
KIT Scientific Reports 7551

Proceedings of the

5th International Workshop on
Reconfigurable Communication-centric
Systems on Chip 2010 – ReCoSoC‘10

May 17-19, 2010
Karlsruhe, Germany

Michael Hübner, Loïc Lagadec, Oliver Sander, Jürgen Becker (eds.)

Proceedings of the 5th International Workshop on Reconfigurable
Communication-centric Systems on Chip 2010 – ReCoSoC‘10

May 17-19, 2010
Karlsruhe, Germany

Karlsruhe Institute of Technology

KIT SCIENTIFIC REPORTS 7551

Proceedings of the
5th International Workshop on
Reconfigurable Communication-centric
Systems on Chip 2010 – ReCoSoC‘10

May 17-19, 2010
Karlsruhe, Germany

Michael Hübner
Loïc Lagadec
Oliver Sander
Jürgen Becker
(eds.)

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.uvka.de

KIT – Universität des Landes Baden-Württemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

ISSN 1869-9669
ISBN 978-3-86644-515-4

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

KIT Scientific Publishing 2010
Print on Demand

Report-Nr. KIT-SR 7551

Umschlagsbild:
Wikimedia Commons. Fotograf: Meph666

http://www.uvka.de
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

ReCoSoC'10 Reconfigurable Communication-centric Systems on Chip

Michael Hübner, Karlsruhe Institute of Technology, Karlsruhe, Germany
Loïc Lagadec, Université de Bretagne Occidentale, Lab-STICC, Brest, FRANCE

The fifth edition of the Reconfigurable Communication-centric Systems-on-Chip
workshop (ReCoSoC 2010) was held in Karlsruhe, Germany from May 17th to May
19th, 2010.
ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered
expertise as well as state of the art research around SoC related topics through plenary
invited papers and posters. Similarly to the event in 2008 and the years before, several
keynotes given by internationally renowned speakers as well as special events like e.g.
tutorials underline the high quality of the program.

ReCoSoC is a 3-day long event which endeavors to encourage scientific exchanges and
collaborations. This year again ReCoSoC perpetuates its original principles: thanks to
the high sponsoring obtained from our partners registration fees will remain low.

Goals:
ReCoSoC aims to provide a prospective view of tomorrow's challenges in the multi-
billion transistor era, taking into account the emerging techniques and architectures
exploring the synergy between flexible on-chip communication and system
reconfigurability.

The topics of interest include:

- Embedded Reconfigurability in all its forms
- On-chip communication architectures
- Multi-Processor Systems-on-Chips
- System & SoC design methods
- Asynchronous design techniques
- Low-power design methods
- Middleware and OS support for reconfiguration and communication
- New paradigms of computation including bio-inspired approaches

A special thank goes to the local staff, especially to the local chair Oliver Sander, Mrs.
Hirzler, Mrs. Bernhard and Mrs. Daum who enabled a professional organization before
and while the conference. Thanks to Gabriel Marchesan, the web-page of the conference
was always up to date and perfectly organized. Furthermore Prof. Becker supported the
conference through his group at the Institute for Information Processing Technology.
We also thank the International Department for offering the providing the „Hector
Lecture Room“ for the conference.

Michael Hübner
Loïc Lagadec
ReCoSoC 2010 Program Co-Chairs

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany i

Program Committee

Jürgen Becker Karlsruhe Institute of Technology Germany
Pascal Benoit LIRMM, Montpellier France
Koen Bertels TU Delft Netherlands
Christophe Bobda University of Potsdam Germany
Lars Braun Karlsruhe Institute of Technology Germany
René Cumplido INAO México
Debatosh Debnath Oakland University USA
Jean-Luc Dekeyser University of Lille France
Didier Demigny ENSSAT, Lannion France
Peeter Ellervee Tallinna Tehnikaülikool Estonia
Christian Gamrat CEA France
Georgi Gaydadjiev TU Delft Netherlands
Manfred Glesner TU Darmstadt Germany
Diana Goehringer Fraunhofer IOSB Germany
Jim Harkin University of Ulster Northern Ireland
Andreas Herkersdorf Technische Universität München Germany
Thomas Hollstein TU Darmstadt Germany
Michael Hübner Karlsruhe Institute of Technology Germany
Leandro Indrusiak University of York UK
Loic Lagadec Université de Bretagne Occidentale France
Heiner Litz Universität Heidelberg Germany
Patrick Lysaght Xilinx Inc. USA
Fearghal Morgan NUI Galway Ireland
Johnny Öberg KTH Sweden
Ian O'connor LEOM, Lyon France
Katarina Paulsson Ericsson Sweden
J.-L. Plosila University of Turku Finland
Bernard Pottier University of Bretagne Occidentale France
Ricardo Reis UFRGS Brazil
Michel Robert LIRMM, Montpellier France
Alfredo Rosado Universitat de Valencia Spain
Eduardo Sanchez EPFL Switzerland
Oliver Sander Karlsruhe Institute of Technology Germany
Gilles Sassatelli LIRMM, Montpellier France
Tiberiu Seceleanu University of Turku Finland
Dirk Stroobandt Universiteit Gent Belgium
Lionel Torres LIRMM, Montpellier France
Francois Verdier Université de Cergy-Pontoise France
Nikos Voros Technological Educational Institute of Mesolonghi Greece
Hans-Joachim Wunderlich Universität Stuttgart Germany
Peter Zipf TU Darmstadt Germany

ii May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Table of Contents

Session 1: Multiprocessor System on Chip

A Self-adaptive communication protocol allowing fine tuning between flexibility and
performance in Homogeneous MPSoC systems …………………………………...………

1

Remi Busseuil, Gabriel Marchesan Almeida, Sameer Varyani, Pascal Benoit, Gilles
Sassatelli

Instruction Set Simulator for MPSoCs based on NoCs and MIPS Processors ………....….. 7
Leandro Möller, André Rodrigues, Fernando Moraes, Leandro Soares Indrusiak,
Manfred Glesner

Impact of Task Distribution, Processor Configurations and Dynamic Clock Frequency
Scaling on the Power Consumption of FPGA-based Multiprocessors …………………….

13

Diana Goehringer, Jonathan Obie, Michael Huebner, Juergen Becker

Session 2: Design-optimization of Reconfigurable Systems

Novel Approach for Modeling Very Dynamic and Flexible Real Time Applications ……. 21
Ismail Ktata1, Fakhreddine Ghaffari, Bertrand Granado and Mohamed Abid

New Three-level Resource Management for Off-line Placement of Hardware Tasks on
Reconfigurable Devices ……………………………………………………………………

29

Ikbel Belaid, Fabrice Muller, Maher Benjemaa

Exploration of Heterogeneous FPGA Architectures ……………………………………… 37
Umer Farooq, Husain Parvez, Zied Marrakchi and Habib Mehrez

Session 3: Self-Adaptive Reconfigurable System

Dynamic Online Reconfiguration of Digital Clock Managers on Xilinx Virtex-II/
Virtex II-Pro FPGAs: A Case Study of Distributed Power Management …………………

45

Christian Schuck, Bastian Haetzer, Jürgen Becker

Practical Resource Constraints for Online Synthesis …………………………………….. 51
Stefan Döbrich, Christian Hochberger

ISRC: a runtime system for heterogeneous reconfigurable architectures ………………… 59
Florian Thoma, Juergen Becker

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany iii

Session 4: Fault Tolerant Systems

A Self-Checking HW Journal for a Fault Tolerant Processor Architecture …………….… 67
Mohsin Amin, Camille Diou, Fabrice Monteiro, Abbas Ramazani, Abbas Dandache

A Task-aware Middleware for Fault-tolerance and Adaptivity of Kahn Process Networks
on Network-on-Chip ………………………………………………………..…………….

73

Onur Derin, Erkan Diken

Dynamic Reconfigurable Computing:
the Alternative to Homogeneous Multicores under Massive Defect Rates ………………..

79

Monica Magalhães Pereira, Luigi Carro

Session 5: Analysis of FPGA Architectures

An NoC Traffic Compiler for efficient FPGA implementation of Parallel Graph
Applications ………………………………………………………………………………...

87

Nachiket Kapre, André DeHon

Investigation of Digital Sensors for Variability Characterization on FPGAs ………….….. 95
Florent Bruguier, Pascal Benoit, Lionel Torres

Investigating Self-Timed Circuits for the Time-Triggered Protocol …………….………… 101
Markus Ferringer

First Evaluation of FPGA Reconfiguration for 3D Ultrasound Computer Tomography ….. 109
Matthias Birk, Clemens Hagner, Matthias Balzer, Nicole Ruiter, Michael Huebner,
Juergen Becker

Session 6: Security on Reconfigurable Systems

ECDSA Signature Processing over Prime Fields for Reconfigurable Embedded Systems . 115
Benjamin Glas, Oliver Sander, Vitali Stuckert, Klaus D. Müller-Glaser, Jürgen Becker

A Secure Keyflashing Framework for Access Systems in Highly Mobile Devices ………. 121
Alexander Klimm, Benjamin Glas, Matthias Wachs, Jürgen Becker, Klaus D. Müller-
Glaser

iv May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Session 7: Reconfigurable Computing and Reconfigurable Education Special Session

Teaching Reconfigurable Processor: the Biniou Approach ………………………………. 127
Loic Lagadec, Damien Picard, Pierre-Yves Lucas

Behavioral modeling and C-VHDL co-simulation of Network on Chip on FPGA for
Education …………………………………………………………………………………...

135

C. Killian, C. Tanougast, M. Monteiro, C. Diou, A. Dandache, S. Jovanovic

Experimental Fault Injection based on the Prototyping of an AES Cryptosystem ……….. 141
Jean-Baptiste Rigaud, Jean-Max Dutertre, Michel Agoyany, Bruno Robissony, Assia Tria

Poster Session

Reducing FPGA Reconfiguration Time Overhead using Virtual Configurations …………. 149
Ming Liu, Zhonghai Lu, Wolfgang Kuehn, Axel Jantsch

Timing Synchronization for a Multi-Standard Receiver on a Multi-Processor System-on-
Chip ………………………………………………………………………………………...

153

Roberto Airoldi, Fabio Garzia and Jari Nurmi

Mesh and Fat-Tree comparison for dynamically reconfigurable applications …………….. 157
Ludovic Devaux, Sebastien Pillement, Daniel Chillet, Didier Demigny

Technology Independent, Embedded Logic Cores
Utilizing synthesizable embedded FPGA-cores for ASIC design validation ………………

161

Joachim Knäblein, Claudia Tischendorf, Erik Markert, Ulrich Heinkel

A New Client Interface Architecture for the Modified Fat Tree (MFT) Network-on-Chip
(NoC) Topology ……………………………………………………………………………

169

Abdelhafid Bouhraoua and Muhammad E. S. Elrabaa

Implementation of Conditional Execution on a Coarse-Grain Reconfigurable Array …….. 173
Fabio Garzia, Roberto Airoldi, Jari Nurmi

Dynamically Reconfigurable Architectures for High Speed Vision Systems ……………... 175
Omer Kilic, Peter Lee

Virtual SoPC rad-hardening for satellite applications ……………………………………... 179
L. Barrandon, T. Capitaine, L. Lagadec, N. Julien, C. Moy, T. Monédière

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany v

vi May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

A Self-adaptive communication protocol allowing
fine tuning between flexibility and performance in

Homogeneous MPSoC systems
Remi Busseuil, Gabriel Marchesan Almeida, Sameer Varyani, Pascal Benoit, Gilles Sassatelli

Laboratoire d’Informatique,
de Robotique et de Microelectronique

de Montpellier (LIRMM)
Montpellier, France

Email: firstname.lastname@lirmm.fr

Abstract—MPSoC have become a popular design style for
embedded systems that permit devising tradeoffs between per-
formance, flexibility and reusability. While most MPSoCs are
heterogeneous for achieving a better power efficiency, homoge-
neous systems made of regular arrangements of a unique instance
of a given processor open interesting perspectives in the area of
on-line adaptation.

Among these techniques, task migration appears very promis-
ing as it allows performing load balancing at run-time for
achieving a better resources utilization. Bringing such a technique
into practice requires devising appropriate solutions in order to
meet quality of service requirements. This paper puts focus on
a novel technique that tackles the difficult problem of inter-task
communication during the transient phase of task migration.
The proposed adaptive communication scheme is inspired from
TCP/IP protocols and shows acceptable performance overhead
while providing communication reliability at the same time.

I. INTRODUCTION

Thanks to the technology shrinking techniques, an inte-
grated circuit can include an exponentially increasing number
of transistors. This trend plays an important role at the
economic level, although the price per transistor is rapidly
dropping the NRE (Non-Recurring Engineering) costs, and
fixed manufacturing costs increase significantly. This pushes
the profitability threshold to higher production volumes open-
ing a new market for flexible circuits which can be reused
for several product lines or generations, and scalable systems
which can be designed more rapidly in order to decrease
the Time-to-Market. Moreover, at a technological point of
view, current variability issues could be compensated by more
flexible and scalable designs. In this context, Multiprocessor
Systems-on-Chips (MPSoCs) are becoming an increasingly
popular solution that combines flexibility of software along
with potentially significant speedups.

These complex systems usually integrate a few mid-range
microprocessors for which an application is usually statically
mapped at design-time. Those applications however tend to
increase in complexity and often exhibit time-changing work-
load which makes mapping decisions suboptimal in a number
of scenarios. These facts challenge the design techniques
and methods that have been used for decades and push the

community to research new approaches for achieving system
adaptability and scalability. The most promising development
tends to be homogeneous structures based on a Network on
Chip (NoC), with distributed identical nodes containing both
computing capabilities and memory. Such systems allow using
advanced techniques that permit optimizing online application
mapping. Among these techniques, this paper puts focus on
dynamic load balancing based on task migration.

Migrating processing tasks at runtime while ensuring real-
time constraints are met require devising precise deterministic
protocols to guarantee application consistency. In this paper,
we propose an adaptive communication protocol, based on
TCP and UDP models, which ensure determinism of critical
migration mechanisms while providing enhanced useful ser-
vices such as port opening.

This paper is organized as follows: section 2 presents
related works in the field of communication inside distributed
structures and examples of Network on Chip protocols. Section
3 introduces the platform developed regarding scalability,
adaptability and reuse issues used to test our communication
protocol, named HS-Scale. Section 4 describes how to ensure
determinism and reliability with our protocol facing the prob-
lems raised by this type of platform. Finally, section 5 shows
some results concerning the performance of our protocol.
Section 6 draws some conclusions on the presented work and
gives some perspectives about other upcoming challenges of
the area.

II. STATE-OF-THE-ART

In this section we will discuss the communication trends
inside the new emerging MPSoC architecture, i.e. based on
NoC, with distributed memory architecture, and a message
passing communication model. In this context, we will then
see different task migration techniques. Finally, we will present
an overview of existing NoC communication protocols.

A. Communication inside distributed memory architecture

Nowadays, distributed memory structures tend to become
the most attracted solution to achieve scalability and reuse

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 1

challenges in new emerging architectures. To ensure coherency
between the hardware and the software in such systems, the
Message Passing Model of computation is the most commonly
used - except in some marginal architectures like COMA [1] or
ccNUMA [2] MPSoC. This model of computation is based on
explicit communication between tasks. Here communications
among tasks take place through messages and are implemented
with functions allowing reading and writing to communication
channels. Synchronizations between tasks are explicit and
made by blocking reading or writing primitives. CORBA,
DCOM, SOAP, and MPI are examples of message passing
models. Message Passing Interface (MPI) is the most popular
implementation of the message passing model, and, to the best
of our knowledge, embedded implementations exist only for
this model [3].

One of the other hot issues in today computing architecture
is load balancing and resource usage optimization. Indeed,
in nowadays MPSoC, task migration techniques have been
mainly studied, to reduce hotspot and increase the overall
resource usage. Next paragraph gives a brief overview of some
task migration techniques.

B. Task migration

For shared memory systems such as today’s multi-core
computers, task migration is facilitated by the fact that no
data or code has to be moved across physical memories: since
all processors are entitled to access any location in the shared
memory, migrating a task comes down to electing a different
processor for execution. But in the case of multiprocessor-
distributed memory/message passing architectures, both pro-
cess code and state have to be migrated from a processor
private memory to another, and synchronizations must be
performed using exchanged messages.

Task migration has also been explored for decreasing com-
munication overhead or power consumption [4]. In [5], authors
present a migration case study for MPSoCs that relies on the
μClinux operating system and a check pointing mechanism.
The system uses the MPARM framework [6], and although
several memories are used, the whole system supports data
coherency through a shared memory view of the system. In
[7] authors present an architecture aiming at supporting task
migration for a distributed memory multiprocessor-embedded
system. The developed system is based on a number of
32-bit RISC processors without memory management unit
(MMU). The used solution relies on the so-called task replicas
technique; tasks that may undergo a migration are present
on every processor of the system. Whenever a migration is
triggered, the corresponding task is respectively inhibited from
the initial processor and activated in the target processor.

Although the efficiency of these techniques has been proven,
none of these papers mention the communication issues due to
task migration. Among those task migration specific protocols,
we can cite: localization of a task, set up of the communication
or maintenance of communication channel during task move.

C. Network on Chip communication

Network communication has been widely studied for many
years, mainly in the context of cluster of PCs and High Per-
formance Computing. However, Network on Chip communica-
tion, even if a lot of concepts can be taken from those studies,
differs in many manners from traditional Network. A NoC, for
example, has rarely to be dynamically expanded, so it does
not need a live connection service. However, to provide reuse
and scalability, NoC protocol should be made for an arbitrary
number of nodes. [8] illustrates some techniques concerning
on-chip communication, like energy-efficient protocols, or
lightweight encapsulation. As in standard Network, reordering
and adaptive routing is often provided, to avoid saturation of a
node, like in [9]. At an architectural level, regular structure like
2D mesh [10] is the most frequently used, but other structures
exist, like [11] which uses an octagon for example. This last
article proposes both packet switching, where each packet is
redirected individually, and circuit switching, where a unique
channel is opened during the whole communication process.

As for task migration, task placement can increase com-
munication throughput. [12] proposes a circuit-switch NoC
statically programmed at compile time to optimize the overall
network bandwidth. A lightweight NoC architecture called
HERMES, based on a X then Y routing is proposed in
[10]. It provides simple packet switching network with unique
predictable routing for each packet from the same sender and
receiver. Hence, neither reordering nor acknowledgment is
necessary.

One particularity of these protocols is to be hardware
dependent: the structure of the NoC will influence significantly
the software communication policy. We will see in the next
paragraph the platform used to develop our new protocol.

III. HS-SCALE (HARDWARE AND SOFTWARE SCALABLE
PLATFORM)

The key motivations of our approach being scalability and
self-adaptability, the system presented in this paper is built
around a distributed memory/message passing system that
provides efficient support for task migration. The decision-
making policy that controls tasks processes is also fully
distributed for scalability reasons. This system therefore aims
at achieving continuous, transparent and decentralized runtime
task placement on an array of processors for optimizing
application mapping according to various potentially time
changing criteria.

A. System overview

The architecture is made of a homogeneous array of
PE (Processing Elements) communicating through a packet
switching network. For this reason, the PE is called NPU,
for Network Processing Unit. Each NPU, as detailed later, has
multitasking capabilities which enable time-sliced execution of
multiple tasks. This is implemented thanks to a tiny preemptive
multitasking Operating System which runs on each NPU. The
structural view of the NPU is depicted in Figure 1.

2 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Network Layer

μP RAM

Timer UART

NI

FScal

Processing Layer

Fig. 1. HS-Scale structural description

The NPU is built of two main layers, the network layer
and the processing layer. The Network layer is essentially a
compact routing engine (XY routing). The processing layer
is based on a simple and compact RISC microprocessor, its
static memory and a few peripherals (a timer, an interrupt
controller, an UART and a frequency scaler) as shown in
Figure 1. A multitasking microkernel implements the support
for time multiplexed execution of multiple tasks [13].

The communication framework of HS-Scale is derived from
the Hermes Network-on-chip [10]. The lightweight operating
system we use was designed for our specific needs, inspired
by the RTOS of Steve Roads [14]. Despite being small (35
KB), this kernel does preemptive switching between tasks and
also provides them with a set of communication primitives
that are presented later. The OS is capable of dynamic task
loading and dynamic task migration.

B. Self-adaptive mechanisms

The platform is entitled to take decisions that relate to
application implementation through task placement. These de-
cisions are taken in a fully decentralized fashion as each NPU
is endowed with equivalent decisional capabilities. Each NPU
monitors a number of metrics that drive an application-specific
mapping policy; based on these information a NPU may
decide to push or attract tasks which results in respectively
parallelizing or serializing the corresponding tasks execution,
as several tasks running onto the same NPU are executed in
a time-sliced manner.

Mapping decisions are specified on an application-specific
basis in a dedicated operating system service. Although the
policy may be focused on a single metric, composite policies
are possible. Three metrics are available to the remapping
policy for taking mapping decisions:

• NPU workload
• FIFO queues filling level
• Task distance
NPU workload is measured as the amount of time used

to process the user tasks - i.e. excluding the idle task and the
communication tasks. Task distance corresponds to the number
of hop a packet needs to go through during a communication
between two tasks. As the Network structure is a 2D mesh, this

Data

Internet

Transport

Link

RAW UDP TCP

OS Services

HS-Scale RAW
protocol

UDP TCP

Hermes Hermes Hermes

Hermes physical Layer

Fig. 2. HS-Scale available communication protocols

measure can be computed as the Manhattan distance between
the two nodes hosting the tasks.

Several migration policies have been developed, like the
use of a static threshold to start a migration. In this case, the
task is migrated to the neighbor with the best value of the
selected metric - for example the neighbor with the lowest
cpu workload. For more information about the task migration
policies, we invite the reader to read our previous paper [15].

C. Communication system

The Network of HS-Scale is based on the NoC HERMES
[10]. It provides a low area overhead packet-switching network
thanks to a simple X then Y routing algorithm. Only two fields
are needed to encapsulate a HERMES packet: one for the
sender and receiver addresses, and the second for the number
of 32-bits words inside the packet.

However, such protocol is too simple to provide high level
services usually used in real-time multi-task operating systems.
In the standard usually used Internet encapsulation model,
4 layers of functionality are provided: the link layer, the
Internet layer, the transport layer and the application layer [16].
The HERMES protocol supply link layer and Internet layer
functionality. Transport and data layers are so implemented
in software - as OS services - using the concept of TCP. To
keep compatibility between HERMES and IP, XY addresses
of HERMES have been statically mapped to IP addresses.
Transport layer was adapted to provide the same services as
TCP and UDP: the notion of ports have been raised, redirection
and retransmission have been included in TCP. A checksum
has been optionally made to provide reliability in non reliable
networks. As this network can be considered as reliable, this
feature has not been used, but it makes the protocol more
generic in term of hardware possible platform.

Figure 2 shows the different protocols implanted in HS-
Scale. A RAW protocol, simply using Hermes routing layer
and with packets directly given to the OS has been made to
provide a base rate of the bandwidth. When a task needs a
communication channel, it uses an unused port which will
become the identity of the communication channel. When the
communication is closed, the port is marked as unused again.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 3

T1 T2

T1 N23
T2 N43

(1) T2 position?
(OS message)

(2) T2 => N43
(OS message) (3) Open the

Connexion (TCP)

(4) Data transfer
(UDP)

(5) Close the
Connexion (TCP)

Fig. 3. Inter-node task communication protocol

IV. COMMUNICATION ISSUES IN SELF-ADAPTIVE
HOMOGENEOUS PLATFORMS

A. Different types of communication

A homogeneous and regular platform like HS-Scale has an
application domain more generic than heterogeneous, applica-
tion specific platform. Thus, the communication has to face
numerous issues to provide both genericity and performance.
We can distinguish different types of communication in HS-
Scale:

• Communication between tasks intra-node, i.e. inside the
same node

• Communication between tasks inter-node, i.e. between
two different nodes

• Service messages, provided by the Operating system of
a node to another one

• Exception messages, provided by a task to an Operating
system to request a service

For intra-node communication between tasks, we use simple
FIFO queue handled by the operating system of the node.
The operating system provides some basic primitives of MPI
(Message Passing Interface), so tasks can easily communicate.

For inter-node communication between tasks, that protocol
is more complicated. Figure 3 represents the concept of the
protocol. First, we need to open a connection between the two
tasks: a service message is sent to the master node to find the
receiver task. As RAW protocol does not provide any opening
or close of connection, the TCP three-steps handshake protocol
is used. After opening, we need to transfer the information
with the best performance we have, with no need of Quality
of Service: so the UDP protocol is used. At the end of the
transmission, the TCP four-steps closing protocol is used. This
protocol is transparent for the task itself: the Operating System
is handling it, and only the MPI services are provided. The
Operating System has to check whether the receiving task is
on the same node or abroad.

Service messages and Exception messages need Quality of
Service to ensure reliability of the Network. For this purpose,
TCP protocol is used to send messages.

T1 T2

T1 N13
T2 N33

(0) Data transfer
(UDP)

(1) Warning
for migration (TCP)

(2) Secure data
transfer (TCP)

T2

(3) T2
moves

(4) Packets are
redirected (TCP)

(5) T2 update
its position (OS)

(6) Data transfer
(UDP)

Fig. 4. Communication protocol during task migration

B. Task Migration

Communication during task migration main issue can be
expressed as follows: how to keep the maximum performance
during the transfer of a task from a NPU to another. Without
any particular protocol, the simplest way to ensure no dropping
of packets is to close the communication during task migration.
Although this method can be considered as reliable, the
opening and closing protocol plus the loss of the connection
will bring a big overhead in term of performance.

To ensure no loss of packets during migration, we have to
focus our attention on two points: first, we need to ensure the
reception and the order of the packets, so that no packets are
dropped. Second, the packets have to be redirected, in case
they go to the wrong node. Those features are again part of
the TCP protocol, so the idea is also here to use TCP to ensure
the reliability of the system.

Figure 4 shows the different steps of the communication
during a task migration - here, the receiver. Before the migra-
tion, the task which wants to migrate send a message to the
tasks communicating with itself, warning them that it wants
to communicate and so switch the communication in TCP
(action 1 in the figure). The migration can begin when the task
receives at least one TCP packet from every sender tasks (2).
If packets arrive during migration, they are redirected to the
new NPU which receives the task (3): if the task is ready, the
packet is consumed, if not, the packet is stored in a fifo, and
dropped when the fifo is full. When the migration is complete,
the task sends a message to the tasks communicating with it
to update its position and to switch in UDP again. As TCP
provides reordering, if TCP packets arrive after because of
redirection, the task can reorder the packets.

V. PERFORMANCE OF THE AUTO-ADAPTIVE PROTOCOL

A. Maximum bandwidth achievable

The first purpose that we need to focus on in our commu-
nication protocol is the bandwidth. Indeed, the bandwidth has
to be tuned to fit the purpose of the chip. Figure 5 shows the
bandwidth for the two protocols available, comparing them
with a raw transfer as described before. The comparison is
made with different size of packets and with different amount
of data. A timer in each node measures the time to transfer, to

4 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

0

100

200

300

400

500

600

700

800

TCP

UDP

RAW

Ba
nd

w
id

th
 in

 k
B/

s

100 B
2 MB

100 B
4 MB

100 B
8 MB

200 B
2 MB

200 B
4 MB

200 B
8 MB

512B
11MB

750B
16MB

800B
17MB

825B
17MB

900B
19MB

Fig. 5. TCP, UDP and RAW Bandwidth versus packet size and amount of
data transferred

compute the bandwidth. The RAW communication can achieve
an average bandwidth more than 600 kB/s, when the UDP can
achieve 550 kB/s at best, and TCP 300 kB/s. The performance
delta between RAW and UDP, less than 10%, proves the effi-
ciency of our UDP like protocol. The TCP protocol, however,
has a bandwidth 50% smaller than RAW communication, but
this protocol has been developed to be used on precise, few
communication process like OS messages, opening or closing
of a connection, or task migration.

The second point raised by figure 5 is the bandwidth
variations compared to the segmentation of the data and the
amount of data transmitted. If in RAW, the variations are quite
low, they can go up to 45% for the UDP and TCP protocols.
The low bandwidth obtained with really small packets (100
or 200 bytes) can be explained by the fact that encapsulation
in UDP and TCP is huge, around 50 bytes, which makes the
payload of each packets really small. In the contrary, for really
huge packets, hardware and software capability of a NPU is
too low to register the whole packet in one tick, which makes
the operating system run a rescheduling, and so it lowers the
bandwidth.

However, the optimum size, around 750 bytes per packets,
is really dependent of the platform. In hardware first, the
computation capability of the CPU to deal with a packet
will influence the overall processing time. Time to process
a packet will vary in function of frequency, CPU architecture
or Processing Unit design - with the addition of a dedicated
Network encoder/decoder for example. But in software too, the
optimum can greatly vary. Indeed, this optimum depends on
the average time between two rescheduling of the communica-
tion procedure. Depending on CPU charge, the communication
procedure rescheduling will proceed less often, and so the
optimum will change. Hence, next paragraph will show results
about bandwidth variations with a CPU in charge.

B. Performance in charge

As the CPU is both used for communication decoding and
computation, it is interesting to see the influence of CPU

0

50

100

150

200

250

300

350

400

450

500

TCP à vide TCP en charge UDP à vide UDP en charge

Ba
nd

w
id

th
in

 k
B/

s

1 tick

10 ticks

50 ticks

(a) (b) (c) (d)

Fig. 6. TCP and UDP Bandwidth when the CPU is idle or in load

charge on the bandwidth. Figure 6 shows the bandwidth of
UDP/TCP communication when - for (a) in TCP and (c) in
UDP - the CPU is in a communication only mode, i.e. there
is no other task running on the CPU, and when - for (b) in
TCP and (d) in UDP - the CPU is in heavy loaded mode,
i.e. when the CPU runs a mjpeg decoder based on 3 inter-
dependent tasks. The packet size is fixed to 750 bytes, and the
measures are made on a 16MB transfer. We can see that the
CPU load can lower the communication bandwidth down to
50% of its nominal value. This reduction can be explained by
the heavy computation needed to process TCP or UDP packet
with a general purpose CPU like those used in HS-Scale.
Even so, the software implementation of TCP encapsulation
and decapsulation, responsible of these results, is not a bad
choice here: as this protocol is considered to be used for
special purpose communication, which can be considered as
negligible in terms of data transferred compared to stream
inter-process communication, the throughput is not a critical
issue. In this case, this implementation seems more appropriate
than a hardware one, which would consume area.

The second point stressed by figure 6 is the time between
two rescheduling of the communication protocol. The Operat-
ing System in HS-Scale uses simple round robin rescheduling
with fixed size time slots called ticks: the rescheduling pro-
cedure runs after each tick. As the communication procedure
is considered as a task, the time to reschedule will vary in
function of the load of the CPU and of the sleeping time
parameter. This parameter is the number of ticks between the
last proceeding of the communication task and its insertion
in the round robin queue. It can be tuned from 1 tick, which
correspond to each task being rescheduled only once between
two communication runs, to any positive numbers.

Figure 7 illustrates this principle of rescheduling. In (a)
and (b), the CPU is in communication only mode: in this
case, the rescheduling should be as often as possible, to
avoid empty slots, like in (b). In (c) and (d), the CPU is
in heavy loaded mode: in this case, the rescheduling time
can influence the computation time, but also the bandwidth.
In term of computation time, the ratio of time spent on the

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 5

Com Com Com Com Com Com Com …

time

Com Empty Empty Com Empty …Empty… …

Rescheduling of Com

10 slots

time

(a)

(b)

(c)

(d)

T1 T2 T3 T4 Com T1 …

time

Com

Com T1 T1 T2 T3 …T4 Com T1… …

10 slots

Rescheduling of Com
time

Fig. 7. Communication protocol, rescheduling issues

communication task is, on the average:

P =
1

(N − 1) + T

where N is the number of ticks and T the number of tasks. In
term of bandwidth also, the variations are no more monotonous
versus the number of ticks: if we have a situation where the
time spent to receive - in gray in fig. 7 (c) and (d) - is smaller
than a timeslot, we can have a situation, like illustrated in fig.
7, where the average time spent to receive is bigger with few
ticks than without. This situation can be observed in figure
6 (d), where the bandwidth is higher with 10 ticks than with
1 tick. We can conclude that the rescheduling time can be
an issue in this kind of architecture, and that it has to be
tuned accurately depending on the application. If the CPU
has a variable load, a dynamically variable time to reschedule
the communication, depending on the receiving speed and the
number of tasks, is certainly the best solution.

VI. CONCLUSION

Future new MPSoC architectures will have to ensure flexi-
bility and adaptability to face the new challenges raised by
technology shrinking and computing requirement. For this
purpose, array of identical software independent nodes linked
by a NoC seems to be the most promising solution: it can
ensure generic computation with high performance thanks to
a good load balancing strategy.

This article describes an adaptive communication protocol
purposely made to face dynamic task migration issues in such
homogeneous structures. As every node is independent, it has
to deal with the asynchronicity of each node, with providing
sequential behavior of critical codes. For this purpose, this
protocol has been built using inspiration of TCP and UDP fea-
tures. Thanks to their historically proved reliability, scenarios
of secure communication channel creation and conservation
during task migration has been displayed. Finally, performance
issues show the interest of such protocol with a really small
overhead for UDP-like transaction.

REFERENCES

[1] F. Dahlgren and J. Torrellas, Cache-only memory architectures, Com-
puter, vol. 32, no. 6, pp. 7279, 1999.

[2] P. Stenstrm, T. Joe, and A. Gupta, Comparative performance evaluation
of cache-coherent numa and coma architectures, ISCAS conference,
1992.

[3] M. Saldana and P. Chow, TDM-MPI: an MPI implementation for multiple
processors across multiple FPGAs, Proceedings of the International
Conference on Field Programmable Logic and Applications (FPL), 2006.

[4] S. Carta, M. Pittau, A. Acquaviva, et al., Multi-processor operating
system emulation framework with thermal feedback for systems-on-chip,
Proceedings of the Great Lakes Symposium on VLSI (GLSVLSI), 2007.

[5] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali, Supporting
task migration in multi-processor systems-onchip: a feasibility study,
Proceedings of the Conference on Design, Automation and Test in Europe
(DATE), 2006.

[6] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri,
MPARM: exploring the multi-processor SoC design space with systemC,
Journal of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, 2005.

[7] M. Pittau, A. Alimonda, S. Carta, and A. Acquaviva, Impact of task
migration on streaming multimedia for embedded multiprocessors: a
quantitative evaluation, Proceedings of the IEEE/ACM/IFIP Workshop
on Embedded Systems for Real-Time Multimedia (ESTIMedia), 2007.

[8] V. Raghunathan, M. B. Srivastava and R. K. Gupta, A survey of techniques
for energy efficient on-chip communication, DAC Conference, 2003.

[9] P Guerrier and A. Greiner, A Generic Architecture for On-Chip Packet-
Switched Interconnections, DATE Conference, 2000.

[10] Fernando Moraes, Ney Calazans, Aline Mello, Leandro Mller and
Luciano Ost, HERMES: an infrastructure for low area overhead packet-
switching networks on chip, IEEE VLSI Journal, 2004

[11] Faraydon Karim, Anh Nguyen and Sujit Dey, An Interconnect Architec-
ture for Networking Systems on Chips, IEEE micro, 2002

[12] Jian Liang, Andrew Laffely, Sriram Srinivasan, and Russell Tessier, An
architecture and compiler for scalable on-chip communication, IEEE
VLSISoC, 2004

[13] Gabriel Marchesan Almeida, Gilles Sassatelli, Pascal Benoit, Nicolas
Saint-Jean, Sameer Varyani, Lionel Torres, and Michel Robert, An
AdaptiveMessage Passing MPSoC Framework, International Journal
of Reconfigurable Computing (IJRC) journal, 2009

[14] Steve Rhoads, Plasma Most MIPS I(TM),
http://www.opencores.org/project,plasma

[15] G. Marchesan Almeida, N. Saint-Jean, S. Varyani, G. Sassatelli, P.
Benoit and L. Torres, Exploration of Task Migration Policies on the HS-
Scale System, Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC08), 2008

[16] Vinton Cerf, Yogen Dalal and Carl Sunshine, SPECIFICATION OF
INTERNET TRANSMISSION CONTROL PROGRAM, 1974

6 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Instruction Set Simulator for MPSoCs based on NoCs and MIPS Processors

Leandro Möller1, André Rodrigues1, Fernando Moraes2, Leandro Soares Indrusiak3, Manfred Glesner1

1 Darmstadt University of Technology - Institute of Microelectronic Systems - Darmstadt, Germany
2 Faculty of Informatics - Catholic University of Rio Grande do Sul - Porto Alegre, Brazil

3 Department of Computer Science - University of York - York, United Kingdom
Email: moller@mes.tu-darmstadt.de

Abstract
Even though Multiprocessor System-on-Chip (MPSoC) is a
hot topic for a decade, Instruction Set Simulators (ISSs) for
it are still scarce. Data exchange among processors and
synchronization directives are some of the most required
characteristics that ISSs for MPSoCs should supply to
really make use of the processing power provided by the
parallel execution of processors. In this work a framework
for instantiating ISSs compatible with the MIPS processor
is presented. Communication among different ISS instances
is implemented by message passing, which is actually
performed by packets being exchanged over a NoC. The
NoC, the ISS and the framework that controls the co-
simulation between them are all implemented in Java. Both
ISS and the framework are free open-source tools
implemented by third parties and available on the internet.

1. Introduction

Multiprocessor systems have become a standard in the
computer industry since the release of the Intel Pentium D
in 2005 [1]. Since then, processor manufacturers have
focused in multi-core architectures to raise the processing
power, favoring a larger number of cores instead of trying
to achieve higher clock speeds, avoiding also the
complexity of superscalar pipelines. While executing
several small applications in parallel have a significant
improve in performance with actual multiprocessor
systems, a unique complex application needs a careful
development to use wisely this processing power. It is not
simply to write the application code with multiple threads,
but each thread has to be really executing in the same time
as the other threads, instead of paused in a wait directive.

