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Abstract
Solidification of an undercooled Lennard-Jones system is considered by
atomistic and mesoscale simulations. The influence of the parameters of a
Nosé–Hoover thermostat on the temperature profile in the molecular dynamics
box during the free solidification of the sample is analyzed. Direct comparison
of the temperature profiles and of the interface dynamics in molecular dynamics
with phase-field simulations is given.

1. Introduction

Progress in theory and modeling of complex microstructures during solidification of metals
opens new directions in the development of a quantitative description of solidification
phenomena. One of the directions is multiscale modeling by coupling of processes at widely
different lengths, times and energy scales. In general, it is impossible to construct a physical
model that adequately describes the evolution in multiscale systems in the whole range of
length and time scales from the atomistic to the mesoscale level. For such a case, one can
construct a hierarchy of models and approaches which describe the system in limited ranges
of scales providing a matching between them.

This multiscale approach has been applied to the problem of dendritic growth in [1–4].
The example of dendritic growth shows that the shape and the velocity of a dendrite are very
sensitive to the solid–liquid interfacial energy and to the kinetic coefficient. The usually small
anisotropy of these interfacial parameters also plays a crucial role in defining the operation
state of the dendrite. However, the precise values of those key parameters have so far remained
unmeasured experimentally for many materials, and existing anisotropy measurements remain
limited to a few transparent organic systems. Therefore, the properties of the solid–liquid
interface have been computed by molecular dynamics (MD) on atomistic scales and then the
computed values form input parameters for a phase-field model (PFM) [5, 6] describing the
development of the dendrite on the mesoscale. The growth of the dendrite is accompanied
by a permanent morphological instability of the solid–liquid interface (which actually leads
to a complex branched structure) and therefore small variations of the input parameters can
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result in significant changes in the final microstructure during the simulations. Therefore, one
needs to pay attention to the matching of data transferred between the levels of the multiscale
framework.

The accuracy of MD simulations depends on a number of factors. Among the interatomic
potential and the size (number of atoms) of the system, a number of simulation details play an
important role, especially the time step of integration and the method of temperature control.
In the pioneering work of Broughton et al [7] it has been mentioned that the release of latent
heat leads to a nonuniform temperature profile around the crystal–melt interface. In [1–4]
the Nosé–Hoover thermostat for temperature control has been used to keep the prescribed
temperature in the box as whole and no discussion on the temperature profile in the system is
given. A temperature profile was considered in detail in [7] but for a thermostat applied only
to a part of the box.

We suppose that underestimation of the temperature control can lead to a number of errors
in the modeling of solidification. The solidification dynamics depends on the local temperature
T at the crystal–melt interface which can exhibit significant deviations from the temperature
T ′ of the applied thermostat. In section 2 we analyze the influence of the thermostat on the
parameters of the solidification process in connection to the system size using the Lennard-
Jones interatomic potential. In section 3 we compare the MD results with PFM simulations in
order to establish a matching between the models in the overlapping length and time scales.

2. MD simulations of solidification

2.1. Method

The atoms interact by the Lennard-Jones potential

U = 4ε

((σ

r

)12
−

(σ

r

)6
)

(1)

in the standard notation. We use dimensionless variables with length scale σ and energy
scale ε, the mass of atoms m = 1 and the Boltzmann constant kB = 1. Correspondingly, the
time is measured in

√
mσ 2/ε units and the temperature in units of ε.

We apply to the system the Nosé–Hoover thermostat described in [8, 9]. The equations of
motion have the form

�̇ri = �pi

mi

, (2)

�̇pi = �fi − ξ · �pi, (3)

ξ̇ =

(∑
i

�pi
2

mi

− (3N + 1)kBT0

)

Qtemp
, (4)

Qtemp = 3NkBT0 · τ 2
temp. (5)

Here �ri and �pi are the coordinate and the momentum of ith atom, �fi is the force acting on the
atom, N is the number of atoms in the system. The thermostat has the temperature T0 and
includes inertial parameter Qtemp related to the relaxation time τtemp. The pressure is controlled
by a Nosé–Hoover barostat [9].

