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Anisotropic multi-phase-field model: Interfaces and junctions

B. Nestler!' and A. A. Wheeler’
1Fot,mdry Institute, University of Aachen, Intzestrasse 5, D-52072 Aachen, Germany
2Faculty of Mathematical Studies, University of Southampton, Southampton, United Kingdom
(Received 27 October 1997)

In this paper we bring together and extend two recent developments in phase-field models, namely, a
phase-field model of a multiphase system [I. Steinbach ef al., Physica D 94, 135 (1996)] and the extension of
the Cahn-Hoffman &vector theory of anisotropic sharp interfaces to phase-field models [A. A. Wheeler and G.
B. McFadden, Eur. J. Appl. Math. 7, 369 (1996); Proc. R. Soc. London, Ser. A 453, 1611 (1997)]. We develop
the phase-field model of a multiphase system proposed by Steinbach er al. to include both surface energy and
interfacial kinetic anisotropy. We show that this model may be compactly expressed in terms of generalized
Cahn-Hoffman & vectors. This generalized Cahn-Hoffman &-vector formalism is subsequently developed to
include the notion of a stress tensor, which is used to succinctly derive the leading-order conditions at both
moving interfaces and stationary multijunctions in the sharp interface limit. [S1063-651X(98)03703-9]

PACS number(s): 64.60.—1, 68.35.Rh, 81.10.Jt

I. INTRODUCTION

In this paper we present and analyze a phase-field model
that describes multiphase systems and includes both aniso-
tropic surface energies and mobilities. It provides a model of
a wide variety of different situations such as eutectic and
peritectic alloys as well as the motion of grain boundaries.

A phase-field model of a solid-liquid interface was pro-
posed by Langer [1] and was subsequently developed by a
number of workers [2—5]. Wheeler, Boettinger, and McFad-
den [6] provided a phase-field model of a simple isothermal
binary alloy. Subsequently, several authors have extended
their work to model more realistic nonisothermal situations
[7.8] as well as eutectic alloys [9,10] and solute trapping
[11-14]. Phase-field models of a pure material have also
been extended to include anisotropy of the surface energy
and interface mobility, by [2,15—17]. Recently, Wheeler and
McFadden [18] have developed the notion of a generalized &
vector for phase-field models with anisotropic surface energy
that extends the original idea of a & vector that Cahn and
Hoffman [19,20] developed for sharp interface models. Sub-
sequently, Wheeler and McFadden [21] extended this idea to
formulate a conservation law in terms of a stress tensor re-
lated to the ¢ vector, which they used to investigate the force
balance at a multijunction.

Several authors [22-28] have extended the phase-field
methodology to develop models involving a vector-valued
order parameter in an attempt to consider a wider range of
phase transitions such as multicomponent or multiphase sys-
tems. In particular, Steinbach et al. [27] developed a phase-
field model of a multiphase system in which a phase field is
associated with each phase present. In this work an underly-
ing free-energy functional was chosen that involved the pair-
wise interactions between all the different phases. The result-
ing governing equations were used to conduct numerical
simulations of a variety of situations and demonstrated the
feasibility of this approach, in particular in relation to the
qualitative simulation of a number of important growth phe-
nomena in peritectic and eutectic systems [29,30]. In related
work Garcke, Nestler, and Stoth [26] used a formal
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asymptotic analysis to determine the asymptotic singular
limit of a multiphase Allen-Cahn system.

The focus of this paper is to develop the model of Stein-
bach et al. to include the effect of anisotropic surface ener-
gies associated with the interfaces between the different
phases, as well as to include a more general form of the
anisotropic mobility of the interfaces. To this end we draw
on the work of Wheeler and McFadden [18,21] to place the
dimensionless form of the model in the setting of the gener-
alized Cahn-Hoffman ¢ vector. This allows us to conduct
succinctly the sharp interface asymptotics and to recover the
correct form of the Gibbs-Thomson-Herring equation for an
interface in three dimensions as well as the force balance at a
multijunction between anisotropic interfaces. We show that
the &-vector formalism is a powerful and elegant tool not
only for investigating surface energy anisotropy in the con-
text of a sharp interface theory, for which it was originally
developed, but also for the complicated diffuse interface
theory described here.

In the sharp interface theory in which an anisotropic sur-
face energy y(n) is associated with an interface S, which
has a unit normal 7z, the & vector is defined by

E=Vy(7), (1)

where y(7) is the homogeneous extension of degree one of
v(r). In spherical polar coordinates & may be expressed as
ay(0.¢) . 1 dv(6.4) .