While communication infrastructures based on bus have
been sufficient for multiprocessor systems so far, the
increase of number of cores and data transfer associated
will demand a more complex on-chip interconnection. For
this purpose Networks-on-Chip (NoCs) have arisen as a
scalable solution to future increase of number of cores. The
use of a NoC represents no direct changes to the developer
of the complex application, but it counts when the
execution time of the complex application is being
analyzed.

The design space exploration of the scenario presented

in the previous paragraphs and the tools to aid the
development of complex applications are the goal of this
work. A MIPS-like processor was connected to the
HERMES NoC and presented in [2]. In [2] the debug of
complex applications are implemented based on print
directives. The work presented here improves the
debugability by providing an Instruction Set Simulator
(ISS) for the MIPS processor while considering the
communication time and traffic under simulation in the
NoC.

The ISS used in this work is the MARS ISS, developed
by the Missouri State University [3]. This ISS was
connected the RENATO NoC model [4], which is an actor-
oriented model based on the HERMES NoC. The
simulation environment used to control both the simulation
of the NoC and the ISS is the Ptolemy II [5], developed by
the EECS department at UC Berkley.

The rest of this work is divided as follows. Section 2
presents other ISSs targeting MPSoC architectures. A
background about the tools and basic information required
to understand this work is presented in Section 3. Section 4
presents how the communication among ISSs takes place.
Section 5 presents timing delays of the system and Section
6 concludes this work.

2. Related Works

In this section different MPSoCs that have tools for
debugging their embedded software are presented. Table 1
summarizes the most important information of these works
and adds the work proposed in this paper. As presented in
Table 1, all works use SystemC as simulation engine and
memory mapped techniques to communicate with other
processors, except the work proposed on this paper that
uses the Ptolemy II simulation engine and the message
passing technique to communicate with other processors.

MPARM [6] uses ARM processors connected through
AMBA bus to compose the MPSoC. Multiprocessor
applications are debugged with the SWARM ISS, which is
developed in C++ and was wrapped to communicate with
the MPSoC simulated in SystemC. The platform allows
booting multiple parallel uClinux kernels on independent
processors.

STARSoC [7] uses OpenRisc1200 processors connected
through Wishbone bus. Debugging is implemented with the

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 7

OR1Ksim ISS, which is implemented in C language. The
OR1Ksim also allows to be remote operated using GDB.
Operating System is not yet supported.

HVP [8] supports several processors and therefore
several ISSs. The work presented MPSoCs that contain
ARM9 processors using ARM’s ISS and in-house VLIW
and RISC processors debugged by the LisaTek ISS. The
ARM processors execute a lightweight operating system
(name was not disclosed). The communication among
processors was reported to be AMBA among ARM
processors and SimpleBus among the in-house processors
used.

SoClib [9] is a project developed jointly by 11
laboratories and 6 industrial companies. It contains
simulation models for processor cores, interconnect and
bus controllers, embedded and external memory
controllers, or peripheral and I/O controllers. The MPSoC
accepts the following processor cores: MIPS-32, PowerPC-

405, Sparc-V8, Microblaze, Nios-II, ST-231, ARM-7tdmi
and ARM-966. The GDB client/server protocol has been
implemented to interface with these processors. The
following operating systems are supported: DNA/OS,
MutekH, NetBSD, eCos and RTEMS. Several bus and
NoCs with different topologies wrapped with the VCI
communication standard were ported and presented at
www.soclib.fr.

The proposed work is based on a MIPS-like processor,
implemented in hardware by the Plasma processor
available for free at Opencores [10] and implemented by
MARS [3] when simulating the processor as an ISS. All
previous works used SystemC as simulation environment;
this work uses Ptolemy II [5]. This work also differs from
the others because it exchanges data between processors by
using the native protocol of the NoC, therefore no extra
translation is needed before sending and receiving packets.

Table 1 – MPSoCs that have tools for debugging embedded software.
Work ID Simulation engine Processor Communication Data exchange ISS OS

MPARM SystemC ARM Bus (Amba) Memory SWARM uClinux

STARSoC SystemC OpenRisc 1200 Bus (Wishbone) Memory OR1Ksim No

HVP SystemC Several Bus (several) Memory Several Yes

SoClib SystemC Several Bus / NoC (several) Memory GDB several

Proposed Ptolemy II Plasma (MIPS) NoC (Hermes) Message MARS No

3. Background

This session reviews the required infrastructure to build
our MPSoC simulation environment.

3.1. Ptolemy II

Ptolemy II [5] is a framework developed by the
Department of Electrical Engineering and Computer
Sciences of the University of California at Berkeley and it
is implemented in Java. The key concept behind Ptolemy II
is the use of well-defined models of computation to
manage the interactions between various actors and
components. In this work only the Discrete Event (DE)
model of computation was used, but others are available on
Ptolemy II.

In DE, the communication between actors is modeled as
tokens being sent across connections. The sent token and
its timestamp constitute an event. When an actor receives
an event, it is activated and a reaction might occur, which
may change the internal state of the actor and / or generate
new events, which might in its turn generate other
reactions. The events are processed chronologically [5].

3.2. MARS ISS

MARS [3] is a MIPS Instruction Set Simulator (ISS).

This means that MARS simulates the execution of
programs written in the MIPS assembly language. MARS
can be executed by command line or Graphical User
Interface. MARS was developed by Peter Sanderson and
Kenneth Vollmar, from the Missouri State University, and
is written entirely in Java and distributed in an executable
Jar file. MARS can simulate 155 basic instructions from
the MIPS-32 instruction set, as well as about 370 pseudo-
instructions or instruction variations, 17 syscall functions
for console and file I/O and 21 syscalls for other uses.

3.3. RENATO NoC

RENATO NoC [4] was developed using the Ptolemy II
framework and its behavior and timing constraints are
based on the HERMES NoC. The basic element of the NoC
is a five bi-directional port router, which is connected to 4
other neighbor routers and to a local IP core, following a
MESH topology. The router employs a XY routing
algorithm, round-robin arbitration algorithm and input
buffers at each input port.

The RENATO NoC model can be connected to a
debugging tool called NoCScope [11]. NoCScope provides
improved observability of RENATO routers and overall
resources in use. Seven scopes are currently available,
allowing the user to see information about hot spots, power
consumption, buffer occupation, input traffic, output
traffic, end-to-end and point-to-point communications.

8 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

PE

PE

PE PE

PE

PE

PE

PE
Network
Interface
Output Buffer

Input Buffer

Processor

.

.
 SENDFLIT:
lb $s0, 0($t7)
mtc0 $s0, $s0
addi $t7, $t7, 4
subi $t0, $t0, 1
bgtz $t0, SENDFLIT
.
.
 RCVDFLIT:
bgtz $t6, SIZE
mfc0 $t0, $t0
move $s1, $t0
li $t6, 1
eret
.
.

9 4 7 1 3 8 2

9 8 7 4 3 2 1

Processing Element (PE)

Ptolemy II

LN

S

W E11

00 10 20

01 21

02 12 22

Figure 1 – Block diagram of the proposed multiprocessor ISS.

4. Communication among processors

This section presents how the MARS ISS was connected
to the RENATO NoC to allow the creation of a
multiprocessor ISS. Figure 1 shows a block diagram of the
system that will be used in the next subsections to guide the
explanation of each component.

4.1. Processor to NI

In the current version of this work, each processor
executes the MIPS assembly code of one task of the
application. Communication between tasks happens by
exchanging packets. In order to send a packet to another
task, the header of the packet and the packet data need to
be first stored in the data memory of the processor. The
header of the packet is composed by the address of the
target router where the processor is connected and the
number of data flits this packet contains. After that, the
send packet subroutine is called.

The send packet subroutine first reads the size flit of the
packet stored in the memory to a register and reads to
another register the output buffer size available in the NI. If
there is enough space available in the NI to store the
packet, the subroutine proceeds sending the packet flit by
flit to the NI. The process of “reading” a flit from the NI
uses the instruction “move from coprocessor 0” (mfc0),
while the process of “sending” a flit to the NI uses the
instruction “move to coprocessor 0” (mtc0). Thus, from the

point of view of the processor, coprocessor 0 is now the NI.

4.2. NI to NoC

With the packet stored in the NI output buffer, the NI
sends the packet flit by flit to the input local port of the
router where this NI is connected. This happens following
the flow control protocol in use by the NoC and using the
timing delays set on the NoC model being executed by
Ptolemy.

4.3. NoC to NI

When packets are being received from the NoC into the
NI, a different buffer (input buffer) is used, thus allowing
parallel sending and receiving of packets. The receiving of
packets also occur following the flow control in use by the
NoC and using the timing delays set on the NoC model.

4.4. NI to processor

As soon as the flits of the packet arrive in the input
buffer of the NI, the NI launches a specific interruption to
the processor meaning that a new packet has arrived. The
MARS ISS, which was executing its task, saves its context
and receives the interruption in the form of a Java
exception. The standard routine for handling exceptions is
called. By the ID of the specific exception, the exact
exception is found out to be the “new message from
network exception”. The specific subroutine of this
exception is launched. This subroutine mainly reads the

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 9

complete packet from the NI using the “move from
coprocessor 0” (mfc0) instruction to read each flit of the
packet. After the complete packet was read from the NI and
stored in the processor’s memory, the processor’s context
is restored and it can now continues with its execution
possibly using the data that was received.

5. Synchronization

The straightforward solution in Java to connect more
than one MARS ISS to the NoC is to create a new MARS
instance object for every new MARS instantiated in the
NoC. However, this alternative failed due to the fact that
MARS has been programmed using several static classes,
attributes and methods. All of its main resources, such as
the memory and the register bank, are declared as static.
Therefore, if one tries to run more than one instance of
MARS concurrently inside a single Java Virtual Machine
(JVM), all the running instances will share the same
resources, which will lead to unexpected behavior.

One possible workaround for this problem is to run each
MARS instance in a different JVM. Java does not directly
share memory between multiple VMs, so by running each
MARS in a different JVM, one is safely isolating each
instance of MARS. One problem with this approach is that
the exchange of messages between different JVMs is only
possible by using APIs such as Java Remote Method
Invocation (RMI) and sockets, which would greatly
increase the complexity of the system.

Another solution would be to reprogram MARS to
remove the problematic static attributes and make them
unique for each instance. However, this solution was also
not optimal, considering the large number of static
members declared in MARS and that every new future
version of MARS would also require these modifications.

A better solution is to instantiate isolated ClassLoaders,
one for each instance of MARS to be loaded. This works
because a static element in Java is unique only in the
context of a ClassLoader, therefore the static elements will
not interfere with the other instances of MARS called by
other ClassLoaders. By using this approach, the task of
exchanging messages between the MARS instance and its
corresponding NI also becomes trivial, and can be done
simply by injecting a NI object when instantiating MARS.

A side effect of this solution is that each MARS instance
and the NoC are considered as different threads by Java,
and this would require extra algorithms based on wait and
notify directives to maintain the time constraints followed
by the NoC. As the main goal of this work is not provide
good latency figures to the multiprocessor system
application under simulation, we proceeded without the
extra algorithms, aiming a faster simulation. Figure 2
presents a printout of the most important events occurred
during the transfer of a packet composed by 2 header flits
and 10 payload flits from MARS #1 to MARS #2. MARS
#1 is connected to router 00 as illustrated in Figure 1 and
MARS #2 is connected to router 21. No extra traffic is
currently occupying the NoC.

3002 MARS #1 sending target flit (21) to NI #1
3002 MARS #1 sending size flit (10) to NI #1
3002 MARS #1 sending payload flit #0 (9) to NI #1
3003 MARS #1 sending payload flit #1 (9) to NI #1
3003 MARS #1 sending payload flit #2 (4) to NI #1
3003 MARS #1 sending payload flit #3 (7) to NI #1
3003 MARS #1 sending payload flit #4 (1) to NI #1
3003 MARS #1 sending payload flit #5 (3) to NI #1
3003 MARS #1 sending payload flit #6 (8) to NI #1
3003 MARS #1 sending payload flit #7 (2) to NI #1
3003 MARS #1 sending payload flit #8 (6) to NI #1
3086 MARS #1 sending payload flit #9 (5) to NI #1
3087 NI #1 sending target flit (21) to NoC
3089 NI #1 sending size flit (10) to NoC
3091 NI #1 sending payload flit #0 (9) to NoC
3093 NI #1 sending payload flit #1 (9) to NoC
3095 NI #1 sending payload flit #2 (4) to NoC
3097 NI #1 sending payload flit #3 (7) to NoC
3099 NI #1 sending payload flit #4 (1) to NoC
3101 NI #1 sending payload flit #5 (3) to NoC
3103 NI #1 sending payload flit #6 (8) to NoC
3105 NI #1 sending payload flit #7 (2) to NoC
3107 NI #1 sending payload flit #8 (6) to NoC
3109 NI #1 sending payload flit #9 (5) to NoC
3112 NoC sending target flit (21) to NI #2
3116 NoC sending size flit (10) to NI #2
3120 NoC sending payload flit #0 (9) to NI #2
3120 NI #2 sending payload flit #0 (9) to MARS #2
3124 Noc sending payload flit #1 (9) to NI #2
3128 Noc sending payload flit #2 (4) to NI #2
3132 Noc sending payload flit #3 (7) to NI #2
3136 Noc sending payload flit #4 (1) to NI #2
3140 Noc sending payload flit #5 (3) to NI #2
3144 Noc sending payload flit #6 (8) to NI #2
3148 Noc sending payload flit #7 (2) to NI #2
3152 Noc sending payload flit #8 (6) to NI #2
3156 Noc sending payload flit #9 (5) to NI #2
3166 NI #2 sending payload flit #1 (9) to MARS #2
3170 NI #2 sending payload flit #2 (4) to MARS #2
3172 NI #2 sending payload flit #3 (7) to MARS #2
3174 NI #2 sending payload flit #4 (1) to MARS #2
3175 NI #2 sending payload flit #5 (3) to MARS #2
3177 NI #2 sending payload flit #6 (8) to MARS #2
3178 NI #2 sending payload flit #7 (2) to MARS #2
3180 NI #2 sending payload flit #8 (6) to MARS #2
3181 NI #2 sending payload flit #9 (5) to MARS #2

Figure 2 – Timing delays of the most important
events during the transfer of a packet between two

processors.
All the following comments presented in this paragraph

refer to Figure 2. Between times 3002 and 3086 MARS #1
sends the packet to the NI connected to it (NI #1), exactly
as explained in Section 4.1. Eleven of the twelve flits of the
packet were sent in the first 2 simulation cycles, and the
last flit of the packet at time 3086. This strange behavior
implies the following results: (1) MARS #1 thread was
executed two times concurrently to Ptolemy thread,
between times 3002-3003 and 3086; (2) MARS thread can
be faster enough to execute at least 11 mtc0 instructions in
a row during 2 simulation cycles of Ptolemy; (3) MARS
thread was not called again during 83 simulation cycles
(3086-3003). Between times 3087 and 3109 each flit of the
packet was sent constantly every 2 simulation cycles from
NI #1 to the NoC, exactly as explained in Section 4.2. This
behavior is equal to the real HERMES NoC that needs 2
clock cycles to transfer a flit using handshake flow control.
Between time 3112 and 3156 all the flits from the packet
were delivered from the NoC to NI #2 as explained in
Section 4.3. However, due to some technical difficulties in
the current version, it was not possible to deliver each flit
every 2 simulation cycles, but 4 simulation cycles in this

10 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

case. At time 3120 it is possible to see that NI #2 delivered
the first payload flit immediately to MARS #2. Between
times 3166 and 3181 the rest of the payload flits were
delivered to MARS #2 as described in Section 4.4. Here
again it is possible to see that the data transfer did not
follow a constant pattern, similar to one the occurred
between times 3002 and 3086. This unpredictable behavior
is a side effect of running multiple threads with no proper
synchronization.

6. Conclusion and Future Work

This work presented an ISS for multiprocessor systems
based on the MIPS processor. In this work the RENATO
NoC model was connected to two instances of the MARS
ISS and as result applications based on more then one
processor can be easily debugged with the presented
approach. The most important contribution of this work is
the NI, which allows both systems to communicate, thus
creating a more realistic multiprocessing system model
composed by computation and communication.

Initial figures regarding latency between processors’
communication through the NoC were measured and we
report to be insufficient in the current version. In order to
have a good latency figure we must: (1) back annotate the
timing delays of each assembly instruction from a real
MIPS processor to MARS; (2) add extra synchronization
logic to mimic the timing delays between processor and NI.
In the current version of this work we guarantee only the
NoC timing delays as presented in [4]. Future works will
be related to steps 1 and 2.

References

[1] Intel Corporation. Intel Pentium D (Smithfield) Processor.
Available at: http://ark.intel.com/ProductCollection.aspx?
codeName=5788.

[2] Carara, E.; Oliveira, R.; Calazans, N.; Moraes, F. “HeMPS -
A Framework for NoC-Based MPSoC Generation”. In:
ISCAS’09, 2009, pp. 1345-1348.

[3] Vollmar, D. and Sanderson, D. “A MIPS assembly language
simulator designed for education”. Journal of Computing
Sciences in Colleges, vol. 21(1), Oct. 2005, pp. 95-101.

[4] Indrusiak, L.S.; Ost, L.; Möller, L.; Moraes, F.; Glesner, M.
Applying UML Interactions and Actor-Oriented Simulation
to the Design Space Exploration of Network-on-Chip
Interconnects. In: ISVLSI’08, 2008, pp. 491-494.

[5] Eker, J.; Janneck, J.; Lee, E.; Liu, J.; Liu, X.; Ludvig, J.;
Neuendorffer, S.; Sachs, S.; Xiong, Y. “Taming
Heterogeneity - The Ptolemy Approach”. Proceedings of the
IEEE, vol. 91 (2), Jan. 2003, pp. 127-144.

[6] Benini, L.; Bertozzi, D.; Bogliolo, A.; Menichelli, F.;
Olivieri, M. “MPARM: Exploring the Multi-Processor SoC
Design Space with SystemC”. The Journal of VLSI Signal
Processing, vol. 41 (2), Sep. 2005, pp. 169-182.

[7] Boukhechem, S.; Bourennane, E. “SystemC Transaction-
Level Modeling of an MPSoC Platform Based on an Open
Source ISS by Using Interprocess Communication”.
International Journal of Reconfigurable Computing, vol.
2008, Article ID 902653, 2008, 10 p.

[8] Ceng, J.; Sheng, W.; Castrillon, J.; Stulova, A.; Leupers, R.;
Ascheid, G.; Meyr, H. “A high-level virtual platform for
early MPSoC software development”. In: CODES+ISSS'09,
2009, pp. 11-20.

[9] Pouillon, N.; Becoulet, A.; Mello, A.; Pecheux, F.; Greiner,
A. “A Generic Instruction Set Simulator API for Timed and
Untimed Simulation and Debug of MP2-SoCs”. In: RSP'09,
2009, pp. 116-122.

[10] Opencores. Available at: http://www.opencores.org.
[11] Möller, L.; Indrusiak, L.S.; Glesner, M. “NoCScope: A

Graphical Interface to Improve Networks-on-Chip
Monitoring and Design Space Exploration”. In: IDT'09,
2009.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 11

12 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Impact of Task Distribution, Processor
Configurations and Dynamic Clock Frequency

Scaling on the Power Consumption of FPGA-based
Multiprocessors

Diana Goehringer, Jonathan Obie
Fraunhofer IOSB

Ettlingen, Germany
{diana.goehringer, jonathan.obie}@iosb.fraunhofer.de

Michael Huebner, Juergen Becker
ITIV, Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
{michael.huebner, becker}@kit.edu

Abstract— As only the currently required functionality on a
dynamic reconfigurable FPGA-based system is active, a good
performance per power ratio can be achieved. To find such a
good performance per power ratio for a given application is a
difficult task, as it requires not only knowledge of the behavior of
the application, but also knowledge of the underlying hardware
architecture and its influences on the performance and the static
and dynamic power consumption. Is it for example better to use
two processors running at half the clock frequency than a single
processor? The main contributions of this paper are: the
description of a tool flow to measure the power consumption for
multiprocessor systems in Xilinx FPGAs, a novel runtime
adaptive architecture for analyzing the performance per power
tradeoff and for dynamic clock frequency scaling based-on the
inter-processor communication. Furthermore, we use three
different application scenarios to show the influence of the clock
frequency, different processor configurations and different
application partitions onto the static and dynamic power
consumption as well as onto the overall system performance.

Keywords- Power Consumption, Multiprocessor System-on-
Chip (MPSoC), Dynamic Frequency Scaling, Task Distribution,
Application Partitioning, Dynamic and Partial Reconfiguration,
FPGA.

I. INTRODUCTION
Parameterizable function blocks used in FPGA-based

system development, open a huge design space, which can only
hardly be managed by the user. Examples for this are
arithmetic blocks like divider, adder, soft IP-multiplier, which
are adjustable in terms of bitwidth and parallelism. Additional
to arithmetic blocks, also soft-IP processor cores provide a
variety of parameters, which can be adapted to the
requirements of the application to be realized with the system.
Especially, Xilinx offers with the MicroBlaze Soft-IP RISC
processor [1] a variety of options for characterizing the core
individually. These options are amongst others the use of cache
memory and its size, the use of an arithmetic unit, a memory
management unit and the number of pipeline stages.
Furthermore, the tools offer to deploy up to two processor
cores as multiprocessor on one FPGA. Every option now can

be adjusted to find an optimal parameterization of the processor
core in relation to the target application. For example, a
specific cache size can speed up the application tremendously,
but also the optimal partition of functions onto the two cores
has a strong impact on the speed and power consumption of the
system. The examples show the huge design space, if only one
parameter is used. It is obvious, that the usage of multiple
parameters for system adjustment leads to a multidimensional
optimization problem, which is not or at least very hardly
manageable by the designer. In order to gain experience
regarding the impact of processor parameterization in relation
to specific application scenario, it is beneficial to evaluate e.g.
the performance and power-consumption of an FPGA-based
system and normalize the results to a standard design with a
default set of parameter. The result of such an investigation is a
first step for developing standard guidelines for designers and
an approach for an abstraction of the design space in FPGA-
based system design. This paper presents first results of a
parameterizable multiprocessor system on a Xilinx Virtex-4
FPGA, where the parameterization of the processor is
evaluated in terms of power consumption and performance.
Moreover, the varying partition of the different application
scenarios is evaluated in terms of power consumption for a
fixed performance. For this purpose, a tool flow for analyzing
the power consumption through generating the value change
dump (VCD) file from the post place and route simulation will
be introduced. The presented flow enables to generate the most
accurate power consumption estimation from this level of
abstraction. A further output of the presented work is an
overview of the impact of parameterization to the power
consumption. The results can be used as a basic guideline for
designers, who want to optimize their system performance and
power consumption.

The paper is organized in the following manner: In Section
II related work is presented. Section III describes the power
estimation tool flow used in this approach. The novel system
architecture used for analyzing the performance and the power
consumption of the different applications is presented in
Section IV. The application scenarios are described in Section
V. In Section VI the application integration and the results for
performance and power consumption are given. Finally, the

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 13

paper is closed by presenting the conclusions and future work
in Section VII.

II. RELATED WORK
Optimization of the dynamic and static power consumption

is very important, especially for embedded systems, because
they often use batteries as a power source.

Therefore, many researchers like for example Meintanis et
al [2] explored the power consumption of Xilinx Virtex-II Pro,
Xilinx Spartan-3 and Altera Cyclone-II FPGAs. They
estimated the power consumption at design-time using the
commercial tools provided by Xilinx and Altera. They further
explored the differences between the measured and estimated
power consumption for these FPGAs. Becker et al. [3]
explored the difference between measured and estimated power
consumption for the Xilinx Virtex-2000E FPGA. Furthermore,
they explored the behavior of the power consumption, when
using dynamic reconfiguration to exchange the FPGA-system
at runtime.

Other works focus on the development of own tools and
models for efficient power estimation at design-time for
FPGA-based systems. Poon et al. [4] present a power model to
estimate the dynamic, short circuit and leakage power of
island-style FPGA architectures. This power model has been
integrated into the VPR CAD flow. It uses the transition
density signal model [5] to determine signal activities within
the FPGA. Weiss et al. [6] present an approach for design-time
power estimation for the Xilinx Virtex FPGA. This estimation
method works well for control flow oriented applications but
not so well for combinatorial logic. Degalahal et al. [7] present
a methodology to estimate dynamic power consumption for
FPGA-based system. They applied this methodology to explore
the power consumption of the Xilinx Spartan-3 device and to
compare the estimated results with the measured power
consumption.

All these approaches focus either on the proposal of a new
estimation model or tool for estimating the power consumption
at design-time or they compare their own or commercial
estimation models and tools with the real measured power
consumption. The focus of the investigations presented in this
paper is to show the impact of parameterization of IP-cores,
here specifically the MicroBlaze soft processor, which differs
from the approaches mentioned above where the topic is more
on tool development for power estimation.

The novelty of our approach is to focus on the requirements
of the target application and to propose a design guideline for
system developers of processor-based FPGA systems. This
means, providing guidance in how to design a system to
achieve a good tradeoff between performance and power
consumption for a target application. To develop such a
guideline the impact of the frequency, different processor
configurations and the task distribution in a processor-based
design is investigated in this paper for different application
scenarios. To the best of our knowledge, similar work has not
done before.

III. TOOL FLOW FOR POWER MEASUREMENT
Xilinx provides two kinds of tools for power consumption

estimation: Xilinx Power Estimator (XPE) [8] and Xilinx
Power Analyzer (XPower) [9].

The XPE tool is based on an excel spreadsheet. It receives
information about the number and types of used resources via
the report generated by the mapping process (MAP) of the
Xilinx tool flow. Alternatively, the user can manually set the
values for the number and type of used resources. The
frequencies used within the design have to be manually set by
the user. The advantage of this method is that results are
obtained very fast. The disadvantage is that the results are not
very accurate, especially for the dynamic power consumption.
This is, because the different toggling rates of the signals are
not taking into account. Also, the results are not as accurate,
because they are based on the MAP report, and not on the post
place and route (PAR) report, which resembles the system used
for generating the bitstream.

The XPower tool estimates the dynamic and static power
consumption for submodules, different subcategories and the
whole system based on the results of a post place and route
(PAR) simulation. This makes the estimation results much
more accurate compared to the XPE tool, because the final
placed and routed system is considered for the power
estimation. But even more important, due to the simulation of
the PAR system with real input data, the toggling rates of the
signals can be extracted and used within the power estimation.
For estimating the power consumption with the XPower tool
the following input files are required:
� Native Circuit Description (NCD) file, which specifies the

design resources
� Physical Constraint File (PCF), which specifies the design

constraints
� Value Change Dump (VCD) file, which specifies the

simulated activity rates of the signals
The NCD and the PCF file are obtained after the PAR

phase of the Xilinx implementation tool flow. The VCD file is
generated by doing a simulation of the PAR design with the
ModelSim simulator.

Due to the higher accuracy the XPower tool was used here.
As we wanted to estimate the power consumption for systems
with one or two MicroBlaze processors, the hardware and the
software executables of the different system were designed
within the Xilinx Platform Studio (XPS)[10]. Figure 1. shows
the flow diagram for doing power estimation with XPower for
an XPS system.

Figure 1. Flow Diagram of the EDK XPower Flow

Power Estimation in XPower

System Design in Xilinx Platform Studio (XPS)

Synthesis (using XST) and
Implementation(Translate, Map, PAR) in the

EDK XPS GUI Environment

Timing Simulation and Generation of
VCD file (ModelSim)

Post PAR Timing Simulation Model
Generation (Simgen)

14 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

After the system has been designed and implemented
within the XPS environment, the Simgen [10] tool is used to
generate the post PAR timing simulation model of the system.
This simulation model is the used to simulate the behavior of
the system with the ModelSim simulator and to generate the
VCD file. In the last step XPower is used to read in the VCD,
the NCD and the PCF files of the design and to estimate the
dynamic and static power consumption.Care has to be taken,
because in a normal Xilinx implementation flow the software
executables are integrated into the memories of the processors
after the bitstream has been generated. When using XPower
and the post PAR simulation, the memories of the processor
have to be initialized in an earlier step. This means, into the
post PAR simulation model, otherwise the simulated system
behavior and the VCD file would not be accurate.

IV. NOVEL SYSTEM ARCHITECTURE
The system structure of the dual-processor system is shown

in Figure 2. Three new components have been designed and
implemented: the Virtual-IO, the Bridge and the
Reconfigurable Clock Unit. All three components have been
integrated into a library for the XPS tool. Therefore, they can
be inserted and parameterized using the graphical user interface
(GUI) of the XPS tool, which makes them easy reusable within
other XPS designs.

Figure 2. Dual processor design with three new components:
Virtual-I/O, Bridge and Reconfigurable Clock Unit

FPGA

µB0 µB1BRIDGE

VIRTUAL_IO

PCI Bus

FSL

RECONFIGURABLE CLOCK UNIT

FSL

Clock0 Clock1

FSL FSL

TIMER

UART

PLB

Reconfiguration
Signal

Key:
FSL : Fast Simplex Link
PLB : Processor Local Bus
UART : Universal Asynchronous Receiver Transmitter
µB : Microblaze
PCI : Peripheral Component Interconnect

The Virtual-IO receives data from the host PC and sends
results back to the host PC via the PCI-bus. The Virtual-IO
communicates via the Fast Simplex Links (FSLs) [11] with two
MicroBlaze processors (μB0 and μB1). μB0 communicates
with the user via the UART interface. It also has a timer, which
is used to measure the performance of the overall system. The
two processors communicate with each other via FSLs over the
Bridge component. Depending on the fill level of the FIFOs
within the Bridge reconfiguration signals are send to the
Reconfigurable Clock Unit. The Reconfigurable Clock Unit
reconfigures the clocks of the two processors based on the
reconfiguration signals issued by the Bridge. For the uni-
processor system, which is used for comparison, the Bridge,
the Reconfigurable Clock Unit, μB1 and their connections
were removed as shown in Figure 3.

Figure 3. Uni-processor system

FPGA

µB0

VIRTUAL_IO

PCI Bus
FSL

TIMER

UART

PLB

Key:
FSL : Fast Simplex Link
PLB : Processor Local Bus
UART : Universal Asynchronous Receiver Transmitter
µB : Microblaze
PCI : Peripheral Component Interconnect

The following subsections explain the new components and
their features more in detail.

A. Virtual-IO
The Virtual-IO component is used to communicate with the

host PC via the PCI-bus. It provides an input and an output port
to the PCI-bus and one input and one output port for each
MicroBlaze processor. It consists of two FIFOs, one for the
incoming and one for the outgoing data of the PCI-bus. Each
FIFO is controlled via a Finite State Machine (FSM), as it is
shown in Figure 4.

Figure 4. Virtual-IO component

To μBs

From μBs

FIFO

FSM

FSM

FIFOTo LB

From LB

The Virtual-IO is a wrapper around 6 different modules.
The first module is Virtual-IO 1, which sends data first to μB0
and then to μB1. It then receives the calculated results in the
same order. The second module is Virtual-IO 2, which sends
data only to μB0. Results are only received over μB1.
Therefore, μB0 sends its results to μB1, which then sends the
results of μB0 together with its own results back to the Virtual-
IO 2. The third module is Virtual-IO 3, which sends first data
to μB0. Afterwards, it sends in parallel to both processors μB0
and μB1 the same data. Finally, it sends some data only to
μB1. After the execution of the processors, first μB0 and then
μB1 send their results back to the Virtual-IO 3. The fourth
module is Virtual-IO 4, which is only connected to one of the
processors, e.g. μB0. Due to this, this module is used in all uni-
processor designs. For a dual-processor design it sends data to
μB0, which then forwards parts of the data to μB1. After
execution μB1 sends its results back to μB0, which forwards
the results of the execution of the two processors to the Virtual-
IO 4. The fifth module is Virtual-IO 5, which sends the same
data to both processors in parallel, but receives the results only
via μB0. The sixth module is Virtual-IO 6. It is very similar to

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 15

Virtual-IO 5. The only difference is that it receives the
calculation results from μB1 instead of μB0.

The modules can be selected in the XPS GUI via the
parameters of the Virtual-IO component. Other parameters that
can be set by the user are: the number of input and output
words for each processor separately, the number of common
input words and the size of the image (only for image
processing applications).

B. Bridge
The Bridge module is used for the inter-processor

communication. It consists of two asynchronous FIFOs
controlled by FSMs, to support a communication via the two
different clock domains of the processors, as shown in Figure
5. This Bridge component controls the fill level of the two
FIFOs. If one FIFO is to nearly full, it is assumed that the
processor, which reads from this FIFO, is too slow. As a result,
a reconfiguration signal to increase the clock rate of this
processor is send to the Reconfiguration Clock Unit.

Figure 5. Internal structure of the Bridge

Clock Domain 1

FIFO

To μB1

From μB1

FIFO

FSM FSM

To μB0

From μB0

Clock Domain 0

Reconfiguration
Signal for Clock 0

Reconfiguration
Signal for Clock 1

C. Reconfigurable Clock Unit
The internal structure of the Reconfigurable Clock Unit is

shown in Figure 6. It consists of two Digital Clock Managers
(DCMs) [12], two Clock Buffer Multiplexer primitives
(BUFGMUXes) [13] and the Logic component, which controls
the reconfiguration of the DCMs.

Figure 6. Internal structure of the Reconfigurable Clock Unit

LOGIC

DCM

DCM

CLOCK 0

To μB0

CLOCK 1

To μB1
CLK IN

Reconf iguration
Signals

The Logic component receives the reconfiguration signals
of the Bridge component. It then starts the reconfiguration of
the DCM primitive for the slower processor. For the
reconfiguration the specific ports provided by Xilinx for
dynamic reconfiguration of the Virtx-4 DCM primitive are
used. During the reconfiguration process the DCM has to be
kept in a reset state for a minimum of 200 ms. During this time
interval the outputs of this DCM are not stable and cannot be

used. Instead of stalling the corresponding processor, the
BUFGMUX primitive is used to provide CLK_IN, the original
input clock of the two DCM, to the processor, whose DCM is
under reconfiguration. The BUFGMUX is a special clock
multiplexer primitive, which assures, that no glitches occur,
when switching to a different clock. After the configuration of
the DCM is finished, the BUFGMUX is used to switch back to
the DCM clock. An alternative would be to stall the processor,
while its clock is being reconfigured. Because 200 ms are quite
a long time, especially for image processing applications,
where each 40 ms a new input frame is received from a
camera; this would result in a loss of input data.

To prevent an oscillation, the controller logic will stop
increasing the clock frequency, if 125 MHz for this MicroBlaze
have been reached, which is the maximum frequency supported
by the MicroBlaze and its peripherals, or if its clock frequency
has been increased for three consecutive times. If the
reconfiguration signal is still asserted meaning the processor is
still too slow, then the DCM of the faster processor is
reconfigured to provide a slower clock to the faster processor.

Alternatively, instead of dynamically reconfiguring the
DCM, different output ports of a DCM could be used to
generate different clocks. Using several BUFGMUXes the
different clocks could be selected. The advantage is a faster
switch between different clocks and the drawback is that not as
many different clocks are possible as when dynamic
reconfiguration is used. This will be investigated in future
work.

V. APPLICATION SCENARIOS
Three different applications scenarios were used to explore

the impact of the processor configurations, the task distribution
and the dynamic clock frequency scaling on the power
consumption of FPGA-based processor systems. The three
different algorithms are described in detail in the next
subsections. The first algorithm is the well known sorting
algorithm called Quicksort [14]. It consists of a lot of branches
and comparisons. The second algorithm is an image processing
algorithm called Normalized Squared Correlation (NCC),
which consists of many arithmetic operations, e.g. multiply and
divide. The third algorithm is a variation of a bioinformatic
algorithm called DIALIGN [15], which consists of many
comparisons and additions and subtractions. These algorithms
with their different algorithm requirements, e.g. branches,
comparators, multiply & divide, add & subtract, were used to
provide a user guideline of designing a system with a good
performance per power tradeoff for a specific application. By
comparing the algorithm requirements of new applications with
the three example algorithms, the system configurations of the
most similar example algorithm is chosen as a starting system.
Such a guideline to limit the design space is very important to
save time and achieve a higher time-to-market, because the
simulation and the power estimation with XPower are very
time-consuming. Also, the bitstream generation to measure the
performance of the application on the target hardware
architecture is time-consuming. These long design times can be
shorten by starting with an appropriate design, e.g. the right
processor configurations, a good task distribution and a well
selected execution frequency.

16 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

A. Sorting Algorithm: Quicksort
Quicksort [14] is a well known sorting algorithm with a

divide and conquer strategy. It sorts a list by recursively
partitioning the list around a pivot and sorting the resulting
sublists. It has an average complexity of � (n log n).

B. Image Processing Algorithm: Normalized Squared
Correlation
2D Squared Normalized Correlation (NCC) is often used to

identify an object within an image. The evaluated expression is
shown in equation (1).

� � � �� �� �
� �� � � �� �

pp

p

n
i

m
j

n
i

m
j

n
i

m
j

AA

A

jiji

jiji
pC

T

T

 ofMean :

T ofMean :

Columns m and Rowsn h region witsearch theof windowSub :

Columns m and Rowsn with image Template :

0 0
2

0 0
2

pp

2

0 0 pp

T),(TA),(A

T),(T*A),(A
)(

* � �� �
� �

� �� �

� �

��

��
�

(1)

This algorithm uses a template T of the object to be
searched for and moves this template over the search region A
of the image. Ap, the subwindow of the search region at point p
with the same size as T, is then correlated with T. The result of
this expression is stored at point p in the result image C. The
more similar Ap and T are the higher is the result of the
correlation. If they are equal, the result is 1. The object is then
detected at the location with the highest value.

C. Bioinformatic Algorithm: DIALIGN
DIALIGN [15] is a bioinformatics algorithm, which is used

for comparison of the alignment of two genomic sequences. It
produces the alignment with the highest number of similar
elements and therefore the highest score as shown in Figure 7.

Figure 7. Alignment of two sequences a and b with DIALIGN.