The crystal and melt coexist in equilibrium at the temperature TM = 0.62. To derive
the melting temperatures we perform standard NPT ensemble (constant number of particles,
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constant pressure and constant temperature) simulations with the Nosé–Hoover thermostat to
determine the equilibrium lattice parameter of the bulk crystal as a function of temperature
at zero pressure. Using this estimation of TM, we equilibrate a crystal at the temperature and
lattice constant corresponding to the initial estimation. In the next step, half of the atoms in the
box are melted maintaining constant volume, and rest of the atoms are fixed. The melt is held
at a temperature approximately 0.1 above TM estimation. This procedure results in a periodic
two phase solid–liquid setup containing two crystal–melt interfaces. Keeping the solid atoms
fixed, the liquid atoms are equilibrated at the estimated melting temperature, allowing the
length of the simulation box normal to the interfaces to adjust in order to minimize stress. This
equilibration phase takes about 100 time units. After the equilibration, the entire system is
allowed to relax employing canonical ensemble NVT up to 1000 time units at the temperature
equal to the estimated value of TM. A refined estimation of TM is then derived employing
NPH ensemble with no thermostat. In these simulations the periodic dimensions parallel to
the solid–liquid interfaces are held fixed, while the length of the box normal to the interfaces
is allowed to change dynamically with zero imposed stress.

In the following section the model systems consist of 12 000 and 106 000 atoms in a 3D
box with periodic boundary conditions in all the directions. The simulation box is elongated in
the z-direction and has dimensions 5×5×130 unit cells for 12 000 atoms and 5×5×1140 unit
cells for 106 000 atoms. The melt and crystals have been placed so that the directions [1 0 0],
[0 1 0], and [0 0 1] coincide with the axes of the coordinate system. Two opposite crystals with
the melt inbetween form two crystal–melt interfaces with (1 0 0) orientation.

We present simulations with three values of the relaxation parameter τtemp = 0.7, τtemp = 7
and τtemp = 70 at zero pressure and temperature T0 = 0.56. The results show the comparison
of temperature profiles in the system for different τtemp. The profiles are averaged over different
configurations to reduce the fluctuations.

2.2. Effect of thermostat

Figure 1 shows the temperature profiles in the system of 12 000 atoms for the three values 0.7,
7 and 70 of the relaxation parameter τtemp. All three temperature profiles correspond to an
equal position of crystal–melt interfaces indicated by vertical lines at the left and right sides,
i.e. the profiles correspond to different time intervals due to variation of the growth velocity
as discussed further. The thermostat has the temperature 0.56 and the averaged temperature
T̄ in the system takes the values T̄ = 0.5592 for τtemp = 0.7, T̄ = 0.5611 for τtemp = 7 and
T̄ = 0.6014 for τtemp = 70. In the case of τtemp = 70, we can conclude that the relaxation
is too slow to remove the released latent heat and the system is not in equilibrium with the
thermostat. The temperature profiles for the first two values of τtemp (the solid and dotted lines
in figure 1) are similar and demonstrate an increase in local temperature at the interface above
the thermostat temperature due to release of the latent heat, but the temperature of the melt is
appreciable below the thermostat value of 0.56. In contrast, the profile for τtemp = 70 (dashed
line) has the temperature above the thermostat in the melt, at the interfaces and in crystals.
As a consequence, the temperature of the crystal–melt interfaces increases with increasing
τtemp and the measured growth velocity becomes a function of the relaxation parameter τtemp

as shown in figure 2.
The cause of hollow in the melt temperature is the thermostat, which maintains only the

average temperature in the system, so the hot interfaces should be counterbalanced by the
melt. The thermal diffusion is not enough to equalize the nonuniformity of the temperature.
In the next step, we tested the larger simulation box with 106 000 atoms. Figure 3 shows
the evolution of the temperature profile when the thermostat with τtemp = 0.7 is applied. In
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Figure 1. Temperature profiles in the system with 12 000 atoms. The solid line corresponds to
the relaxation time τtemp = 0.7, the dotted line corresponds to τtemp = 7 and the dashed line
corresponds to τtemp = 70. Vertical lines mark the positions of the crystal–melt interfaces. The
top horizontal line shows the melting temperature and the bottom line shows the temperature of
the thermostat.

Figure 2. The growth velocity v of the crystal–melt depending on parameter τtemp.

the initial stage of solidification, the temperature of the melt is equal to the temperature T0 of
the thermostat. The interfaces propagate into the melt and heated up atoms form the crystal.
With the growth of the crystals, the fraction of the ‘hot’ regions increases and the temperature
of the melt decreases to a values below T0.
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Figure 3. Temperature profiles in the system of 106 000 atoms at different times: solid line—
t = 1500, dashed line—t = 15 000 and dashed–dotted line—t = 30 000. The corresponding
vertical lines show the positions of the crystal–melt interfaces. The horizontal lines mark the
melting temperature (top) and the temperature of the thermostat (bottom).

