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Abstract 

 

Rhamnolipids are versatile biosurfactants with excellent interfacial properties and addi-

tional ecological features such as biodegradability and biocompatibility. Furthermore, 

they display various biological activities including antimicrobial, antiviral and antifun-

gal activity. Rhamnolipids are commonly produced biotechnologically with Pseudomo-

nas aeruginosa in batch- or fed-batch cultivations whereas different substrates like plant 

oil, glycerol, sugars and even hydrocarbons can be employed. Although rhamnolipid 

production has been intensively studied since the 1980´s, rhamnolipids have not widely 

succeeded in substituting synthetic surfactants; rather their use is restricted to specific 

applications where biocompatibility is required. The main reason for this situation can 

be found in the high costs for synthesis and downstream processing of rhamnolipids. 

The development of new production processes is the key issue in overcoming these 

economic obstacles. Therefore, different aspects of the production process were ad-

dressed in this work, from the upstream to the downstream processing.  

The first approach was the investigation of different glycerol based waste substrates as 

cost-saving alternatives to the substrate plant oil. Good results were obtained for crude 

glycerol from biodiesel manufacturing, although this substrate contains impurities from 

the harsh biodiesel manufacturing process. The specific productivity for crude glycerol 

was even higher than for pure glycerol. Thus, crude glycerol is a cost-saving alternative 

to the conventional substrate plant oil.  

In-situ product removal represents another possibility to improve rhamnolipid produc-

tion. It facilitates the purification of the rhamnolipids and reduces the foam problems 

associated with rhamnolipid production. Therefore, the second approach aimed at an 

integrated process with in-situ product removal of the rhamnolipids and immobilised 

cells. Different immobilisation methods were evaluated for this purpose. P. aeruginosa, 

however, was deemed inappropriate for immobilisation due to its high mobility which 

led to a cell leakage of the particles. Furthermore, due to low productivities of the im-

mobilised cells and mass transfer problems, the integrated concept could not be realised.  

The third approach was to search for a non-pathogenic production strain as the common 

production strain P. aeruginosa is pathogenic, which imposes essential safety implica-

tions for an industrial application. Therefore, eleven non-pathogenic strains which were 

already described as rhamnolipid producing strains were selected from literature; how-

ever, only limited information was available about rhamnolipid production of these 

strains: the structures of the generated rhamnolipids were mostly not determined and 
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few production processes at bioreactor scale were reported. In some cases, the rham-

nolipids were not even quantified. Therefore, a shake flask screening with intensive 

analytics was carried out first to evaluate the rhamnolipid production of the non-

pathogenic strains. Different media and substrates were tested. While three strains did 

not show rhamnolipid formation in shake flask, eight non-pathogenic strains were suc-

cessful. However, rhamnolipid formation was very low in shake flasks. Therefore, the 

eight strains were transferred to bioreactor scale and cultivated in a 6-fold parallel bio-

reactor system. Two strains of the species B. plantarii were most successful in these 

cultivations giving relative high yields of biomass and rhamnolipid. Especially B. plan-

tarii DSM 9509 is of interest because it was not yet described as rhamnolipid producer. 

Therefore, the production process with this strain was scaled up to 40 L scale to obtain 

higher amounts of rhamnolipid for purification and structure elucidation. This process 

yielded over 100 g of crude rhamnolipid extract. Different chromatographic methods 

were evaluated for the purification of the B. plantarii rhamnolipids: thick layer chroma-

tography, fast centrifugal partition chromatography and column chromatography. A 

combination of two chromatographic steps was most effective for the purification of 

B. plantarii rhamnolipids. The structure of these rhamnolipids was elucidated by mass 

spectrometry and unconventional rhamnolipids were found. B. plantarii synthesises 

mainly RL-2,214, a rhamnolipid with two rhamnose moieties and two ß-hydroxy tet-

radecane acid moieties. These rhamnolipids are interesting for cleaning applications due 

to their longer hydrophobic chains. In summary, it was demonstrated that the non-

pathogenic rhamnolipid producing species B. plantarii is a rewarding alternative to the 

conventional, pathogenic rhamnolipid production strain P. aeruginosa. However, fur-

ther process optimisation has to be carried out to enhance rhamnolipid production with 

this strain.  

In this work, new approaches for the production of rhamnolipids have been elucidated. 

Especially the utilisation of waste substrates like crude glycerol from biodiesel manu-

facturing, the application of the non-pathogenic production strain B. plantarii and the 

implementation of new rhamnolipid recovery methods like fast centrifugal partition 

chromatography can contribute to improved rhamnolipid production processes. Accord-

ingly, the economic obstacles of rhamnolipids may eventually be overcome and rham-

nolipids may find broader application.  
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Zusammenfassung 

 

Rhamnolipide sind vielseitige Biotenside mit hervorragenden Tensideigenschaften und 

zusätzlichen ökologischen Eigenschaften wie biologische Abbaubarkeit und Biokompa-

tibilität. Des Weiteren weisen sie zahlreiche biologische Aktivitäten wie antimikrobie l-

le, antivirale und antifungale Aktivität auf. Rhamnolipide können biotechnologisch mit 

Pseudomonas aeruginosa in Batch- oder Fed-batch-Fermentationen hergestellt werden, 

wobei verschiedene Substrate wie Pflanzenöl, Glycerin, Zucker und sogar Kohlenwas-

serstoffe eingesetzt werden. Obwohl Rhamnolipidproduktion bereits seit den 1980ern 

intensiv untersucht wird, sind Rhamnolipide immer noch nicht konkurrenzfähig zu syn-

thetischen Tensiden. Der Hauptgrund liegt in den hohen Synthese- und 

Aufreinigungskosten der Rhamnolipide. Neue Produktionsprozesse sind der Schlüssel, 

um diese Hindernisse zu überwinden. Deshalb befasst sich diese Arbeit mit verschiede-

ne Aspekte der Rhamnolipidproduktion, vom den Produktionsstämmen bis zur 

Aufreinigung.  

 

Der erste Ansatz war die Verwendung von glycerin-basierte Abfallsubstraten als kos-

tengünstige Alternativen zu dem Standardsubstrat Pflanzenöl. Dabei konnten mit Roh-

glycerin aus der Biodieselherstellung gute Ergebnisse erzielt werden, trotzdem dieses 

Substrat Verunreinigungen aus der Biodieselherstellung enthält. Die spezifische Pro-

duktivität mit Rohglycerin war sogar höher als mit reinem Glycerin. Folglich ist Roh-

glycerin aus der Biodieselherstellung eine kostensparende Alternative zum Standard-

substrat Pflanzenöl.  

In-situ Produktentfernung stellt eine weitere Möglichkeit zur Verbesserung des 

Rhamnolipidprozesses dar. Dadurch kann die Aufreinigung des Rhamnolipids erleich-

tert werden sowie die erheblichen Schaumprobleme bei der Rhamnolipidproduktion 

verringert werden. Deshalb zielte der zweite Ansatz auf die Entwicklung eines integrier-

ten Prozesses mit in-situ Produktentfernung und immobilisierten Zellen. Dafür wurden 

verschiedene Immobilisierungsmethoden evaluiert, jedoch war P. aeruginosa aufgrund 

seiner hohen Mobilität ungeeignet für die Immobilisierung. Auch weil nur geringe Pro-

duktivitäten erzielt wurden und aufgrund von Massentransferproblemen konnte das in-

tegrierte Konzept nicht realisiert werden.  

Der dritte Ansatz war die Suche nach einem nichtpathogenen Produktionsstamm da der 

herkömmliche Produktionsstamm P. aeruginosa gesundheitsgefährdend ist, was eine 

industrielle Anwendung des Stammes erheblich erschwert. Dafür wurden 11 nichtpa-



VIII 

thogene Stämme aus der Literatur ausgewählt, für die bereits Rhamnolipidbildung be-

schrieben wurde. Jedoch war wenig über die Rhamnolipidbildung dieser Stämme be-

kannt: die Strukturen der gebildeten Rhamnolipide waren größtenteils nicht aufgeklärt 

und wenige Produktionsprozesse im Bioreaktorformat waren beschrieben. In einigen 

Fällen wurde das Rhamnolipid nicht mal quantifiziert. Deshalb wurde ein Schüttelko l-

benscreening mit ausführlicher Analytik durchgeführt, um die Rhamnolipidbildung der 

Stämme zu beurteilen. Dabei wurden verschiedene Medien und Substrate untersucht. 

Während drei Stämme keine Rhamnolipidbildung im Schüttelkolben zeigten, waren 

acht der Stämme erfolgreich im Schüttelkolben. Allerdings war die Rhamnolipidbildung 

im Schüttelkolben sehr gering. Daher wurden die acht Stämme auf den Bioreaktormaß-

stab übertragen und in einem Sechsfachparallelreaktor kultiviert. Zwei Stämme der 

Spezies B. plantarii waren am erfolgreichsten und erzielten gutes Wachstum und relativ 

hohe Ausbeuten an Rhamnolipid. Einer der Stämme, B. plantarii DS 9509, ist beson-

ders interessant, da er noch nicht als Rhamnolipidbildner beschrieben wurde. Daher 

wurde der Prozess mit diesem Stamm auf den 40 L-Maßstab übertragen, um größere 

Mengen Rhamnolipid für Aufreinigung und Strukturaufklärung zu gewinnen. Über 100 

g Rohextrakt konnten gewonnen werden, die mit verschiedenen chromatographischen 

Methoden aufgereinigt wurden. Dabei wurden Dickschicht-Chromatographie, Flüssig-

Flüssig-Chromatographie und Säulenchromatographie untersucht. Eine Kombination 

von zwei verschiedenen Säulenchromatographieschritten war am geeignetsten, um die 

Rhamnolipide von B. plantarii aufzureinigen. Die Struktur der gebildeten Rhamnolipide 

wurde mittels Massenspektrometrie aufgeklärt, wobei ungewöhnliche Rhamnolipide 

gefunden wurden. B. plantarii bildet vor allem RL-2,214, ein Rhamnolipid mit zwei 

Rhamnoseeinheiten und zwei ß-Hydroxy-Tetradecansäuren. Diese Rhamnolipide sind 

interessant für verschiedene Anwendungen. Es wurde in dieser Arbeit gezeigt, dass das 

nichtpathogene Bakterium B. plantarii eine aussichtsreiche Alternative zu dem konven-

tionellen, pathogenen Rhamnolipid-Produktionsstamm P. aeruginosa ist, auch wenn 

eine weitere Prozessoptimierung nötig ist um die Rhamnolipid-Bildung dieses Stammes 

zu steigern. 

In summary, it was demonstrated that the non-pathogenic rhamnolipid producing spe-

cies B. plantarii is a rewarding alternative to the conventional, pathogenic rhamnolipid 

production strain P. aeruginosa. However, further process optimisation would have to 

be carried out to maximise rhamnolipid production with this strain. 

In dieser Arbeit wurden verschiedene Ansätze zur Verbesserung von 

Rhamnolipidproduktionsprozessen untersucht. Besonders die Verwendung von Abfall-

substraten wie Rohglycerin aus der Biodieselherstellung, der Einsatz des nichtpathoge-

nen Produktionsstammes B. plantarii und die Integration von neuen 

Aufreinigunsgmethoden wie der Flüssig-Flüssig-Chromatographie können zu verbesser-

ten Produktionsprozessen beitragen. Dadurch könnte die ökonomische Hürde der 
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Rhamnolipide möglicherweise überwunden werden, so dass Rhamnolipide breitere An-

wendung finden könnten.  
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1 Introduction 

1.1 Biosurfactants 

Surfactants are amphipathic molecules that are composed of a non-polar hydrophobic 

part attached to a hydrophilic head group which can be polar or ionic (see Figure 1). 

Due to this amphipathic character, they have an interfacial activity and tend to adsorb to 

interfaces, e.g. between water/oil or water/air. 

 

 

Figure 1: Structure of a surfactant 

 

Surfactants aggregate in solution forming different structures, e.g. micelles, inverse mi-

celles, vesicles or lamella (see Figure 2). In the micelle, the hydrophobic groups of the 

surfactant are directed towards the interior of the aggregates while the polar head groups 

are directed towards the solvent (Tadros 2005).  

 

 

Figure 2: Aggregates of surfactant molecules in aqueous solution (Magario 2008) 
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A biosurfactant is a biologically produced surfactant. Of special interest are microbial 

biosurfactants which are produced by bacteria, fungi or yeasts as extracellular com-

pounds. Rhamnolipids, which are the subject of this work, are commonly produced by 

the bacterium Pseudomonas aeruginosa. 

Biosurfactants display a wide variety of molecular structures. The hydrophilic moiety of 

biosurfactants often contains a mono-, oligo- or polysaccharide, an amino acid, peptide 

or protein, whereas the hydrophobic part is composed of saturated or unsaturated fatty 

acids, hydroxy fatty acids or fatty alcohols (Lang 2002). Biosurfactants are classified 

according to Lang and Wullbrandt 1999 in: 

 glycolipids (e.g. rhamnolipids, sophorolipids, trehalose lipids) 

 lipoamino acids and lipopeptides (e.g. surfactin, liposan) 

 polymers (e.g. lipoproteins, lipopolysaccharides) 

 phospholipids, mono- and diglycerides, fatty acids 

 

Surfactants can be derived from petrochemical or renewable resources. Originally 

manufactured from renewable resources like fats and oils, today a substantial amount of 

surfactants are of petrochemical origin (Deleu and Paquot 2004). The advantages of 

biosurfactants are: 

 structural diversity 

 good interfacial properties 

 low aquatic toxicity (Poremba et al. 1991; Develter et al. 2007) 

 biological activities covering antibiotics, fungicides, insecticides, an-

tiviral and antitumoral agents, immunomodulators or specific toxins 

or enzyme inhibitors (Deleu and Paquot 2004) 

 biodegradability (Poremba et al. 1991; Develter et al. 2007) 

 production from renewable resources. 

1.2 Rhamnolipids 

Rhamnolipids are anionic glycolipids composed of L-rhamnose and ß-hydroxy fatty 

acids. The hydrophilic rhamnose moiety is attached by a glycosidic linkage to the lipid 

fatty acid tail. Rhamnolipids were first isolated from P. aeruginosa by Jarvis and John-

son in 1949 (Jarvis and Johnson 1949). Rhamnolipids are generated as a mixture of dif-

ferent structure variants. The main rhamnolipids of P. aeruginosa are rhamnolipid 1 

(RL1, L-rhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoate) and rhamnolipid 3 (RL3, 
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L-rhamnosyl-L-rhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoate) (Syldatk et al. 

1985b). RL1 is a mono-rhamnolipid with one rhamnose unit while RL3 contains two 

rhamnose units and is a di-rhamnolipid. Moreover, RL2 and RL4 are also produced by 

P. aeruginosa in minor amounts. These rhamnolipids contain only one ß-hydroxy fatty 

acid. The structures of the four major rhamnolipids of P. aeruginosa are shown in Fig-

ure 3.  

 

Figure 3: Structure of the rhamnolipids RL1 – 4 of P. aeruginosa 

 

More than 20 other rhamnolipid structures are synthesized by P. aeruginosa in trace 

amounts (Déziel et al. 1999). These structures vary in the number of ß-hydroxy fatty 

acids (one or two), in the number of rhamnose units (one or two) and in the chain length 

and saturation of the ß-hydroxy fatty acids.  

Rhamnolipids display strong interfacial activity (Syldatk et al. 1985b); for example, 

RL1 and RL3 reduce the surface tension of water from 72 to 31 mN/m. The critical mi-

celle concentration is another important parameter for evaluation of the performance of 

a surfactant. The cmc is the concentration at which the surfactant monomers in a solu-

tion start to form micelles. The cmc of rhamnolipids is very low, about 20 mg/L for 

RL1 and RL3 in water. Expressed in molar concentrations, this is 3,96∙10
-5

 mol/L (RL1) 

resp. 3,07∙10
-5

 mol/L (RL3). In comparison, the cmc of sodium dodecyl sulphate, is 

much higher: 8,39∙10
-3

 (Tadros 2005)  

Nomenclature of rhamnolipids 

Different rhamnolipid nomenclatures are found in literature. In this work, the following 

nomenclature is used for rhamnolipids:  
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RL-X,Yz stands for a rhamnolipid with x rhamnose units and y ß-hydroxy fatty acid 

chains of chain length z. Consequently, RL 1 is also termed RL-1,210 and RL 3 is 

equivalent to RL-2,210. 

1.2.1 Application of rhamnolipids 

Biosurfactants are scarcely able to compete with established synthetic surfactants from 

an economical point of view because their production costs are currently too high. The 

production costs of biosurfactants, compared to synthetic compounds on the surfactant 

market, are at least 50 times higher, depending on the biosurfactant and its purity (Deleu 

and Paquot 2004). Lang and Wullbrandt estimated the production costs of rhamnolipids 

produced in 20 – 100 m
3
 scale at about 5 – 20 US $/kg (Lang and Wullbrandt 1999). 

Compared with petrochemical bulk surfactants like ethoxylates or alkyl polyglycosides, 

ranging at 1 – 3 US $/kg, rhamnolipids are not competitive in this field.  

However, applications of biosurfactants arise whenever the biological origin gives bet-

ter biocompatibility and biodegradation. Furthermore, sustainability is gaining more and 

more importance today. As a consequence, the interest in rhamnolipids is increasing. 

Due to their interfacial and also pharmaceutical activity, rhamnolipids can be applied in 

many fields, for example: 

Cleaning 

Rhamnolipids have a high potential for eco-friendly cleaning solutions due to their ex-

cellent biodegradability and low aquatic toxicity (Develter et al. 2007).  

Pharmaceutical applications 

Rhamnolipids can be used for the stabilisation of water/oil formulations or, due to their 

antimicrobial activity, even as active pharmaceutical ingredients (Haba et al. 2003). 

They enhance wound healing (Stipcevic et al. 2006) and are effective against various 

dermatologic diseases (Piljac and Piljac 1995; Stipcevic et al. 2004).  

Environmental applications 

Rhamnolipids have been applied for the bioremediation of contaminated soils 

(Benincasa 2007). Due to their interfacial activity, rhamnolipids enhance the bioavail-

ability of hydrocarbon contaminants in soils and allow a faster degradation of these 

compounds (Rahman et al. 2003). Rhamnolipids are also effective for the treatment of 

marine oil pollutions (Lang and Wullbrandt 1999).  

Food industry 

If licensed for food applications, rhamnolipids could be applied in food industry as sta-

bilisers and emulsifiers, for example for bakery and confectionary products (Van Hae-
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sendonck and Vanzeveren 2006). Furthermore, they are a source of rhamnose for the 

synthesis of flavours (Trummler et al. 2003).  

1.3 Rhamnolipid production with P. aeruginosa 

Pseudomonas aeruginosa is the common production organism for rhamnolipid produc-

tion. P. aeruginosa is an aerobic, motile, gram-negative rod occurring primarily in wa-

ter, soil and vegetation. However, P. aeruginosa is able to grow and survive in almost 

any environment. The bacterium is able to cause a multitude of human infections. While 

infections in immunocompetent patients are rare, immunocompromised patients, such as 

cystic fibrosis or AIDS patients, are particular susceptible to opportunistic infections 

with P. aeruginosa (Van Delden and Iglewski 1998). Therefore, the organism is viewed 

as opportunistic and classified in the Biosafety level 2 according to the Deutsche 

Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany 

(DSMZ). P. aeruginosa is able to produce a wide variety of virulence factors, including 

rhamnolipids, lipopolysaccharides, flagella, type IV pili, proteases, exotoxins, pyo-

cyanins, exopolysaccharides, type III secretion, etc. (Kiil et al. 2008).  

P. aeruginosa synthesises rhamnolipids as an extracellular biosurfactant. Besides the 

interfacial activity, rhamnolipids also display antimicrobial, antiviral, antifungal, my-

coplasmacidal, algicidal, zoosporicidal, antiamoebal and hemolytic activity (Soberón-

Chávez et al. 2005). According to Soberón-Chávez et al. 2005, the putative physiologi-

cal functions of the rhamnolipids are: 

• Solubilization and uptake of hydrophobic substrates due to the interfacial ac-

tivity 

• Contacting of hydrophobic surfaces due to the interfacial activity 

• Virulence factor: Due to the interfacial and haemolytic activity, rhamnolipids 

contribute to tissue invasion of P. aeruginosa, e.g. in the lung (Van Delden and 

Iglewski 1998).  

• Defence from other microorganisms due to the wide antimicrobial activity. 

1.3.1 Biosynthesis 

The biosynthesis of rhamnolipids in P. aeruginosa proceeds in two principal steps: first, 

precursors are synthesised and, subsequently, the linkage of the precursors takes place 

(Soberón-Chávez et al. 2005). An overview of the biosynthesis of rhamnolipids by 

P. aeruginosa is given in Figure 4. The intermediates of the rhamnolipid biosynthesis 

are also employed for other biosynthetic pathways, for example for the biosynthesis of 

lipopolysaccharides (LPS), polyhydroxy alkanoates (PHA) and 4-hydroxy-2-

alkylquinolines (HAQ).  
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Figure 4: Rhamnolipids biosynthesis pathway of P. aeruginosa (according to Soberón-

Chávez et al. 2005) 

 

The precursors for the hydrophobic and the hydrophilic moiety of the rhamnolipids are 

dTDP-L-rhamnose and 3-(3-hydroxyalkanoyloxy)alkanoate. They are derived from the 

central metabolism; the activated rhamnose coming from glucose and the hydroxy fatty 

acids from a fatty acid de novo synthesis, starting with Acetyl-CoA. The rhamnosyl-

transferase RhlA links the two hydroxy fatty acids to a dimer.  

In the second step, the precursors dTDP-L-rhamnose and di-hydroxydecanoic acid are 

linked by the rhamnosyltransferase RhlB to mono-rhamnolipids. The mono-

rhamnolipids can then be converted to di-rhamnolipids by the enzyme RhlC which ca-

talyses the addition of the second rhamnose unit.  

The rhlA and rhlB genes are arranged as an operon and are clustered with rhlR and rhlI, 

which encode proteins involved in their transcriptional regulation through the quorum 

sensing mechanism described below. In contrast, the rhlC gene is not linked to other rhl 

genes and forms an operon with a gene whose function is not known. This operon is 

regulated at the transcriptional level in a similar manner as rhlAB (Rahim et al. 2001). 

The rhamnolipid formation in P. aeruginosa is regulated by a cell density dependent 

regulation system called quorum sensing (QS) which allows the bacteria to act in a co-

ordinated cell density dependent manner (Ochsner and Reiser 1995). The QS system 

depends on the production of two autoinducers, butanoyl-homoserine lactone (C4-HSL) 

and 3-oxo-dodecanoyl-homoserine lactone (3-oxo-C12HL). The autoinducers bind to 

specific transcriptional regulators to activate gene expression at high cell densities. 

