) \models \llbracket \mathbf{r} = \mathbf{res}; \dots \rrbracket \varphi.$$
 (thm1-goal')

From (16) and the definition of s_4 we get

$$(\mathcal{K}, s_4, \beta) \models post \land frame.$$
 (17)

Let $noDeallocs \in Fma_{\Sigma}$ be as in Def. 7. Prop. 4 tells us that

$$(\mathcal{K}, s_2, \beta) \models reachableState \\ \rightarrow \{\mathtt{hPre} := \mathtt{heap}\}[\mathtt{res} = \mathtt{this.m(p_1, \dots, p_n;)}] \\ (reachableState' \land noDeallocs).$$

Together with (14) and the definition of s_4 , this turns into

$$(\mathcal{K}, s_4, \beta) \models reachableState' \land noDeallocs.$$
 (18)

Let $\mathcal{K}' = (\mathcal{D}, \delta, I', \mathcal{S}, \rho)$ be a Kripke structure identical to \mathcal{K} , except that $I'(h) = s_4(\texttt{heap})$, and except that $I'(r') = s_4(\texttt{res})$. Since by Def. 4 the symbols h and r' do not occur in Γ nor in Δ , we get from (13) that $(\mathcal{K}', s, \beta) \models \bigwedge(\Gamma \cup \neg \Delta)$. This and (11) imply

$$(\mathcal{K}',s,\beta) \models \{u\}\{w\}\{\mathtt{hPre} := \mathtt{heap}\}\{v\}(post \land reachableState' \rightarrow \llbracket \ldots \rrbracket \varphi).$$

As h and r' do not occur in u, in w or in hPre := heap, the above and Prop. 2 imply that

$$(\mathcal{K}', s_3, \beta) \models \{v\}(post \land reachableState' \rightarrow \llbracket \dots \rrbracket \varphi).$$

Let $s'_4 = val_{\mathcal{K}', s_3, \beta}(v)(s_3)$. Then the above implies

$$(\mathcal{K}', s_4', \beta) \models post \land reachableState' \rightarrow \llbracket \dots \rrbracket \varphi$$
.

Since h and r' do not occur in the above formula, by Prop. 2 we get that

$$(\mathcal{K}, s_4', \beta) \models post \land reachableState' \rightarrow \llbracket \dots \rrbracket \varphi. \tag{19}$$

Given the definition of s_4 , the semantics of Java tells us that for all $a \in \mathcal{PV} \setminus \{\text{heap}, \text{res}\}$ we have $s_3(\mathtt{a}) = s_4(\mathtt{a})$. Similarly, the definition of s_4' implies that for all $\mathtt{a} \in \mathcal{PV} \setminus \{\text{heap}, \mathtt{r}, \text{res}\}$ we have $s_3(\mathtt{a}) = s_4'(\mathtt{a})$. Together, we have

for all
$$a \in \mathcal{PV} \setminus \{\text{heap}, r, \text{res}\} : s_4'(a) = s_4(a).$$
 (20)

The definition of s'_4 also guarantees that

$$s_4'(\mathsf{heap}) = val_{\mathcal{K}', s_3, \beta}(anon(\mathsf{heap}, mod, h)) \tag{21}$$

$$s_4'(\mathbf{r}) = I'(r') = s_4(\mathbf{res})$$
 (22)

$$s_4'(\mathsf{res}) = I'(r') = s_4(\mathsf{res}) \tag{23}$$

Using (17) and (18), Lemma 1 tells us that

$$(\mathcal{K}, s_4, \beta) \models \mathtt{heap} \doteq anon(\mathtt{hPre}, \{\mathtt{heap} := \mathtt{hPre}\} mod, \mathtt{heap}),$$

which we can also express as

$$s_4(\texttt{heap}) = val_{\mathcal{K}, s_4, \beta}(anon(\texttt{hPre}, \{\texttt{heap} := \texttt{hPre}\} mod, \texttt{heap})).$$

Since by Def. 4 the function symbols h and r' do not occur in the above formula, and since \mathcal{K}' is otherwise identical to \mathcal{K} , Prop. 2 yields

$$s_4(\texttt{heap}) = val_{\mathcal{K}',s_4,\beta}(anon(\texttt{hPre},\{\texttt{heap} := \texttt{hPre}\}mod,\texttt{heap})).$$

