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Abbreviations

ALD Atomic layer deposition (ALD) is a thin film coating technique based on
sequential, self-limiting surface reactions. It enables the control of film
thicknesses on the atomic scale resulting in conformal films even on high-
aspect ratio structures.

CVD “Chemical vapor deposition” (CVD) denominates a process used to deposit
high-purity solid materials. In a typical CVD process, the substrate is
exposed to one or more volatile precursors which react and / or decompose
on the substrate surface. In many cases, by-products are also produced
which are either removed by a carrier gas or by evacuation of the reaction
chamber.

DLW Direct laser writing (DLW) is a lithography technique for fabricating struc-
tures in a photoresist on the microscale, without requiring complex optical
systems or photomasks. DLW relies on a multi-photon absorption process
changing the solubility of the resist in the high-intensity focal spot of a
laser beam. Scanning the sample (or the laser) relative to the laser focus
results in connected three-dimensional patterns after development.

EBL Electron-beam lithography (EBL) utilizes an electron beam to structure a
surface covered with a resist. Selectively removing either exposed or non-
exposed regions of the resist yields high-quality nanostructures. EBL is
widely used as a maskless tool for low-volume production of semiconductor
components as well as research and development.

FIB Focused-ion beam (FIB) systems operate in a similar fashion to scanning-
electron microscopes (SEM) but use a focused beam of ions (usually gal-
lium). The beam of atoms can be either operated at low currents for
imaging purposes or at high beam currents for local sputtering and milling.
While the ion beam scans the sample surface, the signal from the sputtered
ions and / or the secondary electrons are collected to form an image.

FOM The Figure of Merit (FOM) is, in general, a measure for the performance
of a system. Relating to metamaterials, the FOM is defined as the neg-
ative ratio of real and imaginary parts of the refractive index n, i.e.,
FOM = −Re(n)/Im(n). High positive values are obtained if the respec-
tive metamaterial structure features high negative values for Re(n) while
keeping the absorption (determined by Im(n)) relatively low.

iii



iv Abbreviations

FTIR Fourier-transform infrared spectrometers (FTIRs) use an interferometer
(e.g., Michelson interferometer) at which the emitted light from a thermal
source is split into two partial beams. Both beams are reflected at mirrors,
whereas one of those mirrors is continuously wobbling. After both beams
have interfered, they pass the sample and are finally detected. The intensity
is measured versus the optical path difference Δx caused by the moving
mirror. Subsequently, the obtained interferogram is Fourier transformed to
the frequency domain to obtain either the transmittance or the reflectance
spectrum.

IR Electromagnetic radiation with a wavelength between 0.7μm (converting
to a frequency of ν = 430THz) and 300μm (⇒ ν = 1THz) is assigned to
the infrared spectral range (IR).

ITO Indium tin oxide (ITO) is a solid solution of indium(III) oxide (In2O3) and
tin(IV) oxide (SnO2), typically 90% In2O3, and 10% SnO2 by weight. The
material is transparent and colorless in thin layers while exhibiting electrical
d.c. conductivity.

PLD “Pulsed layer deposition” (PLD) denominates a coating technique simi-
lar to atomic layer deposition (ALD), but delivering much thicker layers
(typically some nanometers in thickness) during each reaction cycle.

SRR The split-ring resonator (SRR) is an electro-optical building block exhibit-
ing strong magnetic resonances which can be used to obtain a permeability
unequal to one.

VIS Electromagnetic radiation being visible to the human eye is assigned to the
visible spectral range (VIS). A typical human eye will respond to wave-
lengths from about 380 nm (converting to a frequency of ν = 790THz) to
750 nm (⇒ ν=400THz).



1. Introduction

I exhorted all my hearers to divest themselves of prejudice
and to become believers in the Third Dimension . . .

(Edwin A. Abbott, 1884,
from: “Flatland. A Romance of Many Dimensions”)

Since time immemorial, mankind makes use of artificial optical devices. In fact, a
well-preserved mirror was found next to pharaoh Senusret’s pyramid that is around
4000 years old [1]. Other archaeological excavations revealed that plano-convex and
sphere-shaped lenses were already known to the ancient Romans. The targeted ma-
nipulation of light paths by using natural substances has, apparently, a very long
history. However, in those days, it was by far not understood what kind of physical
and chemical mechanisms give rise to the respective optical effects. Thus, optical
science had mainly based on observational research, experiences passed on from gen-
eration to generation, as well as trial and error.

With the beginning of the Age of Enlightment, many scientific disciplines received
a substantial boost from new pioneering ideas. Besides that, also nearly forgotten
concepts like “the atom” experienced a comeback. The earliest references on atoms
being the basic building blocks of matter trace back to the old Indian and Greek
philosophy (600 and 450 B.C., respectively). But merely since the middle of the 19th
century, scientific theories and experiments have reached a level of sophistication to
really prove that matter consists of smaller constituents whose interaction, relative
spatial position, and kinetics affect all of its intrinsic characteristics.

Parallel to the achievements in atomic physics, Michael Faraday and James C. Maxwell
triggered the era of modern optics by understanding light as an electromagnetic wave.
In 1878, Henrick A. Lorentz had the idea to consider atoms as oscillating dipoles, thus,
successfully linking the observed material response to the wave-like nature of light.
The experimental verification of Maxwell’s electromagnetic theory and the oscillator
model attributes to Heinrich Hertz who succeeded in generating and detecting radio
waves in 1887.

Ever since, these fundamental discoveries inspired many scientists to successively im-
prove and extend the physical understanding of light-matter interactions. The ac-
quired knowledge and the progressing experimental developments finally enabled the
targeted manipulation of material properties. Prominent examples of designed mate-
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2 1. Introduction

rial systems that emerged during the last decades include doped semiconductors [2,3],
gain media for laser applications [4], and photonic crystals [5–8]. Importantly, the ma-
nipulations of optical attributes have primarily acted on the variation of the dielectric
response (also known as the permittivity ε) to electromagnetic radiation. The corre-
sponding magnetic response (also known as the permeability μ) was rather neglected,
thus, fading out many possible effects from the outset.

In the late 1960s, Victor G. Veselago acknowledged this problem as he derived novel,
exotic properties for hypothetic materials whose permittivity and permeability are
simultaneously negative, thus, leading to a negative refractive index n [9]. A negative
permittivity was already known for metals below their plasma frequency. However,
an analog behavior for the permeability requires strong coupling to the magnetic com-
ponent of light. For natural materials, this had never been observed in the infrared or
visible spectral range. Hence, the concept initially fell into oblivion. Indeed, it took
30 years until John Pendry re-discovered Veselago’s publication. Pendry adapted
known concepts from high-frequency technology and proposed a way to provide reso-
nant magnetic coupling even in the optical regime [10]. For this purpose, he utilized
periodically-arranged metallic LCR circuits which he called split rings. These “U”-
shaped wires [11] are meant to serve as unit cells of a composite—like atoms and
molecules in a solid. If they are much smaller than the wavelength of the incident
light, the effective medium formalism of optical materials can be applied. Hence,
this concept opened the door for artificial composite media whose elementary build-
ing blocks can be customized at will. These so-called metamaterials enable optical
properties not provided by natural materials.

Fortunately, the timing of Pendry’s proposal was absolutely perfect since micro- and
nanofabrication techniques were readily available. Thus, the experimental realization
of metamaterials was within reach. In 2000, David R. Smith an co-workers demon-
strated negative-index composite structures at microwave frequencies of about 10GHz
for the first time [12–14]. Since then, metamaterials have attracted a lot of interest
which was mainly driven by the fascinating visions of perfect lenses [15,16], the inverse
Doppler effect [17], or the reversed Čerenkov radiation [18,19]. Beyond Veselago’s pre-
dicted optical effects, also new approaches based on transformation optics have caused
a lot of excitement in the context of optical cloaking [20–23].

Many of the observed phenomena are considered to be only of academic interest.
However, there has been always a quest of finding applications which might also
have an impact on the society in general. Therefore, it is certainly important to
revert to metamaterials working in the optical / telecommunication regime. Light in
this spectral region has a wavelength of around 1μm. To fulfill the effective medium
condition, the unit cells of the composites must be much smaller than that. Thus, how
can we actually come up to such tiny feature sizes? The vast majority of metamaterials
for the optical spectral range [24–27] has been fabricated by electron-beam lithography
and physical vapor deposition of metal films, both of which are well-established two-
dimensional (2D) nanotechnologies. Resulting structures consist of a single layer of
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planar unit cells with only several nanometers in thickness. In this case, the magnetic
response changes the phase of a passing electromagnetic wave only marginally. The
observed properties are rather dominated by surface effects. However, to considerably
enhance the contribution of propagation effects, bulk metamaterial structures are
required. Therefore, several groups of the photonic community “became believers
of the Third Dimension”1 and began to work on the experimental implementation.
Proposed solutions mostly utilize 2D lithography combined with planarization [28,29]
or one-step structuring techniques [30, 31]. For practical reasons, however, it would
be preferable to replace the 2D processes by their inherently 3D analogues [32,33]. A
corresponding approach is given in the course of this Thesis.

Outline

In chapter 2, the electromagnetic theory of magneto-dielectric materials is presented.
We will start with general assumptions on the material response to electromagnetic
radiation and focus on the magnetic response. Indeed, metamaterials are an excellent
system to investigate the derived effects. Next, we will further extend our discussions
to sufficient and necessary conditions for obtaining a negative refractive index. Fi-
nally, the properties of chiral and purely bi-anisotropic materials are considered. The
emerging results will be of great importance for the characterization of the fabricated
structures.

Chapter 3 deals with the fabrication of photonic metamaterials. The demand for bulk
composites brought up several concepts which will be discussed and evaluated. Ad-
ditionally, our proposal of fabricating 3D structures by using inherently 3D processes
will be presented, i.e., direct laser writing combined with advanced coating techniques.

In chapter 4, we use our fabrication method to realize an array of 3D split rings and
related descendants. As these structures are not symmetric along the propagation
direction of the incident light, they must be treated as bi-anisotropic media. To
relate the polarization (magnetization) of a reciprocal bi-anisotropic structure to the
magnetic (electric) field, additional cross-coupling parameters are required.

A first attempt to realize bulk metamaterials is presented in chapter 5. Although the
feature sizes are not suitable to obtain a negative refractive index yet, we show anyhow
that our approach opens new possibilities for further investigations. Finally, in the
last chapter, the aspects of the Thesis are summarized and an outlook on further
experimental improvements and research activities is given.

1Freely adapted from E. A. Abbott





2. Electrodynamics of
Magneto-Dielectric Materials

In the course of this Thesis, we study electromagnetic waves in space occupied by
matter [1, 34, 35]. Like other macroscopic theories, classical electrodynamics is con-
cerned with physical quantities averaged over small volumes. Hence, any microscopic
variation of the quantities caused by the unit cells’ (molecular) fine structure is ne-
glected. For simplicity, all following discussions are related to matter consisting of
periodic unit cells (e.g., crystalline solids), where the ratio of the lattice constant a
and the vacuum wavelength of the incident light beam λ is a measure of how to treat
the underlying system.

We will call the illuminated medium “effective”, if the condition

a � λ (2.1)

holds. For natural substances and the visible spectral range (VIS), this is the common
case since the ratio of λ/a is in the order of 1000. When light is propagating through
such an effective medium, the microscopic electric and magnetic fields of the molecules
can be homogenized1. Thus, the material’s response to the incident light wave can
be assigned to effective parameters like, e.g., the refractive index n := c0/cm . Here,
c0 and cm denote the phase velocities of light in vacuum and inside the medium,
respectively. We will also become acquainted with other material parameters which
explicitly distinguish between the light wave’s electric and magnetic fields.

If (2.1) is not fulfilled, the light wave is able to resolve the material’s atomic structure.
For example, the crystallographic structure of natural solid crystals can be resolved
by X-rays whose vacuum wavelength is much smaller than the lattice periodicity
(λX-ray � asolid ≈ 0.1 nm). Hence, the effective medium description must be replaced
by a band structure approach if diffraction appears.

But how much larger than a must λ be to assure that the effective medium theory
provides reliable results? Actually, this question has caused many controversial dis-
cussions: Ref. [36] shows, e.g., that the effective medium theory even holds true for
periodic materials with λ/a ≈ 1. Ref. [37] discusses effective material parameters for

1This is the so-called “first homogenization”. Later, in the context of composite materials, we will
also introduce a “second homogenization” where the light fields can be averaged over mesoscopic
unit cells of a macroscopic structure.

5



6 2. Electrodynamics of Magneto-Dielectric Materials

a unit cell size of λ/a > 10, whereas Refs. [38, 39] claim that effective optical para-
meters cannot be applied to structures where λ/a < 100. Indeed, in situations where
λ/a < 100, we have to deal with significant phase retardation across each unit cell.

Nevertheless, there must exist a transitional regime between a “perfect” effective
medium and a band structure description of periodic structures, where the definitions
of effective material parameters are approximate but still helpful in the interpretation
of the medium’s scattering properties. As long as we keep away from Wood anomalies
(further details in section A.1), the incident wave will not be diffracted. Thus, it is
justified to consider such materials as “quasi-effective”. The according condition is
much weaker than (2.1) and solely determined by the first diffraction order

a <
λ

nbg

, (2.2)

where nbg is the refractive index of the background medium. On this condition, the
quasi-effective materials interact with electromagnetic radiation in a similar manner as
effective materials would do. In other words: By looking at the incident and outgoing
light waves, we determine the optical properties of a “black-boxed” material which
must not necessarily fulfill the effective medium condition (2.1).

2.1. Fundamentals of Effective Media

We consider monochromatic electromagnetic waves impinging from vacuum onto a
slab of a dispersive effective medium. In this case, all components of the electric
and magnetic fields can be expressed as harmonic functions of time with the same
frequency ω = 2πν = 2πc0/λ, i.e.,

�E(�r, t) = Re
(
�E(�r) e−iωt

)
, (2.3)

�H(�r, t) = Re
(
�H(�r) e−iωt

)
. (2.4)

�E(�r, t) and �H(�r, t) correspond to vector amplitudes of the electric and magnetic field,
respectively. When the incident electromagnetic wave penetrates transparent matter,
electric and magnetic dipoles are excited which re-emit electromagnetic waves just
like an antenna. The re-emitted radiation excites other dipoles so that repeating
this mechanism leads to propagation of light inside the medium. Here, the incident
light wave drives non-resonant oscillations of the atoms at its own frequency. The
atomic oscillations follow those of the driving wave but with a certain phase lag which
accumulates through the medium and, hence, retards the propagation of the wave
front. Clearly, these interactions modify the velocity of light and, thus, determine the
optical properties.
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To describe the internal fields inside an effective medium, the electric displacement
�D(�r, t), the magnetic induction �B(�r, t), the polarization �P (�r, t) as well as the magne-

tization �M(�r, t) have to be introduced. These field vectors are related to the incident

light fields �E(�r, t) and �H(�r, t) via

�D(�r, t) = ε0 �E + �P ( �E, �H) , (2.5)

�B(�r, t) = μ0

(
�H + �M( �E, �H)

)
, (2.6)

where ε0 and μ0 denote the vacuum permittivity and vacuum permeability, respec-
tively. For reasons of readability, we omit the explicit space and time dependence of
the fields on the right-hand sides of (2.5) and (2.6). The polarization (magnetization)
is defined as the sum over all individual electric (magnetic) dipole moments �p (�m)
times the number density of the dipoles. In contrast to most textbooks on optics, we
assume �P and �M to depend on both the electric and the magnetic field, since we will
also encounter bi-anisotropic and bi-isotropic (chiral) media. For details, we refer to
section 2.8.

The incident fields ( �E and �H) can be considered as inputs which induce a motion
of charges inside the medium. The resulting collective movement in dispersive media
gives rise to a polarization (and a magnetization, respectively) that is a superposition

of the effects of �E(t′) and �H(t′) for all times t′ ≤ t. As we refrain from using high
light intensities, the response on the incident fields is assumed to be linear and local.
Thus, the polarization and magnetization are given by

�P (�r,t) = ε0

t∫
−∞

χe(�r,t− t′) �E(�r,t′) dt′ +
1

c0

t∫
−∞

ξ(�r,t− t′) �H(�r,t′) dt′ , (2.7)

�M(�r,t) =

t∫
−∞

χm(�r,t− t′) �H(�r,t′) dt′ +
1

μ0c0

t∫
−∞

ζ(�r,t− t′) �E(�r,t′) dt′ . (2.8)

If the material is considered to be homogeneous, the susceptibilities simplify to
χe(�r,t)=χe(t) and χm(�r,t)=χm(t). By using the convolution theorem, we can rewrite
(2.7)–(2.8) as

�P (�r,ω) = ε0χe(ω) �E(�r,ω) +
1

c0
ξ(ω) �H(�r,ω) , (2.9)

�M(�r,ω) = χm(ω) �H(�r,ω) +
1

μ0c0
ζ(ω) �E(�r,ω) , (2.10)

where χe (χm) denotes the electric (magnetic) susceptibility tensor. χe (χm) describes
the electric (magnetic) response of the material to the incident electric (magnetic)
fields. In many situations, it is useful to combine the pure material responses and
the incident fields. The permittivity tensor ε=1+χe is defined as the total electric
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Table 2.1.: Classes of media categorized by their respective optical parameters. Isotropic
media are uniform (homogeneous) in all directions, whereas anisotropy is the
property of being directionally dependent. Bi-isotropy as well as bi-anisotropy
are related to the existence of magneto-electric coupling effects. Detailed infor-
mation can be found in section 2.8.

isotropic media anisotropic media

ε, μ ∈ C ε, μ are tensors

ξ, ζ = 0 ξ, ζ = O

bi-isotropic (chiral) media bi-anisotropic media

ε, μ ∈ C ε, μ are tensors

ξ, ζ ∈ C ξ, ζ are tensors

response. Accordingly, the permeability tensor μ=1+χm defines the total magnetic
response. Electric dipoles can be, in general, also excited by the magnetic field re-
sulting in a non-zero cross-term tensor ξ. Likewise, magnetic dipoles can be excited
by electric fields being analogously specified by ζ.

Notably, all mentioned material parameter tensors generally have complex entries as
they should also be applicable for lossy media. As long as no static fields are present,
the material parameter tensors are directly related to each other via reciprocity [40].
Concretely, this means that ε= εt, μ= μt, and ζ =−ξt [41], where the superscript t
denotes a transposed tensor (for details q.v. section A.2). Indeed, for all following
discussions, these relations will be always fulfilled. Depending on the mathematical
properties of ε, μ, ξ, and ζ, all media can be classified by their isotropic, anisotropic,
bi-isotropic, or bi-anisotropic optical behavior. A brief overview is given in Tab. 2.1.

By using the Fourier-transformed definition of (2.5)–(2.6) as well as (2.9)–(2.10), we
finally obtain

�D(�r, ω) = ε0ε(ω) �E(�r,ω) +
1

c0
ξ(ω) �H(�r,ω) , (2.11)

�B(�r, ω) = μ0μ(ω) �H(�r,ω)− 1

c0
ξt(ω) �E(�r,ω) . (2.12)

These are the general constitutive material equations for reciprocal effective media
with local response.

So far, we have only looked at the material response to incident fields, yet being
unconcerned about the propagation of electromagnetic waves itself. By using the
time-harmonic fields (2.3) and (2.4), the general Maxwell equations link the electric
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fields to the magnetic fields in a succinct manner given by

∇ · �D(�r,ω) = �(�r,ω) , (2.13)

∇ · �B(�r,ω) = 0 , (2.14)

∇× �E(�r,ω) = −iω �B(�r,ω) , (2.15)

∇× �H(�r,ω) = �j(�r) + iω �D(�r,ω) , (2.16)

where �(�r,ω) and �j(�r,ω) are the charge and current density, respectively. With (2.13)–
(2.16), we have relations at hand allowing to derive and solve the differential wave
equation which again entirely determines the propagation of light. If the fields are
influenced by the general constitutive equations (2.11)–(2.12), a solution for the wave
equation cannot be found. Only in case of the problem being considerably eased
to, e.g., a uniaxial bi-anisotropic configuration, the wave equation can be solved by
means of plane wave expansion [41–43] or vector transmission-line theory [44]—albeit
the derivations are quite lengthy.

By default, in textbooks on optics, the wave equation is derived for isotropic di-
electrics. This is a fairly simple case since �(�r,ω) and �j(�r,ω) are strictly zero, the
material parameters in (2.11)–(2.12) are real scalars, and the cross-term parameters ξ
and ζ=ξt vanish. Thus, by arranging the curl of (2.15), the differential wave equation
of the electric field results in

∇2 · �E(�r,ω) +
ω2

c0
μ(ω)ε(ω) �E(�r,ω) = 0 . (2.17)

An alternative ansatz which uses the curl of (2.16) yields an analog differential equa-
tion for the magnetic field. Possible solutions of (2.17) are transverse electromagnetic

plane waves (TEM) which are given by �E(�r)= �E0 e
i�k�r.

2.2. Magnetic Response of Effective Media

We have assumed that, in principle, light waves may couple to both electric and
magnetic dipoles while propagating through an arbitrary medium. Regardless of this
fact, in most textbooks on wave-optics the permeability μ is set to unity. Therefore,
almost all discussions are devoted to the variety of optical phenomena for this special
case where only the permittivity tensor ε is considered. This assumption is based on
the observation that for natural isotropic substances under standard environmental
conditions, χm varies from zero at most in the order of 10−4 [2, 3]2. This fact was
also comprehended theoretically by Landau and Lifshitz [35] who claimed that μ(ω)
progressively loses its physical meaning of a response function as the frequency of

2Notable exceptions in the microwave regime are found for rare earth compounds like
La1/3Ca1/3MnO3 [45] and LaMnO3 (doped with strontium and iron, cobalt, or nickel) [46].



10 2. Electrodynamics of Magneto-Dielectric Materials

the electromagnetic waves is increased. This is related to the properties of the total
induced magnetic dipole moment �m of a macroscopic body.

In the static case, the total magnetic dipole moment per unit volume corresponds
to the magnetization �M = �B/μ0− �H. This admits of introducing the permeability
as a well-defined response coefficient—as discussed in the former section. If time-
dependent fields are present, �m is not only determined by the magnetization �M but
also by the time-dependent polarization �P . The induced current density consists now
of two terms, i.e.,

�j ∼ ∇× �M︸ ︷︷ ︸
(I)

+(∂ �P/∂t)︸ ︷︷ ︸
(II)

, (2.18)

and so does the induced magnetic dipole moment

�m ∼
∫

�r ×�j dV =

∫
�M dV +

∫ (
�r × ∂ �P

∂t

)
dV .

As a consequence, the association of �M with the magnetic dipole moment of a unit
volume depends on the possibility to neglect the contribution of the time-dependent
polarization. If it is possible to separate the magnetic current (I) from the total
induced current in (2.18), μ(ω) will retain its traditional physical meaning.

For a small macroscopic body consisting of a natural material (without resonant
dispersion), Landau and Lifshitz compared both contributions (I) and (II) to the
current density in a monochromatic time-dependent magnetic field. “Small” means
that the body’s characteristic length is much smaller than the incident wavelength
(l � λ) but still macroscopic (l 	 a) with respect to the lattice constant a. In this
case, the magnetic susceptibility of a homogeneous isotropic diamagnet is given by
χm ∼ a2/λ2 and the electric susceptibility by χe ≈ 1.

