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Abstract. Rapid solidification of a non-dilute binary alloy is studied using a
phase-field model with a general formulation for different diffusion coefficients
of the two alloy components. For high solidification velocities, we observe
the effect of solute trapping in our simulations leading to the incorporation
of solute into the growing solid at a composition significantly different from
the predicted equilibrium value according to the phase diagram. The partition
coefficient tends to unity and the concentration change across the interface
progressively reduces as the solidification rate increases. For non-dilute binary
alloys with a value of the partition coefficient close to unity, analytical solutions
of the phase-field and of the concentration profiles are found in terms of power
series expansions taking into account different diffusion coefficients of the alloy
components. A new relation for the velocity dependence of the nonequilibrium
partition coefficient k(V ) is derived and compared with predictions of continu-
ous growth model by Aziz and Kaplan [1]. As a major result for applications,
we obtain a steeper profile of the nonequilibrium partition coefficient in the

rapid solidification regime for V/VD > 1 than previous sharp and diffuse in-
terface models which is in better accordance with experimental measurements
(e.g. [2]).

1. Introduction. Recent progress in the understanding of pattern formation dur-
ing solidification is associated with the development of models containing a continu-
ous order parameter named “phase field” [3]. The phase-field models of solidification
use a time and space dependent variable ϕ (the phase field) to describe the ther-
modynamic state of the various regions of the system. For example, in solid-liquid
phase systems, the solid phase corresponds to ϕ = 1 and the liquid phase to ϕ = 0.
Interfaces between the phases are identified by a smooth but highly localized tran-
sition of the phase-field variable in the interval 0 < ϕ < 1. First, from a theoretical
viewpoint, the phase-field approach has the advantage in providing a unified de-
scription of the system. The diffuse interface formulation allows to derive the whole
set of governing equations for the bulk phases and for the interfacial regions at the
same time in a thermodynamically consistent way on the basis of an entropy func-
tional applying the first and the second law of thermodynamics [4, 5, 6]. Therefore,
the evolution equations fulfill the conservation laws for mass and energy as well
as a positive local entropy production. Second, the continuous phase-field variable
facilitates a numerical treatment by avoiding the explicit tracking of the solid-liquid
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interface, in particular, when complex geometries are involved [3] as e.g. in the case
of growing dendrites or eutectic structures.

At low growth velocities, the thickness of the diffuse interface is physically small
in comparison with the characteristic length scale of the microstructure. In this
case, it has been shown mathematically, that in the limit of zero interface thick-
ness, the phase-field approach converges to classical moving boundary problems of
solidification [6, 7, 8, 9]. Under rapid solidification conditions, the scale of the dif-
fusion field becomes comparable with the interface thickness. This leads (i) to a
nonequilibrium, velocity dependent partition coefficient ka(V ) = cS/cL, defined by
the ratio between the concentration cS of the growing solid and of the liquid cL (ii)
to a nonequilibrium liquidus slope and (iii) to kinetic phase diagrams within the
scope of the phase-field approach [10, 11, 12].

In the dilute alloy limit, Aziz and Kaplan [1] have formulated a continuous growth
model (CGM) that expresses the velocity dependence of the partition coefficient by