As we defined \mathcal{K}' such that $I'(h) = s_4(\text{heap})$, this implies

$$s_4(\mathtt{heap}) = val_{\mathcal{K}',s_4,\beta}(anon(\mathtt{hPre}, \{\mathtt{heap} := \mathtt{hPre}\} mod, h)).$$

Since s_3 and s_4 are identical except for heap and res, and since res does not occur in $\{\text{heap} := \text{hPre}\} mod$, Prop. 3 tells us that $val_{\mathcal{K},s_4,\beta}(\{\text{heap} := \text{hPre}\} mod) = val_{\mathcal{K},s_3,\beta}(\{\text{heap} := \text{hPre}\} mod)$. As heap and res do not occur in the other arguments of anon, we can transform the statement above into

$$s_4(\texttt{heap}) = val_{\mathcal{K}',s_3,\beta}(anon(\texttt{hPre},\{\texttt{heap} := \texttt{hPre}\}mod,h)).$$

The definition of s_3 implies $s_3(heap) = s_3(hPre)$. Thus, the update heap := hPre has no effect in s_3 . This allows simplifying the above into

$$s_4(\texttt{heap}) = val_{\mathcal{K}',s_3,\beta}(anon(\texttt{hPre},mod,h)),$$

and replacing hPre with heap to get

$$s_4(\texttt{heap}) = val_{\mathcal{K}',s_3,\beta}(anon(\texttt{heap},mod,h)).$$

This, together with (21), implies that $s_4(\text{heap}) = s'_4(\text{heap})$. Combining this result with (20) and (23) yields that s_4 and s'_4 differ at most in r. Since by Def. 4 the program variable r does not occur in post, (17) and Prop. 1 imply

$$(\mathcal{K}, s_4', \beta) \models post. \tag{24}$$

As r also does not occur in reachableState', we get from (18) that

$$(\mathcal{K}, s_4', \beta) \models reachableState'.$$

This, (24) and (19) together imply

$$(\mathcal{K}, s_4', \beta) \models \llbracket \ldots \rrbracket \varphi.$$

By (22) and (23), we know that $s'_4(res) = s'_4(r)$. Thus, the Java semantics allows us to rewrite the above statement into

$$(\mathcal{K}, s_4', \beta) \models \llbracket \mathbf{r} = \mathbf{res}; \ldots \rrbracket \varphi.$$

Finally, as s_4 and s'_4 differ at most in \mathbf{r} , Prop. 3 tells us that

$$(\mathcal{K}, s_4, \beta) \models \llbracket \mathbf{r} = \mathbf{res}; \ldots \rrbracket \varphi,$$

and this is property (thm1-goal') which we aimed to show.

2.3 Dependency Contracts

Theorem 2 (Soundness of useDependencyContract). Let $\Gamma, \Delta \in 2^{Fma_{\Sigma}}$, $obs \in \mathcal{F} \cup \mathcal{P}$, $h^{new} = (f_1(f_2(\dots(f_m(h^{base}, \dots))))$, $o, p'_1, \dots, p'_n) \in Trm_{\Sigma}$, $A \in \mathcal{T}$, $depct = (obs, this, (p_1, \dots, p_n), pre, dep)$, $hPre \in \mathcal{PV}$, $mod = allLocs \setminus dep$,

reachableState, frame, noDeallocs \in Fma $_{\Sigma}$, $w \in Upd_{\Sigma}$, guard, equal \in Fma $_{\Sigma}$ all be as in Def. 7 of [2]. If

$$\models \Gamma, \ guard \rightarrow equal \Rightarrow \Delta$$
 (25)

and if for all types $B \sqsubseteq A$ we have

$$\models CorrectDependencyContract(depct, B),$$
 (26)

then the following holds:

$$\models \Gamma \Rightarrow \Delta$$
.