Other extracellular virulence factors of P. aeruginosa have been shown to be regulated 

by quorum sensing signals as well (Pearson et al. 1997).  
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Rhamnolipids are secondary metabolites, and thus, their production coincides with the 

onset of the stationary phase. This is in agreement with the fact that transcription from 

the rhlAB promoter is primarily regulated by the cell density-dependent quorum sensing 

(Soberón-Chávez et al. 2005). Cultivations with P. aeruginosa resting cells showed an 

inhibition of the rhamnolipid formation upon feeding of a nitrogen source or the addi-

tion of multivalent cations, different nitrogen sources and EDTA (Syldatk et al. 1985a).  

1.3.2 Production strains 

Numerous rhamnolipid producing bacteria have been isolated, most of them belonging 

to the species P. aeruginosa. Depending on the required physiological roles of rham-

nolipids, rhamnolipid producing bacteria can be found in and isolated from different 

environments. Many rhamnolipid producing microorganisms have been isolated from 

soil or water which is contaminated with hydrophobic compounds such as refinery 

wastes (Abalos et al. 2001; Rahman et al. 2002; Bodour et al. 2003; Benincasa 2007). 

Undisturbed sites, however, have also been successfully screened (Bodour et al. 2003). 

For isolation and screening of potential candidates, several techniques have been devel-

oped which are reviewed by Walter et al. 2008. Most of these screening techniques are 

directly based on the surface or interfacial activity of the culture supernatant, e.g. drop 

collapse assay, oil spreading assay or emulsification capacity assay.  

Little attention is paid to other rhamnolipid producing organisms which do not belong to 

the species P. aeruginosa. These strains are reviewed in section 1.4.  

The rhamnolipid product spectrum is dependent on the production strains, as has been 

shown for two different P. aeruginosa strains under identical cultivation conditions 

(Leitermann 2008). Therefore, the production stain should be carefully chosen, depend-

ing on the desired product spectrum.  

Several attempts at the production of Pseudomonas rhamnolipids in heterologous hosts 

have been reported. Ochsner et al. 1995 cloned the rhlAB rhamnosyltransferase gene 

into various hosts, P. fluorescens, P. oleovorans, P. putida, and E. coli. The best rham-

nolipid production of 60 mg/L was achieved with P. putida whereas no rhamnolipid 

production occurred in E. coli.  

Cabrera-Valladares et al. 2006 succeeded in producing mono-rhamnolipids in E. coli. 

They found that the availability in E. coli of dTDP-L-rhamnose, a substrate of the 

rhamnosyltransferase RhlB, restricts the production of mono-rhamnolipids in E. coli. By 

coexpression of the rhlAB operon and the rmlBDAC operon which encodes the dTDP-

L-rhamnose biosynthesis enzymes, they generated a rhamnolipid producing E. coli 

strain. The rhamnolipid concentration produced with this strain was 52,2 mg/L, lower 

than the P. aeruginosa level. In contrast to these findings, Wang et al. 2007 claim 

rhamnolipid production in E. coli expressing only rhlAB.  
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Cha et al. 2008 also reported the heterologous production of rhamnolipids in P. putida, 

using recombinant rhlABRI genes. A maximum of 7,2 g/L rhamnolipids was achieved. 

1.3.3 Cultivation strategies 

Various rhamnolipid production processes have been published, with different produc-

tion strains, process strategies and substrates. The different approaches for rhamnolipid 

production are presented below.  

As secondary metabolites, rhamnolipids are synthesised under growth limiting condi-

tions, and their production coincides with the onset of the stationary phase (Lang and 

Wullbrandt 1999). This correlates with the fact that the production of rhamnolipids in 

continuous culture is favoured by low dilution rates below 0,15 h
-1

 (Guerra-Santos et al. 

1984). According to this regulatory principle, all cultivation strategies for the produc-

tion of rhamnolipids aim at limiting at least one medium component like the nitrogen 

source or multivalent ions. These limiting conditions can be maintained by the follow-

ing cultivation strategies (Lang and Wullbrandt 1999): 

1. (Fed)batch cultivation under growth-limiting conditions (e.g. Giani et al. 1997; 

Lee et al. 2004; Chen et al. 2007a) 

2. Batch cultivation under resting cell conditions (e.g. Syldatk et al. 1985a) 

3. Production with immobilized, resting cells (e.g. Siemann and Wagner 1993; 

Jeong et al. 2004) 

4. Continuous cultivation under limiting conditions/with low growth rates (e.g. 

Guerra-Santos et al. 1984; Guerra-Santos et al. 1986; Reiling et al. 1986). 

Substrates 

Water-soluble or water-insoluble carbon sources have been utilised for rhamnolipid 

production and production processes with many different natural and petrochemical 

substrates have been published, for example with 

 plant oils (e.g. Giani et al. 1997; Trummler et al. 2003),  

 sugars (e.g. Guerra-Santos et al. 1984; Reiling et al. 1986; Lee et al. 2004),  

 glycerol (e.g. Syldatk et al. 1985a; Chen et al. 2007a),  

 hydrocarbons (e.g. Syldatk et al. 1985a; Syldatk et al. 1985b; Lee et al. 2004). 

 

Waste substrates are also interesting substrates as they are usually less expensive than 

pure substrates. Furthermore, the utilisation of waste substrates contributes to a com-

plete exploitation of resources and so to the sustainability of production processes. Dif-

ferent waste substrates have already been utilised for rhamnolipid production, for ex-
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ample olive oil mill effluents (Mercadé et al. 1993), waste frying oils (Haba et al. 2000), 

soap stock (Benincasa 2007), whey and distillery waste (Dubey and Juwarkar 2001) or 

waste free fatty acids (Abalos et al. 2001).  

Foaming 

A general problem of rhamnolipid production is excessive foaming due to the aeration 

and agitation of the culture broth in the bioreactor. The dimension of this problem is 

illustrated in Figure 5. In this example, a rhamnolipid production process was carried 

out in a 40 L bioreactor with a maximum working volume of 30 L. The actual working 

volume had to be reduced to 15 L to manage foam formation. When excessive foaming 

started, the whole bioreactor was filled with foam.  

 

Figure 5: Rhamnolipid production in 40 L scale with 15 L working volume - left: at the 

beginning of cultivation (moderate foaming), right: at the end of cultivation (excessive 

foaming) 

 

The generated foam can drain into the exhaust air conduct and block the exhaust air 

filter. This increases the risk of infection, diminishes the productivity and endangers the 

whole process. The working volume of the bioreactor is usually not completely ex-

ploited; rather, it has to be reduced substantially to handle foam formation. Moreover, 

mechanical and/or chemical foam control must be applied in rhamnolipid production 

processes. Conventionally, chemical antifoam is used, e.g. based on silicone oil, polye-

thylene glycol or polypropylene; however, the productivity of rhamnolipid production 

in P. aeruginosa decreases with increasing antifoam agent dosage (Leitermann 2008). 

In-situ product removal (ISPR) is another option to handle the foam problems during 

rhamnolipid production. Some ISPR techniques have already been integrated into 

rhamnolipid production processes. They are presented in chapter 1.3.  
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Production processes 

An overview on published rhamnolipid production processes at bioreactor scale is given 

in Table 1. Besides the amount and type of the applied carbon source, the final rhamno-

lipid concentration (RL), the dry biomass concentration (DBM), the process time (for 

batch and fed-batch processes) respective dilution rate (for continuous processes) the 

following parameters are given in the table: the volumetric and specific productivity Pv 

and Psp, the product/substrate yield YP/S and the product/biomass yield YP/X. 

 



 

  

  

Table 1: Production processes for rhamnolipids: YP/S: ratio of synthesized product to substrate employed. YP/X: ratio of synthesized product to 

final dry biomass. PV: total product amount per volume of fermentation broth and process time. Psp: total product amount per dry biomass and 

process time.

process production strain C-source  [conc.] 

[g/L] 

RL 

[g/L] 

DBM 

[g/L] 

YP/S 

[-] 

YP/X 

[-] 

process time 

[h] 

Psp  

[g/gh] 

Pv  

[g/Lh] 

reference 

batch P. aeruginosa DSM 2659 corn oil [40) 8,94 7 0,224 1,277 42 0,03 0,213 Hembach 1994 

 P. aeruginosa DSM 7107 soybean oil [125] 78 - 0,62 - 167 - 0,47 Giani et al. 1997 

 P. aeruginosa BYK-2 

KCTC 18012P 

fish oil [25] 17 5,3 0,68 3,21 216 0,015 0,08 Lee et al. 2004 

 P. aeruginosa S2 glucose [40] 5,31 2,4 0,13 0,22 144 0,015 0,04 Chen et al. 2007b 

batch with resting cells P. aeruginosa DSM 2874 n-tetradecane [100] 13,2 3,6 – 4,1 0,132 3,66 -3,22 210 0,015 – 0,017 0,06 Syldatk et al. 1985a 

batch with immobilised cells P. aeruginosa DSM 2874 glycerol - 1,96 0,12 - > 20 0,017 0,033 Siemann and Wagner 1993 

 P. aeruginosa BYK-2 

KCTC 18012P 

fish oil [10] 6 - 0,6 - 192 - 0,03 Jeong et al. 2004 

fed-batch P. aeruginosa DSM 2659 corn oil [84] 33,78 5 0,402 6,756 107 0,074 0,518 Hembach 1994 

 P. aeruginosa DSM 7108 soybean oil [128 - 163] 95 - 112 - 0,74 – 0,69 - 216 - 264 - 0,44 – 0,42 Giani et al. 1997 

 P. aeruginosa BYK-2 

KCTC 18012P 

fish oil [30,2] 22,7 6,1 0,75 3,72 264 0,014 0,09 Lee et al. 2004 

 P. aeruginosa S2 glucose  6,06 2,62 - 2,31 195 0,012 0,03 Chen et al. 2007b 

fed-batch with resting cells P. aeruginosa DSM 2874 oleic acid or rapeseed oil [198] 40 48 (wet biomass) 0,2 - 288 - 0,14 Trummler et al. 2003 

process production strain C-source  

[g/L] 

RL 

[g/L] 

DBM 

[g/L] 

YP/S 

[-] 

YP/X 

[-] 

D 

[h
-1

] 

Psp  

[g/gh] 

Pv  

[g/Lh] 

reference 

continuous P. aeruginosa DSM 2659 glucose [20]  2,4 0,05 - 0,135 0,056 0,134 Guerra-Santos 1985 

 P. aeruginosa DSM 2659 glucose [30] 2,25 2,5 0,08 0,9 0,065 - 0,15 Reiling et al. 1986 

 P. aeruginosa DSM 2659 corn oil [40) 4 - 18 7 – 7,5 0,182 – 0,459 - 0,025 – 0,1 0,052 – 0,1 0,451 – 0,691 Hembach 1994 

continuous with cell reten-

tion/immobilisation 

P. aeruginosa DSM 2659 glucose [20] - 13,3 0,15 - 0,18 0,041 0,545 Gruber et al. 1993 

P. aeruginosa DSM 2659 corn oil [40] - - 0,484 - 0,1 0,056 2 Ochsner et al. 1996 

 P. aeruginosa BYK-2 

KCTC 18012P 

fish oil [10] 4,3 – 5,8 10 (wet biomass) 0,43 – 0,58 - 0,018 - 0,08 Jeong et al. 2004 
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The scale of theses processes ranges from small laboratory scale, e.g. 1 L, up to indus-

trial scale, e.g. 18,5 m
3
. As process strategies, batch, fed-batch and continuous culture 

were applied and cell retention and immobilisation of the cells were also included. Dif-

ferent substrates such as glycerol, glucose, plant oils or hydrocarbons were applied as 

well as different production strains. Moreover, different analytical methods for the de-

termination of the rhamnolipid content were used, e.g. HPLC (Hembach 1994), photo-

metric methods like orcinol assay (Lee et al. 2004) or anthrone assay (Syldatk et al. 

1985a) and even indirect determination by Fcmc-measurement (Guerra-Santos et al. 

1984; Reiling et al. 1986). The indirect Fcmc-method is based on the fact that the surface 

activity is dependent on the concentration of the active compound. When the concentra-

tion of surfactant is decreased below the critical micelle concentration (cmc), for exam-

ple by dilution, the surface activity is lost; which is expressed by increasing surface and 

interfacial tensions. This property is used for the estimation of biosurfactant concentra-

tion. The culture broth is diluted until the interfacial tension increases and the corre-

sponding dilution factor (Fcmc) is determined. Increasing Fcmc values indicate the in-

creasing concentration of active compounds.  

Due to the mentioned differences in process design, cultivation strategy, medium, sub-

strates and analytics, it is challenging to compare different published rhamnolipid pro-

duction processes. However, the batch and fed-batch processes of Giani et al. 1997 

achieved the best rhamnolipid production in terms of maximum rhamnolipid yield and 

specific productivity. A maximum product concentration of 78 – 112 g/L was reported. 

Unfortunately, insufficient technical details are given in this patent: for example no in-

formation on the applied analytical method for the rhamnolipid determination is pre-

sented. 

Continuous processes for the production of rhamnolipids are very rewarding in terms of 

productivity; relatively high specific and volumetric productivities have been reported 

for continuous rhamnolipid production processes (see Table 1). However, few attempts 

have been made to promote this process strategy. The reason is probably that conti-

nuous processes are more complex in preparation, realization and process control and 

that they also have a higher risk of contamination of the culture.  

Many attempts have been made with cell retention, immobilisation of the cells or culti-

vations with resting cells. Good results were obtained for some of these processes, but 

altogether, these strategies do not provide much extra benefit and a clear superiority of 

these processes to conventional processes with free/growing cells is not apparent. 

Moreover, these processes are more labor- and time-consuming, they require more 

equipment and comprise more process steps than simple batch or fed-batch processes.  
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1.3.4 Recovery of rhamnolipids 

The recovery is the last step in the rhamnolipid production process. This step contrib-

utes strongly to the overall yield of the production process and thus to the overall pro-

duction costs. Different recovery methods for rhamnolipids are presented below.  

Solvent extraction 

Solvent extraction is often applied for the first recovery of rhamnolipids from the cul-

ture supernatant. Different solvents or solvent mixtures, including ethyl acetate (Syldatk 

et al. 1985b; Schenk et al. 1995) or chloroform-methanol (2:1) (Mata-Sandoval et al. 

1999) can be applied. However, ethyl acetate is commonly used. The extraction is pref-

erentially performed at a pH of 2 – 3 as the rhamnolipids are protonated at this pH and, 

thus, soluble in hydrophobic organic solvents. In the following, a general recovery 

scheme for the purification of rhamnolipids is given (see Figure 6).  

 

Figure 6: General recovery scheme for rhamnolipids 

 

First, the fermentation broth is centrifuged to remove the cells. If plant oil or hydrocar-

bons were applied as substrates, they can be removed in the same step by extraction 

with hexane. The cell free culture supernatant is acidified to a pH of 2 – 3 and the pro-

tonated rhamnolipids are extracted with ethyl acetate. After evaporation of the organic 
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solvent, the crude extract can be further purified, for example by column chromatogra-

phy with silica gel.  

In addition, the following methods are applied for the purification of rhamnolipids:  

Precipitation 

Through acidification of the supernatant to a pH of 2 – 3, rhamnolipids pass to their 

protonated form, become insoluble in aqueous solution and precipitate. The precipitate 

is collected by centrifugation and then further processed (Mixich et al. 1997; Déziel et 

al. 1999; Wei et al. 2005; Monteiro et al. 2007). Mixich et al. 1997 claim a yield of the 

precipitation step of 90 – 99 % in a patent.  

Filtration 

Membrane filtration is another option for rhamnolipid enrichment. Rhamnolipid mi-

celles can be retained by micro- and ultrafiltration (Mulligan and Gibbs 1990; Gruber 

1991). 92 % rhamnolipid retention was obtained with a 10 kDa cutoff ultrafiltration 

membrane (Mulligan and Gibbs 1990) whereas only about 50 % retention was achieved 

with a 0,2 and 0,45 µm pore size membrane (Gruber 1991). Filtration is an attractive 

technique for in-situ product removal processes. However, the concept of integration of 

membranes into the rhamnolipid production process failed due to rapid membrane foul-

ing, probably caused by exopolysaccharides and bacteria (Gruber 1991). 

Foam fractionation 

Another method for in-situ product removal of biosurfactants is foam fractionation. This 

technique uses the interfacial properties of rhamnolipids, namely the property to form 

stable foams. The rhamnolipid foam is conducted out of the reactor through an outlet in 

the top plate and collapsed by the addition of acid or shear forces. The rhamnolipids are 

enriched in the foam. Gruber and Matulovic used such an integrated concept with a 

foam fractionation column (Matulovic 1987; Gruber 1991). A drawback of this method 

is that the bacteria also adsorb to the foam interface, so that they are drained out of the 

reactor simultaneously (Gruber 1991). The enrichment of the biomass in the foam frac-

tion is even more pronounced than the enrichment of rhamnolipids. Therefore, a reten-

tion or immobilization of the cells is necessary for a successful implementation of foam 

fractionation.  

Chromatography 

I Preparative TLC 

Rhamnolipids can be purified by preparative thick-layer chromatography using silica 

gel with a solvent mixture of chloroform-methanol-acetic acid/water. The separated 

rhamnolipids are eluted from the silica gel with methanol or chloroform-methanol 

(Syldatk et al. 1985b; Déziel et al. 2000; Monteiro et al. 2007). The drawback of this 
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technique is that it has to be repeated several times to obtain pure rhamnolipids (Syldatk 

et al. 1985b) and that only relative small amounts of sample can be applied.  

II Column chromatography 

Normal-phase chromatography with silica gel is a standard method for rhamnolipid pu-

rification (Itoh et al. 1971; Schenk et al. 1995; Monteiro et al. 2007). The rhamnolipids 

are eluted for example with chloroform and methanol under isocratic conditions or with 

gradient elution.  

Reversed-phase chromatography on a C18 column with a gradient of acetonitrile and 

water is another option (Mata-Sandoval et al. 1999; Heyd et al. 2008).  

Ion exchange chromatography with DEAE sepharose can be applied as well (Reiling et 

al. 1986; Schenk et al. 1995). The rhamnolipids are eluted from the ion exchange resin 

by increasing salt concentrations.  

Adsorption chromatography with hydrophobic Amberlite XAD-2 or XAD-16 polysty-

rene resin can be used for first rhamnolipid enrichment from the culture supernatant 

(Reiling et al. 1986; Matulovic 1987; Gruber 1991; Abalos et al. 2001; Haba et al. 

2003). The rhamnolipids are eluted from the XAD resin for example with methanol. A 

drawback of this technique is that the XAD material absorbs hydrophobic and amphi-

philic substances and, therefore, the adsorption of rhamnolipids to the XAD particles is 

rather unspecific.  

A continuous rhamnolipid production process in a 50 L pilot plant with subsequent 

rhamnolipid recovery by 3 chromatographic steps (adsorption chromatography, ion ex-

change chromatography and again adsorption chromatography) was realised for several 

weeks (Reiling et al. 1986). The recovery of rhamnolipid in the first chromatographic 

step was above 75 %, whereas the recovery of the products from ion-exchange chroma-

tography was over 90 %. An overall rhamnolipid recovery yield of 60 % was achieved.  

In-situ product removal 

The term in-situ product removal (ISPR) covers methods for the removal of products by 

recovery methods that are integrated into the production process. In general this offers 

some advantages because inhibitory or toxic effects and product degradation can be 

overcome, and because the number of downstream processing steps can be reduced. 

Therefore, ISPR methods can increase the productivity and the yield of a production 

process. The following methods can be applied for ISPR: evaporation, extraction, per-

meation, immobilization of biocatalyst and precipitation. For the production of rhamno-

lipids, ISPR offers some significant advantages. The most important is the reduction of 

the pronounced foam formation. However, by now, all trials on in-situ product removal 

of rhamnolipids by filtration have been ineffective due to rapid fouling of the filtration 
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membranes (Gruber 1991; Dhariwal 2007). Another option is in-situ product removal 

by foam fractionation, as described above. 

1.4 Non-pathogenic production strains 

Conventionally, P. aeruginosa is utilised as production strain for rhamnolipid produc-

tion. Nevertheless, rhamnolipid-producing bacteria have been found in other species 

and genera as well, most of them belonging to the closely related genera Pseudomonas 

and Burkholderia. Bacteria which were described in literature as rhamnolipid-producing 

bacteria are listed in Table 2. Altogether, up to now, rhamnolipid-producing bacteria 

have been found in the phyli proteobacteria, firmicutes (gram-positives) and actinobac-

teria. Most of the rhamnolipid producing bacteria are classified as non-pathogenic (Bio-

safety level 1) according to Deutsche Sammlung von Mikroorganismen und Zellkul-

turen GmbH, Braunschweig, Germany (DSMZ). A structure determination of the rham-

nolipids that are produced by these bacteria has not been accomplished for the majority 

of these species. Moreover, for most bacteria, little information is available on the 

rhamnolipid production from a commercial point of view, for example on product yield, 

production processes etc. 

 



 

 

Table 2: Overview on rhamnolipid producing bacteria 

strain Biosafety level phylum structure determination reference 

Pseudomonas aeruginosa, various strains   2 proteobacteria HPLC-MS e.g. Déziel et al. 1999 

Pseudomonas chlororaphis NRRL B-30761   1 proteobacteria HPLC-MS Gunther et al. 2005 

Pseudomonas putida ATCC 4359, CB100 

and 21 BN 

  1 proteobacteria GC of fatty acid part Suzuki and Itoh 1972; Tuleva et al. 2002; 

Martínez-Toledo et al. 2006 

Pseudomonas oleovorans ATCC 8062   1 proteobacteria No Suzuki and Itoh 1972 

Pseudomonas cruciviae ATCC 21283   1 proteobacteria No Suzuki and Itoh 1972 

Pseudomonas fluorescens 378 and ATCC 

15453 

  1 proteobacteria No Suzuki and Itoh 1972; Persson et al. 1988; 

Fiechter 1992 

Pseudomonas boreopolis ATCC 15452   1 proteobacteria No Suzuki and Itoh 1972 

Pseudomonas stutzeri   1 proteobacteria No Janiyani et al. 1992 

Burkholderia pseudomallei NCTC 10274   2 proteobacteria GC-MS, NMR Häußler et al. 1998 

Burkholderia plantarii DSM 6535   1 proteobacteria NMR Andrä et al. 2006 

Burkholderia glumae   1 proteobacteria MS Manso Pajarron et al. 1993 

Tetragenococcus koreensis KCTC 3924
T
   1 bacilli No Lee et al. 2005 

Bacillus cereus 28 BN   2 bacilli No Tuleva et al. 2005 

Renibacterium salmoninarum 27 BN   2 actinobacteria No Christova et al. 2004 
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Some of these strains produce exceptional rhamnolipids. While P. aeruginosa synthe-

sises a mixture of mono- and di-rhamnolipids with hydroxy acyl moieties from C8 up to 

C14, the Burkholderia species produce only di-rhamnolipids with two rhamnose units 

and mainly C14 hydroxy acyl chains. For B. glumae, the following rhamnolipids were 

detected by GC-MS: RL-2,214, RL-2,212,14 and RL-2,214,16 (Manso Pajarron et al. 1993). 