E=y00.9)e+ —o—épt oo g 2

Cahn and Hoffman showed that the Gibbs-Thomson-Herring
equation may be compactly expressed as

1. -
T;=Ty— 2 V- & (3)

where T, and T, are the interface and melting temperatures,
respectively, and L is the latent heat per unit volume. They
were able to relate the & vector to the stress in the interface
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and showed that at a multijunction, comprising the conflu-
ence on m interfaces, the equilibrium force balance could be
expressed as

<2 £=0, )

where [ is the unit vector parallel to the junction and &, k
=1,...,m, are the £ vectors associated with each interface.

In Sec. II we develop our anisotropic phase-field model,
derive the governing equations, and express the model in
dimensionless form. In Sec. III we show how generalized &
vectors may be associated with this model. In Sec. IV we
exploit this formalism to investigate the sharp interface limit
of interfaces and derive the Gibbs-Thomson-Herring equa-
tion. In Sec. V we develop a stress tensor for our model and
use it to obtain, in a compact way, the force balance at an
equilibrium multijunction.

II. MODEL

We consider an isothermal system in which N different
bulk phases may exist. Following the approach of Steinbach
et al. [27], we introduce N corresponding phase-field vari-
ables ¢,,...,¢y with 0=<¢, <1 for a=1,...,N. We as-
sume that the system can reside exclusively in bulk phase n
(1=n=<N) at a point in space if ¢,=1 and ¢,=0 for all
a#*n, l<a<N. We therefore impose the constraint that

2 = (5)

The free-energy functional associated with the system is
given by

#= | @ 5hav, ©)
Vv

where the Lagranglan energy density [,(¢ V¢) depends on
the vector d) (qﬁl ,...»¢py) and its gradients Vq‘)
:(V¢1,...,V¢N).

In the case when all the interfaces between the different

bulk phases possess isotropic surface energy L( &,ﬁ&) can
be defined by (see Ref. [27])

N B
DS"(&WF% agl [3 7%l Pl + Tap(H)]

N
+QZ] ho($.T), )

where 7,4 are constant gradient energy coefficients and the
vector 7,5 appearing in the gradient energy terms is given by

Fap=baV dg— dsV by (8)

In this model the possible N!/[(N—2)!2!] interactions be-
tween the N bulk phases are described by a sum over the
pairwise intercorrelation energies of the different phase fields

denoted by gfaﬁ(é). Using physical arguments Steinbach
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et al. [27] assumed that the movement of the two phase
boundaries dominates the adjustment of triple or multiple
junctions, which possess a negligible dynamics of their own.
Hence energy terms that depend on more than two phases are
neglected. The pairwise intercorrelation energy terms are
specified to be double-well potentials of the form

-

gaﬁ(¢)— gaﬁ(¢) d) bp- )

The parameter 1/a,z is proportional to the pairwise barrier

height of the double well. The terms I, a((Z),T) describe the
free-energy density of each bulk phase and are assumed to be
given by

ho( @ T)=bo(T) . (10)

The parameters 7,4 and 1/a,g are defined for each interface
between bulk phases labeled « and B. They may be related to
measurable, physical quantities (see Ref. [18]) such as the
interface thickness /5 and surface energy v,z through the
identities

7 up
Vb 244,

/aﬁzz‘/?naﬁ \/aaﬂ’ (11)

From the obvious symmetry requirements that / ,z=¢"pg,
and y,p= Ygo We therefore deduce that

7711[3: 7][30(’ aaﬁzaﬁa' (12)

The form of the free-energy functional and the symmetry
properties of the parameters ensure the reproduction of the
standard isotropic phase-field model in the case of only two
phases in the system, e.g., a liquid and a solid phase [2].