The deduced approximation [35, 47] reads∣∣∣∣∣∇× �M

∂ �P/∂t

∣∣∣∣∣ ∼
(
λ

l

)2
χm

χe

∼
(a
l

)2
� 1 , (2.19)

where the last inequality stems from the requirement of a macroscopic body. Appar-
ently, the contribution of the polarization term (II) seems to be substantial.

However, (2.19) is certainly not fulfilled if χm becomes significantly larger than es-
timated for natural diamagnets, e.g, for large-permittivity media [47] (i.e., χe 	 1).
Indeed, in the following context, we will present some concrete examples for materials
which have an intentionally strong magnetic response. Hence, attaining μ 
=1 or even
negative tensor components is not a conceptual problem at all, and identifying ways
to realize materials showing such a strong magnetic response might revolutionize the
field of optics and photonics.
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Regrettably, there are no appropriate tools at hand to immensely enhance the mag-
netic response of atoms or molecules. If we want to tailor a material’s electromagnetic
property, we will have to build the functional “atoms” on our own. The resulting com-
posites, the so-called “metamaterials”3, would not only inherit the natural substances’
characteristics but also introduce new effects stemming from their intrinsic geometry.
In analogy to the former section, we will describe the light-matter interaction in
terms of mesoscopic effective material parameters, as if the composites would fulfill
all effective-medium conditions. Note that this relates to a second homogenization of
the incident light field. Certainly, we must always remind ourselves that the unit cells
themselves consist of non-magnetic media.

Optical parameters of metamaterials like the refractive index n, the impedance Z,
and related quantities like the transmittance and the reflectance will surely change
as the permeability varies. Hence, we should review some discussions from optical
textbooks—usually concerned with non-magnetic dielectrics—and re-calculate fun-
damental relations for magnetic media. In the first instance, we will restrict our
considerations to isotropic matter although the results will not be directly adaptive
to the general bi-anisotropic case. This will facilitate to keep track of new appearing
effects and will give us a coarse idea of potential concepts emerging. Nonetheless,
some aspects of bi-anisotropic materials being important for the later discussions will
be resumed in section 2.8.

2.3. Properties of Isotropic Magnetic Materials

As mentioned, for isotropic magnetic media, the material parameters are complex
scalars. Moreover, both cross-term parameters ξ and ζ vanish and need not be taken
into account (compare Tab. 2.1). These assumptions reduce the complexity of the
general constitutive relations (2.11)–(2.12) to

�D = ε0ε(ω) �E ,

�B = μ0μ(ω) �H .

By using the boundary conditions of electromagnetic fields at the transition between
two media

�N × ( �E2 − �E1) = 0 ,

�N × ( �H2 − �H1) = 0 ,

�N · ( �D2 − �D1) = 0 ,

�N · ( �B2 − �B1) = 0 ,

3The established name for such man-made composites was originally coined by R. M. Walser in
1999 [48]. The word “metamaterial” refers on the Greek term μετα for beyond.
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and the Maxwell curl equations (2.15)–(2.16), we can derive the Fresnel equations
which in turn link n and Z to the transmittance T and the reflectance R. The
numeric indices denote the corresponding medium, whereas �N is a normalized vector
perpendicular to the boundary surface of both media. The resulting reflectances for
s- and p-polarization4 are given by

Rs = |rs|2 =
∣∣∣∣
(
Er

0

E i
0

)∣∣∣∣2
s

=

∣∣∣∣∣n1 cos θi − μ1

μ2
n2 cos θt

n1 cos θi +
μ1

μ2
n2 cos θt

∣∣∣∣∣
2

=

∣∣∣∣∣cos θi −
Z1

Z2
cos θt

cos θi +
Z1

Z2
cos θt

∣∣∣∣∣
2

, (2.20)

Rp = |rp|2 =
∣∣∣∣
(
Er

0

E i
0

)∣∣∣∣2
p

=

∣∣∣∣∣
μ1

μ2
n2 cos θi − n1 cos θt

μ1

μ2
n2 cos θi + n1 cos θt

∣∣∣∣∣
2

=

∣∣∣∣∣
Z1

Z2
cos θi − cos θt

Z1

Z2
cos θi + cos θt

∣∣∣∣∣
2

, (2.21)

respectively, where Er
0 is the reflected and E i

0 the incident electric-field amplitude (for
further parameter definitions refer to Fig. 2.1). The equations for the transmittance
of each polarization read

Ts =

∣∣∣∣n2 cos θt
n1 cos θi

∣∣∣∣ |ts|2 =
∣∣∣∣n2 cos θt
n1 cos θi

∣∣∣∣
∣∣∣∣
(
Et

0

E i
0

)∣∣∣∣2
s

=

∣∣∣∣n2 cos θt
n1 cos θi

∣∣∣∣
∣∣∣∣∣ 2n1 cos θi
n1 cos θi +

μ1

μ2
n2 cos θt

∣∣∣∣∣
2

(2.22)

Tp =

∣∣∣∣n2 cos θt
n1 cos θi

∣∣∣∣ |tp|2 =
∣∣∣∣n2 cos θt
n1 cos θi

∣∣∣∣
∣∣∣∣
(
Et

0

E i
0

)∣∣∣∣2
p

=

∣∣∣∣n2 cos θt
n1 cos θi

∣∣∣∣
∣∣∣∣∣ 2n1 cos θi
n2

μ1

μ2
cos θi + n1 cos θt

∣∣∣∣∣
2

(2.23)

at which Et
0 is the transmitted electric-field amplitude. The Fresnel equations (2.20)–

(2.23) are expressed as functions of the complex refractive index

n2(ω) = μ(ω)ε(ω) (2.24)

and the complex impedance

Z(ω) =
| �E|
| �H| =

√
μ0μ(ω)

ε0ε(ω)
= Z0 ·

√
μ(ω)

ε(ω)
, (2.25)

where Z0=376.7Ω is the vacuum impedance.

It is noteworthy that one can also compute the impedance Z(ω) and the refractive
index n(ω) of a magneto-dielectric material by inverting the Fresnel equations. For a

4p-polarization means that the electric field vector �E is parallel to the plane of incidence. Accord-
ingly, s-polarization describes the situation where the electric field vector �E is perpendicular.
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Figure 2.1: p-polarized light, represented by its electric field vector, is impinging from
medium � onto another medium �. At the interface, the incident beam �Ei

splits into a transmitted and a reflected beam ( �Et and �Er, respectively). Due
to different refractive indices n1 
= n2, the reflected and the transmitted beams
do not include the same angle with the interface’s normal (θt 
= θr), whereas
θi = θr.

slab embedded in a homogeneous, surrounding background medium and for normal
incidence, this results in [49]

n(ω) = ± arccos

(
1− r2 + t2

2t

)
(k0ds)

−1 +
2πm

k0ds
, (2.26)

Z(ω) = ±Zbg

√
(1 + r)2 − t2

(1− r)2 − t2
, (2.27)

where ds denotes the thickness of the material slab, Zbg the impedance of the back-
ground medium, and m∈Z. Z(ω) and n(ω) enable in turn to retrieve the material
parameters from the numerically calculated reflection coefficient r and transmission
coefficient t which still include the acquired phase shifts during propagation through
the material slab. Note that the knowledge of the intensities R(ω) = |r(ω)|2 and

T (ω) =
∣∣∣n2 cos θt
n1 cos θi

∣∣∣ |t(ω)|2 alone is not sufficient. Furthermore, the inverted Fresnel

equations (2.26)–(2.27) disclose that n(ω) and Z(ω) are mathematically not uniquely
determined since there exist multiple branches of possible solutions. Thus, an in-
terpretation might lead to ambiguities in the determination of ε(ω) and μ(ω). We
can partly resolve these problems by realizing that at low frequencies, the acquired
phase ϕ(ω) =ωn(ω)d/c0 becomes smaller than 2π. This, together with assumptions
concerning the material properties (e.g., Im(n)>0,Re(Z)>0 for passive media) sorts
out all physically irrelevant solutions.
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Figure 2.2: Regions of Brewster angles for different polarizations as μ(ω) 
=1. Here, μ and
ε are supposed to be real values. The regions denoted by θBi,s define values of ε
and μ for which the Brewster angle exists only for s-polarization of the incident
light field. Regions denoted by θBi,p are for p-polarization. The solid lines indicate
where a Brewster angle exists for both polarizations. The dashed line denotes
the non-magnetic case (μ(ω)≡1). Adapted from Ref. [50].

Next, let us have a look at effects arising from different angles of light incidence.
Under normal incidence (θi= θt=0�), (2.20) and (2.21) directly show that reflection
occurs if Z1 
=Z2. Only for the special case of μ(ω) = 1 this is equivalent to saying that
reflection occurs when n1 
=n2. Under oblique incidence θi 
= 0�, the Fresnel equations
for p-polarized light show zero reflectance for the Brewster angle θBi,p, whereas the
reflectance for s-polarization is non-zero over the whole range of angles. If medium 1
is air and medium 2 consists of a non-magnetic material, the Brewster angle is given
by

tan(θBi,p) = n(ω) =
√

ε(ω) .

If we, however, permit μ(ω) 
= 1 for medium 2, the Brewster angles for p- and s-
polarization read [50]

tan2(θBi,s) =
μ(ω) (ε(ω)− μ(ω))

1− ε(ω)μ(ω)
,

tan2(θBi,p) =
ε(ω) (μ(ω)− ε(ω))

1− ε(ω)μ(ω)
.

As shown in Fig. 2.2, also a magnetic Brewster angle for s-polarization is expected.
Additionally to the electric dipoles, the magnetic dipoles do not emit along the oscil-
lation axis if s-polarized light is impinging under an angle θBi,s.
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Figure 2.3: Illustration of a split-ring resonator including geometrical parameters. Adapted
from Ref. [51].

2.4. Design of Magnetic Building Blocks

To practically evoke a magnetic response, one has to generate magnetic dipoles by
circulating currents. This can be done, e.g., with ring-shaped metallic unit cells
providing an inductance L. The magnetic dipole moment is given by the product of
the ring current I and the area A of the coil and is oriented perpendicular to the plane
of the coil. At first glance, a structure consisting of ring-shaped elements comes up
to our expectations. Unfortunately, the magnetic response of such a composite would
be far too small to be useful. Therefore, it is necessary to utilize resonant building
blocks like the so-called split-ring resonators (SRRs) [10–12,24,25] which embody an
additional capacitance C. SRRs consist of wires which are bent to form a coil with
one winding (q.v. Fig. 2.3) and a capacitor at the slit. Consequently, each unit cell
can be considered as an LC oscillatory circuit having a characteristic eigenfrequency
ω0 at which a resonantly enhanced current flow is expected. That again results in
a resonantly enhanced magnetic dipole moment. Of course, in reality, energy is also
dissipated by ohmic losses in the metal or can be radiated into free space, leading to
the radiation resistance [52, 53]. The effect of both can be merged into one effective
resistance R leading to an LCR circuit with eigenfrequency ωLCR. For frequencies
above ωLCR, in close analogy to any harmonic oscillator, the response is phase delayed
by 180� with respect to the driving force. Hence, the induced magnetic field of the
SRR is opposite to the driving magnetic field, resulting in a diamagnetic behavior.

To derive ωLCR for a SRR, we use the quasi-static approximation for the inductance
L of a long coil while setting the number of windings to one. This results in

L =
ΦB(t)

I(t)
= μ0

l2

h
, (2.28)
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where ΦB is the magnetic flux and I the current inside the coil. The geometry para-
meters w, h, l, and d are defined in Fig. 2.3. The quasi-static equation of a plate
capacitor reads

C =
Q(t)

U(t)
= ε0εgap

wh

d
, (2.29)

with the time-dependent charge Q(t) and voltage U(t). εgap is the permittivity of the
material placed inside the gap between both capacitor plates. To obtain all contri-
butions to the voltage induced by the incident light we recall Kirchhoff’s second law,
i.e.,

Uind(t) = L
∂I

∂t
+

1

C

∫
I dt+RI . (2.30)

The eigenfrequency is deduced by setting the right-hand side of (2.30) to zero and
differentiating with respect to the time t so that

L
∂2I

∂t2
+

1

C
I +R

∂I

∂t
= 0 .

By using the common ansatz I(t) = I0 e
−iωt, we obtain the characteristic differential

equation of a damped harmonic oscillator

−ω2I(t) +
1

LC
I(t)− iω

R

L
I(t) = 0 . (2.31)

By replacing the factors 1/(
√
LC) := ω0 (i.e., the eigenfrequency of an undamped

LC circuit) and R/(2L) := γ (i.e., the damping factor), we end up with a quadratic
equation

−ω2 − 2iγω + ω2
0 = 0

which can be solved by

ωLCR = −1

2

(
2iγ ±

√
−4γ2 + 4ω2

0

)
= −iγ ±

√
ω2
0 − γ2 . (2.32)

Clearly, for low damping γ � ω0, the eigenfrequency of the LCR circuit approaches
the LC limit, i.e., ωLCR≈ω0.

To derive μ(ω) of a periodic array of SRRs, we specify a certain excitation geometry
shown in Fig. 2.4(b) which enables a purely magnetic coupling in the quasi-static limit,
i.e., retardation effects can be neglected. The spatial directions of the considered
vectors are obvious so that the calculations can be reduced to absolute values. The
derivation starts again with the ansatz (2.30) by assuming a homogeneous magnetic
field in the SRR coil. In this case, the magnetic flux is given by ΦB=μ0l

2H, where H
is the exciting time-harmonic magnetic field. Proceeding similarly to (2.31) leads to

∂Uind

∂t
= −∂2ΦB

∂t2
⇒ ∂2I

∂t2
+

1

LC
I +

R

L

∂I

∂t
= ω2 μ0l

2

L
H .



2.4. Design of Magnetic Building Blocks 17

Figure 2.4: Illustration of a SRR excited in different configurations (only linear-polarized
light). For (a), coupling to the LCR resonance is only possible via the electric
field and for (b) only via the magnetic field. For the case (c), both electro-
magnetic field components can couple to the magnetic resonance. For the other
configurations (d), (e), and (f), however, it is not possible to couple to the
magnetic resonance at all.

With simple mathematical operations we obtain

H =

(
ω2
0 − ω2 − 2iγω

μ0l2ω2

)
IL . (2.33)

In (2.10), we found that the magnetization M and the external magnetic field H are
related via the magnetic susceptibility χm(ω) = μ(ω)−1. The contribution of each
SRR to the total magnetization is given by

M =
m

V
=

Il2

V
,

where V denotes the unit volume. For a periodic arrangement of SRRs, the latter can
be expressed by the respective periodicities ai of the lattice in each spatial direction,
i.e., V =

∏3
i=1 (ai).
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Figure 2.5: Dispersion of μ(ω) of a SRR array plotted versus the normalized frequency. The
values are calculated by using (2.34) with the parameters f=0.3 and γ/ω0=0.05.
One obtains a Lorentzian-like progression which also leads to negative values of
Re(μ) (red) for 1<ω/ω0<1.2.

Finally, μ(ω) of the considered excitation geometry is given by

μ(ω) = 1 +
M

H
(2.33)
= 1 +

Il2

V

μ0l
2ω2

(ω2
0 − ω2 − 2iγω)IL

(2.28)
= 1 +

l2h

V

(
ω2

ω2
0 − ω2 − 2iγω

)

= 1 +

(
fω2

ω2
0 − ω2 − 2iγω

)
, (2.34)

where we lumped the prefactors to a filling fraction f with

0 ≤ f =
l2h

V
= l2h

3∏
i=1

(
1

ai

)
≤ 1 . (2.35)

Note that f=1 corresponds to the case where all SRRs are touching each other, i.e.,
the upper bound of an obtainable SRR density. Fig. 2.5 shows the dispersion of the
permeability plotted for the parameters f =0.3 and γ/ω0=0.05. Roughly speaking,
(2.34) represents a Lorentz oscillator (for details see section A.3). A subtle difference
is the ω2 numerator, which leads to the asymptotics μ(0)=1 and μ(∞)=1−f . In the
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Figure 2.6: Cut-wire pairs can be considered as a geometrically modified split-ring resonator
(SRR) for which the electrical connection between both metal plates is replaced
by a displacement current. (a) Schematic of the transition from SRRs (top left)
to cut-wire pairs (bottom left). Adapted from Ref. [58]. (b) Another intuitive
picture for the cut-wire pair can be derived from an antenna which is excited by
a plane wave (resonance wavelength of the antenna: λ= l/2). Adding another
antenna leads to a coupling effect which results in two eigenmodes. The anti-
symmetric mode (right) exhibits a magnetic dipole, while the symmetric mode
(left) is related to an electric resonance. Adapted from Ref. [59].

static limit, no current can be induced which is also reproduced by our quasi-static
model. The behavior for infinite frequencies is rather a symptom of the model and
would have to be replaced by μ(∞)=1 when accounting for a Drude-type metal (to
be discussed in section 2.6.2).

Further improvements of the SRR model have been developed [54–56] to bring its
quantitative behavior closer to calculations and experiments. By way of example, the
inductive contributions have been separated to a kinetic and a magnetic part, Lkin ∼
d/(wh) and Lmag, respectively. Importantly, Lkin reintroduces a thickness dependence
of the eigenfrequency, i.e., the thicker the SRR the higher ωLCR. Moreover, the SRR’s
capacitance can be separated to a surface and a gap contribution.

Note that the magnetic field B ∼ hE/λ � E of the capacitor and the electric field
E ∼ lE/λ � B of the coil are neglected [57] in the quasi-static approximation. These
assumptions are only justified if the wavelength λ is much larger than the thickness
h of the capacitor and the length l of the coil. However, we will see for a special
example in section 4.1 that the qualitative behavior is fairly well reproduced. And in
any case, the model gives an indication on how to tune the geometrical parameters in
order to modify the spectral position of ωLCR.

Another magnetic unit cell results by further increasing the slit width d of the SRR.
The increased gap lowers the capacitance and hence increases the LCR eigenfrequency.
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Figure 2.7: Illustration of a variety of different magnetic building blocks deduced from the
SRR shown in Fig. 2.3. The magnetic response of all presented unit cells is based
on a resonant LCR oscillatory circuit. Adapted from Ref. [7].

Introducing a second gap at the bottom arm of the U-shaped wire leads to a second
serial capacitance further reducing the net capacitance. The resulting structure (see
Fig. 2.6(a)) is named “cut-wire pair” [58,60]. Additionally tilting by 90 results in the
unit cell shown in Fig. 2.6(b). A consequence of this transition is the replacement of
ohmic currents in the horizontal arms of the SRR by displacement currents.

The cut-wire pair can also be interpreted as a pair of coupled antennas (oscillators)
which exhibit two eigenmodes (shown in Fig. 2.6(b)). On the one hand, an anti-
symmetric mode is present with current oscillations in both antennas opposite in
phase. On the other hand, one can also observe a symmetric mode with in-phase os-
cillations. The magnetic dipole moment of the symmetric mode is, however, negligible
compared to the anti-symmetric mode. Obviously, the origin of the induced magnetic
dipole moment is based on retardation effects of the incident light wave. Strictly
speaking, this is contradictory to treating cut-wire pairs as unit cells of an effective
medium. Referring to the last paragraph of section 2.1, this is a typical example of a
“black-boxed” metamaterial as we refrain from analyzing the microscopic reasons for
the magnetic response but rather map them to mesoscopic material parameters.

Other derivatives of the SRR are shown in Fig. 2.7. One clearly perceives that all
structures consist of inductive and capacitive elements turning them into LCR cir-
cuits. Thus, the formalism to describe these magnetic elements is roughly similar to
SRRs.

In summary, by using SRRs (and derivatives) as magnetic constituents of a composite
medium, we are able to mimic a permeability unequal to one at certain frequency
intervals as there exists an eigenfrequency ωLCR at which a resonant current can be
driven. In the following sections 2.5–2.8, a variety of ideas in view of applications will
be presented which are subdivided into (i) purely magnetic structures (Re(μ) 
= 1),
(ii) negative-index materials (Re(μ),Re(ε)< 0 ⇒ Re(n)< 0), and (iii) bi-anisotropic
structures.
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2.5. Purely Magnetic Metamaterials

Zero reflection at an interface of two media is observed if both impedances are perfectly
matched. For most real-world applications (e.g., cameras, wafer steppers, projectors),
one of those media is air (ε(ω) = μ(ω) ≈ 1). By looking at the definition of the
impedance Z given by (2.25), perfect matching of two isotropic materials is, thus,
only possible for ε(ω)≡μ(ω). Assuming that we know how to fabricate a composite
with arbitrarily high values of ε and μ, it is conceivable to realize non-reflecting lenses
providing a high refractive index. Notably, unlike Z(ω), the refractive index n(ω) is
determined by the product of ε and μ (q.v. (2.24)).

Such highly refracting metamaterials would be of immense technological interest, since
they could be used for tiny and efficient objectives. Unfortunately, to date there exists
no proposal on how to achieve extraordinarily high but still identical values for ε and
μ. Besides that, metal has to be used to obtain a magnetic response. That again
accounts for substantial absorption losses due to non-zero imaginary parts of the
material parameters.

2.6. Negative-Index Metamaterials

In 1968, Victor G. Veselago predicted the optical behavior of “hypothetic” materials
with an intrinsic negative real part of the refractive index [9]. A sufficient condition to
attain this property is met if the real parts of both ε and μ are simultaneously negative
(to be derived in the following section). As mentioned, Re(μ) < 0 had not been
observed for natural materials. Hence, the concept fell into oblivion until technological
progresses enabled the realization of magnetic unit cells on the micro- and nanoscale
leading to man-made composite materials [12, 14, 25]. Since then, negative-index
metamaterials evoked a lot of interest in the field of photonics as they form a new
subclass of optical materials.

A typical characteristic of a “left-handed” medium5 is the refraction of light to the
“wrong” side as shown in Fig. 2.8. However, negative refraction can also be obtained
from photonic crystals due to interference of partial waves from different lattice points
[61–65], by non-magnetic metamaterials with hyperbolic dispersion [66], by anisotropic
crystals at certain angles of incidence, and even by homogeneous isotropic metal
layers [67]. Thus, it is important to carefully distinguish between a “negative refractive
index” and “negative refraction” since the underlying physics can be fundamentally
different.

5The term “left-handed” was used due to the fact that the Poynting vector �S of light inside a
negative-index material is anti-parallel to the wave vector �k (see Fig. 2.8). Consequently, �S,
�E, and �B form a left-handed system. In the context of this Thesis, we will refrain from using
this terminology since “handedness” is rather related to optical activity (chirality) and might be
confusing. Therefore, it is appropriate to use the term “negative-index” material.
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Figure 2.8: Illustration of negative refraction at the interface between air half-space (ε(ω)=
μ(ω) = 1) on the left-hand side and a negative-index half-space with ε(ω) =
μ(ω)=−1 on the right-hand side for p-polarization of the incident light. On the
right-hand side, n(ω) = −1. Also note that the wave vector �k (solid) and the
energy flux (Poynting vector) �S= 1

2Re(
�E × �H(c.c.)) of light inside the negative-

index material are anti-parallel to each other.

Negative group velocities [68] and negative phase velocities [68–70] have also been
investigated for negative-index materials but are—similar to the negative refraction—
not unique indicators since they also appear for particular dispersive media and surface
plasmon polaritons [71]. Indeed, some remarkable effects can be exclusively attributed
to negative-index metamaterials and have never been found for natural substances,
i.e., the inverse Doppler effect [17], the negative Goos-Hänchen shift [69, 72, 73], and
reversed Čerenkov radiation [18,19].