The rhamnolipids RL-2,114, RL-2,214 and RL-2,314 were recorded for B. plantarii 

(Andrä et al. 2006) and only one rhamnolipid species was detected for B. pseudomallei: 

RL-2,214 (Häußler et al. 1998). The exclusive formation of di-rhamnolipids seems to be 

a characteristic feature of the genus Burkholderia, as well as the preference of C14 chain 

length. A triacylated rhamnolipid (RL-2,314) has been reported for B. plantarii. Such 

triacylated rhamnolipids have not been described for any other species.  

In contrast to the di-rhamnolipids of Burkholderia species, P. chlororaphis synthesises 

only mono-rhamnolipids with one rhamnose unit and two hydroxy acyl moieties 

(Gunther et al. 2005). Gunther et al. suggest that the lack of a rhlC gene homologue is 

the reason for this finding as RhlC catalyses the addition of the second rhamnose unit in 

P. aeruginosa. Rhamnolipids with unsaturated fatty acid moieties were found for 

P. chlororaphis, as was the case for P. aeruginosa. The major components of P. chloro-

raphis rhamnolipids are RL-1,212,10 and RL-1,212:1,10. The rhamnolipid composition of 

the other strains listed in Table 2 has not been investigated.  

The genus Pseudomonas covers one of the most diverse and ecologically significant 

groups of bacteria. Members of the genus are found in large numbers in a wide range of 

environmental niches, such as terrestrial and marine environments, as well as in associa-

tion with plants and animals. Bacteria of the genus Pseudomonas are gram-negative, 

rod-shaped bacteria with a size of 0,5 – 0,8 × 1 – 3 µm, motile by polar flagella, 

chemoorganotrophic and aerobic or facultative anaerobe (Palleroni 1981). The genus 

Burkholderia is quite young. It arose from the genus Pseudomonas and became classi-

fied as a new genus in 1992 based on 16S rRNA sequence analysis (Yabuuchi et al. 

1992). Consequently, bacteria of this genus have similar characteristics as Pseudomo-

nas: they are gram-negative, rod-shaped bacteria with polar flagella; they are facultative 

aerobe, chemoorganotrophic, and some species produce rhamnolipids.  

Little is known about the biotechnological potential of the above mentioned strains as 

alternatives to the conventional production strain P. aeruginosa. Especially the non-

pathogenic species are, however, of high commercial interest if sufficient rhamnolipid 

yields could be obtained. 
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1.5 Economics of rhamnolipid production 

Up to now, microbial surfactants have not been widely successful in substituting syn-

thetic surfactants; rather, their use is restricted to specific applications where biocom-

patibility is required. The main reason for this situation can be found in the high costs 

for production and downstream processing of biosurfactants (Gruber et al. 1993). Ac-

cording to Mulligan and Gibbs 1993, the economics of biosurfactant production are 

influenced by the following factors: 

a) Fermentation process 

 Raw materials 

 Productivity 

b) Product recovery.  

The following aspects should be addressed to minimise the production costs of biosur-

factants (Mulligan and Gibbs 1993): 

a) Optimisation of the fermentation process, for example reactor design, opera-

tion conditions and production scale.  

The cultivation strategy and the process conditions like aeration, agitation, pH and tem-

perature should be carefully chosen to obtain optimum rhamnolipid production. Espe-

cially the nutrient limitation is of great importance for the regulation of rhamnolipid 

biosynthesis (see section 1.3.1). Another aspect that has to be considered is foaming 

(see section 1.3.3). Foam formation dramatically reduces the working volume of the 

bioreactor and even endangers the whole process if the foaming gets out of control. The 

volumetric productivity is decreased if the working volume of the bioreactor cannot be 

exploited completely.  

 Application of inexpensive raw materials such as crude or waste materials.  

The raw materials can make up to 10 – 50 % of the final product costs of biosurfactants 

(Mulligan and Gibbs 1993). Depending on the desired purity of the product, the produc-

tion costs are principally influenced by either the raw material costs or by the purifica-

tion costs. Rhamnolipids can be applied as fine chemicals, for example for pharmaceu-

tics or cosmetics, or as bulk surfactants, for example for cleaning products. For high 

purity products, the product costs are affected mainly by the downstream processing. If 

high purity is not required, for example for bulk applications, the raw material costs can 

amount up to 50 % of the overall production costs. For batch rhamnolipid production 

processes for example, a YP/S of 0,13 up to 0,68 has been reported (see Table 1). Conse-

quently, between 1,5 and 7,7 times more substrate is needed than product is synthesized. 

Therefore, low-cost raw materials are important for an economic production process. In 

general, less pure materials are less expensive and usually tolerated by the microorgan-
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isms. Crude materials like corn syrup, molasses or non-refined plant oils are promising 

carbon sources. Waste materials are also a good option because they are even less ex-

pensive than crude materials. 

 Increase of productivity of the production process, for example by looking at 

the biosynthesis control, screening for overproducers or by genetic engineering. 

Overproducing strains may be isolated from the environment, especially from hydrocar-

bon-contaminated sites by different isolation and screening techniques for biosurfactant 

producing microorganisms (Walter et al. 2008). Alternatively, overproducing strains 

can be generated by random mutagenesis or, more straightforward, by a directed 

mutagenesis by genetic engineering. Targets for metabolic engineering are the genes 

involved in the biosynthesis of the biosurfactant or genes for proteins that are involved 

in substrate uptake, side-reactions etc. The regulation of rhamnolipid biosynthesis must 

be addressed as well. However, insufficient information is available on the overall regu-

lation of rhamnolipid biosynthesis. 

b) Optimisation of the recovery with respect to yield and economics, for example 

with in-situ-methods.  

Many factors influence the recovery costs of biosurfactants, e.g. the product concentra-

tion, the characteristics of the broth and of the product, the desired purity and the se-

lected recovery methods (see section 1.3.4). Especially the broth composition is of con-

cern as P. aeruginosa produces polysaccharides like alginate that constrain the purifica-

tion processes. This phenomenon was observed, for example, for column chromatogra-

phy by Reiling et al. 1986 who reported that clogging of the column during the loading 

procedure probably resulted from the fact that the cell-free culture liquid contained 

polysaccharide material. Recovery costs are significantly reduced if a separation of the 

individual rhamnolipid species in the product mixture is not necessary. In this case, ex-

pensive chromatography steps can be reduced or even omitted. A first recovery by pre-

cipitation is also very effective (see section 1.3.4) as it is a simple and inexpensive 

method requiring little equipment and no organic solvent. But little attention is paid to 

this method in current rhamnolipid research projects and solvent extraction is conven-

tionally applied for the first recovery of rhamnolipids. In-situ product removal is also 

rewarding for rhamnolipid recovery because the amount of necessary recovery steps is 

reduced and, additionally, foam problems are decreased. However, all reports on ISPR 

of rhamnolipids by filtration or foam fractionation conclude that these techniques are 

unsuccessful (see chapter 1.3.4). 
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1.6 Problems and limitations of rhamnolipid production 

Recently, there has been an increasing interest in rhamnolipids for cleaning, food, cos-

metics, pharmaceutics and environmental applications as sustainability and environmen-

tal compatibility are gaining more and more importance. However, the overall estab-

lishment of rhamnolipids is impeded by a lack of availability of economic products. The 

production costs of rhamnolipids are too high for a broader market development. Hence, 

rhamnolipids are not competitive against conventional synthetic surfactants and, conse-

quently, they represent only niche products. The economic competitiveness of rhamno-

lipids is mainly determined by the low productivity of rhamnolipid production processes 

resulting from low production rates and long process times for batch and fed-batch 

processes (see Table 1). Furthermore, the recovery of rhamnolipids is quite expensive. 

Another factor is the high safety level of the conventional production strain 

P aeruginosa. Moreover, the formation of side-products such as the polysaccharide al-

ginate decreases the productivity and enhances viscosity. A kinematic viscosity of up to 

45 mm
2
/s was reported for a rhamnolipid production process with P. aeruginosa, whe-

reas the starting viscosity was in the range of 2 – 5 mm
2
/s (Leitermann 2008). Such a 

high viscosity can lead to severe problems in industrial scale processes concerning 

power input and mass transfer. Polysaccharides also complicate the product recovery 

(see section 1.5 b). Therefore, the formation of polysaccharides by rhamnolipid produc-

tion strains should be minimized by process design or by genetic engineering.  

A problem of research in the area of rhamnolipid production is that many different ana-

lytical methods are used, for example HPLC (Hembach 1994), photometric methods 

like orcinol assay (Lee et al. 2004) or anthrone assay (Syldatk et al. 1985a) and even 

gravimetric determination (Gunther et al. 2005) or indirect determination by Fcmc-

measurement (Reiling et al. 1986, Guerra-Santos et al. 1984). This complicates the 

comparison of the different proposed rhamnolipid production processes and production 

strains.  
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1.7 Aim of the work 

New production processes are the key issue in overcoming the economic obstacles of 

rhamnolipid production. Therefore, increased efforts must be made to address the men-

tioned problems of rhamnolipid production. This work tackles rhamnolipid production 

with different approaches by looking at all aspects of the production process, from the 

upstream to the downstream processing. The following aspects were investigated: 

a) Plant oils and waste glycerol as raw materials (chapter 4.1) 

Two different types of substrates were applied in this work: plant oils and waste glyc-

erol. Plant oils are common substrates for rhamnolipid production. They were used as 

standard substrate.  

Different waste substrates have already been studied for rhamnolipid production, for 

example olive oil mill effluents (Mercadé et al. 1993), waste frying oils (Haba et al. 

2000) or waste free fatty acids (Abalos et al. 2001). Waste glycerol has not been exam-

ined as a substrate for rhamnolipid production yet although glycerol is a common sub-

strate for rhamnolipid production with P. aeruginosa (Syldatk et al. 1985a; Chen et al. 

2007a). Waste glycerol offers the advantages that it is a waste substrate from a renew-

able resource and less expensive than plant oils. Waste glycerol from biodiesel produc-

tion and the pharma industry were investigated in this work. The price of crude glycerol 

from biodiesel manufacturing is about 500 €/ton and thus about 50 % cheaper than plant 

oil (ADM Biodiesel 2007).  

But waste glycerol from biodiesel production contains impurities from the harsh bio-

diesel manufacturing, such as aldehydes, esters, halogenated compounds, chlorides, 

heavy metals and sulphates (ADM Biodiesel 2007). The aim of this working package 

was to verify if these substrates are suitable for rhamnolipid production or if the impuri-

ties affect or even inhibit bacterial growth and rhamnolipid production.  

b) Immobilisation of P. aeruginosa with the aim of establishing an in-situ 

product removal process (chapter 4.2) 

In-situ product removal offers some significant advantages for the production of rham-

nolipids. The most important is the reduction of foam formation. However, all attempts 

at in-situ product removal of rhamnolipids by filtration have failed due to rapid fouling 

of the filtration membranes (Gruber 1991). The fouling of the inserted membrane could 

be prevented by immobilisation of the cells, as immobilisation separates the cells and 

the culture broth. Moreover, immobilised cells are necessary for in-situ product removal 

by foam fractionation because otherwise free cells are enriched in the foam and carried 

out of the reactor (Gruber 1991).  
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Immobilisation of microbial cells offers some additional advantages when compared to 

classical fermentation processes with free cells (Tramper 1989). The immobilised cells 

can be recycled and reused; moreover, a high cell density and thus a high volumetric 

productivity can be achieved. The purification of the desired product is facilitated and 

inactivation of fragile cells at interfaces can be prevented.  

The aim of this working package was to develop a simple, efficient and economic im-

mobilisation method for P. aeruginosa and a suitable cultivation process for the produc-

tion of rhamnolipids with immobilised cells. The immobilised cells should be integrated 

into a production process with in-situ product removal by membrane or electro kineti-

cally controlled deep filtration (see Figure 7). This part of the process was under devel-

opment by project partners from the former upt GmbH, Saarbrücken, Germany.  

 

Figure 7: Process concept for the rhamnolipid production process with immobilised 

cells and ISPR by filtration (left) or electro kinetically controlled deep filtration (right) 

 

The filtration step was planned with a hollow fibre membrane filter with a pore size of 

10 µm. Immobilised cells with a diameter of at least 100 µm should be retained by the 

filter whereas the rhamnolipid micelles with a diameter of ≈ 1 µm are separated. The 

electro kinetically controlled deep filtration should be undertaken with a charged ab-

sorber material (Mavrov et al. 2001). An appropriate filter material would absorbs the 

immobilised cells whereas the rhamnolipid micelles pass the filter.  

Immobilisation of microorganism or enzymes can be carried out by inclusion into part i-

cles or membranes or by coupling to a matrix (Buchholz et al. 2005). The common im-

mobilisation techniques are illustrated in Figure 8.  

         



Introduction 

24 

 

Figure 8: Methods for immobilisation of enzymes or microorganisms (modified from 

Buchholz et al. 2005) 

 

In this work, immobilisation by matrix entrapment was chosen as preferred method be-

cause it is a gentle method and, thus, commonly used for immobilisation of whole mi-

croorganisms. Membrane retention is another option for retention of microorganisms, 

however, not adequate for P. aeruginosa because of the already mentioned rapid mem-

brane fouling and blocking. Coupling methods are too aggressive for microbial cells and 

the binding is probably not strong enough for whole cells.  

c) Non-pathogenic production strains as alternatives to the conventional, 

pathogenic production strain P. aeruginosa (chapter 4.3) 

This approach aimed at finding an alternative, non-pathogenic production strain capable 

of producing sufficient amounts of rhamnolipids. The aim was to investigate if one of 

the non-pathogenic, rhamnolipid producing strains mentioned in chapter 1.4 is competi-

tive to the standard production strain P. aeruginosa.  

For most of the non-pathogenic rhamnolipid producing strains, a structure elucidation of 

the synthesised rhamnolipids has not yet been accomplished; only for P. chlororaphis, 

B. plantarii and B. glumae have the structures of the synthesised rhamnolipids been 

determined. Therefore, an intensive analysis of their rhamnolipid production had to be 

carried out to evaluate potential candidates. Moreover, little information was available 

on the rhamnolipid production from a commercial point of view, for example product 

yield, production process, production costs etc. Therefore, the successful candidates 

from first screening were further studied at bioreactor scale.  

Immobilisation 
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entrapment 
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in particles 

Membrane separa-
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2 Material 

2.1 Chemicals 

All applied chemicals were of analytical grade and purchased from ROTH, with the 

exception of: 

 agar, tryptone, yeast extract (Becton Dickinson, Germany) 

 sunflower oil (food grade, “Gut & Günstig”, Germany) 

 olive oil (food grade, “ALDI Süd”, Germany)  

 CaCl2∙2H2O, MnSO4∙H2O, MnCl2∙4H2O, NH4H2PO4, Ce(SO4)2, CoSO4∙6H2O, 

MgSO4, NaMoO4 2H2O, L-rhamnose, sodium-alginate, κ-caragenaan, xanthane, 

porcine gelatin, Gum Arabicum, meat extract, 4-bromo phenacyl bromide, 

triethyl ammonium, anisaldehyde, triethyl amine (Fluka, Germany) 

 BaCl2, 50 % glutaraldehyde (Merck, Germany) 

 5-methylresorcin monohydrate, protamine sulphate (Sigma-Aldrich, Germany) 

 (NH4)6Mo7O24∙4H2O, CuSO4∙5H2O (Janssen Chimica, Switzerland) 

2.2 Strains 

P. aeruginosa DSM 2874 and DSM 7108 were obtained from the Deutsche Sammlung 

von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany.  

The following non-pathogenic microorganisms were investigated in this work: 

P. chlororaphis DSM 50083, P. chlororaphis NRRL B-30761, P. putida DSM 5232, 

P. putida DSM 12735, P. oleovorans DSM 1045, P. cruciviae NCIMB 10833, B. glu-

mae DSM 9512, B. glumae PG1 (obtained from F. Rosenau, IMET, Jülich, Germany), 

B. plantarii DSM 9509, B. plantarii DSM 6535 and T. koreensis DSM 16501. These 

strains were classified as non-pathogenic by the Deutsche Sammlung von Mikroorgan-

ismen und Zellkulturen GmbH, Braunschweig, Germany (DSMZ).  
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2.3 Media 

 

Saline contains 9 g/L NaCl in H2OVE.  

 

LB-medium was applied according to Bertani 1951. The composition of the LB-

medium is given in Table 3.  

Table 3: Composition of LB-medium 

The pH is adjusted to 7.  

For LB-agar, 20 g/L agar is added to the LB-medium.  

 

M3-medium (Matulovic 1987) is a medium for resting cell cultivation. It was used for 

cultivations with immobilised cells and for cultivations of P. aeruginosa with waste 

glycerol under resting cell conditions. For the latter cultivation, the medium is buffered 

with phosphate buffer. The composition of M3-medium is given in Table 4.  

Table 4: Composition of M3-medium 

compound concentration [g/L] 

NaCl  2,5 

CaCl2∙2 H2O 0,37 

Na2HPO4 (only for cultivation with free cells) 0,15 

NaH2PO4 (only for cultivation with free cells) 0,26 

C-source (olive oil or glycerol) 20 

The pH is adjusted to 6,8.  

 

Giani-medium was applied according to Giani et al. 1997. This medium is used for 

cultivations in bioreactor. According to Leitermann 2008, a 10fold diluted medium is 

used for shake flask cultivation, whereas the oil content is not reduced. Cultivations 

with P. aeruginosa have shown that a diluted medium is favourable for rhamnolipid 

compound concentration [g/L] 

tryptone 10 

yeast extract 5 

NaCl 10 
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production in shake flasks. The composition of the Giani-medium is given in Table 5 

and Table 6. 

Table 5: Composition of Giani-medium 

The pH is adjusted to 6,8. 

Table 6: Composition of trace element solution for Giani-medium 

 

Kay´s minimal medium was applied according to Gunther et al. 2005. The composi-

tion of the medium is given in Table 7.  

Table 7: Composition of Kay´s minimal medium 

compound concentration [g/L] 

NH4H2PO4 3 

K2HPO4 2 

MgSO4 1 

FeSO4 0,0005 

glucose  2 

The pH is adjusted to 7.  

 

compound concentration [g/L] 

MgSO4∙7 H2O 0,5 

KCl 1 

NaNO3 15 

Na2HPO4 6,27 

NaH2PO4 10,11 

trace element solution 1 mL/L 

C-source, e.g sunflower oil or glycerol 125 

compound concentration [g/L] 

trisodium citrate∙2 H2O 2 

FeCl3∙6 H2O 0,28 

ZnSO4∙7 H2O 1,4 

CoCl2∙6 H2O 1,2 

CuSO4∙5 H2O 1,2 

MnSO4∙H2O 0,8 
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Gunther-medium was modified from Gunther et al. 2005. The composition of the me-

dium is given in Table 8.  

Table 8: Composition of modified Gunther-medium 

compound concentration [g/L] 

KH2PO4 0,7 

Na2HPO4 0,9 

NaNO3 2 

MgSO4∙7 H2O 0,4 

CaCl2∙2 H2O 0,1 

FeSO4∙7 H2O 0,004 

MnSO4∙H2O 0,003 

(NH4)6Mo7O24∙4 H2O 0,0012 

trisodium citrate∙2 H2O 0,05 

C-source, e.g. sunflower oil or glucose 120 

The pH is adjusted to 6,7.  

 

Suzuki-medium was modified from Suzuki and Itoh 1972. The composition of the Su-

zuki-medium is given in Table 9 and Table 10.  

Table 9: Composition of modified Suzuki-medium 

compound concentration [g/L] 

(NH4)2SO4 5 

KH2PO4 2 

Na2HPO4∙2 H2O 2,2 

NaSO4 1 

yeast extract 3,5 

trace element solution 50 mL/L 

C-source, e.g. sunflower oil or glycerol 125 

The pH is adjusted to 6,5. 
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Table 10: Composition of trace element solution for Suzuki-medium 

compound mass [g] per 50 mL solution 

MgSO4∙7 H2O 1 

FeSO4∙7 H2O 1 

MnSO4∙H2O 0,38 

ZnSO4∙7 H2O 0,01 

sodium citrate∙2 H2O 2 

biotin 0,001 

 

Zähringer-medium according to Zähringer et al. 1997 is used for cultivation of 

B. plantarii at bioreactor scale. For shake flask cultivation, the medium is diluted 5fold 

or 10fold whereas the concentration of the oil is not reduced. The composition of the 

medium is given in Table 11.  

Table 11: Composition of Zähringer-medium 

compound concentration [g/L] 

NH4H2PO4 5 

KH2PO4 3,5 

K2HPO4 3,5 

yeast extract 10 

MgSO4∙7 H2O 1 

CaCl2∙2 H2O 0,026 

sunflower oil 75 

The pH is adjusted to 6,5. 

 

MRS-medium (DSMZ 2007) was modified for halophilic T. koreensis by adding so-

dium chloride. The composition of the medium is given in Table 12.  
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Table 12: Composition of modified MRS-medium 

component concentration [g/L] 

casein peptone 10 

meat extract 8 

yeast extract 4 

NaCl 10 

K2HPO4 2 

trisodium acetate∙3 H2O 8,3 

diammonium hydrogen citrate 2 

MgSO4 0,2 

MnSO4∙H2O 0,055 

sunflower oil or glucose 20 

The pH is adjusted to 9.  

 

M92-medium (DSMZ 2007) was modified for halophilic T. koreensis by adding so-

dium chloride. The composition of M92-medium is given in Table 13.  

Table 13: Composition of modified M92-medium 

The pH is adjusted to 9.  

 

GYP-medium (glucose-yeast-peptone) (DSMZ 2007) was modified for halophilic 

T. koreensis by raising the sodium chloride concentration. Plant oil was used instead of 

glucose. The composition of the GYP-medium is given in Table 14.  

compound concentration [g/L] 

soy peptone 30 

yeast extract 3 

NaCl 20 
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Table 14: Composition of modified GYP-medium 

The pH is adjusted to 9.  

 

Trummler-medium was modified from Trummler et al. 2003. The composition of the 

medium is given in Table 15 and Table 16.  

Table 15: Composition of modified Trummler-medium 

The pH is adjusted to 6,5.  

Table 16: Composition of trace element solution for modified Trummler-medium 

 

compound concentration [g/L] 

casein peptone 10 

yeast extract 10 

sodium acetate∙3 H2O 16,6 

NaCl 10,1 

MgSO4∙7 H2O 0,2 

MnSO4∙H2O 0,0075 

FeSO4∙7 H2O 0,01 

sunflower oil or glucose 20 

compound concentration [g/L] 

(NH4)2SO4 6 

MgSO4∙7 H2O 0,4 

CaCl2∙2 H2O 0,4 

Na2HPO4∙2 H2O 7,59 

KH2PO4 4,43 

trace element solution 2 mL/L 

carbon source 20 

compound concentration [g/L] 

citrate 20,1 

FeCl3∙6H2O 16,7 

CoCl2∙6H2O 0,18 

ZnSO4∙7H2O 0,18 

CuSO4∙5H2O 0,16 

MnSO4∙H2O 0,1 
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Tuleva-medium was modified from Tuleva et al. 2002. The composition of the me-

dium is given in Table 17.  