A T G A G C A G

C A T G A G T C A G

A T G A G C A G

C A T G A G T C A G

-Sequence a:

Sequence b:
DIALIGN

VI. INTEGRATION AND RESULTS
For the power consumption estimation and the performance

measurement a Xilinx Virtex-4 FX 100 FPGA was used. The
performance was measured on the corresponding FPGA Board
from Alpha Data [16]. As measuring the exact power
consumption of the FPGA on this board is not possible, it was
estimated at design-time using the XPower tool flow as
described in Section III. The impact of the clock frequency, the
configuration of the processor and the task distribution onto the
power consumption and the performance of the system has
been explored and the results are presented in the following
subsections. For each exploration some parameters had to be
kept fixed to assure a fair comparison. For the exploration of
the impact of the clock frequency, the algorithm and the
processor configuration have been kept fixed. For the
exploration of the impact of the configuration of the processor
the clock frequency were kept fixed. Finally, for the
exploration of the task distribution, the processor configuration
and the performance were kept fixed to lower the overall
system power consumption while maintaining the performance
similar to the performance achieved with a reference uni-

processor design running at 100 MHz, which is a standard
frequency for Virtex-4 based MicroBlaze systems.

A. Impact of the clock frequency
First of all the impact of the variation of the clock

frequency onto the power consumption was explored for a uni-
processor system, which executes the NCC algorithm on one
MicroBlaze. The MicroBlaze was configured to use a 5-stage
pipeline and no arithmetic unit. The results for the dynamic and
quiescent power consumption for the core and the other
components as well as the total power consumption of the
system are given in TABLE I. The quiescent power
consumption is also called static power consumption in the
following, because it represents the power consumption of the
user configured FPGA without any switching activity.

The impact of the clock frequency onto the static - and the
dynamic power consumption is presented in Figure 8. and
Figure 9. respectively. As can be seen the static power
consumption increases by around 0,24 mW / MHz, while the
dynamic power consumption increases by around 3,26 mW /
MHz.

Out of this results the impact onto the total power
consumption, which is around 3,5 mW / MHz. The impact on
the total power consumption as well as on the performance is
shown in Figure 10.

Figure 8. Impact of the clock frequency onto the static
power consumption of a uni-processor design.

450
452
454
456
458
460
462
464
466
468
470

40 50 60 70 80 90 100 110

mW

MHz

Uni-Processor Results with NCC
core_quiescent

� 0,24 mW/MHz

Figure 9. Impact of the clock frequency onto the dynamic
power consumption of a uni-processor design.

150

200

250

300

350

40 50 60 70 80 90 100 110

mW

MHz

Uni-Processor Results with NCC
core_dynamic

� 3,26 mW/MHz

Figure 10. Impact of the clock frequency onto the total
power consumption and onto the execution time of a uni-

processor design executing the NCC algorithm.

� 3,5 mW/MHz

1250
1300
1350
1400
1450
1500

50 60 70 80 90 100

Total_Pow er

MHz

mW

50
70
90

110
130
150

50 60 70 80 90 100

Execut ion Time

MHz

ms

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 17

B. Impact of the processor configurations
For exploration, a uni-processor design consisting of a

single MicroBlaze running at 100 MHz was used. The results
were compared against a reference configuration, which was a
MicroBlaze with a 5-stage pipeline and no arithmetic unit
(integer divider and barrel shifter). The following
configurations were explored:

i. adding an arithmetic unit (AU)
ii. reduction of the pipeline to 3-stages (RP)

iii. combination of i and iii (AU+RP)
The impact onto the power consumption and the performance
was explored for all three algorithms. The impact is very
different for the different applications, due to the different
algorithm requirements, as mentioned in Section V and its
subsections.

Figure 11. and TABLE II. show the impact of the different
configurations for the Quicksort algorithm. Due to the multiple
branches in the algorithm a reduction of the pipeline stages is
very beneficial in terms of execution time and power
consumption. The impact of the addition of the arithmetic unit
only provides a minimal improvement in terms of performance,
but with a stronger degradation of the power consumption.
Depending on the performance and power consumption
constraints, either the system with the AU + RP or the RP
system would be chosen.

Figure 11. Impact of the MicroBlaze configurations for
the Quicksort algorithm.

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

AU RP AU + RP

Total_Power (mW)

Core_Dynamic (mW)

Core_Stat ic (mW)

Execut ion Time (ms)

Referenced to System
w ith 5-Stage Pipeline
and no AU

% Quicksort at 100 MHz

AU : Arithmetic Unit
RP: Reduced Pipeline

Figure 12. and TABLE III. show the impact of the different
configurations for the NCC algorithm. As this algorithm
requires many arithmetic operations, the addition of an AU
improves the overall execution time, while the reduction of the
pipeline stages results in a strong degradation (over 50%). This
degradation is due to the reason that the execution of arithmetic
operations take more clock cycles, if the pipeline is reduced.
Therefore, for this and similar algorithms a system with an AU

and a 5-stage pipeline would be optimal from a performance
perspective. If the power consumption needs to be reduced and
some performance degradation is acceptable, than the reference
system or the AU+RP system would be a good choice.

Figure 12. Impact of the MicroBlaze configurations for
the NCC algorithm.

%
Referenced to System
w ith 5-Stage Pipeline
and no AU

-30

-20

-10

0

10

20

30

40

50

60

AU RP AU + RP

Total_Power (mW)

Core_Dynamic (mW)

Core_Stat ic (mW)

Execut ion Time (ms)

NCC at 100 MHz

AU : Arithmetic Unit
RP: Reduced Pipeline

In Figure 13. and TABLE IV. the impact onto the
performance and power consumption of the three different
processor configurations compared to the reference system are
presented for the DIALIGN algorithm. Adding an AU
improves the execution time only a little bit, while increasing
the overall power consumption compared to the reference
design. The reduction of the pipeline to 3-stages improves the
total power consumption by 6,8%, but worsening the execution
time by 25%. The combination of AU+RP shows nearly the
same impact as the RP system. Therefore, the reference system
is the best choice, if performance is the most important factor.
If on the other hand the power consumption is more important,
than the RP system would be a good choice for these kinds of
algorithms.

Figure 13. Impact of the MicroBlaze configurations for
the DIALIGN algorithm

-30

-20

-10

0

10

20

30

AU RP AU + RP

Total_Power (mW)

Core_Dynamic (mW)

Core_Stat ic (mW)

Execut ion Time (ms)

%

AU : Arithmetic Unit
RP: Reduced Pipeline

Referenced to System
w ith 5-Stage Pipeline
and no AU

Dialign at 100 MHz

TABLE I. IMPACT OF THE VARIATION OF THE CLOCK FREQUENCY ONTO THE POWER CONSUMPTION

Clk Freq. (MHz) PCoreDynamic(mW) POthersDynamic(mW) PCoreQuiescent(mW) POthersQuiescent(mW) PTotal(mW) PTotal(%)

50 180 26 453 641 1298 - 11,9
60 232 26 457 641 1355 - 8,0
70 243 26 458 641 1367 - 7,2
80 273 26 460 641 1398 - 5,1
90 301 26 462 641 1428 - 3,1
100 343 26 465 641 1473 NA

18 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

C. Impact of the task distribution and the frequency scaling
To measure the impact onto the power consumption the
algorithms were partitioned onto two MicroBlaze processors.
The frequency for the two processors was chosen in such a
way, that the execution time of the dual-processor design was
as similar as possible to the reference system consisting of a
single MicroBlaze running at 100 MHz. For all systems the
configurations of the processors were fixed to a 5-stage
pipeline and no arithmetic unit.

TABLE V. shows the results for distributing the Quicksort
algorithm on two processors instead of one. Two partitions
were done. The first one is called Dual_2 (80/50 MHz), which
means, that the Virtual-IO 2 was used and μB0 was running at
80 MHz while μB1 was running at 50 MHz. The algorithm was

so partitioned that μB0 receives the whole data to be sorted. It
then divides the data into two parts and sends the second part to
μB1. Both then sort their partition. μB0 forwards its sorted part
of the list to μB1, which sends the final combined sorted list
via the Virtual-IO 2 to the host PC. With this partition the
overall power consumption could be reduced by 6,43%
compared to the single processor reference system.

The second partition called Dual_5 (95 MHz) uses the
Virtual-IO 5 to send incoming data to both processors running
at 95 MHz. μB0 searches the list for elements smaller and μB1
searches the list for elements bigger than the pivot. When one
has found an element the position of this element is send to the
other processor. Both processor then update their lists by
swapping the own found element with the one the other
processor has found. At the end both processors have as a

TABLE II. IMPACT OF THE MICROBLAZE CONFIGURATIONS FOR THE QUICKSORT ALGORITHM AT 100 MHZ

μB Parameter P
CoreDynamic

(mW) P
OthersDynamic

(mW) P
CoreStatic

(mW) P
OthersStatic

(mW) P
Total

(mW) P
Total

(%) Time (ms)
Default 438,33 26,13 472,91 639,56 1576,93 NA 18,42

Arithmetic Unit 493,26 26,14 477,20 639,58 1636,18 + 3,76 18,10
3-stage Pipeline 354,23 26,13 466,41 639,56 1486,33 - 5,75 17,21

Both 372,84 26,13 467,84 639,58 1506,39 - 4,47 16,89

TABLE III. IMPACT OF THE MICROBLAZE CONFIGURATIONS FOR THE NCC ALGORITHM AT 100 MHZ

μB Parameter P
CoreDynamic

(mW) P
OthersDynamic

(mW) P
CoreStatic

(mW) P
OthersStatic

(mW) P
Total

(mW) P
Total

(%) Time (ms)
Default 341,68 26,09 465,44 639,57 1472,78 NA 67,74

Arithmetic Unit 366,28 26,13 467,33 639,57 1499,31 + 1,80 53,62
3-stage Pipeline 269,63 26,10 459,97 639,57 1395,27 - 5,26 103,64

Both 269,40 26,12 459,95 639,58 1395,05 - 5,28 88,84

TABLE IV. IMPACT OF THE MICROBLAZE CONFIGURATIONS FOR THE DIALIGN ALGORITHM AT 100 MHZ

μB Parameter P
CoreDynamic

(mW) P
OthersDynamic

(mW) P
CoreStatic

(mW) P
OthersStatic

(mW) P
Total

(mW) P
Total

(%) Time (μs)
Default 431,67 26,06 472,38 639,58 1569,69 NA 786,48

Arithmetic Unit 464,39 26,06 474,93 639,59 1604,97 + 2,25 777,64
3-stage Pipeline 343,01 26,05 465,54 639,59 1474,19 - 6,08 982,85

Both 355,88 26,06 466,53 639,58 1488,05 - 5,20 988,05

TABLE V. QUICKSORT POWER CONSUMPTION

 Uni-Processor (100MHz) Dual_2 (80/50 MHz) Dual_5 (95 MHz)
Execution Time - ms 18,42 18,80 19,27

Core (dyn/stat)_Power - mW 438,33 / 472,91 295,89 / 461,95 384,34 / 468,72
Total Power - mW 1576,93 1475,56 1570,79
Total Power - % NA - 6,43 - 0,39

TABLE VI. NCC POWER CONSUMPTION

 Uni-Processor (100MHz) Dual_3 (54 MHz) Dual_2 (87,5/50 MHz)
Execution Time - ms 67,74 67,28 67,62

Core (dyn/stat)_Power - mW 341,68 / 465,44 297,39 / 462,07 322,32 / 463,96
Total Power - mW 1472,78 1477,20 1504,02
Total Power - % NA + 0,30 + 2,12

TABLE VII. DIALIGN POWER CONSUMPTION

 Uni-Processor (100MHz) Dual_5 (50 MHz) Dual_6 (50 MHz)
Execution Time - ms 30,21 30,16 30,16

Core (dyn/stat)_Power - mW 431,67 / 472,38 440,80 / 473,09 352,45 / 466,27
Total Power - mW 1569,69 1631,62 1536,44
Total Power - % NA + 3,95 - 2,12

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 19

result a searched list. μB0 then sends its resulting list back to
the host PC via the Virtual-IO 5. The power consumption of
this version is nearly the same as the reference system, while
the total execution time increases.

TABLE VI. shows the result for the partitioning of the
NCC algorithm onto two processors. The first partitioning uses
the Virtual-IO 3 to partition the incoming image into two
overlapping tiles, one for each processor. The overlapping part
is send to both processors simultaneously. As the NCC is a
window-based image processing algorithm, the boarder pixels
between the two tiles are needed by both processors. Each of
the processors runs at 54 MHz, which results in a similar
execution time, and also in a similar total power consumption
as the reference design.

The second partition called Dual_2 (87,5 /50 MHz) uses
Virtual-IO 2 to send the whole image to μB0. μB0 runs at 87, 5
MHz and calculates the complete numerator and the
denominator. Then it forwards both to μB1, which does the
division and sends the results back to the Virtual-IO 2. μB1
runs at 50 MHz. While the execution time is nearly the same,
the overall power consumption is increased slightly by 2,12%.

TABLE VII. shows the result for executing the DIALIGN
Algorithm with two processors. Two partitions were done. The
first one is called Dual_5 (50 MHz) and uses Virtual-IO 5 to
send the incoming sequences to both processors running at 50
MHz. Each processor calculates half of the resulting score
matrix. μB0 calculates on a row-based fashion all values above
the main diagonal. μB1 calculates on a column-based fashion
all values below the main diagonal. The scores on the main
diagonal are calculated by both processors. After μB0 has
finished calculating one row and μB1 one column respectively,
they exchange the first score nearest to the main diagonal, as
this score is needed by both processors for calculating the next
row/column respectively. While the execution time is nearly
the same, the overall power consumption is increased by
3,95%.

The second partition is called Dual_6 (50 MHz). It uses the
Virtual-IO 6 to send the sequences to the processors, which run
both at 50 MHz. Here a systolic array approach is used for
executing the DIALIGN algorithm. μB1 then sends the final
alignment and the score back to the host PC. With this partition
the overall power consumption could be reduced by 2,12%
compared to the single processor reference system.

VII. CONCLUSIONS AND OUTLOOK
This paper reports the research and evaluation of different

microprocessor parameterization, application and data
partitioning on a dual-processor system. The results of the
experiments show the impact of the different parameterization
on the power consumption and performance in relation to a set
of selected applications. Depending on the application type it
can be seen that different parameter configurations, e.g.
configuration of the processors and their frequencies, but also a
good application partitioning, are essential for achieving an
efficient tradeoff between performance and power constraints.
The results can be used to guide developers what parameter set
suits to a certain application scenario. The vision is that more
application scenarios will be analyzed in order to provide a
broad overview of the parameter impact. It is envisioned to

extend existing hardware benchmarks from different
application domains in terms of a parameterization guideline
also for further FPGA series from Xilinx.

Furthermore, the paper provides a tutorial for the estimation
of the power consumption on a high level of abstraction, but
with a high accuracy through post place and route simulation.
Therefore, other research in this area can be done and
exchanged in the community.

ACKNOWLEDGMENT
The authors would like to thank Prof. Alba Cristina M. A.

de Melo and Jan Mendonca Correa for providing us with their
C code implementation of the DIALIGN algorithm.

REFERENCES
[1] “Xilinx MicroBlaze Reference Guide”, UG081 (v7.0), September

15, 2006, available at: http://www.xilinx.com.

[2] D. Meintanis, I. Papaefstathiou: “Power Consumption Estimations
vs Measurements for FPGA-based Security Cores”; International
Conference on Reconfigurable Computing and FPGAs 2008
(ReConFig 2008), Cancun, Mexico, December 2008.

[3] J. Becker, M. Huebner, M. Ullmann: “Power Estimation and
Power Measurement of Xilinx Virtex FPGAs: Trade-offs and
Limitations”; In Proc. of the 16th Symposium on Integrated
Circuits and Systems Design (SBCCI’03), Sao Paulo, Brazil,
September 2003.

[4] K. Poon, A. Yan, S.J.E. Wilton: “A Flexible Power Model for
FPGAs”; In Proc. of 12th International Conference on Field-
Programmable Logic and Applications (FPL 2002), September
2002.

[5] F. Najm: “Transition density: a new measure of activity in digital
circuits”; IEEE Transactions on Computer-Aided Design, vol. 12,
no. 2, pp. 310-323, February 1993.

[6] K. Weiss, C. Oetker, I. Katchan, T. Steckstor, W. Rosenstiel:
“Power estimation approach for SRAM-based FPGAs”; In Proc. of
International Symposium on Field Programmable Gate Arrays
(FPGA’00), pp. 195-202, Monterey, CA, USA, 2000.

[7] V. Degalahal, T. Tuan; “Methodology for high level estimation of
FPGA power consumption”; In Proc. of ASP–DAC 2005
Conference, Shanghai, January 2005.

[8] “Xilinx Power Estimator User Guide”, UG440 (v3.0), June 24,
2009, available at: http://www.xilinx.com.

[9] “Development System Reference Guide”, v9.2i, Chapter 10
XPower, available at: http://www.xilinx.com.

[10] “Embedded System Tools Reference Manual”, Embedded
Development Kit, EDK 9.2i, UG111 (v9.2i), September 05, 2007,
Chapter 3, available at: http://www.xilinx.com.

[11] “Fast Simplex Link (FSL) Bus (v2.00a)”; DS449 Dec. 1, 2005,
available at http://www.xilinx.com.

[12] “Virtex-4 FPGA Configuration User Guide”, UG071 (v1.11), June
9, 2009, available at: http://www.xilinx.com.

[13] “Virtex-4 FPGA User Guide”, UG070 (v2.6), December 1, 2008,
available at: http://www.xilinx.com.

[14] C. A. R. Hoare: “Quicksort”; Computer Journal, vol. 5, 1, 10–15
(1962).

[15] A. Boukerche, J. M. Correa, A. C. M. A. de Melo, R. P. Jacobi: “A
Hardware Accelerator for Fast Retrieval of DIALIGN Biological
Sequence Alginments in Linear Space”; IEEE Transactions on
Computers, vol. 59, no. 6, pp. 808-821, 2010.

[16] Alpha-Data: http://www.alpha-data.com

20 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Novel Approach for Modeling Very Dynamic and
Flexible Real Time Applications

Ismail Ktata1,2, Fakhreddine Ghaffari1, Bertrand Granado1 and Mohamed Abid2

1ETIS Laboratory, CNRS UMR8051, University of Cergy-Pontoise,
ENSEA, 6 avenue du Ponceau F95000 Cergy-Pontoise, France

2Computer & Embedded Systems Laboratory (CES), National School
of Engineers of Sfax, (ENIS), B.P.W. 3038 Sfax, Tunisia

1Email: {firstname.name}@ensea.fr
2Email: {firstname.name}@enis.rnu.tn

Abstract
Modeling techniques are used to solve a variety of practical

problems related to processing and scheduling in several domains
like manufacturing and embedded systems. In such flexible and
dynamic environments, there are complex constraints and a
variety of unexpected disruptions. Hence, scheduling remains a
complex and time-consuming process and the need for accurate
models for optimizing this process is increasing. This paper deals
with dynamically reconfigurable architectures which are
designed to support complex and flexible applications. It focuses
on defining a solution approach for modeling such applications
where there is significant uncertainty in the duration, resource
requirements and number of tasks to be executed.

Keywords: Dynamically Reconfigurable Architecture,
uncertainty, scheduling, modeling methodologies, DFG.

I. Introduction

Today, integrated silicon applications are more and more
complex. Moreover, in spite of its performance, ASICs
development is still long and very expensive, and provides
inefficient solutions for many applications which are
composed of several heterogeneous tasks with different
characteristics. In addition, the growing complexity of real-
time applications today presents important challenges, in great
part due to their dynamic behavior and uncertainties which
could happen at runtime [1]. To overcome these problems,
designers tend to use dynamically reconfigurable architectures
(DRA). The development of the latter opens new horizons in
the field of architecture design. Indeed, the DRAs are well
suited to deal with the dynamism of new applications and
allow better compromise between cost, flexibility and
performance [2]. In particular, fine grained dynamically
reconfigurable architectures (FGDRA), as a kind of DRAs,
can be adapted to any application more optimally than coarse
grain DRAs. This feature makes them today an interesting
solution when it comes to handle computational tasks in a
highly constrained context. However, this type of architecture
makes the applications design very complex [3], especially
with the lack of suitable and efficient tools. This complexity

could be abstracted at some level in two ways: at design time
by providing design tools and at run time by providing an
operating system that abstracts the lower level of the system
[4]. Moreover, such architecture requires the presence of an
appropriate operating system that could manage new tasks at
run time and under different constraints. This operating
system, and to effectively manage dynamic applications, has
to be able to respond rapidly to events. This can be achieved
by providing a suitable scheduling approach and dedicated
services like hardware preemption that decreases
configurations and contexts transfer times. To realize an
efficient schedule of an application, this operating system
needs to know the behavior of this application, in particular
the part where the dynamicity can be exploited on a DRA.

In this paper, we are interested in the modeling of
applications that could be executed on dynamically
reconfigurable architecture. This kind of applications is
characterized, in addition to its real-time constraints, by
several types of flexibility. The purpose is to improve the
performance of the modeling techniques which facilitates the
job to design an efficient scheduling approach.

The remainder of this paper is structured as follows: in
Section 2, brief review is given about the context and the
related work on modeling techniques used in different
domains. Section 3 describes our new technique modeling
applications targeted to DRA. The Section 4 reports a
description of the proposed modeling method and
comparisons with other models, while the last Section draws
conclusions.

II. Context and problem definition

Today, embedded systems are more and more used in
several domains: automobiles, robots, planes, satellites, boats,
industrial control systems, etc. An important feature of these
systems is to be reactive. A reactive system is a system that
continuously reacts to its environment at a rate imposed by
this environment itself. It receives inputs from the
environment, responds to these stimuli by making a number of
operations and produces the outputs used by the environment,
known as reactions. Dynamically reconfigurable architectures
are an interesting solution for this type of applications. Due to

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 21

that emerging range of applications with dynamic behavior,
dynamic scheduling for reconfigurable system-on-chip
(RSoC) platforms has become an important field of research
[2].

A. Problematics
This paper deals with the constraint-based scheduling for

real-time applications executed on FGDRA. In particular, we
focus on two major problems:
� The modeling of the application that should exhibit its

dynamical aspects and must allow the expression of its
constraints, in particular real-time constraints.

� The run-time performance of the scheduling algorithm that
must be reasonable in term of overhead for a typical
application.
The different components of a scheduling problem are the

tasks, the potential constraints, the resources and the objective
function. Tasks execution must be programmed to optimize a
specific objective with the consideration of several criteria.
Many resolution strategies have been proposed in literature
[5]. Usually these methods assume that processing times can
be modeled with deterministic values. They use predictive
schedule that gives an explicit idea of what should be done.
Unfortunately, in real environments, the probability of a pre-
computed schedule to be executed exactly as planned is low
[6]. This is because of not only variations, but also because of
a lot of data that are only previsions or estimations. It is then
necessary to deal with uncertainty or flexibility in the process
data. Hence, for an effective resolution, we need to make a
significant reformulation of the problem and the solving
methods in order to facilitate the incorporation of this
uncertainty and imprecision in scheduling [7].
Uncertainty in scheduling may arise from many sources [8]:
� The release time of tasks can be variable, even unexpected.
� New unexpected tasks may occur.
� Cancellation or modification of existing tasks.
� The execution order of tasks on resources can be changed.
� Resources may become unavailable.
� Tasks assignments: if a task could be done on different

resources (identical or not), the choice of this resource can
be changed. This flexibility is necessary if such a resource
becomes unusable or less usable than others.

� The ability to change execution mode: this mode includes
the approval or disapproval of preemption, whenever a
task could be resumed or not, the overlap between tasks,
changing the range of a job, taking into account whether or
not a time of preparation, changing the number of
resources needed for a task, etc.
We are considering real cases where some variations could

occur and some data may change over the forecast. The model
has to be few sensible to data uncertainties and variations, and
be flexible to be adaptable to the possible disturbances.

B. Scheduling under uncertainty
In general, there are two main approaches dealing with

uncertainty in a scheduling environment according to phases
in which uncertainties are taken into account [8]:
� Proactive scheduling approach aims to build a robust

baseline schedule that is protected as much as possible
against disruptions during schedule execution. It takes into
account uncertainties only in design phase (off-line).
Hence, it constructs predictive schedule based on statistical
and estimated values for all parameters, thus implicitly

assuming that this schedule will be executed exactly as
planned. However, this could become infeasible during the
execution due to the dynamic environment, where
unexpected events continually occur. Therefore, in this
case, a reactive approach may be more appropriate.

� Instead of anticipating future uncertainties, reactive
scheduling takes decisions in real-time when some
unexpected events occur. A reference deterministic
scheduling, determined off-line, is sometimes used and re-
optimized. In general, reactive methods may be more
appropriate for high degrees of uncertainty, or when
information about the uncertainty is not available.
A combination of the advantages of both precedent

approaches is called proactive-reactive scheduling. This
hybrid method implies a combination of a proactive strategy
for generating a protected baseline schedule with a reactive
strategy to resolve the schedule infeasibilities caused by the
disturbances that occur during schedule execution. Hence, this
scheduling/rescheduling method permits to take into account
uncertainties all over the execution process and ensures better
performance [9] [10]. For rescheduling, the literature provided
two main strategies: schedule repair and complete
rescheduling. The first strategy is most used as it takes less
time and preserves the system stability [11].

Scheduling techniques are quite different depending on the
nature of the problem and the type of disturbance considered:
resources failure, the duration of the variation and the fact that
new tasks can occur, etc. The mainly used methods are
dispatching rules, heuristics, metaheuristics and artificial
intelligence techniques [12]. In [13] authors considered a
scheduling problem where some tasks (called "uncertain
tasks") may need to be repeated several times to satisfy the
design criteria. They used an optimization methodology based
on stochastic dynamic programming. In [14] and [15]
scheduling problem with uncertain resource availabilities was
encountered. Authors used proactive-reactive strategies and
heuristic techniques. Another uncertainty case, which is
uncertain tasks duration, had been studied in [16] and [17].
Authors discuss properties of robust schedules, and develop
exact and heuristic solution approaches.

C. Scheduling model
To study a system we need models to describe it, including

significant system characteristics of geometry, information
and dynamism. The latter is a crucial system characteristic as
it permits to represent how a system behaves and changes
states over time. Moreover, dynamic modeling can cover
different domains from the very general to the very specific
[18]. Model types have different presentations, as shown in
figure 1: some are text-based using symbols while others have
associated diagrams.
� Graphical models use a diagram technique with named

symbols that represent process and lines that connect the
symbols and represent relationships and various other
graphical notations to represent constraints (figure 1(a), (b)
(d)).

� Textual models typically use standardized keywords
accompanied by parameters (figure 1(c)).

In addition, some models have static form, whereas others
have natural dynamics during model execution as in figure 1
(a). The solid circle (a token) moves through the network and
represents the executional behavior of the application.

22 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Figure 1. Four types of dynamic system models.
(a) Petri net. (b) Finite state machine. (c) Ordinary differential

equation. (d) Functional block model.

In the domain of embedded systems, a large number of
modeling languages have been proposed [19], [20], [21],
including extensions to finite state machines, data flow
graphs, communicating processes, and Petri nets, among
others. In this section we present main models of computation
for real-time applications reported in the literature.

� Finite State Machines

The classical Finite State Machine (FSM) representation is
probably the most well-known model used for describing
control systems. However, one of the disadvantages of FSMs
is the exponential growth of the number of states that have to
be explicitly captured in the model as the system complexity
increases making the model increasingly difficult to visualize
and analyze [22]. For dynamic systems, the FSM
representation is not appropriate because the only way to
model such kind of systems is to create all the states that
represent the dynamic behavior of the application. It is then
unthinkable to use it as the number of states could be
prohibitive.

� Data-Flow Graph

A data-flow graph (DFG) is a set of compute nodes
connected by directed links representing the flow of data. It is
very popular for modeling data-dominated systems. It is
represented by a directed graph whose nodes describe the
processing and the arcs represent the partial order followed by
the data. However, the conventional model is inadequate for
representing the control unit of systems [23]. It provides no
information about the ordering of processes. It is therefore
inappropriate to model dynamic applications.

� Petri Net

Petri net (PN) is a modeling formalism which combines a
well-defined mathematical theory with a graphical
representation of the dynamic behavior of systems [18]. Petri
Net is a 5-tuple PN = (P, T, F, W, Mo) where: P is a finite set
of places which represent the status of the system before or
after the execution of a transition. T is a finite set of
transitions which represent tasks. F is a set of arcs (flow
relation). W: F� {1, 2, 3, ... } is a weight function. M0 is the
initial marking. However, though Petri net is well-established
for the design of static systems, it lacks support for

dynamically modifiable systems [24]. In fact, the PN structure
presents only the static properties of a system while the
dynamic one results from PN execution which requires the use
of tokens or markings (denoted by dots) associated with places
[25]. The conventional model suffers from good specification
of complex systems like lack of the notion of time which is an
essential factor in embedded applications and lack of
hierarchical composition [26]. Therefore, several formalisms
have independently been proposed in different contexts in
order to overcome the problems cited above, such as
introducing the concepts of hierarchy, time, and valued
tokens. Timed PNs are those with places or transitions that
have time durations in their activities. Stochastic PNs include
the ability to model randomness in a situation, and also allow
for time as an element in the PN. Colored PNs allow the user
and designer to witness the changes in places and transitions
through the application of color-specific tokens, and
movement through the system can be represented through the
changes in colors [18].

Most of the methodologies mentioned provide no
sufficient support for systems which include variable dynamic
features. Dynamic creation of tasks for instance is not
supported by most of the systems above mentioned [26]. In
[26], authors proposed an extension of high-level Petri net
model [27] in order to capture dynamically modifiable
embedded systems. They coupled that model with graph
transformation techniques and used a double pushout
approach which consists of the replacement of a Petri net by
another Petri net after firing of transitions. This approach
allows modeling dynamic tasks creation but not variable
execution time nor variable number of needed resources.

III. Proposed method

Before beginning to describe our modeling method, we
define the constraints that typically appear in dynamic
systems. In our case, we consider a firm real-time context. In
fact, for actually developed applications, especially
multimedia and control applications, tardiness or deadline
violations results only in degradation of Quality of Service
(QoS) without affecting good processing. In this context
hardware tasks are characterized by the following parameters:

- Execution time (Ci),
- Deadline (Di),
- Periodicity (Pi),
- Precedence constraints among tasks,
- Tasks could be preempted,
- Used resources of the DRA.

In real world, all characteristics may change: tasks (the
release time, deadline and execution time), as well as the
availability of resources. There are several types of changes
like uncertainty, unexpected changes and values variation. For
our study, we will consider three cases of dynamic scheduling
problems for dynamic applications:

(a) The number of tasks is not fixed. It may change from
iteration to another.

(b) The tasks execution time may change too.
(c) The number of needed resources for tasks execution is

variable. In addition, the number of available resources may
decrease after a failure occurs.

For those cases, the goal is to develop a robust scheduling
method that is little sensible to data uncertainties and
variations between theory and practice. In addition, the

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 23

schedule has to be flexible to be adaptable to the possible
disturbances. Therefore, we consider a proactive-reactive
approach. The proactive technique (a reference schedule
computed offline for the static part) is used to facilitate the
execution of the reactive strategy online, so that scheduling
decisions have a better quality and produced in a shorter time.
To represent all those constraints in the same model and to be
adequate for the adopted scheduling approach, our graph will
be composed of two forms of nodes. The first type of nodes
refers to static tasks which are known in advance and whose
execution is permanent during the whole application of the
lifecycle execution. The second type is for dynamic tasks
which could be executed in a cycle and not in others and with
a variable number of needed resources. Therefore, the first
step is to separate the two parts of the application (static and
dynamic). Then, a priority-based schedule is established
offline for static part. Such a schedule serves very important
functions. The first is to allocate cells of the hardware DRA to
the different hardware tasks. The second is to serve as a basis
for planning tasks that may occur during execution. The basic
idea is to sort static tasks from the graph and schedule them
according to a priority scheme, while respecting their
precedence constraints (topological order). Tasks are executed
at the earliest possible time. If there is equality between some
tasks, task which has maximum execution time will have
priority to be launched before the others. At runtime, the
objective is to generate a new schedule that deviates from the
original schedule as little as possible so that the repair
operations will be mostly simple. Therefore, the online
scheduler must take into account the next tasks to be
performed with their dynamic aspects (different duration,
more or less instances to execute, more or less number of
needed cells for execution). It has to prefetch configurations
context of new tasks in the columns that are available for
executing and to find the possible way to integrate them in the
current schedule without effect on performance. This schedule
repair must rely on rapid algorithms based on a simple
scheduling technique so that it can perform online execution
with no overhead. It consists in finding a suitable partitioning
of N tasks, forming the application, to be executed on M target
resources of the hardware devices. In addition, tasks execution
order has to meet the real time constraints. This scheduling
problem is known to be NP-hard [28] [29]. In this context,
heuristics are schedule repair methods which offer fast and
reasonably good solution but do not guarantee to find an
optimal schedule.

We make use of the example shown in figure 3 in order to
illustrate the different definitions corresponding to our model.
For this example, the set {T1, T2, T3, T4, T5, T6, T7, T8}
represents the static tasks which are always executed in each
period and {T9, T10, T11} are dynamic tasks which may be
executed in some period but not in others and whose number
of resource requirements is variable. Each task is represented
with time characteristics: Ci for the execution time and Di for
the deadline.

The first dynamic feature considered in this model is tasks
with variable execution time. To represent that case, we are
inspired by the Program Evaluation and Review Technique
(PERT) [30], which is a network model that allows
randomness in activity execution times. For each task, PERT
indicates a start date and end time at the earliest and latest.
The chart identifies the critical path which determines the
minimum duration of the project. Tasks are represented by
arcs with an associated number presenting the tasks duration.

Between arcs, we find circles marking events of beginning or
end of tasks (figure 2). In this model, we replace the release
time feature by the execution time as it would be changed over
execution, and we keep the deadline as it will be useful to
minimize the makespan (or the length of the schedule). In
figure 3, tasks with variable execution time are {T1, T7, T8}.
This will be noticed by the use of asterisk.

Figure 2. PERT graph

To be executed, hardware tasks need a minimum number
of resources. The percentage of this minimal number is
indicated in labels over tasks nodes. This case is frequently
found on some computer vision applications where a first task
is detecting objects and then a particular processing is applied
on each detected object. To execute multiple instances of this
process, the minimum needed number of resources will be
multiplied by the number of instances. In figure 3, task T9 will
be executed n times. T9 is represented with circled node and
the minimum needed number of resources indicated in the
label will be multiplied by n. If the integer number n=0 then
task will not occur. The instance number is unexpected from
the static phase and decision will be taken online. The number
n will depend on the previous executions and the actual input
data to be processed (such as keypoints in the robotic vision
application). Thus, n will be recalculated, after each period,
based on its previous values. For more details, we take an
example of execution. In each iteration the scheduler will have
two values of n: np which is a predicted value of n to be used
by the scheduler for the next period, and nr which is the real
value of n for the executed task. At t=0, let n= np =0 (no
prediction to execute T9). In the first execution, the
application needs n= nr =10 instances of T9. So, for the
second iteration, the scheduler will predict to execute n= np
=10 instances of T9, while, in the real execution, n= nr =6. For
the next execution, np could be: the maximum of precedent
values, the highest values of n, the average of real last values
(n= np =8), or a Gaussian like probability which is a typical
realistic distribution, etc. The choice will depend on the
application. For the example of a moving robot which need to
predict the direction and the presence or absence of obstacles,
it will be preferred to take the last real values with different
weights. In our model, the number n is represented above the
arcs. The arcs represent the dependencies between tasks. For
static (permanent) tasks, we represent arcs with solid lines,
while unpredictable dependencies are represented by dashed
lines.

24 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Figure 3. New model for dynamic application

On the reconfigurable device, resource failure may occur
which will affect the resource availability. Thus, execution
may occur or not depending on the available resources
compared with needed ones. A variable, which is initialized as
the total number of resources, will indicate the amount of
remaining resources. From the ready list, algorithm
determines the tasks that can be executed on the
reconfigurable device. Tasks with the higher priorities will be
placed first until the area of device is fully occupied.

IV. Comparison of models

When we compare with other models (section 2-C), the
proposed technique presents several advantages. For
unpredicted number of occurring tasks, the data flow graph
does not contain information about the number of instances.
During execution of the application, every task represented by
the nodes of DFG is executed once in each iteration [31]. Only
when all nodes have finished their executions, a new iteration
can start. So to model this, we need to represent n nodes of the
same task, which increases the size of the model (see figure
4(b)). In our model, information about number of instances of
a same task to be executed is noted by the circle form of the
task and the indicated number above its arc. For PN model,
(see figure 4(a)), arcs could be labeled with their weights
where a k-weighted arc can be interpreted as the set of k
parallel arcs [32]. But, from its definition (section 2-C),
weights are positive integers, so it cannot present a fictive arc
with non firing transition representing a task that may not be
executed in some iterations. In figure 4(a), if T9 and T10 are
not executed, then n should be null, which is impossible from
PN definition. In addition, to fire T8 all input places should
have at least one token, which will be not possible if T10 or
T11 was not executed (fired).

Figure 4. (a) A Petri net representation of the example of figure 3.
(b) A DFG representation of the example of figure 3.

Timing information is useful for determining minimum
application completion time, latest starting time for an activity
which will not delay the system, and so on. We have inspired
from the PERT chart to explicitly represent useful time
features that are, in our case, execution time and deadline.
However, Petri net does not provide any of this type of
information. The only important aspect of time is the partial
ordering of transitions. For example, it presents variable tasks
duration with a set of consequent transitions for each task
which will complicate the model (see figure 5). The addition
of timing information might provide a powerful new feature
for Petri nets but may not be possible in a manner consistent
with the basic philosophy of Petri nets Research [33].

For resource representation, PN models this feature by an
added place with a fixed number of tokens. To begin
execution, a task removes a token from the resource place and
gives it back in the end of its execution. However, this model
is inadequate in our case since the number of available
resources may change over the execution.

Therefore, the use of conventional modeling methods is
not effective in our case. In fact, with PN and DFG model
(figure 4), there is no distinction between static tasks and
dynamic ones (that may not be executed), nor an explicit
notion of time (as variable execution time of some tasks).

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 25

Figure 5. PN model for variable tasks duration

The main advantage of the proposed method is the
possibility to present several dynamic features of real time
applications with the minimum of nodes and thus in a simple
formalism. Indeed, from the first sight of the model, we can
bring out three main characteristics of this model:
- The distinction between the static execution (which is

presented by the squared nodes) and the dynamic execution
i.e. the tasks whose execution and number of instances is
uncertain (presented by the circled nodes),

- The tasks whose execution time is variable (presented by the
asterisk),

- The percentage, for each task, of needed resources for its
execution. In each iteration, and depending on the available
resources, schedule is able to decide which ready tasks could
be executed on the device.