In an analogous way to the anisotropic phase-field model
described by Wheeler and McFadden [18] for a solid-liquid
interface, we extend the isotropic Lagrangian density (7) to
the anisotropic situation by writing

N B
L@V)= 2 2 {370plLap(Fap) '+ Zap(#)

Sol w

N
+ > b (T)p,+ N\
a=1

where we have invoked the constraint (5) with a Lagrange
multiplier \. Here " ,5(7 o) is defined to be a homogeneous
degree-one function of its argument. It imparts anisotropic
surface energy to the interfaces. When I' (7, 5) =|F | the
isotropic Lagrangian is recovered; otherwise we anticipate
that the surface energy of the interfaces is given by

77&[3 Vaa,B

T, 47, 14
6v2a.s s ap) (14)

701[3( aB) =
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FIG. 1. Schematic diagram of a diffuse interface of thickness
/ o between two bulk phases labeled « and 8. The orientation of
the two unit normal vectors 72,5 and 7ig, is shown.

where 7,4 is the unit normal to the interface between phases
labeled « and B; see Fig. 1. We note that v,z is a homoge-
neous degree-one function of its argument, which it inherits
from T 5.

To proceed we nondimensionalize the free-energy density
(and X) with respect to b, length with respect to R, which
represents a typical radius of curvature of the interfaces, and
the surface energy v, with respect to b,R. Using Eqs. (11)
and (12), the dimensionless Lagrangian density may be ex-
pressed as

N B
LOVH=2 2

366aﬂ7aﬁ(ra,3)+ gaﬂ( ¢)}

-1, (15)

N
2 *

N
+ 2 bo(T) ot
a=1

where €,5=a,gb, ba=5a/b1 , )\ZX/bl, and we note that

€aﬁ: €ﬁa. (16)

The governing equations are given by the gradient flow

b, 5F
7——M(V¢)

for u=1,...,N, 17
5, M (17)

where M (V (Z) represents a dimensionless anisotropic mobil-
ity. These equations may be recast in terms of the Lagrang-
ian density as

b,
ot

.. | of 0L oL
w22 am

It is convenient to choose the mobility to be of the form
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N N
B LE 2 ¢auaﬁ<r:,ﬁ>]
M(V)= NN ) (19)
{72 > 2 aﬁ¢a7’aﬁ(raﬁ)J

B=1 a=1

where u,45(7,5) are homogeneous degree-one functions
such that w,5(7,5) = a7 ,). As shown below, the func-
tion w,p(7,5) may be interpreted, in the sharp interface
limit, as the dimensionless anisotropic kinetic mobility of the
interface between the bulk phases labeled « and .

III. THE £ VECTOR FORMULATION

Our next aim is to define the & vector for the multi-phase-
field model described above. Consider the interfacial region
between two bulk phases labeled @ and 8. We will assume
that in this region ¢, and ¢4 are the only phase fields that
are nonzero, so that ¢,+ ¢z=1. We denote the surface in
this interfacial region defined by an:d)B:% as S,5. The
unit vectors to this surface are denoted by 71,5 and 7 g, ; see
Fig. 1 for their orientation. As we show in Sec. IV, the only
two nontrivial governing equations, for ¢, and ¢y, are both
similar to the phase-field equation discussed by Wheeler and
McFadden [18]. Hence, in the sharp interface limit €,z
= €g,— 0, the surface energy of the interface associated with
Sup is described, to leading order, by 1y,g(11,5) or
Yga(figa). Because n1,5=—1ig,, we obtain the symmetry
condition

Yap(Map) =Vpa —Tap). (20)
The functions y,4(7,p) have been extended as degree-one

homogeneous functions of their arguments [see Eq. (14)], so
that

yaﬁ( gFa,B) = g’)/aﬁ(;aﬂ) for all gE R? (21)

and hence it follows from Egs. (20) and (21) that

%zﬁ( 7aﬁ) = ?’,BQ(F,BQ)- (22)

In the spirit of Wheeler and McFadden [18], we define the
set of & vectors £,5(F,p) by

PYaplTap) _ g

EaplFap) = =V; Yap(Fap)  (23)

I p

which are consequently homogeneous functions of degree
zero. From Egs. (22) and (23) it follows that

Eup="Epa- (24)

We note from the definition of Ea p(Tap) that

Yaﬁ(’_;aﬁ):;aﬁ' gaﬁ? (25)
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which follows from the calculus of degree-one homogenous
functions.
We observe that

aL . dy
. =72 E Ea,u,’}/ap,(ra,u) _}”‘l“
Ve, asu Vo,
- Yup(Pup)
+ 2 €upYup(Fup) — ——
B>p oV u
L 0Vay, OF
=72 2 ea,u.’)/a/.L(ra,u.) # Q;m
a<p I qp (9V¢#

IYVup I up ]