Table 17: Composition of Tuleva-medium 

The pH is adjusted to 7,2.  

 

CTAB agar was prepared according to Siegmund and Wagner 1991. Glycerol, glucose 

or sunflower oil were utilized as carbon sources. If plant oil is used as carbon source, 

the oil droplets are stabilized with 1 g/L Gum Arabicum.  

Crude glycerol (Concerine CD 80) and glycerol pharma grade were obtained from 

ADM Biodiesel, Hamburg, Germany. The composition of crude glycerol is given in 

Table 18.  

Table 18: Composition of Concerine CD 80 (crude glycerol from ADM Biodiesel) 

compound content (m/m) 

glycerol 81,9 % 

water 12,8 % 

NaCl 5,3 % 

methanol 0 % 

MONG (Matter of Organic Non Glycerol) < 1,5 % 

compound concentration [g/L] 

K2HPO4∙3 H2O 4,8 

KH2PO4 1,5 

(NH4)2SO4 1 

yeast extract 0,1 

MgSO4 0,2 

CaCl2∙2 H2O 0,002 

MnCl2∙4 H2O 0,0004 

NiCl2∙6 H2O 0,0004 

ZnSO4∙7 H2O 0,0004 

FeCl3∙6H2O 0,0002 

Na2MoO4∙2 H2O 0,0002 

citric acid 0,35 

sunflower oil or glucose 20 
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Furthermore, the crude glycerol contains traces of impurities from the harsh biodiesel 

manufacturing, for example, aldehydes, esters, halogenated compounds, chlorides, 

heavy metals and sulphates (ADM Biodiesel 2007).  

Waste glycerol from passion fruit oil, linseed oil and fish oil was obtained from KD 

Pharma, Bexbach, Germany. These waste products are side-products from the manufac-

turing of ω-3-faty acids from natural oils.  

 

Solutions for immobilisation 

Immobilisation in calcium-alginate: 

Matrix:    20 g/L sodium-alginate in H2OVE, dissolved at 80 °C 

Hardener:    20 g/L CaCl2∙2H2O in H2OVE 

Storage solution:  5 g/L CaCl2∙2H2O in H2OVE 

 

Immobilisation in barium-alginate: 

Matrix:    17 g/L sodium-alginate in H2OVE, dissolved at 80 °C 

Hardener:    12,22 g/L BaCl2 in H2OVE 

Crosslinker:   5 g/L protamine sulphate in H2OVE 

 

Immobilisation in barium-alginate/xanthan: 

Matrix:    7,5 g/L sodium-alginate in H2OVE, dissolved at 80 °C 

     3 g/L xanthan in saline 

Hardener:    saturated barium alginate solution: 437,5 g/L BaCl2 in H2OVE 

Crosslinker :   5 g/L protamine sulphate in H2OVE 

 

Immobilisation in κ-caragenaan: 

Matrix:    30 g/L κ-caragenaan in H2OVE, dissolved at 80 °C 

     or 15 g/L κ-caragenaan in H2OVE, dissolved at 80 °C 

Hardener:    23,82 g/L KCl in H2OVE 
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Immobilisation in gelatin: 

Matrix:    200 g/L porcine gelatin in H2OVE, dissolved at 60 °C 

Hardener:    7,36 g/L CaCl2∙2H2O in H2OVE 

Crosslinker:   50 % glutaraldehyde diluted 1:25 in H2OVE 

 

Immobilisation in gelatin-alginate: 

Matrix:    200 g/L porcine gelatin in H2OVE, dissolved at 60 °C 

     30 g/L sodium-alginate in H2OVE, dissolved at 80 °C or 

     20 g/L sodium-alginate in H2OVE, dissolved at 80 °C 

Hardener:    7,36 g/L CaCl2∙2H2O in H2OVE 

Crosslinker:   50 % glutaraldehyde diluted 1:25 in H2OVE 

 

2.4 Solutions for analytics 

TLC 

Mobile phase: 

The composition of the mobile phase for TLC analytics is given in Table 19.  

Table 19: Composition of mobile phase for TLC 

 

Staining of fatty acid moiety: 

The ß-hydroxy fatty acid part of the rhamnolipids was stained with the solution given in 

Table 20. 

compound volume [mL] 

chloroform 650 

methanol 150 

acetic acid (conc.) 2 
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Table 20: Composition of staining solution for fatty acid part 

 

Staining of rhamnose moiety: 

The rhamnose moiety of the rhamnolipids was stained with anisaldehyde (see Table 21). 

Table 21: Composition of staining solution for rhamnose part 

 

HPLC 

Derivatisation:  

Solution A: 40 mM 4-bromo phenacyl bromide in acetonitrile 

Solution B: 20 mM triethyl ammonium in acetonitrile 

 

Mobile phase:  

Solvent A: 95 % deionised water, 5 % acetonitrile 

Solvent B: 5 % deionised water, 95 % acetonitrile 

 

Orcinol assay 

Orcinol reagent: 

The orcinol reagent is composed of 0,19 % 5-methylresorcin in 53 % sulfuric acid. 

Therefore, 55,2 mL of conc. sulfuric acid (96 %) are added to 44,8 mL of water, and 

subsequently, 21,8 mg of 97 % 5-methylresorcin are dissolved in the acid.  

 

compound amount 

ammonium (IV) molybdate tetrahydrate 1,05 g 

cerium (IV) sulphate 0,5 g 

sulfuric acid (conc.) 15,5 

water 250 mL 

compound volume [mL] 

anisaldehyde 1 

sulfuric acid (conc.) 2 

acetic acid (conc.) 100 
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Rhamnose solutions for calibration: 

For the calibration of the orcinol assay, L-rhamnose solutions with 0,01 – 0,1 g/L rham-

nose in 0,1 M phosphate buffer pH 7 were used. 
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3 Methods 

3.1 Microbiological methods 

Storage of microorganisms 

Microorganisms were stored at – 20 °C with 15 % glycerol as cryo preservative.  

Measurement of biomass concentration 

The optical density (OD) of a culture was measured photometrically at 580 nm. The 

optical density was not measured if oil was applied as substrate because the oil droplets 

interfere with the photometric measurement. The wet and dry biomass concentrations 

were calculated from the OD using the following correlations:  

Table 22: OD-biomass correlations 

strain OD/WBM OD/DBM 

P. aeruginosa 0,333 2,087 

P. chlororaphis 0,171 1,87 

P. putida 1,187 1,65 

P. oleovorans 0,183 2,06 

P. cruciviae 0,253 2,34 

B. glumae 0,148 2,38 

B. plantarii 0,148 2,38 

T. koreensis 0,152 2,69 

 

An example for the calculation for P. aeruginosa is given below:  

Determination of wet biomass:  










L

gOD
WBM

333,0

580  

Determination of dry biomass:  










L

gOD
DBM

087,2

580  
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3.2 Cultivations 

Cultivations were performed at shake flask scale and at bioreactor scale (see Figure 9). 

Two different bioreactor systems were applied, depending on the task. Parallel cultiva-

tions were performed in the 6-fold parallel bioreactor system and larger cultivations 

were performed in the 40 L bioreactor.  

 

 

   

Figure 9: Applied cultivation systems, top: 500 mL shake flasks, bottom left: 0,6 L 6-

fold parallel bioreactor system, bottom right: 40 L bioreactor 

 

Shake flask 

Precultures were grown in baffled shake flasks overnight at 30 °C or 37 °C and 120 – 

130 rpm in LB-medium or Kay’s minimal medium (P. chlororaphis).  

The main cultivations were performed in 500 mL baffled shake flasks with 100 mL me-

dium. The standard medium for P. aeruginosa shake flask cultures was 1/10 diluted 

Giani-medium, according to Leitermann 2008. The medium was diluted to achieve nu-

trient limitation in shake flask culture. The flasks were inoculated with 20 mg DBM of a 

growing culture and incubated 8 – 9 days at 120 – 130 rpm and 30 °C or 37 °C. 

P. chlororaphis was incubated at 23 °C according to Gunther et al. 2005. At least two 

samples were taken during each cultivation.  
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Cultivations with waste and crude glycerol were carried out with P. aeruginosa DSM 

7108 under resting cell conditions or with growing cell. The cells were cultivated in 

500 mL baffled shake flasks with 100 mL M3 medium (resting cells) or 100 mL 1/10 

Giani-medium (growing cells). 2 g glycerol (resting cells) respective 12,5 g glycerol 

(growing cells) were applied. For resting cells, 3 g of wet biomass were inoculated and 

for growing cells 20 mg dry biomass. The cells were incubated for 8 – 9 days at 

120 rpm. Where extensive foaming started, the agitation was reduced to 105 rpm to 

prevent wetting and clogging of the cotton filter. The substrate concentration was ad-

justed for waste glycerol and crude glycerol according to the glycerol concentration of 

these substrates. Crude glycerol from ADM Biodiesel contained 81,9 % of glycerol. The 

glycerol content of the waste glycerol was determined with an enzymatic kit (see chap-

ter 3.3).  

Immobilised cells were cultivated under resting cell conditions in unbuffered M3-

medium in shake flasks. The pH was corrected manually during the cultivation.  

Parallel bioreactor cultivations 

The promising strains from the shake flask cultivations were then cultivated in a 6fold 

parallel bioreactor system (Sixfors, Infors AG, Switzerland). The cultivations were per-

formed at least in duplicate. The total volume of the parallel bioreactors was 600 mL 

and the working volume was set to 300 mL (non-pathogenic strains). The working vol-

ume had to be reduced to 200 mL for P. aeruginosa to handle excessive foaming. The 

cultivation conditions were 30 °C, 800 rpm and an aeration rate of 20 L/h. P. chloro-

raphis was cultivated at 23 °C according to Gunther et al. 2005. Two mechanisms were 

applied for foam control. First, a self-constructed mechanical foam separator with the 

shape of a 4-bladed Rushton turbine was installed on the stirrer shaft in the head space. 

This foam separator performs optimally at 1100 rpm; accordingly, the stirrer was set to 

1100 rpm and the aeration rate to 6 L/h when extensive foaming started. Second, the 

antifoam agent Contraspum A4050 (Zschimmer & Schwartz, Germany) was fed upon 

contact with an antifoam probe. The pH was corrected with 4 M H3PO4 and 4 M NaOH 

(25 % NH3 for B. plantarii). The cultivations were run for 8 – 9 days and 1 – 2 samples 

were taken each day. For cultivations according to Giani et al. 1997, Giani-medium was 

used and an additional oil feed of 125 g/L was dosed after 40 h of process time. Fur-

thermore, trace elements were fed after 0, 20, 40, 70 and 120 h of process time.  
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Table 23: Process parameters for cultivation in parallel bioreactor 

parameter value 

working volume 200 or 300 mL 

pH depending on medium 

T 30 °C (23 °C for P. chlororaphis) 

stirrer speed 800 – 1100 rpm 

aeration rate  20 – 6 NL/h (= 1 – 0,3 vvm) 

process time 8 – 9 days 

 

Cultivation in 40 L bioreactor 

B. plantarii DSM 9509 was cultivated in a 40 L Biostat Cplus bioreactor (Sartorius, 

Melsungen, Germany). The pH was corrected with 4 M H3PO4 and 25 % NH3. Foaming 

was detected with a foam probe and the mechanical foam separator FUNDAFOM, 

which was installed in the top plate of the reactor, was activated when foaming started.  

Table 24: Process parameters for cultivation of B. plantarii in 40 L Biostat Cplus biore-

actor 

parameter value 

 first cultivation second cultivation 

working volume 12 L 18,2 L 

pH 6,5 6,5 

T 30 °C 30 °C 

pO2 set point 20 % 20 % 

stirrer speed 350 – 550 rpm  207 – 284 rpm 

aeration rate  1 – 3 NL/min                             

(= 0,08 – 0,25 vvm) 

5,5 – 18,2 NL/min                      

(= 0,3 – 1 vvm) 

process time 120 h 160 h 

 

The dissolved oxygen level was regulated by the stirrer speed. The stirrer speed range 

for the 40 L bioreactor was scaled up from the cultivation from 0,6 L parallel bioreactor 

as follows:  
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First cultivation:  

The stirrer speed was calculated for constant peripheral speed vperiphery. 

R
dN  2v

periphery
 

For two different scales A and B, the stirrer speed N can be calculated as follows: 

AR

BRB

A
d

dN
N

,

,


  

 

Second cultivation: 

The stirrer speed was calculated for constant power input (P/V). The power input P in a 

stirred tank reactor is   
53

RdN

P
Ne  . 

 

The following assumptions were made:  

1) turbulent flow (Re > 10
4
), so that the Newton number Ne is constant, 

and 53~
R

dNP .  

2) 

2
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For two different scales A and B, the following equation results: 3
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The culture broth of the second 40 L cultivation was harvested and subjected to purifi-

cation. First, the cells were removed by centrifugation (20 min at 7500 rpm and 4 °C). 

The cell free supernatant (15 L) was extracted two times with 13 L in of hexane in total. 

The aqueous phase was acidified with H3PO4 to a pH of 2 – 3. The protonated rham-

nolipids were then extracted from the aqueous phase three times with 9 L of ethyl ace-

tate in total and the organic phase was collected and evaporated to gain the crude ex-

tract. 
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3.3 Analytics 

Sample preparation 

In shake flasks, samples from the cultivations were taken at day 5 and day 9 of cultiva-

tion. 1-2 samples were taken daily during bioreactor cultivation. If plant oil was used as  

carbon source, the samples were first extracted with hexane to remove the residual plant 

oil. Hexane was added 1:1 (v:v). After mixing, the aqueous phase, the hydrophobic 

phase and the biomass are separated by centrifugation, for example at 4700 rpm and 4 

°C for 10 min. The upper hexane phase was used to determine the oil concentration and 

the biomass pellet for the determination of the dry biomass. The lower, aqueous phase 

was subjected to further rhamnolipid analysis, for example by HPLC, TLC or orcinol 

assay. Consequently, the aqueous phase was transferred into a new flask, acidified with 

1 % (v:v) of 85 % H3PO4 and the protonated, nonpolar rhamnolipids were extracted 

with ethyl acetate. A complete working scheme for analytics is shown in Figure 10. 

 



 

  

 

Figure 10: Working scheme for analytics 
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Measurement of oil concentration 

Oil concentration was measured gravimetrically. Therefore, an aliquot of the hexane 

phase was transferred into a dried, pre-weighted tube. The organic solvent was evapo-

rated and the residual oil was weighted.  

Measurement of dry biomass (DBM) 

The dry biomass was also measured gravimetrically. The biomass pellet, obtained after 

the first centrifugation step, was washed with sterile saline. Following a second cen-

trifugation step, the biomass pellet was transferred to a dried, pre-weighted tube. The 

dry biomass concentration was determined after evaporation of the water at 100 °C for 

24 h.  

Measurement of glycerol concentration 

Glycerol concentration was measured with an enzymatic kit for the determination of 

glycerol containing three enzymes; a glycerokinase, a pyruvate kinase and a lactate de-

hydrogenase (r-Biopharm, Darmstadt, Germany).  

High performance liquid chromatography 

HPLC was performed according to Schenk et al. 1995. The main rhamnolipids of 

P. aeruginosa, namely RL1 and RL3, could be quantified with this method whereas no 

standard for the other rhamnolipids of P. aeruginosa or other rhamnolipid producing 

strains was available. Pure RL1 and RL3 were used for calibration. Pure RL3 was ob-

tained from the former Hoechst AG (Frankfurt, Germany). Pure RL1 was produced by 

enzymatic cleavage of pure RL3 and further purification by silica gel chromatography 

(Magario et al. 2008). The ethyl acetate from the rhamnolipid samples was evaporated 

and the sample was redissolved in acetonitrile. The rhamnolipids were then derivatised 

to phenacyl ester derivatives with 4-bromophenacyl bromide and triethyl ammonium 

(see Figure 11). Subsequently, equal volumes of the derivatising solutions A and B were 

mixed and 1 part of the solution was added to 5 parts of the sample. The sample was 

incubated at 60 °C for 90 min.  

 

Figure 11: Reaction scheme of derivatisation of RL1 with 4-bromophenacyl bromide 
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The HPLC was performed on an Agilent 1100 Series HPLC equipped a hydrophobic 

Supelcosil LC-18 column with 5 µm particle size. Water and acetonitrile were used as 

mobile phase, with the following gradients: 

   0 – 4 min:   70 % solvent B            

   4 – 14 min:  70 % to 100 % solvent B          

   14 – 28 min:  100 % solvent B            

   28 – 33 min:  100 % solvent B to 70 % solvent B       

   33 – 38 min:  70 % solvent B  

Solvent A: 5 % acetonitrile, 95 % water; Solvent B: 95 % acetonitrile, 5 % water 

The chromatography was performed at 25 °C with a flow rate of 0,8 mL/min. The efflu-

ent was monitored with an UV detector at 265 min.  

Emulsification 

The emulsification of the plant oil was observed for first evaluations of the surface ac-

tivity of the non-pathogenic strains. If plant oil was used as carbon source, the emulsifi-

cation of the oil was evaluated visually.  

Surface tension measurements 

The surface tension σ of culture supernatant was measured at 23 °C with the digital ten-

siometer K10T from Krüss (Hamburg, Germany) and the Wilhelmy plate method 

(Wilhelmy 1863). If plant oil was used for the cultivation, this was extracted with hex-

ane before the measurement. The Wilhelmy plate and the sample reservoir were cleaned 

with acetone and flamed before every measurement in order to prevent contamination of 

the samples.  

Thin layer chromatography (TLC) 

Rhamnolipid samples, for example aqueous culture supernatant, organic crude extract 

or other rhamnolipid samples, were analysed by thin layer chromatography. The TLC 

was performed according to Syldatk et al. 1985b; thereby, the rhamnolipids are sepa-

rated on a TLC plate according to their hydrophobicity. A rhamnolipid standard was 

prepared from Jeneil JBR 425 (Jeneil Biosurfactants Company, Saukville, United 

States). JBR 425 contains the rhamnolipids 1 – 4 of P. aeruginosa. For the standard, 85 

µL of JBR 425 were suspended in 1 mL of 0,1 M sodium phosphate buffer, pH 7, and 

acidified with 10 µL of concentrated phosphoric acid. This mixture was extracted with 

1,333 mL of ethyl acetate and this ethyl acetate phase was applied as TLC standard. 

Silica60-coated plates were used for TLC and the solvent system was chloro-

form:methanol:acetic acid (65:15:2). The sugar moieties were stained with anisaldehyde 

(anisaldehyde:sulphuric acid:glacial acetic acid 0,5:1:50), the fatty acid moieties were 

stained with ammonium molybdate/cerium sulphate (0,42 % w/v ammonium molybdate 
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and 0,2 % w/v cerium(IV) sulphate in 6,2 % sulfuric acid). The yellow colour was de-

veloped by heating with a fan.  

Orcinol assay 

The orcinol assay is a method for direct assessment of the amount of sugars in a sample. 

It was originally developed by Chandrasekaran and BeMiller 1980 and performed ac-

cording to the modifications of Tuleva et al. 2002. The extracellular glycolipid concen-

tration was evaluated in duplicate by measuring the concentration of rhamnose in the 

organic extract. 333 µL of culture supernatant were acidified with 3,33 µL of 85% 

phosphoric acid and then extracted twice with 1 mL of ethyl acetate. The ethyl acetate 

fractions were pooled, evaporated and then resolved in 0,5 mL of H2O. 900 µL of orci-

nol solution (0,19 % orcinol in 53 % H2SO4) was added to 100 µL of this sample. The 

samples were incubated at 80 °C for 30 min. After cooling to room temperature, the 

OD421 was measured. The rhamnose concentrations were calculated from a standard 

curve prepared with L-rhamnose and expressed in rhamnose equivalents RE [mg/mL]. 

For P. aeruginosa rhamnolipids, the rhamnose equivalents are usually multiplied by the 

factor three to obtain the rhamnolipid concentration (Mercadé et al. 1993; Abalos et al. 

2002; Nitschke et al. 2005). This factor represents the correlation rhamnolipid/rhamnose 

and considers the proportion of rhamnose in the mono-rhamnolipid RL1 and the di-

rhamnolipid RL3 and the ratio of RL1 and RL3 themselves. In the present work, rham-

nose was also used for calibration because pure rhamnolipids of the non-pathogenic 

strains were not available. The results of the orcinol assay were not multiplied with the 

factor three so that the results of all strains can be compared, even if the rhamnolipid 

composition of the strain is not known.  

CTAB agar 

The CTAB agar method is a rapid screening method for the detection of anionic biosur-

factants (Siegmund and Wagner 1991). As carbon source, sunflower oil, glycerine and 

glucose were applied. Gum Arabicum was added to the medium to stabilize the oil in 

the aqueous phase. 1 g/L Gum Arabicum is added to the oil and a part of the medium 

and then the mixture is homogenised with a sonicator. The suspension is then added to 

the rest of the medium before sterilisation. To strengthen the visual effect of the CTAB 

method, small wells were melted into the agar surface with the heated point of a glass 

stick or pipette. The cultures were then placed in the wells and incubated at 30 °C for 1 

– 2 days and then stored at 4 °C for further colour development. The test was considered 

as positive if a dark blue halo is formed around the colonies.  

IR 

Infrared spectroscopic measurements of culture supernatant were performed on a 

Bruker Tensor 27 (Bruker Optics, Ettlingen, Germany) with the FTIR-ATR technique. 
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Spectra were recorded from 4000 – 800 cm
-1

 at a resolution of 4 cm
-1

 and represent the 

average of 64 scans. A characteristic glycolipid spectrum displays C-H stretching bands 

of CH2 and CH3 groups in the region of 3000 – 2700 cm
-1

, a carbonyl stretching band, 

which is characteristic for ester compounds, at 1745 cm
-1

 and a fingerprint region from 

1500 – 800 cm
-1

, where characteristic bands for sugars are located (Christova et al. 

2004). 

MS 

Mass spectrometry of the organic extracts of B. plantarii (see chapter 4.3.2) was per-

formed with an API 4000 tandem-mass spectrometer (Applied Biosystems, Foster City, 

United States). The sample was solved in methanol/10 mM ammonium acetate (1:1) and 

injected by a pump with 0,6 mL/h. Analytes were ionised by electro spray ionisation in 

a turbo ion spray interface by – 4500 V in negative mode and a temperature of 400 °C. 

The experiments were performed in MCA mode, which means that 5 spectra are sum-

mated. The measurement range was from 300 – 1200 amu.  

Mass spectrometry of the purified rhamnolipid of B. plantarii (see chapter 4.3.4) was 

performed on a Finnigan MAT 90 mass spectrometer (70 eV) (Thermo Fisher Scientific 

Inc., Waltham, United States) as electron impact mass spectrometry (EI). The molecular 

fragments are quoted as the relation between mass and charge (m/z), the intensities as a 

percentaged value relative to the intensity of the base signal (100%). The abbreviation 

[M+] refers to the molecular ion. 