2.6.1. Passive Medium Conditions

Before we discuss appropriate structure designs, it is crucial to figure out what kind of
sufficient and necessary conditions must be fulfilled to obtain a negative real part of
the refractive index for passive media. “Passive” means that the considered medium is
incapable of amplifying an incident electromagnetic wave. For clarity, we will restrict
our discussions to the isotropic case. Thus, the vector properties of the fields can be
replaced by their absolute values. Notably, the conditions to be derived keep being
valid for the general bi-anisotropic case (see section 2.8).

(i) The imaginary part of the refractive index Im(n) := nim is positive definite
for a passive medium. We constitute this statement by using the dispersion
relation of an isotropic medium k = nω/c0 = nk0, where k is the complex wave
number inside the medium and k0 the wave number in vacuum. Next, this
dispersion relation is combined with the electric field of an harmonic plane wave
E(r) = E0 e

ikr and the refractive index is separated to its real and imaginary
parts n(ω) = nre + inim, respectively. This results in

E = E0 eik0nrer e−k0nimr . (2.36)

Equation (2.36) clearly reveals that nim < 0 causes an exponential increase of
the amplitude with growing distance which is an unphysical solution for passive
media. We also identify nim to be a measure for the absorption of the medium.
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Note that it is common to introduce the negative ratio of real and imaginary
parts of n as a measure for the performance of negative-index materials. Hence,
the “Figure of Merit” (FOM) is defined as

FOM := − nre

nim

. (2.37)

We obtain high positive values for the FOM if the metamaterial features high
negative values for nre while keeping the absorption relatively low.

(ii) The real part of the impedance Re(Z) is positive definite. This can be derived
by using an infinitesimally-thin conductive sheet which is infinitely elongated
in y- and z-direction and located at x = x0 (see Fig. A.1). A time-varying
current density j=j0e

−iωt is induced in this sheet by an external monochromatic
harmonic wave. Thus, the 1D wave equation is given by [74]

∂2E(x,t)

∂x2
+

ω2n2

c20

∂2E(x,t)

∂t2
= −iωμ0μj0 e

−iωtδ(x−x0) , (2.38)

where we assume, for simplification, that the material parameters are constant
in frequency. At the position x=x0, (2.38) can be solved by

E(x,t) = −c0μ0μ

2n
j0 ei(nk|x−x0|−ωt) . (2.39)

A detailed mathematical proof can be found in section A.4. To increase entropy,
the external wave must in average do positive work on the complex fields. Hence,
the temporally averaged power has to be greater than zero, i.e.,

〈P 〉t =
1

T

T∫
0

P (t) dt = 〈U(t)I(t)〉t

=

〈∫
r

E(t) dr′
∫
A

j(t) dA′
〉

t

Ar := V
= −1

2

∫
V

j∗E(x,ω) dx

(2.39)
=

c0μ0μ

4n
j20

(2.25)
=

1

4
Zj20

!
> 0 . (2.40)

If we also take dispersion of the material parameters into account, the electric
field has a similar appearance as in (2.39) [74], and the resulting averaged power,
in analogy to (2.40), is given by

P (ω) ∼ Z(ω) |j(ω)|2 !
> 0 . (2.41)

Thus, as we restrict our discussion on passive media, Re(Z(ω)) must be positive
definite to fulfill the inequality.
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(iii) The energy density inside a dispersionless medium is given by

U = εE2 + μH2 . (2.42)

If both permittivity and permeability are simultaneously negative, U will be
negative which contradicts thermodynamic laws. Apparently, we have to replace
(2.42) by a relation which accounts for dispersion, i.e., [9, 35, 75]

U = Re

(
∂(εω)

∂ω

) ∣∣∣ �E∣∣∣2 + Re

(
∂(μω)

∂ω

) ∣∣∣ �H∣∣∣2 ,

whereas the law of increase of entropy requires the conditions

Re

(
∂(εω)

∂ω

)
, Re

(
∂(μω)

∂ω

)
> 0

to be fulfilled. These inequalities do not prohibit simultaneous negative values
for ε and μ, but rather enforce a frequency dependence.

(iv) We expect ε(ω) = εre+iεim and μ(ω) = μre+iμim to be continuous smooth func-
tions. Neither discontinuities in these functions nor in their spectral derivatives
are expected.

By knowing these conditions, we are now prepared to discuss nre starting from (2.24):

n2 = ε(ω)μ(ω)

⇔ n2
re + 2inrenim − n2

im = εreμre + iεreμim + iεimμre − εimμim . (2.43)

The real and imaginary parts in (2.43) can be separated to

real : nre = ±
√

εreμre − εimμim + n2
im , (2.44)

imaginary : 2inrenim = iεreμim + iεimμre . (2.45)

Since (2.44) results again in a quadratic equation, we rather continue with (2.45). If
we recall the conditions (i)–(iii), the only possibility is given for

nre =
εreμim + εimμre

2nim

!
< 0 ⇒ εreμim + εimμre < 0 . (2.46)

The inequality in (2.46) is fulfilled if, e.g., the real or imaginary parts of both ε and
μ are simultaneously negative. Due to the intermixture of real and imaginary parts,
these are sufficient but not necessary conditions.

2.6.2. Drude Model and Diluted Metals

Previously, we have seen that the dispersion of the permeability μ(ω) of a magnetic
unit cell can be described by a slightly modified Lorentz oscillator model. Hence, at
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Figure 2.9: Dispersion of the permittivity ε(ν) of silver (blue), gold (red), and copper (green)
at near-infrared to visible frequencies between 150THz (2.0μm wavelength) to
500THz (0.6μm wavelength). The circles and crosses denote the experimentally
determined [76] Re(ε) and Im(ε), respectively. Note that thin films were used
for the measurements with thicknesses of 30.4 nm and 37.5 nm for silver, 34.3 nm
and 45.6 nm for gold, as well as 29.7 nm and 30.5 nm for copper. The films have
been prepared by using vacuum evaporation which results in very smooth metal
layers with a thickness error of ±0.2 nm. The lines correspond to Drude fits
using (2.47). The curve fit for copper is only performed up to 400THz since
appearing interband transitions would influence the Drude parameters.
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Figure 2.10: Relative permittivity ε(ν) of silver (blue), gold (red), copper (green), and alu-
minum (black) at mid-infrared frequencies between ν=ω/(2π)=20THz (15μm
wavelength) to 150THz (2μm wavelength). The circles and crosses denote the
experimental data points [77] of Re(ε) and Im(ε), respectively. The lines corre-
spond to Drude fits using (2.47). Note that the fitting curve of Im(ε) of silver
is hidden behind that of gold. Clearly, Im(ε) of aluminum shows considerable
deviations from the Drude model since interband transitions are not considered.

the resonance and for low damping, it is possible to achieve Re(μ)<0. Next, we have
to find ways to attain a negative permittivity so that (2.46) is satisfied. Here, nature
helps by providing the dispersion of metals. In standard textbooks on solid-state
physics (e.g., [2, 3]) the classic description of metals is given by Drude’s free electron
model. As this model assumes that electrons do not feel any restoring force, we use
the result of the Lorentz oscillator model (A.5) without the restoring term ∼ω2

j . Thus,
the permittivity of the Drude model reads

ε(ω) = 1− ω2
pl

ω2 + iγω
, (2.47)

where ωpl =
√

(n0e2)/(meffε0) is the plasma frequency, n0 the electron density, and
γ the damping factor. The effective mass meff is given by the curvature of the
conduction-band dispersion and corrects the model for the periodic potential of a
crystal lattice [2, 3].

Although the Drude model does not account for interband transitions, it still delivers a
good approximation for the permittivity of some noble metals like silver, iridium, gold,
and copper up to frequencies of around 400THz (which corresponds to wavelengths of
around 750 nm). By way of example, the interband absorption from the 3d to the 4s
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Table 2.2.: Plasma frequency ωpl and damping factor γ obtained by Drude fits (2.47) of
experimental data points. The horizontal bar separates the results for the near-
[76] and mid-infrared [77] spectral regions. Clearly, the Drude parameters deviate
a bit. Anyway, one finds the unique trend of lowest damping γ for silver followed
by gold.

Element Ref. ωpl (10
15 Hz) γ (1012 Hz)

Copper (Cu) [76] 13.06 159.3

Gold (Au) [76] 13.15 123.2

Silver (Ag) [76] 13.75 31.8

Aluminum (Al) [77] 18.70 108.9

Copper (Cu) [77] 10.22 96.0

Gold (Au) [77] 12.76 30.2

Silver (Ag) [77] 13.68 27.4

band of copper starts at a frequency of about 535THz (i.e., a wavelength of 560 nm)
which causes perceptible deviations of the experiment [76] from the Drude equation
(2.47). In contrast, the interband absorption edge of silver is found at approximately
970THz (relating to a wavelength of 310 nm) so that the Drude model converges
much better to measured data points [76] (see Fig. 2.9). In Fig. 2.10, the dispersion
of the permittivity ε(ω/2π)=ε(ν) of aluminum, copper, silver, and gold is shown for
the mid-IR. Drude parameters ωpl and γ for the IR /VIS resulting from Drude fits
shown as solid lines in Figs. 2.9 and 2.10 are listed in Tab. 2.2. Even though the Drude
parameters of Refs. [76,77] deviate quantitatively due to different sample preparation
and spectral region, a qualitative trend of γ can be identified. Apparently, silver and
gold have the lowest damping factors. Hence, these noble metals do not suffer that
much from ohmic losses as other transition metals do. That makes them preferable for
applications like multi-layered metamaterials requiring a high degree of transparency.

Even if the damping is reduced, one still has to face the problem of an impedance
mismatch. In the spectral region where photonic metamaterials are expected to show
a magnetic response, i.e., at around 100THz to 300THz, silver and gold have rather
large negative values for Re(ε) (q.v. Fig. 2.10). Tying in with the arguments for
impedance matching in section 2.5, we require ε ≈ μ to reduce reflections at the
air-metamaterial interface. This means that either the magnetic resonance of the
metamaterial must deliver large negative values of Re(μ) or the electric dipole density
inside the metal has to be reduced. The latter can be accomplished by replacing
closed metal layers by elongated wires [78]. If they are arranged periodically along
the incident electric field vector while the periodicity being much smaller than the
wavelength, the structure will behave like a “diluted” metal. Consequently, it is
possible to red-shift the plasma frequency ωpl by many orders of magnitude which in
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turn shifts the absolute values of Re(ε). Indeed, this effect is also used for microwave
ovens. Small holes in a metal film enable to look through the window, whereas the
microwave radiation “feels” a diluted metal which cannot be penetrated.

2.7. Design of Negative-Index Metamaterials

Figure 2.11: “Addition” of magnetic elements (shown in blue) to diluted metal elements
(shown in gray) results in negative-index metamaterials. Periodic arrangement
of (a) SRRs and (b) cut-wire pairs combined with wire grids.

Sections 2.4 and 2.6.2 dealt with the realization of negative permeability and negative
permittivity, respectively. Naively thinking, one could simply combine magnetic and
diluted metal elements to form a negative-index material. Of course, this seems like
an oversimplified approach since coupling effects tend to deteriorate each element’s
property. Amazingly, it turned out that this method actually works very well since
for some geometrical configurations the expected interaction is negligible as both
elements act indeed independently. In Fig. 2.11, some exemplary compositions leading
to negative-index metamaterials are shown. For example, one can merge SRRs and a
diluted metal like shown in Fig. 2.11(a) [12]. Likewise, the double-fishnet structure in
Fig. 2.11(b) consists of an array of cut-wire pairs and a metal grid [29–31,79,80].

Regrettably, there do not exist any deterministic methods to design negative-index
metamaterials. Hence, most of the designs discussed in literature have been found by
“educated guessing” or minor modifications of existing structures. Arising changes in
the optical properties have mostly been evaluated via numerical simulations.
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2.8. Bi-Anisotropic Metamaterials

For reasons of clarity, the previous discussions were mainly focused on the physical
behavior of isotropic metamaterials. Unfortunately, for real-world composites, this
formalism is not always flexible enough since some fabricated structures are at least
anisotropic (ε and μ are tensors) or even have no centrosymmetry along the propa-
gation direction. For the latter case of general bi-anisotropy, the induced field com-
ponents include an angle ϕ with the vectors which excited them. Since the treatment
of arbitrarily chosen ϕ is difficult to handle, we will restrict our considerations to the
special cases of ϕ = 90� (i.e., “pure” bi-anisotropy) and ϕ = 0� (i.e., chirality) [81].

2.8.1. “Pure” Bi-Anisotropy

Without loss of generality, we choose a coordinate system in which linearly polarized
light propagates along the principle x-axis (�k = kx). For ϕ = 90�, the constitutive
relations in (2.11) and (2.12) reduce to [51, 82,83]

Dy = ε0εyy Ey − i

c0
ξyz Hz , (2.48)

Bz = μ0μzz Hz +
1

c0
ζzy Ey = μ0μzz Hz +

i

c0
ξyz Ey , (2.49)

where we defined the material parameters as

ε =

⎛
⎜⎜⎝

εxx 0 0

0 εyy 0

0 0 εzz

⎞
⎟⎟⎠ , μ =

⎛
⎜⎜⎝

μxx 0 0

0 μyy 0

0 0 μzz

⎞
⎟⎟⎠ , and ξ =

⎛
⎜⎜⎝

0 0 0

0 0 −iξyz

0 0 0

⎞
⎟⎟⎠ .

Equations (2.48)–(2.49) reveal that the electric component of the incident light Ey

induces a parallel electric displacement Dy as well as a perpendicular magnetic field
Bz. Likewise, the magnetic component Hz induces a parallel magnetic induction and
a perpendicular electric displacement. Therefore, the incident linear polarization of
the wave is maintained.

To learn more about the optical behavior of pure bi-anisotropic media, we insert
(2.48)–(2.49) into Maxwell’s curl equations (2.15)–(2.16) to obtain [84]

ikx Ey = iω Bz = iω

(
μ0μzz Hz +

i

c0
ξyz Ey

)
(2.50)

ikx Hz = iω Dy = iω

(
ε0εyy Ey − i

c0
ξyz Hz

)
. (2.51)
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By additionally using the definition (2.25), the impedance for this special bi-
anisotropic case results in

Zba = Z0

(
μzz

kx/kx,0 − iξyz

)
. (2.52)

Apparently, Zba depends explicitly on the wave vector kx and, thus, on the propagation
direction of the incident light wave. Furthermore, from (2.51) we derive

kx = ω

(
ε0εyy Zba − i

c0
ξyz

)

= kx,0

(
εyy

Zba

Z0

− iξyz

)
⇒ kx

kx,0

(2.52)
=

εyyμzz

kx/kx,0 − iξyz
− iξyz

⇒ k2
x = k2

x,0

(
εyyμzz − ξ2yz

)
. (2.53)

Equation (2.53) delivers the expression for the refractive index, i.e.,

n2
ba = εyyμzz − ξ2yz . (2.54)

In contrast to Zba, no direction dependence results—which would be different in the
case of a non-reciprocal medium. As already discussed in section 2.6.1, only the
solution with positive imaginary part of nba is physically relevant. From (2.54) follows
that the cross-coupling parameter ξyz has a high influence on the refractive index and,
thus, also on the propagation of waves inside bi-anisotropic media.

To obtain a coarse qualitative overview, we assume a negligible imaginary part of
nba so that Re(n2

ba)>0 directly leads to a complex phase of the field equation (2.36)
and, therewith, to propagating modes. For the isotropic case, i.e., Re(ξyz) = 0, as a
rule of thumb light can freely propagate in dielectrics (red area in Fig. 2.12(a) and
(b)) and negative-index materials (blue area). Re(ξyz) 
= 0 leads to a more intricate
situation since even for simultaneously positive (or negative) permittivity and perme-
ability, Re(n2

ba) is not necessarily positive. Fig. 2.12(b) depicts parameter sets which
allow for propagating modes as darkened cone-like volume fractions. Notably, the
feasible parameter range for dielectrics and negative-index materials is tremendously
decreased. For example, if we assume a medium to be bi-anisotropic—like illustrated
in Fig. 2.12(b) as a light blue plane—it needs high absolute values for Re(εyy) and
Re(μzz) to be transparent.

For the experimental characterization of bi-anisotropic structures, the respective
Fresnel equations are relevant as they link the observable transmittance and re-
flectance to material parameters [37,82,83]. A detailed derivation in section A.5 [51,84]
yields the impedance as a function of the reflection coefficients r±, the transmission
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Figure 2.12: Different types of materials categorized by a set of parameters Re(εyy), Re(μzz),
and Re(ξyz). Note that light propagation occurs only for n2

ba=εyyμzz − ξ2yz>0
(see also (2.54)). The color codes for both figure parts are identical, i.e., the
parameter region of negative-index materials is shown in blue, whereas the
parameter region for dielectrics is red. (a) Categorization of the isotropic class
of materials—i.e., Re(ξyz) = 0 (q.v. Tab. 2.1). The lower-left and the lower-
right picture are taken from Ref. [85] and Ref. [58], respectively. (b) Analog
categorization of purely bi-anisotropic materials. Due to cross-coupling effects
an additional Re(ξyz)-axis must be introduced. For Re(ξyz)=0, we find again
the representation in (a), where two quadrants represent regimes of light pro-
pagation though yet projected. For Re(ξyz) 
=0, the square-root dependence of
the refractive index (2.54) decreases the range of light propagation (light blue
plane) which is represented by the darker volume fraction.

coefficients t±, and the relative impedances z1,2=Z1,2/Z0 of the background media for
each propagation direction indicated by the algebraic signs (±) (see Fig. A.2) [32]:

Z± = Z0

(−b∓√
b2 − 4ac

2a

)
, (2.55)

where a, b, and c are given by

a = t+t− − (1− r+) (1− r−) ,

b = (z1 − z2) (t+t− + 1− r+r−) + (z1 + z2) (r+ − r−) ,

c = z1z2 [−t+t− + (1 + r+) (1 + r−)] .

In addition, the implicit expression for the refractive index reads

cos (nk0ds) =
t+
2

(
1− z−/z2

1 + r+ − (1− r+)z−/z1
+

1− z+/z2
1 + r+ − (1− r+)z+/z1

)
, (2.56)

where ds denotes the slab thickness of the purely bi-anisotropic medium.
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Figure 2.13: Stack of three dielectric materials with (real) dielectric constants ε1=2, ε2=6,
and ε3 =12 and thicknesses d1 = d2 = d3 =10nm embedded in vacuum breaks
inversion symmetry. For example, at 1μm wavelength and for normal incidence
of light, the physics can be described by a single effective slab (ds=30nm) with
optical parameters ε=6.72, μ=1.00, and ξ=−0.21. Taken from Ref. [51].

A closer look at the derivation reveals that the transmittance through a slab is iden-
tical for propagation in +x- and −x-direction, i.e, T+ = T−. However, the complex
transmission coefficients t± might have different phases. In contrast, neither the re-
flectance R± nor the absorbance A±=1−T±−R± is generally symmetric.

For illustration, let us consider the simplified example shown in Fig. 2.13. The three di-
electric layers can be viewed as one (N=1) unit cell of a periodic structure that has no
centrosymmetry along the propagation direction of light. Performing a bi-anisotropic
retrieval on this configuration at, e.g., λ=1μm wavelength (λ 	 d1=d2=d3=10 nm)
leads to the effective material parameters ε = 6.72, μ = 1.00, and ξ = −0.21. The
layers refer to a fictitious single homogeneous effective slab with total thickness
ds = d1 + d2 + d3 = 30 nm. We have explicitly verified that the same parameters
are retrieved if N =2, 3, 4, . . . , 20 unit cells of the identical three-layer structure are
considered (i.e., the total slab thickness is N×30 nm). Thus, the retrieved quantities
can indeed be interpreted as effective material parameters. As the damping is strictly
zero for dielectrics, no absorption occurs. Hence, the sum of transmittance and re-
flectance is unity for each propagation direction. Both reflectances R± are identical in
this case and differences only occur in the phases of the complex reflection coefficients
r±.

This example clearly shows that one should be cautious with using the original
Maxwell–Garnett approximation [86] at this point6, as it would cast the effective
behavior of the three sub-wavelength dielectric layers in Fig. 2.13 into just one ef-
fective dielectric function, whereas μ = 1 and ξ = 0. Hence, the Maxwell–Garnett
approximation obviously ignores the direction dependence of the impedance.

6Note that extended models of the Maxwell–Garnett effective medium theory [87] can take the
bi-anisotropic nature of composites into account.
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2.8.2. Chirality

Another special case of (2.11)–(2.12) arises if induced and exciting field components
include an angle of ϕ = 0�. This assumption implies that the material parameter
tensors ε, μ, and ξ have only diagonal entries. If the respective entries are equal (e.g.,
εxx= εyy = εzz), the parameters can be reduced to complex numbers. Corresponding
media are referred to as “bi-isotropic” or “chiral”7 and obey the constitutive relations
given by [51,81]

�D = ε0ε �E − i

c0
ξ �H , (2.57)

�B = μ0μ �H +
i

c0
ξ �E . (2.58)

Let us consider a linearly polarized plane wave impinging on a chiral material slab.
Here, the incident electric field induces both an electric and a magnetic dipole moment
which are oriented either parallel or anti-parallel ( �E ‖ �P , �M). An analog behavior is

also obtained for the magnetic component of the light field ( �H ‖ �M, �P ). As the

exciting field components �E and �H are perpendicular to each other, vector addition
will eventually lead to an effective rotation of �M and �P . Hence, the initial linear
polarization of the incident light is successively rotated as it propagates through the
chiral medium. The polarization eigenstates of light are, thus, no longer linear but
circular. The emerging optical activity and circular dichroism are related to the real
and imaginary parts of the material parameters, respectively.

The associated refractive index of a chiral medium is given by

nch =
√
εμ∓ ξ , (2.59)

where each algebraic sign stands for left- and right-handed circular polarization.
Again, the sign of the complex root must be chosen such that Im(n) > 0. In con-
trast to the pure bi-anisotropic case, (2.59) sustains nch < 0 for one handedness of
light even if both ε and μ are mainly real and positive. For this purpose, only the
absolute value of ξ must be large enough. The derivation of the Fresnel equations for
chiral metamaterials can be found in Ref. [88].

During the last few years, much effort has been spent to realize artificial chiral ma-
terials (dielectric photonic crystals [89–92] as well as metallic metamaterials [93–95])
providing much larger optical activity and circular dichroism than obtained from na-
tural substances (e.g., milk and sugar solution). Recently, a chiral 3D metamaterial
has been reported which could be used as a broadband circular polarizer (shown
in Fig. 2.14) [33]. To date, similar “classical” polarizers consist of multiple layers of

7An object or a system is chiral if it cannot be superposed on its mirror image. Chirality (Greek,
χει�: hand) or “handedness” is an inherently three-dimensional (3D) phenomenon and occurs,
e.g., for DNA, cholesteric liquid crystals, and helical metal antennas.
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Figure 2.14: Electron micrograph of a left-handed gold helix structure which can be used as
a broadband circular polarizer. (a) Oblique-view image. (b) Top-view image
revealing the circular cross section of the helices and the homogeneity on a
larger scale. The lattice constant of the square lattice is 2μm. Both images
reproduced with permission from Ref. [33].

precisely-cut birefringent crystals which are wrung together in optical contact. Hence,
fabrication is quite demanding. In contrast, a metamaterial circular polarizer based
on an array of gold helices could serve as a fairly simple alternative.