Those informations will be useful further for the scheduler.
We consider a 1D area model as it is a commonly used
reconfigurable resource model, but even 2D area model could
be considered. In that considered 1D model, tasks can be
allocated anywhere along the horizontal device dimension; the
vertical dimension is fixed and spans the total height of the
hardware task area (see figure 6).

Figure 6. 1D area model of a reconfigurable device

Based on the proposed tasks model, statically defined tasks
represented by squared nodes, will be scheduled and placed on
the reconfigurable device during the proactive phase. Whereas
dynamically defined tasks, which are represented by circled
nodes, will be scheduled online in a reactive phase. This
online decision will take into account the variable parameters

and try to fit into the set of already guaranteed tasks, to delay
or to reject these new dynamic tasks.

V. Conclusion

This paper presented a particular modeling problem
dealing with the implementation of dynamic and flexible
applications on dynamically reconfigurable architecture. The
purpose is to consider most of the dynamic features supported
by the architecture and to present them in an easy and efficient
method. For that point we have proposed a model, based on
some features of existing modeling techniques, and which is
more dedicated to dynamic real time applications. The main
advantage of our specification model is the possibility to
obtain more exact scheduling characteristics from the
representation. Those characteristics include the distinction
between static and dynamic occurring tasks, bring out tasks
whose execution time may change over the time and
determine the number of resources needed for executing
hardware tasks. So, we will be able either to take decisions or
not. As a reconfigurable architecture, we target OLLAF [4]
(Operating system enabled Low LAtency Fgdra), an original
FGDRA specifically designed to enhance the efficiency of an
RTOS services necessary to manage such architecture. Future
works will consist in integrating our scheduling approach
among the services of an RTOS taking into account the new
possibilities offered by OLLAF.

VI. References

[1] C.Steiger, H.Walder, M.Platzner, "Operating systems for
reconfigurable embedded platforms: online scheduling of real-
time tasks", Computers, IEEE Transactions on Volume 53, Issue
11, Nov. 2004 Page(s): 1393 - 1407.

[2] J. Noguera, R.M. Badia, "Multitasking on reconfigurable
architectures: Microarchitecture support and dynamic
scheduling", ACM Transactions on Embedded Computing
Systems, Volume 3, Issue 2 (May 2004) pp. 385-406.

[3] A. Mtibaa, B. Ouni and M. Abid, "An efficient list scheduling
algorithm for time placement problem", Computers and
Electrical Engineering 33 (2007) 285–298.

[4] S. Garcia, B. Granado, "OLLAF: a Fine Grained Dynamically
Reconfigurable Architecture for OS Support", EURASIP
Journal on Embedded Systems, October 2009.

[5] P. Brucker & S. Knust, "Complex Scheduling", Springer Berlin
Heidelberg, 2006.

[6] V. T'kindt and J.-C. Billaut, "Multicriteria Scheduling: Theory,
Models and Algorithms", Springer-Verlag (Heidelberg), second
edition (2006).

[7] N. González, R. Vela Camino, I. González Rodríguez,
"Comparative Study of Meta-heuristics for Solving Flow Shop
Scheduling Problem Under Fuzziness", Second International
Work-Conference on the Interplay Between Natural and
Artificial Computation, IWINAC 2007, Spain, June 18-21,
2007, Proceedings Part I : 548-557.

[8] A. J. Davenport and J. C. Beck, "A Survey of Techniques for
Scheduling with Uncertainty", accessible on-line at
http://tidel.mie.utoronto.ca/publications.php on February 2006,
2000.

[9] H.Aytug, M.A.Lawley, K.McKay, S.Mohan, R.Uzsoy,
"Executing production schedules in the face of uncertainties: A
review and some future directions", European Journal of
Operational Research 161, 2005, p86-110.

[10] W.Herroelen and R.Leus, “Project scheduling under uncertainty:
Survey and research potentials”, European Journal of
Operational Research, Vol. 165(2) (2005) 289--306.

26 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

[11] G.E.Vieira, J.W.Hermann, and E.Lin, "Rescheduling
manufacturing systems: a framework of strategies, policies and
methods", Journal of Scheduling, 6 (1), 36-92 (2003).

[12] D. Ouelhadj, and S. Petrovic, "A survey of dynamic scheduling
in manufacturing systems", Journal of Scheduling, 2008.

[13] Peter B. Luh, Feng Liu and Bryan Moser, "Scheduling of design
projects with uncertain number of iterations", European Journal
of Operational Research, 1999, vol. 113, issue 3, pages 575-592.

[14] O.Lambrechts, E.Demeulemeester, W.Herroelen, "Proactive and
reactive strategies for resource-constrained project scheduling
with uncertain resource availabilities", Journal of scheduling
2008, vol.11, no.2, pp. 121-136.

[15] S.Liu, K.L.Yung, W.H.Ip, "Genetic Local Search for Resource-
Constrained Project Scheduling under Uncertainty",
International Journal of Information and Management Sciences
2007, VOL 18; NUMB 4, pages 347-364.

[16] M. Turnquist and L. Nozick, "Allocating time and resources in
project management under uncertainty", Proceedings of the 36th
Annual Hawaii International Conference on System Sciences,
Island of Hawaii, January 2003.

[17] J. Christopher Beck, Nic Wilson, "Proactive Algorithms for Job
Shop Scheduling with Probabilistic Durations", Journal of
Artificial Intelligence Research 28 (2007) 183–232.

[18] P.A Fishwick, "Handbook of dynamic system modeling",
Chapman & Hall/CRC Computer and Information Science
Series 2007.

[19] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-
Vicentelli, "Design of Embedded Systems: Formal Models,
Validation, and Synthesis", Proc. IEEE, 85(3):366–390, March
1997.

[20] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich,
"Models of computation for embedded system design". In A. A.
Jerraya and J. Mermet, editors, System-Level Synthesis, pages
45–102, Dordrecht, 1999. Kluwer

[21] A. Jantsch. "Modeling Embedded Systems and SoC’s:
Concurrency and Time in Models of Computation". Morgan
Kaufmann, San Francisco, CA, 2003.

[22] L. Alejandro Cortes, "Verification and Scheduling Techniques
for Real-Time Embedded Systems", Ph. D. Thesis No. 920,
Dept. of Computer and Information Science, Linköping
University, March 2005.

[23] L. Alejandro Cortés, P. Eles and Z. Peng, "A Survey on
Hardware/Software Codesign Representation Models", SAVE
Project, Dept. of Computer and Information Science, Linköping
University, Linköping, June 1999.

[24] Carsten Rust, Franz J. Rammig: "A Petri Net Based Approach
for the Design of Dynamically Modifiable Embedded Systems".
DIPES 2004: 257-266.

[25] M. Tavana, "Dynamic process modelling using Petri nets with
applications to nuclear power plant emergency management",
Int. J. Simulation and Process Modelling (2008), Vol. 4, No. 2,
pp.130–138.

[26] Franz-Josef Rammig, Carsten Rust, "Modeling of Dynamically
Modifiable Embedded Real-Time Systems", WORDS Fall 2003:
28-34.

[27] E. Badouel and J. Oliver. "Reconfigurable Nets, a Class of High
Level Petri Nets Supporting Dynamic Changes". In Proc. of a
workshop within the 19th Int’l Conf. on Applications and
Theory of Petri Nets, 1998.

[28] Michael Garey and David Johnson, "Computers and
Intractability: A Guide to the Theory of NP-completeness",
Freeman, 1979.

[29] Z.A. Mann, A. Orbán, "Optimization problems in system-level
synthesis". Proceedings of the 3rd Hungarian-Japanese
Symposium on Discrete Mathematics and Its Applications,
Tokyo-Japan (2003).

[30] F. Chauvet, J.-M. Proth, "The PERT Problem with Alternatives:
Modelisation and Optimisation", Report N° RR-3651 (1999)
SAGEP (INRIA Lorraine) France.

[31] Oliver Sinnen. "Task Scheduling for Parallel Systems" (Wiley
Series on Parallel and Distributed Computing). Wiley-
Interscience, 2007.

[32] Tadao Murata, "Petri nets: Properties, Analysis and
Applications", Proceedings of the IEEE, 77(4):541-574, April
1989.

[33] James L. Peterson, "Petri net theory and the modeling of
systems", Prentice Hall PTR, 1981.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 27

28 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

New Three-level Resource Management for Off-line
Placement of Hardware Tasks on Reconfigurable Devices

Ikbel Belaid, Fabrice Muller

University of Nice Sophia-Antipolis
LEAT-CNRS, France

e-mail: belaid@unice.fr, fmuller@unice.fr

Maher Benjemaa

Research Unit ReDCAD
National engineering school of Sfax

Tunisia
e-mail: Maher.Benjemaa@enis.rnu.tn

Abstract—The FPGA devices are widely used in
reconfigurable computing systems, these devices can
achieve high flexibility to adapt themselves to various
applications by reconfiguring dynamically portions of
the dedicated resources. This adaptation with the
application requirements reaches better performance
and efficient resource utilization. However, the run-time
partial reconfiguration brings more complex
partitioning of the FPGA reconfigurable area. This
issue implies that efficient task placement algorithm is
required. Many on-line and off-line algorithms designed
for such partially reconfigurable devices have been
proposed to provide efficient hardware task placement.
In these previous proposals, the quality of hardware
task placement is measured by the resource wastage and
task rejection and major of these research works
disregard the configuration overhead. Moreover, these
algorithms optimize these criteria separately and do not
satisfy all goals. These considerations can not reflect the
overall situation of placement quality. In this paper, we
have interested in off-line placement of hardware tasks
in partially reconfigurable devices and we propose a
novel three-level resource management for hardware
task placement. The proposed off-line resource
management is based on mixed integer programming
formulation and enhances placement quality which is
measured by the rate of task rejection, resource
utilization and configuration overhead.

Keywords-hardware task placement; mixed integer
programming; run-time reconfiguration

I. INTRODUCTION
The FPGA devices get faster and larger due to the high

density of their heterogeneous resources. Consequently, the
number and the complexity of modules to load on them
increases, hence better performance can be achieved by
exploiting FPGAs in reconfigurable computing systems.
Furthermore, the ability to reconfigure the FPGA partially
as it is running speeds up the applications in reconfigurable
systems. The technique of run-time partial reconfiguration
also improves the performance of hardware task
scheduling. For hardware tasks, placement and scheduling
are strongly linked; the scheduler decision should be taken

in accordance with the ability of placer to allocate free
resources in reconfigurable hardware device to the elected
task. While some proposed techniques increase the
performance of scheduling as well as of application, these
techniques suffer from placement problems: resource
wastage, task rejection and configuration overheads. In this
paper, under FOSFOR project1, we focus mainly on an
efficient management of hardware tasks on reconfigurable
hardware devices by taking advantage from the run-time
reconfiguration. Nowadays, heterogeneous SRAM-based
FPGAs are the most prominent reconfigurable hardware
devices. In this work, we target the recent Xilinx column-
based FPGAs to optimize the quality of hardware task
placement basing on mixed integer programming
formulation and by using powerful solvers which rely on
the complete non-exhaustive resolution method called
Branch and Bound. Experiments are conducted on an
application of heterogeneous tasks and an improvement in
placement quality was shown by 30 % as an average rate of
resource utilization which achieves up 27 % of resource
gain comparing to static design. In the worst case, the
resulted configuration overhead is 10 % of the total running
time and we discarded the issue of task rejection.

The rest of the paper is organized as follows: the next
section reviews some related work of hardware task
placement. Section 3 details our three-level off-line strategy
of resource management on FPGA. Section 4 depicts the
formulation of placement problem as mixed integer
programming. Section 5 describes the obtained results and
the evaluation of placement quality. Concluding remarks
and future works are presented in section 6.

II. RELATED WORK
Placement problem consists of two main functions: i)

the partitioning that handles the free resource space to
identify the potential sites for hardware task execution and
ii) the fitting that selects the feasible placement solution.
Many research groups investigated on the placement of
hardware tasks on FPGAs. Current strategies dealing with
task placement are divided into two categories: off-line
placement and on-line placement.
1FOSFOR (Flexible Operating System FOr Reconfigurable platforms) is
French national program (ANR) targeting the most evolved technologies.
Its main objective is to design a real time operating system distributed on
hardware and software execution units which offers required flexibility to
application tasks through the mechanisms of dynamic reconfiguration and
homogeneous Hw/Sw OS services.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 29

A. On-line Methods for Hardware Task Placement
The main reference is [1], Bazargan et al. propose on-

line scenario and introduces two partitioning techniques:
Keeping All Maximal Empty Rectangles and Keeping
Non-overlapping Empty Rectangles. Both techniques
manage free resource space to search the empty holes.
Nevertheless, the fitting is conducted by bin-packing rules.
In [2], Walder et al. deals with 2D on-line placement by
relying on efficient partitioning algorithms that enhance
the Bazargan’s partitioning such as On-The-Fly
partitioning. The Walder’s partitioner delays split decision
instead of using the Bazargan’s heuristics for decision of
split and uses hash matrix data structure that finds a
feasible placement in constant time. Ahmadinia et al.
presents in [3] a new method of on-line placement by
managing the occupied space on the device and by fitting
the tasks on the sites by means of Nearest Possible Position
method that reduces the communication cost. Some
metaheuristics are adopted to resolve the hardware task
placement such as [4] that employs an on-line task
rearrangement by using genetic algorithm approach. In [4],
when a new arriving task could not be placed immediately
by first-fit strategy, the proposed approach combining two
genetic algorithms allows the task rotation and tries to
rearrange a subset of tasks executing on the FPGA to allow
the processing of the pending task sooner.

B. Off-line Methods for Hardware Task Placement
In the off-line scenario for hardware task placement,

[1] defines 3D templates in time and space dimensions and
uses simulated annealing and greedy research heuristics.
By considering the placement of hardware tasks as
rectangular items on hardware device as rectangular unit,
several approaches for resolving the two-dimensional
packing problem are proposed. For example, in [5], the
off-line approximate heuristics: Next-Fit Decreasing
Height, First-Fit Decreasing Height and Best-Fit
Decreasing Height are presented as strip packing
approaches based on packing items by levels. Lodi et al.
propose also in [6] and [7] different off-line approaches to
resolve hardware task placement as 2D bin-packing
problem for instance Floor-Ceiling algorithm and
Knapsack packing algorithm. The Knapsack packing
algorithm proposed in [7] initializes each level by the
tallest unpacked item and completes it by packing tasks as
the associated Knapsack problem that maximizes the total
area within level. In [8], as bin packing problem, an off-
line approach is proposed by Fekete et al. through a graph-
theoretical characterization of the packing of a set of items
into a single bin. Tasks are presented as three-dimensional
boxes and the feasible packing is decided by the
orthogonal packing problem within a given container.
Their approach considers packing classes, precedence
constraints and the edge orientation to solve the packing
problem. Similarly, in [9], Teich et al. defines the task

placement as more-dimensional packing problem. From a
set of tasks modeled as 3D polytopes with two spatial
dimensions and the time of computation and basing on
packing classes as well as on a fixed scheduling, they
search a feasible placement on a fixed-size chip to
accommodate a set of tasks. The resolution is performed
by Branch and Bound technique to optimality of dynamic
hardware reconfiguration. By optimizing the total
execution time and the resource utilization, the method of
placement in [10] proposed by Danne and Stuehmeier
consists of two phases. The first phase is the recursive bi-
partitioning by means of slicing tree that defines the
relative position of each hardware task towards the other
hardware task placement and finds the appropriate room in
the reconfigurable device for each hardware task according
to task’s resources and inter-task communication. The
second phase uses the obtained room topology to achieve
the sizing that computes the possible sizes for each room.

Major of the existing strategies provide a non-guarantee
system as they suffer from task rejection and resource
wastage. Major of the proposed methods of placement are
applicable only in homogeneous devices and addresses
near-identical and non-preemptive hardware tasks. As we
have full knowledge about the set of hardware tasks and
the features of the reconfigurable device, in this work, we
present a realistic three-level resource management
solution as a new strategy to perform off-line placement of
hardware tasks in heterogeneous FPGA.

III. THREE-LEVEL OFF-LINE RESOURCE
MANAGEMENT

In our three-level resource management, we are based
on features of hardware tasks and reconfigurable hardware
device. We use Xilinx’s Virtex FPGA as a reference for the
hardware reconfigurable device to lead our hardware
resource management study.

A. Terminology
We define few terms which are used to describe the

three-level resource management. Throughout the paper,
the number of tasks is presented by NT, NZ is the number
of Reconfigurable Zones (RZ), NR is the number of
Reconfigurable Physical Blocs (RPB) specific for a given
RZ and NP is the number of Reconfigurable Bloc (RB)
types in the chosen technology. We consider two levels of
abstraction.

1) Application Level: Each hardware task (Ti) is
featured by the worst case execution time (Ci), the period
(Pi) and a set of predefined preemption points (Preempi,l)
specified by the designer according to the known states in
the task behavior and to the data dependency between
these states. The number of preemption points of Ti is
denoted by NbrPreempi. In addition, tasks are presented by
a set of reconfigurable resources called Reconfigurable
Blocs (RBk). The RBs are the required physical resources

30 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

in the reconfigurable hardware device to achieve task
execution and they define the RB-model of the hardware
task as expressed by (1). The determination of the RB-
model of hardware tasks is well detailed in our work in
[11]. The RBs are the smallest reconfigurable units in the
hardware device. They are determined according to the
available reconfigurable resources in the device and they
match closely its reconfiguration granularity. Each type of
RB is characterized by specified cost RBCostk which is
defined according to its frequency in the device, its power
consumption and its functionality.

 (1)

2) Physical Level
a) Reconfigurable Zones (RZ): RZs are virtual

blocs customized to model the classes of hardware tasks.
RZs separate hardware tasks from their execution units on
the reconfigurable device. They are determined through the
RB-model of hardware tasks during step 1 of the first level
of resource management. Hence, each RZ (RZj) is depicted
by its RB-model as described by (2).

 (2)

b) Reconfigurable Physical Blocs (RPB): During
the placement, the RB-model of RZs are fitted on RPBs
partitioned on reconfigurable hardware device. RPBs are
2D physical blocs representing the physical locations of
RZs within the reconfigurable area. Each RPB is
characterized by four fixed coordinates and is depicted by
its RB-model as presented by (3). As RZs are abstractions
of hardware task classes, the RPBs are the execution units
where the tasks could be placed.

RZ RB-model

Reconfigurable
Area

RB-model
fitting

0 1 2 3 4 5 6

0

1
RB1RB1 RB3

RB1 RB4 RB3 RB1 RB2 RB3 RB1

RB3 RB3 RB2 RB4 RB1 RB4 RB2

RB1 RB2 RB2 RB4 RB3 RB1 RB1

RPB1 = {(0,0) , (2,0)}
RPB2 = {(1,0) , (2,4)}
RPB3 = {(1,4) , (2,5)}

.

.

.

2

RPB1 RPB3

Y

X
RPB2

Figure 1. Example of RPBs for RZ.

 (3)

Fig. 1 illustrates an example of potential RPBs
partitioned on reconfigurable area of the hardware device
for fitting RZ requiring two RB1 and one RB3.

The management of hardware resources in
reconfigurable hardware device to perform off-line
placement of hardware tasks consists of three levels
described by the three following sections.

B. Level 1: Off-line Flow of Hardware Task Classification
Level 1 takes the application tasks as input and

provides the types and the instances of RZs. It consists of
three steps.

1) Step 1: RZ Types Search: It gathers tasks sharing the
same types of RBs under the same type of RZ by taking
the maximum number of each RB type between tasks. Step
1 is achieved by Algorithm 1.

Algorithm 1. RZ types search or hardware task search.

RZ-reference = 0 // references of RZs types
List-RZ // list of RZs types
n // natural
For all tasks Ti Do // Ti_RB = {Xi,k RBk}

RZ=Create new RZ (Xi,k) //RZ = {Xi,k RBk}
If ((RZ-reference ≠ 0) and (n, 1≤n≤ RZ-reference/ k ((Xi,k ≠ 0 and Zn,k ≠ 0)
or (Xi,k = 0 and Zn,k = 0))) then

// this test checks whether the new created RZ type already exists in list -RZ
For all k Do

Zn,k= max (Xi,k, Zn,k) // update RBs number of RZn

Else
Increment RZ-reference
RZ RZ-reference = RZ // RZ RZ-reference = {Xi,k RBk}
Insert(list-RZ, RZ RZ-reference)

END If
END For

The maximum number of RZ types is the number of
hardware tasks. At the end of step 1, we obtain the tasks
classes (RZj).

2) Step 2: Classification of Hardware Tasks: Step 2
starts by computing cost D between tasks and each RZ
type resulting from step 1. Costs D represent the
differences on RBs between tasks and RZs, consequently,
they express the resource wastage when task is mapped to
the RZ. Based on RB-models of task Ti and RZ RZj, cost D
is computed as follows according to two cases.
We define by (4)

 (4)

Case 1: 0, ,, 0, kjidk , RZj contains a sufficient number of
each type of RB (RBk) required by Ti, cost D is equal to the
sum of differences in the number of each RB type between
Ti and RZj weighted by RBCostk as expressed in (5).

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 31

 (5)

Case 2: 0, ,, 0kjidk , the number of RBs required by Ti

exceeds the number of RBs in the RZj or Ti needs RBk
which is not included in RZj. In this case cost D is infinite
(see (6)).

 (6)

Step 2 assigns each task to the RZ giving the lowest cost D
and by using (7), computes the workload of each RZ
according to this assignment.

(7)

Overheadj denotes the configuration overhead of RZj on
the target technology. This overhead is computed by
conducting the whole Xilinx partial reconfiguration flow
from the floorplanning of RZj on the device up to partial
bitstream creation and by taking into account the
configuration frequency (frequency) and the width of the
selected configuration port (port width) as expressed by
(8).

(8)

3) Step 3: Decision of Increasing the Number of RZs
This step is performed when an overload (>100%) is
detected within some RZs after step 2. Step 3 lightens the
overload in RZs by migrating some execution sections
(Exei) defined by the predefined preemption points of its
assigned tasks to the non-overloaded RZs giving finite D
with them. When the overload persists, step 3 increments
the number of overloaded RZ till covering its overload.
Step 3 is conducted by means of Algorithm 2.
As generic placement, our off-line placement includes the
main functions of placement: partitioning and fitting
fulfilled by the two following levels of resource
management.

C. Level 2: Partitioning of RPBs on the Target Device
In this level, for each RZ resulting from level 1, level 2

searches all its potential physical sites partitioned on the
device which are RPBs. During RPB partitioning, we must
take into account the heterogeneity of the target device. In
fact, the RPBs must contain all the types of RBs required
by the RZ and the number of RBs in RPBs must be greater
than or equal to the number of RBs in RZs.

Algorithm 2. Decision of increasing the number of RZs.

Loadm : the load (%) of overloaded RZm
Loadn : the load (%) of non-overloaded RZn
Loadn,i: the load (%) of non-overloaded RZn after adding a section of execution of Ti
Sectioni: the list of combinations of execution sections of task Ti
Exei: the execution section of Ti
p,q,r,j,i,l: naturals
L1 = {loads of overloaded RZj}
L2 = {loads of non-overloaded RZj}
L3: list of tasks

Sort L1 in descending order
Sort L2 in ascending order, in case of equality ,
Sort L2 in ascending order according to configuration overhead
For p = 1 to size of L1 Do // Browsing overloaded RZs RZm

RZm = L1(p)
Loadm = load(RZm)
q = 1
While (q ≤ size of L2 and Loadm>100) Do // Browsing non-overloaded RZs RZn

RZn = L2(q)
Loadn = load(RZn)
// Search {Ti } from RZm to migrate to RZn
If ({Ti} assigned to RZm/D(Ti , RZn)≠∞) then

Sort {Ti} in ascending order according to D(Ti , RZn) in L3
r = 1
While ((r ≤ size of L3) and (Loadm > 100)) Do // Browsing {Ti }

Ti = L3(r)
l = 1
While (l <= size(Sectioni) and Loadm >100) Do
// Checking the possibility of relocation of the sections of
Ti by respecting the load of RZn

select the first execution section Exei and discard it from Sectioni
Loadn,i = Loadn + Exei /Pi + Overheadn/Pi
If (Loadn,i <= 100) then // Migration of Exei from RZm to RZn is accepted

Loadm = Loadm – Exei/Pi - Overheadm/Pi // Removing Exei from RZm
Loadn = Loadn,i // Migration of Exei to RZn

End If
l++

End While
r++

End While
End If
q++

End While
If (Loadm > 100) then

New RZm * (┌Loadm/100┐- 1) // Adding new RZm
Reinitialize the load of {RZn}when it does not affect the number of added RZm

End If
End For

{

D. Level 3: Two-level Fitting
Level 3 consists of two independent sub-levels. The

first one ensures the fitting of RZs on the most suitable
non-overlapped RPBs in terms of resource efficiency. The
second sub-level performs the mapping of tasks to RZs
according to their preemption points by avoiding the RZ
overload and by guaranteeing the achievement of task
execution. Task mapping is based on run-time partial
reconfiguration and promotes solutions of lowest cost D
and reducing overheads.

As proved in our work [12], the placement problem is
NP-complete problem. Its search space grows
exponentially with the number of tasks and RZs. Level 2
and level 3 depict the principle functions of off-line
placement of hardware tasks and level 1 is a pre-placement
analysis. Placement problem is a combinatory optimization
problem, it uses discrete solution set, chooses the best
solution out of all possible combinations and aims the
optimization of multi-criteria function. Consequently, level
2 and level 3 are formulated as mixed integer programming

32 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

in the following section as it uses some binary and natural
variables.

IV. MIXED INTEGER PROGRAMMING FOR
HARDWARE TASK PLACEMENT

Level 2 and level 3 are modeled by the quadruplet
(V,X,C,F).

Constants (V)
NT, NZ, NP
Task features, RZ features, RB features
Device features: width, height, Device_RB

Variables (X)
RPBj features for each RZj
(Xj,Yj): The coordinates of the upper left vertex of RPBj
WRPBj: The abscissa of the upper right vertex of RPBj
HRPBj: The ordinate of the bottom left vertex of RPBj
Task preemption points
PreempUnicityj,i,l: Boolean variable controls whether the
mapping of Preempi,l of Ti is performed on RZj
SumPreempj,i: The sum of preemption points of Ti
performed within RZj is expressed by (9).

 (9)

Occupationj,i: The mapping of preemption points of tasks
to RZs produces the occupation rates of tasks Ti in RZj

which are computed as in (10).

(10)

AverageLoad: After preemption point mapping, the
average of RZ workloads is calculated by (11).

(11)

Constraints (C)

RPB coordinates domain (CP1): the values of RPB
coordinates are limited by the width and the height of the
device.

(12)

Heterogeneity Constraint (CP2): During RPBs
partitioning and RZs fitting, this constraint claims that the
number of RBs in RPBs is greater or equal to those in RZs
as formulated by (13).

(13)

Non-overlapping between RPBs (CP3): As expressed by
(14), this constraint restricts the fitting of RZs on non-
overlapped RPBs.

(14)

Non-overload in RZs (CM1): During fitting tasks Ti on
RZj, each RZj must not be overloaded (see (15)).

(15)

Infeasibility of mapping for preemption points (CM2):
This constraint repeals the mapping of preemption points
of tasks to RZj giving infinite cost D (see (16)).

(16)

Uniqueness of preemption points (CM3): As explained by
(17), each preemption point of task Ti must be mapped to
unique RZj.

(17)

This constraint guarantees also the achievement of task
execution and discards the problem of task rejection.

Minimization Objective Function
During our resolution, we considered two sub-problems:
the partitioning of RPBs on the device resolved
simultaneously with the fitting of RZs on the selected
RPBs and the mapping of tasks to their appropriate RZs.
The selection of the best solutions for both sub problems is
guided by the following objective function.

ctionMappingFunionPlaceFunctF MP
PlaceFunction focuses on the sub-problem of fitting RZs
on the most suitable RPBs partitioned on the device. By
respecting the heterogeneity and the non-overlapping
constraints, PlaceFunction promotes the fitting of RZs on
RPBs that strictly contain the number and type of RBs
required by RZs. As expressed by (18), PlaceFunction
evaluates the resources efficiency of the RZ fitting on the
selected RPBs on the heterogeneous device.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 33

(18)

MappingFunction deals with the fitting of preemption
points of hardware tasks on the RZs by respecting the three
last constraints and by optimizing the three following
criteria of measuring mapping quality.

321 MapMapMapctionMappingFun MMM
By means of (19), Map1 targets the full exploitation of
RZs by approaching their workloads to 100%. Map1 aims
also the load balancing of RZs by minimizing the variance
of their workloads towards the AverageLoad.

(19)

In (20), Map2 computes the overhead resulting from task
mapping. Map2 takes into account all the possible
preemption points, even the successive ones within the
same task, in order to obtain the worst case overhead. In
fact, the scheduler could preempt a task on these
successive preemption points in the same RZ in favor of a
higher priority task. Minimizing Map2 promotes the
solutions of mapping tasks to RZs providing the lowest
overhead.

(20)

The goal of Map3 expressed by (21) is to map tasks with
high occupation rate to the RZs providing the lowest cost
D. The benefit of Map3 is the optimization of resource use
since cost D considers the weight of each resource in terms
of its frequency on the device and the importance of its
functionality. As cost D reveals the resource wastage when
task is mapped to RZ, minimizing Map3 ensures the use
optimization of costly resources by mapping tasks with
low occupation rates to RZs including costly resources.

(21)

V.RESULTS AND PLACEMENT QUALITY
EVALUATION

A. Proposed Application
The experiments in this section deal with the effect of

three-level off-line resource management on an application
composed of seven heterogeneous tasks. As shown in Fig.
2, our application contains varied-size tasks with
heterogeneous resources which are considered the main
functions in the current real-time applications. The

application consists of microcontroller (T48) that guides
the remainder part of the application and ensures the
hardware task configuration as well as the data flow
synchronization. MDCT task computes the modified
discrete cosine transform which is the main function in
JPEG compression. JPEG task performs hardware
compression of 24 frames per second by using the data
provided by MDCT task. AES (Advanced Encryption
Standard) encrypts the resulted information from JPEG
task by processing blocs of 128 bits with 256bit-key.VGA
task drives VGA monitors and can display one picture on
the screen either of chars or color waveforms or color grid.
We did not consider the communication latency between
the microcontroller and the other hardware tasks and we
focused only on finding efficient placement for the
hardware tasks.

Microcontroller
(T48)

JPEG AES
(256 bits)

MDCTMDCT
RGB

Memory

Data

RGB

D

control
Data (8bits)

Data
(12bits)VGA

Figure 2. Hardware tasks of the application.

At design time, we synthesized the hardware resources
of these hardware tasks by means of ISE 11.3 Xilinx tool
and we choose Xilinx Virtex 5 SX50 as reconfigurable
hardware device. In Virtex 5 technology [13], there are four
main resource types: CLBL, CLBM, BRAM and DSP. By
considering the reconfiguration granularity, the RBs in
Virtex 5 are vertical stacks composed of the same type of
resources: RB1 (20 CLBMs), RB2 (20 CLBLs), RB3 (4
BRAMs) and RB4 (8 DSPs). We have assigned 20, 80, 192
and 340 as RBCost respectively for RB1, RB2, RB3 and RB4.
Virtex 5 FPGA and the hardware tasks are modeled with
their RB-models. Configuration overheads are determined
by considering that each task defines an RZ. The partial
reconfiguration flow dedicated by PlanAhead 11.3 Xilinx
tool enables the floorplanning of hardware tasks on the
chosen device to create their bitstreams independently for
estimating configuration overheads. We rely on parallel
8bit-width configuration port and use 100 MHz as the
configuration clock frequency. Preemption points are
determined arbitrarily according to the granularity of
hardware tasks and their Ci. For all tasks, we consider that
the first preemption point is equal to 0 μs. The features of
hardware tasks and their instances are presented in
TABLE I.

B. Obtained Results
The pre-placement analysis performed by level 1

produce the set of RZ types according to the RBs
requirements in hardware tasks. Thus, following to step 1
of level 1, the RB-models of the obtained RZ types are
indicated on the RZs line in TABLE I.

34 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

TABLE I. FEATURES OF HARDWARE TASKS

MDCT AES VGA T48 JPEG
Instances T1,T2 T3 T4 T5 T6

RB-model
(μs)

2 RB1,
12 RB2,
3 RB3,
0 RB4

4 RB1,
7 RB2,
1 RB3,
1 RB4

2 RB1,
4 RB2,
1 RB3,
0 RB4

5 RB1,
4 RB2,
0 RB3,
0 RB4

8 RB1,
12 RB2,
0 RB3,
2 RB4

WCET (μs) 40552 44540 2500 20000 350000
Period (μs) 416666 200000 10000 50000 416666

Overhead
(μs)

3215 1980 681 721 2968

Preemption
Points (μs)

10000,
20000,
30000

30000,
40000

1650,
2000

5000,
10000,
15000

200000,
300000

RZs RZ1 RZ2 RZ1 RZ3 RZ4

WCET: Worst Case Execution Time of the task, Period: the period of the
task which is equal to the deadline, Overhead: configuration overhead of
the task in Virtex 5 SX50 with parallel 8bit-width port (100 MHz),
Preemption points: points in time taken from WCET predefined by the
designer, RZs: the assigned RZ for the task in step 1 of level 1.

In this application, RZ1 is created by MDCT type (T1
and T2) and VGA type (T4). As explained by step 1, when
different types of tasks construct the RZ type, the
maximum number of each RB type must be taken between
these tasks. In the case that the maximum numbers of
distinct RB types are produced by different tasks, the
whole partial reconfiguration flow for this RZ type must be
performed to recompute its configuration overhead. For
RZ1, the RB-model and configuration overhead are taken
form MDCT type as it gives the maximum number of RBs.
TABLE II describes the obtained RZ types, their
workloads (%) and the costs D between tasks and RZs. The
workloads of the obtained RZs are computed by assigning
to each RZ the tasks giving lowest cost D with them
presented by the bold numbers in TABLE II. An overload
in RZ2 is detected after step 2 of level 1 and is due to the
execution times of T3 and T4 as well as to the configuration
overhead of RZ2. Step 3 of level 1 resolves this overload in
RZ2 by migrating the first execution section marked by the
first preemption point (0 μs) and the second preemption
point (1650 μs) of T4 to RZ1. RZ1 is the unique RZ type that
could accept T4 as it is non-overloaded and it gives finite
cost D (1024) with it. Step 3 decides this task relocation
instead of adding another RZ2 to resolve efficiently its
overload.

TABLE II. STEP 1 AND STEP 2 RESULTS

MDCT
{T1,T2}

AES
{T3}

VGA
{T4}

T48
{T5}

JPEG
{T6}

RZ1 (26%) 0 ∞ 1024 ∞ ∞
RZ2 (110%) ∞ 0 620 ∞ ∞
RZ3 (46%) ∞ ∞ ∞ 0 ∞
RZ4 (86%) ∞ ∞ ∞ 1380 0

The resolution of the level 2 and level 3 of our off-line
resource management are resolved by means of powerful
solvers dedicated by AIMMS environment

(www.aimms.com) that relies on the Branch and Bound
[14] method which guarantees the optimal solution. We
have considered two independent sub-problems. The first
one ensures the partitioning of RPBs on the device for all
the RZs provided by level 1 combined with the fitting of
RZs on the most suitable RPBs by respecting the
constraints CP1, CP2 and CP3 and by optimizing the
objective expressed by PlaceFunction. This first sub-
problem was modeled as mixed integer linear program and
was resolved after 3 minutes by CPU of 2 GHz with 2 GB
of RAM. Nevertheless, the second sub-problem consists on
mapping the tasks to the most appropriate RZs according
to their predefined preemption points by satisfying the
constraints CM1, CM2 and CM3 and by promoting the
solution that optimizes the objectives expressed by Map1,
Map2 and Map3. The task mapping sub-problem was
formulated as mixed integer non-linear program and was
resolved after 1 second.

For the first sub-problem, TABLE III shows the RZ
fitting on the selected RPBs defined by their coordinates.

TABLE III. RPBS FOR RZ FITTING

Xj WRPBj Yj HRPBj

RPB1 25 28 1 6
RPB2 34 45 1 2
RPB3 1 3 1 4
RPB4 34 45 3 5

In TABLE IV, the costs (Δ) expressing the differences
in RBk between RZs and their associated RPBs obtained
after resolution depict the resource efficiency. The
obtained results of RZ fitting provide an averaged resource
utilization of 30% of the available RBs in the
heterogeneous device. This resource utilization achieves up
27 % of resource gain comparing to static design. The
static design is obtained by fitting each instance of each
hardware task on its RPB without using the concept of
dynamic partial reconfiguration.

TABLE IV. RESOURCE EFFICIENCY

RB1 RB2 RB3 RB4 Δ
RPB1 6 12 6 0 4 RB1, 3 RB3

RPB2 12 8 2 2 8 RB1, 1 RB2, 1 RB3, 1 RB4

RPB3 8 4 0 0 2 RB1

RPB4 18 12 3 3 10 RB1, 3 RB3, 1 RB4

Figure 3 shows the floorplanning of RPBs in Virtex 5
SX50 according to the obtained RPB coordinates.

The mapping of task preemption points are detailed in
TABLE V. Ti,x depicts the x-th execution section of Ti.
Tasks T1, T2, T3, T5 and T6 are efficiently mapped to their
optimal RZs by optimizing the objectives expressed by
(20) and (21) of reducing overheads and the use of costly
resources. For T4, the analytic resolution assigns more
execution sections of this task to its optimal RZ RZ2 (80%)
than RZ1 (20%). The two first sections of T4 (T4,1,T4,2)

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 35

marked by the its preemption point (0 μs) and its third
preemption point (2000 μs) are mapped to RZ2. The last
execution section of T4 (T4,3) is fitted on RZ1. On the same
RZ, the tasks are scheduled by respecting their deadlines
and are preempted on their predefined preemption points.
Moreover, we considered that execution sections,
delimited by the preemption points within task, are
independent. Effectively, there is need neither to exchange
data nor to send synchronization resource between these
execution sections.