NMR 

1
H-NMR spectra of the purified rhamnolipid of B. plantarii were recorded on a Bruker 

AVANCE 500 (400 MHz) spectrometer (Bruker Optics, Ettlingen, Germany) as solu-

tions in CDCl3. Chemical shifts are expressed in parts per million (ppm, δ) downfield 

from tetramethylsilane (TMS) and are referenced to CHCl3 (7.26 ppm) as internal stan-

dard. 
13

C-NMR spectra were recorded on a Bruker AVANCE 500 (125 MHz) spec-

trometer as solutions in CDCl3.  

3.4 Immobilisation of P. aeruginosa DSM 2874 

3.4.1 Production of biomass for immobilisation 

P. aeruginosa DSM 2874 was grown in 3 L baffled shake flasks with 1 L LB medium at 

37 °C and 120 rpm. The medium was inoculated with 1 mL of a preculture in the expo-

nential phase (about 20 g/L WBM). Cells for immobilisation were harvested in the ex-

ponential phase by centrifugation at 7500 rpm for 15 min and washed twice with sterile 

saline. The biomass was then resuspended in sterile saline to a concentration of 1 g 
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WBM/L. This suspension was subsequently utilised either for further immobilisation or 

for cultivation with free cells as reference to the immobilised cells.  

3.4.2 Immobilisation by matrix entrapment 

The immobilisation of P. aeruginosa DSM 2874 was realised by entrapment into gel 

particles. The liquid gel matrix (for example sodium alginate) was mixed with the cells 

so that an optimal cell load of the particles of 30 % resulted, according to Matulovic 

1987. From this mixture, small gel particles are formed by a drop forming procedure. 

The droplets then fall into an appropriate hardening solution (e.g. calcium chloride) and 

solidify. A scheme of this procedure is shown in Figure 12. An immobilisation appara-

tus was used to generate the small droplets. This apparatus is essentially a spray nozzle 

with a diameter of 0,8 mm, generating small liquid droplets by pressure and a surround-

ing air stream and a reservoir for the matrix-cell-mixture (Matulovic 1987). 

 

  

 

reservoir for matrix-cell-

mixture 

 

 

spray nozzle with com-

pressed air 

 

 

hardening solution 

 

Figure 12: Scheme of immobilisation procedure for entrapment immobilisation (left) 

and experimental setup (right) 

 

The immobilisation methods were tested in advance without cells and the immobilisa-

tion parameters were modified to improve the immobilisation procedure and the stabil-

ity of the particles.  

The hardening mechanism of the applied matrix materials is ionotropic gelation (algi-

nate, κ-caragenaan) or sol-gel conversion (gelatin). In some cases further stabilisation of 

the particles was carried out by drying or by treatment with the crosslinkers protamine 

sulphate or glutaraldehyde.  

Immobilisation in calcium-alginate: 

Cells were immobilized according to Matulovic 1987. The harvested cells were mixed 

with the sodium-alginate-matrix before the matrix-cell-mixture was filled into the im-
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mobilisation apparatus and dropped into the calcium-crosslinker-solution. After 30 min 

hardening in the crosslinker solution, the pearls were washed twice with saline.  

A part of the calcium-alginate pearls was further treated to improve the stability of the 

pearls. For this, the pearls were dried on filter paper according to Vorlop and Klein 

1981 at 20 °C for 3 h or at 40 °C for 4,5 h.  

Immobilisation in barium-alginate 

The immobilisation method in barium-alginate was modified from Orive et al. 2003. 

The cells were mixed with 1,7 % sodium-alginate-matrix and dropped into the barium-

crosslinker solution. After hardening for 30 min, the pearls were washed twice with 

sterile saline.  

A part of the pearls was further hardened for 30 min with the crosslinker 2, protamine 

sulphate and then again washed twice with sterile saline.  

Immobilisation in barium-alginate/xanthane 

This method was modified from Vigo et al. 2004. The saturated barium-solution is 

added to the xanthane solution to a final concentration of 20 mM of Ba
2+

. Then, the 

cells are added. This mixture is dropped into the 0,75 % sodium-alginate solution, the 

pearls are hardened for 30 min and barium-alginate encapsulated xanthan particles were 

obtained. The pearls were further hardened with protamine sulphate for 30 min and 

again washed twice with saline.  

Immobilisation in κ-caragenaan 

The immobilisation method of Brodelius and Nilsson 1980 was applied. Due to rapid 

hardening of the gel, the κ-caragenaan concentration was reduced from 3% to 1,5 %. 

But even at that concentration, the κ-caragenaan could not be processed with the immo-

bilisation apparatus.  

Consequently, the gel was poured into sterile agar dishes. To harden the gel, it was laid 

in 0,3 M KCl solution and then cut into cubes of about 2×2×2 mm.  

Immobilisation of P. aeruginosa was not performed with this method due to the rapid 

hardening of the gel even with the pouring method.  

Immobilisation in gelatin/gelatin-alginate 

The immobilisation method in gelatin and gelatin-alginate was performed according to 

Brodelius and Nilsson 1980. For gelatin-alginate, the gelatin-solution was mixed 1:1 

with 3 % alginate solution or 1:2 and 1:3 with 2 % alginate solution. Gelatin and gela-

tin-alginate in different concentrations could not be processed with the immobilisation 

apparatus. Therefore, pouring of the gel into sterile agar dishes was performed. The 

cells were mixed with sterile gelatin-solution and poured into sterile petri dishes. The 
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mixture was allowed to cool for 2 h at RT, then 1 h at 4 °C. Subsequently the gel was 

treated with 2 % glutaraldehyde for 30 min, washed twice with saline and cut into cubes 

of about 2×2×2 mm.  

3.4.3 Cultivation of immobilised P. aeruginosa 

10 g of the particles with immobilised P. aeruginosa DSM 2874 with a cell load of 

30 % were cultivated in 100 mL M3-medium for 9 days at 30 °C and 90 rpm in a baf-

fled shake flask. As carbon source, 20 g/L olive oil or glycerol was applied. The pH of 

the cultivation in the unbuffered M3-medium was corrected several times during the 

cultivation with 1 M NaOH or 1M HCl. Seven samples were taken during the cultiva-

tion period. The rhamnolipid concentration of the supernatant was determined by 

HPLC, the optical density of the supernatant was determined photometrically and the 

cell leakage was calculated therefrom: 

 
 

 
100

ml 100per  g particlesin  biomass

ml 100per gt supernatanin  biomass
% leakage cell   

The cell leakage could only be determined for the cultures with glycerol as the oil drop-

lets interfere with the photometric biomass measurement.  

Free cells were cultivated as positive controls with the same cell concentration (3 g 

DBM in 100 mL M3-medium).  

3.5 Downstream processing of rhamnolipids 

The downstream processing of harvested culture broth starts according to the extraction 

protocol for analytics (see chapter 3.3) with the extraction of the plant oil with hexane 

and centrifugation. After separation of the cells and the supernatant, the supernatant is 

acidified with H3PO4 to a pH of 2 – 3 and the rhamnolipids are extracted thereof with 

ethyl acetate. The ethyl acetate extract is evaporated and the crude extract is gained. 

This crude extract was further processed by the following methods. 

3.5.1 Thick layer chromatography 

Thick layer chromatography was performed with 2 mm Silica60-covered plates (43 – 60 

µm silica gel) and the solvent system chloroform:methanol:acetic acid (65:15:2) 

(Syldatk et al. 1985b). 3 – 9 mL of rhamnolipid extract from B. plantarii DSM 6535 

was charged on each plate. After separation of the rhamnolipids, the edges of the plate 

were stained with anisaldehyde (see chapter 2.4) to visualize the rhamnolipid front. The 

rhamnolipid front was scratched off the plate with a knife and the silica gel was pestled. 

The rhamnolipids were extracted from the silica gel with different solvents, namely 

ethyl acetate, methanol, methanol/chloroform (1:1) and isopropanol.  
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3.5.2 Column chromatography 

All column chromatography steps were performed with Silica60, 43 – 60 µm (230 – 

400 mesh) and with crude extract of B. plantarii DSM 9509. The elution fractions were 

collected with a fraction collector and analysed by TLC and staining with anisaldehyde. 

Primary cleaning 

For a coarse purification, a column chromatography under isocratic conditions with the 

mobile phase chloroform:methanol:acetic acid (65:15:2) was performed. 5 mL of crude 

extract were loaded on a column of 473 mL (44 cm × 3,7 cm).  

Alternatively, a column chromatography step with sequential elution, modified from 

Andrä et al. 2006, was performed. 0,48 g of crude extract was loaded on the column of 

185 mL (59 cm × 2 cm). The following solvent systems were used for elution: fraction 

1: chloroform; fraction 2: chloroform: methanol (95:5); fraction 3: chloroform: metha-

nol (90:10); fraction 4: chloroform: methanol (80:20); fraction 5: chloroform: methanol 

(60:40); fraction 6: chloroform: methanol (50:50) and fraction 7: methanol. Four bed 

volumes of each solvent system were used for elution.  

Fine cleaning 

The fine purification of the rhamnolipid fractions from the first chromatographic step 

was performed as flash chromatography under isocratic conditions with 30:3:1 (chloro-

form:methanol:acetic acid) according to Bauer et al. 2006. 180 mg of rhamnolipid from 

the primary cleaning were dissolved in chloroform and loaded on a column of 170 mL 

(24 cm ×3 cm). The rhamnolipid fractions were pooled after the chromatography and 

the solvent was evaporated. The acetic acid was stripped from the mixture to prevent 

acid hydrolysis of the rhamnolipids following evaporation of the organic solvents. 

Therefore, an equal volume of toluene was added to the rhamnolipid fractions several 

times during evaporation.  

3.5.3 Fast centrifugal partition chromatography (FCPC) 

Fast centrifugal partition chromatography is a chromatographic technique applicable for 

analytic and preparative purpose. The technique uses a liquid-liquid biphasic system 

without solid support to maintain the stationary phase. Essentially, a CPC instrument is 

a series of channels linked in cascade by ducts and aligned in cartridges or disks in a 

circle around a rotor. When the rotor is set in motion, the assembly is subjected to a 

constant centrifugal field. Two immiscible liquids are used as mobile and stationary 

phase, the mobile phase being percolated through the stationary phase by a pump and 

the centrifugal field. Due to the liquid nature of the solvents, the upper or the lower 

phase of the biphasic system can be selected as mobile or stationary. In the ascending 

mode, the lighter phase is percolated through the heavier one in a direction opposite to 
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the centrifugal field (from the periphery to the centre of the rotor in each channel), and 

in descending mode the heavier phase is percolated through the lighter one in the direc-

tion of the centrifugal field (from the centre to the periphery of the rotor in each chan-

nel).  

The advantage of FCPC is that the operation costs are lower, compared to column 

chromatograph; elution requires 10 times less solvent and the stationary phase can be 

easily recycled (Marchal et al. 2003). 

The FCPC purification experiments were performed with a FCPC200 from Kromaton 

(Angers, France), kindly provided by Alphacrom OHG, Langenau, Germany. The rotor 

had a capacity of 200 mL. The experimental setup is shown in Figure 13.  

 

 

Figure 13: FCPC setup with pump and detector (left-hand side) and FCPC device (right-

hand side) 

 

Two solvent systems were chosen for the purification experiments:  

1. Ethyl acetate:water (1:1) 

2. Hexane:ethyl acetate:methanol:water (5:1:3:5) 

For solvent system 1, the nonpolar phase was selected as stationary phase (descending 

mode); for solvent system 2, the polar phase was selected as stationary phase (ascending 

mode).  

100 mg crude extract of B. plantarii DSM 9509 were applied for each purification run. 

The elution fractions were collected with a fraction collector and analysed by TLC. Af-

ter elution, the stationary phase was drained out of the rotor by changing the pump 

mode from ascending to descending or vice versa. 



 Results and Discussion 

53 

4 Results and Discussion 

4.1 Waste glycerol substrates 

The reduction of production costs is a fundamental requirement for a broader competi-

tiveness of rhamnolipids on the (bio)surfactants market. The application of crude glyc-

erol from biodiesel manufacturing as substrate can contribute to this aim because it is 

half as expensive as the standard substrate plant oil. Glycerol is a common substrate for 

rhamnolipid production (see section 1.3.3). Four glycerol based waste substrates were 

investigated in this work: crude glycerol from biodiesel production (ADM Biodiesel, 

Germany) and waste glycerol from linseed oil, passion fruit oil and fish oil (KD 

Pharma, Germany). The latter ones are derived from the production of ω-3-fatty acids 

from natural oils. The glycerol content of the glycerol substrates from KD Pharma was 

determined by an enzymatic assay in order to ensure that an equal amount of glycerol 

was used for the cultivations. The glycerol content of the substrates is given in Table 25.  

Table 25: Glycerol content of waste and crude glycerol 

substrate glycerol content w/w [%] 

crude glycerol (ADM Biodiesel) 81,9 (specification of ADM Bio-

diesel) 

waste glycerol from linseed oil (KD Pharma) 55,0 

waste glycerol from passion fruit oil (KD Pharma) 62,3 

waste glycerol from fish oil (KD Pharma) 56,9 

 

The applicability of the glycerol substrates for rhamnolipid production was then evalu-

ated. P. aeruginosa DSM 7108 was cultivated with crude and waste glycerol as sub-

strate in shake flasks. Two cultivation strategies were chosen: cultivation with growing 

cells and cultivation with resting cells. The cells were cultivated under resting cell con-

ditions (in buffered M3 medium) and as growing cells (in 1/10 Giani-medium). The 

substrate concentration was adjusted according to the glycerol content of the waste sub-

strates and pure glycerol was applied as reference substrate.  

The results of these cultivations are given in Table 26. Similar rhamnolipid yields were 

obtained for pure glycerol and crude glycerol from biodiesel production. Up to 1,5 g/L 

rhamnolipid were produced whereas higher rhamnolipid concentrations were achieved 
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with resting cells than with growing cells. The reason for this finding is probably that 

higher cell concentrations are present in the resting cell cultivations and that the rham-

nolipid biosynthesis by P. aeruginosa is favoured at high cell densities (see chapter 

1.3.1).  

These first investigations demonstrated that crude glycerol from biodiesel manufactur-

ing is a very promising substrate because the rhamnolipid yields were similar to those of 

pure glycerol. The impurities from the harsh biodiesel manufacturing (see chapter 1.7 b) 

do not hinder cell growth and rhamnolipid synthesis.  

The waste glycerol substrates from linseed oil, passion fruit oil and fish oil from KD 

Pharma were not appropriate for rhamnolipid production with P. aeruginosa DSM 

7108. Rhamnolipid production occurred only with resting cells, and even for resting 

cells, the rhamnolipid yields were extremely low, compared to pure glycerol. A maxi-

mum of 0,18 g/L rhamnolipid was achieved with glycerol from linseed oil. The reason 

for the low productivity with these substrates is probably that inhibitory substances are 

present in the waste substrates, on relic from the prior manufacturing process, as the 

waste glycerol substrates are side-products from the production of ω-3-fatty acids from 

natural oils. Due to these negative results, the application of waste glycerol from linseed 

oil, passion fruit oil and fish oil was not further pursued.  

Table 26: Results of cultivations of P. aeruginosa DSM 7108 with crude and waste 

glycerol, final rhamnolipid concentrations are given in [g/L] (cultivation at 30 °C and 

120 rpm, quantification of rhamnolipid by HPLC) 

cultivation conditions substrate 

 glycerol crude 

glycerol 

glycerol from 

linseed oil 

glycerol from 

passion fruit oil 

glycerol 

from fish oil 

growing cells      

(Giani-medium) 

0,28         

+/- 0,17 

0,25      

+/- 0,36 

0,0 * 0,0 * 0,0 * 

resting cells         

(Giani-medium) 

1,17         

+/- 0,03 

1,08         

+/- 0,07 

0,18             

+/- 0,26 

0,03                

+/- 0,04 

0,04           

+/- 0,02 

resting cells               

(M3-medium) 

1,35         

+/- 0,66 

1,47         

+/- 0,06 

0,01              

+/- 0,01 

0,0 0,0 

* shake flask cultivation at 37 °C except of 30 °C 

 

The highest rhamnolipid production of this set of experiments was achieved with crude 

glycerol and resting cells. The disadvantage of resting cell processes at bioreactor scale 

is that they are complex, laborious and expensive. They proceed in two steps. In the first 

step, the biomass is produced and harvested and in the second step, the biomass is util-
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ised for production. Consequently, a simple cultivation process with growing cells 

would be favourable. However, significantly lower rhamnolipid concentrations were 

obtained with growing cells, probably due to lower biomass concentrations. The cultiva-

tions with growing cells also showed a high variance; therefore, the experiments with 

crude glycerol and growing cells were repeated and the final biomass concentrations 

were additionally determined. The mixing speed was increased to 150 rpm to promote 

bacterial growth and sunflower oil was chosen as second reference substrate.  

The results of these cultivations are illustrated in Figure 14. The highest biomass con-

centration of 3,8 g/L was achieved with sunflower oil whereas the highest rhamnolipid 

yield of 0,31 g/L was obtained for crude glycerol. The highest specific productivity of 

2,2 mg/gh was also obtained for crude glycerol.  

 

 

Figure 14: Results of cultivations of P. aeruginosa DSM 7108 as growing cells with 

crude glycerol (cultivation at 30 °C and 150 rpm in 1/10 Giani-medium, quantification 

of rhamnolipid by HPLC)  
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Conclusions 

It was demonstrated that the waste substrates from linseed oil, passion fruit oil and fish 

oil from KD Pharma were not appropriate for rhamnolipid production with P. aerugi-

nosa DSM 7108. They probably contain too many inhibitory impurities from the prior 

manufacturing process.  

Crude glycerol from biodiesel production, on the other side, is a suitable substrate for 

rhamnolipid production with P. aeruginosa. Impurities from the biodiesel manufactur-

ing do not hinder rhamnolipid production. In contrast, the rhamnolipid production with 

crude glycerol was even higher than the production with pure glycerol. This confirms 

that crude glycerol from biodiesel production is a promising low-cost waste substrate. 

The utilisation of crude glycerol could contribute to a reduction of the production costs 

of rhamnolipids so that rhamnolipids become competitive on the surfactant market. 

Therefore, the process with crude glycerol and growing P. aeruginosa cells should be 

further optimised and transferred to bioreactor scale.  
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4.2 Immobilisation of P. aeruginosa 

The aim of this approach was to establish an in-situ product removal process for rham-

nolipid production with immobilised cells and integrated membrane or deep filtration 

(see chapter 1.7). The P. aeruginosa cells have to be immobilised for this approach be-

cause free cells tend to block membranes integrated in bioreactors very quickly (Gruber 

1991; Dhariwal 2007). Immobilisation by encapsulation was chosen as the immobilisa-

tion method because it is a gentle immobilisation method commonly applied for the 

immobilisation of whole cells.  

Different immobilisation materials for encapsulation, namely calcium-alginate, barium-

alginate, barium-alginate/xanthane, gelatin, gelatin/alginate and κ-caragenaan, were 

evaluated in pretests without cells. The feasibility of the immobilisation process with 

the immobilisation apparatus and the stability of the resulting particles were addressed 

in these pretests. The immobilisation parameters, such as matrix concentration, hardener 

concentration and hardening time were modified in order to improve the immobilisation 

procedure. In addition, two crosslinker, protamine sulphate and glutaraldehyde, were 

applied to enhance the stability of the particles. Drying of the calcium-alginate particles 

was also conducted to improve the stability. Suitable immobilisation matrices that could 

be processed with the immobilisation apparatus were then chosen for immobilisation 

experiments with P. aeruginosa DSM 2874. Immobilisation in gelatin was performed 

by the pouring and cutting method, as the material could not be processed with the im-

mobilisation apparatus.  

Particles with a size of about 70 – 900 µm were generated by the immobilisation appa-

ratus. The particles were cultivated under resting cell conditions with olive oil or glyc-

erol as carbon source. Free cells were cultivated as reference whereas an equal amount 

of biomass was applied for cultivations with immobilised and free cells. The cell leak-

age of the particles at the end of the cultivation was determined by measuring the final 

biomass concentration (OD) of the supernatant. This was only performed for the culti-

vations with glycerol as plant oil droplets interfere with the photometric measurement. 

Table 27 summarises the results of all cultivations with immobilised and free cells. The 

best results of each cultivation type in terms of rhamnolipid yield are highlighted in 

bold.  
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Table 27: Results of cultivations with free and immobilized P. aeruginosa DSM 2874; 

maximum rhamnolipid concentrations are given in [g/L], cell leakage (in brackets) is 

given in percent (cultivation at 30 °C and 120 rpm in unbuffered M3-medium, quantifi-

cation of rhamnolipid by HPLC) 

Cultivation type, 

substrate 

calcium-

alginate I 

calcium-

alginate II 

calcium-

alginate III 

barium-alginate/ 

protamine sulphate 

gelatin/ glu-

taraldehyde 

Free cells,          

glycerol 
0,72 - - 0,32 2,16 

Free cells,            

oil 
0,47 - - 1,03 0,49 

immobilized,    

glycerol 

0,66 

 (31 %) 

0,61 

(19 %) 

1,24 

(31 %) 

0,44 

(66 %) 

(1,07) 

(unstable) 

immobilized,       

oil 
0,33 0,37 0,58 0,85 

(1,33) 

(unstable) 

immobilized & 

post treatment, 

glycerol 

- 

drying I        

0,63 

(17 %) 

drying II       

1,85 

(24 %) 

protamine sulphate               

1,00 

(37 %) 

glutaraldehyde 

(0,50) 

(unstable) 

immobilized & 

post treatment      

oil 

- 0,45 0,82 0,82 
(0,64) 

(unstable) 

 

A maximum of 1,9 g/L rhamnolipid was achieved with immobilised cells for calcium-

alginate and glycerol whereas up to 2,2 g/L of rhamnolipid were obtained with free cells 

and glycerol. Significantly lower rhamnolipid yields were obtained for plant oil: 0,9 g/L 

for immobilised cells and 1 g/L for free cells.  

All particles exhibited a high cell leakage of 17 – 66 %. The cell leakage was slightly 

reduced to 17 – 37 % by treatment with crosslinker or by drying of the particles, but this 

is still unacceptably high for a production process. It is unclear if the measured biomass 

in the culture supernatant resulted completely from a cell leakage of the particles or if 

growth of some free cells in the supernatant contributed to the high biomass concentra-

tions in the supernatant.  

Details for each immobilisation technique are presented and discussed below.  
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Immobilisation in calcium-alginate 

Cultivation I: The rhamnolipid yield of calcium-alginate immobilised cells was compa-

rable to the yield for free cells for both substrates, but the cell leakage of the immobi-

lised cells was very high (31 %).  

Cultivation II: The calcium-alginate particles were dried at 20 °C for 2 h to improve the 

stability and to reduce the cell leakage. This led to a weight reduction of 13 %. The cell 

leakage was reduced to 17 %. But the rhamnolipid yield was still in the same range as 

for free cells and immobilised cells without drying.  

Cultivation III: The particles were dried at 40 °C for 4,5 h in this set of experiments. 

This led to a reduction of 40 – 48 % of weight and an increased rhamnolipid production 

of up to 1,24 g/L. The reason for the increase in rhamnolipid production is probably that 

the cell load was enhanced due to the extensive drying. The cell leakage remained very 

high (24 %).  