ka(V ) =
ke + V/VD

1 + V/VD

,

where ke is the equilibrium partition coefficient. The so-called ”diffusive speed”
VD is the ratio of the solute diffusivity at the interface to the interatomic distance.
The CGM describes the experimentally observed solute trapping phenomenon that
takes place in the rapid solidification regime when the velocity V approaches VD.
Solute atoms do not diffuse rapidly enough ahead of the growing solid phase and
hence become engulfed into the advancing crystal/melt interface. Laser experiments
with high processing velocities reach growth velocities of 1–10 m/s corresponding
to the transition from local interfacial equilibrium to complete solute trapping,
ka(V ) → 1. The CGM has been applied to various dilute alloys and to process
conditions in the low-velocity regime (V 6 VD), [13, 14]. In the high-velocity
regime (V > VD), it can be seen in Fig. 1 that the experimental data of two
Si-As alloys (open dots and solid triangles) show a much steeper profile than the
CGM (solid line) proposes. Numerical results of Monte Carlo simulations [15] and of
molecular dynamics simulations [16] show that a good agreement between simulated
values of the non-equilibrium partition coefficient and theoretical model predictions
is obtained for low and moderate interface velocities. At high growth velocities, a
clear discrepancy can be observed in Fig. 2 of [15] and in Fig. 7 of [16] confirming
the steeper profile suggested by the experimental data of Si-As [2]. Galenko and
Sobolev [17] proposed a modification of the sharp interface model by Aziz and
Kaplan [1] in order to reflect the tendency at high growth velocities.

At such length scales, diffuse interface methods are found to provide more rea-
sonable descriptions of the diffusion processes. The phase-field method enables the
modelling of the evolving bulk phases, of the phase transition from liquid to solid
as well as of the velocity dependence of the jump in concentration in the interfacial
region.

In this paper, we aim to derive a new definition of the non-equilibrium partition
coefficient k(V ) on the basis of a phase-field approach. The new velocity dependence
of the partition coefficient taks concentrations at the boundaries of the diffuse solid-
liquid interface layer into consideration and herewith leads to a more rapid increase
of the partition coefficient to one for high velocities. We assume a steeper profile for
the function k(V ) in better accordance with experimental measurements for high
growth velocities. This tendency is supported by the experimental data points of
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Si-As in Fig. 1 at interface velocities V > 1.0m/s. Further, the new derivation of
k(V ) is also applicable to also describe non-dilute alloy systems.
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Figure 1. Experimentally measured partiation coefficient (open
dots and solid triangles) versus interface velocity for two Si–As
alloy systems in comparison with the prediction of the CGM (solid
line). The data are taken from [2]. The dashed line corresponds to
an interpolation curve of the experimental data.

The outline of this paper is as follows. In Sec. 2 and 3 we summerize the
equations of the phase-field model that will be considered including a formulation
of interdiffusion. Further, we define the leading order expansions. In Sec. 4 we apply
the phase-field model to simulations of steady-state growth of a planar solid-liquid
interface in non-dilute binary Ni-Cu alloys under rapid solidification conditions. A
special emphasis lies on the investigation of different diffusion properties of the alloy
components. The characteristical concentration profiles across the crystal/melt
interface are illustrated for different growth speeds. A new relation for the velocity
dependence of the partition coefficient k(V ) is derived and the profile is compared
with previous models such as the CGM. Conclusions are drawn in Sec. 5.

2. Phase-field model. We use the phase-field formulation for alloy solidification
that has recently been proposed in [6] for a general class of multicomponent and
multiphase systems. We reduce the general case to two phases (solid and liquid)
and to a binary alloy with components A and B and write down evolution equations
of the phase-field model for isotropic kinetics and isotropic surface energies of the
solid–liquid interface.

We assume the alloy to be at a constant temperature T in ideal solution approx-
imation and postulate the free energy density f in the form

f(c, ϕ) =

2∑

i=1

ciLi

T − Ti

Ti

h(ϕ) +
RT

vm

2∑

i=1

ci ln ci, (2.1)
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where Li and Ti, i = 1, 2, are the latent heats and melting temperatures of the alloy
components A and B, ci are the concentrations given in molar fraction, vm is the
molar volume and R is the gas constant. The value of ϕ = 1 corresponds to the
solid phase, ϕ = 0 corresponds to the liquid and the function h(ϕ) = ϕ2(3 − 2ϕ) is
monotonic on the interval [0, 1] satisfying the conditions h(0) = 0 and h(1) = 1.