RP
B 1

RPB2

RP
B 3

RPB4

Figure 3. RZ fitting on Virtex 5 SX50.

TABLE V. MAPPING OF PREEMPTION POINTS

RZ1 T1,1,T1,2,T1,3,T1,4 100% of T1

T2,1,T2,2,T2,3,T2,4 100% of T2

T4,3 20 % of T4

RZ2 T3,1,T3,2,T3,3 100% of T3

T4,1,T4,2 80% of T4

RZ3 T5,1,T5,2,T5,3,T5,4 100% of T5

RZ4 T6,1,T6,2,T6,3 100% of T6

After mapping of preemption points of tasks to RZs
fitted on the reconfigurable device, the analytic resolution
produces 50623 μs of total configuration overhead which
represents 10 % of total running time. To optimize the
objective of load balancing and full exploitation of RZs
expressed by (19) the Branch and Bound method
converges to an average workload of 70%. The problem of
task rejection is discarded as the mapping resolution
guarantees execution unit (RZ) for all execution sections of
tasks as expressed by CM3 in (17).

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new three-level resource

management targeting the enhancement of placement
quality for off-line placement of hardware tasks. By
adopting run-time partial reconfiguration and mixed
integer programming, we improved the quality of
placement in terms of resource efficiency, configuration
overhead and the exploitation of RZs. The problem of task
rejection is discarded. Future work targets the directed
acyclic graphs and involves adding precedence constraints
as well as deadline and periodicity constraints to achieve
an off-line mapping/scheduling of hardware tasks on the
reconfigurable hardware devices.

REFERENCES
[1] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast

Template Placement for Reconfigurable Computing
Systems,” IEEE Design and Test, Special Issue on
Reconfigurable Computing, vol. 17, pp. 68–83, January.
2000.

[2] H. Walder, C. Steiger, and M. Platzner, "Fast online task
placement on FPGAs: free space partitioning and 2D-
hashing," International Parallel and Distributed Processing
Symposium (IPDPS'03), pp. 178, April 2003.

[3] A. Ahmadinia, C. Bobda, M. Bednara, and J. Teich, "A New
Approach for On-line Placement on Reconfigurable
Devices," International Parallel and Distributed Processing
Symposium (IPDPS'04), p. 134, April 2004.

[4] H. ElGindy, M. Middendorf, H. Schmeck, and B.Schmidt,
"Task rearrangement on partially reconfigurable FPGAs
with restricted buffer," Field Programmable Logic and
Applications, pp. 379-388, August 2000.

[5] A. Lodi, S. Martello, and M. Monaci, "Two-dimensional
packing problems: A survey," European Journal of
Operational Research, Vol 141, pp. 241-252, March 2001.

[6] A. Lodi, S. Martello, and D. Vigo, "Neighborhood search
algorithm for the guillotine non-oriented two-dimensional
bin packing problem," Meta-heuristics : advances and
trends in local search paradigms for optimization, pp. 125-
139, July 1997.

[7] A. Lodi, S. Martello, and D. Vigo, "Heuristic and
metaheuristic approaches for a class of two-dimenional bin
packing problems," INFORMS journal on computing, Vol
11, pp. 345-357, 1999.

[8] S.P. Fekete, E. Kohler, and J. Teich "Optimal FPGA module
placement with temporal precedence constraints," Design
Automation and Test in Europe, pp. 658–665, March 2001.

[9] J. Teich, S.P. Fekete, and J. Schepers, "Optimization of
dynamic hardware reconfiguration," The journal of
supercomputing, Vol 19, pp. 57–75, 2001.

[10] K. Danne, S. Stuehmeier, "Off-line placement of tasks onto
reconfigurable hardware considering geometrical task
variants," International Federation for Information
Processing, 2005.

[11] I. Belaid, F. Muller, M. Benjemaa, "Off-line placement of
hardware tasks on FPGA," 19th International Conference on
Field Programmable Logic and Application (FPL'09), pp.
591-595, September 2009.

[12] I. Belaid, F. Muller, M. Benjemaa, "Off-line placement of
reconfigurable zones and off-line mapping of hardware tasks
on FPGA", Design and Architectures for Signal and Image
Processing, September 2009.

[13] "Virtex-5 FPGA Configuration User Guide," Xilinx white
paper, August 2009.

[14] J. Clausen, "Branch and Bound algorithms-principles and
examples", March 1999.

36 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Exploration of Heterogeneous FPGA Architectures
Umer Farooq, Husain Parvez, Zied Marrakchi and Habib Mehrez

LIP6, Université Pierre et Marie Curie
4, Place Jussieu, 75005 Paris, France

Email: umer.farooq@lip6.fr

Abstract—Heterogeneous FPGAs are commonly used in in-
dustry and academia due to their superior area, speed and
power benefits as compared to their homogeneous counterparts.
The layout of these heterogeneous FPGAs are optimized by
placing hard-blocks in distinct columns. However, communication
between hard-blocks that are placed in different columns require
additional routing resources; thus overall FPGA area increases.
This problem is further aggravated when the number of different
types of hard-blocks, placed in distinct columns, increase in an
FPGA. This work compares the effect of different floor-plannings
on the area of island-style FPGA architectures. A tree-based
architecture is also presented; unlike island-style architectures,
the floor-planning of heterogeneous tree-based architectures does
not affect its routing requirements. Different FPGA architectures
are evaluated for three sets of benchmark circuits, which are
categorized according to their inter-block communication trend.
The island-style column-based floor-planning is found to be 36%,
23% and 10% larger than a near-ideal non-column-based floor-
planning for three sets of benchmarks. Column-based floor-
planning is also found to be 18%, 21% and 40% larger than
the tree-based FPGA architecture for the same benchmarks.

I. INTRODUCTION

During the recent past, embedded hard-blocks (HBs) in
FPGAs (i.e. heterogenous FPGAs) have become increasingly
popular due to their ability to implement complex applications
more efficiently as compared to homogeneous FPGAs. Previ-
ous research [1][2][3][4] has shown that embedded HBs in
FPGAs have resulted in significant area and speed improve-
ments. The work in [5] shows that the use of HBs in FPGAs
reduces the gap between ASIC and FPGA in terms of area,
speed and power consumption. Some of the commercial FPGA
vendors like Xilinx [6] and Altera [7] are also using HBs (e.g.
multipliers, RAMs and DSP blocks). This trend has resulted
in the creation of domain-specific FPGAs. Domain-specific
FPGAs are a trade-off between specialization and flexibility.
In domain-specific FPGAs, if an application design, that is
implemented on an FPGA, uses an embedded hard-block,
area, speed and power improvements are achieved. However,
if embedded-blocks remain unused, precious logic and routing
resources are wasted. On the other hand, a homogeneous
FPGA has no such problem but can result in higher area, lower
speed and more power consumption for the implementation of
same design.

Almost all the work cited above considers island-style
FPGAs as the reference architecture where HBs are placed in
fixed columns; these columns of HBs are interspersed evenly
among columns of configurable logic blocks (CLBs). The
main advantage of island-style, column-based heterogeneous

FPGA lies in its simple and compact layout generation. When
tile-based layout for an FPGA is required, the floor-planning
of similar type blocks in a column simplifies the layout
generation. The complete width of the entire column, having
same type of blocks, can be adjusted appropriately to generate
a very compact layout. However, the column-based floor-
planning of FPGA architectures limits each column to support
only one type of HB. Due to this limitation, the architecture
is bound to have at least one separate column for each type
of HB even if the application or a group of applications that
is being mapped on it uses only one block of that particular
type. This can eventually result in the loss of precious logic
and routing resources. This loss can become even more severe
with the increase in number of types of blocks that are required
to be supported by the architecture.

This work generates FPGAs using different floor-planning
techniques and then compares them to column-based floor-
planning. Mainly six floor-planning techniques are explored,
four of which are column-based and two are non column-
based. Though, the column-based techniques are advantageous
in terms of easy and compact layout generation but this advan-
tage could be overshadowed by the poor resource utilization.
On the other hand non-column-based floor-planning can give
better resource utilization, but at the expense of a difficult
layout generation. Also, compact layout generation is not
feasible, because HB dimension need to be the multiple of
smallest block (usually a CLB); eventually some area loss.

This work also compares a tree-based heterogenous FPGA
architecture [8] with different floor-planning techniques of
mesh-based heterogeneous FPGA architecture. Contrary to
mesh-based heterogenous FPGA, routability of a tree-based
FPGA is independent of its floor-planing and the number of
types of HBs required to be supported by the architecture.
So, tree-based heterogenous FPGA can be advantageous as
compared to mesh-based FPGA. Two different techniques are
explored for tree-based FPGA architecture. First technique
respects the symmetry of hierarchy, which is one of the
characteristics of tree-based architectures. However, in order
to provide only the required amount of HBs, second technique
does not respect the symmetry of hierarchy.

This paper presents only area results and power and timing
comparisons are not considered in this work. The remainder
of the paper is organized as follows: section II gives a brief
overview of two FPGA architectures. Section III gives a brief
overview of exploration environments of two FPGA archi-
tectures. Section IV presents the exploration flow. Section V

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 37

Fig. 1. Mesh-based Heterogeneous FPGA

presents experimental results and section VI finally concludes
this paper.

II. REFERENCE FPGA ARCHITECTURES

This section gives a brief overview of the two heterogeneous
FPGA architectures that are used in this work.

A. Mesh-based Heterogenous FPGA Architecture

First of all, mesh-based heterogeneous FPGA architecture
is presented. A mesh-based heterogeneous FPGA architecture
contains CLBs, I/Os and HBs that are arranged on a two
dimensional grid. In order to incorporate HBs in a mesh-based
FPGA, the size of HBs is quantized with size of the smallest
block of the architecture i.e. CLB. The width and height of an
HB is a multiple of the smallest block in the architecture. An
example of such FPGA is shown in Figure 1. In mesh-based
FPGA, input and output pads are arranged at the periphery
of the architecture. The position of different blocks in the
architecture depends on the used floor-planning technique. A
block (referred as CLB or HB) is surrounded by a uniform
length, single driver, unidirectional routing network [9]. The
input and output pins of a block connect with the neighboring
routing channel. In the case where HBs span multiple tiles,
horizontal and vertical routing channels are allowed to pass
through them. An FPGA tile showing the detailed connection
of a CLB with its neighboring routing network is shown in
Figure 2. A unidirectional disjoint switch box connects dif-
ferent routing tracks together. The connectivity of the routing
channel with the input and output pins of a block, abbreviated
as Fcin and Fcout, is set to be 1. The channel width is varied
according to the netlist requirement but remains a multiple of
2 [9].

B. Tree-based Heterogeneous FPGA Architecture

A tree-based architecture is a hierarchical architecture hav-
ing unidirectional interconnect. A generalized example of a
tree-based architecture is shown in Figure 3. A tree-based

Fig. 2. Detailed Interconnect of a CLB with its Neighboring Channels

architecture exploits the locality of connections that is inherent
in most of the application designs. In this architecture, CLBs,
I/Os and HBs are partitioned into a multilevel clustered
structure where each cluster contains sub clusters and switch
blocks allow to connect external signals to sub-clusters. Tree-
based architecture contains two unidirectional, single length
interconnect networks: a downward network and an upward
network as shown in Figure 4. Downward network is based
on butterfly fat tree topology and allows to connect signals
coming from other clusters to its sub-clusters through a switch
block. The upward network is based on hierarchy and it
allows to connect sub-cluster outputs to other sub-clusters in
the same cluster and to clusters in other levels of hierarchy.
Figure 3 shows a three-level, arity-4, tree-based architecture.
In a heterogenous tree-based architecture, CLBs and I/Os are
normally placed at the bottom of hierarchy whereas HBs can
be placed at any level of hierarchy to meet the best design fit.
For example, in Figure 3 HBs are placed at level 2 of hierarchy.
In a tree-based architecture, CLBs and HBs communicate
with each other using switch blocks that are further divided
into downward and upward mini switch boxes (DMSBs &
UMSBs). These DMSBs and UMSBs are unidirectional full
cross bars that connect signals coming into the cluster to its
sub-clusters and signals going out of a cluster to the other
clusters of hierarchy. A tree-based cluster showing the detailed
connection of a CLB with its neighboring CLBs is shown
in Figure 4. It can be seen from the figure that DMSBs
are responsible for downward interconnect and UMSBs are
responsible for upward interconnect and they are combined
together to form the switch block of a cluster. The number
of signals entering into and leaving from the cluster can be
varied depending upon the netlist requirement. However they
are kept uniform over all the clusters of a level.

38 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Fig. 3. Tree-based Heterogeneous FPGA

C. Characteristics of Mesh-based and Tree-based Heteroge-
neous FPGAs

Both tree-based and mesh-based heterogeneous FPGAs have
particular characteristics that are mainly dependant on the
basic interconnect structure and the arrangement of different
blocks in the architecture. For example, the major advantage
of a tree-based heterogeneous FPGA is its predictable routing
and its independence of the types and position of blocks
supported by the architecture. In a tree-based architecture,
number of paths required to reach a destination are limited
and hence the number of switches crossed by a signal to
reach from a source to a destination do not vary greatly. It
can be seen from Figure 3 that any CLB can reach a HB by
traversing four switches. Unlike tree-based FPGAs, routability
of mesh-based FPGA is greatly dependant upon the position
of different blocks on the architecture. In mesh-based FPGAs,
routability is not predictable and number of paths available to
reach a destination are almost unlimited. Hence the number of
switches crossed to reach a destination vary with respect to the
position of blocks in the architecture. For example, any CLB in
the left most column of Figure 1 crosses at least eight switches
to reach a HB in the second last column of the architecture.
However, this number of switches is reduced to only one if
that CLB is placed beside the HB of the second last column
of architecture. So, floor-planning plays a very important
role in column-based island-style heterogeneous FPGAs. This
problem further aggravates for the communication of different
HBs placed in different columns.

III. EXPLORATION ENVIRONMENTS

In this section, the exploration environments of two FPGA
architectures are presented. We also describe different floor-
planning techniques that are explored using these exploration
environments. Floor-planning techniques can have major im-
plications on the area of a mesh-based FPGA. If a tile-based
layout is required for an FPGA, the floor-planning of similar
type of blocks in columns can help optimize the tile area of
a block. The complete width of a column can be adjusted
according to the layout requirements of similar blocks placed
in a column. On the other hand, if blocks of different types
are placed in a column, the width of a column cannot be

Fig. 4. Detailed Interconnect of Level-1 Cluster of Tree-based FPGA

fully optimized; as the columns widths can only be reduced to
maximum width of any tile in that column. There will remain
some unused area in smaller tiles. Such a problem does not
arise if a tile-based layout is not required. In such a case, an
FPGA hardware netlist can be laid out using an ASIC design
flow.

A. Exploration Environment of Mesh-based FPGA

This work uses the mesh-based architecture exploration
environment presented earlier in [10]. This work further im-
proves this environment by implementing Range Limiter [11]
and column-move operation for heterogeneous architectures.
An FPGA architecture is initially defined using an architecture
description file. BLOCKS of different sizes are defined, and
later mapped on a grid of equally sized SLOTS, called as a
SLOT-GRID. Each BLOCK occupies one or more SLOTS.
The type of the BLOCK and its input and output PINS
are used to find the size of a BLOCK. In a LUT-4 based
FPGA, a CLB occupies one slot and 18x18 multiplier occupies
4x4 slots. Input and output PINS of a BLOCK are defined,
and CLASS numbers are assigned to them. PINS with the
same CLASS number are considered equivalent; thus a NET
targeting a receiver PIN of a BLOCK can be routed to any of
the PINS of the BLOCK belonging to the same CLASS. Once
the architecture of FPGA is defined, the benchmark circuit is
placed on the architecture.

Placer Operations: A simulated annealing based [12]
PLACER is used to perform different operations. The
PLACER either (i) moves an instance from one BLOCK
to another, (ii) moves a BLOCK from one SLOT position
to another, (iii) rotates a BLOCK at its own axis, or (iv)
moves a complete column of BLOCKS from one SLOT
position to another. After each operation the placement cost
is recomputed for all the disturbed nets. Depending on the
cost value and the annealing temperature the operation is
accepted or rejected. Multiple netlists can be placed together
to get a single architecture floor-planning for all the netlists.
For multiple netlist placement, each BLOCK allows multiple
instances to be mapped onto it, but multiple instances of the
same netlist can not be mapped on a single block.

Placer performs move and rotate operations on a “source”

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 39

Fig. 5. Floor-Planning Techniques

and a “destination” block. When a source is to be moved from
one slot position to another, any random SLOT is selected
as its destination. The rectangular window starting from this
destination slot and having same size and shape as that of
source is called destination window whereas the window
occupied by the source is called source window. Normally,
source contains one block whereas destination window can
contain one or more blocks. Once the source and destination
windows are selected, the move operation is performed if (i)
the destination window does not exceed the boundaries of
SLOT-GRID, (ii) destination window does not contain any
block that exceeds the boundary of destination window and
(iii) destination window does not overlap (partially or fully)
source window. However, if these conditions are not met, the
procedure continues until a valid destination window is not
found. When a block is to be rotated, same source position
becomes its destination position and block is rotated around its
own axis. The block rotate operation becomes important when
pins of a block have different classes. In such a case the size of
bounding box varies depending upon the position and direction

of the pins. Multiples of 90◦ rotation are performed for square
blocks while multiples of 180◦ are performed for rectangular
blocks. A 90◦ rotation for rectangular blocks requires both
move and rotate operations; it is left for future work.

By using different PLACER operations, six floor-planning
technique are explored. The detail of these floor planning
techniques is as follows:

Floor-Planning Techniques: (i) Hard-blocks are placed in
fixed columns, apart from the CLBs as shown in Figure 5 (a).
Such kind of floor-planning technique can be beneficial for
data path circuits as described by [13]. It can be seen from
the figure that if all HBs of a type are placed and still there is
space available in the column then in order to avoid wastage of
resources, CLBs are placed in the remaining place of column.
(ii) Columns of HBs are evenly distributed among columns
of CLBs, as shown in Figure 5 (b). (iii) Columns of HBs are
evenly distributed among CLBs. Contrary to first and second
techniques, whole column contains only one type of blocks.
This technique is normally used in commercial architectures
and is shown in 5 (c). (iv) The HBs are placed in columns but

40 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

columns are not fixed, rather they are allowed to move through
the column-move operation of PLACER. This technique is
shown in Figure 5 (d). (v) In this technique HBs are not
restricted to remain in columns; and they are allowed to move
through block move operation as shown in Figure 5 (e). (vi)
The blocks are allowed to move and rotate through block move
and rotate operations. This floor-planning technique is shown
in Figure 5 (f).

B. Exploration Environment of a Tree-based FPGA
A tree-based FPGA is defined using an architecture descrip-

tion file. The architecture description file contains different
architectural parameters along with the definition of different
BLOCKS used by the architecture. Once the architecture is
defined, PARTITIONER partitions the netlist using a top-down
recursive partitioning approach. First, top level clusters are
constructed, and then each cluster is partitioned into sub-
clusters, until the bottom of hierarchy is reached [14]. The
main objective of PARTITIONER is to reduce communication
between the clusters by absorbing maximum communication
inside the clusters. Two simple techniques are explored for
tree-based FPGA. (i) A generalized example of first technique
is shown in Figure 3. This technique is referred as symmetric
(SYM). In this technique HBs can be placed at any level
which gives the best design fit. However in this technique
the symmetry of hierarchy is respected which can eventually
results in wastage of HBs. For example in Figure 3, it can
be seen that this architecture supports 4 HBs of a certain
type (because it is an arity 4 architecture). But, for a netlist
requiring only two HBs other two HBs will remain unused
and will be wasted. (ii) This technique is same as SYM except
that in this technique the symmetry of hierarchy for HBs is
not respected and only that number of HBs are used that are
needed. This technique is referred as asymmetric (ASYM).

IV. EXPERIMENTAL FLOW

This section discusses different types of benchmarks, the
software flow and the experimental methodology used to
explore two FPGA architectures.

A. Benchmark Selection
Generally in academia and industry, the quality of an

FPGA architecture is measured by mapping a certain set of
benchmarks on it. Thus the selection of benchmarks plays
a very important role in the exploration of heterogeneous
FPGAs. This work puts special emphasis on the selection
of benchmark circuits, as different circuits can give different
results for different architecture floor-planning techniques.
This work categorizes the benchmark circuits by the trend of
communication between different blocks of the benchmark.
So, three sets of benchmarks are assembled having distinct
trend of inter-block communication. These benchmarks are
shown in Tables I, II and III respectively. These benchmarks
are obtained from three different sources. For example the
benchmarks shown in Table I are the designs developed at Uni-
versité Pierre et Marie Curie. The benchmarks shown in Ta-
ble II are obtained from http://www.opencores.org/

TABLE I
DSP BENCHMARKS SET I

Circuit Name Inputs Outputs CLBs Mult Slansky Sff Sub Smux
(LUT4) (8x8) (16+16) (8) (8-8) (32:16)

FIR 9 16 32 4 3 4 - -
FFT 48 64 94 4 3 - 6 -

ADAC 18 16 47 - - 2 - 1
DCU 35 16 34 1 1 4 2 2

TABLE II
OPEN CORE BENCHMARKS SET II

No of No of No of No of No of
Circuit Name Inputs Outputs LUTs Multipliers Adders

(16x16) (20+20)
cf fir 3 8 8 42 18 159 4 3

cf fir 7 16 16 146 35 638 8 14
cfft16x8 20 40 1511 - 26

cordic p2r 18 32 803 - 43
cordi r2p 34 40 1328 - 52

fm 9 12 1308 1 19
fm receiver 10 12 910 1 20

lms 18 16 940 10 11
reed solomon 138 128 537 16 16

TABLE III
OPEN CORE BENCHMARKS SET III

No of No of No of No of
Circuit Name Inputs Outputs LUTs Multipliers

(18x18)
cf fir 3 8 8 42 22 214 4

diffeq f systemC 66 99 1532 4
diffeq paj convert 12 101 738 5

fir scu 10 27 1366 17
iir1 33 30 632 5
iir 28 15 392 5

rs decoder 1 13 20 1553 13
rs decoder 2 21 20 2960 9

and benchmarks shown in Table III are obtained from
http://www.eecg.utoronto.ca/vpr/. The commu-
nication between different blocks of a benchmark can be
mainly divided into the following four categories:
CLB-CLB: CLBs communicate with CLBs.
CLB-HB: CLBs communicate with HBs and vice versa.
HB-HB: HBs communicate with other HBs.
IO-CLB/HB: I/O blocks communicate with CLBs and HBs.

In the SET I benchmarks, the major percentage of total com-
munication is between HBs (i.e. HB-HB) and only a small part
of total communication is covered by the communication CLB-
CLB or CLB-HB. Similarly, in SET II the major percentage of
total communication is between HBs and CLBs where either
HBs are source and CLBs are destination or vice versa. In
SET III, major percentage of total communication is covered
by CLB-CLB and only a small part of total communication is
covered by CLB-CLB or CLB-HB. Normally the percentage
of IO-CLB/HB is a very small part of the total communication
for all the three sets of benchmarks.

B. Software Flow

The software flow used to place and route different bench-
marks (netlists) on the two heterogeneous FPGAs is shown
in Figure 6. The input to the software flow is a VST file

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 41

Fig. 6. Software Flow

(structured vhdl). This file is converted into BLIF format [15]
using a modified version of VST2BLIF tool. The BLIF file
is then passed through PARSER-1 which removes HBs from
the file and adds temporary inputs and outputs to the file to
preserve the dependance between HBs and rest of the netlist.
The output of PARSER-1 is then passed through SIS [16] that
synthesizes the blif file into LUT format which is later passed
through T-VPACK [17] which packs and converts it into .NET
format. Finally the netlist is passed through PARSER-2 that
adds previously removed HBs and also removes temporary
inputs and outputs. The final netlist in .NET format contains
CLBs, HBs and I/O instances that are connected to each other
via NETS. Once the netlist is obtained in .NET format, it is
placed and routed separately on the two architectures. The
benchmarks shown in Table III do not follow this flow and
they are obtained directly in the synthesized blif format with
HBs. These benchmarks are passed through T-VPACK for
conversion into .NET format. Once the conversion to .NET
format is done, they follow the same flow as other two sets
of benchmarks.

After obtaining the netlists in the .NET format, the
netlists are mapped on the FPGA architecture. For tree-based
architecture, the netlist is first partitioned using a software
module called PARTITIONER. This module partitions CLBs,
HBs and I/Os into different clusters in such a way that
the inter-cluster communication is minimized. By minimizing
inter-cluster communication we obtain a depopulated global
interconnect network and hence reduced area. PARTITIONER
is based on hMetis [14]; hMetis generates a good solution in
a short time because of its multi-phase refinement approach.
Once partitioning is done, placement file is generated that
contains positions of different blocks on the architecture.

This placement file along with netlist file is then passed to
another software module called ROUTER. The ROUTER uses
a pathfinder algorithm [18]. Pathfinder uses a negotiation based
iterative approach to route all the NETS in the netlist. In
order to optimize the FPGA architecture, a binary search
algorithm is used. This algorithm determines the minimum
number of signals required to route a netlist on FPGA. Once
the optimization is over, area of the architecture is estimated
using an area model which is based on symbolic standard
cell library SXLIB [19]. The area of FPGA is estimated by
combining areas of CLBs, HBs, multiplexors of downward and
upward interconnect, and all associated programming bits.

For mesh-based architecture, the netlist file is passed to a
software module called PLACER that uses simulated anneal-
ing algorithm [12] [11] to place CLBs, HBs and I/Os on their
respective blocks in FPGA. The bounding box (BBX) of a
NET is a minimum rectangle that contains the driver instance
and all receiving instances of a NET. The PLACER optimizes
the sum of half-perimeters of the bounding boxes of all NETS.
It moves an instance randomly from one block position to
another; the BBX cost is updated. Depending on cost value and
annealing temperature, the operation is accepted or rejected.
After placement, a software module named ROUTER routes
the netlist on the architecture. The router uses a pathfinder
algorithm [18] to route the netlist using FPGA routing re-
sources. In order to optimize the FPGA resources, a binary
search algorithm similar to the one used for tree-based FPGA
is used to determine the smallest channel width required to
route a netlist. Once this optimization process is over, area is
estimated in the same manner as for tree-based architecture.

C. Experimental Methodology

In this work, experiments are performed individually for
each netlist. The architecture definition, floor-planning, place-
ment, routing and architecture optimization is performed in-
dividually for each netlist. Although, such an approach is
not applicable to real FPGAs, as their architecture, floor-
planning and routing resources are already defined. In order
to make our results more comparable to real FPGAs, we even
generated and optimized a single maximum FPGA architecture
for each group of netlist. However, it was noticed that the
floor-planning and routing resources were mainly decided by
the largest netlist in each group. Thus the results for three
sets of netlists corresponded roughly to the results for three
largest netlists in each of the three sets of netlists. So, to get
more realistic results, the architecture and floor-planning is
optimized individually for each netlist; later average of all
netlists gives more realistic results.

V. EXPERIMENTAL RESULTS

Experiments are performed for six different types of floor-
planning techniques of mesh-based FPGA and two techniques
of tree-based FPGA (described in section III). Experimental
results obtained for three sets of benchmarks are shown in
Figures 7, 8 and 9. In these figures, the results for benchmarks
1 to 4, 5 to 13 and 14 to 21 correspond to SET I, SET II and

42 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Fig. 7. Placement Cost Normalized to BMR Floor-Planning

Fig. 8. Channel Width Normalized to BMR Floor-Planning

Fig. 9. Area Results Normalized to BMR Floor-Planning

SET III respectively. The avg1, avg2 and avg3 in the Figures 7,
8 and 9 correspond to the geometric average of these results for
SET I, SET II and SET III respectively. The avg corresponds
to the average of all netlists.

Figure 7 shows the placement cost for different floor-
planning techniques of mesh-based FPGA, normalized against
the placement cost of BMR floor-planning technique. Place-
ment cost is the sum of half perimeters of bounding boxes of
all the NETS in a netlist. It can be seen from the figure that,
on average, BMR gives equal or better results as compared to
other techniques for all three sets of benchmarks. On average,
CF gives 35%, 35% and 11% more placement cost than
BMR, for SET I, SET II and SET III benchmark circuits
respectively. Figure 8 shows channel-width requirements for
different floor-planning technique, normalized against BMR.

Decrease in placement cost does not always give channel
width advantages. However, channel-width gain are achieved
in many benchmarks. On average, CF requires 13%, 22% and
9% more channel width than BMR for SET I, SET II and SET
III respectively. The increase in channel width increases the
overall area of the architecture, as shown in Figure 9. In this
figure, the area results of CF, BM floor-planning techniques
of mesh-based FPGA and, SYM and ASYM techniques of
tree-based FPGA are normalized against the area results of
BMR floor-planning technique of mesh-based FPGA. For the
sake of clarity, the results for A, CP and CM floor-planning
techniques are not presented. On average, CF requires 36%,
23% and 10% more area than BMR for SET I, SET II and SET
III respectively. For SET I benchmark circuits, SYM requires
35% more area than BMR, and ASYM requires 10% more

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 43

area than BMR. However for SET II benchmark circuits, on
average BMR is almost equal to SYM and ASYM. For SET
III benchmark circuits BMR is worse than SYM and ASYM
by 14% and 18% respectively.

The results show that BMR technique produces least place-
ment cost, smallest channel width and hence smallest area
for mesh-based heterogeneous FPGA. However, BMR floor-
planning technique is dependant upon target netlists to be
mapped upon FPGA. Such an approach is not suitable for
FPGA production; as floor-planning need to be fixed before
mapping application designs on them. Moreover, the hardware
layout of BMR might be un-optimized. In this work, the
BMR floor-planning serves as a near ideal floor-planning with
which other floor-planning techniques are compared. It can
also be noted that results of CF compared to BMR vary
depending upon the set of benchmarks that are used. For
SET I benchmark circuits, where the types of blocks for each
benchmark are two or more than two and communication is
dominated by HB-HB type of communication, CF produces
worse results than the other two sets of benchmarks. This is
because columns of different HBs are separated by columns of
CLBs and HBs need extra routing resources to communicate
with other HBs. However in BMR there is no such limitation;
HBs communicating with each other can always be placed
close to each other. For other two sets the gap between CF and
BMR is relatively less. The reduced HB-HB communication
in SET II and SET III benchmark circuits is the major cause
of reduction in the gap between CF and BMR. However 23%
and 10% area difference for SET II and SET III is due to the
placement algorithm. In CF, the simulated annealing placement
algorithm is restricted to place hard-block instances of a netlist
at predefined positions. This restriction for the placer reduces
the quality of placement solution. Decreased placement quality
requires more routing resources to route the netlist; thus more
area is required.

For tree-based FPGA, ASYM produces best results in terms
of area and it is better than the best technique of mesh-based
FPGA (i.e. BMR) by an average of 5% for a total of 21
benchmarks. The major advantage of a heterogeneous tree-
based FPGA is that the maximum number of switches required
to route a connection between CLB-HB or HB-HB remain
relatively constant. However, the netlist that contains more
HB-HB communication (such as SET I), the constant switch
requirement does not mean minimum switch requirement. The
architecture floor-planning of tree-based FPGA does not effect
the switch requirement of the architecture. However, the floor-
planning of mesh-based FPGA causes drastic impact on the
switching requirement of the architecture.

VI. CONCLUSION

This paper has explored two heterogeneous FPGA archi-
tectures. Different mesh-based floor-plannings are compared.
The floor-plannings of mesh-based FPGA influence the routing
network requirement of the architecture. The column-fixed
floor-planning is on average 36%, 23% and 10% more area
consuming than the block-move-rotate floor-planning for three

sets of netlists. The tree-based architecture is independant
of its floor-planning, however its layout is relatively less
scalable than the mesh architecture. The column-fixed floor-
planning is on average 18%, 21% and 40% larger than the tree-
based FPGA architectures for the same benchmark. These area
gains will decrease due to layout inefficiencies of tree-based
architecture. Hardware layout efforts are required to maintain
the area benefits on tree-based FPGAs. A mesh containing
smaller trees architecture can be designed to resolve scalability
issues of tree architecture.

REFERENCES

[1] M. Beauchamp, S. Hauck, K. Underwood, and K. Hemmert, “Embedded
floating-point units in FPGAs,” in Proceedings of the 2006 ACM/SIGDA
14th international symposium on Field programmable gate arrays.
ACM New York, NY, USA, 2006, pp. 12–20.

[2] C. Ho, P. Leong, W. Luk, S. Wilton, and S. Lopez-Buedo, “Virtual
embedded blocks: A methodology for evaluating embedded elements in
FPGAs,” in Proc. FCCM, 2006, pp. 35–44.

[3] G. Govindu, S. Choi, V. Prasanna, V. Daga, S. Gangadharpalli, and
V. Sridhar, “A high-performance and energy-efficient architecture for
floating-point based LU decomposition on FPGAs,” in Parallel and Dis-
tributed Processing Symposium, 2004. Proceedings. 18th International,
2004.

[4] K. Underwood and K. Hemmert, “Closing the gap: CPU and FPGA
trends in sustainable floating-point BLAS performance,” in 12th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines,
2004. FCCM 2004., 2004, pp. 219–228.

[5] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
in Proceedings of the 2006 ACM/SIGDA 14th international symposium
on Field programmable gate arrays. ACM New York, NY, USA, 2006,
pp. 21–30.

[6] Xilinx, “Xilinx,” http://www.xilinx.com, 2010.
[7] Altera, “Altera,” http://www.altera.com, 2010.
[8] Z. Marrakchi, U. Farooq, and H. Mehrez, “Comparison of a tree-based

and mesh-based coarse-grained fpga architecture,” in ICM ’09, 2009.
[9] G. Lemieux, E. Lee, M. Tom, , and A. Yu, “Directional and single-

driver wires in fpga interconnect,” in IEEE Conference on FPT, 2004,
pp. 41–48.

[10] H. Parvez, Z. Marrakchi, U. Farooq, and H. Mehrez, “A New
Coarse-Grained FPGA Architecture Exploration Environment,” in Field-
Programmable Technology, 2008. FPT 2008. International Conference
on, 2008, pp. 285–288.

[11] V. Betz and J. Rose, “VPR: A New Packing Placement and Routing
Tool for FPGA research,” International Workshop on FPGA, pp. 213–
22, 1997.

[12] C. C. Skiścim and B. L. Golden, “Optimization by simulated annealing:
A preliminary computational study for the tsp,” in WSC ’83: Proceedings
of the 15th conference on Winter Simulation. Piscataway, NJ, USA:
IEEE Press, 1983, pp. 523–535.

[13] D. Cherepacha and D. Lewis, “DP-FPGA: An FPGA architecture
optimized for datapaths,” VLSI Design, vol. 4, no. 4, pp. 329–343, 1996.

[14] G.Karypis and V.Kumar, “Multilevel k-way hypergraph partitioning,”
1999.

[15] “Berkeley logic synthesis and verification group,university of
california, berkeley. berkeley logic interchange format (blif),
http://vlsi.colorado.edu/vis/blif.ps.”

[16] E. M. Sentovich and al, “Sis: A system for sequential circuit analysis,”
Tech. Report No. UCB/ERL M92/41, University of California, Berkeley,
1992.

[17] A. Marquardt, V. Betz, and J. Rose, “Using cluster based logic blocks
and timing-driven packing to improve fpga speed and density,” in
Proceedings of the International Symposium on Field Programmable
Gate Arrays, 1999, pp. 39–46.

[18] L. McMurchie and C. Ebeling, “Pathfinder: A Negotiation-Based
Performance-Driven Router for FPGAs,” in Proc.FPGA’95, 1995.

[19] A. Greiner and F. Pecheux, “Alliance: A complete set of cad tools for
teaching vlsi design,” 3rd Eurochip Workshop, 1992.

44 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

DYNAMIC ONLINE RECONFIGURATION OF DIGITAL CLOCK MANAGERS ON XILINX
VIRTEX-II/VIRTEX-II-PRO FPGAS: A CASE STUDY OF DISTRIBUTED POWER

MANAGEMENT

Christian Schuck, Bastian Haetzer, Jürgen Becker

Institut für Technik der Informationsverarbeitung - ITIV
 Karlsruher Institut für Technologie (KIT)

 Vincenz-Prießnitz-Strasse 1 76131 Karlsruhe

ABSTRACT

Xilinx Virtex-II family FPGAs support an advanced low
skew clock distribution network with numerous global clock
nets to support high speed mixed frequency designs. Digital
Clock Managers in combination with Global Clock Buffers
are already in place to generate the desired frequency and
to drive the clock networks with different sources
respectively. Currently almost all designs run at a fixed
clock frequency determined statically during design time.
Such systems cannot take the full advantage of partial and
dynamic self reconfiguration. Therefore, this paper
introduces a new methodology that allows the implemented
hardware to dynamically self adopt the clock frequency
during runtime by dynamically reconfiguring the Digital
Clock Managers. Inspired by nature self adoption is done
completely decentralized. Figures for reconfiguration
performance and power savings will be given. Further, the
tradeoffs for reconfiguration effort using this method will
be evaluated. Results show the high potential and
importance of the distributed DFS method with little
additional overhead.