3. Three-Dimensional Metamaterials
for Photonics

The discussions in the prior chapter revealed that a variety of novel optical phenomena
can be expected once a metamaterial structure is at hand. From an experimental
point of view, the fabrication of composite materials for long wavelengths is certainly
much easier than for the infrared (IR) or visible (VIS) spectral range. This is mainly
due to the scalability of Maxwell’s equations and the demand to fulfill (2.2). If the
metamaterial should show a magnetic response in the microwave regime from 1mm
to 1m wavelength, we could use millimeter-sized building blocks [12–14,21,96] which
can be realized via standard printed-circuit-board technology. This technique enables
arbitrarily complex structure designs with comparatively low endeavor.

However, for many applications in the field of information technology and optics, the
interest is rather focused on the full control of material dispersion in the IR /VIS,
i.e., wavelengths between 0.5μm (ν = 600THz) and 15μm (ν = 20THz). Since the
periodicity of the metamaterial unit cells still has to be smaller than the wavelength
of interest, the required feature sizes push nanofabrication technology to its limits. To
get an impression of the targeted feature sizes, we simply relate to the quasi-effective
medium limit (2.2) while assuming glass as a background medium with (nbg=nglass=
1.5). Thus, the size of unit cells must be right below 8μm. Note that the latter
assumption is based on the fact that most photonic metamaterial structures presented
to date are not self-supporting and, thus, placed on top of a transparent substrate.
In the IR /VIS, silica is often used due to its high optical quality while being highly
inert. Anyway, due to the stronger condition (2.1), one simple rule always holds: the
smaller the better.

Besides the required feature sizes, one should also keep in mind that we are concerned
with composites consisting of “natural” materials whose properties strongly depend
on the incident light’s wavelength. This does not only hold for the permittivity
(q.v. Drude model in section 2.6.2) but also for other relevant quantities1. Thus,
simply down-scaling metamaterial structures used in the microwave regime does not
necessarily yield meaningful designs at shorter wavelengths [97]. Some additional
adaptations are required, too.

1By way of example, the conductivity of noble metals in the IR /VIS is much lower than for
microwaves. The lower conductivity translates to a comparatively high transmittance but also
to higher losses due to the increased ohmic resistance.

35
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Most well-established fabrication techniques for nanoscaled structures involve inher-
ently two-dimensional (2D) “top-down” processes. Indeed, by using state-of-the-art
lithographic devices, it is possible to produce planar nanometer-sized magnetic build-
ing blocks which fulfill the effective medium limit even for the VIS [80, 98]. But
using the standard nanofabrication technology yields metafilms rather than bulk
metamaterials. For such planar structures, the incident light “feels” only one layer
of unit cells while propagating perpendicular to the substrate plane. This is defi-
nitely contrary to typical model systems in solid-state physics, where multiple lattice
constants along all spatial directions are assumed.

3.1. Bulk or Non-Bulk: That’s the Question.

Reverting to the previously introduced condition for quasi-effective media (2.2), one
might wonder why the realization of bulk metamaterials should be of any importance.
Indeed, at first glance, there seems to be no such requirement, since planar metafilms
can be treated as optical black boxes as well. But catching a glimpse of the metafilm
black boxes’ interior clearly reveals that the observed material properties are mainly
affected by surface effects.

From research topics in condensed-matter physics, we know that analog configurations
of ultra-thin material slabs exhibit totally different properties compared to their bulk
version. Graphene [99, 100], being a monolayer of carbon atoms tightly packed into
a 2D honeycomb lattice, is a very popular example. Transport measurements have
demonstrated that graphene has an exceptionally high electron mobility which makes
it the best conducting substance known at room temperature. Note that this property
can be exclusively attributed to its 2D geometry [101].

In the same way, we anticipate a change in the optical properties of composite mate-
rials once converging the bulk limit, where the phase of a light wave is considerably
modified while passing through a large amount of unit cells. Here, two pivotal ques-
tions arise: (i) How many unit cell layers have to be stacked until we can call a
material system “bulk”? (ii) Do the material properties change in a favored or un-
favored manner when approaching the bulk limit? Unfortunately, there do not exist
general answers to these questions. The bulk limit and the resulting properties must
be identified individually for each and every case as the physics strongly depends on
the respective configuration.

On the basis of experiments on bulk composites for the microwave regime and “clas-
sic” solid-state optics, a pronounced magnetic response is expected once surface effects
are negligible. Thus, the motivation to fabricate bulk metamaterials is clearly com-
prehensible and, in any case, an important issue to gain a deeper insight into the
fundamentals of photonic magnetic materials.
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Before we see about the fabrication of metamaterials, it is important to point out
the differences between three-dimensional and bulk media, since there might appear
confusions regarding the definitions: In this Thesis, all structures consisting of at least
one layer of non-planar unit cells or a few layers of planar unit cells will be called
“three-dimensional” metamaterials. They form the intersection between planar and
bulk materials with surface effects still being very pronounced. Stacking many layers
of 3D structures results in materials whose optical behavior is increasingly dominated
by propagation effects. Only if adding an additional layer of unit cells does not
alter the material parameters anymore, the structure will be called “bulk”. Hence,
realizing 3D composite structures is an intermediate but important step towards bulk
metamaterials.

3.2. Layer-By-Layer Approaches Towards
Three-Dimensional Metamaterials

First attempts to fabricate photonic metamaterials used standard lithographic tech-
niques such as electron-beam lithography (EBL) [24–27], focused-ion-beam (FIB)
lithography [31, 102], and ink-jet printing [103, 104] which are all established nan-
otechnologies, mostly used for maskless lithography of low-volume production by
semiconductor industry as well as research and development. Anyway, these tools
were not meant to be used for realizing 3D composites. Hence, during the last years,
the metamaterial community spent a lot of effort to extend the aforementioned tech-
niques for 3D processing and, indeed, found some remarkable solutions. Regrettably,
all of them—to be discussed in the following sections 3.2.1 and 3.2.2—have certain
geometrical constraints which restrict their application to distinct unit cell designs.

3.2.1. Single-Step Structuring

Serial evaporation of multiple alternating metallic and dielectric layers and subsequent
structuring makes it possible to stack many functional layers on top of each other.
The structuring step is accomplished either via focused-ion beam (FIB) milling [31],
i.e., sputtering by using gallium ions, or by a standard lift-off process [30, 59].

Metamaterials which are fabricated by means of single-step structuring are shown in
Fig. 3.1(a) and (b). Surveying the resulting structures reveals that one has to deal with
significant tapering effects which break the symmetry along the light path. Notably,
this gives rise to bi-anisotropy—which has been often neglected in literature—and
might deteriorate the optical properties, i.e., a broadening of magnetic resonances
and an increase of damping [105]. Beyond that, the maximum number of processable
layers is fairly limited: Three and ten functional layers of a fish-net structure have
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Figure 3.1: Electron micrographs of metamaterials fabricated via layer-by-layer techniques.
(a) Three layers of a fishnet structure fabricated by electron-beam lithography
(EBL) and subsequent lift-off process. Taken from Ref. [59]. (b) Ten functional
layers of a fishnet structure fabricated by focused-ion beam milling of multiple
dielectric (dark) and metallic (light) layers. The inset clearly reveals the tapering
effect. Reproduced with permission from Ref. [31]. (c) Five layers of a fishnet
structure fabricated by EBL and planarization. Reproduced with permission
from Ref. [29]. (d) Four layers of split-ring resonators realized by EBL and
planarization. Reproduced with permission from Ref. [28].

been realized by using a standard lift-off process [30] and FIB milling [31], respectively.
Note that these demonstrations are, to date, the upper limit of technical feasibility.

3.2.2. Planarization

Another layer-by-layer fabrication approach uses EBL in combination with fluid spin-
on dielectrics [106]. The whole processing cycle is illustrated in Fig. 3.2. At first, a
single layer of metallic unit cells is produced by lithography (Fig. 3.2(1–5)). After-
wards, a fluid dielectric is spun-on the structure (shown as a green film in Fig. 3.2(6–8))
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Figure 3.2: Illustration of the layer-by-layer fabrication process which utilizes an interme-
diate planarization step. The production sequence is indicated by numbers in
ascending order. (1) Fabrication starts with a glass substrate coated with a
thin film of indium tin oxide (ITO) and a spun-on photoresist (gray) like, e.g.,
poly(methyl-methacrylate) (PMMA). ITO is an optical transparent semiconduc-
tor which has a sufficient d.c. conductivity to prevent electric charging during
the EBL process. (2) The photoresist has to be sensitive to electron beams
(blue) such that it changes its chemical properties and becomes soluble for ap-
propriate developers. (3) During the development step, the exposed (in case of a
positive-tone resist) or the unexposed (in case of a negative-tone resist) volumes
are removed. (4) By using a highly-directional physical evaporation technique
(e.g., electron-beam evaporation or plasma sputtering), the whole substrate is
metallized (shiny gold). (5) The subsequent lift-off process ends the fabrica-
tion of the first functional layer. (6) A “spin-on dielectric” (green) and another
film of photoresist are spun-on the first layer. After exposure, (7) development,
metallization, and lift-off process, (8) the second functional layer is finished.

which planarizes the metallic layer and, in addition, isolates consecutive metal layers
electrically. After curing, another metal layer is stacked on top (Fig. 3.2(8)). The
latter step is a non-trivial procedure since an alignment with nanometer-precision is
required.

The striking advantage of this method is its flexibility to design arbitrary planar
metallic features in lateral directions parallel to the substrate plane [28, 29, 107, 108].
Some examples are presented in Fig. 3.1(c) and (d). The main drawback of the pla-
narization technique is, certainly, the serial processing. Since inherent 2D techniques
are used, each step must be repeated many times to realize 3D structures (. . . not to
mention the bulk composites) which makes the fabrication very time-consuming.
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3.3. Inherent Three-Dimensional Fabrication

2D stacking techniques are, apparently, very important for first analyses of 3D meta-
materials, since they enable to transfer results of planar structures to the 3D world—in
close analogy to single graphene layers which are stacked on top of each other to yield
bulk graphite. In other words, we can start from a simplified system (e.g., a single
SRR) and extend the well-understood model to our needs. However, for realizing
bulk or even isotropic 3D metamaterials, a truly 3D fabrication approach would be
preferable. Hence, we take a step forward and ask for alternatives by replacing the
inherently 2D processes by their 3D analogues. As we require additional degrees of
freedom for each fabrication step, a 3D lithography method which allows for struc-
turing of photoresists in all three dimensions as well as appropriate metallization
processes are sought.

It is possible to rapidly realize large-scale 3D polymer templates by using hologra-
phy (interference lithography) or self-assembly of colloidal particles. However, these
techniques do not exhibit enough degrees of freedom to fabricate arbitrarily shaped
structures. We will see in chapter 5 that it is fairly hard to think of simple-looking
designs for bulk magnetic metamaterials. Hence, for cutting-edge developments, we
need, first of all, as much flexibility as possible and do not care that much about mass
production.

In short terms, our basic idea [32, 109–113] is to use 3D direct laser writing (DLW)
[114–116] to fabricate polymer templates (section 3.3.1) which are subsequently pro-
tected by a thin inert oxide ceramic layer (section 3.3.2) [117–119] and, finally, met-
allized (section 3.3.3) via chemical vapor deposition (CVD) [120, 121] or electroplat-
ing [33]. Besides metallization of polymer templates, there also exist first attempts to
write 3D structures directly into a metal-containing resist, i.e., silver nitrate (AgNO3)
in aqueous solution combined with a coumarin 440 ethanol solution [122,123]. When
illuminated by a focused laser beam, metal-ions in the photoresist absorb two pho-
tons simultaneously and reduce to pure metal. Because of the emerging silver features’
high reflectivity, the laser beam is deflected during the writing process. Hence, the
structure quality is highly deteriorated. This manifests itself in large and fairly rough
metal features (on the micrometer scale) which is a no-go criterion for fabricating 3D
photonic metamaterials.

3.3.1. Three-Dimensional Polymer Templates by Direct Laser
Writing

DLW (also known as direct laser lithography) of polymer templates has been known
since years by the photonic crystal community [8, 124]. Similar to standard pho-
tolithography techniques, structuring is accomplished by illuminating negative-tone
or positive-tone photoresists via light of a well-defined wavelength. The fundamental
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Figure 3.3: Principle of direct laser writing (DLW). (a) Scheme of the DLW setup used
to fabricate polymer templates for 3D photonic metamaterials. A compact
frequency-doubled Erbium-doped fiber laser at 100MHz repetition rate and sub-
150 fs pulses is used at a central wavelength of 780 nm. The laser power (approx.
60mW) is attenuated by using an acousto-optical modulator. The 3D scanning-
piezo stage (scanning volume of 300μm×300μm×80μm), the CCD camera, and
the laser system are controlled via PC interface. Courtesy of Nanoscribe GmbH.
(b) Iso-intensity map of a focused laser beam plotted over axial and lateral co-
ordinates. If the inner blue area corresponds to the threshold energy needed
to polymerize a photoresist, one obtains an ellipsoidal voxel. (c) Photograph
of Nanoscribe’s “Photonic Professional” DLW system. Courtesy of Nanoscribe
GmbH.
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difference is, however, the avoidance of reticles. Instead, two-photon absorption2 is
utilized to induce a dramatic change in the solubility of the resist for appropriate
developers. Since two-photon absorption is a second-order, non-linear process several
orders of magnitude weaker than linear absorption, very high light intensities are re-
quired to increase the number of such rare events. For example, tightly-focused laser
beams provide the needed intensities. Here, pulsed laser sources are preferred as they
deliver high-intensity pulses while depositing a relatively low average energy3.

To enable 3D structuring, the light source must be adequately adapted to the photore-
sist in that single-photon absorption is highly suppressed while two-photon absorption
being favored. This condition is met if and only if the resist is highly transparent for
the laser light’s output wavelength λout and, simultaneously, absorbing at λout/2. As
a result, we can scan a given sample relative to the focused laser beam while changing
the resist’s solubility only in a confined volume. The geometry of the latter mainly
depends on the iso-intensity surfaces of the focus (see Fig. 3.3(b)). Concretely, those
regions of the laser beam which exceed a given exposure threshold of the photosen-
sitive medium define the DLW’s basic building block, the so-called “voxel”. Other
parameters which influence the actual shape of the voxel are the laser mode and the
refractive-index mismatch between the resist and the immersion system leading to
spherical aberration.

For all dielectric templates presented in chapter 4, we used the commercially available
negative-tone photoresist SU-8 (epoxy resin by MicroChem Corp.). It has on average
eight epoxy groups per monomer and contains a triaryl sulfonium salt as cationic pho-
toacid generator [124]. When the photoresist is illuminated, the included photoacid
generator breaks the bonds of the monomers and acts as a catalyst for a spatially-
defined chain-growth polymerization. Generally, SU-8 requires additional processing
steps, such as a pre- and post-exposure bake, to remove the solvent and accelerate
cross-linking, respectively. Subsequent developing by using isopropyl alcohol or ethyl
lactate releases the non-polymerized resist and leaves behind a mechanically stable
3D polymer template like shown in Fig. 3.4.

Alternatively, also positive-tone photoresists like AZ 9260 (by MicroChemicals GmbH)
are available. In this case, only those regions which are sufficiently exposed by light
are removed by the developer (potassium-hydroxide-based inorganic solution).

2Two-photon absorption [125] is based on the simultaneous absorption of two photons of identical
(or different) frequencies in order to excite a molecule from an initial to a higher energy electronic
state. The related energy difference between the involved states is equal to the sum of the
energies of both photons (ΔE=�ω1+�ω2). It differs from linear absorption in that the strength
of absorption depends on the square of the light intensity which makes it a non-linear optical
process.

3Light absorption produces heat. Hence, if the deposited average energy is too high, the photoresist
will be burned.
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Figure 3.4: Examples of dielectric structures both of which are fabricated by using Nano-
scribe’s direct laser writing system (Photonic Professional, see Fig. 3.3(c)).
(a) Bi-chiral photonic crystal. Taken from Ref. [92]. (b) Polymeric bucky ball
as an example of an open but still mechanically stable 3D structure. Courtesy
of Nanoscribe GmbH.

3.3.2. Protection of Polymers by Highly Stable Oxide Ceramics

To prevent the templates from melting and unintended chemical reactions during post-
processing, a thin stabilizing dielectric layer must be coated on top of the polymer
surface. Of course, this layer has to be applied by using a compatible process which
does not alter or deteriorate the original structure. We found pulsed layer deposition
(PLD) of silica (SiO2) and atomic layer deposition (ALD) of titania (TiO2) to be
useful for our purposes.

Pulsed layer deposition of silica: The deposition of silica is performed at room
temperature and atmospheric pressure in a gas-tight glass reactor which is connected
to reservoirs of silicon tetrachloride (SiCl4) and water (H2O) via computer-controlled
valves. To induce the chemical reaction [117]

SiCl4 + 2H2O → SiO2 + 4HCl ,

H2O is introduced to the reaction chamber in gaseous phase by an inert carrier gas,
e.g., nitrogen (N2). After a thin layer of H2O is adsorbed on the template surface,
gaseous SiCl4 is passed into the chamber which locally reacts with the already present
H2O. As a consequence, a thin silica layer (typically 3 nm thick) is created on top of
the surface. The resulting HCl is carried out of the chamber by using a carrier gas.
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Figure 3.5: Illustration of the pulsed layer deposition process to coat a polymer (SU-8)
template with silica. (a) Water (H2O) is introduced in gaseous phase by a
carrier gas. (b) A thin layer of H2O is adsorbed on the whole surface of the
template. (c) Silicon tetracholride (SiCl4) is introduced in gaseous phase and
locally reacts with H2O. (d) A thin silica (SiO2) layer is coated on top of the
whole template surface while co-producing hydrochloric acid (HCl). The latter
is then transported out of the reaction chamber by using a carrier gas. Adapted
from Ref. [84].

The sequence of the whole process is illustrated in Fig. 3.5. A cyclic repetition of this
procedure results in closed, robust silica films. In analogy to conventional glass, the
deposited silica has a refractive index of nsilica=1.45 at 1μm wavelength.

Atomic layer deposition of titania: The deposition of titania protection layers
works similar to silica. In Fig. 3.5, SiCl4 just has to be replaced by TiCl4. Addi-
tional heating is required during step (c) to induce the chemical reaction [118,119]

TiCl4 + 2H2O → TiO2 + 4HCl .

The process is performed under high vacuum at a temperature of 110�C. Notably, the
polymer SU-8 is mechanically stable up to about 120�C. Since the deposited titania
is amorphous, the refractive index can be taken as ntitania=2.05 at 2μm wavelength
(value extrapolated from Ref. [126]).

The main difference between both coating processes lies in the control of thickness
and the required equipment. While in the case of titania an atomically thin layer is
created during each cycle, the silica PLD deposits several nanometers at once4. Thus,
by using an ALD process, one can adjust the target thickness in a very controlled
fashion. Moreover, from our experience, the titania surfaces are advantageous com-
pared to silica for the growth of smooth thin metal films (q.v. section 3.3.3) which

4Actually, this is the reason why both techniques have different names.
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can be accredited to its higher surface energy. However, the titania ALD needs more
advanced vacuum and heating equipment.

For the sake of avoiding confusions, it should be mentioned that a self-made silica
PLD [127] was already established at the very beginning of our investigations. Thus,
some of the polymer templates presented in this Thesis have been protected by silica.
After a commercial ALD (Savannah S-100 by Cambridge NanoTech, Inc.) became
available, we switched to titania due to the aforementioned advantages5.

3.3.3. Metallization of Three-Dimensional Polymer Templates

In the prior chapter, we have noticed that metals are crucial in the context of meta-
materials since only conductive features allow for LCR resonances. Thus, it is im-
portant to find suitable techniques to metallize 3D templates. Although sputtering
and electron-beam evaporation yield very smooth and homogeneous films, only those
parts of a template are coated which are placed directly in sight of the metal target.
Consequently, the inner surfaces of a 3D template would be useless as they cannot
contribute to the required magnetic resonances. Beyond that, we discussed earlier
that noble metals like silver (Ag) and gold (Au) occupy the lowest damping factors
(q.v. Tab. 2.2) which is directly related to lower losses of the incident light.

Summing up, fully isotropic coating techniques of noble metals are essential. In the
following context, two complementary approaches are presented which can be either
used in combination with negative-tone or positive-tone photoresists, i.e., CVD of
silver [32, 109] and electroplating of gold [33]. There also exist some other isotropic
metallization methods like electroless deposition [128–131] and metal ALD [132–134],
although thin films of sufficiently high optical quality have been reported only recently
[135].

Chemical vapor deposition of silver: The CVD of silver [120] is based on a heat-
induced decomposition of the ligand-stabilized silver β-dikentonate precursor (1,5-
cyclooctadiene)(1,1,1,5,5,5-hexafluoro-acetylacetonato)silver(I) ((COD)(hfac)Ag), to
pure silver, metal-organic, and organic byproducts [121]. The chemical reaction is
given by

(COD)(hfac)Ag(gaseous)
adsorption−→ (hfac)Ag(adsorbed) + (COD)(gaseous) (3.1)

2 (hfac)Ag(adsorbed)
heating−→ Ag(solid) +Ag(hfac)2 (gaseous) . (3.2)

Analog to the already presented titania ALD, we use a cyclic process. Each CVD
cycle begins with the sublimation (3.1) of the solid metal-organic precursor at 65�C at

5We do not expect an appreciable modification of the metamaterial’s optical properties caused by
the change of the protecting layer. Note that the change from εsilica=n2

silica to εtitania=n2
titania is

relatively small compared to the permittivity of metal (to be added in the next fabrication step).
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Figure 3.6: Electron micrographs of silver films deposited via chemical vapor deposition of
(COD)(hfac)Ag. (a) The silver film on a plane glass substrate looks somehow
rough, but the grain size (some tens of nanometers in diameter) is still small
compared to the wavelength of the incident light (in the range of few microns).
Importantly, the grains of the metal layer are electrically connected. (b) In
contrast to sputtering techniques, chemical vapor deposition delivers spatially
isotropic silver films (light regions). The depicted test structure is cut by using
focused-ion beam milling to reveal that the wires are coated all around. Taken
from Ref. [32]. (c) Using an extraordinarily high deposition temperature (here
190 C) results in large metal clusters. This is mainly caused by the high mobility
of silver on the glass substrate at elevated temperatures. (d) Optical properties
of closed plane silver films like shown in (a) and (b) can be nicely fitted by the
Drude free electron model. The colored curves indicate the measured spectra.
The measurement was performed on metallized plane samples (not shown) by
using a Fourier-transform infrared-spectrometer (q.v. section 3.4.2). The dashed
black lines correspond to calculated spectra using a scattering-matrix approach
(see section 3.4.1) and the Drude parameters for silver from Tab. 3.1. The cal-
culated layers have nominal thicknesses of 36 nm, 40 nm, 42 nm, 44 nm, 46 nm,
and 48 nm, whereas thinner metal layers exhibit a higher transmittance.
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low pressure (<0.5mbar) which fills the whole reaction chamber with (COD)(hfac)Ag
due to gas diffusion. The sublimation temperature must not be chosen too high as,
otherwise, the metal-organic substance decomposes mainly in the crucible before being
adsorbed at the substrate surface.