The evolution of the phase-field variable ϕ is determined by the partial differential
equation

2ωε∂tϕ = 2εγ∇2ϕ −
9γ

ε
g,ϕ(ϕ) −

1

T
f,ϕ(c, ϕ), (2.2)

where g(ϕ) = ϕ2(1 − ϕ)2 is a double well potential. By g,ϕ and f,ϕ, we denote
the derivative of the functions g(ϕ) and f(c, ϕ) with respect to ϕ. The model
parameters ε, γ, ω are related to physical parameters of the alloy. The correlations
are defined in Sec. 3.1. The diffusion mass transport of the alloy components is
driven by the gradients of the chemical potential µi defined as

µi = f,ci
= Li

T − Ti

Ti

h(ϕ) +
RT

vm

(ln ci + 1).

Following nonequilibrium thermodynamics, we write the mass flux Ji as a linear
function of the driving forces

Ji =

2∑

j=1

Lij∇
−µj

T
. (2.3)

According to [6, 18], the phenomenological coefficients Lij(c, ϕ) are given by the
expression

Lij(c, ϕ) =
vm

R
Dici

(
δij −

Djcj∑2
k=1 Dkck

)
. (2.4)

By this definition, different diffusion coefficients Di(ϕ) of the alloy components A
and B are taken into account and the condition c1 + c2 = 1 is satisfied. The form
of Eqs. (2.2)–(2.4) leads to a nonnegative local entropy production ensuring the
second law of thermodynamics in the system.

Further, we rescale the latent heats and the melting temperatures by L̃ and T̃ ,
respectively and introduce dimensionless variables λi, θi, θ via

L̃ =
L1L2

L1 + L2
, T̃ =

T1T2

T1 − T2
,

λi =
Li

L̃
, θi =

Ti

T̃
, θ =

T

T̃
.

The form (2.1) of the free energy density f leads to a relationship along the
equilibrium phase diagram

− ln
cS
B

cL
B

=
vmLB

R

T − TB

TTB

,

where cS
B is the solidus concentration of the component B, cL

B is the liquidus concen-
tration, and T is the corresponding temperature on the equilibrium phase diagram.
An analogous relationship holds for the component A. Thus, the dimensionless ex-
pression vmL̃/(RT̃ ) can be considered as a scale for the “thickness” of the lense-type
phase diagram, and we introduce the small parameter δ by

δ =
vmL̃

RT̃
∼ − lnke ≃ −(ke − 1).
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For example, the alloy system Ni–Cu has an equilibrium partition coefficient ke =
0.88 and correspondingly, δ = 0.14. To find an approximate solution of the problem,
we expand the concentration and the phase-field functions ci(x, t) and ϕ(x, t) and
the constant isothermal temperature θ in power series of the small parameter δ
leading to

c1(x, t) = 1 − c(0) − δc(1)(x, t) + O(δ2),

c2(x, t) = c(0) + δc(1)(x, t) + O(δ2),

ϕ(x, t) = ϕ(0)(x, t) + δϕ(1)(x, t) + O(δ2),

θ = θ(0) + δθ(1) + O(δ2),

(2.5)

where c(0) is a constant initial concentration of the component B in the melt.
Inserting these expansions in Eqs. (2.3) and (2.4), the mass fluxes rewrite to

J2 = −J1 = −δD∇
(
c(1) + ∆(c)h(ϕ(0))

)
+ O(δ2), (2.6)

where the average diffusion coefficient D is a combination of the diffusion coefficients
Di for the two alloy components, given by

D =
D1D2

(1 − c(0))D1 + c(0)D2
, (2.7)

and the parameter ∆(c) is defined by

∆(c) = c(0)(1 − c(0))

(
λ2

θ(0) − θ2

θ(0)θ2
− λ1

θ(0) − θ1

θ(0)θ1

)
.

The assumptions in Eqs. (2.1), (2.2), (2.5) and (2.6) together with the boundary
conditions and the mass conservation law describe the solidification in a nondilute
binary alloy in isothermal approximation.