Proof. Let (25) and (26) hold, and let $\mathcal{K} = (\mathcal{D}, \delta, I, \mathcal{S}, \rho)$ be a Kripke structure. Our goal is to show $(\mathcal{K}, s, \beta) \models \Gamma \Rightarrow \Delta$. We will do a proof by contradiction and assume that this does *not* hold, or in other words, that $(\mathcal{K}, s, \beta) \models \bigwedge(\Gamma \cup \neg \Delta)$ holds. This and (25) imply $(\mathcal{K}, s, \beta) \models \neg(guard \rightarrow equal)$, which means that $(\mathcal{K}, s, \beta) \models guard \land \neg equal$. If we insert the definitions of guard and equal, and distribute the update w over the conjuncts of guard, then this reads as

$$(\mathcal{K}, s, \beta) \models \{w\} \{ \text{heap} := h^{base} \} (pre \land reachableState)$$

$$(\mathcal{K}, s, \beta) \models \{w\} \{ \text{hPre} := h^{base} \mid | \text{heap} := h^{new} \} (frame \land noDeallocs)$$

$$(\mathcal{K}, s, \beta) \models \neg (obs(h^{new}, o, p'_1, \dots, p'_n) \equiv obs(h^{base}, o, p'_1, \dots, p'_n))$$

$$(27)$$

Let $s_1 = val_{K,s,\beta}(w)(s)$. Then the first two statements above become

$$(\mathcal{K}, s_1, \beta) \models \{\text{heap} := h^{base}\} (pre \land reachableState)$$

 $(\mathcal{K}, s_1, \beta) \models \{\text{hPre} := h^{base} \mid | \text{heap} := h^{new}\} (frame \land noDeallocs)$

Let $s_1^{base} = val_{\mathcal{K},s,\beta}(\mathtt{heap} := h^{base})(s_1), \ s_1^{new} = val_{\mathcal{K},s,\beta}(\mathtt{hPre} := h^{base} \parallel \mathtt{heap} := h^{new})(s_1).$ Then the statements above turn into

$$(\mathcal{K}, s_1^{base}, \beta) \models pre \land reachableState \tag{28}$$

$$(\mathcal{K}, s_1^{new}, \beta) \models frame \land noDeallocs \tag{29}$$

As this, p_1, \ldots, p_n do not occur in (27), and as s and s_1 are otherwise identical, we get by Prop. 1 that

$$(\mathcal{K}, s_1, \beta) \models \neg (obs(h^{new}, o, p'_1, \dots, p'_n) \equiv obs(h^{base}, o, p'_1, \dots, p'_n)),$$

which because of the definition of s_1 implies that

$$(\mathcal{K}, s_1, \beta) \models \neg \big(obs(h^{new}, \mathtt{this}, \mathtt{p}_1, \dots, \mathtt{p}_n) \equiv obs(h^{base}, \mathtt{this}, \mathtt{p}_1, \dots, \mathtt{p}_n)\big). \eqno(30)$$

Lemma 1 and (29) tell us that

$$(\mathcal{K}, s_1^{new}, \beta) \models \mathtt{heap} \doteq anon(\mathtt{hPre}, \{\mathtt{heap} := \mathtt{hPre}\} mod, \mathtt{heap}),$$

which because of the definition of s_1^{new} is the same as

$$(\mathcal{K}, s_1, \beta) \models h^{new} \doteq anon(h^{base}, \{\text{heap} := h^{base}\} mod, h^{new}). \tag{31}$$

Let $C = \delta(s_1^{base}(\texttt{this}))$. This means that

$$(\mathcal{K}, s_1^{base}, \beta) \models exactInstance_C(\mathsf{this}).$$
 (32)

Let $\mathcal{K}' = (\mathcal{D}, \delta, I', \mathcal{S}, \rho)$ be a Kripke structure identical to \mathcal{K} , except that $I'(h) = val_{\mathcal{K},s_1,\beta}(h^{new})$. Since $\alpha(\mathtt{this}) = A$, we have $C \sqsubseteq A$. Instantiating (26) with C, \mathcal{K}' and s_1^{base} yields

$$\begin{split} (\mathcal{K}', s_1^{base}, \beta) &\models \mathit{pre} \wedge \mathit{reachableState} \wedge \mathit{exactInstance}_C(\mathtt{this}) \\ &\rightarrow \mathit{obs}(\mathtt{heap}, \mathtt{this}, \mathtt{p}_1, \ldots, \mathtt{p}_n) \\ &\equiv \{\mathtt{heap} := \mathit{anon}(\mathtt{heap}, \mathit{mod}, h)\} \\ &\quad \mathit{obs}(\mathtt{heap}, \mathtt{this}, \mathtt{p}_1, \ldots, \mathtt{p}_n). \end{split}$$