After approximately 45minutes, enough precursor molecules are adsorbed to initiate
the thermal decomposition (3.2). Here, the substrate temperature influences the ki-
netics of the chemical reaction. If the temperature is below 150�C, the metal film
predominantly suffers from organic contamination. If it is higher than 170�C, the
surface mobility of the silver atoms increases such that the films tend to become more
granular (q.v. Fig. 3.6(c)) which again deteriorates the optical properties. From our
experience, 160�C–165�C are the decomposition temperatures giving the best com-
promise. The decomposition step takes 10minutes and results in the deposition of
a 3 nm-thick silver film. To further improve the quality of the coatings, we activate
the dielectric surface of the template by applying air plasma (PlasmaPrep5 by Gala
Instrumente GmbH) for 15minutes to the sample before starting the metallization.
Moreover, the metal-organic precursor, being sensitive to oxygen, must be kept under
nitrogen atmosphere as long as possible before evacuation.

During the last step, the reactor chamber is evacuated. While silver remains on
top of the template, the metal-organic byproducts are pumped out of the chamber.
Repeating this cycle 10 to 15 times results in an electrically connected metal coating
with a thickness of about 40 nm (see Fig. 3.6(a)). During the whole process, the walls
of the reaction chamber are heated to 110�C to avoid condensation of the precursor.

As no CVD reactor suiting our specifications has been commercially available, we
built our own automated setup shown in Fig. 3.7. The automation via Labview
programming language (National Instruments Corporation) helps to obtain repro-
ducible results and allows to monitor all relevant experimental parameters, i.e., the
substrate / precursor temperature and the chamber pressure. Importantly, all CVD
chamber parts have to be made of chemically compatible or highly inert materials
(stainless steel, nitride ceramics, poly(tetrafluoroethylene), etc.) in order to prevent
reactions with the organic byproducts. Especially, standard copper gaskets should
be avoided since there exists a connatural precusor (hfac)(COD)Cu which might be
produced inside the chamber during silver deposition. The reactor chamber must
be cleaned after each and every CVD process to reduce contamination by remaining
organic molecules.

In Fig. 3.6(a) and (b), resulting coatings are shown as electron micrographs. They ex-
hibit a good d.c. conductivity and a reflectance R>95% in the near-IR (from 1.0μm
to 4.0μm). Beyond that, the transmittance spectra fit well to the Drude model (q.v.
Fig. 3.6(d)) which is an important indicator for a high purity and optical quality.
Clearly, the silver films are somehow rough, but the grain size (approximately 20–
30 nm in diameter) is small compared to wavelengths at which the metamaterials will
show their magnetic resonances (i.e., from 1.0μm to 4.5μm). As shown in Fig. 3.6(b)



48 3. Three-Dimensional Metamaterials for Photonics

Figure 3.7: Self-made chemical vapor deposition (CVD) system used to deposit isotropic
silver coatings. (a) Overview of the whole setup. From left to right: (i) Control
tower containing all controlling devices, i.e., the power supply, outer-chamber
heaters, inner-chamber heaters, and the gas-flow controller. (ii) Reaction cham-
ber, valves and particle trap. (iii) PC for controlling all devices inside the tower
(i). The automation of the CVD enables the control of the heating temperatures
and a temporal control of the cycles. (b) Detailed view of the reaction chamber
showing the precursor lock at the underside and the sample lock at the upper
side of the reaction chamber. (c) Schematic of the reactor’s line system.
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Figure 3.8: Overview of the whole 3D fabrication method via direct laser writing (DLW) and
chemical vapor deposition (CVD) of silver. (1) The sequence starts with spin-
ning a negative-tone photoresist (blue) like SU-8 onto a glass substrate (light
gray). (2) Connected 3D polymer templates are fabricated by using DLW
and subsequent developing. (3) A silica or titania coating (green) is applied
to protect the polymer template from melting and unintended chemical reac-
tions during the metal deposition. (4) Isotropic metallization (typically several
nanometers in thickness) via CVD of silver (shiny gray).

for a cubic-wire template, the silver coating is isotropic. If we had used an anisotropic
metallization method, just the upper wires of the framework would have been coated,
whereas the whole surface, especially the interior of the structure, is metallized via
the CVD method. Note that it is not possible to create separated metal parts along
a stabilizing wire connection without locally-defined functionalization. This is an
essential point that has to be taken into account when designing metamaterial struc-
tures. Moreover, the template-sustaining glass substrate is metallized, too, which
additionally constitutes a severe constraint (see also Fig. 3.8(4)).

Electroplating of gold: For electroplating of gold (Au)6 [33], a sulfite-based elec-
trolyte solution is used containing the following ingredients:

(i) sodium disulfitoaurate(I) (Na3[Au(SO3)2]) as gold precursor

(ii) sodium sulfite (Na2SO3) as well as ethylenediamine (C2H4(NH2)2) for chemical
stabilization

(iii) ethylenediamine-tetraacetic acid disodium salt dihydrate Na2EDTA
(C10H16N2Na2O8×2H2O) to sequester metal ions

The pH value of the solution is adjusted to 8.5. The cathode is a 25 nm-thin ITO layer
(sheet resistance of 500Ω) which is sandwiched between glass substrate and photore-
sist. The anode is a platinized titanium mesh. During growth, the temperature of the
electrolyte is actively stabilized to 57�C using a thermometer coupled to a hot plate.

6The electroplating process discussed in this section and used to metallize the structures in chapter
5 has been established by Justyna K. Gansel at the Institut für Angewandte Physik (Karlsruhe
Institute of Technology).
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Figure 3.9: Overview of the 3D fabrication procedure which involves direct laser writing
(DLW) and electroplating of gold. For clarity, the photoresist’s front end is
partly removed. (1) The sequence starts with spinning a positive-tone photore-
sist (blue) like AZ 9260 onto an ITO-coated (dark green) glass substrate (light
gray). The ITO layer serves as a cathode during the electroplating in step (3).
(2) Connected 3D channels are fabricated by DLW and subsequent developing.
Note that the holes must reach down to the ITO layer, otherwise the cathode is
electrically isolated during the next step. (3) Gradually filling up the holes with
gold (shiny yellow) via electroplating results in metallic nanostructures. (4) By
etching with air plasma for several hours, the remaining photoresist is removed
leaving the intended structure.

Typically, we use a constant electric current in the order of 10−6 A (corresponding to
a current density of 10−3 A/cm2). Finally, to remove the polymer, the samples are
exposed to air plasma for 24 hours (PlasmaPrep5 by Gala Instrumente GmbH).

In general, if one utilizes CVD for metallization, it is favorably to use a negative-tone
photoresist where the polymerized (scanned) structure remains after development
(q.v. Fig. 3.8(2)). By contrast, one rather uses templates made of a positive-tone
photoresist for electroplating. Here, the scanned regions are removed such that the
intended structure is represented by holes (q.v. Fig. 3.9(2)). Afterwards, the latter
are gradually filled with metal from the bottom up (q.v. Fig. 3.9(3)) by applying a
very defined current to the electrolyte solution. Note that both approaches do not
allow for separated metallic features without local surface functionalization of the
photoresists. This is a crucial difference to the aforementioned planarization method,
where the metallic elements are embedded in a dielectric host material. When thinking
of meaningful metamaterial designs, we have to take this constraint into account.

3.4. Analysis of Photonic Metamaterials

The analysis of metamaterials can be either done experimentally or via numerical
calculations. The overall aim is to obtain a complete set of optical parameters which
unambiguously describe the metamaterial’s behavior. Remembering the results of
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the prior chapter, such a set of parameters can be, e.g., the complex electric and
magnetic fields—as described by Maxwell’s equations (2.13)–(2.16)—or, alternatively,
the refractive index n and the impedance Z.

For metamaterials working in the microwave regime, the characterization is again
fairly simple. Since the feature sizes are in the range of millimeters, special hardware
probes can be placed inside the structure which directly measure the fields at every
spatial position. Moreover, typical properties of negative-index materials, such as
the beam displacement, can be measured by placing macroscopic detectors around
the object. Unfortunately, corresponding methods are not available for nanoscale 3D
photonic metamaterials. Scanning near-field microscopy, e.g., enables to probe the
magnetic fields of planar nanostructures [136]. Due to the outer dimensions of a typical
near-field microscope tip (several hundreds of microns) it is, however, not possible
to probe the inside of non-open 3D structures with typical feature sizes < 10μm.
Measuring other attributes of photonic metamaterials (e.g., beam displacement of
negative-index materials) is also challenging, because most effects happen on a very
small scale. Notable exceptions are reported in Refs. [31, 68].

Hence, the easiest approach to obtain a physical understanding of the metamaterial
structures uses the comparison of spectral measurements and numerical calculations.
Concretely, we simulate the anticipated properties by using adequate calculation tools
to be discussed in section 3.4.1. These software packages deliver the electromagnetic
fields and, herefrom, the complex transmission and reflection coefficients t and r, re-
spectively. The quantities t and r also serve as a starting point to retrieve optical
parameters like n and Z (q.v. the Fresnel equations for isotropic (2.26)–(2.27) and
bi-anisotropic (2.55)–(2.56) media). Subsequently, calculations are brought into coin-
cidence with the measured transmittance T ∼|t|2 and reflectance R= |r|2 (for methods
see section 3.4.2).

3.4.1. Calculation of Electromagnetic Fields and Optical Spectra

For numerical calculations of metallic structures, we normally utilize the finite-
integration technique [137, 138] which is implemented in the commercial software
package Microwave Studio (by CST AG). Some related background information about
finite-difference time-domain and finite-integration algorithms is given in the appendix
A.6.

Microwave Studio supports two different simulation modes, i.e., the amplitudes and
phases in both transmittance and reflectance can be calculated either in frequency
domain or in time domain. For our purposes, we use the transient solver which
operates in the time domain. This means that the evolution of the fields is computed
for each discrete time step at discrete points in a waveguide geometry (shown in
Fig. 3.10). The whole waveguide geometry is meshed with a spatial discretization of
at least the tenth part of the minimum wavelength to be evaluated in order to provide
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Figure 3.10: Computer-aided design model (CST Microwave Studio) of a split-ring resonator
(yellow) placed on a glass substrate (blue) in a vacuum waveguide (light gray).
(a) Geometry which serves for calculation. The port 1, at which a plane wave
is launched inside the waveguide, and the opposite port 2, at which the prop-
agated wave is detected, are illustrated. (b) To define the polarization of the
wave, the vertical component of the electric field (green plane) and the hori-
zontal component of the magnetic field (blue plane) are set to zero. The pink
plane indicates open boundary conditions. (c) Cut through the SRR plane.
The electric fields at the resonance frequency of the split-ring resonator are
calculated by using the finite-integration technique.

reliable results. Then, for each mesh cell of the finite-element domain one certain
material dispersion is defined. Finally, as proposed in Ref. [139], the discretized
version of Maxwell’s equations is solved in a leap-frog manner.

The structures are designed by using Microwave Studio’s internal computer-aided
design interface. For each material, experimental data is approximated by simple
models for the frequency range of interest to individually set the permittivity ε(ω) of
each component. The respective values are listed in Tab. 3.1. Note that dielectrics are
considered as non-dispersive materials which is clearly an approximation. Moreover,
we slightly modified the Drude parameters for gold and silver as they differ from
Refs. [76, 77]. Especially, the collision frequency γ must be increased for thin films
due to significant surface roughness. Then, the whole structure is embedded in vacuum
and placed on a glass substrate according to real-world experiments.

At one port (red front plane in Fig. 3.10(a)) of the waveguide a plane wave is launched
into the simulation volume and the output signals are detected at both ports. Because
of the finite computation domain, the values of the fields on the boundaries must be
defined so that the waveguide appears to be extend infinitely in lateral directions.
Additionally, the polarization of the wave must be defined correctly. For this pur-
pose, the tangential components of the �E- and �H-fields are set to zero for the planes
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Table 3.1.: Material parameters used for numerical calculations. The Drude parameters for
silver and gold are taken from Ref. [59]. Note that the latter are chosen differently
from those in Tab. 2.2 since the surface roughness of thin films modifies the
collision frequency γ.

Element ωpl (10
15 Hz) γ (1012 Hz) ε

Gold (Au) 13.7 85.0 -

Silver (Ag) 13.7 40.7 -

Silica (SiO2) - - 2.2

Titania (TiO2) - - 4.2

SU-8 - - 2.4

Air / vacuum - - 1.0

perpendicular to the propagation direction in the case of waveguide boundary con-
ditions (see Fig. 3.10(b)). Alternatively, it is also possible to use periodic boundary
conditions, where the fields can be detected at certain points in the waveguide vol-
ume. However, these conditions restrict the calculations to normal incidence. Along
the propagation direction, open boundary conditions (pink planes) are applied. Note
that the distance from the structure to the ports is chosen such that near fields are
decayed and do not distort the results.

In addition to the finite-integration technique, we also deployed other simulation soft-
ware for consistency checks, i.e., 1D and 2D Fourier modal method codes7 (scattering-
matrix approach) based on Refs. [140–143].

3.4.2. Measurement of Optical Spectra

To measure the transmittance and reflectance of the fabricated metamaterials over a
wide spectral range, we have access to two Fourier-transform infrared (FTIR) spec-
trometers (Bruker Equinox 55 and Bruker Tensor 27). Since standard optical compo-
nents like lenses and beam splitters—which are mostly made of glass—become opaque
at around 3μm wavelength, FTIR spectrometers primarily involve reflective optical
components, despite of one beam splitter made of potassium bromide (KBr). Thus,
these devices are usable for a very broad spectral range. However, depending on the
choice of detector and beam splitter, the FTIR systems Equinox 55 and Tensor 27
provide a limited measuring range from 1μm to 5μm and 2μm to 13μm, respectively.

7The development of the 2D Fourier modal method code and related calculations have been carried
out by Sabine Essig at the Institut für Theoretische Festkörperphysik (Karlsruhe Institute of
Technology).
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Figure 3.11: Schematic of a FTIR spectrometer assembly. The systems consist of a mi-
croscope attached to a Michelson interferometer. Apart from the beam split-
ter, solely reflective optical components are used since most materials become
opaque at frequencies of interest.

The working principle of FTIR spectrometers is based on a Michelson interferometer
(see Fig. 3.11) which enables to measure the field autocorrelation8 A(t). As stated by
the Wiener-Khinchin theorem [144], A(t) corresponds to the Fourier transform of the
power spectrum I(ω), i.e.,

F(A(t)) = F
⎛
⎝ ∞∫
−∞

E(t′)E∗(t′ − t) dt′

⎞
⎠ = |F(E(t))|2 = |E(ω)|2 ∼ I(ω) .

This concept becomes clearer as we follow the beam path and analyze the effect of
each optical component: Radiation from a thermal emitter (white-light source) is di-
rected to a beam splitter which must be highly transparent in the whole measuring
range. Half of the incident light intensity is reflected by a fixed mirror while the rest is
reflected by a continuously moving mirror (actually introducing the field autocorrela-

8The intensity measured by the FTIR detector is given by I(t)=
∫∞
−∞ |E(t′) + E(t′ − t)|2 dt′. Ex-

panding I(t) reveals that one of the terms corresponds to the field autocorrelation function
A(t)=

∫∞
−∞ E(t′)E∗(t′ − t) dt′, where E(t′) is the electric field and the star denotes the complex

conjugate of the time-harmonic function. We see that A(t) is not phase-sensitive. Note that
the time response of the detector must be much larger than the duration of the signal E(t′) or,
alternatively, the recorded signal has to be integrated.
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tion). For each wavelength λ, the respective intensity coming out of the interferometer
depends on the path difference 2Δx between both mirror arms, i.e., [84]

Iref(Δx) = 2

∣∣∣∣S(λ)4

∣∣∣∣2
(
1 + cos

(
2π

λ
Δx

))
,

where S(λ) denotes the amplitude spectrum of the electric field coupled into the
interferometer. Hence, the intensity of the whole white-light spectrum reads

Iref(Δx) =

∞∫
0

2

∣∣∣∣S(λ)4

∣∣∣∣2
(
1 + cos

(
2π

λ
Δx

))
dλ .

Its Fourier transform can be calculated via

F(Iref(Δx)) = c |S(λ)|2 ,

with c being a constant.

For the case of detecting the reference spectrum, the calculation stops at this point.
If, however, a sample is placed into the beam path, the spectrum of the incident
light is modified according to its transmittance T (λ), i.e., I(Δx)=T (λ)Iref(Δx). The
respective Fourier transform reads

F(I(Δx)) = c T (λ) |S(λ)|2 = T (λ)F(Iref(Δx)) .

The reflectance can be treated in an analog manner. Finally, the spectrum of the
metamaterial is given by

T (λ) =
F(I)

F(Iref)
.

A single scan of the entire mirror distance takes about one second. To reduce mea-
surement artifacts like thermal fluctuations and vibrations in the laboratory, a helium-
neon (HeNe) laser is simultaneously directed through the Michelson interferometer.
Its interference pattern is used as a frequency reference to precisely determine the
position of the movable mirror.

Fig. 3.12 shows a typical reference spectrum of a near-IR FTIR. It accounts for the
emission spectrum of the lamp, the absorption of all media crossed by the light beam,
and the sensitivity of the detector. The reference spectrum is measured by focusing
the beam onto the surface of the substrate. In particular, we can observe resonant
molecular absorption modes of O-H bonds (between 2.5μm and 3.0μm wavelength),
C-H bonds (between 3.0μm and 3.5μm wavelength), and O=C=O bonds (at 4.2μm
wavelength). Moreover, at wavelengths above 6.0μm (not shown in Fig. 3.12) the
170μm-thick glass substrate becomes opaque. For these spectral domains, the inten-
sity of the reference beam is relatively low which makes the sampling more sensitive
to noise.
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Figure 3.12: Transmittance reference spectrum of the Bruker Equinox 55 Fourier-transform
infrared spectrometer scaled in arbitrary units. A 170μm-thick glass substrate
is used as a sample between both Cassegrain objectives (q.v. Fig. 3.11). Ab-
sorption bands due to O-H bond (between 2.5μm and 3.0μm wavelength), C-H
bond (between 3.0μm and 3.5μm wavelength), O=C=O bond (at 4.2μm wave-
length), and silica (> 6.0μm wavelength) resonances are present. Moreover,
the sensitivity of the detector (in this case a liquid-nitrogen-cooled indium anti-
monide (InSb) detector) decreases below 1.5μm and above 4.0μm wavelength.
However, this loss in signal amplitude can be compensated to a certain extend
by averaging of multiple measurements.

As we like to measure spectra of small nanostructures (typically with total lateral
dimensions of a few ten microns), we must focus the white-light beam to increase
the local intensity. Therefore, both spectrometers are coupled to a purpose-built
microscope (Bruker Hyperion 2000) equipped with reflective Cassegrain objectives
(magnification: ×36, numerical aperture: 0.5). The regions of interest are selected
either by circular apertures or by knife-edges.

Due to the intrinsic geometry of Cassegrain objectives, by default, the samples are
illuminated by an oblique incident light beam with a finite opening angle of 15� to 30�.
As mentioned, the calculations via finite-integration technique can only be performed
for normal incidence. This discrepancy can be partly avoided by introducing apertures
which mask most of the incident light. By additionally tilting the sample, the beam
hits the structure with a minimized opening angle of < 5�—which is a fairly good
approximation to normal incidence. Alternatively, the Cassegrain objectives can be
replaced by calcium fluoride (CaF2) objectives which show high transmittance up to
8μm wavelength. However, their magnification is much lower so that only fairly large
structures can be characterized.



4. Bi-Anisotropic Three-Dimensional
Metamaterials

Figure 4.1: (a) Artist’s view of an array of upside-down 3D split-ring resonators (SRRs)
which we intend to examine. Adapted from [109]. (b) Illustration of a stylized
SRR and parameters used for the analytic calculation. The excitation geometry
considered in this section is also depicted. Notably, the incident light is not
perpendicular to the SRR’s symmetry plane (i.e., the xy-plane). Therefore, the
unit cells are not centrosymmetric along the propagation direction which yields
a bi-anisotropic optical behavior. Adapted from Ref. [51].

For a first demonstration of the proposed 3D fabrication method presented in section
3.3, i.e., DLW in combination with silver CVD, we fabricated an array of separated
3D SRRs like shown in Fig. 4.1(a) [32,109,112,113]. Here, the excitation geometry is
fundamentally different to planar SRR arrays [7,24–27] for which we already derived
analytic expressions in section 2.4. It rather relates to the case depicted in Fig. 2.4(c),
where the structure couples to both the electric and the magnetic component of light.
To provide an insight into the underlying physics, we proceed on the assumption that
the coupling between adjacent SRRs is negligible. Hence, the derived optical proper-
ties of an individual SRR can be directly related to the properties of a metamaterial
consisting of an array of these building blocks. Beyond that, we simplify the unit cell
by rectifying the outer shape and consider the SRRs to be excited from the bottom.

57



58 4. Bi-Anisotropic Three-Dimensional Metamaterials

This leads to a more instructive representation shown in Fig. 4.1(b). By regarding

this illustration, we realize that the electric field vector �E of the incident light in-
duces a polarization �P . The charge separation at the slit causes a flowing current
�I which, in turn, induces a magnetization �M . Due to the symmetry of the SRR,
the induced magnetic dipole moment is oriented perpendicular to the exciting electric
field and parallel to the incident magnetic component �H. In the same way, we could
also start from the incident magnetic component of light and will finally end up with
an induced polarization which is perpendicular to the excitation. Since the induced
field components include an angle ϕ = 90� with the fields which excited them, the
underlying configuration is concerned with “pure” bi-anisotropy previously discussed
in section 2.8.1. This is additionally confirmed by the unit cell—and hence the re-
spective metamaterial—not being centrosymmetric along the propagation direction of
light.

In the following section, we will re-derive an analytic SRR model in quasi-static ap-
proximation accounting for bi-anisotropy [51]. The resulting expressions will also be
checked by numerical calculations to provide confidence for following discussions. This
initial theoretical approach will help to understand the measured spectra in section
4.2 as well as the calculated dispersion of the material parameters.

4.1. Analytic Model of a Bi-Anisotropic
Split-Ring-Resonator Array

For the sake of deriving explicit expressions for �P and �M , we start with Kirchhoff’s
law like previously in section 2.4. However, this time the excitation geometry (see
Fig. 4.1) is different. To keep track of the full problem, we split our discussions
into the contributions of Faraday’s induction law and the voltage drop over the slit
capacitor. Furthermore, we consider only the field vector components of interest.

Contribution of the Faraday induction law: The magnetization induced by the
magnetic field component can be directly obtained by using (2.34), i.e.,

Mz = χm,zz(ω)Hz = (μzz(ω)− 1)Hz

=

(
fω2

ω2
0 − ω2 − 2iγω

)
Hz . (4.1)

In (4.1), we introduced the damping γ = R/(2L), the LC eigenfrequency ω0, the
SRR volume filling fraction f = l2h/V , and the unit volume V =

∏3
i=1(ai). Due to

bi-anisotropy the Faraday law also results in a time-harmonic polarization

Py =
d

V

∫
I dt
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which is related to the magnetic field via the cross-term parameter

ξyz(ω) = c0
Py

Hz

(2.33)
= c0

dI

(−iω)V

μ0l
2ω2

(ω2
0 − ω2 − 2iγω) IL

(2.28)
= c0

hl2d

l2V

(
iω

ω2
0 − ω2 − 2iγω

)
(2.35)
= c0

d

l2

(
ifω

ω2
0 − ω2 − 2iγω

)
. (4.2)

The polarization arising from the magnetic component of the incident light is given
by

Py =
1

c0
ξyz(ω)Hz =

d

l2

(
ifω

ω2
0 − ω2 − 2iγω

)
Hz . (4.3)

Notably, Py is phase delayed by 90� with respect to the exciting magnetic field Hz.
Besides that, the polarization reveals a similar resonance behavior around the LCR
eigenfrequency as the magnetization. As intuitively expected, the absolute value of
the polarization changes proportional to the slit width d of the SRR.