3. Steady-state motion of the interface. In alloy solidification processes, there
are two major growth regimes: Non-steady state growth near equilibrium and steady
state growth for non-equilibrium conditions. For low undercoolings, the growth rate
continuously slows as the phase transition tends to equilibrium and the concen-
tration in the melt approaches the equilibrium liquidus composition. Growth far
from the equilibrium is usually accompanied by steady state motion of the interface
leading to steady state concentration profiles. In directional solidification or in laser
recrystallization experiments, a constant pulling velocity or respectively a constant
speed of the laser beam forces a steady state growth conditions.

We consider the liquid composition c(0) in Eq. (2.5) and the front velocity V as
controlled parameters whereas the self-consistent temperature and the interfacial
composition will be determined from the solution of Eqs. (2.1), (2.2), (2.5) and
(2.6).

For a planar solid-liquid interface growing with a constant velocity V , we intro-
duce a moving frame by

z = x − V t, (3.8)

so that the interface ϕ = 1/2 is located at z = 0. Corresponding boundary condi-
tions which are invariant with respect to the transformation of variables are given
by

ϕ|z→−∞ = 1, ϕ|z→+∞ = 0,

c1|z→+∞ = 1 − c(0), c2|z→+∞ = c(0), Ji|z→±∞ = 0.
(3.9)
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In the moving frame as in Eq. (3.8), the steady-state phase field ϕ and the steady-
state concentration fields ci are stationary and depend only on the spatial variable
z.

3.1. Phase field. In the zeroth order of approximation, the evolution equation for
the phase field in Eq. (2.2) in the moving frame, Eq. (3.8), reads

2εγϕ(0)
zz + 2ωεV ϕ(0)

z −
9γ

ε
g,ϕ(ϕ(0))

−
L̃

T̃

(
(1 − c(0))λ1

θ(0) − θ1

θ(0)θ1
+ c(0)λ2

θ(0) − θ2

θ(0)θ2

)
h,ϕ(ϕ(0)) = 0.

This equation is a nonlinear ordinary differential equation of reaction-diffusion type
and together with the boundary conditions in Eq. (3.9) it has the traveling wave
solution

ϕ(0)(z) =
1

2

[
1 − tanh

(
3z

2ε

)]
. (3.10)

The self-consistent temperature θ(0) is defined by the relation

θ(0) =
θL

1 +
1

θL

βV

T̃

, (3.11)

where the temperature θL and the kinecelestinitic coefficient β are given by

θL =
(1 − c(0))λ1 + c(0)λ2

(1 − c(0))λ1/θ1 + c(0)λ2/θ2
,

β =
θ2

L

(1 − c(0))λ1 + c(0)λ2

T̃ 2

L̃
ω.

(3.12)

At small growth velocities V , Eq. (3.11) can be approximated by

θ(0) ≃ θL(c(0)) −
βV

T̃
,

where the last term is known as the kinetic undercooling. Using the dimensional
latent heats and melting temperatures, we obtain the relations between the phase-
field parameter ω and the kinetic coefficient β from Eq. (3.12) in the limit of a dilute
alloy

ω =

{
β1L1/T 2

1 , c(0) → 0,

β2L2/T 2
2 , c(0) → 1,

(3.13)

where β0 and β1 are the kinetic coefficients of the pure A and B substance, re-
spectively. The entropy contribution of the solid-liquid interface is given by the
integral

−

∫ ∞

−∞

(
εa(∇ϕ(0)) +

1

ε
W (ϕ(0))

)
dz = −γ,

where a(∇ϕ) = γ(∇ϕ)2 is the gradient term and W (ϕ) = 9γg(ϕ) is the double well
potential.

Thus, the parameter γ is the surface entropy density of the solid-liquid interface
related to the surface energy density σ by

γ =
σ

T
.
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The parameter ω is related to the kinetic coefficient β by Eqs. (3.12) and (3.13) and
the thickness of the diffuse interface is equal to 2ε because the phase-field variable
ϕ(0) varies from 0.05 to 0.95 in the interval −ε < z < +ε.