Figure 4. Dependence of the measured growth velocity v on the size of the simulation box, i.e. on
the number of atoms in the system for τtemp = 0.7. The points show the results of this work. The
stars show the data from [11], the triangle shows the data from [10].

As a consequence, the observed growth velocity depends on the size of the simulation box,
figure 4. The growth velocity depends on the temperature of the interface, but the thermostat
controls only the averaged temperature in the system. We have noted above that the released
latent heat remains mainly in the crystal and increases the interface temperature. After some
time, a regime of stationary growth with constant velocity can be reached as a balance between
the release and the diffusion of the latent heat is established. Due to increase in the box size the
balance occurs at higher temperatures of the interface and results in lower growth velocities
(see figure 4). Similar results have been reported in [10, 11] and they are shown in figure 4 by
the dashed line.
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Figure 5. Position of the crystal–melt interface in time. The solid line shows the MD data, the
dashed line shows the PFM simulations.

3. Comparison of atomistic and mesoscale simulations

The MD approach allows the detailed examination of the crystal–melt interface. However, the
atomistic methods are limited by 10–100 nm on the length scale when the development of the
morphological instability and the formation of dendrites occur on the length scales of order
1 µm. Therefore, when modeling on these scales, one needs to use mesoscopic models, for
example a PFM [12]. Calculated by MD properties of the interface form a subset of input
parameters in the mesoscopic model. Such an approach has been applied in [5, 6] where
the results of MD simulations in [1] have been used as input parameters for the phase-field
equations.

In this section we examine the congruence of atomistic and mesoscale simulations in the
range of overlapping length scales. In order to minimize the effects described in section 2.2,
the thermostat was applied only to narrow areas of 10 × 10 × 10 in units of σ on the left and
right sides of the simulation box with size 10×10×680 in units of σ , where the initial crystals
are placed. In the rest of the box, the released latent heat can propagate by diffusion. To control
the temperature in the selected areas, we use a rescaling of the velocities of the atoms at each
time step. To the rest of the MD box no thermostat was applied. This configuration results in
nonequilibrium nonisothermal crystallization after the system was undercooled to the initial
temperature T0 = 0.57 (also the temperature of the thermostat).

The method of the MD is described in section 2.1. The MD simulations will be compared
with the results of the mesoscopic PFM which assumes a diffuse crystal–melt interface, that is
in accordance with the structure of the interface in the MD simulations. The order parameter
0 � ϕ(z, t) � 1 called the phase field describes the thermodynamic state of the system at
location z at the moment of time t so that the value ϕ = 0 corresponds to the melt, ϕ = 1
corresponds to crystal phase and transition layer 0 < ϕ < 1 approximates the diffuse interface.
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Figure 6. Temperature profiles at t = 3000. The solid line shows the MD data, the dashed line
shows the PFM simulations.

Taking into account the elongated geometry of the MD box, we write the evolution equations
of the PFM in the form

∂T

∂t
= a

∂2T

∂z2
+

Q

cp

∂h(ϕ)

∂t
, (6)

1

ν

∂ϕ

∂t
= ∂2ϕ

∂z2
− 1

2δ2

∂g

∂ϕ
− 1

2δ

Q

γ

T − TM

TM

∂h

∂ϕ
. (7)

The dimensionless units of the Lennard-Jones potential have been used. The form of
the equations, i.e. the last terms on the rhs of equations (6) and (7), corresponds to the
approximation of the free-energy density used in [6] on multiscale modeling of dendritic
growth in pure Ni. Therefore we start the comparison with MD from this form of the equations.
The temperature field is described by the common heat equation with the thermal diffusivity
a. The last term in equation (6) describes the release of the latent heat Q, cp is the heat
capacity. The dynamics of the phase field is described by the partial differential eqaution (7)
where ν is the interface mobility, δ is the parameter determining the thickness of the interface,
γ is the interfacial energy, and TM is the equilibrium melting point. The local minima of
the energy in the system are determined by the double-well potential g(ϕ) = ϕ2(1 − ϕ)2

and the interpolation between the phases through the interface is given by the function
h(ϕ) = ϕ2(3 − 2ϕ).