Contribution of the voltage drop: The voltage drop over the slit capacitor arises
from the incident �E-field and is given by Uind=Ey(t)d. Assuming again time-harmonic
fields results in

Uind = −∂ΦB

∂t
= −μ0l

2(−iω)Hz . (4.4)

Hence, the derivation of Mz caused by the voltage drop reads

ζzy(ω) = μ0c0
Mz

Ey

= μ0c0
Il2

V

d

Uind

(4.4)
= μ0c0

Il2

V

dμ0l
2

(iω)μ0l2
ω2

(ω2
0 − ω2 − 2iγω) IL

(2.28)
= c0

d

l2

( −ifω

ω2
0 − ω2 − 2iγω

)
(4.2)
= −ξyz

⇒ Mz =
1

μ0c0
ζzy(ω)Ey

=
d

μ0l2

( −ifω

ω2
0 − ω2 − 2iγω

)
Ey . (4.5)
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For the polarization caused by the voltage drop, we finally obtain

εyy = 1 +
Py

Ey

= 1 +
dI

(−iω)V

d

Uind

(4.4)
= 1 +

d2I

(−iω)V

μ0l
2

(iω)μ0l2
ω2

(ω2
0 − ω2 − 2iγω) IL

(2.28)
= 1 +

d2

μ0l4

(
f

ω2
0 − ω2 − 2iγω

)
⇒ Py = ε0χe,yy(ω)Ey

=
ε0d

2

μ0l4

(
f

ω2
0 − ω2 − 2iγω

)
Ey . (4.6)

In contrast to the contribution of the Faraday induction law, the 90� phase delay now
occurs for the magnetization Mz. Apparently, a composite medium consisting of the
discussed SRR array is reciprocal because of ξyz=−ζzy. If the SRR shown in Fig. 4.1
is excited from the opposite side, i.e., the wave vector is anti-parallel, the induced
current �I is also inverted. Hence, +ξyz → −ξyz, whereas εyy and μzz do not change
their sign.

The derived material parameters versus the normalized frequency ω/ω0 are shown
in Fig. 4.2. Although both Re(ε) < 0 and Re(μ) < 0 are simultaneously negative
in the spectral region highlighted by the gray bar, this does not essentially lead to
Re(n)<0, not even if damping is neglected (i.e., γ/ω0=0). Referring to the discussions
of section 2.8.1, especially Fig. 2.12(b), this is a distinct property of bi-anisotropic
media. Another typical signature is found for the spectrum in Fig. 4.2(e). If light
is impinging from the top (i.e., propagating along the +x-direction), we obtain a
reflectance denoted byR+, whereas the reflectance for light impinging from the bottom
(i.e., propagating along the −x-direction) is given by R−. Notably, the reflectance
depends on direction which can be associated with the bi-anisotropic impedance given
by (2.52). The transmittance T , however, is equal in both directions (T = T− = T+)
demonstrating that the SRR array is indeed reciprocal.

We compared the analytic model with time-domain calculations performed by Mi-
crowave Studio. Referring to Fig. 4.1(a), we used the following geometrical para-
meters: Periodicity a=1000 nm, SRR slit width d=570 nm, height l=525 nm, SRR
thickness h1 = 550 nm, spacer thickness h2 = 450 nm, groove width g = 270 nm. No-
tably, these are the feature sizes obtained from evaluation of electron micrographs
of the fabricated structures to be discussed in the following section. The qualitative
agreement between the numerical calculations and the analytic results from Fig. 4.2
is very good. Especially, the direction dependence of the reflectance R± is nicely re-
produced by numerics. Note that the calculated SRRs are upside-down—compared
to the geometry assumed for the analytic model. Therefore, they are excited from the
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Figure 4.2: Exemplary results of the derived analytic split-ring resonator model (for geom-
etry see Fig. 4.1) for the parameters γ/ω0 =0.05, f =0.3, and dc0/l

2 =0.75ω0.
(a) Electric permittivity ε, (b) magnetic permeability μ, (c) cross-term para-
meter ξ, and (d) refractive index n versus the normalized frequency ω/ω0.
Real (imaginary) parts of these complex quantities are shown in red (blue).
(e) Normal-incidence transmittance T =T+=T− and reflectances R+ (light im-
pinging from the top, i.e, the +x-direction) and R− (light impinging from the
−x-direction) for a slab of material with parameters as in (a)–(d). The slab
thickness is taken as c0π/ω0. Taken from Ref. [51].
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Figure 4.3: Calculated spectra and retrieved material parameters versus the normalized fre-
quency ω/ω0 of an array of upside-down split-ring resonators shown in the inset.
For normalization, the LC eigenfrequency was estimated from the spectral po-
sition of the resonance (i.e., the dip in transmittance) to be ω0 =70THz. The
parameters of the structure are listed in the text. (a) Electric permittivity ε,
(b) magnetic permeability μ, (c) cross-term parameter ξ, and (d) refractive in-
dex n retrieved from the equations presented in section 2.8.1. Real (imaginary)
parts of these complex quantities are shown in red (blue). (e) Normal-incidence
transmittance T =T+=T− and reflectances R+ (light impinging from the top)
and R− (light impinging from the bottom). The regions 0 < ω/ω0 < 0.1 and
1.9 < ω/ω0 < 2.0 are intentionally masked due to artifacts of the time-domain
solver at frequencies near zero and close to Wood anomalies, respectively.
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bottom leading to a mirroring of the cross-term’s curve (at the ξ=0 axis) in Fig. 4.3(c)
compared to Fig. 4.2(c). In a nutshell, the analytic quasi-static model seems to com-
prise the most important optical characteristics as similar signatures can be found in
both cases.

Let us, for a moment, suppose that a second slit is introduced to the SRR, opposite to
the first one. At first view, it becomes evident that inversion symmetry is recovered.
While neglecting retardation effects, the voltage drop over the second slit is opposite
in sign to the first one. Thus, neither magnetization nor polarization is induced by
the electric field, whereas a magnetic field component normal to the SRR plane can
still induce a circulating and oscillating current, leading to a magnetic dipole moment.
However, the electric dipole moment of the second slit is opposite to that of the first
slit. Hence, no electric polarization results from the magnetic field of the incident
light. It directly follows from our model that under these conditions the cross-term
parameter ξyz is strictly zero and εyy=1 while μzz 
=1.

4.2. Fabrication and Optical Characterization

So far, our investigations have been restricted to theoretical analyses to gain a deeper
insight to the fundamental behavior of a bi-anisotropic array of 3D SRRs. The next
step is to fabricate the corresponding samples and to see whether the experimental
characterization coincides with the results from the prior section. Because of the uti-
lized fabrication method, we additionally obtain descendants of the intended 3D SRR
structure whose unit cells are electrically connected along the two in-plane directions
(q.v. Fig. 4.4(b)–(d)) [109]. To distinguish the fabricated structures, they are named
after their sub-figure indication in Fig. 4.4, i.e., “case (a)” relates to the 3D SRR de-
sign shown in Fig. 4.4(a), “case (b)” to Fig. 4.4(b), and so forth. This nomenclature
will be used throughout the rest of this chapter.

Fabrication of the 3D SRR array starts with a glass substrate covered with a 2μm-
thick fully polymerized SU-8 film. This preliminary layer is used to prevent tearing of
the silver layer due to thermal stresses between the glass substrate and the SU-8 struc-
ture at high temperatures. Subsequently, another SU-8 film is spun-on, structured via
DLW, post-baked, and developed. By using the DLW’s tilt-correction feature, sub-
stantial lateral gradients in height within the sample footprint (here 50μm ×50μm)
can be avoided. Afterwards, the resulting polymer template is protected by adding a
thin titania layer via ALD and is finally coated with a 34 nm-thick silver layer using
CVD. This procedure results in the corrugated metal surface depicted in Fig. 4.4(d).
The other structures shown in Fig. 4.4(a)–(c) have been post-processed by FIB milling.
We use a FIB / scanning-electron microscopy system (Zeiss 1540 XB) operating with
gallium ions (Ga+) at 30 keV. Milling along the grooves has been performed manually
by imaging the trenches with an ion beam of 20 pA. For orthogonal cuts in Fig. 4.4(a)
and (b), we have utilized an ELPHY Plus nanolithography system (by Raith GmbH)
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Figure 4.4: Oblique-view electron micrographs of the fabricated (a) 3D split-ring resonator
(SRR) array and (b)–(d) corresponding variations. The insets illustrate the
intended designs. The corrugated-metal surface in (d) is realized by direct laser
writing and subsequent silver metallization via chemical vapor deposition. The
structures in (a)–(c) require additional post-processing by means of focused-ion
beam milling. The geometrical parameters evaluated from these micrographs
are as follows: Periodicity a = 1000 nm, SRR slit width d = 570 nm, height
l = 525 nm, SRR thickness h1 = 550 nm, spacer thickness h2 = 450 nm, groove
width g=270 nm. The definition of these geometrical parameters can be found
in Fig. 4.1(a). Adapted from Ref. [109].

for automatically controlling the FIB milling with a beam current of 100 pA. Resulting
feature sizes can be measured from electron micrographs and are listed in the caption
of Fig. 4.4. Notably, the fabricated structures come fairly close to the desired ideal
(see colored insets).

The normal-incidence transmittance spectra (left column of Fig. 4.5) have been mea-
sured using the Bruker Equinox 55 FTIR. All results are for linear polarization of the
incident light oriented perpendicular to the grooves. The spectra are normalized to
the transmittance of a bare glass substrate. In Fig. 4.5, the column on the right-hand
side shows the related calculations for direct comparison with the theoretical ideal.
For this purpose, the Maxwell equations have been solved numerically for one 3D unit
cell with waveguide boundary conditions using the time-domain solver of Microwave
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Figure 4.5: Left column: Measured normal-incidence transmittance spectra for the four
samples shown in Fig. 4.4 (ordered consistently). The gray shadings highlight
the magnetic resonance for each case. Due to low transmittance, the vertical
scale in (d) is chosen differently. Artifacts resulting from chemical absorption
lines are indicated in (a). Right column: Calculated spectra referring to the
measuring results in the left column. In (g) and (h) finite-integration technique
calculations (black) are compared with Fourier modal method calculations (red)
using the same geometrical parameters. Note that the scales in both columns
are identical, thus, allowing for a direct comparison. Adapted from Ref. [109].
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Studio. Furthermore, we checked the results for the symmetric cases, i.e., cases (c)–
(d), with a self-made Fourier modal method code by employing an expansion of the
fields in 801 plane waves. The 2D-symmetric unit cell has been subdivided into 524
layers along the propagation direction of the incident light wave and calculated by us-
ing periodic boundary conditions. For all calculations, we used the silver parameters
from Tab. 3.1. The refractive indices of SU-8, glass, and titania have been taken as
denoted in section 3.3.2.

The experimental results are well reproduced by our calculations. Especially, the
transmittance minima which correspond to the excitation of a magnetic-dipole re-
sonance (compare gray shadings of the left and the right column) agree fairly well.
Remaining quantitative deviations are likely due to simplifications in the considered
model geometry and / or due to fabrication imperfections. In particular, it is known
that FIB milling tends to introduce gallium contamination which deteriorates the
optical properties.

The transmittance spectra in Fig. 4.5 clearly reveal that the resonance positions of the
initially investigated 3D SRR array (case (a)) and descendants differ considerably. To
disclose the origin of the observed characteristics, we should survey the differences
between the fabricated structures in a stepwise manner.

4.3. From Isolated Split-Ring Resonators to
Corrugated Metal Surfaces

Electrically connecting the isolated 3D SRRs of case (a) perpendicular to the grooves
leads to the design of case (b). This transition looks like a minor modification but
has far-reaching consequences for the optical response. At first view, a strong blue-
shift (Δλ≈1.8μm) of the magnetic resonance compared to case (a) is observed from
the transmittance spectra in Fig. 4.5(b) and (f), respectively. To identify the origin
of this variation, we retrieve the bi-anisotropic optical parameters. The respective
results in Fig. 4.6 show that the dispersion of the permittivity ε(ω) has now a Drude-
like progression which is overlapped by a resonance at approximately 100THz. This
fact can be explained by realizing that the electrical connection has formed a diluted
metal whose plasma frequency is in the range of 60THz. Note that the frequency axis
in Fig. 4.6 is not normalized and the scales of the material parameters are different to
those in Fig. 4.3. Remarkably, the cross-term parameter’s progression ξ(ω) is similar
to the analytic model of the upright SRR array which we discussed in section 4.1. This
suggests that the functional unit cell has rotated by 180�. To verify this assumption,
we have plotted the calculated current density of a 2D cross section for the cases (a)
and (b) (see Fig. 4.7). Due to symmetry, the current densities of the cases (c) and (d)
look rather similar.
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Figure 4.6: Calculated spectra and retrieved material parameters versus frequency of case
(b), i.e., the structure design shown in Fig. 4.4(b). The parameters of the struc-
ture have been taken as listed in the caption of Fig. 4.4. (a) Electric permittivity
ε, (b) magnetic permeability μ, (c) cross-term parameter ξ, and (d) refractive
index n retrieved from the equations presented in section 2.8.1. Real (imaginary)
parts of these complex quantities are shown in red (blue). (e) Normal-incidence
transmittance T =T+=T− and reflectances R+ (light impinging from the top)
and R− (light impinging from the bottom). Note that the transmittance spec-
trum is identical to Fig. 4.5(f), but scaled differently.
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Figure 4.7: Snapshots of the ohmic current density (red arrows) inside the metal layer cal-
culated with finite-integration technique. For clarity, a second unit cell is added
to the calculated volume. (a) Current distribution of case (a) at the resonance
frequency of 70.0THz (4.25μm wavelength). (b) Current distribution of case
(b) near the fundamental resonance frequency at 1.0THz (300μm wavelength),
i.e., essentially the static limit. (c) Current density for the higher-order reso-
nance of case (b) at the resonance frequency of 122.5THz (2.45μm wavelength).
The red areas in (a) and (c) illustrate our intuitive interpretation of the unit
cells’ orientation. Reproduced with permission from Ref. [109].
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For the case (a) of separated SRRs, the fundamental LCR resonance is clearly that
of an upside-down “U” (see Fig. 4.7(a)). The oscillating circulating currents and,
therefore, the magnetic dipoles are induced by the voltage drop over the two ends
of the SRR’s capacitor part and, simultaneously, by the magnetic field normal to
the drawing plane. Case (b) is a bit more sophisticated. Here, the right-hand side
plate of one SRR is electrically connected to the left-hand side plate of the SRR to
its right. As the structure is excited from the top via a plane electromagnetic wave
under normal incidence, all unit cells are forced to oscillate in phase. This means
that they all have the same potential difference between their left and right-hand side
plate. Combined with the discussed electrical connection of neighboring SRRs, this is
essentially equivalent to short-circuiting each plate capacitor, i.e., each SRR becomes
a closed ring. Successively closing the gap of a “U” towards an “O” corresponds to a
diverging capacitance and, thus, to a fundamental LCR eigenfrequency approaching
zero. In this quasi-static case shown in Fig. 4.7(b) (at frequencies of around 1THz�
122.5THz), strong circulating currents lead to strong magnetic dipoles excited by the
incident light field. This is contrary to what is known for the separated SRRs. The
situation can also be interpreted as two poles of a battery which are applied at the left
and right-hand side end of the structure. Clearly, the voltage drop between the two
ends leads to an electric current flowing from the left to the right. Interestingly, the
current will create local magnetic dipoles in the almost closed metallic loops. As the
structure is asymmetric along the propagation direction, the neighboring magnetic-
dipole moments do not cancel and a net magnetization of the metamaterial structure
remains even in the static limit. For electrically separated SRRs, this continuous
current flow is obviously not possible. Thus, the resonance in transmittance observed
in Fig. 4.5(b) and (f) is not the fundamental magnetic resonance but rather a higher-
order mode. The fundamental mode of the system shifts towards zero frequency
(infinite wavelength) when case (a) passes into case (b).

The transition between case (c) and (d) can be treated equally. Here, compared to
cases (a) and (b), the SRR thickness is merely enlarged along the groove direction
to form continuous wires. From this, we expect a higher resonance frequency due
to a decreased kinetic inductance (see section 2.4). In fact, this tendency is clearly
observed in the measured optical spectra (q.v. Fig. 4.5(a) and (c) as well as Fig. 4.5(b)
and (d)). Notably, the effective medium limit is not violated since the induced currents
do not have a vector component parallel to the grooves. Hence, the geometry can be
regarded as an array of SRRs placed tightly next to each other leaving no gaps.

4.4. Negative-Index Bi-Anisotropic Metamaterial

In contrast to isotropic structures, the realization of a negative refractive index can
be suppressed for bi-anisotropic designs by additional cross-term parameters, like
shown in Fig. 2.12. This actually occurred for the 3D SRR array and its descendants.
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Figure 4.8: Metamaterial design with a negative refractive index. (a) Artist’s view of the
structure design. The white regions are related to the polymer (SU-8) located
on a glass substrate. The sidewalls of the polymer are first encapsulated by
silica via pulsed layer deposition (light green) and subsequently coated with
silver. The polarization of the incident electromagnetic field and the defini-
tion of the geometrical parameters (values are given in the text) are illustrated.
(b) Oblique-view electron micrograph of the structure fabricated by using direct
laser writing and silver shadow evaporation. The structure has been cut via a
focused-ion beam (FIB) to reveal its interior. The complicated features visible
underneath the glass-substrate surface are due to the FIB cutting and, hence,
not relevant. (c) According to Fig. 2.11, the negative-index structure is com-
posed of a magnetic element, represented by upside-down split-ring resonators
(blue). The elevated wires act as a diluted metal (gray). Additionally, a cross-
term parameter must be considered which also influences the refractive index
for bi-anisotropic materials. (a) and (b) adapted from Ref. [110].

However, we also know from theory that bi-anisotropy does not inherently forbid
Re(n)<0. Therefore, we have tried to enforce this property by starting from case (a)
and introducing additional wires perpendicular to the grooves. The idea behind this
approach is based on the possibility to tune the diluted metal density by varying the
periodicity of the elevated wires. This allows us to influence the spectral position of
the resonance of ε(ω).

The corresponding sample design and the realized structure are illustrated in
Fig. 4.8(a) and (b), respectively [110,111,113]. First, we fabricated a polymer (SU-8)
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Figure 4.9: Measured linear-optical normal-incidence transmittance (black) and reflectance
spectra of the structure shown in Fig. 4.8. Note that the reflectance taken from
the air side (red) and taken from the glass-substrate side (blue) are distinctly
different. Adapted from Ref. [110].

template by using DLW. Next, this template has been coated with a thin layer of
silica using a PLD process and metallized via electron-beam shadow evaporation of
silver under high vacuum. The surface normal and the axis of evaporation included
a fixed angle of 65�. The utilized metallization process is highly anisotropic. Thus,
bringing the azimuth angle to four different positions during evaporation results in
coated SU-8 sidewalls but, e.g., the glass substrate remains uncoated. Note that we
did not mention electron-beam shadow evaporation in chapter 3 since it cannot be
used in combination with DLW to realize bulk metamaterials. It was rather used for
practical purposes to circumvent the metallization of the substrate bottom which is
an inherent constraint of isotropic coating techniques like CVD.

The upside down “U” parts can be viewed as SRRs which deliver the magnetic-
dipole response. The intentionally elevated and elongated metal parts parallel to the
incident electric field vector deliver the negative permittivity (see Fig. 4.8(c)). For
our analysis, we used a structure with a SRR periodicity of a1=1.20μm, an elevated
wire periodicity of a2=1.70μm, rod heights of h1=1.05μm, h2=1.25μm, and a SRR
height of l= 0.88μm. The silica film thickness is 35 nm and the silver film thickness
is 32 nm on all rod sides and 51 nm on top of the rods.

Measured transmittance and reflectance spectra are shown in Fig. 4.9(a). The trans-
mittance spectrum exhibits a minimum at around 78THz (i.e., 3.85μm wavelength).
The peaks at around 70THz are due to carbon dioxide absorption lines in the spec-
trometer and, hence, an artifact of the measurement. Notably, the normal-incidence
reflectance spectrum taken from the air side (red) is substantially different from that
taken from the glass-substrate side (blue), whereas the transmittance (black) is the
same for both sides within experimental uncertainty. This aspect is an immediate
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consequence of the overall structure being bi-anisotropic. The rapid oscillations are
due to Fabry–Pérot interferences in the 170μm-thick glass substrate.

Next, we compared our experimental results with theory to further elucidate the
physics underlying the measured optical spectra. Calculated transmittance and re-
flectance spectra, directly comparable with experiment, are depicted in Fig. 4.9(b).
We used again the finite-integration technique and the material parameters denoted
in Tab. 3.1. The qualitative trend of the spectrum agrees well with experiment. In
particular, theory also shows a minimum of transmittance at 78THz. Remaining
discrepancies between experiment and theory are very likely due to slight imperfec-
tions in sample fabrication (see Fig. 4.8(b)). Importantly, theory reproduces that the
normal-incidence reflectance spectra taken from the air and the glass-substrate side
are different.

The effective metamaterial parameters have been retrieved for a bi-anisotropic slab of
thickness d=1.25μm on a glass substrate (see Fig. 4.10). In the considered spectral
range, a description in terms of an effective medium is justified because the lattice
constant is smaller than half the resonance wavelength. Indeed, a negative refractive
index is observed from around 77THz to 83THz. The negative refractive index is
partly connected to Re(ε),Re(μ)< 0 (light gray area) and partly to Re(ξ)< 0 (dark
gray area). The related imaginary part of n can be translated into a maximum figure of
merit (q.v. (2.37)) of FOM=1.3, which is comparable to double fishnet-type negative-
index photonic metamaterials made via electron-beam lithography. This FOM value
also clarifies that the very low transmittance in the negative-index region is related to
a large impedance mismatch with respect to air rather than being caused by losses.

4.5. Interim Result

In summary, we have investigated an array of upside-down SRRs (and modifica-
tions) as an example for a 3D metamaterial fabricated by DLW and silver CVD.
The physics of the structure can be understood by an analytic model which accounts
for bi-anisotropy. Importantly, the numerical calculations can be accommodated to
the characteristics of the fabricated structures. Hence, we conclude that our proposed
fabrication method is appropriate to create 3D metamaterials of high optical quality.