3.2. Concentration field. For the case of steady-state interface motion, the con-
servation laws for the alloy components ∂tci + ∇Ji = 0 in the moving frame,
Eq. (3.8), read

−V (ci)z + (Ji)z = 0.

Taking into account the boundary conditions in Eq. (3.9) and the series expansions
in Eq. (2.5), this equation integrates as follows

−V δc(1) − J1 = −V δc(1) + J2 = 0. (3.14)

Since the mass fluxes disappear far from the interface, J |z→±∞ = 0, equation (3.14)
leads to the relations c(1) = 0 at z → ±∞ and ci|z→−∞ = ci|z→+∞.

Substituting the expression for the mass fluxes in Eq. (2.6) into the conserva-
tion law (3.14), we get the differential equation for the function c(1) describing the
concentration profile

Dc(1)
z + V c(1) + D∆(c)h,ϕ(ϕ(0))ϕ(0)

z = 0.

The corresponding solution satisfying the boundary conditions in Eq. (3.9) has the
form

c(1)(z) = −∆(c)

∫ z

−∞

exp

(
−

∫ z

y

V dx

D(x)

)
h,ϕ(ϕ(0))ϕ(0)

y dy, (3.15)

where D(x) = D(ϕ(0)(x)).

4. Application to rapid solidification of non-dilute Ni-Cu alloys.

4.1. Intrinsic length scales. Three different length scales are present in the so-
lution of the phase-field in Eq. (3.10) and of the concentration field in Eq. (3.15).
The first length scale, ε is associated with the thickness of the diffuse solid-liquid
interface. The next two scales are diffusion lengths li = Di/V , i = 1, 2 determined
by the diffusion properties Di of the alloy components and by the growth velocity
V . To show how these scales influence the redistribution of the alloy components,
we assume for simplicity that the diffusion coefficients Di do not depend on a spa-
tial coordinate. Introducing a dimensionless coordinate ξ = z/ε, the solution in
Eq. (3.10) for the phase field reads

ϕ(0)(ξ) =
1 − tanh(3ξ/2)

2
,

and the concentration profile in Eq. (3.15) can be rewritten as

c(1)(ξ) = −∆(c) exp

(
−

ε

lD
ξ

)∫ ξ

−∞

exp

(
ε

lD
η

)
h,ϕ(ϕ(0))ϕ(0)

η dη

= −∆(c) exp

(
−

V

VD

ξ

)∫ ξ

−∞

exp

(
V

VD

η

)
h,ϕ(ϕ(0))ϕ(0)

η dη, (4.16)

where we set

lD =
D

V
=

l1l2
(1 − c(0))l1 + c(0)l2

,

VD =
D

ε
=

V1V2

(1 − c(0))V1 + c(0)V2
.

(4.17)
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As can be seen from Eq. (4.16), the concentration field c(1) depends on the relation
between the interface length ε and the diffusion length lD or, reformulated, on the
relation of growth velocity V and diffusion speed VD. The parameters lD and VD

are functions of the melt composition c(0) and include the corresponding quantities
li = Di/V and Vi = Di/ε of the alloy components A and B.

For the subsequent computations, we adopt a set of physical parameters corre-
sponding to the Ni–Cu binary alloy. The following thermophysical properties have
been assumed: TNi = 1728 K, TCu = 1358 K, LNi = 2350 J/cm3, LCu = 1728 J/cm3,
vm = 7.42 cm3. For the dynamical properties (diffusion and kinetic coefficients),
the results of molecular dynamics simulations reported in [19] have been used:
DNi = 3.82× 10−9 m2/s, DCu = 3.32× 10−9 m2/s, β = 2.22 K s/m. The parameter
ε is set to ε = 0.4 nm leading to a diffuse interface of thickness 2ε = 0.8 nm.