1. INTRODUCTION

Xilinx Virtex FPGAs have been designed with high
performance applications in mind. They feature several
dedicated Digital Clock Managers (DCMs) and Digital
Clock Buffers for solving high speed clock distribution
problems. Multiple clock nets are supported to enable
highly heterogeneous mixed frequency designs. Usually all
clock frequencies for the single clock nets and the
parameters for the DCMs are determined during design
time through static timing analysis. Targeting maximum
performance these parameters strongly depend on the
longest combinatorial path (critical path) between two
storage elements of the design unit they are driving. For
minimum power the required throughput of the design unit
determines the lower boundary of the possible clock
frequency. In both cases non adjusted clock frequencies

lead to high waste of either processing power or energy
[9][11].
Considering the feature of partial and dynamic self-
reconfiguration of Xilinx Virtex FPGAs during runtime a
high dynamic and flexibility arises. Static analysis methods
are no longer able to sufficiently determine an adjusted
clock frequency during design time. At the same time a new
partial module is reconfigured onto the FPGA grid, its
critical path changes and in turn the clock frequency has to
be adjusted as well during runtime to fit the new critical
path. On the other side the throughput requirement of the
application or the environmental conditions may change
over time making an adjustment of clock frequency
necessary.
Therefore, a new paradigm of system design is necessary to
efficiently utilize the available processing power of future
chip generations. To address this issue in [1] the Digital on
Demand Computing Organism (DodOrg) was proposed,
which is derived from a biological organism.
Decentralisation of all system instances is the key feature to
reach the desired goals of self-organisation, self-adoption,
self-healing in short the self-x features. Hence the hardware

FPGA
Cell

DSP
Cell

I/O
Cell

Memory
Cell

Monitor
Cell

FPFA
Cell

µProc
Cell

I/O
Cell

Peripheral
Devices

Heterogeneous Array of Organic Processing Cells (OPCs)

artNoc
•broadcast
•real time
•adaptive routing

OPC with common
structure but with
specific functionality

FPGA
Cell

FPGA
Cell

DSP
Cell

I/O
Cell

Memory
Cell

Monitor
Cell

FPFA
Cell

µProc
Cell

I/O
Cell

Peripheral
Devices

Heterogeneous Array of Organic Processing Cells (OPCs)

artNoc
•broadcast
•real time
•adaptive routing

OPC with common
structure but with
specific functionality

FPGA
Cell

FPGA
Cell

Fig. 1. DodOrg organic hardware architecture

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 45

architecture of the DodOrg system consist of many
heterogeneous so called Organic Processing Cells (OPCs),
that communicate through the artNoC [3] router network as
shown in Figure 1. In general, all OPCs are made of the
same blueprint. On the one side they contain a highly
adaptive heterogeneous data path and on the other side
several common units that are responsible for the organic
behaviour of the architecture. Among them a Power-
Management-Unit is able to perform dynamic frequency
scaling (DFS) on OPC level. Therefore, it can control and
adjust performance and power consumption of the cell
according to the actual computational demands of the
application and the critical path of the cells data path. DFS
has a high potential, as it decreases the dynamic power
consumption by decreasing the switching activity of flip
flops, gates in the fan-out of flip flops and the clock trees.
Therefore, the cell’s clock domain is decoupled by the
network interface and can operate independently from the
artNoC and the other OPCs of the organic chip.
In [5] we presented a prototype implementation of the
DodOrg architecture on a Virtex FPGA, where it is possible
to dynamically change the cells data path through 2D-
partial and dynamic reconfiguration. Therefore, a novel IP
core, the artNoC-ICAP-Interface was developed in order to
perform fast 2 dimensional self- reconfiguration and
provide a virtual decentralisation of the internal FPGA
configuration access port (ICAP). This paper enhances the
methodology by enabling the partial and dynamic self-
reconfiguration of the Virtex DCMs, which is inherently
not given, through the artNoC-ICAP-Interface. Therefore,
the desired self adoption with respect to a fine grained
power management could be achieved.
The rest of the paper is organized as follows. Section 2
reviews several other proposals for DFS on FPGAs while
section 3 summarizes important aspects of the Xilinx Virtex
II FPGA clock net infrastructure. Section 4 describes the
details of our approach to dynamically reconfigure the
DCMs during runtime before section 5 shows
reconfiguration performance and power saving figures.
Finally, section 6 concludes the work and gives an outlook
to future work.

2. RELATED WORK

Recently, several work has been published dealing with
power management and especially clock management on
FPGAs. All authors agree that there is a high potential for
using DFS method in both ASIC and FPGA designs [7]
[11].
In [9] the authors show that even because of FPGA process
variations and because of changing environmental
conditions (hot, normal, cold temperature) dynamically
clocking designs can lead to a speed improvement of up to
86% compared to using a fixed, statically estimated clock
during design time. The authors use an external
programmable clock generator that is controlled by a host

PC. However, in order to enable the system to self adapt its
clock frequency on chip solutions are required.
In [7] the authors proposed an online solution for clock
gating. They propose a feedback multiplexer with control
logic in front of the registers. So it is possible to keep the
register value and to prevent the combinatorial logic behind
the register to toggle. But simultaneously they highlight that
clock gating on FPGAs could have a much higher power
saving efficiency if it would be possible to completely gate
the FPGA clock tree. To overcome this drawback in [8] the
authors provide an architectural block that is able to
perform DFS. However this approach leads to low speed
designs and clock skew problems as it is necessary to insert
user logic into the clock network.
We show that on Xilinx Virtex-II no additional user logic is
necessary to efficiently and reliably perform a fine grained
self adaptive DFS. All advantages of the high speed clock
distribution network could be maintained.

3. XILINX CLOCK ARCHITECTURE

This section gives a brief overview over the Xilinx Virtex-
II clock architecture as our work makes extensive use of the
provided features.

3.1. Clock Network Grid

Besides normal routing resources Xilinx Virtex-II FPGAs
have a dedicated low skew high speed clock distribution
network [4][6]. They feature 16 global clock buffers
(BUFGMUX, see section 3.3) and support up to 16 global
clock domains (Figure 2). The FPGA grid is partitioned
into 4 quadrants (NW, SE, SW, and SE) with up to 8 clocks

Fig. 2. Xilinx Virtex Clock distribution network

46 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

per quadrant. Eight clock buffers are in the middle of the
top edge and eight are in the middle of the bottom edge. In
principle any of these 16 clock buffer outputs can be used
in any quadrant as long as opposite clock buffers on the top
and on the bottom are not used in the same quadrant, i.e.
there is no conflict [6]. In addition, device dependant, up to
12 DCMs are available. They can be used to drive clock
buffers with different clock frequencies. In the following
important features of the DCMs and clock buffers will be
summarized.

3.2. Digital Clock Managers

Besides others, frequency synthesis is an important feature
of the DCMs. Therefore, 2 main different programmable
outputs are available. CLKDV provides an output
frequency that is a fraction (÷1.5, ÷2, ÷2.5… ÷7, ÷7.5, ÷8,
÷9… ÷16) of the input frequency CLKIN.
CLKFX is able to produce an output frequency that is
synthesised by combination of a specified integer multiplier
M � {2…32} and a specified integer divisor D � {1…32}
by calculation CLKFX = M÷D*CLKIN.

3.3. Global Clock Buffer

Global Clock Buffers have three different functionalities. In
addition to pure clock distribution, they can also be
configured as a global clock buffer with a clock enable
(BUFGCE). Then the clock can be stopped at any time at
the clock buffer output.
Further clock buffers can be configured to act as a “glitch-
free” synchronous 2:1 multiplexer (BUFGMUX). These
multiplexers are capable of switching between two clock
sources at any time, by using the select input that can be
driven by user logic. No particular phase relations between
the two clocks are needed. For example as shown in Figure
3 they can be configured to switch between two DCM clock
CLKFX outputs.
As we will see in the next section our design makes use of
this feature.

4. ORGANIC SYSTEM ARCHITECTURE

Compared to μC ASIC solutions SRAM based FPGAs like
Virtex-II consume a multiple of power. This is due to the
fine grained flexibility and adaptability and the involved
overhead. By just using these features during design time to
create a static design, most of the potential remains unused.
Instead dynamic and partial online self-reconfiguration
during runtime is a promising approach to exploit the full
potential and even to close the energy gap. Therefore, in [5]
we proposed to implement the OPC based organic
computing organisms on a Virtex-II Pro FPGA as shown in
Figure 4.
This paper focuses on the power related issues of the cell
based DodOrg architecture on the FPGA prototype.
Important aspects to reach the desired goal of a fine
grained, decentralized self adaptive power management will
be discussed in the subsequent sub-sections.

4.1. Clock Partitioning

Depending on the size of the device several OPCs are
mapped onto a single FPGA (Figure 4). The clock net of
the highly adaptive data path (DP) of every OPC is
connected to a BUFGMUX that is driven by a pair of
DCMs. Inside every OPC has its own power management
unit (PMU) that is connected to the select input of the
BUFGMUX. So it can quickly choose between the two
DCM clock sources. The DP-clock is decoupled from the
artNoC clock by using a dual ported dual clock FIFO
buffer. Further the PMU is connected to the artNoC. Thus it
is able to exchange power related information with the
other PMUs. Beyond that it has access to the artNoC-ICAP-

Fig. 3. Example BUFGMUX /DCM configuration

Fig. 4. DodOrg FPGA Floorplan / Clock Architecture

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 47

Interface. Therefore, during runtime every PMU can
dynamically adapt the DCM CLKFX output clock
frequency through partial self-reconfiguration by using the
features of the artNoC-ICAP-Interface.

4.2. artNoC-ICAP-Interface

The artNoC-ICAP-Interface is a small and lightweight IP,
which on the one side acts as a wrapper around the native
hardware ICAP and on the other side connects to the
artNoC network. It provides a virtual decentralisation of the
ICAP as well as an abstraction of the physical
reconfiguration memory. Its main purpose is to perform the
Readback-Modify-Writeback (RMW) method in hardware.
Therefore, a fast and true 2 dimensional reconfiguration of
all FPGA resources is possible, i.e. reconfiguration is no
longer restricted to columns. Due to it’s partitioning into
two clock domains, one clock domain for the artNoC
controller side and one clock domain for the ICAP side,
maximal reconfiguration performance could be achieved
[5].
As every bit within the reconfiguration memory can be
reconfigured independently the configuration of the DCMs
can be altered as well. However, a special procedure is
necessary that is described in the next paragraph.

4.3. DCM Reconfiguration Details

During reconfiguration of DCMs it is important that a
glitchless switching from one clock frequency to another
can be guaranteed. In general, after initial setup CLKDV
and CLKFX outputs are only enabled when a stable clock is
established. After that, the DCM is locked to the configured
frequency, as long as the jitters of the input clock CLKIN
stays in a given tolerance range [6]. For our scenario we
assume that the input clock is stable.
If we change the DCM configuration (D, M) in
configuration memory to switch from one clock frequency
to a different frequency while the DCM is locked, it loses
the lock and no stable output, i.e. no output can be
guaranteed. Therefore, to ensure a consistent locking to the
new frequency the following steps have to be performed:
Stop the DCM by writing a zero configuration (D= 0, M =
0)
Write the new configuration (D = Dnew, M = Mnew).
To simplify the handling of the DCM reconfiguration this
two step procedure is internally executed by the artNoC-
ICAP-Interface. It therefore features a special DCM
addressing mode, for an easy access to the DCM
configuration. Figure 5 shows a plot of a DCM
reconfiguration procedure performed by the artNoC-ICAP-
Interface. The plots were recorded by a 4 channel digital
oscilloscope with all important signals routed to FPGA
pins. Figure 5 a) shows the ICAP enable signal that is
asserted by the artNoC-ICAP-Interface during ICAP read

and write operation. It is an indicator for the overall
duration of the reconfiguration procedure. It strongly
depends on the device size or rather on the configuration
frame length. In this case a Virtex-II Pro XC2VP30 device
was used with a frame length of 824 Byte. For
reconfiguration of the DCM just a single configuration
frame has to be processed. From the beginning of the
icap_enable low phase to the spike in Figure 5a) the
configuration frame is read back from the configuration
memory. Then, the ICAP is configured to write mode and
the zero configuration to shut off the DCM is written
followed by a dummy frame to flush the ICAP input
register. As soon as the writing of the dummy frame is
finished the DCM stops. Figure 5 c) shows a zoom of the
DCM_CLKFX output (Figure 5 b)) at this point in time.
We see that the DCM_CLKFX was running at 6.25 MHz
and stops without any jitter or spikes. Immediately after the
dummy frame, the read back frame which has been merged
with the new DCM parameters is written back to the ICAP
followed by a second dummy frame. As soon as the dummy
frame is processed the DCM_CLKFX output runs with the
new frequency in this case 8.33 MHz. Figure 5 d) shows a
zoom of this point in time. Again no glitches or spikes
occur. The overall processing time for a complete DCM
reconfiguration in this case is 60,7 μsec. In general the
reconfiguration time for a different Virtex-II family device
is given by:
 tDCM~ frame length [Byte] * 2 / 67,7 [Byte/μs] +
 frame_length [Byte] * 4 / 90,5 [Byte/μs]
(@ ICAP_CLK = 100 MHz)
The two summands in the formula are resulting from the
fact that ICAP has different throughputs for reading and
writing reconfiguration data [5].
Therefore, this procedure presents a save method to
dynamically reconfigure DCMs during runtime. However,
even if self-adaptive decentralized DFS can be realized with
the presented method two main drawbacks are obvious:

Fig. 5 DCM reconfiguration performance

48 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

� Relatively long setup delay until the new
frequency is valid (in this example: 60,7μs).

� Interruption of clock frequency during
reconfiguration (in this example: 18,2μs)

This means that the method is appropriate for reaching long
term or intermediate term power management goals, i.e. a
new data path is configured and the clock frequency is
adapted to its critical path and then stays constant until a
new data path is required. But if a frequent and immediate
switching is necessary, e.g. when data arrives in burst and
between burst the OPC wants to toggle between shut off
(fDP = 0Hz) and maximal performance (fDP = fmax) the
method needs to be extended.
In this case a setup consisting of two DCMs and a
BUFGMUX, as shown in Figure 3 can be chosen. The
select input of the BUFGMUX is connected to the PMU of
the OPC. Therefore, it is able to toggle between two
frequencies immediately without any delay as shown in
Figure 6. Further the interruption of clock frequency during
reconfiguration can be hidden. By a combination of both
techniques a broad spectrum of different clock frequencies
as well as an immediate uninterrupted switching is
available.

5. RESULTS

In the preceding section results for reconfiguration times
and tradeoffs have already been presented. This section
evaluates the potential of power savings and performance
enhancements in the context of module based partial online
reconfiguration. Especially, the overhead in terms of area
and power consumption introduced by the approach (PM,
artNoC-ICAP-Interface, DCM) is taken into account.

5.1. Test Setup Power Measurement

We calculated the power consumption by measuring the
voltage drop over an external shunt resistor (0.4 Ohm) on
the FPGA core voltage (FGPA_VINT). As a test system the
Xilinx XUP board with a Virtex-II Pro (XC2VP30) device
was used. For all measurements the board source clock of
100 MHz was used as an input clock to the design.
To isolate the portions of power consumption, as shown in
Table 1, several distinct designs have been synthesised.
For DCM measurement an array of toggle flip-flops at 100
MHz with and without a DCM in the clock tree have been
recorded and the difference of both values has been taken.
For extracting ICAP power consumption a system
consisting of PM, artNoC-ICAP-Interface and ICAP
instance and a second identical system but without ICAP
instance have been implemented. After activation the PM
sends bursts of two complete alternating configuration

frames targeting the same frame in configuration memory.
The ratio of toggling bits between the two frames is 80%
and is considered to be representative for a partial
reconfiguration. Therefore, before PM activation the
“passive” power and after activation the “active” power
could be measured. Again the difference in power
consumption of the two systems was taken to extract ICAP
portion. The other components were measured with the
same methodology. Therefore, e.g. all components
necessary to implement the approach presented in section

Fig. 6 BUGMUX clock switching

 “Passive” Power [mW] “Active” Power [mW]

static_offset - 11

DCM - 37

PM <1 <1

artNoC-ICAP-IF <1 9

ICAP 69 76

Tab. 1 Component Power Consumption

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 49

4.3 with two DCMs + BUFGMUX consume 196mW when
active, i.e. 180mW when passive. But it has to be
considered that artNoC-ICAP-Interface as well as ICAP is
also used for partial 2D reconfiguration.

5.2. Area and Resource Utilization

The resource requirement for the artNoC-ICAP-Interface
with DCM reconfiguration mode is shown in Table 2.

5.3. Power Performance Evaluation

To put the previous power figures into a context we
determined the power consumption of a Microblaze soft
core processor at different clock frequencies as shown in
Figure 7. As we can see there is a high potential for power
savings (for example the difference in power consumption
in idle state between 100 MHz and 50 MHz is 170mW).
The overhead (ICAP+artNoC-ICAP-IF) for DCM
reconfiguration in a static design is in the range of a MB
operating at 20 MHz. As expected, we see that there is a
linear dependency between clock frequency and power
consumption. Therefore, the energy consumed per clock-
cycle: E= P/fclk; fclk= c*P is constant for all clock
frequencies. This means, in terms of power savings for a
static data path there is no point for using reconfiguration of
DCMs. A setup of DCMfmax and BUFGCE to toggle
between f=fmax and f=0 is most appropriate. In terms of
performance, DCM reconfiguration can be used to evaluate
maximum clock frequency during runtime.
In turn, in a dynamic scenario, where the data path and
therefore also the critical path changes, DCM
reconfiguration is necessary to achieve maximum module
performance. It also comes without any additional overhead
as ICAP + artNoC-ICAP-IF +DCM are already needed for
reconfiguration. The capability of DCM reconfiguration
together with BUFGMUX provides the basis for fine-
grained short or long term power management strategies.

6. SUMMARY AND FUTURE WORK

In this paper we have presented a novel methodology to
dynamically reconfigure Digital Clock Managers on Xilinx
Virtex-II devices through ICAP. On one side optimal
performance of partial modules and on the other side the
goal of uniform power consumption can be achieved
without external hardware. Our measurements show that

power consumed by the components of the proposed
hardware framework, especially the DCMs itself, is not
negligible and has to be counterweighted. With DCM
reconfiguration times in the range of 60μs long term power
management goals can be reached. We also provide figures
for reconfiguration times as well resource utilization.
Future work is targeting towards the examination of the
system level power saving effect resulting from distributed
power management with multiple PM and multiple clock
domains.

7. REFERENCES

[1] Jürgen Becker et. al. “Digital On-Demand Computing
Organism for Real-Time Systems”.In Wolfgang Karl et. al,
Workshop Proceedings of the 19th International Conference
on Architecture of Computing Systems(ARCS’06)

[2] U.Brinkschulte, M.Pacher and A. von Renteln. „An
Artificial Hormone System for Self-Organizing Real-Time
Task Allocation in Organic Middleware”. Springer, 2007

[3] C. Schuck, S. Lamparth and J. Becker “artNoC- A novel
Multi-Functional Router Architecture for Organic
Computing” International Conference on Field
Programmable Logic and Applications 2007, FPL 2007

[4] Xilinx Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Complete Data Sheet; DS083 (v4.7) November 5, 2007

[5] C. Schuck; B. Haetzer, and J. Becker „An interface for a
dezentralized 2D-reconfiguration on Xilinx Virtex-FPGAs
for organic computing” Proc. Reconfigurable
Communication-centric SoCs, 2008. ReCoSoC 2008, ISBN:
978-84-691-3603-4

[6] Xilinx Virtex-II Pro and Virtex-II Pro X FPGA User Guide,
UG012 (V4.2) 5 November 2007

[7] Y. Zhang, J. Roivainen, and A. Mämmelä „Clock-Gating in
FPGAs: A Novel and Comparative Evaluation” Proc. 9th
Euromicro Conference on Digital System Design (DSD’06)

[8] I. Brynjolfson, and Z. Zilic “Dynamic Clock Management
for Low Power Applications in FPGAs” Proc. Custom
Integrated Circuits Conference 2000

[9] J.A. Bower, W. Luk, O. Mencer, M.J. Flynn, M. Morf
“Dynamic clock-frequencies for FPGAs” Microprocessors
and Microsystems, Volume 30, Issue 6, 4 September 2006,
Pages 388-397, Special Issue on FPGA’s

[10] B. Fechner “Dynamic delay-fault injection for
reconfigurable hardware” Proc. 19th International Parallel
and Distributed Processing Symposium, 2005. IPDPS 2005,

[11] I. Brynjolfson, and Z. Zilic “FPGA Clock Management for
Low Power” Proc. International Symposium on FPGAs,
2000

[12] M. Huebner, C. Schuck, and J. Becker “Elementary block
based 2-dimensional dynamic and partial reconfiguration for
Virtex-II FPGAs” 20th International Parallel and Distributed
Processing Symposium, 2006. IPDPS 2006, Volume , Issue ,
25-29 April 2006.

Resource Number Percentage
Slices 364 2%

Slice FlipFlops 177 0%
4 input LUTs 664 2%

BRAMs 1 0%
MULT18x18s 2 1%
Tab. 2 Resource Utilization artNoC-ICAP-Interface

50 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Practical Resource Constraints for Online Synthesis
Stefan Döbrich

Chair for Embedded Systems
University of Technology

Dresden, Germany
stefan.doebrich@inf.tu-dresden.de

Christian Hochberger
Chair for Embedded Systems

University of Technology
Dresden, Germany

christian.hochberger@inf.tu-dresden.de

Abstract—Future chip technologies will change the way we
deal with hardware design. First of all, logic resources will be
available in vast amount. Furthermore, engineering specialized
designs for particular applications will no longer be the general
approach as the non recurring expenses will grow tremendously.
Reconfigurable logic in the form of FPGAs and CGRAs has
often been promoted as a solution to these problems. We believe
that online synthesis that takes place during the execution
of an application is one way to broaden the applicability of
reconfigurable architectures as no expert knowledge of synthesis
and technologies is required. In this paper we show that even
a moderate amount of reconfigurable resources is sufficient to
speed up applications considerably.

Index Terms—online synthesis, adaptive computing, reconfig-
urable architecture, CGRA, AMIDAR

I. INTRODUCTION

Following the road of Moore’s law, the number of transistors
on a chip doubles every 24 months. After being valid for more
than 40 years, the end of Moore’s law has been forecast many
times, but technological advances have kept the progress intact.

Further shrinking of the feature size of traditionally man-
ufactured chips will lead to exponentially increased mask
costs. This makes it prohibitively expensive to produce small
quantities of chips for a particular design. Also, the question
comes up, how to make use of the vast amounts of resources
without building individual chip designs for each application.

Reconfigurable logic in different granularities has been
proposed to solve both problems [16]. It allows us to build
large quantities of chips and yet use them individually. Field
programmable gate arrays (FPGAs) are in use for this purpose
for more than two decades. Yet, it requires much expert
knowledge to implement applications or part of them on an
FPGA. Also, reconfiguring FPGAs takes a lot of time due to
the large amount of configuration information.

Coarse Grain Reconfigurable Arrays (CGRAs) try to solve
this last problem by working on word level instead of bit
level. The amount of configuration information is dramatically
reduced and also the programming of such architectures can
be considered more software style. The problem with CGRAs
is typically the tool situation. Currently available tools require
an adaptation of the source code and typically have very high
runtime so that they need to be run by experts and only for
very few selected applications.

Our approach tries to make the reconfigurable resources
available for all applications in the embedded systems domain.

Thus, synthesis of accelerating circuits takes place during
the applications execution. No hand crafted adaptation of the
source code shall be required, although it is clear that manual
fine-tuning of the code can lead to better results.

In this contribution we want to show that even a relatively
small amount of reconfigurable resources is sufficient for a
substantial application acceleration.

The remainder of this paper is organized as follows. In
section II we will give an overview of related work. In section
III we will present the model of our processor which allows an
easy integration of synthesized functional units at runtime. In
section IV we will detail how we figure out the performance
sensitive parts of the application by means of profiling. Section
V explains our online synthesis approach. Results for some
benchmark applications are presented in section VI. Finally,
we give a short conclusion and an outlook onto future work.

II. RELATED WORK

Reconfigurable logic for application improvement has been
used for more than two decades. A speedup of 1000 and more
could be achieved consistently during this period. Examples
range from the CEPRA-1X for cellular automata simulation
[10] to implementations of the BLAST algorithm [15]. Un-
fortunately, these speedups require highly specialized HW
architectures and domain specific modelling languages.

A survey of the early approaches using reconfigurable logic
for application speed up can be found in [3].

Static transformation from high level languages like C into
fine grain reconfigurable logic is still the research focus of
a number of academic and commercial research groups. Only
very few of them support the full programming language [11].

Efficient static transformation from high level languages
into CGRAs is also investigated by several groups. The
DRESC [14] tool chain targeting the ADRES [13][17] ar-
chitecture is one of the most advanced tools. Yet, it requires
hand written annotations to the source code and in some cases
even some hand crafted rewriting of the source code. Also, the
compilation times easily get into the range of days.

The RISPP architecture [1] lies between static and dynamic
approaches. Here, a set of candidate instructions are evaluated
at compile time. These candidates are implemented dynam-
ically at runtime by varying sets of so called atoms. Thus,
alternative design points are chosen depending on the actual
execution characteristics.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 51

Dynamic transformation from software to hardware has
been investigated already by other researchers. Warp proces-
sors dynamically transform assembly instruction sequences
into fine grain reconfigurable logic[12]. Furthermore, dynamic
synthesis of Java bytecode has been evaluated [2]. Nonethe-
less, this approach is only capable of synthesizing combina-
tional hardware.

The token distribution principle of AMIDAR processors has
some similarities with Transport Triggered Architectures[4].
Yet, in TTAs an application is transformed directly into a set
of tokens. This leads to a very high memory overhead and
makes an analysis of the executed code extremely difficult.

III. THE AMIDAR PROCESSING MODEL

In this section, we will give an overview of the AMIDAR
processor model. We describe the basic principles of operation,
which includes the architecture of an AMIDAR processor in
general, as well as specifics of its components. Furthermore,
we discuss the applicability of the AMIDAR model to different
instruction sets. Finally, several mechanisms of the model, that
allow the processor to adapt to the requirements of a given
application at runtime are shown.

A. Overview

An AMIDAR processor consists of three main parts. A set
of functional units, a token distribution network and a commu-
nication structure. Two functional units, which are common
to all AMIDAR implementations are the code memory and
the token generator. As its name tells, the code memory
holds the applications code. The token generator controls
the other components of the processor by means of tokens.
Therefore, it translates each instruction into a set of tokens,
which is distributed to the functional units over the token
distribution network. The tokens tell the functional units what
to do with input data and where to send the results. Specific
AMIDAR implementations may allow the combination of the
code memory and the token generator as a single functional
unit. This would allow the utilization of side effects like in-
struction folding. Functional units can have a very wide range
of meanings: ALUs, register files, data memory, etc. Data
is passed between functional units over the communication
structure. This data can have various meanings: instructions,
address information, or application data. Figure 1 sketches the
abstract structure of an AMIDAR processor.

B. Principle of Operation

Execution of instructions in AMIDAR processors dif-
fers from other execution schemes. Neither microprogram-
ming nor explicit pipelining are used to execute instruc-
tions. Instead, instructions are broken down to a set of
tokens which are distributed to a set of functional units.
These tokens are 5-tuples, where a token is defined as
T = {UID, OP, TAG, DP, INC}. It carries the information
about the type of operation (OP) that shall be executed by
the functional unit with the specified id (UID). Furthermore,
the version information of the input data (TAG) that shall be

generator
tokencode

memoryFU1 FU2 FUn

Communication Structure

Token Distribution Network

Fig. 1. Abstract Model of an AMIDAR Processor

processed and the destination port of the result (DP) are part
of the token. Finally, every token contains a tag increment
flag (INC). By default, the result of an operation is tagged
equally to the input data. In case the TAG-flag is set, the
output tag is increased by one. The token generator can be
built such that every functional unit which shall receive a
token is able to receive it in one clock cycle. A functional
unit begins the execution of a specific token as soon as the
data ports received the data with the corresponding tag. Tokens
which do not require input data can be executed immediately.
Once the appropriately tagged data is available, the operation
starts. Upon completion of an operation the result is sent to
the destination that was denoted in the token. An instruction
is completed, when all of its tokens are executed. To keep
the processor executing instructions, one of the tokens must
trigger the sending of a new instruction to the token generator.
A more detailed explanation of the model can be found in [7].

C. Applicability

In order to apply the presented model to an instruction
set, a composition of microinstructions has to be defined for
each instruction. Overlapping execution of instructions comes
automatically with this model. Thus, it can best be applied if
dependencies between consecutive instructions are minimal.

The great advantage of this model is that the execution of
an instruction depends on the token sequence, and not on the
timing of the functional units. Hence, functional units can be
replaced at runtime with other versions of different charac-
terizations. The same holds for the communication structure,
which can be adapted to the requirements of the running
application. Intermediate virtual assembly languages like Java
bytecode, LLVM bitcode or the .NET common intermediate
language are good candidates for instruction sets.

The structure of a minimum implementation of an AMIDAR
based Java processor is sketched in figure 2. Firstly, it contains
the mandatory functional units token generator and code
memory. In case of a Java machine, the code memory holds
all class files and interfaces, as well as their corresponding
constant pools and attributes. Additionally, the processor con-
tains several memory functional units. These units realize the
operand stack, the object heap, the local variable memory and
the method stack. In order to process arithmetic operations,
the processor shall contain at least one ALU functional unit.
Nonetheless, it is possible to separate integer and floating
point operations into two disjoint functional units, which
improves the throughput. Furthermore, the processor contains

52 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Communication Structure

Token Distribution Network

object
heap

local
variables

operand
stack

jump
unit

method
stack IALU FALU

code
memory

token
generator

Fig. 2. Model of a Java (non)Virtual Machine on AMIDAR Basis

a jump unit which processes all conditional jumps. Therefore,
the condition is evaluated, and the resulting jump offset is
transfered to the code memory.

The range of functional unit implementations and commu-
nication structures is especially wide if the instruction set
has a very high abstraction level and/or basic operations are
sufficiently complex. Finally, the data driven approach makes
it possible to easily integrate new functional units and create
new instructions to use these functional units.

D. Adaptivity in the AMIDAR Model
The AMIDAR model exposes different types of adaptivity.

All adaptive operations covered by the model are intended
to dynamically respond to the running applications behavior.
Therefore, we identified adaptive operations that adapt the
communication structure to the actual interaction scheme be-
tween functional units. As a functional unit may be the bottle-
neck of the processor, we included similar adaptive operations
for functional units. The following subsections will give an
overview of the adaptive operations provided by the AMIDAR
model. Most of the currently available reconfigurable devices
do not fully support the described adaptive operations (e.g.
addition or removal of bus structures). Yet, the model itself
contains these possibilities, and so may benefit from future
hardware designs. In previous work [7] we have given a
detailed overview of these adaptive operations, so this paper
provides a short overview only.

E. Adaptive Communication Structures
The communication structure can minimize the bus con-

flicts that occur during the data transports between functional
units. In order to react to the communication characteris-
tics of any given application, functional units may be con-
nected/disconnected to/from a bus structure. This can happen
as part of an evasion to another bus structure in case of
congestion, as well as the creation of a completely new
interconnection. Furthermore, bus structures may be split or
folded with the objective of a more effective communication.
In [9] we have shown how to identify the conflicting bus
taps and we have also shown a heuristics to modify the bus
structure to minimize the conflicts.

F. Adaptive Functional Units
Three different categories of adaptive operations may be

applied to functional units. Firstly, variations of a specific

functional unit regarding chip size, latency or throughput
may be available. The most appropriate implementation is
chosen dynamically at runtime and may change throughout the
lifetime of the application. Secondly, the number of instances
of a specific functional unit may be increased or decreased
dynamically. This is an alternative way to respond to chang-
ing throughput requirements. Finally, dynamically synthesized
functional units may be added to the processors datapath. It
is possible to identify heavily utilized instruction sequences
of an application at runtime (see section IV). Suitable code
sequences can be transformed into functional units by means
of online synthesis. These functional units would replace the
software execution of the related code.

G. Synthesizing Functional Units in AMIDAR

AMIDAR processors need to include some reconfigurable
fabric in order to allow the dynamic synthesis and inclusion of
functional units. Since fine grained logic (like FPGAs) requires
large amount of configuration data to be computed and also
since the fine grain structure is neither required nor helpful
for the implementation of most code sequences, we focus on
CGRAs for the inclusion into AMIDAR processors.

The model includes many features to support the integration
of synthesized functional units into the running application. It
allows bulk data transfers from and to data memories, as well
as the synchronization of the token generator with operations
that take multiple clock cycles. Finally, synthesized functional
units are able to inject tokens in order to influence the data
transport required for the computation of a code sequence.

IV. RUNTIME APPLICATION PROFILING

A major task in synthesizing hardware functional units for
AMIDAR processors is runtime application profiling. This
allows the identification of candidate instruction sequences for
hardware acceleration. Plausible candidates are the runtime
critical parts of the current application.

In previous work [8] we have shown a profiling algorithm
and corresponding hardware implementation which generates
detailed information about every executed loop structure.
Those profiles contain the total number of executed instruc-
tions inside the affected loop, the loops start program counter,
its end program counter and the total number of executions
of this loop. The profiling circuitry is also capable to profile
nested loops, not only simple ones.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 53

A profiled loop structure becomes a synthesis candidate
in case its number of executed instructions surmounts a
given threshold. The size of this threshold can be configured
dynamically for each application.

Furthermore, an instruction sequence has to match specific
constraints in order to be synthesized. Currently, we are
not capable of synthesizing code sequences containing the
following instruction types, as our synthesis algorithm has not
evolved to this point yet.

• memory allocation operations
• exception handling
• thread synchronization
• some special instructions, e.g. lookupswitch
• access operations to multi-dimensional arrays
• method invocation operations
From this group only access to multi-dimensional arrays and

method invocations are important from performance aspect.
Multi-dimensional arrays do actually occur in compute

kernels. Access operations on these arrays are possible in
principle in the AMIDAR model. Yet, multi-dimensional ar-
rays are organized as arrays of arrays in Java. Thus, access
operations need to be broken down into a set of stages
(one for each dimension), which is not yet supported by our
synthesis algorithm. Nevertheless, a manual rewrite of the code
is possible to map multi-dimensional arrays to one dimension.

Similarly, method inlining can be used to enable the synthe-
sis of code sequences that contain method invocations. Tech-
niques for the method inlining are known from JIT compilers
that preserve the polymorphism of the called method. Yet,
these techniques require the abortion of the execution of the
HW under some conditions, which is not yet supported by our
synthesis algorithm.

V. ONLINE SYNTHESIS OF APPLICATION SPECIFIC
FUNCTIONAL UNITS

The captured data of the profiling unit is evaluated peri-
odically. In case an instruction sequence exceeds the given
runtime threshold the synthesis is triggered, and runs as a low
priority process concurrently to the application. Thus, it only
occurs if spare computing time remains in the system, and
also cannot interfere with the running application.

A. Synthesis Algorithm

An overview of the synthesis steps is given in figure 3. The
parts of the figure drawn in grey are not yet implemented.

Firstly, an instruction graph of the given sequence is created.
In case an unsupported instruction is detected the synthesis is
aborted. Furthermore, a marker of a previously synthesized
functional unit may be found. If this is the case it is necessary
to restore the original instruction information and then proceed
with the synthesis. This may happen if an inner loop has been
mapped to hardware before, and then the wrapping loop shall
be synthesized as well.

Afterwards, all nodes of the graph are scanned for their
number of predecessors. In case a node has more than one
predecessor it is necessary to introduce specific Φ-nodes to

the graph. These structures occur at the entry of loops or in
typical if-else-structures. Furthermore, the graph is annotated
with branching information. This will allow the identification
of the actually executed branch and the selection of the valid
data when merging two or more branches by multiplexers. For
if-else-structures, this approach reflects a speculative execution
of the alternative branches. The condition of the if-statement
is used to control the selection of one set of result values.
Loop entry points are treated differently, as no overlapping or
software pipelining of loop kernels is employed.

In the next step the graph is annotated with a virtual stack.
This stack does not contain specific data, but the information
about the producing instruction that would have created it.
This allows the designation of connection structures between
the different instructions as the predecessor of an instruction
may not be the producer of its input.

Afterwards an analysis of access operations to local vari-
ables, arrays and objects takes place. This aims at loading data
into the functional unit and storing it back to its appropriate
memory after its execution. Therefore, a list of data that has
to be loaded and a list of data that has to be stored is created.

The next step transforms the instruction graph into a
hardware circuit. This representation fits precisely into our
simulation. All arithmetic or logic operations are transformed
into their abstract hardware equivalent. The introduced Φ-
nodes are transfered to multiplexer structures. The annotated
branching information helps to connect the different branches
correctly and to determine the appropriate control signal.
Furthermore, registers and memory structures are introduced.
Registers hold values at the beginning and the end of branches
in order to synchronize different branches. Localization of
memory accesses is an important measure to improve the
performance of potential applications. In general, SFUs could
also access the heap to read or write array elements, but this
access would incur an overhead of several clocks. The memory
structures are connected to the consumer/producer components
of their corresponding arrays or objects. A datapath equivalent
to the instruction sequence is the result of this step.

Execution of consecutive loop kernels is strictly separated.
Thus, all variables and object fields altered in the loop kernel
are stored in registers at the beginning of each loop iteration.

Arrays and objects may be accessed from different branches
that are executed in parallel. Thus, it is necessary to syn-
chronize access to the affected memory regions. Furthermore,
only valid results may be stored into arrays or objects. This
is realized by special enable signals for all write operations.
The access synchronization is realized through a controller
synthesis. This step takes the created datapath and all informa-
tion about timing and dependency of array and object access
operations as input. The synthesis algorithm has a generic
interface which allows to work with different scheduling
algorithms. Currently we have implemented a modified ASAP
scheduling which can handle resource constraints and list
scheduling. The result of this step is a finite state machine
(FSM) which controls the datapath and synchronizes all array
and object access operations. Also the FSM takes care of the

54 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Φ −NodesInsert

Unregister marked SFUs

Register new SFU

Configure HW

Register new SFU

Mark SFU for release

Reinsert Bytecode

Bytecode
Unsupported

Previously

mapped

inner loop

Mapping to Physical HW

Analysis of Input Data

Virtual Stack Annotation

Create Instruction Graph

Predicate Memory Access

Scheduling

Start Synthesis

Place & Route

Unregister marked SFUs

Simulate

Abort

Remove Markers

Fig. 3. Overview of synthesis steps

appropriate execution of simple and nested loops.
As mentioned above, we do not have a full hardware im-

plementation yet. Thus, placement and routing for the CGRA
are not required. We use a cycle accurate simulation of the
abstract datapath created in the previous steps.

In case the synthesis has been successful, the new functional
unit needs to be integrated into the processor. If marker
instructions of previously synthesized FUs were found, the
original instruction sequence has to be restored. Furthermore,
the affected SFUs have to be unregistered from the processor
and the hardware used by them has to be released.