Although bi-anisotropy possibly suppresses a negative refractive index, a structure
was realized whose cross-term parameter ξ even helps to broaden the spectral range
of Re(n)<0. However, it is evident from Fig. 4.10 that this effect accompanies large
values of Im(n) in the dark gray region. Consequently, the fabricated metamaterial
shows an unintentionally high damping of the incident light. To circumvent this
problem, we should favor unit cells which are isotropic or anisotropic so that ξ=0 is
recovered. Nevertheless, we accomplished a Figure of Merit greater than one which is
comparable to recently reported planar metamaterials.
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Figure 4.10: Calculated optical response of the bi-anisotropic negative-index metamaterial
for normal incidence of light. (a) Retrieved electric permittivity ε, (b) mag-
netic permeability μ, (c) bi-anisotropy parameter ξ, and (d) refractive index
n. The corresponding real parts are shown in red, the imaginary parts in blue.
The gray backgrounds aim at clarifying the origin of the negative real part of
n. (e) Transmittance and reflectance spectra for both propagation directions.
Adapted from Ref. [110].
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Remarkably, all fabricated 3D metamaterials presented in this section cannot be con-
sidered as bulk since the incident light only interacts with a single functional layer.
Thus, the optical features are mainly dominated by surface effects. This directly
motivates the discussion of the next chapter, where we will present first promising
attempts to realize bulk photonic metamaterials.



5. Towards Bulk Photonic
Metamaterials

The fabrication techniques, introduced in chapter 3, comprise some intrinsic con-
straints which must be taken into account in the design process of bulk metamaterials.
Hence, in the majority of cases, it is not possible to adapt theoretical drafts [146–151]
suggested for metamaterials in the microwave regime, despite their promising proper-
ties. Problems concerning the fabrication are encountered in the following situations:

(i) The structure involves locally separated metallic elements along stabilizing con-
nections [146, 147, 149]. Such features are often used to provide a capacitive
part required to mimic an LCR circuit. Referring to the fabrication via DLW
and CVD, this constraint can only be eliminated by establishing local func-
tionalization. Importantly, the functional layer must survive the environmental
conditions during the deposition process, i.e., it must be chemically stable at
high temperatures and low pressures. Furthermore, the structure-supporting
glass substrate is also metallized when using isotropic coating processes like
CVD, electroless plating or ALD. If the surface metallization is unintended, it
could be removed by a lift-off process. However, related efforts have not been
made, yet.

Referring to the fabrication via DLW and electroplating, we might overcome
this problem by alternating deposition of noble metals (e.g. gold) and easily
oxidizable metals (e.g. aluminum).

(ii) The smallest and largest features of the metamaterial unit cell differ greatly in
size [150,151]. Since DLW limits the size of the smallest functional elements to
some hundreds of nanometers, the total size of the unit cell must be increased
to a certain extent. This often shifts the magnetic resonance to much lower
frequencies and / or decreases the λ/a ratio. In the latter case, we run the risk
of exceeding the effective medium limit.

Before we published our 3D fabrication method [32, 33], the listed constraints were
unknown to the metamaterial community. Hence, it took some time until first com-
patible proposals like the corrugated-wire structure [145] (see Fig. 5.1(a)) came up.
The latter consists of four gold meandering wires successively rotated by 90� to form
a unit cell as shown in Fig. 5.1(b). For clarity, the unit cell is depicted from different
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Figure 5.1: Artist’s view of the corrugated-wire structure proposed in Ref. [145]. This meta-
material exhibits a negative refractive index in both planes parallel to the sub-
strate. (a) Oblique-view illustration of the design and polarization of the inci-
dent electromagnetic field are illustrated. (b) Top view, oblique view, and front
view of the unit cell.

points of view. Non-isotropic planar versions of this design have been investigated
recently [152,153].

Microwave Studio calculations and an optical parameter retrieval [145] have revealed
that the corrugated-wire structure shows a negative refractive index in the plane par-
allel to the glass substrate (i.e., the xy-plane in Fig. 5.1(a)). The structure can be
considered as an LCR circuit, where each pair of opposing wires represents the capaci-
tive part. The inductance is provided by every corrugated wire, which simultaneously
acts as a diluted metal. Note that the unit cell is centrosymmetric along the propa-
gation direction and, thus, not bi-anisotropic. Furthermore, the unit cells look similar
for light impinging from the x- or y-direction.

Since the set of geometric parameters proposed in Ref. [145] is currently not pro-
ducible, we have chosen to increase the size of the unit cell in order to obtain viable
feature sizes. For the modified configuration, the structure is not expected to show a
negative refractive index since the spectral regions where Re(ε)<0 and Re(μ)<0 do
not overlap anymore. Nevertheless, we intended to check whether it is, in principle,
possible to fabricate this structure. Therefore, we processed the negative template
into the positive-tone photoresist AZ 9260 via DLW and, subsequently, filled up the
resulting holes by electroplating of gold [33]. For metallization, we applied an electric
current of 0.235μA (corresponding to a current density of 3 · 10−3 A/cm2), leading to
a total growth time of about 45minutes.
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Figure 5.2: Experimental realization of a bulk metamaterial by using direct laser writing
and electroplating of gold. (a) Oblique-view electron micrograph of the fabri-
cated structure. The fluff around the metallic wires stems from the remaining
photoresist which had not been removed during plasma etching. (b) Top-view
electron micrograph.

The corrugated-wire structure is mechanically not very stable due to the high aspect
ratio of lateral and vertical dimensions. Moreover, it has a small footprint which makes
the fabrication process fairly demanding. Especially, the small footprint causes severe
problems since air inclusions prevent the holes from being filled to an equal level.
These inclusions are formed during dipping the template into the aqueous electrolyte
solution. We solved this problem by exchanging air by carbon dioxide (CO2) in a self-
made gas-tight chamber. In fact, volumes of gaseous carbon dioxide entirely dissolve
in water and, thus, allow the electrolyte solution to get connected to the ITO cathode.
As a result, even very thin and complex-shaped channels can be infiltrated. Moreover,
AZ 9260 is very sensitive to dehydration. If the resist runs dry, numerous cracks are
formed after development which can be mainly attributed to warpings due to the gold
deposition. It turns out that introducing predetermined breaking points (e.g., walls
around the functional domain) reduces the chance of damage considerably.

As shown in Fig. 5.2(a) and (b), we fabricated structures with two periods in z-
direction and 15 periods in the xy-plane. The size of the unit cell was chosen to be
4×4×4μm3. To get some information about the structure, we measured the spectrum
by using the Bruker Tensor 27 FTIR spectrometer (see Fig. 5.3). The spectral position
of the magnetic resonance is expected to be found in the mid-IR (at frequencies
of around 45THz). Since the glass substrate becomes opaque at frequencies below
50THz, we confined ourselves to measure the reflectance only.
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Figure 5.3: Measured reflectance spectrum under oblique incidence, i.e., the light beam is
tilted by 20�± 5� to the normal z-axis. The blue and red curves relate to the con-
figuration, where the wavevector has components pointing in x- and y-direction,
respectively (see Fig. 5.1(a)). Within some limits, all features are reproduced
in both configurations, i.e., the structure behaves nearly similar in both propa-
gation directions.

Figure 5.4: Artist’s view of a fully isotropic negative-index metamaterial proposed by Güney
et al. The design proofs that the required connectivity of metallic elements
does not preclude a negative refractive index. (a) Basic building block of the
structure. (b) Arranging the unit cell from (a) in a cubic lattice results in a
bulk isotropic metamaterial. Taken from [154].
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Due to geometrical restrictions of the microscope spectrometer, it is not possible to
measure the spectrum of the metamaterial parallel to the substrate plane. Regret-
tably, this is the excitation geometry for which a negative refractive index has been
proposed [145]. However, to come as close as possible to the desired configuration, we
probed the structure under oblique incidence, i.e., the incident light beam is tilted by
20�± 5� to the normal z-axis. Moreover, we restricted the wavevector �k to be either
parallel to the xz- or the yz-plane (see Fig. 5.1(a)) which enables a partial excitation
of in-plane resonances of interest.

In summary, we made an important step towards negative-index bulk metamaterials
for the IR. Current restrictions related to attainable feature sizes are mainly rooted in
the photoresist which we had to use out of specification. Unfortunately, no other suit-
able high-resolution positive-tone resists are commercially available at the moment.
However, once it becomes available, there are no more conceptual problems. Thus,
realizing appropriate bulk designs by using DLW and advanced coating processes is
rather a matter of time. Since the experimental constraints have been defined, new
compatible proposals have been reported recently like, e.g., the 3D-isotropic design
shown in Fig. 5.4 [154].





6. Conclusions and Outlook

Since photonic metamaterials became an active field of research, planar composite
nanostructures have played the key role in scientific investigations at near-infrared
and visible frequencies. This is due to the fact that state-of-the-art nanolithography
and deposition technologies mainly involve two-dimensional (2D) processes. However,
the predicted effects of metamaterials are based on a continuous phase change of elec-
tromagnetic waves while passing through a bulk medium. Thus, a main objective has
been the experimental implementation of 3D metamaterials which consist of multiple
unit cells along the propagation direction.

First attempts to attack this problem used stacking of multiple planar layers via
extended 2D processes [28,30,31]. However, for practical reasons, an inherently three-
dimensional (3D) fabrication approach would be preferable for this task. In the course
of this Thesis, we developed corresponding methods and realized 3D as well as bulk
photonic metamaterials for the infrared spectral range. As metamaterials essentially
consist of metallic unit cells, we require (i) a lithographic process providing a 3D
nanoscaled backbone and (ii) a suitable metallization technology which offers the
possibility to infiltrate even complex-shaped template structures.

For the sake of realizing the template structures, we utilized (i) direct laser writing
(DLW) which is known to be a very flexible and versatile tool to fabricate 3D photonic
crystals [8, 124]. Indeed, it can be considered as the rapid prototyping solution for
the nanoscale. For many years, the accessible feature sizes were not sufficiently small
to be convenient for realizing sub-wavelength unit cells required for near- or mid-
infrared metamaterials. However, recent developments of this method in terms of
automation and reproducibility have considerably softened these limitations. The
working principle of DLW is based on two-photon absorption in a photoresist which
occurs only within the high-intensity focal volume of a laser beam. The deposited
energy induces a local chemical reaction changing the solubility of the resist. Scanning
the focus of the laser beam relative to the sample defines the features of the structure.
For negative-tone resists (e.g. SU-8), a following development process exposes the
intended template, whereas a positive-tone resist (e.g. AZ 9260) yields the negative.

The 3D polymer template now serves as a framework for (ii) metallization. Notably,
directed coating techniques like electro-beam evaporation or plasma sputtering are
unsuitable for our purpose. These techniques would merely cover the outer surface
leaving the interior uncoated. Hence, most of the template features would be non-
functional with regard to a magnetic response. To avoid this problem, we have utilized
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methods which are either able to (ii.a) isotropically coat 3D templates or (ii.b) cast
the respective negative structure.

In matters of the former approach, (ii.a) chemical vapor deposition (CVD) of
silver has emerged to be an appropriate candidate [32]. We use the ligand-
stabilized silver β-dikentonate precursor (1,5-cyclooctadiene)(1,1,1,5,5,5-hexafluoro-
acetylacetonato)silver(I) [121] which is evaporated in an evacuated reaction chamber.
The self-made CVD apparatus is fully automated enabling a cyclic deposition mode,
i.e., sublimation and decomposition of the precursor substance are temporally sep-
arated. Emerging organic by-products are pumped out after each cycle to avoid
contamination of the silver layer. Spectroscopic measurements have shown that the
measured data could be nicely fitted by Drude parameters obtained from reference
measurements [76, 77]. Slight deviations from the reference parameters arise from
scattering due to surface roughness. However, the metal substructure has a negligible
impact being by orders of magnitude smaller than typical feature sizes of polymer
templates.

In matters of casting, (ii.b) gold electroplating based on an aqueous solution of sodium
disulfioaurate(I) [33] has been established1 which we use to gradually fill up the chan-
nels of a negative polymer structure. Therefore, the templates require a transparent
conducting layer (e.g. indium tin oxide) beneath the photoresist which acts as an
electrode during deposition. For structures with small voids, air inclusions might pre-
vent the electrolyte solution from reaching this electrode which leads to unfilled gaps.
We solved this problem by exchanging air by carbon dioxide in a self-made gas-tight
chamber. Since carbon dioxide entirely dissolves in water, possible air inclusions dis-
appear. As a result, even very thin and complex-shaped channels can be infiltrated.
After electrodeposition, the polymer backbone is removed by using air plasma for
several hours.

By using DLW in combination with silver CVD, we realized an array of upside-down
3D split-ring resonators (SRRs). After the metallization process, a corrugated metal
surface results. Additional structuring via focused-ion beam milling leads to elec-
trically separated and laterally connected SRRs. Measured and calculated spectra
show a good agreement for all fabricated structures. Especially, the positions of the
resonances in transmittance are nicely reproduced.

At first, the fabricated metamaterials have been examined with regard to the origin
of appearing resonances. This was motivated by the fact that their spectral posi-
tion considerably varied for certain geometries. Numerical calculations of the current
densities for each case revealed that electrically connecting adjacent SRRs along the
electric field component of the incident light tilts the orientation of the unit cell by
180�. Additionally, we realized that the fundamental magnetic resonance has shifted

1The electroplating process has been set up by Justyna K. Gansel at the Institut für Angewandte
Physik (Karlsruhe Institute of Technology).
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to the static limit. Hence, the experimentally observed resonances rather correspond
to a higher mode.

To understand the underlying physics of the different metamaterial designs, we bene-
fited from the advantage that the optical spectra and material parameters of the array
of separated 3D SRRs can be calculated analytically in quasi-static approximation.
Here, it was important to realize that the unit cells are not centrosymmetric along
the propagation direction of the incident light. Therefore, the electric component of
light induces both a parallel electric and a perpendicular magnetic dipole moment. A
related excitation geometry is also found for the magnetic component of light. This
cross-coupling phenomenon is associated with bi-anisotropy. To confirm the results of
the analytic model, we determined the electric, magnetic, and cross-coupling response
(given by the permittivity ε, the permeability μ, and the bi-anisotropy parameter ξ,
respectively) of the material to electromagnetic excitations by post-processing of our
numerically calculated spectra. For this purpose, we developed a parameter retrieval
based on an inversion of the respective Fresnel equations. Applying this procedure
yields simultaneous negative real parts of ε and μ for all configurations. In the case of
isotropic metamaterials, this would be a sufficient condition for obtaining a negative
refractive index, i.e., n < 0. In contrast, for our bi-anisotropic media, the effect of
cross-coupling rather suppresses a negative refractive index.

However, from general theoretical considerations we know that bi-anisotropy does
not inherently forbid negative-index metamaterials. Hence, we have designed a bi-
anisotropic metamaterial with an enhanced electric response. For fabrication, we
utilized DLW and electron-beam shadow evaporation of silver to fabricate an extended
version of the 3D SRR array [110], i.e., we added elevated metal wires parallel to the
electric field vector of the incident light. These wires act as a diluted metal and provide
an electric resonance at a designed spectral region. As expected, this composite
structure showed a similar magnetic and electric response leading to negative values
for ε and μ. Beyond that, we demonstrated a negative refractive index from 77THz
to 83THz (i.e., for wavelengths between 3.6μm and 3.9μm). Here, the bi-anisotropic
behavior even actively supports this feature in that it broadens the spectral range
where n<0.

Obviously, the 3D SRR array and its descendants cannot be considered as bulk meta-
materials, but they clearly represent an important first step towards this direction.
Recently, first design proposals accounting for the experimental constraints of our
fabrication method have been reported [145,154]. Although the proposed geometrical
parameters of these structures are not feasible for fabrication to date, we realized an
enlarged version of a corrugated-wire structure [145] by using DLW and electroplating
of gold. Clearly, we have overcome conceptual obstacles in fabrication and opened
the door for future developments. Besides that, we exposed the intrinsic constraints
of 3D nanofabrication enabling a targeted development of new metamaterial designs.
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Successive progresses in both design and fabrication of bulk composite materials will
certainly trigger further breakthroughs in future. Especially, the unique characteristics
of metamaterials contain a lot of potential for real-world applications [16, 33, 155].
Of course, there is always some room for improvement. Related to our fabrication
process, further developments concerning surface functionalization and feature size
reduction are required. The former issue is urged on providing as many degrees
of freedom as possible in view of structure designs. Especially, a solution for the
substrate metallization—naturally arising from isotropic coating processes—must be
provided. The feature size reduction, however, is driven by the motivation to deliver
new materials for telecommunication technology. Recently, first promising attempts
in that direction have been reported in the context of STED-DLW [156].



A. Background and Details

A.1. Wood Anomaly

Wood anomalies [157, 158] were first observed in the spectrum of light resolved by
optical diffraction gratings. They appear as rapid variations in the intensity of var-
ious diffracted spectral orders in certain narrow frequency bands. In 1902, R. W.
Wood discovered these effects in experiments on reflection gratings, and called them
“anomalies” since they could not be explained by ordinary grating theory.

The variations in the intensity are caused by (i) Rayleigh diffraction which occurs
for any polarization of the incident light wave and (ii) resonant coupling to surface-
plasmon modes if the polarization of the incident light is perpendicular to a metal
grating. For an instructive derivation of case (i) (that is also called Rayleigh-Wood
anomaly), we consider a nanostructure consisting of a pattern with periodicity a in x-
direction. The structure itself is carried by a glass substrate having a refractive index
of nglass = 1.5. This corresponds to a typical situation of measuring the transmittance
of our fabricated samples.

If light is impinging from the vacuum half-space (nvac = 1), the incident wave vector
reads

�kin,vac =
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Due to the periodicity in x-direction, we can add an even multiple N to the reciprocal
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is taken into account, the wave vector of the transmitted light which is diffracted into
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Hence, for normal incidence (kx=ky=0) the first diffraction order appears at λglass,1=
1.5 a in glass and λvac,1= a in vacuum. At these wavelengths a dip in transmittance
is observable and for λ > λglass,1 the structure must be treated as a photonic crystal.

A.2. Reciprocity in Optics

The reciprocity theorem (in terms of H. Lorentz) states that the relation between
an oscillating current and an induced electric field is unchanged if one exchanges
the points where the current is placed and the field is measured. Suppose that we
place a local current density �j1 inside the medium at a defined position “1”. The
current induces an electric field �E2 and a magnetic field �H2 at another position “2”.
Similarly, we place a second local current density�j2 at position “2” which, analogously,
generates the fields �E1 and �H1. All vectors are supposed to be harmonic functions
of time including a frequency ω. The medium is considered to be reciprocal if the
relation ∫

�j1 · �E2 dV =

∫
�j2 · �E1 dV (A.1)

holds. Notably, for this definition, there must not exist any external sources that emit
waves impinging from infinitely far away.

Reciprocity introduces a time-reversal symmetry to the material system and, thus,
simplifies the appearance of the material parameters. As a consequence, some optical
measures like the refractive index and the transmittance are equal for both anti-
parallel propagation directions.

For the context of this Thesis, it might be interesting to find formal conditions for
material parameters which describe a reciprocal bi-anisotropic medium. We start
according to Ref. [35] by setting

�H2 · (∇× �E1)− �E1 · (∇× �H2) + �E2 · (∇× �H1)− �H1 · (∇× �E2) (A.2)
(2.15)– (2.16)

= �H2 · (−iω �B1)− �E1 · (�j2 + iω �D2) + �E2 · (�j1 + iω �D1)− �H1 · (−iω �B2)
(2.5)–(2.10)

= iωμ0

(
�H1 μ �H2 − �H2 μ �H1

)
︸ ︷︷ ︸

(I)

+iωε0

(
�E2 ε �E1 − �E1 ε �E2

)
︸ ︷︷ ︸

(II)

+
iω

c0

⎛
⎜⎝ �E2 ξ �H1 + �H1 ζ �E2︸ ︷︷ ︸

(III)

− �E1 ξ �H2 − �H2 ζ �E1︸ ︷︷ ︸
(IV)

⎞
⎟⎠

+ �E2
�j1 − �E1

�j2︸ ︷︷ ︸
(V)

.
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From (A.1), the reciprocity theorem can be derived only if the ansatz (A.2) and,
additionally, the terms (I)–(IV) equal zero. If this condition is fulfilled, (A.1) can be
obtained by integration over the medium’s volume.

At first, the ansatz of (A.2) can be transformed by vector analysis [34] to

∇ ·
(
�E1 × �H2 − �E2 × �H1

)
.

Integrating over the whole volume of the medium and using the divergence theorem
leads to ∫

∇ ·
(
�E1 × �H2 − �E2 × �H1

)
dV =

∮
S

(
�E1 × �H2 − �E2 × �H1

)
dA .

By assuming a lossy medium, the fields decay exponentially with distance from the
localized currents. Thus, in the case of large material sizes, the surface integral
vanishes.

Next, we have to find conditions for which (I) and (II) equal zero. Having a closer look
at these terms reveals that cancelation merely results for symmetric permittivity and
permeability tensors whose transposition equals their pristine version, i.e., ε=εt and
μ=μt. By way of example, inserting asymmetrical off-diagonal entries to ε, results in

non-zero dot products of �E1- and �E2-field components.

A related situation is given for (III) and (IV). Here, the summands cancel either if

ξ=−ζt or ζ=−ξt. Inserting, e.g, ζ≡+ξt, yields non-vanishing dot products of �E1,2-

and �H2,1-field components.

From the upper discussion, it becomes clear that isotropic media are reciprocal by
definition. For bi-anisotropic and bi-isotropic media, the field configuration might
become more difficult to understand since cross-term parameters allow to change
the spatial direction of electric and magnetic fields in an arbitrary manner. Thus,
many controversial discussions have been devoted to the existence of non-reciprocal
bi-isotropic and bi-anisotropic media [159–165].

A well-known non-reciprocal optical system is the “Faraday isolator”. Here, the time-
inversion symmetry of light propagation is broken due to the preference of a spatial
direction defined by an external static magnetic field.

A.3. Lorentz Oscillator Model

The Lorentz oscillator model assumes that electrons are held in a stable orbit with re-
spect to the nucleus. A “spring” represents the restoring force for small displacements
from the equilibrium position. The negatively charged electron and the positively
charged nuclei form electric dipoles with a magnitude proportional to their separa-
tion. Additionally, damping is included in the model to account for energy losses due
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to collisional processes. In solids, e.g., this would typically occur through interactions
of electrons and phonons in the crystal [2, 3].

The equation of motion of an electron in a harmonic potential which is excited by an
electromagnetic wave reads

me
∂2�r0
∂t2

+meγ
∂�r0
∂t

+meω
2
0�r0 = −e �E0 ei(

�k�r0−ωt) , (A.3)

where e denotes the electron charge, γ the damping factor, and ω0 the eigenfrequency
of a bound electron. In (A.3), we used the electron mass although the reduced mass
m−1

red =m−1
e + m−1

nucleus would be more convenient. However, since me � mnucleus, we
may safely take mred≈me here.

If the velocity of the electron is non-relativistic, i.e., v � c0, the magnetic force can
be neglected in the calculation. Remarkably, only the real part of (A.3) leads to a
physically relevant solution. In the following discussion, we assume that the incident
wavelength λ of light is much larger than the Bohr radius, i.e.,

ei
�k�r0 = 1 +O

(r0
λ

)
≈ 1 .

As (A.3) is a linear, non-homogeneous differential equation, the solution is separable
to a homogeneous and a particular part. For t 	 1/γ, the homogeneous solution
decays. Using

�r0,part(t) = �A e−iωt

as an ansatz for the particular solution of the forced oscillation results in(−ω2 − iγω + ω2
0

)
�A = − e

me

�E0 .