Immobilisation in barium-alginate 

Immobilisation in barium-alginate was carried out next. A part of the barium-alginate 

particles was further treated with the crosslinker protamine sulphate. The barium-

alginate particles were very instable without crosslinking and they exhibited a cell leak-

age of 66 %. The cell leakage could be reduced by protamine sulphate treatment, but it 

was with 37 % still very high. The rhamnolipid production of barium-alginate immobi-

lised cells was in the mid range, from 0,4 up to 1 g/L; at least for glycerol the rham-

nolipid yield was higher than for free cells.  

Immobilisation in barium-alginate/xanthane 

In the pretests, the xanthane-cell-mixture could not be processed with the immobilisa-

tion apparatus because the resulting particles were unstable and clumped. Therefore, the 

matrix was processed manually through a syringe with a 0,9 mm capillary. However, no 

instantaneous gelification occured and the particles clumped and aggregated. They were 

too instable and broke when taken out of the alginate solution into the crosslinker solu-

tion. Therefore, the concentration of the crosslinker Ba
2+

 was increased from 20 mM up 

to 50 mM, but the pearls remained unstable. For this reason, no cultivation was carried 

out with this type of immobilisation.  

Immobilisation in κ-caragenaan 

The immobilisation method with κ-caragenaan was examined in pretests. The matrix-

cell-suspension hardened very fast and blocked the immobilisation apparatus so that the 

material could not be processed with the immobilisation apparatus. Modifications of the 

matrix composition and warming of the matrix to 60 °C did not diminish the problem. 
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Not even the pouring method could be carried out due to the rapid hardening of the gel. 

Therefore, this method could not be applied for the immobilisation of P. aeruginosa.  

Immobilisation in gelatin 

Pretests were also used to test immobilisation in gelatin matrix. Gelatin and gelatin-

alginate were tested in different concentrations, but they could not be processed with the 

immobilisation apparatus because no instantaneous hardening occurred. The immobili-

sation in gelatin was therefore performed with the pouring and cutting method and a 

part of the particles was further hardened by glutaraldehyde. A rhamnolipid concentra-

tion of up to 1,3 g/L was obtained with in gelatine immobilised cells. However, all gela-

tine particles dissolved completely during the cultivation. The reason is probably that 

P. aeruginosa possesses gelatinolytic activity (Palleroni 1981). Consequently, the mate-

rial gelatin is inappropriate for immobilisation of this species. The degraded gelatin 

probably also served as an additional substrate which explains the high rhamnolipid 

yields of these cultivations.  

 

Conclusion 

The highest rhamnolipid concentration of 2,2 g/L was obtained with free cells and glyc-

erol. For oil as substrate, a maximum product titer of 1,0 g/L could be obtained with 

free cells. The rhamnolipid production of all immobilised cells was below the maximum 

production with free cells, with the exception of the cultivations with gelatin immobili-

sation. However, these particles were instable and the gelatin probably served as addi-

tional substrate.  

Furthermore, most particles displayed a high cell leakage of 17 – 66 %. Thus it is un-

clear if the rhamnolipids were synthesised more by the immobilised cells or more by the 

free cells in the culture supernatant.  

The immobilisation of the cells is very laborious and expensive because several addi-

tional process steps, such as production of biomass, harvest of biomass and immobilisa-

tion of biomass are required. But this extra effort was not justified by any extra produc-

tivity. In contrast, the generated particles also exhibited a poor stability and an excessive 

cell leakage. This complicates the ISPR approach by filtration and a reuse of the cells. 

The high mobility of P. aeruginosa is probably the reason for the high cell leakage. 

P. aeruginosa is equipped with flagella and pili, and, therefore, capable of three differ-

ent motilities: twitching on solid surfaces, swarming on semisolid surfaces and swim-

ming in liquids (Caiazza et al. 2005). Another possible reason is that the rhamnolipids 

themselves may facilitate the leakage of the cells by altering the interfacial characteris-

tics between the particle and the cells. It seems that P. aeruginosa is inappropriate for 

immobilisation by matrix entrapment. Membrane retention, which would be another 
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option for cell retention, is also unsuitable for P. aeruginosa because the membranes are 

instantaneously blocked by the cells and the polysaccharides (Gruber 1991; Dhariwal 

2007). 

A further drawback of the immobilisation technique is the low volumetric productivity 

because of the limited diffusional transport of nutrients and product through the parti-

cles in which the cells are immobilised (Gruber et al. 1993). This phenomenon was also 

observed in this work as lower product yields were obtained for plant oil than for glyc-

erol.  

However, many attempts have been made at immobilisation of P. aeruginosa for the 

production of rhamnolipids. For example, alginate/polyvinyl alcohol was examined as 

matrix for P. aeruginosa immobilisation and rhamnolipid production (Jeong et al. 

2004). This immobilisation matrix was prone to cell leakage as well. Matulovic also 

reported a significant cell release during a cultivation with P. aeruginosa immobilised 

in calcium-alginate particles (Matulovic 1987). A dry biomass concentration of up to 

2,5 g/L was present in the supernatant during the rhamnolipid production process. Con-

sequently, due to stability problems, mass transfer problems for hydrophobic substrates 

and the lack of a significant increase in rhamnolipid production, the immobilisation ap-

proach is not advantageous. P. aeruginosa is not suitable for immobilisation with the 

studied entrapment immobilisation techniques and the advantages of ISPR can not be 

exploited in combination with these methods. Therefore, the immobilisation approach 

was not further pursued and the integrated processes with immobilised cells and ISPR 

by filtration or electro kinetically controlled deep filtration could not be realised. 
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4.3 Non-pathogenic production strains 

This aim of this working package was to identify a suitable non-pathogenic rhamnolipid 

production strain which could become a non-pathogenic alternative to the common pro-

duction strain P. aeruginosa. The non-pathogenic strains were selected from the litera-

ture (see chapter 1.4). For most of the investigated strains, little information was avail-

able on the structure of the synthesised rhamnolipids. Therefore, a screening with inten-

sive analytics had to be carried out to investigate the rhamnolipid production of theses 

strains. Furthermore, little information was available on cultivation conditions, product 

yields and production processes from a commercial point of view. Therefore, successful 

candidates from the shake flask screening had to be subjected to further studies on 

rhamnolipid production at bioreactor scale.  

4.3.1 Screening in shake flasks 

The non-pathogenic strains were selected from Table 2. Some of the listed strains were 

not accessible to public and therefore not included in this study. In this case, other 

strains of the species were selected. Most of the selected strains belong to the genera 

Pseudomonas or Burkholderia and, thus, to the phylum proteobacteria. One bacterium 

of the phylum bacillus, namely Tetragenococcus koreensis, was investigated as well.  

The non-pathogenic strains were first studied in shake flasks with different media and 

substrates. The first cultivations were carried out with 1/10 Giani-medium, which is an 

adequate medium for rhamnolipid production by P. aeruginosa in shake flasks. As sub-

strate, the corresponding substrates from literature were chosen. P. aeruginosa DSM 

7108 was cultivated as reference. The following analytics were performed to monitor 

biosurfactant formation in the culture supernatant: emulsification of the plant oil, CTAB 

agar assay, surface tension measurement, TLC with staining of the sugar and the fatty 

acid moiety, HPLC, IR, orcinol assay and determination of dry biomass.  

The Giani-medium was inappropriate for rhamnolipid production for most of the 

strains. Therefore, corresponding media from literature and different substrates were 

evaluated subsequently. As substrates, glucose, glycerol and sunflower oil were then 

applied. The applied media and substrates for each strain are summarised in Table 28, 

the best medium being highlighted in bold. The cultivations with the best medium for 

each strain were repeated. 

 

 



 

  

Table 28: Overview on applied cultivation media and substrates for shake flask screening of non-pathogenic strains 

strain media 

P. aeruginosa DSM 7108 1/10 Gia, 12,5 g oil       

P. chlororaphis DSM 50083 1/10 Gia, 12,5 g glu Gun, 2 g glu Gun, 2 g oil Gun, 12 g oil Gun, 12 g oil   

P. chlororaphis NRRL B-30761 - Gun, 2 g glu Gun, 2 g oil Gun, 12 g oil Gun, 12 g oil   

P. putida DSM 5232 1/10 Gia, 12,5 g glu Tul, 2 g glu Tul, 2 g oil 1/10 Gia, 12,5 g oil 1/5 Gia, 12,5 g oil 1/10 Gia, 12,5 g oil  

P. putida DSM 12735 1/10 Gia, 12,5 g glu Tul, 2 g glu Tul, 2 g oil 1/10 Gia, 12,5 g oil 1/5 Gia, 12,5 g oil 1/10 Gia, 12,5 g oil  

P. oleovorans DSM 1045 1/10 Gia, 12,5 g oil 1/10 Gia, 12,5 g gly Suz, 12,5 g gly Suz, 12,5 g oil Suz, 12,5 g oil   

P. cruciviae NCIMB 10833 1/10 Gia, 12,5 g oil 1/10 Gia, 12,5 g gly Suz, 12,5 g gly Suz, 12,5 g oil Suz, 12,5 g oil   

B. glumae DSM 9512 1/10 Gia, 12,5 g oil 1/10 Gia, 2 g gly 1/5 Gia, 12,5 g oil Tru, 20 g oil 1/10 Gia, 12,5 g oil   

B. glumae PG1 1/10 Gia, 12,5 g oil 1/10 Gia, 2 g glu 1/5 Gia, 12,5 g oil Tru, 20 g oil 1/10 Gia, 12,5 g oil   

B. plantarii DSM 9509 1/10 Gia, 12,5 g oil 1/10 Zäh, 0,75 g oil 1/10 Zäh, 7,5 g oil 1/5 Zäh, 7,5 g oil 1/10 Zäh, 7,5 g oil   

B. plantarii DSM 6535 1/10 Gia, 12,5 g oil 1/10 Zäh, 0,75 g oil 1/10 Zäh, 7,5 g oil 1/5 Zäh, 7,5 g oil 1/10 Zäh, 7,5 g oil   

T. koreensis DSM 16501 1/10 Gia, 12,5 g glu M92 GYP, 2 g glu MRS, 2 g glu GYP, 2 g oil MRS, 2 g oil MRS, 2 g oil 

Gia = Giani-medium, Gun = Gunther-medium, Tul = Tuleva-medium, Suz = Suzuki-medium, Tru = Trummler-medium, Zäh = Zähringer-medium, glu = glucose, gly = glycerol, substrate per 

100 mL of medium 
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The 1/10 Giani-medium was an appropriate medium for rhamnolipid formation for only 

four of the non-pathogenic strains: both P. putida and both B. glumae strains. For the 

other strains, the corresponding media from the literature were favourable. Plant oil was 

the best substrate for all strains. The results of the best cultivation for each strain are 

given in Table 29, the given values representing the average of two cultivations. The 

strains with the best results in terms of rhamnolipid production are highlighted. These 

strains displayed especially positive TLC results.  
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The results of each analytical method are presented in the following.  

Emulsification/surface tension measurement: The supernatants of P. chlororaphis, 

B. glumae and B. plantarii exhibited the best surface activity. The surface tension σ of 

the medium was reduced to about 29, 34 and 35 mN/m, respectively. This correlates 

with the fact that the plant oil was very well emulsified in these cultivations. P. putida 

showed a good surface activity as well and reduced the surface tension of the medium to 

43 respective 38 mN/m.  

Orcinol assay: The highest rhamnose equivalent of 0,36 g/L was measured for 

P. aeruginosa. The non-pathogenic production strains reached significant lower values 

of only 0,01 – 0,06 g/L. But it must be considered that theses strains have not yet been 

optimised for rhamnolipid production whereas rhamnolipid production with P. aerugi-

nosa has been studied for decades. Thus, higher yields could be obtained by further op-

timisation of the medium composition and culture conditions. Furthermore, microbial 

production in shake flask is usually much lower than in bioreactor because process con-

trol, pH-control and better oxygen-supply are present in bioreactors and thus, higher 

biomass concentrations are achieved. That means that better results could be obtained 

by cultivation in bioreactor scale.  

Dry biomass concentration: P. aeruginosa reached a maximum biomass concentration 

of 7,2 g/L whereas the non-pathogenic strains obtained significant lower biomass con-

centrations of 1,3 to 4,5 g/L. The better growth of P. aeruginosa culture might be an 

explanation for the higher RE values of P. aeruginosa, because more biomass can pro-

duce more rhamnolipid. Furthermore, the biosynthesis of rhamnolipids in P. aeruginosa 

is favoured at high cell densities (see chapter 1.3.1). 

Thin layer chromatography: The TLC method separates the rhamnolipids according 

to their hydrophobicity. Consequently, the rhamnolipids of P. aeruginosa appear on the 

TLC plate in this order: RL1 (Rf = 0,65), RL2 (Rf = 0,48), RL3 (Rf = 0,31) and RL4 

(Rf = 0,14). The RL1 of P. aeruginosa is very hydrophobic as it contains one rhamnose 

unit and two fatty acid units (RL-1,210) whereas the RL4 of P. aeruginosa (RL-2,110) is 

the less hydrophobic rhamnolipid. The TLC analysis of the supernatants respective or-

ganic extracts of the non-pathogenic strains displayed spots for both P. chlororaphis, 

both B. glumae and both B. plantarii strains. An example is shown in Figure 15. No 

specific spots were obtained for the other non-pathogenic strains.  
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Figure 15: TLC of organic extracts of three non-pathogenic strains, staining with anisal-

dehyde 

 

HPLC: The organic extracts of the non-pathogenic strains were derivatised with 4-

bromo phenacyl bromide and then analysed by the HPLC method of P. aeruginosa. 

With this method, the rhamnolipids RL1 – 4 of P. aeruginosa can be identified by their 

corresponding retention times. However, the rhamnolipid composition of most of the 

non-pathogenic strains is not known, and so it is unclear where they will appear in the 

chromatogram. Therefore, the HPLC analysis can only indicate rhamnolipid production 

of the non-pathogenic strains. Peaks in the chromatogram were detected for all non-

pathogenic strains; however, these peaks could also relate to fatty acids or mono-/di-

glycerides, which are generated by the cleavage of the carbon source plant oil. These 

substances are also present in the organic extracts and they are probably also derivatised 

by 4-bromo phenacyl bromide, due to their acid function.  

However, significant HPLC peaks were detected for some of the non-pathogenic strains. 

Peaks with a similar retention time to the rhamnolipids RL1 – 4 of P. aeruginosa (up to 

+/- 0,7 min) were found for of both P. chlororaphis, B. glumae and B. plantarii strains, 

one P. putida strain and P. oleovorans. In some cases, this corresponds to the results of 

the TLC analysis, where putative analogues to RL1 or RL2 were detected for 

P. chlororaphis, B. glumae and B. plantarii.  

CTAB agar assay: The formation of a dark blue halo around a colony on the CTAB 

agar indicates the production of an anionic biosurfactant (Siegmund and Wagner 1991). 

The CTAB agar assay is considered as positive if large, dark blue halos are formed 

around the colonies; as weak positive if just a small halo is formed; and as strong posi-

tive if a large halo is formed. Large blue halos were observed for both P. chlororaphis 
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strains, B. plantarii DSM 9509 and B. glumae PG1. Two positive examples are shown 

in Figure 16.  

 

 

Figure 16: CTAB agar assay, left: B. plantarii DSM 9509, right: P. chlororaphis NRRL 

B-30761 

 

Some of the strains with negative results did not grow on the agar, probably due to in-

hibitory substances in the agar medium (e.g. CTAB, methylene blue). Therefore, the 

negative results might be false negatives because the strains did not grow on the agar 

and not because they did not produce an anionic biosurfactant. Furthermore, fatty acids 

and mono- or di-glycerides can also lead to the formation of blue halos around the colo-

nies because these substances are also anionic surfactants. They are generated by the 

lipolytic cleavage of the plant oil, which was applied, besides glucose, as substrate for 

the agar plates. This corresponds to the fact that for some strains, larger halos were ob-

tained for oil as substrate than for glucose. Consequently, the CTAB agar assay can 

only provide a hint on rhamnolipid production. 

IR: With the exception of P. oleovorans, P. cruciviae and both P. putida strains, all 

culture supernatants exhibited characteristic glycolipid spectra under infrared spec-

trometry. C-H stretching bands of CH2 and CH3 groups were observed in the region of 

3000 – 2700 cm
-1

. A carbonyl stretching band, which is characteristic for ester com-

pounds, was found at 1745 cm
-1

. In the fingerprint region from 1500 – 800 cm
-1

, where 

characteristic bands for sugars are located, several bands were found. As an example, 

the IR spectra of the supernatants of B. plantarii DSM 6535 at day 4 and 8 are given in 

Figure 17. The IR signal increases with cultivation time in this example.  
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Figure 17: IR spectrum of culture supernatant of B. plantarii DSM 6535; blue line: day 

4, red line: day 8 

 

MS: Further analysis of the culture supernatants of the most successful strains was per-

formed by mass spectroscopy. No specific masses were detected, probably because the 

rhamnolipid concentrations were too low. Therefore, this analytical method should be 

repeated with samples from bioreactor cultivations with higher rhamnolipid content.  

 

Discussion 

Different analytical methods were applied in the shake flask screening for assessment of 

rhamnolipid formation of the non-pathogenic strains. Some of these methods are spe-

cific for rhamnolipids while others are general methods for the detection of (anionic) 

biosurfactants or glycolipids. The observation of emulsification, the measurement of 

surface tension and the CTAB agar assay are general methods for surfactants, so that 

they only indicate rhamnolipid formation. These assays can be influenced by fatty acids 

or mono-/di-glycerides from the plant oil substrate. The IR spectrometry method, the 

orcinol assay and the TLC with staining of sugars and fatty acids are specific for glycol-

ipids, but they also can not prove the existence of rhamnolipids. For a structural proof, 

MS or NMR experiments of (pure) rhamnolipids must be performed. Mass spectromet-

ric analysis of the culture supernatants of the most promising strains was performed; but 

without success because the rhamnolipid concentrations in shake flask cultures were too 

low. Therefore, the shake flask screening with the applied methods only gives an indica-

tion on rhamnolipid formation; it can not prove the existence of rhamnolipids.  
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The results of each non-pathogenic strain are discussed in detail in the following.  

P. chlororaphis:  

In the present work, two different P. chlororaphis strains were investigated, P. chloro-

raphis NRRL B-30761 and DSM 50083. Both strains delivered positive results in terms 

of rhamnolipid formation in the shake flask screening, especially from TLC and IR ana-

lytics. Spots with Rf values of 0,54 respective 0,58 were detected on the TLC plates for 

both strains. These Rf-values could correlate to RL 2 of P. aeruginosa (RL-1,210) or to a 

rhamnolipid similar to RL 3 of P. aeruginosa (RL-2,210) with a more hydrophobic fatty 

acid moiety. Thus, the spots could relate to the rhamnolipids RL-1,212,10 or RL-1,212:1,10 

which were already described for P. chlororaphis NRRL B-30761 by Gunther et al. 

2005. This could not be verified by mass spectrometry due to the low rhamnolipid con-

centrations. Gunther et al. 2005 determined the structure of the rhamnolipids by 

HPLC/MS and they detected mono-rhamnolipids with two ß-hydroxy fatty acids of 

varying chain length, mainly RL-1,212,10 and RL-1,212:1,10. Gunther et al. 2005 also in-

vestigated P. chlororaphis DSM 50083, but they did not detect rhamnolipid formation 

by this strain. This is in contrast to the results of the present shake flask screening, 

where both strains performed similar.  

P. putida:  

The two selected P. putida strains performed less positive in the shake flask screening 

and there was little evidence of rhamnolipid formation by these strains. Especially the  

TLC did not show any specific spots. However, rhamnolipid production by P. putida 

has been described for different strains (Suzuki and Itoh 1972; Tuleva et al. 2002, 

Martínez-Toledo et al. 2006). Tuleva et al. 2002 reported a rhamnolipid concentration 

of 1,2 g/L RE for P. putida 21BN in shake flask, whereas Martínez-Toledo et al. 2006 

reached a maximum rhamnolipid concentration of 0,062 g/L with P. putida CB100 in 

shake flask. Suzuki et al. 1972 presented no results of rhamnolipid production by 

P. putida. Tuleva et al. 2002 quantified the synthesised rhamnolipid by orcinol assay 

whereas Martínez-Toledo et al. 2006 measured the rhamnolipid concentration by hydro-

lysing the rhamnolipids and further analysis of the hydrophilic and hydrophobic com-

pound by gas chromatography. They detected rhamnolipids with fatty acid chains from 

C18:2 up to C22:0. Tuleva et al. 2002 did not determine the structure of the rhamnolipids.  

However, these two publications on rhamnolipid production with P. putida can hardly 

be compared with the present shake flask cultivations because different strains, media 

and cultivation conditions were applied. Martínez-Toledo et al. 2006 used a mineral 

salts medium with glucose and corn oil, while Tuleva et al. 2002 utilised a mineral salts 

medium with hexadecane or glucose. Unfortunately, the strains which were utilised by 

Tuleva et al. 2002 and Martínez-Toledo et al. 2006 are not accessible to public.  
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P. oleovorans and P. cruciviae: 

There was little evidence of rhamnolipid production by P. oleovorans or P. cruciviae in 

the shake flask screening although the culture conditions and medium from literature 

were applied. The only difference was that plant oil and glycerol were applied as sub-

strate instead of n-paraffin. Neither were specific spots observed on the TLC plates, nor 

a specific absorption in IR spectrometry. P. oleovorans and P. cruciviae are claimed in 

a patent as rhamnolipid producers (Suzuki and Itoh 1972), but no information on culti-

vation conditions, production processes or structure of the rhamnolipids is given in that 

patent. Due to the results of the shake flask screening, P. oleovorans and P. cruciviae 

are not considered as rewarding non-pathogenic alternatives to the conventional produc-

tion strain P. aeruginosa.  

B. glumae:  

The two B. glumae strains delivered good results in the shake flask screening: the su-

pernatants had a low surface tension; specific spots were detected on TLC and specific 

bands were found by IR spectrometry. Therefore, the two B. glumae strains are consid-

ered as interesting non-pathogenic candidates.  

Rhamnolipid formation by B. glumae (synonym P. glumae) has already been reported 

by Manso Pajarron et al. 1993. They detected the following rhamnolipid species: RL-

2,214, RL-2,212,14 and RL-2,214,16. Unfortunately, no information on the applied strain, 

culture medium or culture conditions is given in that publication.  

B. plantarii:  

Andrä et al. 2006 reported rhamnolipid production with B. plantarii DSM 6535. They 

found three different rhamnolipids with two rhamnose units and C14 ß-hydroxy fatty 

acids: RL-2,114, RL-2,214 and RL-2,314. Remarkably, these rhamnolipids were isolated 

from the biomass and not, as usual, from the supernatant. This means they were intra-

cellular metabolites. It was not confirmed if these rhamnolipids are also excreted and 

thus, present in the culture broth as extracellular metabolites.  