B. Functional Unit Integration

The integration of the synthesized functional unit (SFU) into
the running application consist of three major steps. (1) a token
set has to be generated which allows the token generator to
use the SFU. (2) the SFU has to be integrated into the existing
circuit and (3) the synthesized code sequence has to be patched
in order to access the SFU.

The token set consist of three parts: (1) the tokens that
transport input data to the SFU. These tokens are sent to the
appropriate data sources (e.g. object heap). (2) the tokens that
control the operation of the SFU, i.e. that start the operation
(which happens once the input data is available) and emit the

results. (3) the token set that stores the results of the SFU
operation in the corresponding memory.

In a next step it is necessary to make the SFU accessible
to the other processor components. This requires to register
it in the bus arbiter and to update the token generator with
the computed token sets. The token set will be triggered by a
reserved bytecode instruction.

Finally, the original bytecode sequence has to be replaced
by the reserved bytecode instruction. To allow multiple SFUs
to co-exist, the reserved bytecode carries the ID of the targeted
SFU. Patching of the bytecode sequence is done in such a way
that the token generator can continue the execution at the first
instruction after the transformed bytecode sequence. Also, it
must be possible to restore the original sequence in case a
embracing loop nesting level shall be synthesized.

Now, the sequence is not processed in software anymore
but by a hardware SFU. Thus, it is necessary to adjust the
profiling data of the affected code sequence.

In [5], we have given further information and a more
detailed description of the integration process.

VI. EVALUATION

In previous research [6] we have evaluated the poten-
tial speedup of a simplistic online synthesis with unlimited
ressources. To be more realistic, int this work we assume a
CGRA with a limited number of processing elements, and a
single shared memory for all arrays and objects. The schedul-
ing itself has been calculated by a longest path list scheduling.
The following data-set was gained for every benchmark:

• its runtime, and therewith the gained speedup
• the number of states of the controlling state machine
• the number of different contexts regarding the CGRA
• the number of complex operations in those contexts

The reference value for all measurements is the plain software
execution of the benchmarks. Note: The mean execution time
of a bytecode in our processor is 3-4 clock cycles. This is in
the same order as JIT-compiled code on IA32 machines.

A. Benchmark Applications

We have chosen applications of four different domains as
benchmarks, in order to test our synthesis algorithm.

The first group contains the cryptographic block ciphers
Rijndael, Twofish, Serpent and RC6. We evaluated the round
key generation out of a 256 bit master key, as well as the
encryption of a 16 byte data block.

Another typical group of algorithms used in the security
domain are hash algorithms and message digests. We chose
the Message Digest 5 (MD5), and two versions of the Secure
Hash Algorithm (SHA-1 and SHA-256) as representatives, and
evaluated the processing of sixteen 32bit words.

Thirdly, we chose the Sobel convolution operator, a
grayscale filter and a contrast filter as representatives of image
processing kernels. These three filters operate on a dedicated
pixel of an image, or on a pixel and its neighbours. Thus, we
measured the appliance of these filters onto a single pixel.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 55

TABLE I
RUNTIME ACCELERATION OF BENCHMARK APPLICATIONS

R
ou

nd
K

ey
G

en
er

at
io

n

Configuration Rijndael Twofish RC6 Serpent
Clock Ticks Speedup Clock Ticks Speedup Clock Ticks Speedup Clock Ticks Speedup

plain software 17760 - 525276 - 61723 - 44276 -
4 operators 4602 3.86 43224 12.15 3725 16.57 6335 6.99
8 operators 4284 4.15 35130 14.95 3459 17.84 6245 7.09
12 operators 4337 4.09 34280 15.32 3459 17.84 6230 7.11
16 operators 4337 4.09 34112 15.40 3459 17.84 6230 7.11

Si
ng

le
B

lo
ck

E
nc

ry
pt

io
n

Configuration Rijndael Twofish RC6 Serpent
Clock Ticks Speedup Clock Ticks Speedup Clock Ticks Speedup Clock Ticks Speedup

plain software 21389 - 12864 - 17371 - 34855 -
4 operators 6230 3.43 8506 1.51 2852 6.09 3278 10.63
8 operators 6181 3.46 8452 1.52 2810 6.18 3273 10.65
12 operators 6167 3.47 8452 1.52 2768 6.28 3273 10.65
16 operators 6167 3.47 8452 1.52 2768 6.28 3273 10.65

H
as

h
&

D
ig

es
t

A
lg

or
ith

m
s

Configuration SHA-1 SHA-256 MD5
Clock Ticks Speedup Clock Ticks Speedup Clock Ticks Speedup

plain software 23948 - 47471 - 11986 -
4 operators 4561 5.25 3619 13.12 1485 8.07
8 operators 4561 5.25 3484 13.63 1485 8.07
12 operators 4561 5.25 3484 13.63 1485 8.07
16 operators 4561 5.25 3484 13.63 1485 8.07

Im
ag

e
Pr

oc
es

si
ng

Configuration Sobel Filter Grayscale Filter Contrast Filter
Clock Ticks Speedup Clock Ticks Speedup Clock Ticks Speedup

plain software 6930 - 236 - 608 -
4 operators 1110 6.24 59 4.00 90 6.76
8 operators 1110 6.24 59 4.00 90 6.76
12 operators 1110 6.24 59 4.00 90 6.76
16 operators 1110 6.24 59 4.00 90 6.76

JP
E

G
E

nc
od

in
g

Configuration JPEG–Encoder Color Space Transformation 2-D Forward DCT Quantization
Clock Ticks Speedup Clock Ticks Speedup Clock Ticks Speedup Clock Ticks Speedup

plain software 17368663 - 3436078 - 23054 - 7454 -
4 operators 4737944 3.67 323805 10.61 2743 8.40 1816 4.10
8 operators 4645468 3.74 292889 11.73 2572 8.96 1816 4.10
12 operators 4620290 3.76 277431 12.39 2545 9.06 1816 4.10
16 operators 4612561 3.77 269702 12.74 2545 9.06 1816 4.10

Finally, we evaluated a complete application and encoded a
given 160x48x24 bitmap into a JPEG image. The computation
kernels of this application are the color space transformation,
2-D forward DCT and quantization. We did not downsample
the chroma parts of the image.

B. Runtime Acceleration

Except from the contrast and grayscale filter, all applications
contained either method invocations or access to multidimen-
sional arrays. As we mentioned above, the synthesis does
not support these instruction types yet. In order to show the
potential of our algorithm we inlined the affected methods and
flattened the multidimensional arrays to one dimension.

The subsequent evaluations have shown sophisticated re-
sults. Speedups between 3.5 and 12.5 were achieved for most
kernels. The encryption of the Twofish cipher is an outlier,
being caused by a large communication overhead. Analogous,
several applications, e.g. SHA-256, gained better results orig-
inating from a benefiting communication/computation ratio.
The JPEG encoding application as a whole has gained a
speedup of 3.77, which fits into the overall picture. The
runtime results for all benchmarks are shown in table I.

C. Schedule Complexity

In a next step, we evaluated the complexity of the con-
trolling units that were created by the synthesis. Therefore
we measured the size of the finite state machines, that are
controlling every synthesized functional unit. Every state is
related to a specific configuration of the reconfigurable array.
In the worst case, all of those contexts would be different.
Thus, the size of a controlling state machine is the upper bound
for the number of different contexts.

Afterwards, we created a configuration profile for every
context, which reflects every operation that is executed within
the related state. Accordingly, we removed all duplicates from
the set of configurations. The number of remaining elements
is a lower bound for the number of contexts that are necessary
to drive the functional unit. The effective number of necessary
configurations lies between those two bounds, as it depends
on the place-and-route results of the affected operations.

The context informations for the benchmarks are presented
in table II. It shows the size of the controlling finite state
machine (States), and the number of actually different contexts
(Contexts) for every of our benchmarks. It shows, that only
three of eighteen state machines on an array with 16 processing

56 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

TABLE II
COMPLEXITY OF THE SCHEDULES OF BENCHMARK APPLICATIONS

R
ou

nd
K

ey
G

en
er

at
io

n Configuration Rijndael Twofish RC6 Serpent
States Contexts States Contexts States Contexts States Contexts

4 operators 57 42 230 110 48 21 124 37
8 operators 55 31 148 113 44 20 106 43
12 operators 55 31 130 91 44 20 103 42
16 operators 55 31 122 83 44 20 103 42

Si
ng

le
B

lo
ck

E
nc

ry
pt

io
n Configuration Rijndael Twofish RC6 Serpent

States Contexts States Contexts States Contexts States Contexts
4 operators 78 37 46 33 25 17 153 54
8 operators 71 31 40 26 23 20 152 54
12 operators 69 26 40 22 23 19 152 54
16 operators 69 23 40 20 23 19 152 54

H
as

h
&

D
ig

es
t

A
lg

or
ith

m
s Configuration SHA-1 SHA-256 MD5

States Contexts States Contexts States Contexts
4 operators 138 29 107 28 531 20
8 operators 138 29 92 31 531 20
12 operators 138 29 92 31 531 20
16 operators 138 29 92 30 531 20

Im
ag

e
Pr

oc
es

si
ng

Configuration Sobel Filter Grayscale Filter Contrast Filter
States Contexts States Contexts States Contexts

4 operators 17 13 13 9 56 18
8 operators 17 13 13 9 56 18
12 operators 17 13 13 9 56 18
16 operators 17 13 13 9 56 18

JP
E

G
E

nc
od

in
g Configuration JPEG–Encoder Color Space Transformation 2-D Forward DCT Quantization

States Contexts States Contexts States Contexts States Contexts
4 operators 132 64 22 17 89 43 16 11
8 operators 109 61 18 15 70 42 16 11
12 operators 110 60 17 15 67 39 16 11
16 operators 105 55 17 14 67 36 16 11

elements consist of more than 128 states. Furthermore, the
bigger part of the state machines contains a significant number
of identical states regarding the executed operations. Thus, the
actual number of contexts is well below the number of states.

D. Resource Utilization

Another characteristic of the synthesized control units, is
the distribution of multi-cycle operations like multiplication
or division (complex operations) within the created contexts.

Table III shows the aggregate distribution of complex oper-
ations within the schedules. It shows a total number of 1887
contexts for all of our benchmarks, as we scheduled them
for a reconfigurable array with four operators. Furthermore,
it can be seen that a large set of 1265 contexts did not
contain any complex operation. Furthermore, the bigger part
of the remaining contexts utilized only one or two complex
operations, which sums up to 1725 contexts utilizing two or
less complex operations. Hence, only 165 contexts used more
than two complex operators.

Entirely, it can be seen, that the 1-quantile covers more than
84% of all contexts, regardless of the reconfigurable arrays
size. Furthermore, the 2-quantile contains more than 91% of
the contexts. Thus, it is reasonable to reduce the complexity of
the reconfigurable array, as a full-fledged homogeneous array
structure may not be necessary. Hence, the chipsize of the
array would shrink. Nonetheless, this would also decrease the

gained speedup. The following subsection shows the influence
of such a limitation on the runtime and speedup, with the help
of small modifications to the constraints of our measurements.

E. Exemplified Resource Limitation

The results in the preceding subsections suggest the use
of a heterogeneous array, as more than 90% of the contexts
that were created by our synthesis algorithm used two or less
complex operators. This array would provide a full-fledged
functionality on a small number of processing elements. All
other operators could be cut down to combinational functions.
We extended our implemented scheduling algorithms to show
the influence of such a limitation, by confining the number of
complex processing elements inside the array.

The Twofish benchmark, the 2-D forward DCT of the JPEG
encoding, and the JPEG encoding itself have been chosen
to show the influence of the described resource limitations
regarding a reconfigurable array with 16 processing elements,
as they utilized the largest numbers of complex operators.

Limiting the number of full-fledged processing elements to
four did not result in a noteworthy drop of the speedup. How-
ever, a further confinement to two complex operators inside
the array delivered noteworthy results. The achieved speedups
dropped 4.5% (JPEG-Encoding), 12.1% (2-D forward DCT)
and 10.7% (Twofish round key generation). The results of the
resource limited benchmarks are shown in table IV.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 57

TABLE III
OVERALL UTILIZATION OF COMPLEX PROCESSING ELEMENTS IN SYNTHESIZED FUNCTIONAL UNITS

Configuration Contexts 0 ≤ 1 ≤ 2 > 2
4 operators 1887 1265 67% 1591 84% 1725 91% 162 9%
8 operators 1722 1206 70% 1471 85% 1563 91% 159 9%
12 operators 1699 1211 71% 1474 87% 1557 92% 142 8%
16 operators 1684 1219 72% 1476 88% 1556 92% 130 8%

TABLE IV
INFLUENCE OF RESOURCE CONSTRAINTS ON SPEEDUP OF JPEG-ENCODING AND SELECTED APPLICATION KERNELS

Complex Operators JPEG-Encoding 2-D Forward DCT Twofish Round Key Generation
Clock Ticks Speedup Clock Ticks Speedup Clock Ticks Speedup

without synthesis 17368663 - 23054 - 525276 -
unrestricted 4612561 3.77 2545 9.06 34112 15.40
4 operators 4694575 3.70 2644 8.72 34726 15.13
2 operators 4819664 3.60 2897 7.96 38230 13.74

VII. CONCLUSION

In this article we have shown a online-synthesis algorithm
for AMIDAR processors. The displayed approach targets max-
imum simplicity and runtime efficiency of all used algorithms.

It is capable of synthesizing functional units fully automated
at runtime regarding given resource constraints. The target
technology for our algorithm is a coarse grain reconfigurable
array. Initially, we assumed a reconfigurable fabric with homo-
geneously formed processing elements and one single shared
memory for all objects and arrays. Furthermore, we used list
scheduling as scheduling algorithm.

We evaluated our algorithm by examining four groups of
benchmark applications. On average across all benchmarks, a
speedup of 7.78 was achieved.

Comparing the runtime of the benchmarks, regarding the
underlying reconfigurable fabrics size, shows notably results.
An array of eight processing elements delivers the maximum
speedup for most benchmarks. The improvements gained
through the use of a larger array are negligible. Thus, the
saturation of the speedup was achieved with a surprisingly
moderate hardware effort.

Furthermore, we displayed the complexity of the synthe-
sized finite state machines. This evaluation showed, that most
of our benchmarks could be driven by less than 128 states, and
that more than 90% of these corresponding contexts contained
two or less complex operations.

Hence, we constrained the number of complex processing
elements inside our array, to show the influence of such a
limitation onto the speedup. A limit of four complex operations
per context nearly did not affect the speedup, while a limit
of two complex operations decreased the speedup of the
evaluated benchmarks by approximately 5% - 12%.

VIII. FUTURE WORK

As the full potential of our synthesis algorithm has not
been reached, future work will concentrate on improving
it in multiple ways. This contains the implementation of
access to multidimensional arrays and inlining of invoked
methods at synthesis time. Additionally, we will explore the

effects of instruction chaining in synthesized functional units.
Furthermore, we are planning to overlap the transfer of data to
a synthesized functional unit and its execution. Also, we will
introduce an abstract description layer to our synthesis. This
will allow easier optimization of the algorithm itself and will
open up the synthesis for a larger number of instruction sets.

REFERENCES

[1] L. Bauer, M. Shafique, S. Kramer, and J. Henkel. RISPP: Rotating
instruction set processing platform. In DAC, pages 791–796, 2007.

[2] A. C. S. Beck and L. Carro. Dynamic reconfiguration with binary
translation: breaking the ILP barrier with software compatibility. In
DAC, pages 732–737, 2005.

[3] K. Compton and S. Hauck. Reconfigurable computing: a survey of
systems and software. ACM Comput. Surv., 34(2):171–210, 2002.

[4] H. Corporaal. Microprocessor Architectures: From VLIW to TTA. John
Wiley & Sons, Inc., New York, NY, USA, 1997.

[5] S. Döbrich and C. Hochberger. Towards dynamic software/hardware
transformation in AMIDAR processors. it - Information Technology,
pages 311–316, 2008.

[6] S. Döbrich and C. Hochberger. Effects of simplistic online synthesis in
AMIDAR processors. In ReConFig, pages 433–438, 2009.

[7] S. Gatzka and C. Hochberger. A new general model for adaptive
processors. In ERSA, pages 52–62, 2004.

[8] S. Gatzka and C. Hochberger. Hardware based online profiling in
AMIDAR processors. In IPDPS, page 144b, 2005.

[9] S. Gatzka and C. Hochberger. The organic features of the AMIDAR
class of processors. In ARCS, pages 154–166, 2005.

[10] C. Hochberger, R. Hoffmann, K.-P. Völkmann, and S. Waldschmidt. The
cellular processor architecture CEPRA-1X and its conguration by CDL.
In IPDPS, pages 898–905, 2000.

[11] A. Koch and N. Kasprzyk. High-level-language compilation for recon-
figurable computers. In ReCoSoC, pages 1–8, 2005.

[12] R. L. Lysecky and F. Vahid. Design and implementation of a microblaze-
based WARP processor. ACM Trans. Embedded Comput. Syst., 8(3):1–
22, 2009.

[13] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins.
ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix. In FPL, pages 61–70, 2003.

[14] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins. Exploit-
ing loop-level parallelism on coarse-grained reconfigurable architectures
using modulo scheduling. In DATE, pages 10296–10301, 2003.

[15] E. Sotiriades and A. Dollas. A general reconfigurable architecture for
the BLAST algorithm. J. VLSI Signal Process. Syst., 48(3):189–208,
2007.

[16] S. Vassiliadis and D. Soudris, editors. Fine- and Coarse-Grain Recon-
figurable Computing. Springer, 2007.

[17] K. Wu, A. Kanstein, J. Madsen, and M. Berekovic. MT-ADRES:
Multithreading on coarse-grained reconfigurable architecture. In ARC,
pages 26–38, 2007.

58 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

ISRC: a runtime system for heterogeneous
reconfigurable architectures

Florian Thoma, Jürgen Becker
Institute for Information Processing Technology

Karlsruhe Institute of Technology
Germany

Email: {florian.thoma, juergen.becker}@kit.edu

Abstract—By definition, runtime systems bridge the gap be-
tween the application and the operation system layer on a
processor based hardware. Novel paradigms like reconfigurable
computing and heterogeneous multi-core system on chips require
additional services provided by the runtime system in compar-
ison to the traditional approaches which are well established
in single- or homogeneous multi-core systems. Especially the
different characteristics of the target architectures provided in
a multi-core System-on-Chip can be exploited for a power and
performance efficient task execution. Furthermore, the algorithm
for application task scheduling for that kind of hardware archi-
tecture has to consider varying timing of the task realizations
on the different hardware and additionally, dynamic effects if
runtime reconfiguration is used for loading functional blocks on
the hardware modules on demand. The Intelligent Services for
Reconfigurable Computing (ISRC) approach shows the feasibility
to handle the complex system environment of a heterogeneous
hardware architecture and presents first results with the MOR-
PHEUS chip, consisting of a processor, coarse-, medium- and fine-
grained reconfigurable hardware and a complex communication
infrastructure.

I. INTRODUCTION

During the last years the field of Reconfigurable Computing
(RC) has expanded and the architectures have gone beyond
purely FPGA based systems. At the same time the usage
scenarios have extended to other application domains which
have higher requirements in terms of adaptivity to user input or
other environmental influences. This dynamic system behavior
impedes the static partition, allocation and scheduling of the
application during design time. Hence the necessity to make
as many decisions as possible at runtime. Partitioning and
retargeting to different engines are not feasible during runtime
but an alternative is to provide multiple implementations for
each partition at design time. Scheduling and allocation of
these alternatives can then be done by a runtime system
depending on system state.

In this paper we present our intelligent services for recon-
figurable computing (ISRC) as a implementation of this ap-
proach. The subsequent section II places this work in relation
to current work in the field of reconfigurable computing. The
following section III provides an overview of the MORPHEUS
SoC architecture. The corresponding MORPHEUS toolchain
is presented in section IV. The main part of the paper which
describes the runtime system is formed by section V. An
exemplary usage scenario is described in section VI. The

conclusion of this and an outlook on future work are given
in section VII.

II. RELATED WORK

Reconfigurable Computing is an active and dynamic field of
research. Systems like Berkeley Emulation Engine 2 (BEE2)
[1] and Erlangen Slot Machine (ESM) [2] are examples of
homogeneous partial reconfigurable systems using FPGAs.
MORPHEUS [3] is the first truly heterogeneous reconfigurable
computing architecture by exploiting the strengths of several
different reconfigurable architectures within a Configurable-
System-on-Chip (CSoC). During the last years it has become
apparent that the use of RC-specific operating systems is
required for efficient utilization of the inherent computing
power by application designers [4], [5], [6]. Hthreads [7],
[8] covers only FPGA targets without use of reconfiguration
whereas its successor [9] is focused on heterogeneous many-
core processors. In the field of Heterogeneous Computing [10],
[11], [12] there has been work done on scheduling but since
these machines are typically still processor-based it does not
take reconfiguration overhead which is inherent in RC into
account. There has been work [13] on scheduling between
μP and FPGA but it focuses on the area optimization on the
FPGA side. ReconOS [14] shows a way to integrate hardware
tasks into a real-time operating system but does not handle
scheduling and reconfiguration of tasks as the underlying
hardware model is static.

III. SYSTEM ARCHITECTURE

The main components of the MORPHEUS System-on-Chip
(SoC) are three different heterogeneous reconfigurable engines
(HREs), which enable high flexibility for application design
and an ARM9 embedded RISC processor, which is responsible
for triggering data, control and configuration transfers between
all resources in the system [15]. Resources are memory
units, IO peripherals, and several HREs each residing in its
own clock domain with a programmable clock frequency
(see figure 1). All system modules are interconnected via
multilayer AMBA buses and/or a Network-on-Chip (NoC).
All data transfers between HREs, on- and off-chip memories
may be either DNA (Direct Network Access) triggered, DMA
triggered or managed directly by the ARM.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 59

NoC

DREAM XPP

Mem

PCM

DMA

Mem

AMBA (Configuration bus)

ARM9

AMBA (Master/Data bus)

IC
DNA Bridge

FlexEOS

OffChip
Mem

Mem

Contr.NoC

DREAM XPP

Mem

PCM

DMA

Mem

AMBA (Configuration bus)

ARM9

AMBA (Master/Data bus)

IC
DNA Bridge

FlexEOS

OffChip
Mem

Mem

Contr.

Fig. 1. MORPHEUS architecture

The DREAM core is a medium-grained reconfigurable
array consisting of 4-bit oriented ALUs, where up to four
configurations may be kept concurrently in shadow registers.
This component is mostly targeting instruction level paral-
lelism, which can be automatically extracted from a C-subset
language called Griffy-C.

The FlexEOS is a lookup table based fine-grain reconfig-
urable device – also known as embedded Field Programmable
Gate Array (eFPGA). As any FPGA, it is capable to map
arbitrary logic up to a certain complexity if the register and
memory resources are matching the specifics of the imple-
mented logic.

XPP-III is a data processing architecture based on a hi-
erarchical array of coarse-grained, adaptive computing ele-
ments called Processing Array Elements (PAEs) and a packet-
oriented communication network. An XPP-III core contains a
rectangular array of ALU-PAEs and RAM-PAEs for data-flow
processing. Crossbars tightly couple the array with a column
of Function-PAEs (FNC-PAEs) for control-flow oriented code.
More regular streaming algorithms like filters or transforms
are efficiently implemented on the data flow part of the XPP-
III array. Flow graphs of arbitrary shape can be directly
mapped to ALUs and routing connections, resulting in a paral-
lel, pipelined implementation. Events enable also conditional
operation and loops. One of the strengths of the XPP array
originates from fast dynamic runtime reconfiguration.

The integration of the ST NoC with the various reconfig-
urable components requires an innovative interconnect infras-
tructure [16]. Processing cores and storage units are connected
through the spidergon topology [17] that promises to deliver
optimal cost/performance trade-off for multi core designs. In
this proprietary topology, the IP blocks are arranged in a
sort of ring where each is connected to its clockwise and
its counter-clockwise neighbours as in a polygonal structure.
In addition, each IP block is also connected directly to its
diagonal counterpart in the network, which allows the routing
algorithm to minimize the number of nodes that a data packet
has to traverse before reaching its destination.

The MORPHEUS SoC features three levels of memory.
Each HRE has several dual-clock Data Exchange Buffers
(DEB) for local storage and communication with the NoC.
The buffers can be accessed as normal RAM or as FIFO. The
second level is the on-chip SRAM used by the ARM core and

Molen approach compilation

Dynamic
reconfiguration
RTOS

Memory-oriented mapping

Formal
specification

Architectural and physical Synthesis

C-based application description

RU configurations

ARM processor code

Accelerated
function
description

Fig. 2. Integrated design flow

the HREs. The third level is provided by external SRAM.
The Predictive Configuration Manager (PCM) [18] manages

the reconfiguration overhead. By caching and prefetching
configurations, it minimizes the reconfiguration latencies and
offers a unified interface for heterogeneous engines as well as
high-level services for the runtime system (see section V).

IV. TOOLCHAIN

The objectives of the Morpheus toolchain are to satisfy
embedded computing requirements within the context of Re-
configurable Computing architecture solutions. These objec-
tives are portability (avoiding platform adherence), computing
performance efficiency, flexibility and application program-
ming productivity. The toolchain (figure 2) combines the
large set of following technologies that are necessary to
obtain an integrated design flow from high level application
programming (such as C language and graphical interfaces)
to hardware and software implementation: compilation, real-
time operating system (RTOS), data parallel reorganization,
architectural and physical synthesis, formal specification. The
toolchain entry point for the application programmer follows
an enhanced version of the Molen paradigm [19]. According
to this paradigm, the programmer describes its application in a
classical C-language program and just annotates the functions
identified as preferably implemented on a HRE. The compiler
then generates code for the host processor of the system,
statically optimizing the scheduling of configurations and exe-
cutions of the accelerated function on the HRE. The compiler
also generates a Configuration Call Graph that will be used
as a basis for a more precise dynamic scheduling (see section
V). Concerning the accelerated function implementation, the
toolchain offers a high level graphical capture. The accelerated
function is supposed to be of data-streaming computing type.
The graphical interface thus offers a way to best express
the parallelism inherent to the function. The benefit of such
integrated toolchain is to permit a fast and thus efficient
design space exploration: partitioning trials (identification of
accelerated parts) and allocation trials (implementation unit

60 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

choice) with quick feedback since implementation results are
obtained with the toolchain itself.

The spatial design part of the toolchain concerns the ac-
celerated function implementation on a HRE from high level
specification to retargetable implementation synthesis [20].
This includes data movements management since the HRE are
defined to work on the Main Memory Data Structure (MMDS):
data circulates on a loop from MMDS to local memories,
then back to MMDS. This data movement management is
produced by DMA engines that transfer data to local memories
according to predefined address patterns.

The design flow starts with the high level specification of
an accelerated function required by Molen. This specification
(usually in C language) is currently translated manually into
an array transformation formalism [21] through the interactive
SPEAR [22] graphical interface as entry point. This graphical
view contains processes (elementary functions) connected to-
gether to form the accelerated function. The SPEAR tool gen-
erates automatically the appropriate communication processes
between the computing processes. A mechanism implements
the communication processes and manages specific data arrays
manipulation, communication and scheduling. SPEAR ad-
dresses the programming of the DMA unit through parameters
definition. The synthesis serves to finalize the design with the
implementation on the chip. In order to flow down from this
high level specification to the architecture and then physical
levels we use a common high level synthesis intermediate
description Control Data Flow Graph (CDFG) defined for our
specific purpose. The global CDFG is the representation of the
complete application mapped and scheduled on a particular
HRE. This CDFG includes the connectors mentioned above
and some elementary CDFG representing the computation pro-
cesses written in C language. The front-end analysis module
of CASCADE [23] elaborates those CDFG.

An important challenge is the adaptation of the computation
kernels to different reconfigurable units. The adaptation will
result in a similar graph carrying nodes denoting hardware
primitives known to exist in a target architecture (low level
CDFG). Reconfigurable architectures are specified using a
generic model extrapolated from fine grain FPGAs (Madeo
[24]) and an extensible set of classes for resources (LUT,
operators, memories, ...). Process based structure is allowed,
with additional access to local memories.

V. RUNTIME SYSTEM

This section describes the mechanisms used to control the
dynamic reconfiguration aspects of the MORPEUS system.
The base is formed by a RTOS and is topped by an allocation
and scheduling system for reconfigurable operations.

A. Real-time operating system

ECos was chosen for this project as the base for hardware
abstraction layer (HAL) and RTOS core as a compromise
between the rich set of features of a Linux kernel and the
simplicity of minimalist kernels like TinyOS or μC/OS-II. It
is highly configurable and offers a choice between its own API

eCos Hardware Abstraction Layer

Application

Intelligent Services for

Reconfigurable Computing

N
e

tw
o

rk
o

n
C

h
ip

G
e

n
e

ra
l
P

u
rp

o
s
e

P
ro

c
e

s
s
o

r

X
P

P
II

I
A

rr
a

y

F
le

x
E

O
S

-A
rr

a
y

D
re

a
m

/ P
iC

o
G

A
A

rr
a

y

P
re

d
ic

ti
v
e

C
o

n
fi
g

u
ra

ti
o

n
M

a
n

a
g

e
r

R
T

O
S

eCos Real-time Operating System Core

X
R

X
R

X
R

eCos Hardware Abstraction Layer

Application

Intelligent Services for

Reconfigurable Computing

N
e

tw
o

rk
o

n
C

h
ip

G
e

n
e

ra
l
P

u
rp

o
s
e

P
ro

c
e

s
s
o

r

X
P

P
II

I
A

rr
a

y

F
le

x
E

O
S

-A
rr

a
y

D
re

a
m

/ P
iC

o
G

A
A

rr
a

y

P
re

d
ic

ti
v
e

C
o

n
fi
g

u
ra

ti
o

n
M

a
n

a
g

e
r

R
T

O
S

eCos Real-time Operating System Core

X
R

X
R

X
R

X
R

X
R

X
R

Fig. 3. Structure of the runtime system

and others like POSIX and μITRON. The RTOS has a layered
structure which is shown in figure 3. The bottom layer is the
HAL which provides a more uniformed access to the reconfig-
urable hardware and the system infrastructure. For the transfer
of the parameters, it provides virtual exchange registers (XR)
for the compiler which are mapped to the parameter registers
in the HREs. It also provides the basis for a pipeline service
between the HREs. The middle layer is the RTOS Core. It
provides the basic operating system services including multi-
threading that are not related to dynamic reconfiguration and
is based on an already existing eCos RTOS. The top layer
is formed by the dynamic reconfiguration framework called
Intelligent Services for Reconfigurable Computing (ISRC). It
provides the services for the configuration and execution of
operations on the HREs.

B. Intelligent services for reconfigurable computing

1) ISRC overview: The dynamic control of the reconfigura-
tion units is performed by the ISRC layer on top of the RTOS
and the PCM, which is a HW-implemented unit supporting
the RTOS and is described in section III. ISRC performs the
following actions with information received from the PCM
and the application / compiler:

• Allocation decision (choice of the implementation on the
various reconfigurable units FlexEOS, XPP, DREAM).
If there are functionally equivalent implementations of
the reconfigured operation it allows to make a choice at
runtime depending on the platform / application status

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 61

• Priority calculation of pending operations
• Task execution status management
• Resource request to the PCM for fine dynamic scheduling

Information needed from the compiler is contained in the
Configuration Call Graph (CCG). Other information used by
the RTOS consists of:

• Result of execution branching decisions
• Synchronization points
• Task parameters

The configuration is handled by ISRC and there is no direct
communication between the application and the PCM. The
communication between the application and the reconfigurable
units is also only indirect and handled by ISRC.

The control of an operation is handled with the help of the
HRE status register by writing commands like start execution
or stop in this register. The operation is updating its status
in the register whenever a state change occurs and indicates
the change by an interrupt. The dynamic scheduler not only
schedules the different threads but also computes the priorities
of pending and near-future operations and schedules them for
configuration and execution on the HREs. The priorities are
communicated to the PCM to allow the speculative prefetching
of configurations. The PCM is commanded by the scheduler
to configure the reconfigurable units. The allocation of the
heterogeneous reconfigurable engine (HRE) to the different
operations is closely linked to the scheduling to consider the
configuration time / execution time trade-off if the preferred
heterogeneous reconfigurable engine is already in use. As it
is preferable (for implementation and control reasons) that the
HREs do not perform memory access to the system memory,
the operating system controls the DMA-controller of the sys-
tem. This allows feeding the HREs with data and transferring
the result back to the system memory. The information about
the memory arrays are provided by the application. At the
same time, the runtime system ensures the data consistency
by configuring the NoC to use available buffers. The NoC is
then controlling the data flow and the buffer switching on its
own.

2) ISRC inputs: Input for the RTOS consists of the con-
figuration call graph (CCG), the bitstream library and the
implementation / configuration matrix. The bitstream library
contains the available operations, their implementations and
the properties of these implementations like throughput, delay,
size and power. The implementation / configuration matrix
contains the list of the implementations used within a con-
figuration and also indicates which configuration contains
which implementation. Output of the RTOS are the prefetching
priorities and configuration commands for the configuration
manager, execution commands for the operations on HREs
and control information for the NoC and the DMA-controller.

3) Controlling HREs: The MORPHEUS SoC contains
three vastly different reconfigurable units. The FlexEOS from
M2000 is a fine-grained embedded FPGA. The DREAM from
ARCES is a middle-granular reconfigurable unit with very fast
context switches. The XPP from PACT is coarse-granular array

of processing elements optimized for pipelining algorithms.
With the difference in architecture comes a big difference
in the configuration and execution control mechanisms. This
has to be transparent for the user of design tools higher
up the tool-flow. The difference of the configuration mech-
anisms is handled by a dedicated PCM unit. The services
for reconfigurable computing sit on top of this to provide
a uniform interface for the design tools. The control of the
HREs extends the SET / EXECUTE concept of the Molen
compiler. The extensions have been necessary with regard
to concurrent running threads competing for resources. In
the original approach by Molen the instruction set of the
processor is extended with special machine instructions. These
instructions are replaced and extended by operating system
calls.

• SET: the compiler notifies the operating system as soon as
possible about the next pending operation to configure.
The operating system uses this information to prepare
configuration. This allocation is done dynamically by
ISRC during runtime using the alternative implemen-
tations of the operation, which are provided by the
designer, on different reconfigurable units, depending on
available resources, execution priority and configuration
alternatives. The designer can also provide several im-
plementations on the same heterogeneous reconfigurable
engine, which are optimized for different criteria. The
SET system call is non-blocking and returns immediately.

• EXECUTE: the compiler demands the execution of an
operation. The scheduler of ISRC decides then according
to current state of the system and the scheduling policy
when to execute this operation. The EXECUTE system
call is non-blocking and returns immediately.

• BREAK: wait for the completion of a operation for
synchronization. The parallel running of operations which
are mapped on the HREs with the code on the general
purpose processor leads to synchronization issues. There-
fore the RTOS provides a BREAK system call which
waits for the completion of the referenced operations. The
compiler has to assure data consistency between parallel
operations by using this system call. For sequential con-
sistency, there is always a need for a break, corresponding
to an EXECUTE system call before its data is further
processed. It follows that the BREAK system call has to
be a blocking operation which returns when all indicated
operations are completed.

• MOVTX and MOVFX: transfer data from the ARM
processor to a specific exchange register of the HRE and
reverse. These instructions are non-blocking and return
immediately.

• RELEASE: the configured operation is no longer needed
and can be discarded. If an operation is no longer used,
for example the calling loop has been left, the allocated
resources have to be freed by the compiler with the
RELEASE system call. The release system call is non-
blocking and returns immediately.

62 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

The usage of these system calls can be best demonstrated
with the following code example

#pragma MOLEN_FUNCTION 1
void func1(int para1, int para2){...}
int p1,p2;
...
func1(p1,p2);
...

which is replaced by the compiler with the following code

...
SET(1)
...
MOVTX(1,0,&p1)
MOVTX(1,1,&p2)
EXEC(1)
...
BREAK(1)
MOVFX(1,0,&p1)
MOVFX(1,1,&p2)
...
RELEASE(1)
...

4) Dynamic scheduling and allocation: The MORPHEUS
platform is intended for many conceivable applications. The
range goes from purely static data stream processing to highly
dynamic reactive control systems. These control systems react
on changes of the environment like user interaction, requested
quality of service, radio signal strength or battery level in
mobile applications. These changes can significantly change
the execution path of the application and the priority of the
various operations. Static scheduling and allocation is not
sufficient for such reactive systems. The topics of scheduling
and allocation are tightly related on reconfigurable systems.
For this reason the runtime system provides a combined
dynamic scheduler and allocator. It determines during runtime
schedule and allocation of the operations requested within one
thread and in parallel threads. The combined scheduler / allo-
cator determines which alternative implementations, which can
include a fall back software implementation, of the requested
operations are available and their associated costs. The usage
of configuration call graphs (see section 3.4) provides knowl-
edge about the structure of the application. All this information
is used to update the schedule of pending operations with the
goal to improve metrics like overall throughput and latency.
When reasonable the scheduler moves operations from an
over-loaded HRE to another HRE between consecutive calls.
A requirement for the usefulness of dynamic allocation is that
the application designer offers a choice of implementations for
as many operations as possible. The user has a choice between
various scheduling and allocation strategies.

a) First Come First Serve: This is the most basic
scheduling methodology. The only criterion for scheduling is
the sequence of requests. When a task is finished the next
operation from the queue is examined if the needed HRE is

available, otherwise the scheduler waits till the needed HRE is
freed. When the operation is available for several HREs they
are all tried in sequence of falling throughput.

b) First Come First Free: Instead of one global queue
this methodology uses one queue per HRE. At request time
the operation is added to each HRE queue where it is available.
As soon as a HRE is finished it is used by the next operation in
its queue and the operation is removed from all other queues.
This method maximizes the overall capacity utilization of each
HRE but can result in frequent reconfigurations.

c) Shortest Configuration First: The delay for configu-
ration depends on two factors. First one is the size of the
configuration bitstream. It also depends on transfer speed of
the bitstream to the HRE which again depends on the used
memory of the system. The off-chip sram and flash memories
are significantly slower than the on-chip configuration sram
managed by the Predictive Configuration Manager. The sched-
ule requests the prefetching state from the PCM and calculates
a configuration time. An available HRE is then configured
for the operation with the shortest configuration time. This
methodology minimizes idle times due to preferring recurring
and short operations.

d) Maximum Throughput First: This methodology uses
the operation with the highest throughput waiting for a specific
HRE. This maximizes overall data throughput but can harm
responsiveness.

e) Minimal Delay First: This methodology uses the
operation with the lowest delay waiting for a specific HRE.
This maximizes responsiveness but can harm data throughput.

f) Weighted Score: All the above methods for scheduling
and allocation focus on one criterion while completely ignor-
ing the influence of the other factors for the performance of
the system. With the exception of First Come First Serve and
First Come First Free they also suffer from the chance that
operations starve and never get processed. The solution used
here is to compute a score for each operation by weighted
sum of all criteria including a waiting-time. The formula for
the score can be computed as

P =KC

3∑

i=0

ConfigurationSpeedi
BitstreamSizei

+KTThroughput

+KD
1

Delay
+KWWaitingT ime

The weighting factors KC , KT , KD and KW are adjustable
and allow tailoring of the scheduling to the specific needs of an
application. The Σ sum is necessary to consider the different
characteristics of the different levels of the configuration
memory hierarchy. The index 0 refers to the configuration
exchange buffer (CEB) and 1 refers to the on-chip configura-
tion memory. The external configuration memory is divided
between sram (index 2) and flash memory (index 3). The
equation can be easily extended for other storages as hard disk
drives or network storage. The values of BitstreamSize0
and BitstreamSize1 depend on the current prefetching state
and can be determined by polling the PCM. Throughput

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 63

�

�

�

��

�

�

�

��

�

�
�

�

��
�

�

	

�

�

�
�

�

�

�� �

Fig. 4. Configuration Call Graph

and delay are two dimensions of performance measurement.
WaitingT ime is increased every time an operation is not
scheduled to execute and is used to prevent starvation.