Hence, the dipole moment of the electron reads

�p(t) = −e�r0(t) = −e �A e−iωt =

(
e2

me(ω2
0 − ω2 − iγω)

)
�E0 e

−iωt = αe e
−iωt , (A.4)

where αe is the complex electric polarizability. With the definition of the permittivity

ε(�r,ω) = 1 + χe = 1 +
n0(�r)αe(ω)

ε0

and by summing over all oscillators in the solid (i.e., transitions of bound electrons
as well as vibrational bands), we finally obtain

ε(ω) = 1 +
n0(�r)e

2

meε0

∑
j

fj
ω2
j − ω2 − iγjω

. (A.5)

Here, n0 indicates the density of atoms, χe the electric susceptibility, and fj the num-
ber of electrons which have the same damping and eigenfrequency (i.e., the oscillator
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Figure A.1: A current sheet located at position x=x0, is excited by an external monochro-
matic harmonic wave (red). The current sheet is assumed to be uniform and
infinite in the y- and z-directions. Adapted from Ref. [74].

strength). Experimental data shows that the absorption strength of the oscillator
actually varies considerably between different atomic transitions. With the benefit of
hindsight, we know that this is caused by the variation of the quantum mechanical
transition probability. In classical physics, however, there is no explanation for this
phenomenon. Hence, we assign an oscillator strength to each transition such that∑

j fj=1.

For the special case of free electrons which do not feel any restoring force, the term
of (A.3) proportional to ω2

0 vanishes. Hence, the eigenfrequency ωj becomes zero and
the equation of ε(ω) simplifies to (2.47). Note that we replaced the electron mass
me by the effective electron mass meff in (2.47) to account for the contribution of the
periodic potential of the crystal lattice.

A.4. Mathematical Proof that (2.39) Solves (2.38)

In order to fulfill thermodynamical laws, the real part of a material’s impedance
must be greater than zero. We constitute this statement by using the model of
a hypothetical current sheet (shown in Fig. A.1) located at position x = x0 which
radiates into a medium. The current sheet is assumed to be uniform and infinite in
the y- and z-directions [74]. The wave equation of this configuration is derived from
the Maxwell equations (2.13)–(2.16)

∇× (∇× �E(�r,t)) = −Δ �E = iωμ0μ(∇× �H(�r,t))

=
ω2n2

c20
�E(�x,t) + iωμ0μ�j(t) δ(�r − �r0) (A.6)

Here, the Dirac delta function is used in order to restrict the current flow to the thin
current sheet. The current density is explicitly given by �j(t)=�j0 e

−iωt. Without loss
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of generality, we are allowed to choose the coordinate system in a way that the wave
propagates in x-direction. Hence, the vectors in (A.6) can be replaced by scalars.

As an ansatz for the inhomogeneous differential equation we choose

E(x,t) = −1

2
Z(ω)j0 e

i(nk|x−x0|−ωt)

= −c0μ0μ

2n
j0 e

i(nk|x−x0|−ωt) , (A.7)

where the second spatial derivation reads

∂2E(x,t)

∂x2
= −c0μ0μ

2n
j0 ink eink|x−x0|−ωt

(
∂2 |x− x0|

∂x2
+ ink

(
∂ |x− x0|

∂x

)2
)

.

Notably, ∂
∂x

|x− x0| = 2Θ(x−x0) − 1 and ∂2

∂x2 |x− x0| = 2δ(x−x0), where we use
the Dirac delta function δ(x) and the Heaviside function Θ(x). Thus, the differential
equation results in

−2ikc0 δ(x−x0)︸ ︷︷ ︸
(I)

+nk2c0 (2Θ(x−x0)− 1)2︸ ︷︷ ︸
(II)

−nω2/c0︸ ︷︷ ︸
(III)

= −2iω δ(x−x0) e−ink|x−x0|︸ ︷︷ ︸
(IV)

.

For x > x0 and x < x0, the Dirac delta functions in (I) and (IV) are strictly zero.
Since (II) equals (III) in both cases, the differential equation is solved.

For x = x0, one has to integrate over an infinitely small distance (x0 ± κ) so that

(I):

x0+κ∫
x0−κ

−2ikc0 δ(x−x0) dx
κ→ 0
= −2ikc0 ,

(II):

x0+κ∫
x0−κ

nk2c0 (2Θ(x−x0)− 1)2 dx = nk2c0 [|x−x0|]x0+κ
x0−κ = 0 ,

(III):

x0+κ∫
x0−κ

nω2

c0
dx =

nω2

c0
[x]x0+κ

x0−κ

κ→ 0
= 0 ,

(IV):

x0+κ∫
x0−κ

−2iω δ(x−x0) e−ink|x−x0| dx κ→ 0
= −2iω e−ink|x0−x0| = −2iω .

In summary, we find that (II)=(III)=0 and (I)=(IV), i.e., the differential equation
is again solved.

A.5. Fresnel Equations of Purely Bi-Anisotropic Media

Inverting the Fresnel equations allows us to determine the constitutive material para-
meters from the complex transmission and reflection coefficients. In the style of
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Figure A.2: Illustration of the field components for a generalized version of Fresnel’s equa-
tions used to retrieve the effective parameters for purely bi-anisotropic media.
The metamaterial (orange) is clad between two isotropic media 1 and 2 (e.g.,
air and glass). Adapted from Ref. [51].

Ref. [51], the retrieval procedure is derived for purely bi-anisotropic media, where
the induced field components include an angle ϕ = 90� with the vectors which excited
them. Since this correlates with the discussion in section 2.8.1, we will use the same
nomenclature as previously.

A monochromatic and linearly polarized electromagnetic wave impinges under normal
incidence from an isotropic material of relative impedance z1 = Z1/Z0 (e.g., air or
vacuum) onto a bi-anisotropic metamaterial slab of thickness ds. The related fields are
denoted by E i and H i. After passing the metamaterial, the wave is transmitted into
another isotropic material of relative impedance z2 =Z2/Z0 (e.g., a glass substrate).
The geometry and the nomenclature used in our discussion are illustrated in Fig.A.2.
Considering the constitutive relations of a bi-anisotropic material (2.48)–(2.49) and
introducing the plane-wave ansatz E± and H± for both propagation directions (±)
into Maxwell’s equations immediately leads to linear eigensolutions as long as the
wave propagates along this axis. A change in polarization could occur for oblique
incidence of light onto the slab and / or for chiral media.

The bulk impedance of the bi-anisotropic material is Z+ = E+/H+ for propagation
in the (+)-direction and −Z− = −E−/H− for propagation in the (−)-direction. In
analogy to (2.52), the relative impedances are given by

z± :=
Z±
Z0

=
μzz

±nba − iξyz
, (A.8)

where we denote the vacuum impedance as Z0. Notably, z+ 
= −z−.

Next, we assume that the boundary conditions of the tangential components of E
and H are continuous and that HZ0 = E/zi. Moreover, we introduce the complex
reflection and transmission coefficients for a wave impinging from the (+)-direction,
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i.e., r+ = Er/E i and t+ = Et/E i, respectively. Hence, we obtain at x=0

(1 + r+)E
i = E+ + E− , (A.9)(

(1− r+)E
i

z1

)
=

(
E+

z+

)
+

(
E−

z−

)
(A.10)

and at x = ds

E+ einbak0ds + E−e−inbak0ds = t+E
i , (A.11)(

E+ einbak0ds

z+

)
+

(
E− e−inbak0ds

z−

)
=

t+E
i

z2
. (A.12)

With (A.9)–(A.10) ((A.11)–(A.12)) we express E+/E i and E−/E i as linear functions
of r+ (t+):

E+

E i
= a+ + b+r+ and

E+

E i
= c+ + d+t+ ,

E−

E i
= a− + b−r+ and

E−

E i
= c− + d−t+ .

This yields two linear relationships between r+ and t+, i.e.,

t+ = α + βr+ and , (A.13)

t+ = γ + δr+ , (A.14)

where

α = einbak0ds

(
1− z−/z1
1− z−/z2

)
,

β = einbak0ds

(
1 + z−/z1
1− z−/z2

)
,

γ = e−inbak0ds

(
1− z+/z1
1− z+/z2

)
,

δ = e−inbak0ds

(
1 + z+/z1
1− z+/z2

)
.

We want to determine the three complex material parameters εyy, μzz and ξyz, which
directly depend on nba, z+ and z−, from the complex transmittance and reflectance of
the material. Therefore, (A.13) and (A.14) alone are not sufficient to solve the prob-
lem. Additionally, we need to consider the case of propagation in the (−)-direction
as well. In this case, (A.9)–(A.12) take a similar form as previously, except that we
have to substitute (see Fig. A.2)

(+)-direction: z1 z2 z+ z−
⇓ ⇓ ⇓ ⇓

(−)-direction: −z2 −z1 z− z+
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Consequently, we obtain the following equations corresponding to (A.13) and (A.14)
for the (−)-direction, i.e.,

t− = α′ + β′r− , , (A.15)

t− = γ′ + δ′r− , (A.16)

where

α′ = einbak0ds

(
1 + z+/z2
1 + z+/z1

)
,

β′ = einbak0ds

(
1− z+/z2
1 + z+/z1

)
,

γ′ = e−inbak0ds

(
1 + z−/z2
1 + z−/z1

)
,

δ′ = e−inbak0ds

(
1− z−/z2
1 + z−/z1

)
.

Notably, t+/z2 = t−/z1 (calculation not detailed here) which results in T = T+ = T−,
i.e., the transmittance T does not depend on the side from which light impinges onto
the slab.

We now need to invert (A.13)–(A.16) in order to calculate z+, z− and nba for known
t+, r+, t− and r−. Multiplying (A.13) by (A.16) and (A.14) by (A.15) leads to

t+t− = αγ′ + βγ′r+ + αδ′r− + βδ′r+r− , (A.17)

t+t− = γα′ + δα′r+ + γβ′r− + δβ′r+r− , (A.18)

whereas

αγ′ =
(1− z−/z1) (1 + z−/z2)
(1 + z−/z1) (1− z−/z2)

,

γα′ =
(1− z+/z1) (1 + z+/z2)

(1 + z+/z1) (1− z+/z2)
,

βγ′ =
1 + z−/z2
1− z−/z2

,

δα′ =
1 + z+/z2
1− z+/z2

,

αδ′ =
1− z−/z1
1 + z−/z1

,

γβ′ =
1− z+/z1
1 + z+/z1

,

βδ′ = 1 ,

δβ′ = 1 .
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It follows that (A.17) and (A.18) are similar equations for z+ and z− which can be
rewritten as a second degree polynomial equation for z±: az2± + bz± + c = 0 [32,51]:

z± =
−b∓√

b2 − 4ac

2a
(A.19)

with

a = t+t− − (1− r+) (1− r−) ,

b = (z1 − z2) (t+t− + 1− r+r−) + (z1 + z2) (r+ − r−) ,

c = z1z2 [−t+t− + (1 + r+) (1 + r−)] .

Related to the results of section 2.6.1, the sign in (A.19) must be chosen such that the
real part of the passive-medium impedance is positive definite. As already noted, z+
is the relative impedance of the bi-anisotropic medium in the (+)-direction, and z− is
the opposite of the relative impedance in the (−)-direction which yields Re(z+) > 0
and Re(−z−) > 0, respectively.

To derive the refractive index, (A.13) and (A.14) are rewritten as

t+ = einbak0ds

(
1 + r+ − (1− r+)z−/z1

1− z−/z2

)
,

t+ = e−inbak0ds

(
1 + r+ − (1− r+)z+/z1

1− z+/z2

)
.

Finally, we get an implicit expression for the (complex) refractive index nba [32, 51]

cos (nbak0ds) =
t+
2

(
1− z−/z2

1 + r+ − (1− r+)z−/z1
+

1− z+/z2
1 + r+ − (1− r+)z+/z1

)
. (A.20)

Notably, (A.20) has infinitely many solutions for nba due to the different branches
of the inverse cosine. To choose the correct one, we proceed as proposed for the
parameter retrieval for structures with inversion symmetry [7].

Once z± and nba are at hand, we deduce εyy, μzz and ξyz by using (A.19) and
(A.20). The required relations, which express the material parameters in terms of
the impedances and the refractive index, can be derived from (A.8) and (2.54) as

εyy =
nba + iξyz

z+
,

μzz = z+ (nba − iξyz) ,

ξyz = inba

(
z− + z+
z− − z+

)
.
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A.6. Numerical Time-Domain Calculations

Analytic solutions of Maxwell equations for complex problems are often very difficult
and mostly impossible to obtain. Hence, numerical routines have been developed
which solve given electromagnetic problems either in frequency or time domain. At
first view, it seems to be needless to differentiate between Maxwell equations in fre-
quency and time domain as they can be easily converted by analytic Fourier trans-
forms. However, on a numerical level the approaches to obtain stable and convergent
solutions are fundamentally different.

In this section, we will rather focus on the principles of time-domain solvers. Here,
we further distinguish between numerical solvers which use the differential or the
integral form of Maxwell’s equations. During the last decades, several approaches
have been proposed to solve the differential equations, i.e., the finite-difference time-
domain (FDTD) approach [139, 166], the discontinuous Galerkin time-domain ap-
proach (DGTD) [167,168], and the Krylov-subspace method [169].

The FDTD method, being the most popular approach, models the propagation of
an electromagnetic wave in a spatial volume containing dielectric and / or metallic
elements which represent the structure in question. At each time step, i.e., at each
implementation of a finite-difference analog of Maxwell’s curl equations at each spatial
element, the incident wave is tracked as it first propagates to the structure and then
interacts with it via surface-current excitation, diffusion, penetration, and diffraction.
The main advantage of this approach is its simplification by analyzing the interaction
at an instant time. Hence, it is not intended to solve the entire problem within one
single step.

Time-stepping is accomplished by an explicit finite-difference procedure proposed in
Ref. [139], where the electric and magnetic field components are placed in a Cartesian

space grid (shown in Fig.A.3), i.e., the so-called “Yee grid”. Here, each �E-field vector

component is located midway between a pair of �H-field vector components, and vice
versa. The evolution of the fields is now calculated at alternating half-time steps in
a “leap-frog” manner. To understand the idea, we notice that at any point in space,
the updated value of the �E-field ( �H-field) in time is dependent on the stored value

of the �E-field ( �H-field) and the numerical curl of the local distribution of the �H-field

( �E-field) in space. Transferring this fact to the Yee grid means that the �E-field and �H-

field updates are translated so that �E-field updates are executed midway during each
time step between successive �H-field updates. This time-stepping scheme avoids to
solve simultaneous equations at once and yields lossless numerical wave propagation.

To provide an explicit example of how the algorithm works, we consider the Fourier-
transformed (time-dependant) version of Maxwell’s curl equation (2.15) in x-direction
which is given by

∂Ez

∂y
− ∂Ey

∂z
= −∂Bx

∂t
.
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Figure A.3: Illustration of the Yee grid, i.e., a Cartesian grid system which is normally used
for finite-difference time-domain calculations. The graph shows the positions of
various field components. The �E-field components are placed in the middle of
the edges and the �H-field components are in the center of the faces. Adapted
from Ref. [139].

Without loss of generality, we define F (x,y,z,t) = F (0,0,0,t) to be a function at the
point (0,0,0) in the discretized Cartesian grid space, shown in Fig. A.3, evolved at a
certain time step t>0. Thus, the related finite-difference equation reads

Ez(0,1,
1
2
,t)− Ez(0,0,

1
2
,t)

Δy
− Ey(0,

1
2
,1,t)− Ey(0,

1
2
,0,t)

Δz

= −Bx(0,
1
2
,1
2
,t+ 1

2
)− Bx(0,

1
2
,1
2
,t− 1

2
)

Δt
. (A.21)

For the y and z-direction, the finite-difference equations are set up in an analog
manner. Note that all appearing field components are situated in the blue plane (see
Fig. A.3). Applying the same concept to the Fourier-transformed version of (2.15),
i.e.,

∂Hz

∂y
− ∂Hy

∂z
=

∂Dx

∂t
+ jx ,

results in

Hz(
1
2
,1
2
,0,t− 1

2
)−Hz(

1
2
,− 1

2
,0,t− 1

2
)

Δy
− Hy(

1
2
,0,1

2
,t− 1

2
)−Hy(

1
2
,0,− 1

2
,t− 1

2
)

Δz

=
Dx(

1
2
,0,0,t)−Dx(

1
2
,0,0,t− 1)

Δt
− jx

(
1

2
,0,0,t− 1

2

)
. (A.22)

In (A.22), all field components are placed in the yellow plane, i.e., between two suc-
cessive numeric evaluations of (A.21).

In contrast to finite-difference time-domain (FDTD) algorithms, the finite-integration
technique (FIT) [137, 138] solves the integral rather than the differential Maxwell
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equations. Hence, the resulting quantities are rather the grid voltages and fluxes than
the field components. The conservation of charges and energy is, therefore, inherently
included which improves the solver’s convergence and stability. Moreover, the FIT is
also applicable for frequency-domain simulations.

If we use the same Yee-type grid as for the FDTD method, the FIT matrix equa-
tions can be transformed one-to-one and onto respective FDTD matrices. But cuboid
meshes often cannot approximate the considered structure geometry as good as re-
quired. Precisely, the spatial discretization of curved structure features leads to “stair-
casing” effects. Especially for metallic features, unintended field enhancements at
sharp edges lead to non-converging or falsified solutions. Hence, a lot of effort has
been spent to extend time-domain calculations to non-orthogonal meshes (e.g., trian-
gular or cylindric meshes) [168,170–172].

Alternatively, one can also mimic curved boundaries of complex-shaped geometries
via “Perfect Boundary Approximation�” [173]. In this case, the advantages of the
Cartesian Yee grid is still given (i.e., fast calculation times, low memory requirements).
But instead of finding a better geometrical discretization of the considered structure,
the material parameters are averaged in each sub-volume cell1. Indeed, this approach
is also implemented in CST Microwave Studio.

1Since the Perfect Boundary Approximation is a commercially used algorithm, no detailed infor-
mation about its principles can be found.
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[2] C. Kittel, Einführung in die Festkörperphysik (Oldenbourg, R., Verlag GmbH,
1996), 10th ed.

[3] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Oldenbourg, R., Verlag
GmbH, 1976), international ed.

[4] W. Koechner, Solid-State Laser Engineering (Springer Media, Inc., 2006).

[5] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and elec-
tronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[6] S. John, “Strong localization of photons in certain disordered dielectric super-
lattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[7] K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and
M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202
(2007).

[8] G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and
M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct.
Mater. 20, 1038–1052 (2010).

[9] V. G. Veselago, “Electrodynamics of substances with simultaneously negative
values of ε and μ,” Sov. Phys. Uspekhi 10, 509–514 (1968).

[10] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from
conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory
Tech. 47, 2075–2084 (1999).

[11] W. N. Hardy and L. A. Whitehead, “Split-ring resonator for use in magnetic-
resonance from 200-2000 MHz,” Rev. Sci. Instrum. 52, 213–216 (1981).

[12] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz,
“Composite medium with simultaneously negative permeability and permittiv-
ity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[13] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave
transmission through a two-dimensional, isotropic, left-handed metamaterial,”
Appl. Phys. Lett. 78, 489 (2001).

99



100 Bibliography

[14] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a
negative index of refraction,” Science 292, 77–79 (2001).

[15] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85,
3966–3969 (2000).

[16] N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging
with a silver superlens,” Science 308, 534–537 (2005).

[17] N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science
302, 1537–1540 (2003).

[18] J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, B.-I. Wu, and J. A. Kong,
“Cerenkov radiation in materials with negative permittivity and permeability,”
Opt. Express 11, 723–734 (2003).

[19] Z. Duan, B.-I. Wu, and M. Chen, “Review of Cherenkov radiation in double-
negative metamaterials,” in “Prog. In Electromagn. Res. Symp.”, (2009), pp.
65–67.

[20] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,”
Science 312, 1780–1782 (2006).

[21] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F.
Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave
frequencies,” Science 314, 977–980 (2006).

[22] W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking
with metamaterials,” Nat. Photonics 1, 224–227 (2007).

[23] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-
dimensional invisibility cloak at optical wavelenghts,” Science 328, 337–339
(2010).

[24] T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N.
Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,”
Science 303, 1494–1496 (2004).

[25] S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Souk-
oulis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306,
1351–1353 (2004).

[26] V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–
48 (2007).

[27] C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at
optical wavelengths,” Science 315, 47–49 (2007).

[28] N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-
dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–
37 (2008).



Bibliography 101

[29] N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building
blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv.
Mater. 20, 3859–3865 (2008).

[30] G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer
negative-index photonic metamaterial,” Opt. Lett. 32, 551–553 (2007).

[31] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and
X. Zhang, “Three-dimensional optical metamaterial with a negative refractive
index,” Nature 455, 376–379 (2008).

[32] M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and
M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical
vapour deposition,” Nat. Mater. 7, 543–546 (2008).

[33] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Frey-
mann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broad-
band circular polarizer,” Science 325, 1513–1515 (2009).

[34] J. D. Jackson, Klassische Elektrodynamik (Walter de Gruyter, 1983).

[35] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, vol. 8
(Butterworth-Heinemann, Oxford, 1984).

[36] C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, and N. G. Alexopoulos,
“Artificial versus natural crystals: Effective wave impedance of printed photonic
bandgap materials,” IEEE Trans. Antennas Propag. 48, 95–106 (2000).

[37] D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromag-
netic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E
71, 036617 (2005).

[38] C. R. Simovski, I. Kolmakov, and S. A. Tretyakov, “Approaches to the homog-
enization of periodical metamaterials,” in “11th International Conference on
Mathematical Methods in Electromagnetic Theory (Kharkiv, Ukraine),” (2006),
pp. 41–44.

[39] C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metama-
terials from an effective-medium perspective,” Phys. Rev. B 75, 195111 (2007).

[40] R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004).

[41] I. V. Lindell and A. J. Viitanen, “Plane wave propagation in uniaxial bian-
isotropic medium,” Electron. Lett. 29, 150–152 (1993).

[42] S. He, “Wave propagation through a dielectric-uniaxial bianisotropic interface
and the computation of Brewster angles,” J. Opt. Soc. Am. A 10, 2402–2409
(1993).

[43] I. V. Lindell and A. J. Viitanen, “Eigenwaves in the general uniaxial bian-
isotropic medium with symmetric parameter dyadics,” PIER 9, 1–18 (1994).



102 Bibliography

[44] S. A. Tretyakov and A. A. Sochava, “Reflection and transmission of plane elec-
tromagnetic waves in uniaxial bianisotropic materials,” Int. J. Infrared and Mil-
limeter Waves 15, 829–856 (1994).

[45] A. Pimenov, A. Loidl, K. Gehrke, V. Moshnyaga, and K. Samwer, “Negative
refraction observed in a metallic ferromagnet in the Gigahertz frequency range,”
Phys. Rev. Lett. 98, 197401 (2007).

[46] K. Zhou, D. Wang, K. Huang, L. Yin, Y. Zhou, and S. Gao, “Characteristics of
permittivity and permeability spectra in range of 2–18GHz microwave frequency
for La1−xSrxMn1−yByO3 (B=Fe, Co, Ni),” Trans. Nonferrous Met. Soc. China
17, 1294–1299 (2007).

[47] R. Merlin, “Metamaterials and the Landau-Lifshitz permeability argument:
Large permittivity begets high-frequency magnetism,” PNAS 106, 1693–1698
(2009).

[48] R. M. Walser, Introduction to Complex Mediums for Optics and Electromagnet-
ics, vol. PM123 (SPIE Press, 2003).
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