In the present work, both B. plantarii strains achieved good results: they showed good 

surface activity, specific spots on TLC and specific bands in IR spectrometry. The TLC 

spots of the supernatant of the two B. plantarii strains were located at a Rf value of 0,56. 

The rhamnolipid RL-2,214 which was described for B. plantarii DSM 6535 is more hy-

drophobic than RL 3 (RL-2,210) of P. aeruginosa and should have a higher Rf-value, so 

the spot with a Rf value of 0,56 could relate to RL-2,214 or a similar rhamnolipid. This 

could not be confirmed by the performed mass spectrometry due to the low rhamnolipid 

concentrations. Altogether, the two investigated B. plantarii strains are very promising 

non-pathogenic rhamnolipids production strains and for the first time, a production of 

extracellular rhamnolipid by two different B. plantarii strains was recorded.  
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T. koreensis:  

No rhamnolipid formation could be detected by TLC, HPLC or CTAB agar assay for 

T. koreensis in the present work. The other analytical methods also showed few positive 

results concerning rhamnolipid formation. Altogether, there is little evidence of rham-

nolipid formation by T. koreensis with the applied culture conditions and analytics. 

However, rhamnolipid formation has already been described in literature for T. koreen-

sis by Lee et al. 2005. They analysed the rhamnolipids by reversed phase HPLC and 

detected them with a UV detector; a mixture of rhamnolipids was applied as standard. 

Unfortunately, the structure of the synthesised rhamnolipid has not been investigated 

and no details on cultivation conditions are given in the publication.  

Summary 

Six of the non-pathogenic strains from the shake flask screening are very interesting 

candidates in terms of rhamnolipid formation: P. chlororaphis DSM 50083, P. chloro-

raphis NRRL B-30761, B. glumae DSM 9512, B. glumae PG1, B. plantarii DSM 9509, 

and B. plantarii DSM 6535. Overall, these strains showed the best results for rham-

nolipid production in shake flask; consequently, they are regarded as the most promis-

ing candidates for further investigations.  

4.3.2 Cultivation in parallel bioreactor 

The best strains from the shake flask screening were then cultivated at bioreactor scale. 

The aim was to investigate their potential for rhamnolipid production at bioreactor scale 

and to obtain more rhamnolipid material for analysis and further purification. Little in-

formation was available for the non-pathogenic strains concerning production processes 

in bioreactor format but significantly higher yields of a bioproduct can usually be ob-

tained in bioreactors than in shake flasks. In bioreactors, the cultivation conditions, such 

as like pO2 or pH can be measured and controlled and the oxygen supply is enhanced 

due to air sparger and stirrer. Consequently, higher biomass concentrations can be 

achieved than in shake flask and this can also enhance rhamnolipid formation. There-

fore it was very important to investigate the non-pathogenic rhamnolipid production 

strains at bioreactor scale. In addition to the six best strains from the shake flask screen-

ing, two more strains were chosen for cultivation in bioreactors, namely the two P. 

putida strains. Although these strains achieved less positive results in shake flask 

screening and especially no spots on TLC, they were also cultivated in bioreactor with 

the objective that better cultivation conditions in bioreactor could lead to better rham-

nolipid production and because rhamnolipid production by P. putida has been reported 

in literature for different P. putida strains. 

The eight selected strains were cultivated in the parallel bioreactor system Sixfors from 

Infors AG, Switzerland. The vessels have a total volume of 0,6 L. The bacteria were 
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cultivated under the same cultivation conditions as in the best shake flask cultivations. 

The medium concentration for B. glumae, P. putida and B. plantarii was elevated from 

1/10 Giani-medium respective 1/10 Zähringer-medium to full Giani- respective 

Zähringer-medium, the full media being adequate for bioreactor cultivations. 

P. aeruginosa DSM 7108 was cultivated as reference. The results of these cultivations 

are given in Table 30. The values represent the average of at least two identical cultiva-

tions.  

Table 30: Results of cultivations of non-pathogenic strains in parallel bioreactor, given 

are minimum surface tension and surface tension of medium (in brackets), max. DBM 

concentration, Rf values of TLC and max. RE values  

strain medium σmin 

[mN/m] 

max. DBM 

[g/L] 

TLC [Rf] Orcinol assay: 

max. RE [g/L] 

P. aeruginosa DSM 

7108 

Gia n.d. 12,8             

+/- 0,7 

RL 1 (0,62) & 

RL 3 (0,40) 

4,652                     

+/- 1,025 

P. chlororaphis DSM 

50083 

Gun 30,1 +/- 1,3 

(72,4) 

6,2           

+/- 1,1 

- 0,013              

+/- 0,002 

P. chlororaphis NRRL 

B-30761 

Gun 30,1 +/- 1,3 

(72,4) 

10,3         

+/- 1,0 

- 0,069             

+/- 0,077 

P. putida DSM 5232 Gia n.d. 3,6           

+/- 0,6 

- 0,029              

+/- 0,009 

P. putida DSM 12735 Gia n.d. 3,9           

+/- 0,5 

- 0,037              

+/- 0,011 

B. glumae DSM 9512 Gia 31,5 +/- 1,2 

(73,1) 

6,6           

+/- 4,8 

- 0,169             

+/- 0,005 

B. glumae PG1 Gia 28,4 +/- 0,3 

(73,1) 

7,9           

+/- 2,8 

- 0,695             

+/- 0,742 

B. plantarii DSM 9509 Zäh 27,1 +/- 1,1 

(59,2) 

51,6         

+/- 4,0 

0,35 0,210             

+/- 0,084 

B. plantarii DSM 6535 Zäh 26,6 +/- 1,1 

(59,2) 

26,2         

+/- 3,3 

0,35 0,164             

+/- 0,107 

Gia = Giani-medium + 125 g/L sunflower oil and additional oil feed of 125 g/L after 

40 h, Gun = Gunther-medium + 120 g/L sunflower oil, Zäh = Zähringer-medium + 

75 g/L sunflower oil 
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The highest rhamnolipid yield of 4,7 g/L RE was achieved with P. aeruginosa. The two 

B. plantarii strains were the best non-pathogenic strains: they showed good growth and 

relative high rhamnolipid concentrations (about 0,2 g/L RE). Moreover, they were the 

only non-pathogenic strains with positive TLC results. The cultivations with 

P. chlororaphis, B. glumae and P. putida were less successful because these strains 

grew slowly, reached only relative low RE values an especially because no specific 

spots were detected on TLC plates. Figure 18 shows a representative cultivation of each 

non-pathogenic strain.  
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Figure 18: Cultivations of non-pathogenic strains in parallel bioreactor 



Results and Discussion 

76 

 

 

 

Figure 14 (continued): Cultivations of non-pathogenic strains in parallel bioreactor 
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Figure 14 (continued): Cultivations of non-pathogenic strains in parallel bioreactor 
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The results of all strains are presented and discussed in detail in the following. 

P. aeruginosa DSM 7108 

The standard rhamnolipid production strain P. aeruginosa DSM 7108 was cultivated as 

reference. The rhamnolipid concentration was determined with the orcinol assay and 

with the HPLC method for P. aeruginosa rhamnolipids RL1 and RL3. The HPLC 

measurement was performed at day 4 and 8 of the cultivations and a maximum of 16,5 

+/- 2,2 g/L rhamnolipid was measured at day 8 (188 h process time) whereas only max. 

4,7 g RE/L was measured with the orcinol assay. The strong discrepancy between the 

orcinol assay results and the HPLC results is illustrated in Figure 19.  
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Figure 19: Comparison of rhamnolipid measurement by HPLC and orcinol assay 

 

In this study, standards of RL1 and RL3 of P. aeruginosa were available whereas no 

standards for the other, non-pathogenic strains existed. The orcinol assay is often cali-

brated with pure rhamnose as standard if pure rhamnolipid is not available. The rham-

nolipid concentration is then calculated by multiplying the rhamnose concentration by 

the factor three (e.g. Mercadé et al. 1993; Abalos et al. 2002; Nitschke et al. 2005). This 

factor represents the correlation of rhamnolipid/rhamnose and considers the proportion 

of rhamnose in the mono-rhamnolipid RL1 and the di-rhamnolipid RL3 and the ratio of 

RL1 and RL3 themselves. In the present work, rhamnose was used for calibration of the 

orcinol assay because pure rhamnolipids of the non-pathogenic strains were not avail-

able. The results of the orcinol assay were not multiplied with the factor three because 

the structure and composition of the rhamnolipid(s) of most of the non-pathogenic 

strains is not known. Therefore, the rhamnolipid concentrations measured by the orcinol 

assay are much lower than the HPLC results. The approach of taking the factor three 

has another disadvantage as the ratio of RL3 to RL1 changes during the production 

process (Leitermann 2008). Therefore, the results of the orcinol assay for P. aeruginosa 

cannot be multiplied with this factor if they are to be compared with the results of the 
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non-pathogenic strains. This is the reason for the strong variance of the HPLC and orci-

nol assay results for P. aeruginosa. 

P. chlororaphis 

The two P. chlororaphis strains reached low biomass concentrations and very low 

rhamnolipid concentrations of only 0,01 resp. 0,07 g RE/L. Additionally, no rham-

nolipid spots were detected by TLC. Therefore, the parallel bioreactor cultivations of P. 

chlororaphis are not considered as successful. The two P. chlororaphis strains are no 

potent rhamnolipid production strains, at least not with the applied cultivation condi-

tions, although they achieved quite good results in shake flaks. However, rhamnolipid 

production by P. chlororaphis NRRL-B 30761 has been reported by Gunther et al. 

2005. They achieved up to 1 g/L rhamnolipid with the same strain, medium and tem-

perature, but with glucose as substrate and in static shake flasks. Therefore, it might be 

advantageous to modify the cultivation conditions and perhaps even change to static 

culture. However, static cultures have the disadvantage that gas, energy and material 

exchange are extremely slow and, thus, the whole metabolism is decelerated. This leads 

to very long process times and diminishes the productivity. Therefore, rhamnolipid pro-

duction with these strains was not pursued.  

P. putida  

The two P. putida strains performed even worse in parallel bioreactor than P. chloro-

raphis. They grew very slowly, consumed little of the oil and produced almost no 

rhamnose equivalents. Only 0,03 resp. 0,04 g RE/L were detected. Very weak yellow 

spots were detected on TLC plates for one of the triplicate cultivations of each strain. 

But these spots were only visible after concentrating the sample 10fold. Therefore, the 

two P. putida strains cannot be considered as interesting non-pathogenic alternatives, at 

least not with the applied cultivation conditions. The cultivations with P. putida in 

shake flask were also not successful. P. putida was cultivated in parallel bioreactor with 

the objective that better cultivation conditions enhance the productivity; this aim could 

not be achieved. Rhamnolipid production by P. putida in shake flask culture has already 

been reported (Tuleva et al. 2002; Martínez-Toledo et al. 2006); however, the strains 

that were applied in these publications are not accessible to public. Nevertheless, other 

P. putida strains might be more successful as well as a modification and optimisation of 

cultivation conditions and process parameters.  

B. glumae 

Better results were obtained for B. glumae than for P. chlororaphis and P. putida. At 

least 0,17 respective 0,70 g RE/L were measured by the orcinol assay. Although relative 

high rhamnose equivalent values were obtained, no yellow rhamnolipid spots were de-

tected on TLC plates. Moreover, the high RE value for B. glumae PG1 has an extremely 
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high standard deviation, coming from two completely different cultivations. One culti-

vation yielded 1,22 g RE/L whereas the second one yielded only 0,17 g RE/L so that the 

positive result of the first cultivation could not be reproduced. The high RE value could 

be erroneous, for example because the sample was contaminated with polysaccharides 

that are produced by most of the strains. These polysaccharides tend to accumulate dur-

ing the sample extraction at the interface of the supernatant and the hexane phase. The 

samples can then easily be contaminated with polysaccharides during the subsequent 

procedure and the polysaccharides would be recorded by the orcinol assay as well.  

The two B. glumae strains are not considered as promising non-pathogenic rhamnolipid 

production strains because the TLC results were negative although they produced sig-

nificant amounts of rhamnose equivalents. Therefore, rhamnolipid production with 

these strains was not pursued.  

B. plantarii  

The two B. plantarii strains are the most successful non-pathogenic strains: they grew 

very well, consumed the oil completely and generated relatively high rhamnose equiva-

lents of 0,21 resp. 0,16 g/L. Moreover, they were the only non-pathogenic strains whose 

supernatant displayed large spots on the TLC plates. This correlates to the fact that the 

cultivations with B. plantarii were the only cultivations with excessive foam formation 

so that antifoam had to be feeded several times.  

Very high biomass concentrations of up to 52 g/L respective 26 g/L were obtained with 

the two B. plantarii strains; P. aeruginosa, for example, reached only 13 g/L. The high 

biomass concentrations could be explained to some extent by the accumulation of poly-

ß-hydroxybutyrate (PHB). The formation of PHB was already reported for B. plantarii 

by Azegami et al. 1987. PHB is a polyester of ß-hydroxybutyrate and produced by a 

variety of bacterial species (Chen and Wu 2005). They are synthesised by bacteria as 

storage compounds for energy and carbon, normally in the presence of excess carbon 

with at least one nutrient essential for growth, such as nitrogen, phosphorus, sulphur or 

oxygen present in limiting concentration (Anderson and Dawes 1990). In the later phase 

of the cultivation, the biomass decreases. This decrease could be explained by a con-

sumption of the storage compound PHB by the cells when starvation starts. This corre-

lates with the fact that the decrease of biomass begins when the oil is depleted. 

In addition to the results of Andrä et al. 2006 that found rhamnolipids as intracellular 

component of B. plantarii DSM 6535 and that extracted the rhamnolipids from the bio-

mass, rhamnolipids are found in this work as extracellular metabolites of two B. plan-

tarii strains, DSM 6535 and DSM 9509. This is a new finding and very advantageous 

for an industrial application as is reduces the amount of recovery steps and thus the pro-

duction costs greatly.  
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The rhamnolipid production of all non-pathogenic strains in the parallel bioreactor is 

summarised in Figure 20. This figure shows clearly that the rhamnolipid production of 

P. aeruginosa is far beyond the productivity of all non-pathogenic strains. But it must 

be considered that the rhamnolipid production with P. aeruginosa has been studied and 

optimised for many years whereas the non-pathogenic strains are a new field. The two 

B. plantarii strains are considered as the most promising non-pathogenic rhamnolipid 

production strains because of the positive TLC results although the two B. glumae 

strains obtained high RE values as well. Therefore, the two B. plantarii strains were 

chosen for further investigations, purification of rhamnolipids and structure elucidation. 
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Figure 20: Comparison of rhamnolipid production of all non-pathogenic strains in paral-

lel bioreactor 

 

Further investigation of B. plantarii in parallel bioreactor 

Two additional items were investigated in Sixfors parallel bioreactor. First, the effect of 

an additional oil feed corresponding to the Giani-process was examined because the oil 

was completely consumed by B. plantarii after 70 h of process time. An oil feed of 

75 g/L sunflower oil was added after 40 h of process time in order to improve the rham-

nolipid production. Second, the pH corrective NH3 (aq) was replaced by NaOH because 

NH3 (aq) is hazardous and tends to outgassing. The cultivations were performed with 

the same cultivation conditions as the former B. plantarii cultivations. The results of 

these cultivations are summarised in Table 31.  
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Table 31: Results of B. plantarii cultivations with additional oil feed and NaOH as pH 

corrective, given are max. DBM, max. RE and process time of RE maximum (cultiva-

tion with Zähringer-medium at 30 °C) 

strain oil-feed pH cor-

rective 

max. DBM 

[g/L] 

max. RE   

[g/L] 

…at proc-

ess time [h] 

B. plantarii DSM 9509 - NH3 51,5                  

+/- 1,0 

0,363             

+/- 0,133 

76,9                      

+/- 13,3 

B. plantarii DSM 9509 + NH3 40,5                 

+/- 8,2 

0,068         

+/- 0,05 

149,7                   

+/- 13,4 

B. plantarii DSM 9509 + NaOH 17,9 0,076 66,0 

B. plantarii DSM 6535 - NH3 26,2                 

+/- 3,3 

0,175         

+/- 0,089 

100,8                   

+/- 12,0 

B. plantarii DSM 6535 + NH3 27,2                 

+/- 3,0 

0,321         

+/-0,255 

171,6                    

+/- 17,6 

B. plantarii DSM 6535 + NaOH 15,9 0,052 86,2 

 

Effect of additional oil-feed: Although the variance between the duplicate cultivations 

with and without additional oil feed was high, a tendency becomes clear: the maximum 

rhamnolipid concentration is reached later in the process if additional plant oil is fed. 

The maximum rhamnolipid yield is delayed about 70 h for both B. plantarii strains. 

Moreover, for B. plantarii DSM 9509, a higher rhamnolipid yield is obtained without an 

additional oil feed (0,36 g/L) than with (0,07 g/L). For B. plantarii DSM 6535, the addi-

tional oil feed is advantageous in terms of maximum rhamnolipid yield: the maximum 

rhamnolipid concentration was raised from 0,18 to 0,32 g/L. However, this advantage is 

diminished by the fact that this maximum rhamnolipid concentration is reached only at 

the very end of the production process, when the oil concentration decreases (see Figure 

21). Additionally, the duplicate cultivations diverged strongly in this case so that a high 

standard deviation resulted. While one cultivation yielded 0,50 g RE/L, the second 

process yielded only 0,14 g RE/L.  

Although the additional oil feed did not lead to the desired increase in rhamnolipid pro-

duction it is very interesting because it reveals some interesting insights into the regula-

tion of rhamnolipid formation by B. plantarii. The rhamnolipid biosynthesis of B. plan-

tarii seems to be regulated in a different way than the regulation of rhamnolipid biosyn-

thesis in P. aeruginosa. While a cell-density dependent regulatory principle applies for 

P. aeruginosa (Ochsner and Reiser 1995), the oil concentration seems to have more 

influence on rhamnolipid formation by B. plantarii. The biomass concentration of 
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B. plantarii DSM 6535 was very high during the cultivation with an additional oil feed, 

but the rhamnolipid formation started just when the oil was almost completely depleted.  

Effect of NaOH as pH corrective: The second item that was investigated was the re-

placement of NH3 by NaOH. This approach was not successful. Cell growth and rham-

nolipid production were diminished extremely with NaOH as pH corrective. Only 

18 g/L respective 16 g/L of biomass were obtained and a maximum of 0,08 g/L respec-

tive 0,05 g/L of rhamnolipid were formed. The nitrogen supply by the NH3 seems to be 

essential for bacterial growth and rhamnolipid formation in this case, although nitrogen 

is present in the medium as ammonium and yeast extract.  

 

 

Figure 21: Cultivation of B. plantarii DSM 6535 without and with additional oil feed 
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Structure elucidation of B. plantarii rhamnolipids 

The structure of the B. plantarii rhamnolipids was determined by mass spectrometry of 

the organic extracts of both B. plantarii strains. A Q1 scan of the organic extracts re-

vealed similar structures and one dominant peak at about 762 m/z for both strains. This 

mass corresponds to a di-rhamnolipid with 2 C14 ß-hydroxy fatty acids (RL-2,214). Fur-

thermore, two minor peaks with 734 respective 790 m/z were found. They correspond to 

a di-rhamnolipid with a C12 and a C14 ß-hydroxy fatty acid (RL-2,212,14) respective a C14 

and a C16 ß-hydroxy fatty acid (RL-2,214,16) (see Figure 22).  

 

 

 

Figure 22: MS of extract of B. plantarii DSM 6535 (top) and DSM 9509 (below) 
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A fragmentation (Q2 scan) of the dominant peak of 762 m/z confirmed the assumption, 

that the related structure is RL-2,214 as the corresponding fragmentation peaks for the 

corresponding mono-rhamnolipid, the C14 fatty acid and the rhamnose were detected 

(see Figure 23).  

 

 

Figure 23: MS of extract of B. plantarii - Fragmentation of 762 m/z 

 

Andrä et al. 2006 also detected the rhamnolipid RL-2,214 in B. plantarii DSM 6535. 

Moreover, they found two additional rhamnolipids: RL-2,114 and RL-2,314. These struc-

tures were not found in the present work; however, two other structures were detected in 

minor amounts: RL-2,212,14 and RL-2,214,16. This is in contrast to the findings of Andrä 

et al. 2006 and could relate to the fact that the samples were prepared differently. While 

Andrä et al. 2006 extracted the rhamnolipids from the biomass and purified them by 

silica gel chromatography, the rhamnolipids were extracted from the supernatants in this 

work and they were not further purified. Another explanation would be that different 

rhamnolipid congeners exist intracellular and extracellular.  

Interestingly, the same rhamnolipids that were detected for B. plantarii in this work, 

RL-2,214, RL-2,212,14 and RL-2,214,16, were also reported for B. glumae (Manso Pajarron 

et al. 1993). Unfortunately, no information on the applied strain, culture medium or cul-

ture conditions is given in that publication.  

The structure of the rhamnolipid RL-2,214 of B. plantarii is given in Figure 24. 
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Figure 24: Structure of B. plantarii rhamnolipid RL-2,214 

 

4.3.3 Scale up of B. plantarii DSM 9509 cultivation to 40L bioreactor 

The non-pathogenic rhamnolipid production strain B. plantarii DSM 9509 is of special 

interest because this strain has not previously been described as a rhamnolipid produc-

tion strain, although it was also investigated by Gunther et al. 2005. High rhamnolipid 

yields of up to 0,36 g/L were obtained with this strain in the parallel bioreactor cultiva-

tions. Therefore, further investigations were carried out with this strain. Higher amounts 

of pure rhamnolipid of this strain were necessary for purification, structure elucidation 

and preparation of standards; consequently, a scale-up of the production process to the 

40 L Cplus bioreactor (Sartorius, Melsungen, Germany) was carried out. The process 

parameters filling volume, aeration rate and stirrer speed were adopted from former 

cultivations of P. aeruginosa in the same bioreactor (see Table 32) because a good foam 

control could be obtained for P. aeruginosa with these parameters.  

The process course of the cultivation of B. plantarii DSM 9509 in 40 L scale is shown 

in Figure 25. The cells grew well and reached up to 30 g/L of dry biomass. The oil was 

completely consumed after 90 h. However, almost no rhamnolipid formation occurred 

and only 0,01 g/L of rhamnolipid were synthesised. It seems that the process parameters 

that were adequate for P. aeruginosa were inappropriate for B. plantarii. The reason is 

probably that the gas exchange was insufficient because B. plantarii reached up to 

4times higher biomass concentrations than P. aeruginosa. The pO2 of the culture fell 

below the set point of 20 % during a long period; it decreased even up to 0 %. The pO2 

could not be regulated to the set point because an increase in stirrer speed or aeration 

rate leads to excessive foaming and endangers the whole process. Consequently, the 

concentration of CO2 in the exhaust air mounted up to 10 %. High dissolved CO2 con-

centrations can lead to an inhibition of bacterial cultures as was described by Geraats 

1994 for a Pseudomonas alcaligenes cultivation. In this case, a significant productivity 

loss of over 50 % was observed for a lipase production process when 5 % or 10 % of 

CO2 was added to the incoming air.  