As h does not occur in (28) or (32), we have $(K', s_1^{base}, \beta) \models pre \land reachableState \land exactInstance_C(this)$ by Prop. 2, which we can combine with the statement above to get

$$\begin{split} (\mathcal{K}', s_1^{base}, \beta) &\models obs(\mathtt{heap}, \mathtt{this}, \mathtt{p}_1, \dots, \mathtt{p}_n) \\ &\equiv \{\mathtt{heap} := \mathit{anon}(\mathtt{heap}, \mathit{mod}, h)\} \mathit{obs}(\mathtt{heap}, \mathtt{this}, \mathtt{p}_1, \dots, \mathtt{p}_n). \end{split}$$

Applying the update yields

$$(\mathcal{K}', s_1^{base}, \beta) \models obs(\mathtt{heap}, \mathtt{this}, \mathtt{p}_1, \dots, \mathtt{p}_n)$$

 $\equiv obs(anon(\mathtt{heap}, mod, h), \mathtt{this}, \mathtt{p}_1, \dots, \mathtt{p}_n).$

Because of the definition of s_1^{base} , this is the same as

$$(\mathcal{K}', s_1, \beta) \models obs(h^{base}, \mathtt{this}, \mathtt{p}_1, \dots, \mathtt{p}_n)$$

$$\equiv obs(anon(h^{base}, \{\mathtt{heap} := h^{base}\} mod, h), \mathtt{this}, \mathtt{p}_1, \dots, \mathtt{p}_n).$$

By definition of \mathcal{K}' , we have $I'(h) = val_{\mathcal{K},s_1,\beta}(h^{new})$. As h does not occur in h^{new} , and as \mathcal{K} and \mathcal{K}' are otherwise identical, Prop. 2 guarantees that $val_{\mathcal{K},s_1,\beta}(h^{new}) = val_{\mathcal{K}',s_1,\beta}(h^{new})$. Thus, we have $I'(h) = val_{\mathcal{K}',s_1,\beta}(h^{new})$, and can thus write the statement above as

$$\begin{split} (\mathcal{K}', s_1, \beta) &\models obs(h^{base}, \mathtt{this}, \mathtt{p}_1, \dots, \mathtt{p}_n) \\ &\equiv obs(anon(h^{base}, \{\mathtt{heap} := h^{base}\} mod, h^{new}), \mathtt{this}, \mathtt{p}_1, \dots, \mathtt{p}_n). \end{split}$$

As the function symbol h does not occur in the above formula, and as \mathcal{K} and \mathcal{K}' are otherwise identical, Prop. 2 tells us that

$$\begin{split} (\mathcal{K}, s_1, \beta) &\models obs(h^{base}, \mathtt{this}, \mathtt{p}_1, \dots, \mathtt{p}_n) \\ &\equiv obs(anon(h^{base}, \{\mathtt{heap} := h^{base}\} mod, h^{new}), \mathtt{this}, \mathtt{p}_1, \dots, \mathtt{p}_n). \end{split}$$

We can combine this with (31) to get

$$(\mathcal{K},s_1,\beta)\models obs(h^{base},\mathtt{this},\mathtt{p}_1,\ldots,\mathtt{p}_n)\equiv obs(h^{new},\mathtt{this},\mathtt{p}_1,\ldots,\mathtt{p}_n),$$
 which contradicts (30).

References

- 1. J. Gosling, B. Joy, G. Steele, and G. Bracha. *The Java Language Specification, Second Edition*. Addison-Wesley, 2000.
- 2. P. H. Schmitt, M. Ulbrich, and B. Weiß. Dynamic frames in Java dynamic logic. In B. Beckert and C. Marché, editors, *Proceedings, International Conference on Formal Verification of Object-Oriented Software (FoVeOOS 2010)*, LNCS. Springer, 2010. To appear.