In accordance with the MD setup, equations (6) and (7) are solved numerically in the
domain 0 � z � 680 σ with the boundary conditions T (0, t) = T (680, t) = 0.57. The initial
temperature takes uniform value T (z) = 0.57, and the initial phase-field profile has two solid
layers on the left and right sides with the melt inbetween.
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Figure 7. Position of the crystal–melt interface in time for modified equations with Q(T ). The
solid line shows the MD data, the dashed line shows the PFM simulations.

The thickness of the diffuse interface can be determined from the MD data using an order
parameter based on a structure factor [13]

S(�k) = 1

N

∑
i

|eik�r |, (8)

where �k is the reciprocal lattice vector directed along the (1 0 0) direction. The sum over
all atoms falling within the local volume gives the value of the order parameter in this local
volume. The structure factor takes the values approximately between 0.6 and 0.8 in the bulk
crystal and values about 0 in the bulk melt. For an equilibrium interface, equation (7) has the
solution

ϕ0(z) = 1

2

(
1 − tanh

(
3z

2δ

))
. (9)

Using this solution we can determine the parameter δ by fitting the ϕ0(z) to the structure factor
from MD simulations scaled to the range of values from 0 to 1. The obtained value δ = 2
shows satisfactory agreement with MD results also for the nonequilibrium moving interface.

We use two characteristics of the crystallization process to examine the matching between
the atomistic MD and the mesoscopic phase-field simulations. The first characteristics is the
dynamics of the crystal–melt interface. The position of the interface is determined by the
point where the structure factor or the phase field takes the intermediate value 0.5. The second
characteristics is the temperature profile. In the phase-field simulations it is determined by
equation (6). In MD simulations the box is divided into local volumes with the local value of
the temperature. To smooth the fluctuations, an average over different configurations is used.

In the phase-field simulations the following values of the parameters have been used:
TM = 0.62, ν = 0.2, a = 1.5, cp = 5.5, Q = 1.1 and γ = 0.374. This set of parameters
provides good agreement between interface dynamics and temperature profiles in PFM and
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Figure 8. Temperature profiles in the system at different times. Solid lines show the MD data,
dashed lines show the PFM simulations.

MD simulations in the time interval 0 < t < 4000, figures 5 and 6. For t > 4000 the
temperature fields generated by the two interfaces begin to overlap and from this time the
phase-field simulations predict a smaller interface velocity as obtained in MD simulations.
On testing different values of the parameters in equations (6) and (7) we have found that the
discrepancy at long times between the PFM and MD has a systematic characteristic and it
cannot be eliminated by tuning the parameter set.

Therefore, we consider an extension of equations (6) and (7) by introducing a temperature
dependence of latent heat Q(T ) = Q0(1 + k(T − TM)). Using the values Q0 = 0.472,
γ = 0.505, k = −3.46 we can achieve good agreement for interface dynamics data in the
whole range of the time, figure 7. However, a disagreement remains in the temperature profiles:
the PFM predicts a lower temperature at the crystal–melt interface in comparison with the MD
data, figure 8.

Thus we get a result that the PFM in the form of equations (6) and (7) does not provide
a fully consistent match with the MD results. On the one hand, we can achieve an agreement

9



Modelling Simul. Mater. Sci. Eng. 17 (2009) 055006 I Maltsev et al

on the description of the release of latent heat and of the temperature profile, but we get the
deviation in the dynamics of the interface motion. On the other hand, by introducing the
temperature dependent latent heat parameter into the equations, we can reach an agreement
on the dynamics of the interface motion between the PFM and MD simulations, but it is
accompanied by the deviation of temperature profiles. A possible reason for this behavior
consists of specific mechanisms of release and of diffusion of the latent heat during the
crystallization process which are included in the modeling on the atomistic level and are
simplified out in the mesoscopic description. The identification and investigation of this point
will be continued in subsequent work.

4. Conclusions

In this paper the crystallization of a pure Lennard-Jones system is modeled by atomistic
MD and the mesoscopic PFM in comparison. The influence of the parameters of the Nosé–
Hoover thermostat on the temperature profile and on the growth velocity in MD simulations is
investigated. The results show that qualitatively the crystallization occurs in the nonisothermal
regime independent of the relaxation parameter of the thermostat. Correspondingly, the growth
velocity observed in the MD simulations depends on the size of the MD box and on the
relaxation parameter τtemp.

The MD results are compared with the phase-field simulations and the systematic deviation
between the predictions of MD and PFM is observed. A correction of the phase-field
formulation is necessary in order to match the atomistic and mesoscopic simulations in the
range of overlapping scales within a framework of multiscale modeling.
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