As noted above, we consider the melt composition c(0) and the velocity of the
planar front V as two control parameters. Fig. 2 shows the phase-field profile
ϕ(0) (dashed line) and the three concentration profiles c(1)(ξ) for different growth
velocities and for a fixed melt composition c(0) = 0.5. The vertical dotted lines at
ξ = ±1 correspond to the boundaries of the diffuse interface region 0.05 ≤ ϕ(0) ≤
0.95 between the solid and liquid phases. ξ = 0 is the position of the interface at
ϕ(0) = 0.5.

Three changes in the concentration profile can be seen with increasing growth
velocity: (i) the concentration gradient in the liquid phase increases; (ii) the differ-
ence between the concentrations of the solid and liquid decreases; (iii) the maximum

c
(1)
max of the concentration profile shifts its position ξmax from about ξmax = 1 to

ξmax = 0, see also Fig. 3. These changes render a depression of the concentration
boundary layer in front of the growing interface with increasing front velocity. At
low growth velocities with V/VD = 0.1, the diffusion length lD is larger than the
interface scale ε and a pronounced concentration boundary layer is present in the
liquid phase in Fig. 2a. At high growth velocities with V/VD = 10, the diffusion
length lD is smaller than the interface scale ε. Hence, the inhomogeneity of the
concentration field c(1) is completely contained in the diffuse interface region at
−1 6 ξ 6 1. The liquid phase at ξ > 1 has the uniform composition c(0) (Fig. 2c).

To emphasize the effect of different diffusion coefficients Di and of the com-
position dependence D(c(0)) on the concentration field c(1), we consider strongly
different values for the diffusion properties of alloy components, namely D1 =
3 × 10−9 m2/s and D2 = 0.1D1 = 3 × 10−10 m2/s.

The nonlinear function ζ(c) = D(c)/D1 = lD(c)/l1 = VD(c)/V1 represents the de-
pendence of the diffusion coefficient D(c) in Eq. (2.7) or equivalently of the diffusion
length lD(c) or of the diffusion speed VD(c) in Eq. (4.17) on the melt composition
c. The behaviour of ζ(c) versus the concentration c is shown in Fig. 4.

In Fig. 5, we present concentration profiles c(1) (scaled by c
(1)
max for convenience)

at a fixed growth velocity for three different melt compositions c(0). In the case
of a melt composition with small amount of component B, e.g. c(0) = 0.1, the
decay of the concentration boundary layer is determined by the diffusion coefficient
DB = D2 and correspondingly by the length scale l2 (Fig. 5a). In the opposite case
of a B-atom rich melt, e.g. c(0) = 0.9, the diffusion process is determined by the
diffusion coefficient DA = D1 and by the length scale l1 (Fig. 5c). The intermediate
case of nondilute alloy composition c(0) = 0.5 is described by the weighted diffusion
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Figure 2. Steady-state profiles c(1) of Eq. (4.16) for c(0) = 0.5
and for three different growth velocities: (a) V = 0.89 m/s and
ε/lD = V/VD = 0.1; (b) V = 8.9 m/s and ε/lD = V/VD = 1;
(c) V = 89 m/s and ε/lD = V/VD = 10.
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coefficient D which depends on both, D1 and D2, according to Eq. (2.7), Fig. 5b.
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4.2. Nonequilibrium partition coefficient. The partition coefficient k of an
alloy component is defined by the ratio between its concentration in the growing
solid phase cS and that in the liquid phase cL at the interface. Experiments show
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that, with increasing interface velocity, the partition coefficient increases from its
equilibrium value ke [13] and approaches unity under rapid solidification conditions
[2]. This phenomenon has been termed “solute trapping”.