+ E E,uﬁy,uﬁ(?,uﬁ) - R
B>p r?rMB (9V¢M

N
:72[ (;M 6au’ya;¢(’7au) ga,ud)a] > (2’6)

where we have used the symmetry relations for Egs. (16),
(22), and (24). A similar calculation gives that

L % - NI P 17
ad)’u —a#'u 6{1/1’)’0[”,("{1/1,)50{/1,. ¢a 4Eg’u a¢M
+b,(T)+\. (27)

Hence the governing equations (18) may be written as

u_ 5
M(ﬁ(g) Jt  a*p

1

7260, V- [ Vau(Fap) Eapbal

08 ap
dey, &({)M

—Bu(T)—\ (28)

+ 7au(7ap)§au' vS‘ﬁa} -

for u=1,...,N. The Lagrange multiplier may be found,
using the constraint (5), to be

726&,#{6 . [ YaM( Fa,u,) ga,u¢a/]

SORRp>

® aFu
> R 98 o
+7a;/,(7a,u)§a,u'v¢a}_4€ &gqslu
ap OPu
), o
M(V) It

IV. INTERFACES

We now briefly consider a curved interface between two
bulk phases labeled o and S in the sharp interface limit

€.~ €go—0. Using the symmetry conditions for
Maps€apsYap and the constraint ¢,+ ¢g=1 the two non-
trivial governing equations are

Vi - Nz > > 1 (9gﬁa

7zeﬂa{v.[yﬁa(r5a)gﬁa¢ﬁ]+yﬁagﬁa.v¢,ﬂ}_%T%
o(Tga) 9P,

—b,—N=T2¢€g, Yoo pa’ (f; ) —d) , (30)
Iu“ﬁa(rﬁa) ot

'5) r £ . ﬁ agaﬁ

726,60V [ Vap(Fap)EapPal + Vapap (i)a}_@ y

ap(Fap) 0
—bpg—=A=T2€.p Yap T ap) B( B) —d)ﬁ (31)

Map(Fap) Ot

We subtract these two equations and use the additional sym-

metry condition for &,z to obtain

v v pe 1
72€poV - [VpalV o) Epal = — dall - %)( —— %)
eﬁa 2

—Abg,= 1446BaMi’ (32)

lu“ﬁa(v_)(ﬁa) ot

where Ab,z=bz—b, is the dimensionless bulk free-energy
difference between the two phases and is related to their
mutual latent heat L,z by

L ,T—TY
_Hap af

where Tﬁfﬁ is their melting point, provided the temperature 7
is close to Tﬁ”ﬁ. A similar equation holds for ¢g.

This is the same form of the phase-field equation consid-
ered by Wheeler and McFadden [21], who studied its sharp
interface limit. We briefly outline their results and interpret
them in the context of the multi-phase-field model. We in-
troduce a body-fitted coordinate system in which » measures
the distance from the surface S,z and increases towards the
bulk phase B. To examine the solution in the interface region
we rescale r to the interface thickness, which is O(e, 8)> and
therefore write r= €,5p, where p=0(1). The leading-order
solution for ¢, , denoted by d)(ao)(p), satisfies

d2 (0)
: d‘ﬁ;‘ —¢£?>(1—¢S”>(%— ¢>i?>) =0.
(34)

72[ 7aﬂ(ﬁaﬁ)]

Hence

(35)

1 p
(0)—_ l—tanh( —9)
b =3 { 207 ag(ap)

and we note that the leading-order approximation for ¢, in
the interfacial layer satisfies the identity
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(36)

d¢i§’>r ., !
dp | “PT T2y pliieg)

)
The first integral of Eq. (34) is

dy”
dp

2
360 Vap(iap) ]’ } —f;[¢;°>]2<1—¢$>>2=0

37)

and hence the leading-order approximation to the Lagrangian
density is

(0)72
90 } : (38)

dp

. T2 A
‘C(d)’vd)): 6_/5' [’Vaﬁ(naﬁ)]z

Wheeler and McFadden went on to consider the next-order
problem. The solvability condition that arises gives

Abaﬁz_vsaﬁ'gaﬁ_vnaﬁllu’aﬁ(ﬁaﬁ) (39)
on the sharp interface, given by S,s, between the two
phases, where Unog is the normal interface velocity (mea-

sured positive when the bulk phase @ grows). The term
Map(7ip) clearly plays the role of a dimensionless kinetic
mobility. This is the dimensionless form of the Gibbs-

Thomson-Herring equation. For this interface Ea p blays the
role of the Cahn-Hoffman & vector.