RL-2,214 
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Figure 25: Cultivation of B. plantarii DSM 9509 in 40 L bioreactor - first run 

 

Consequently, the process strategy was modified to improve oxygen supply and carbon 

dioxide removal. The process parameters aeration, mixing and filling volume were di-

rectly adopted from the parallel bioreactor cultivations of B. plantarii and scaled up to 

the 40 L bioreactor. A higher filling volume, a higher aeration rate and a decreased stir-

rer speed resulted, compared to the first run (see Table 32). The stirrer speed was calcu-

lated from the 0,6 L parallel bioreactor for constant volumetric power input.  
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Table 32: Process parameters for the cultivation of B. plantarii DSM 9509 in 0,6 L and   

40 L bioreactor 

 0,6 L 40 L, first run  40 L, second run 

reactor volume 0,65 L 39,5 L 

working volume 0,3 L 12 L 20 L 

relative filling (working 

volume/total volume) 

ca. 0,5 ca. 0,3 ca. 0,5 

reactor geometry       

(height/diameter) 

2,65                  

(18 cm/6,8 cm) 

2,61                                                    

(70 cm/26,8 cm) 

aeration rate 1 – 0,3 vvm    

(1,38 – 0,41 m/h) 

0,25 – 0,08 vvm 

(0,80 – 0,27 m/h) 

1 – 0,3 vvm    

(5,32 – 1,60 m/h) 

stirrer speed 800 – 1100 rpm 350 – 550 rpm 207 – 284 rpm 

(P/V = const.) 

max. rhamnolipid con-

centration (RE) 

up to 0,36 g/L 0,01 g/L 0,15 g/L 

max. DBM  50 g/L 30 g/L 35 g/L 

 

This approach was more successful and up to 0,15 g/L of rhamnolipid were formed 

whereas the maximum biomass concentration was almost similar to the first run (35 g/L 

dry biomass). The CO2 concentration in the exhaust air did not exceed 1 %. The process 

is shown in Figure 26.  
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Figure 26: Cultivation of B. plantarii DSM 9509 in 40 L bioreactor - second run 

 

However the rhamnolipid yield in 40 L scale was significantly lower than the yield in 

the 0,6 L scale, where maximum 0,36 g/L of rhamnolipid were achieved with B. plan-

tarii DSM 9509. Further optimisation of the process including medium composition, 

process parameters and process control would be necessary to increase the rhamnolipid 

yield of this process. Although the product concentration of parallel bioreactor cultiva-

tions could not be reached in the 40 L bioreactor, the final rhamnolipid amount was 

enough for purification of a larger amount of the rhamnolipid of B. plantarii DSM 

9509.  

The culture broth was processed according to the general recovery scheme of hexane 

extraction, acidification and ethyl acetate extraction (see chapter 3.2) and 104,1 g of 

brownish, oily and viscous B. plantarii DSM 9509 crude extract were gained. The 

rhamnolipids were further purified by chromatographic methods. Crude extract of 

B. plantarii DSM 6535 from the parallel bioreactor cultivations was also applied for 

purification.  

4.3.4 Purification of rhamnolipid of B. plantarii 

Different chromatographic methods were employed for the purification of B. plantarii 

rhamnolipids from the crude extract. The crude extract is composed mainly of rham-

nolipid and hydrophobic impurities. These impurities could be mono-/di- or triglyc-

erides derived from the plant oil or other hydrophobic compounds from the bacteria like 

phospholipids. A TLC of the crude extract of B. plantarii DSM 9509 illustrates the 

composition of the crude extract (see Figure 28, left-hand side).  
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Thick layer chromatography 

Purification of the rhamnolipids of B. plantarii DSM 6535 was first addressed with the 

simple and rapid thick layer chromatography method (see chapter 3.5.1). After devel-

opment of the plates, the rhamnolipids were extracted from the silica gel with different 

solvent systems: A: ethyl acetate, B: methanol, D: methanol/chloroform (1:1) and E: 

isopropanol. The elution of the rhamnolipids from the Silica-gel was favoured with iso-

propanol and methanol/chloroform (see Figure 27). However, TLC analysis of the 

eluted rhamnolipids revealed that the extract still contained some hydrophobic impuri-

ties.  

 

 

 

 

  

Figure 27: Results of thick layer chromatpgraphy of B. plantarii DSM 6535 extract, 

extraction of the Silica gel with different solvent systems, analysis by TLC 

 

The procedure would have to be repeated several times to obtain pure rhamnolipid. This 

leads to product loss in every purification step. Moreover, the amount of sample which 

can be handled with this method is limited. Therefore, the method was considered as 

ineffective and it was not further pursued.  

 

Fast centrifugal partition chromatography (FCPC) 

Fast centrifugal partition chromatography is a chromatographic technique applicable for 

analytic and preparative purpose. The technique uses a liquid-liquid biphasic system 

instead of a solid stationary phase and a liquid mobile phase. Two immiscible liquids 

are used as mobile and stationary phase, the mobile phase being percolated through the 

stationary phase by a pump and the centrifugal field (see chapter 3.5.3). 

FCPC has been successfully applied for analytic and preparative purposes for different 

substances (Marchal et al. 2003; Bérot et al. 2007), but rhamnolipids have not yet been 

A: Extraction with ethyl acetate 

B: Extraction with methanol 

C: Crude extract 

D: Extraction with metha-

nol/chloroform (1:1) 

E: Extraction with isopropanol 

hydrophobic impurities 

rhamnolipid 
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purified by this method. Thus, the aim of these investigations was to explore if FCPC is 

a suitable method for the purification of rhamnolipids. The FCPC instrument was kindly 

supplied by Alphacrom OHG, Langenau, Germany. 

A first FCPC purification run was performed with solvent system 1 (ethyl acetate:water, 

1:1). Ethyl acetate was chosen as mobile phase (ascending mode). 100 mg of crude ex-

tract of B. plantarii DSM 9509 were injected whereas a maximum of up to 5 g sample 

can be loaded on the rotor. Almost no separation of the rhamnolipid and the impurities 

was achieved with this solvent system. The rhamnolipid and the impurities eluted simul-

taneously with the mobile phase ethyl acetate. The elution fractions are shown in Figure 

28. On the left side, the crude extract with the rhamnolipid and the impurities is shown.  

 

  

Figure 28: Result of first FCPC run, left: crude extract E, right: elution fractions 

 

Therefore, the solvent system was modified to achieve a better distribution of the sub-

stances in the two phases and, thus, better purification results. For solvent system 2, 

hexane was added to the nonpolar phase to increase the hydrophobicity of this phase 

and methanol was added to the polar phase to decrease the polarity of the polar phase. 

The operation mode was changed to descending mode so that the polar phase becomes 

the mobile phase. This procedure improved the purification result and already quite pure 

rhamnolipid was obtained (see Figure 29). The impurities eluted with the hydrophobic 

phase while the rhamnolipids stayed in the stationary, hydrophilic phase and eluted 

when changing into descending mode so that the former stationary phase drained out.  

 

rhamnolipid 

impurities 
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Figure 29: Result of second FCPC purification run, left: elution of impurities, right: 

elution of rhamnolipid 

 

Good purification results were obtained after only two trials. The advantage of FCPC is 

that the operation costs are lower, compared to column chromatography because the 

elution needs 10 times less solvent and the stationary phase can be easily recycled 

(Marchal et al. 2003). For each FCPC run, 840 mL of solvent were consumed whereas 

the loading capacity of the rotor is 5 g sample and only 100 mg of crude extract were 

applied in these experiments due to a shortage in crude extract. Consequently, 50 times 

more sample could be processed with the same solvent consumption. Moreover, the 

solvent can be recycled. Therefore, this purification method is regarded as very promis-

ing for the purification of rhamnolipids. It should be further optimised to enhance the 

performance.  

Column Chromatography 

Isocratic 

Column chromatography was carried out to purify the rhamnolipids of B. plantarii 

DSM 9509. A column chromatography with isocratic mode and the solvent system 

chloroform:methanol:acetic acid (65:15:2) was conducted first. The purification result 

was not satisfactory as the rhamnolipids did not elute in a sharp peak. They eluted si-

multaneously to the hydrophobic impurities (data not shown), so that no purification 

was achieved. Gradient elution was performed next as the isocratic mode was not ap-

propriate for the purification.  

Gradient 

A second chromatography with sequential elution with chloroform and methanol was 

run with the same crude extract. The method was modified from Andrä et al. 2006. The 

elution starts with pure chloroform and subsequently, the methanol ratio is raised up to 

100 % methanol (see section 3.5.2). This chromatography removed the majority of hy-

rhamnolipids impurities 
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drophobic impurities. The hydrophobic impurities eluted in the second fraction (chloro-

form/methanol 95:5) whereas the rhamnolipids eluted in the fourth fraction (chloro-

form/methanol 80:20). However, MS and NMR analysis of the rhamnolipid fractions 

still showed some impurities (data not shown).  

Isocratic II 

As the rhamnolipid was still impure, the pooled rhamnolipid fractions of the gradient 

chromatography were further purified by a second chromatographic step according to 

Bauer et al. 2006. Isocratic conditions were applied and the solvent system was chloro-

form:methanol:acetic acid 30:3:1. The structure of the purified rhamnolipid was con-

firmed by NMR and mass spectrometry and RL-2,214 was detected. NMR spectroscopic 

data were in accordance with literature values (Bauer et al. 2006). The following mo-

lecular fragments were detected by MS: m/z (EI) 801 (M + K+, 100%), 785 (M + Na+, 

58%). A TLC of the pure rhamnolipid RL-2,214 is shown in Figure 30. 

 

 

Figure 30: TLC of rhamnolipid after second chromatographic step, left: stained with 

Cer-molybdate, right: stained with anisaldehyde 

 

Summary:  

Column chromatography in two steps with a sequential elution according to Andrä et al. 

2006 and a second chromatography with isocratic conditions (Bauer et al. 2006) is a 

feasible method for the purification of B. plantarii rhamnolipids. This technique could 

be further optimised to reduce organic solvent consumption and to enhance efficiency.  

It was demonstrated that FCPC is another suitable method for the purification of 

B. plantarii rhamnolipids, although this method would have to be further optimised as 

well. 

A purification technique for rhamnolipids which requires no organic solvent would be 

even more advantageous. Therefore, rhamnolipid recovery by precipitation or crystalli-

sation should be further addressed. The rhamnolipids can be precipitated directly from 

rhamnolipid 
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the culture broth by acidification and collected by centrifugation (Mixich et al. 1997; 

Déziel et al. 1999; Wei et al. 2005; Monteiro et al. 2007). Mixich et al. 1997 even claim 

a recovery yield of up to 98 % with this simple technique. The rhamnolipids could then 

be further purified, for example by crystallisation.  
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4.4 Conclusions 

New production processes are the key issue in overcoming the economic obstacles of 

rhamnolipid production. Therefore, different aspects of the production process were 

addressed in this work, from the upstream to the downstream processing.  

Waste substrates 

The reduction of production costs is fundamental for a broader competitiveness of 

rhamnolipids on the (bio)surfactants market. The application of crude glycerol from 

biodiesel manufacturing as substrate can contribute to this aim because it is half as ex-

pensive as the standard substrate plant oil. It was demonstrated in this work that crude 

glycerol from biodiesel production can be applied for rhamnolipid production with 

growing cells and resting cells. The impurities from the biodiesel manufacturing did not 

hinder cell growth and rhamnolipid production. A high productivity was gained with 

this substrate and the specific rhamnolipid productivity was even higher than for pure 

glycerol. Consequently, this approach should be further pursued and transferred to bio-

reactor scale.  

Recovery/Immobilisation/ISPR 

The recovery of the rhamnolipids is a very important factor for an economic rham-

nolipid production process. In this work, different recovery methods were studied: im-

mobilisation/ISPR, FCPC and column chromatography.  

Column chromatography with different solvent systems is commonly applied for the 

purification of rhamnolipids. In this work, the rhamnolipids of B. plantarii were purified 

by a combination of two chromatographic steps. The disadvantage of column chroma-

tography is that large amounts of organic solvents are required. A recovery without ex-

pensive and harmful organic solvents would be highly desirable to reduce both produc-

tion costs and environmental burden. 

Rhamnolipids can also be purified by FCPC, as was shown in this work. Good purifica-

tion results were obtained already after two trials. The advantage of this method is that 

the solvent consumption is much lower than for column chromatography. The solvent 

consumption can be reduced up to 10 times (Marchal et al. 2003). Further modifications 

of the applied solvent system would be necessary to optimise rhamnolipid recovery with 

this method.  

The immobilisation approach was not successful due to stability problems of the parti-

cles and mass transfer problems for the hydrophobic substrate plant oil. Furthermore, no 

increase in rhamnolipid production was gained with this technique. It was demonstrated 

that P. aeruginosa is not suitable for an immobilisation by matrix entrapment due to its 

high mobility. Therefore, the integrated processes with immobilised cells and ISPR by 
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filtration or electro kinetically controlled deep filtration could not be realised. Further-

more, the immobilisation technique is very complex and laborious and therefore not 

cost effective. The applicability and competitiveness with traditional technology seem 

to be a general problem of ISPR approaches: “The proposed ISPR processes have 

mostly been too complex and consequently not cost effective. …very few processes 

have been transferred to an industrial scale” (Stark and von Stockar 2003). Another op-

tion for rhamnolipid production with ISPR would be membrane retention, but this tech-

nique is also not suitable for P. aeruginosa processes due to the rapid blocking of the 

membranes by cells and polysaccharides (Gruber 1991; Dhariwal 2007).  

Another possibility for in-situ product removal of rhamnolipids might be continuous 

extraction with an appropriate solvent. The challenge of this approach would be to se-

lect the extraction solvent so that rhamnolipids are extracted selectively whereas the 

other compounds, for example hydrophobic substrates, remain in the medium. Never-

theless, this could be a rewarding approach.  

Rhamnolipid recovery by acid precipitation should also be further addressed. It is a 

simple batch-wise recovery method for rhamnolipids and a yield of up to 98 % was re-

ported in a patent (Mixich et al. 1997). Although it is such a simple and effective 

method, it is rarely applied for the recovery of rhamnolipids. The advantage of precipi-

tation is that no organic solvents are necessary, and, with the exception of acid, no other 

chemicals are required and the precipitate can easily be recovered by centrifugation.  

Non-pathogenic production strains 

Rhamnolipid formation was reported for some non-pathogenic strains but little informa-

tion was given on the product spectrum of these strains or on production processes with 

these strains. Furthermore, the data from literature are difficult to compare because dif-

ferent analytical methods were applied for the quantification of rhamnolipids of the 

non-pathogenic strains. In some cases, the rhamnolipids were not even quantified (e.g. 

Suzuki and Itoh 1972; Janiyani et al. 1992). Therefore, the rhamnolipid production of 

11 non-pathogenic strains was evaluated in this work: B. plantarii was the most suc-

cessful candidate. A maximum rhamnolipid yield of 0,3 – 0,4 g RE/L was achieved with 

the two B. plantarii strains in parallel bioreactor. Both strains synthesise interesting 

rhamnolipids with longer chain length than the common production strain P. aerugi-

nosa. The major component is RL-2,214 with two rhamnose units and two C14 ß-

hydroxy fatty acid chains. The long chain length makes this rhamnolipid very interest-

ing for cleaning applications. In addition to the findings of Andrä et al. 2006, extracellu-

lar rhamnolipid was detected for B. plantarii which is very advantageous for industrial 

application. Furthermore, rhamnolipid production was detected for two different 

B. plantarii strains. The strain B. plantarii DSM 9509 is of special interest because until 

now it has not been described as rhamnolipid producing strain. 
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However, an extensive process optimisation has to be carried out to further increase the 

rhamnolipid production of B. plantarii which is still much below the rhamnolipid pro-

duction of P. aeruginosa. Process strategy, cultivation condition, medium composition 

and process control should be addressed to enhance the rhamnolipid yield. Furthermore, 

biotechnological tools like mutagenesis, genetic engineering or systems biology could 

be useful to improve rhamnolipid production of this species. The regulation of the 

rhamnolipid biosynthesis of B. plantarii should also be explored to maximise rham-

nolipid production with B. plantarii.  
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5 Outlook 

Since the beginning of detergent manufacturing, several generations of surfactants have 

been developed. In the next generation, biosurfactants will possibly have a significant 

market share as they combine several useful features: structural diversity, excellent sur-

face active properties, low toxicity, antibiotic activity, biodegradability and production 

from renewable resources.  

Although the production of rhamnolipids has been studied intensively since the 1980´s, 

rhamnolipids are still not widely successful in substituting synthetic surfactants. The 

main reason for this situation can be found in the high costs for synthesis and down-

stream processing of rhamnolipids. Thus, the reduction of production costs is funda-

mental for a broader competitiveness of rhamnolipids on the (bio)surfactants market. 

The metabolic engineering of the common production strain P. aeruginosa, the utilisa-

tion of waste substrates, the application of non-pathogenic B. plantarii production 

strains and an improved rhamnolipid recovery by FCPC or precipitation could contrib-

ute to this goal.  

Metabolic engineering is a possibility to increase the productivity of rhamnolipid pro-

duction by P. aeruginosa. The rhamnolipid biosynthesis should be enhanced by genetic 

engineering. Especially the complexity of the P. aeruginosa genetic regulatory network 

involved in rhamnolipid production is an important issue for the construction of strains 

with enhanced rhamnolipid production. The biosynthesis of rhamnolipids is linked with 

other metabolic pathways and the precursors for rhamnolipid formation are derived 

from the central metabolism. Therefore, a high activity of the rhamnolipid biosynthesis 

enzymes RhlA, RhlB and RhlC is not sufficient if the precursors from the sugar and the 

lipid metabolism are not supplied in adequate amount. The overall regulation of rham-

nolipid formation must be addressed by genetic engineering, the quorum sensing being 

of particular importance. Rhamnolipid biosynthesis should be tackled globally and a 

systems biology approach could be applied to optimise rhamnolipid production. The 

formation of the side product polysaccharide should be addressed by genetic engineer-

ing of P. aeruginosa as well because the production of high amounts of side products 

diminishes the productivity. Furthermore, high polysaccharide concentrations lead to an 

extreme increase of viscosity which complicates the production process and the rham-

nolipid recovery (see chapter 1.6). 

Nevertheless, the pathogenicity of the common production strain P. aeruginosa imposes 

severe safety implications for an industrial application of this strain. This obstacle can 

be overcome by using the non-pathogenic rhamnolipid production strain B. plantarii. 

This species offers the additional advantage of unconventional rhamnolipids with longer 
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chain length, compared to P. aeruginosa. These rhamnolipids are very interesting for 

new applications, for example in the cleaning sector. Thus, rhamnolipid production with 

non-pathogenic B. plantarii should be further pursued. The production process has to be 

optimised to enhance the rhamnolipid yield and factors like process conditions, medium 

composition and process control should be addressed. Furthermore, the biosynthesis 

pathway of B. plantarii rhamnolipids should be elucidated, as well as the regulation of 

rhamnolipid formation in B. plantarii. A directed metabolic engineering approach could 

then be applied to enhance rhamnolipid production of B. plantarii. A random mutagene-

sis approach could also be useful, although this approach is less straightforward. A 

problem of rhamnolipid production with B. plantarii is the accumulation of a storage 

substance, which is probably PHB. The formation of high amounts of this side-product 

diminishes the rhamnolipid productivity. Therefore, the formation of PHB should also 

be addressed by genetic engineering and process optimisation to achieve maximum 

rhamnolipid production and minimum PHB formation.  

Another cost factor are the raw material costs which can amount up to 50 % of the over-

all production costs, depending on the desired purity of the product. Therefore, the ap-

plication of inexpensive substrates like the crude glycerol from biodiesel manufacturing, 

which was investigated in this work, is fundamental for the development of economic 

rhamnolipid production processes. Furthermore, the product yield per substrate (YP/S) 

should be maximised to employ as little substrate as necessary.  

The recovery of rhamnolipids also contributes greatly to the overall production costs of 

rhamnolipids. Rhamnolipid recovery is usually quite complex and many purification 

steps like cell separation, extraction steps and chromatographic steps are necessary. 

Therefore, new purification techniques, for example FCPC, should be implemented into 

the rhamnolipid recovery process. FCPC offers the advantage that the solvent consump-

tion can be reduced up to 10 times, compared to column chromatography. Rhamnolipid 

recovery by acid precipitation should also be further addressed. It is a simple batch-wise 

recovery method for rhamnolipids and a yield of up to 98 % was reported in a patent. 

Although it is such a simple and effective method, it is rarely applied for the recovery of 

rhamnolipids.  

Adding all optimisation approaches together, a remarkable potential for the reduction of 

rhamnolipid production costs becomes achievable and rhamnolipids will possibly be 

one of the next generation surfactants.  
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7 Appendix 

Abbreviations 

ATCC American Type Culture Collection 

ATR attenuated total reflection 

B. Burkholderia 

DBM dry biomass [g/L] 

DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen 

cmc critical micelle concentration 

CTAB cetyl trimethyl ammonium bromide 

EDTA ethylenediaminetetraacetic acid 

FCPC fast centrifugal partition chromatography 

FTIR Fourier transform infrared spectroscopy 

H2OVE deionised water 

HPLC high performance liquid chromatography 

IR infrared 

ISPR in-situ product removal 

KCTC Korean Collection for Type Cultures 

LB Luria-Bertani-medium 

MS mass spectrometry 

NaCl sodium chloride 

NCTC National Collection of Type Cultures 

ODx   optical density at x nm [-] 

P. Pseudomonas 

PHB polyhydroxy butyrate 

RL rhamnolipid 

RL-X,Yz rhamnolipid with x rhamnose units and y ß-hydroxy fatty acid chains of 

the chain length z 

RE rhamnose equivalents [g/L] 
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RT room temperature 

TLC thin layer chromatography  

UV ultra violet 

WBM wet biomass [g/L] 

Symbols 

c concentration [g/L] 

cx,max maximum biomass concentration [g DBM/L] 

dR stirrer diameter [m] 

µ specific growth rate [1/h] 

N stirrer speed [rpm] 

Ne Newton number [-] 

P    power [Nm/s] 

pH  negative decimal logarithm of the hydrogen ion activity in an aqueous 

solution 

pO2  dissolved oxygen [%] 

Pv    volumetric productivity [g product/L∙h] 

Psp specific productivity [g product/g biomass∙h] 

Re Reynolds number [-] 

Rf ratio of fronts  

Rt retention time [min] 

ρ density [kg/m
3
] 

σ surface tension [mN/m] 

T temperature [°C] 

v velocity [m/s] 

V volume [L] 

YP/S   yield [g product/g substrate] 

YP/X   yield [g product/g dry biomass] 
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Units 

amu atomic mass unit 

°C grad Celsius 

g gramm 

h hour 

L liter 

m meter 

M molar (mol per liter) 

min minute 

m/z mass-to-charge ratio [-] 

N Newton  

NL norm liter 

rpm rounds per minute 

s second 

vvm   aeration rate in volume per culture volume and minute [L/L∙h]





 

  

 