In this section, the partition coefficient of the component B that follows from
the solution in Eq. (3.15) is compared with the prediction of the continuous growth
model in [1], where the dependence of the partition coefficient ka on the interface
velocity V has been derived as

ka(V ) =
cS
2

cL
2

=
ke + V/VD

1 + V/VD

. (4.18)

Considering Fig. 2, two definitions of the partition coefficient in the phase-field
formulation are possible. In the first case, the concentration of B-atoms in the
liquid at the interface is associated with the maximum of c(1) and the concentration
in solid is assumed equal to c(0). Taking into account the expansion in Eq. (2.5),
this leads to a partition coefficient km that reads

km =
c2|ξ→∞

c2|ξ=ξmax

=
c(0)

c(0) + δc
(1)
max

. (4.19)

This definition of the partition coefficient has been used in the articles [10, 11] where
it is applied to dilute binary alloys. In the second case, we define the concentrations
in the solid and liquid phases at the corresponding boundaries of the diffuse inter-
face, i.e. at ξ = ±1, by cS

2 = c2|ξ=−1 and cL
2 = c2|ξ=+1 respectively, which leads to

a partition coefficient

k =
c2|ξ=−1

c2|ξ=+1
=

c(0) + δc(1)|ξ=−1

c(0) + δc(1)|ξ=+1
. (4.20)

The three functions given by Eqs. (4.18)–(4.20) are shown in Fig. 6. For growth
velocities up to 0.5VD, the values of the functions ka and k coincide, while the
function km predicts slightly smaller values of the partition coefficient. Further,
at V > 0.5VD, the function k tends to unity more rapidly than the functions ka

and km. If we compare the differently defined partition coefficients at a velocity
V = 10VD, we obtain the values 1 − k = 1 × 10−3, 1 − ka = 1.1 × 10−2 and
1− km = 1.7× 10−2. A value of 1− ka = 1× 10−3 for the continuous growth model
is reached only at significantly large velocity V = 120VD. As illustrated in the
previous section in Fig. 2, the inhomogeneity of concentration field has the length
comparable to, or smaller than the thickness of the diffuse interface in the case of
rapid solidification conditions, i.e. at growth velocities V ≫ VD. Consequently, the
concentration of the alloy components in the solid and in the liquid phase outside
the interfacial region is uniform and equal to the initial concentration in the melt,
i.e. the complete solute trapping occurs.

5. Conclusion. A phase-field model for non-dilute binary alloys with a general
formulation of interdiffusion processes for the two components has been examined
in the rapid solidification regime. Steady-state solutions for the phase field and for
the concentrations of the alloy components, Eqs. (3.10) and (3.15), are obtained
in terms of power series expansions under the assumption that the partition co-
efficient is close to unity. Simulated concentration profiles corresponding to the
Ni–Cu data set show that the displacement of the concentration peak ahead of the
solid-liquid interface decreases for increasing solidification rates. Further, the effect
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Figure 6. Nonequilibrium partition coefficient of the component
B for the melt composition c(0) = 0.5 as a function of the growth
velocity V .

of different diffusion coefficients of the two components on the concentration pro-
file at three positions of the binary phase diagram representing a transition from
dilute to non-dilute composition are discussed. A new expression for the velocity
dependence of the nonequilibrium partition coefficient, introduced by Eq. (4.20),
has been derived leading to a more pronounced solute trapping effect for velocities
V/VD > 1. The proposed profile of the k versus V/VD curve in Fig. 6 performs a
steeper profile of partition coefficients at high soldification rates for non-dilute alloys
(e.g. see [2]) than previous models. This is in accordance with the experimental
data points of Si-As in [2], the numerical and theoretical predictions in [15, 16, 17].
A comparison with both, the prediction of the continuous growth model [1] given
by Eq. (4.18), and the value obtained from the definition of Eq. (4.19) which is

based on the concentration maximum c
(1)
max is shown. The presented model for non-

equilibrium interface kinetics during rapid solidification will be applied to recover
the experimental results of non-dilute Si-As alloys described in [2] in a forthcoming
paper.

6. Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) under the priority research program 1120: “Phase transformations in
multi-component melts”, Grant No. Ne 822/2. The funding is gratefully acknowl-
edged.