V. JUNCTIONS

We now exploit the &vector formalism to investigate sta-
tionary multijunctions where m (<N) bulk phases meet, to
show that the classical force balance holds in the sharp in-
terface limit. To this end we first show how a stress tensor
may be developed for the multi-phase-field model. The sta-
tionary form of the governing equations provides the Euler-
Lagrange equations for the minimization of the total free
energy . Because the Lagrangian density is independent of
the spatial coordinates we may appeal to Noether’s theorem
[31], which states that therefore there exists a conservation
law given by

(40)

where

—LI. (41)

N
- L
E=2 V¢, —
,uzl P Vo,

By Eq. (26) this tensor may be written as

M=

N
E=722, ; €anVau(Fap) DoV bu®Equ,— LI (42)
aFp

"

On applying the symmetry conditions (22) and (24), it may
be more compactly expressed as
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FIG. 2. Schematic diagram of a junction within a closed curve C
(for the particular case of four bulk phases) indicating the orienta-
tion of the unit tangential and normal vectors associated with each
interface as well as the unit vector / that is parallel to the junction
and is directed perpendicular to the plane of the diagram.

As discussed by Wheeler and McFadden [21] and in more
detail by Anderson, McFadden, and Wheeler [32], E may be
shown to form the reversible part of the stress tensor in a
more complete theory that entails deformation of matter.
We consider a multijunction that lies parallel to the unit

vector [ and hence we restrict our discussion to the plane

with normal /, in which case the surfaces S,z may be re-
garded as curves in this plane. We assume that m (<N) bulk
phases meet at the multijunction and they are labeled in a
counterclockwise fashion about the multijunction by «
=0,1,2,....m—1 with  corresponding  phase fields
b0, b1,¢s,...,¢0,,— 1. Because the junction is in equilibrium
the bulk phases have equal bulk free-energy densities, which,
without loss of generality, we may choose to be zero so that
b, (T)=0 for u=0,...,m—1. Let C be a closed curve such
that the multijunction lies within C and, for convenience,
choose C so that it perpendicularly intersects each of the
phase boundaries emanating from the multijunction; see Fig.
2.

For clarity of exposition we assume all the constants €4
are equal. (The more general case in which all the €,4 are
different but proportional to a small parameter € may be
done in a similar way to the simpler case discussed in detail
here.) We therefore write €,5= € and consider the multijunc-
tion in the sharp interface limit e—0, in which case all the
interfaces are of thickness O(e€). Let 77, denote the unit
normal of the curve S, . between the phases represented
by the phase fields ¢, and ¢, (mod(m)), where 0<pu

<m— 1. Thus the unit vector ¢, is the tangent vector to

the curve S, and is given by 7,1 =1, X[. By con-

struction ¢ | lies in the direction normal to C. Since the

et
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stress tensor = is divergence-free the &vector force balance
for a multijunction follows from applying the divergence
theorem

(44)

where v is the outward unit normal to C. Because the bulk
free-energy density of each phase is zero the only nonzero
contributions to this integral arise from the parts of C that

+ oo

+ o0
Fﬂzef E-twﬁldp:ef
—o0

where €p denotes the distance from the interface from S, , ;|
in the direction of the unit normal vector 7 et ie.,
through the interface. The leading-order approximations to
the phase fields ¢, ,¢, 1, in the interfacial layer are given
by Eq. (34). Thus we find that the leading-order approxima-
tions to 7,11 and ¥, 4+ 1(7,,41) are

0
. 1 ad’ip)rl .
7

mut1” ap Npp+1s
1 agi,
7#M+l(rﬂy+l)~2# ’YM,LL+1(n/.L,tL+1)7 (46)
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intersect the interfacial regions. Hence, from Eq. (44), we
obtain the force balance

m—1
> F,=0, (45)
n=0
where F u 18 the total force per unit length acting on the plane
normal to the curve S, in the direction of 7, . We
now take the sharp interface limit eé—0 and evaluate F, to

leading order. Integrating through the layer, F o, becomes

[7267M/L+1(F/,L/,L+])FM,LL+I®§/L,u+l(7,u,,u,+l)_£]] . t,u,luﬁrldp

{7267M/L+1(;/1,/L+l)[§MM+l(F/L/,L+1). ty,,u,+l];ﬂﬂ+l_£ty,ﬂ+l}dp?

where r=ep. Because the ¢ vector is a zero-degree homo-
geneous function, we note that