REFERENCES

[1] M. J. Aziz, T. Kaplan, Continuous growth model for interface motion during alloy solidifi-

cation, Acta Metall. 36 (8) (1988), 2335–2347.
[2] J. A. Kittl, M. J. Aziz, D. P. Brunco, M. O. Thompson, Nonequilibrium partition during

rapid solidification of Si–As alloys, J. Cryst. Growth 148 (1995), 172–182.



PHASE-FIELD MODELLING OF NONEQUILIBRIUM PARTITIONING 1047

[3] W. J. Boettinger, J. A. Warren, C. Beckermann, A. Karma, Phase-field simulation of solidi-

fication, Annu. Rev. Mater. Res. 32 (2002), 163–194.
[4] Z. Bi, R. F. Sekerka, Phase-field model of solidification of a binary alloy, Physica A 261

(1998), 95–106.
[5] C. Charach, P. C. Fife, On thermodynamically consistent schemes for phase field equations,

Open Systems and Information Dynamics 5 (2) (1998), 99–123.
[6] H. Garcke, B. Nestler, B. Stinner, A diffuse interface model for alloys with multiple compo-

nents and phases, SIAM J. Appl. Math. 64 (3) (2004), 775–799.
[7] G. Caginalp, W. Xie, Phase-field and sharp-interface alloy models, Phys. Rev. E 48 (3)

(1993), 1897–1909.
[8] K. R. Elder, M. Grant, N. Provatas, J. M. Kosterlitz, Sharp interface limits of phase-field

models, Phys. Rev. E 64 (2001), 021604.
[9] D. Kessler, Sharp interface limits of a thermodynamically consistent solutal phase field model,

J. Cryst. Growth 224 (2001), 175–186.
[10] A. A. Wheeler, W. J. Boettinger, G. B. McFadden, Phase-field model of solute trapping during

solidification, Phys. Rev. E 47 (3) (1993), 1893–1909.
[11] N. A. Ahmad, A. A. Wheeler, W. J. Boettinger, G. B. McFadden, Solute trapping and solute

drag in a phase-field model of rapid solidification, Phys. Rev. E 58 (3) (1998), 3436–3450.
[12] K. Glasner, Solute trapping and non-equilibrium phase diagram for solidification of binary

alloys, Physica D 151 (2001), 253–270.
[13] M. J. Aziz, J. Y. Tsao, M. O. Thompson, P. S. Peercy, C. W. White, Solute Trapping:

Comparison of Theory with Experiment, Phys. Rev. Lett. 56 (23) (1986), 2489–2492.
[14] D. E. Hoglund, M. J. Aziz, S. R. Stiffler, M. O. Thompson, J. Y. Tsao, P. S. Peercy, J. Crystal

Growth 109 (1991), 107.
[15] Kirk M. Beatty, Kenneth A. Jakson, Monte Carlo modeling of dropant sergregation, J. Cryst.

Growth 271 (2004) 495-512.
[16] Franck Celestini, Jean-Marc Debierre, Nonequilibrium molecular dynamics simulation of

rapid directional solidification, Phys. Rev. B 62(21) (2000), 14006-14011.
[17] Peter Galenko, Sergei Sobolev, Local nonequilibrium effect on undercooling on rapid solidifi-

cation of alloys, Phys. Rev E 55(1) (1997), 343-352.
[18] C. M. Elliott, H. Garcke, Diffusional phase transitions in multicomponent systems with a

concentration dependent mobility matrix, Physica D 109 (3-4) (1997), 242–256.
[19] J. J. Hoyt, B. Sadigh, M. Asta, S. M. Foiles, Kinetic phase-field parameters for the Cu-Ni

system derived from atomistic computations, Acta mater. 47 (11) (1999), 3181–3187.

Received June 2005; revised January 2006.

E-mail address: britta.nestler@hs-karlsruhe.de

E-mail address: denis.danilov@hs-karlsruhe.de