>

§MM+I(;,(LM+1)=§;Lp,+l(ﬁ,u,;/,+])- (47)
From Eq. (25) we find that
‘}/p.,u.+l(fiﬂp.+l):ﬁ,u.#+]'§M/_L+](ﬁ,u,,u.+l)' (4’8)

Applying these considerations, Egs. (46)—(48), and using the
leading-order form for the Lagrangian (38), we find, to lead-
ing order, that

L [t LR R -
F,LLN J;ioo 72’)’,41;/.+1(ﬁ,u.,u+1) ﬁf; [(§M#+l.tﬂ#+l)ﬁﬂﬂ+l_’Y}L}L+1(ﬁﬂﬂ+1)tﬂﬂ+l]dp
2
+ee . 3‘255?411 > - . > . -
= e 727M/L+1(nﬂﬂ+l) T [(glu,/,L%»l'tuﬂ+l)nuﬂ+l_(§ﬂﬂ+]'nﬂu+l)tuﬂ+l]dp
- - e a(ﬁ(oll ?
=[§;Lp,+1Xl]72FyM;L+](n,u,u+l)j7 # dp

:gﬂ,u+l><l’

where we used the identity (36) in the last step. Hence the
leading-order force balance at the multijunction is given as

m—1
X 2 &uur1=0. (50)
n=0

We note that if we express the surface energies and the &
vectors in spherical polar coordinates such that the polar di-

(49)

rection is parallel to [ , then from Eq. (2) the force balance at
the multijunction (50) becomes

m—1

- ag +l(¢’0) i
Eo Vs 1 (O i — —EE———

90 nMHl:O.
(51)

>

We observe that the force balance contains the interaction of

the m surface tension terms vy, +(¢,6) ; up+1 acting tan-
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FIG. 3. Schematic diagram of the forces acting normally and
tangentially to each interface at a trijunction of three phases labeled
0, 1, and 2. The normal forces are the so-called Herring torque
terms.

gentially to each interface. In addition, there are m forces
[0Yuu+1(, /3017, acting in the directions normal to
each interface, as shown in Fig. 3 for the case of a trijunction
(m=3), which we identify as the so-called Herring torque
terms. In the case of isotropic surface energies the Herring
torque terms are zero and the conventional Young law is
recovered.

VI. CONCLUSIONS

In this paper we have developed a phase-field model per-
tinent to multiphase systems, such as grain boundaries and
peritectic alloys, which includes anisotropy of both the sur-
face energy and kinetic mobility of the interfaces. This
model is a natural extension of an isotropic phase-field
model originally proposed by Steinbach ez al. [27]. A differ-
ent phase field is used to represent each constituent bulk
phase. The model has the advantage that the functional form
of the anisotropy of both the surface energy and kinetic co-

efficient of the interface between every pair of bulk phases
can be specified independently by a suitable choice of the
homogeneous degree-one functions 7,z and w,g, respec-
tively. The model does not seek to provide a realistic and
detailed description of the internal structure of the interfaces
and junctions, but rather provides a formal diffuse interface
description that in the sharp interface limit provides the cor-
rect form of the Gibbs-Thomson-Herring equation at inter-
faces and the force balance at multijunctions. The model, in
addition, provides a convenient setting in which to compute
the motion of interfaces and junctions in systems involving
more than two phases, although it has the disadvantage that
the number of associated phase-field equations is propor-
tional to the number of phases present, which correspond-
ingly increases the computation requirements. We carefully
extended the original isotropic model of Steinbach et al. so
that we could exploit the recently generalized &-vector for-
malism developed by Wheeler and McFadden for diffuse in-
terface models. This has allowed us to provide relatively
short derivations of the sharp interface limits. It is worth
noting that the divergence-free Z tensor associated with
time-independent solutions and the integral form of the as-
sociated conservation law (44) may be interpreted as a force
balance that holds over any region that exists independently
of the sharp interface limit. In fact, like the sharp interface
conditions derived here at a multijunction, an alternative
derivation of the sharp interface limit for an interface is pos-
sible directly from this force balance [33]. The conservation

law V-5 =0 itself is a consequence of the translational in-
variance of the underlying free-energy density of the system.

Finally, it is worth noting that we have also investigated
the unsteady multijunction in the sharp interface limit and
found that, to leading order, the static force balance is recov-
ered. This is a consequence of the one-dimensional nature of
a junction.
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