5) Configuration Call Graphs: The dynamic allocation
is improved by using foresight of coming operations. The
runtime system uses for this purpose the configuration call
graphs provided by the Molen compiler. The compiler provides
one CCG per thread with an example in figure 4. It contains
the sequence, including branches and loops, of the operations
and their configuration. During runtime the scheduler traces
the running of the different application threads through their
configuration call graphs to have a global estimate about which
heterogeneous reconfigurable engine is going to be available
in the near future for use and the next pending operations.
This probability information is communicated to the pre-
dictive configuration manager which uses it for prefetching
configuration bitstreams from external memory to the on-chip
configuration memory which results in a significant reduction
of reconfiguration overhead. The PCM feeds back information
about the prefetching state of the bitstreams to the runtime
system. The scheduler uses the prefetching state for allocation
decisions, e.g. it can favour a slower implementation which is
already in the on-chip configuration memory against a faster
implementation which at first has to be loaded from external
memory.

6) DMA / DNA: The DMA and DNA provide communi-
cation mechanism between various HREs and memory and
between HREs for data transfers. The dynamic allocation of
operations can make it necessary to change the source or

Fig. 5. Ogg Vorbis data flow

destination address of data transfers which make it essential to
handle the communication by the operating system. It provides
an API with a unified interface for transferring data with the
NoC or the DMA for application programmers or upstream
tools like SPEAR. The linking of a transfer to an operation
allows to migrate the transfer automatically to the new HRE.

VI. SCENARIO AND EXAMPLE

It is planned to demonstrate the potential of ISRC with
an implementation of the Ogg Vorbis [25] audio codec. Base
implementation and reference benchmark are provided by the
integer-only Tremor implementation of said codec. The data
flow of the decoder can be seen in figure 5.

Profiling has shown that the inverse modified cosine trans-
formation (IMDCT) is the most computation intensive kernel
of the decoding algorithm. Implementation for FPGA [26],
XPP [27] and PiCoGA are already done which leaves the
implementation of the other kernels and adaptation for the
MORPHEUS toolchain to be done.

VII. CONCLUSION AND FUTURE WORK

In this paper we introduced the intelligent services for re-
configurable computing as a runtime system for heterogeneous
reconfigurable systems. We explained how the system calls
for controlling the HREs relate to the Molen compiler. Finally
we presented a selection of algorithms available for dynamic
scheduling and allocation and showed the advantages of the
Weighted Score algorithm over other algorithms.

64 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

The next steps is the completion of the application exam-
ple and benchmarking of this application. Additionally the
benchmark base could be extended with a broader selection of
applications. It would also be interesting to show the versatility
of ISRC by porting it to other reconfigurable architectures or
RTOS kernels.

ACKNOWLEDGMENT

The authors would like to thank the European union for
their support of this work in the scope of the FP6 project
MORPHEUS [28].

REFERENCES

[1] C. Chang, J. Wawrzynek, and R. Brodersen, “BEE2: A high-end
reconfigurable computing system,” IEEE Design & Test, pp. 114–125,
2005.

[2] J. Angermaier, D. Göhringer, M. Majer, J. Teich, S. Fekete, and
J. van der Veen, “The Erlangen slot machine — a platform for in-
terdisciplinary research in dynamically reconfigurable computing,” it –
Information Technology, vol. 49, pp. 143–149, 2007.

[3] F. Thoma, M. Kuhnle, P. Bonnot, E. M. Panainte, K. Bertels, S. Goller,
A. Schneider, S. Guyetant, E. Schuler, K. D. Muller-Glaser, and
J. Becker, “Morpheus: Heterogeneous reconfigurable computing,” Field
Programmable Logic and Applications, 2007. FPL 2007. International
Conference on, pp. 409–414, 27-29 Aug. 2007.

[4] H. Walder and M. Platzner, “Reconfigurable hardware operating sys-
tems: From design concepts to realizations,” in Proceedings of the 3rd
International Conference on Engineering of Reconfigurable Systems and
Architectures (ERSA). Citeseer, 2003, pp. 284–287.

[5] C. Steiger, H. Walder, M. Platzner et al., “Operating systems for re-
configurable embedded platforms: Online scheduling of real-time tasks,”
IEEE Transactions on Computers, vol. 53, no. 11, pp. 1393–1407, 2004.

[6] H. So and R. Brodersen, “Improving usability of FPGA-based re-
configurable computers through operating system support,” in Field
Programmable Logic and Applications, 2006. FPL ’06. International
Conference on. Citeseer, 2006.

[7] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot, and D. Andrews,
“Hthreads: A computational model for reconfigurable devices,” in Field
Programmable Logic and Applications, 2006. FPL’06. International
Conference on, 2006, pp. 1–4.

[8] J. Agron, W. Peck, E. Anderson, D. Andrews, R. Sass, F. Baijot, and
J. Stevens, “Run-time services for hybrid cpu/fpga systems on chip,”
in In Proceedings of the 27th IEEE International Real-Time Systems
Symposium, Rio De Janeiro, 2006.

[9] J. Agron and D. Andrews, “Building Heterogeneous Reconfigurable
Systems Using Threads,” in Proceedings of the 19th International
Conference on Field Programmable Logic and Applications (FPL),
2009.

[10] M. Maheswaran and H. Siegel, “A dynamic matching and scheduling
algorithm for heterogeneous computing systems,” Proceedings of the
Seventh Heterogeneous Computing Workshop, p. 57, 1998.

[11] H. Siegel and S. Ali, “Techniques for mapping tasks to machines in
heterogeneous computing systems,” Journal of Systems Architecture,
vol. 46, no. 8, pp. 627–639, 2000.

[12] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther,
J. Robertson, M. Theys, B. Yao, D. Hensgen et al., “A comparison study
of static mapping heuristics for a class of meta-tasks on heterogeneous
computing systems,” in Proceedings of the 8th Heterogeneous Comput-
ing Workshop (HCW’99). IEEE Computer Society Washington, DC,
USA, 1999, pp. 15–29.

[13] P. Saha and T. El-Ghazawi, “Extending Embedded Computing Schedul-
ing Algorithms for Reconfigurable Computing Systems,” Programmable
Logic, 2007. SPL’07. 2007 3rd Southern Conference on, pp. 87–92,
2007.

[14] E. Lübbers and M. Platzner, “ReconOS: An RTOS supporting Hard-
and Software Threads,” in 17th International Conference on Field
Programmable Logic and Applications (FPL), Amsterdam, Netherlands,
2007.

[15] D. Rossi, F. Campi, A. Deledda, S. Spolzino, and S. Pucillo, “A
heterogeneous digital signal processor implementation for dynamically
reconfigurable computing,” in Custom Integrated Circuits Conference,
2009. CICC ’09. IEEE 13-16 Sept. 2009, 2009, pp. 641–644.

[16] M. Kuehnle, M. Huebner, J. Becker, A. Deledda, C. Mucci, F. Ries,
A. M. Coppola, L. Pieralisi, R. Locatelli, G. Maruccia, T. DeMarco, and
F. Campi, “An interconnect strategy for a heterogeneous, reconfigurable
soc,” Design & Test of Computers, IEEE, vol. 25, no. 5, pp. 442–451,
Sept.-Oct. 2008.

[17] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra,
“Spidergon: a novel on-chip communication network,” System-on-Chip,
2004. Proceedings. 2004 International Symposium on, p. 15, 2004.

[18] S. Chevobbe and S. Guyetant, “Reducing Reconfiguration Overheads in
Heterogeneous Multi-core RSoCs with Predictive Configuration Man-
agement,” in ReCoSoC 2008, Barcelona, 2008.

[19] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. Panainte, “The MOLEN polymorphic processor,” Computers, IEEE
Transactions on, vol. 53, no. 11, pp. 1363–1375, 2004.

[20] B. Pottier, T. Goubier, and J. Boukhobza, “An integrated platform
for heterogeneous reconfigurable computing (invited paper),” in Proc.
ERSA’07, Jun. 2007.

[21] A. Demeure and Y. Del Gallo, “An array approach for signal processing
design,” Sophia-Antipolis conference on Micro-Electronics (SAME),
France, October, 1998.

[22] E. Lenormand and G. Edelin, “An industrial perspective: Pragmatic
high end signal processing design environment at thales,” Proceedings
of the 3rd International Samos Workshop on Synthesis, Architectures,
modelling, and Simulation, 2003.

[23] http://www.criticalblue.com.
[24] L. Lagadec, B. Pottier, and O. Villellas-Guillen, An LUT-Based high

level synthesis framework for reconfigurable architectures. Dekker,
Nov. 2003, pp. 19–39.

[25] http://www.vorbis.com.
[26] R. Koenig, A. Thomas, M. Kuehnle, J. Becker, E. Crocoll, and M. Siegel,

“A mixed-signal system-on-chip audio decoder design for education,”
RCEducation 2007, Porto Alegre, Brasil, 2007.

[27] R. Koenig, T. Stripf, and J. Becker, “A novel recursive algorithm
for bit-efficient realization of arbitrary length inverse modified cosine
transforms,” in Design, Automation and Test in Europe, 2008. DATE
’08, March 2008, pp. 604–609.

[28] http://www.morpheus ist.org.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 65

66 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

A Self-Checking HW Journal for a Fault Tolerant
Processor Architecture

Mohsin AMIN, Camille DIOU, Fabrice MONTEIRO, Abbas RAMAZANI, Abbas DANDACHE
LICM Laboratory, University Paul Verlaine – Metz, 7 rue Marconi, 57070-Metz, France
{amin, diou, ramazani.a,}@univ-metz.fr, {fabrice.monteiro, abbas.dandache}@ieee.org

Abstract—In this paper we are presenting a Dependable
Journal that filters the error(s) from entering into the main
memory. It provisionally stores the data before sending to
the main memory. The possible errors provoked inside the
Journal are detected and corrected using Hamming codes
while the error produced in processor are detected and
corrected using Concurrent Checking Mechanism (CCM)
and Rollback Mechanism respectively. In case of error
detection in the processor, it rollbacks and re-executes from
the last sure state. In this way only Validated Data (VD)
is written in the main memory.

The VHDL-RTL of the journalized processor has been
developed from which it is evident that the depth of the
journal has an important impact on the overall area of the
processor. So, the depth of the journal has been varied to
find the optimal processor area vs. depth of the journal.

I. INTRODUCTION

With ever decreasing trend of devices size, they are
becoming more sensitive to the effects of radiation [1].
Soft errors, produced due to single event strikes are
the most commonly occurring errors both in ASIC and
FPGA implementations.

Error Detection and Correction (EDC) have been used
to overcome the problem of Single Event Upsets (SEUs)
caused by external radiations in [2]. In the near future,
the small size and high frequency trend will further
increase the failure rate in the modern systems [3]
because we have reached the performance bottleneck.
By changing such parameters we cannot further increase
the performance.

That’s why we need to develop architectures having
reasonably good performances. Moreover, it should be
dependable so that the processed data can be trusted.
In this context Dependable Multi-Processor System on
Chip (MPSoC) seems to be a convincing approach. We
are in the phase of developing an MPSoC while keeping
in mind future additional design constraints of power
consumption and time-to-market [4].

To do so we have chosen the canonical stack pro-
cessor [5], has been made fault tolerant by adding some
extra HW in [6], respecting the constrains of dependable

Dependable
MPSoC

Journalized
Dependable
Processor

Rollback
Based Journal

Long term
Objective

Global
Architecture

Present
Objective

Figure 1. Precise scope of the propose methodology

system in [7], [8]. The reasons of choosing and de-
signing of stack processor can be found in the previous
work [9]. This work is an extension of our previous
work presented in [9] at ReCoSoC’07, in which we have
presented the stack processor development methodology
for Dependable Applications. In this paper will we
present the Journaling Mechanism employed in the Stack
Processor to make it fault tolerant. The paper will
be focus on: why we need Journaling? And how the
dependable journal is working?

As a first step, we have developed an architecture of
dependable stack processor based on HW Journaling as
a core processor for MPSoC. This paper is focusing on
Journalizing Mechanism employed to make the proces-
sor dependable as shown in Fig. 1.

We have an Error Detecting Fault Processor working
on Rollback Mechanism [10], [11]. For better under-
standing the reader is invited to consult the previous
work presented in [12].

This paper is divided in four sections; in section two
we will highlight the need of Journaling, the Journal

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 67

Dependable
Journal

Data_out_mem

addr_out_mem

Data_out

MISS

wr_to_mem

MODE rd wr

Addr_rd

Data_in

Addr_wr

‘e’

RESET

Figure 3. Configuration of Journal

Management will be discussed in section three. The
section four contains the results. The conclusions have
been discussed in section five.

II. WHY JOURNALING

We are supposing that a Dependable Main Memory is
attached to our system. It means that no error can itself
be generated in it. All the efforts should be done to filter
the external errors from entering into the Dependable
Main Memory. That’s why we are temporarily storing
the data (until validation) in journal before WRITING
into the Dependable Main Memory.

In this regard, we are proposing a Dependable Journal
to provide a temporary storage location for effective
Rollback. It has a fault detection and correction mecha-
nism to overcome its internal temporary faults.

The technique has a little overhead in terms of area for
overall architecture but a great advantage that our main
memory remains always sure. There is no time overhead
or MISS in the Journal as processor always checks data
simultaneously in Journal and main memory. If data is
found both in Journal and main memory then data from
Journal will be preferred as it is a more recent written
data.

III. JOURNAL MANAGEMENT

A VHDL-RTL model of the Journalized processor has
been implemented in Quartus II on a Stratix II family
FPGA. The architectural details of stack processor have
been discussed in our previous work [9]. The overview
of dependable stack processor is shown in Fig. 2. The
dotted square surrounding the three blocks represents the
Dependable Journal. The Dependable Journal has been
sub-divided into three components for the ease of the

At ‘VPn’

Error(s) detected

(Data Un-Validated)

VP n-1
VP n

Instruction(s) Execution in current
SD

Sequence Duration (SD)

Rollback to VPn-1

Restore

SEs

Store

SEs

At ‘VPn-1’

No-error detected

(Data Validated)

Note: VP is Validation Point
SE is State-determining Element(s) of the Processor

Error injected

Last SD Next SD

Figure 4. If processor detects error(s) it Rollbacks; else data
WRITTEN in Journal during current SD is Validated at VP

reader. In actual architecture they constitute a single
block, as shown in Fig. 3 which furthermore, elaborates
the IN/OUT-Ports configuration.

The Journal has internally two parts; one containing
the Validated data (No-error Detection at VP) and second
containing the data written in the present SD (Un-
Validated Data), as discussed in [12]. The Journal has
an internal mechanism to differentiate between Validated
and Un-Validated Data.

Globally, all the data to be written in the main
memory pass through Journal until being validated. The
validation process in the processor is based on a Rollback
Mechanism. The Validation Point (VP) occurs at the end
of each Sequence Duration (SD) as shown in Fig. 4.
The fundamental architecture of Journal, SD and VP is
discussed in [12].

There are three possible data-flows from/to the Jour-
nal.
WRITE to Journal:
The Processor can WRITE data directly into the Jour-

nal and not in the Dependable Main Memory. The data
stays temporarily in the Journal until being validated.
The Processor can detect an internal error during the
current Sequence Duration (SD). If no error is detected
at the end of SD, the data is validated and then it can be
transferred to the Main Memory.

Journal to Dependable Main Memory:
Only Validated data is transferred to the main memory.

As data before transferring stays temporarily in the
Journal and there is a possibility of provoking error
due to internal and external temporarily and intermittent
faults (the permanent faults are not addressed in this

68 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Error detecting
processor

core

Journal

Dependable
Main Memory

Error
Detection

Error
Detection

and
Correction

READ

READ READ

WRITE

WRITE

WRITE

U
n-

Va
lid

at
ed

 D
at

a
Va

lid
at

ed
 D

at
a

Figure 2. Block Diagram of overall architecture

work.). Hence this data is checked for error. There is
a mechanism based on Hamming Codes [13], [14] for
detection and correction of error(s).

If an error is detected in the data, then it is corrected
and sent to the main memory. If a non-corrigible error is
detected then in this case the processor is sent a RESET
request as shown in the flow diagram in Fig. 5.
READ from the Journal
The last possibility occurs when Processor want to

READ data from the Journal. As shown in Fig. 2, the
required data before sent to the processor is checked for
errors. If error is detected the Rollback Mechanism is
activated. The processor re-executes the Sequence of
instructions from the last sure state. Otherwise data is
sent to the Processor.

IV. RESULTS

The VHDL-RTL model of the Journalized-Processor
has been implemented in Altera Quartus-II on a Stratix-II
family FPGA. The architectural details of the processor,
error modeling and its performance in presence of errors
have been calculated for overall architecture. Among

Figure 6. Effective Area utilization on FPGA

them area utilization of the architecture has been dis-
cussed here.

In this paper we are focusing on: why we need
Journal? How it is working? And the effect of Journal-
depth on the overall area of the processor. From the
implementation in Fig. 6, we have found that the size of
the Journal is limiting the overall area of the processor.
The Journal is occuping around 50% of the total Area.

Moreover, we are designing this processor core to in-
tegrate with in an MPSoC, where there will be multicores
so, small area will be preferred.

Accordingly, we have varied the depth of the Journal
and observed its impact on the Area of the Processor

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 69

READ from
Journal

Error
Detection

Data towards
Processor

Rollback
Mechanism

Yes

No

Validated data
In Journal

Error
Detection

Validated Data
Towards Memory

RESET

Yes

No

Error
Correction

Yes

No
(Non corrigible)

READ from Journal Validated DATA towards Main Memory

Figure 5. Dependable Journal Management

in the Fig 7. By increasing the depth from 16 blocks
to 64 blocks, the area of the Processor has increased
exponentially as shown in the Graph. From the [12]
we have observed that for small SD small depth of the
journal are feasible, which means small overall Area of
the Processor.

V. CONCLUSIONS

The presence of the Journal facilitates the rollback
mechanism on one hand and on other filters all possible
errors from entering into the main memory. As data
temporarily reside in the Journal until validation so error
detecting and correcting based on hamming code provide
effective double detection and single error correction.
The effective area is quite small which favors our proces-
sor to become the active core of the Dependable MPSoC.

The depth of the journal is a limiting factor for overall
area of the Journalized Dependable Processor.

REFERENCES

[1] L. Lantz, “Soft errors induced by alpha particles,” IEEE
Transactions on Reliability, vol. 45, pp. 174-179, June 1996.

[2] J. A. Fifield and C. H. Stapper, “High-speed on Chip ECC
For Synergistic Fault-Tolerant Memory Chips,” in Proc. IEEE
Journal of Solid State Circuits, vol. 26, no. 10, pp. 1449-1452,
Oct. 1991.

[3] D. G. Mavis and P. H. Eaton, “Soft Error Rate Mitigation
Techniques For Modern Microcircuits,” Proc. Intl. Reliability
Physics Symposium, pp. 216-225, 2002.

[4] A. A. Jerraya, A. Bouchhima, F. Petrot, “Programming models
and HW − SW Interfaces, Abstraction for Multi-Processor
SoC,” in ACM (DAC’2006), California, USA, 2006.

[5] Philip J. Koopman,“Stack Computers: The New Wave", Cali-
fornia : Ed. Mountain View Press, 1989.

[6] A. Ramazani, M. Amin, F. Monteiro, C. Diou, A. Dan-
dache,“A Fault Tolerant Journalized Stack Processor Archi-
tecture,” 15th IEEE International On–Line Testing Symposium
(IOLTS’09), Sesimbra–Lisbonne, Portugal, 24–27 June 2009.

[7] A. Avizienis, J.C. Laprie, B. Randell and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”
IEEE Transactions on Dependable and Secure Computing, vol.
1, issue no. 1, pp.11-33, January-March 2004.

70 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

0

5

10

15

20

25

30

35

16 24 32 40 64
Depth of the Dependable Journal

A
re

a
of

 th
e

Jo
ur

na
liz

ed
-D

ep
en

da
bl

e
Pr

oc
es

so
r

Figure 7. Effect of Journal Depth on the overall Area

[8] D.K. Pradhan, “Fault-Tolerant Computer System Design”,
Prentice Hall, 1996.

[9] M. Jallouli, C. Diou, F. Monteiro, A. Dandache, “Stack
processor architecture and development methods suitable for
Dependable Applications,” Reconfigurable Communication-
centric SoCs (ReCoSoC’07), Montpellier, France, June 18 -
20, 2007.

[10] D.B. Hunt and P.N. Marinos, “A General Purpose Cache-
Aided Rollback Error Recovery (CARER) Technique,” In
Proceedings of 17th Annual Symposium on Fault-Tolerant
Computing, pp. 170–175, 1987.

[11] N.S. Bowen, D.K. Pradhan,“Virtual checkpoints: architecture
and performance,” IEEE Transactions on Computers, vol. 41,
issue no. 5, pp. 516–525, May 1992.

[12] M. Amin, F. Monteiro, C. Diou, A. Ramazani, A. Dandache,
“A HW/SW Mixed Mechanism to Improve the Dependability
of a Stack Processor”, 16th IEEE International Conference
on Electronics, Circuits, and Systems, ICECS’09, Hammamet,
Tunisia, December 13-16, 2009.

[13] J.F. Wakerly, “Error Detection Codes, Self-Checking Circuits
and Applications”, North Holland, 1978.

[14] R.W. Hamming, “Error Detecting and Error Correcting
Codes”, Bell System Tech. Jour., vol. 29, pp. 147-160, 1950.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 71

72 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

A Task-aware Middleware for Fault-tolerance and
Adaptivity of Kahn Process Networks on

Network-on-Chip
Onur Derin, Erkan Diken

ALaRI, Faculty of Informatics
University of Lugano
Lugano, Switzerland

derino@alari.ch, dikene@usi.ch

Abstract—We propose a task-aware middleware concept and
provide details for its implementation on Network-on-Chip
(NoC). We also list our ideas on the development of a simulation
platform as an initial step towards creating fault-tolerance
strategies for Kahn Process Networks (KPN) applications running
on NoCs. In doing that, we extend our SACRE (Self-adaptive
Component Run-time Environment) framework by integrating it
with an open source NoC simulator, Noxim. We also hope that this
work may help in identifying the requirements and implementing
fault tolerance and adaptivity support on real platforms.

Index Terms—fault tolerance; KPN; middleware; NoC; self-
adaptivity;

I. INTRODUCTION

Past decade has witnessed a change in the design of
powerful processors. It has been realized that running pro-
cessors at higher and higher frequencies is not sustainable
due to unproportional increases in power consumption. This
led to the design of multi-core chips, usually consisting of
multi-processor symmetric Systems-on-Chip (MPSoCs), with
limited numbers of CPU-L1 cache nodes interconnected by
simple bus connections and capable in turn of becoming
nodes in larger multiprocessors. However, as the number
of components in these systems increases, communication
becomes a bottleneck and it hinders the predictability of
the metrics of the final system. Networks-on-chip (NoCs)
[1] emerged as a new communication paradigm to address
scalability issues of MPSoCs. Still, achieving goals such as
easy parallel programming, good load balancing and ultimate
performances, dependability and low-power consumption pose
new challanges for such architectures.

In addressing these issues, we adopted a component-based
approach based on Kahn Process Networks (KPN) for spec-
ifying the applications [2]. KPN is a stream-oriented model
of computation based on the idea of organizing an application
into streams and computational blocks; streams represent the
flow of data, while computational blocks represent operations
on a stream of data. KPN presents itself as an acceptable
trade-off point between abstraction level and efficiency versus
flexibility and generality. It is capable of representing many
signal and media processing applications that occupy the
largest percentage of the consumer electronics in the market.

Our eventual goal is to run a KPN application directly on a
NoC platform with self-adaptivity and fault-tolarence features.
It requires us to implement a KPN run-time environment that
will run on the NoC platform and support adaptation and fault-
tolerance mechanisms for KPN applications on such platforms.
We propose a self-adaptive run-time environment (RTE) that is
distributed among the tiles of the NoC platform. It consists of a
middleware that provides standard interfaces to the application
components allowing them to communicate without knowing
about the particularities of the network interface. Moreover
the distributed run-time environment manages the adaptation
of the application for high-level goals such as fault-tolerance,
high performance and low-power consumption by migrating
the application components between the available resources
and/or increasing the parallelism of the application by instan-
tiating multiple copies of the same component on different
resources [3], [4]. Such a self-adaptive RTE constitutes a fun-
damental part in order to enable system-wide self-adaptivity
and continuity of service support [5].

In view of the goal stated above, we propose to use
our SACRE framework [4] that allows creating self-adaptive
KPN applications. In [3], we listed platform level adaptations
and proposed a middleware-based solution to support such
adaptations. In the present paper, we define the details of the
self-adaptive middleware particularly for NoC platforms. In
doing that we choose to integrate SACRE with the Noxim
NoC simulator [6] in order to realize functional simulations
of KPN applications on NoC platforms. An important issue
regarding the NoC platform is the choice of the communica-
tion model. Depending on the NoC platform, we may have a
shared memory space with the Non-Uniform Memory Access
(NUMA) model or we may rely on pure message passing
with the No Remote Memory Access (NORMA) model [7].
Implementing KPN semantics on NORMA presents itself as
the main challange. In the NUMA case, it is straightforward as
long as the platform provides some synchronization primitives.
Section III explains details of the middleware in the NORMA
case. Section IV presents our ongoing effort to integrate
SACRE and Noxim. Section V, VI list the requirements for the
implementation of fault tolerance and adaptivity mechanisms.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 73

II. RELATED WORK

The trend from single core design to many core design
has forced to consider inter-processor communication issues
for passing the data between the cores. One of the emerged
message passing communication API is Multicore Associa-
tion’s Communication API (MCAPI) [8] that targets the inter-
core communication in a multicore chip. MCAPI is the light-
weight (low communication latencies and memory footprint)
implementation of message passing interface APIs such as
Open MPI [9].

However, the communication primitives available with these
message passing libraries don’t support the blocking write
operation as required by KPN semantics. Main features in
order to implement KPN semantics are blocking read and, in
the limited memory case, blocking write. Key challenge is the
implemention of the blocking write feature. There are different
approaches addressing this issue. In [10], a programming
model is proposed based on the MPI communication primitives
(MPI send() and MPI receive()). MPI receive blocks the task
until the data is available while MPI send is blocking until the
buffer is available on the sender side. Blocking write feature is
implemented via operating system communication primitives
that ensure the remote processor buffer has enough space
before sending the message. Another approach is presented
in [11], a network end-to-end control policy is proposed to
implement the blocking write feature of the FIFO queues.

Our approach is based on a novel implementation of KPN
semantics on NoC platforms. We propose an active middle-
ware layer that implements the blocking write feature through
virtual channels that are introduced in opposite directions to
the original ones.

III. TASK-AWARE MIDDLEWARE

A KPN application consists of a set of parallel running tasks
(application components) connected through non-blocking
write, blocking read unbounded FIFO queues (connectors) that
carry tokens between input and output ports of application
components. A token is a typed message. Figure 1 shows a
simple KPN application. Running a KPN application on a NoC
platform would require to map the application components on
the several tiles of the NoC platform.

A. Requirements

When deciding on the implementation details of a mid-
dleware that will support running of a KPN application on
a NoC platform, we came up with some requirements for
the middleware. The most fundamental requirement for a
middleware to support KPN semantics is the ability to transfer
tokens among tiles assuring blocking read. Since unbounded
FIFOs cannot be realized on real platforms, FIFOs have to
be bounded. Parks’ algorithm [12] provides bounds on the
queue sizes through static analysis of the application. In the
case of bounded queues, blocking write is also required to be
supported.

Another requirement is that we would like to have platform
independent application components. This will make it easier

input port

connector

output portB

D

C

A E F

Fig. 1: A simple KPN application with application components
A, B, C, D, E, F

to program for the platform by allowing the development of
application components in isolation and running them without
modifications. This can be achieved by separating the KPN
library that will be used to program the application from the
communication primitives of the platform. Middleware will
link the KPN library to the platform specific communication
issues.

In line with the above requirement, we would like that
application components are not aware of the mapping of
components on the platform. They should only be concerned
with communicating tokens to certain connectors. Therefore
the middleware should enable mapping-independent token
routing. These requirements are of great importance if we want
to achieve fault tolerance and adaptivity of KPN applications
on NoC platforms in such a way that assures separation of
concerns. This means that it is the platform that provides fault-
tolerance and adaptivity features to the application and not the
application developer.

B. Middleware implementation in the NORMA case

In the NORMA model, tasks only have access to the local
memory and there is no shared address space. Therefore tasks
on different tiles have to pass the tokens among each other via
message passing routines supported by the network interface
(NI).

In order to address the middleware requirements previously
listed, our key argument is the implementation of an ac-
tive middleware layer that appears as a KPN task and gets
connected to other application tasks with the connectors of
the specific KPN library that is adopted by the application
components. Opposedly, a passive middleware layer would be
a library with a platform specific API for tasks to receive and
send tokens.

We build our middleware on top of MPI recv()
and MPI send() primitives. These methods allow
sending/receiving data to/from a specific process regardless
of which tile the process resides on. MPI recv blocks the
process until the message is received from the specified
process-tag pair. MPI send is non-blocking unless there is
another process on the same tile that has already issued an
MPI send.

Every tile has a middleware layer that consists of mid-
dleware sender and receiver processes. Figure 2 shows the
middleware layers and a possible mapping of the example
pipeline on four tiles of a 2x2 mesh NoC platform. There
is a sender process for each outgoing connector. An outgoing
connector is one that is connected to an input port of the
application component that resides on a different tile. Similarly

74 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

RR

R R

NI

PE

NoC

TILE 2

NI NI

PE

MW

MW

PE

TILE 0

NI

PE

TILE 3

TILE 1

MW

MW

A B

Hardware

Software

C D

FE

Fig. 2: KPN example mapped on 2x2 mesh NoC platform

there is a receiver process for each incoming connector. These
processes are actually KPN tasks with a single port. This is
an input port for a sender process and an output port for
a receiver process. The job of a sender middleware task is
to transmit the tokens from its input over the network to
the receiver middleware task on the corresponding tile (i.e.
the tile containing the application component to receive the
token). Similarly, a receiver middleware task should receive the
tokens from the network and put them in the corresponding
queue. Figure 3 shows the sender and receiver middleware
tasks between the ports of application components B and C.

We need to implement a blocking write blocking-read
bounded channel that has its source in one processor and
its sink in another one. MPI send as described above does
not implement blocking write operation. It can be modified
and be implemented in such a way that it checks whether
the remote queue is full or not by using low-level support
from the platform [10], [11]. In order to do this in a way that
wouldn’t require changes to the platform, we make use of the
virtual channel concept. A virtual channel is a queue that is
connected in the reverse direction to the original channel. For
every channel between sender and receiver middleware tasks,
we add virtual channels that connects the receiver middleware
task to the sender middleware task. Figure 3 shows the virtual
channel along with the sender and receiver middleware tasks
for the outgoing connector from application component B to
C. The receiver task initially puts as many tokens to the virtual
channel as the predetermined bound of the original channel.
The sender has to read a token from the virtual channel before
every write to the original channel. Similarly the receiver has
to write a token to the virtual channel after every read from the
original channel. Effectively, virtual channel enables the sender
to never get blocked on a write. The read/write operations
from/to original and virtual channels can thus be done using
MPI send and MPI receive as there is no more need for
blocking write in presence of virtual channels. Figure 4 and
5 show the pseudocodes for sender and receiver middleware
tasks, respectively.

C

virtual channel
MPI_send
MPI_receive

B MW
receiver

MW
sender

PE 0 PE 1

Fig. 3: Middleware details for the connector between B and C

loop
t← input port.read()
MPI recv(tvc, PR, vc)
MPI send(t, PR, oc)

end loop

Fig. 4: Sender middleware task per outgoing connector (t:
data token, tvc: dummy token for virtual channel, PR: process
identifier of the remote middleware task, vc: virtual channel
tag, oc: original channel tag)

for i = 1 to channel bound do
MPI send(tvc, PR, vc)
i← i + 1

end for
loop

MPI recv(t, PR, oc)
MPI send(tvc, PR, vc)
output port.write(t)

end loop

Fig. 5: Receiver middleware task per incoming connector

With the middleware layer, an outgoing blocking queue of
bound b in the original KPN graph is converted into three
blocking queues: one with bound b1 between the output port
of the source component and the sender middleware task; one
with bound b2 between the sender and receiver middleware
tasks; one again with bound b2 between the receiver middle-
ware task and the input port of the sink component. Values
b1 and b2 can be chosen freely such that b1 + b2 ≥ b and
b1, b2 > 0.

If the middleware layer is not implemented as an active
layer, then the application tasks would need to be modified to
include the virtual channels. Moreover, use of virtual channels
enables us to not require changes to the NoC for custom
signalling mechanisms.

Another benefit of having virtual channels is avoiding dead-
locks. Since MPI send can be issued by different middleware
tasks residing on the same tile in a mutually exclusive way,
there may be deadlock situations for some of the task mapping
decisions. For example, consider the case (see Fig. 1) where
an application task (C) is blocked on a call to MPI send until
the queue on the receiver end is not full. It may be that the
application task on the receiver end (E) is also blocked waiting
for a token from an application task (D) on the tile where

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 75

dst port token

src dst ts

MWPacket

NIPacket

dst component

payload (MWPacket)

Fig. 6: Structure of packets at the NI and middleware levels
(src: source tile, dst: destination tile, ts: timestamp, dst com-
ponent: destination component, dst port: destination port)

C resides. Since tasks on the same tile has to wait until the
MPI send call of the other task returns, D cannot write the
token to be received by E. Therefore we have a deadlock
situation where C is blocked on E, E is blocked on D, D is
blocked on C. With virtual channels, it is guarenteed that an
MPI send call will not ever be blocked.

The problem of deadlocking can be solved also without
using virtual channels. However that would require implement-
ing expensive distributed conditional signalling mechanisms
on the NoC or inefficient polling mechanisms.

IV. SIMULATION WITH SACRE AND NOXIM

Noxim [6] is an open source and flit-accurate simulator
developed in SystemC. It consists of tunable configuration
parameters (network size, routing algorithm, traffic type etc.)
in order to analyze and evaluate the set of quality indices such
as delay, throughput and energy consumption.

SACRE [4] is a component framework that allows creating
self-adaptive applications based on software components and
incorporates the Monitor-Controller-Adapter loop with the
application pipeline. The component model is based on KPN.
It supports run-time adaptation of the pipeline via parametric
and structural adaptations.

We started integrating SACRE and Noxim in order to be
able to simulate KPN applications on NoC platforms. We
aim to implement the proposed middleware for the NORMA
case. However we don’t have the MPI send and MPI receive
primitives in Noxim. Actually it doesn’t even come with a NI.
We implemented the transport layer such that we can send
data and reconstruct the data on the other end. In absence of
MPI primitives in SACRE-Noxim, we propose to implement
the task-aware middleware over the transport layer of the NoC
network interface as described below.

We conceived the middleware as a KPN task by extending
it from SACREComponent in order to be able to connect it to
the queues of the local application tasks. Middleware is also
inherited from the base SystemC module class (i.e. sc module)
with send and receive processes.

The send process is activated on every positive edge of the
clock and reads the input ports in a non-blocking manner.
When there is a token to be forwarded, it wraps the token
into a MWPacket object as shown in Figure 6 by adding the
destination task name and destination port name as the header
information.

This data is looked up from the port connection table.
This table represents the KPN application and shows which
components and which ports are connected with each other as
shown in Table I.

TABLE I: Port connection table for Figure 1
Source Destination

component port component port
A out1 B in1
B out1 C in1
B out2 D in1
C out1 E in1
D out1 E in2
E out1 F in1

TABLE II: Component mapping table for Figure 2
Component Tile

A 0
B 0
C 1
D 1
E 2
F 3

Then the MWPacket object is sent via the NI to the destina-
tion tile by wrapping it in a NIPacket object. NIPacket has the
structure shown in Figure 6. The destination tile identifier is
looked up from the component mapping table stored in the
middleware. This table stores which components reside on
each tile as shown in Table II. Currently NI transfers packets
spliting them into several flits through wormhole routing.

The receiver process is also activated on every positive
edge of the clock. The network interface receives the flits and
reconstructs the MWPacket object. Then the receiver process
extracts the token and puts it in the right queue by looking at
the header of the MWPacket.

V. FAULT-TOLERANCE SUPPORT

Having isolated the application tasks from the network
interface, we believe it will be easier to implement fault
tolerance mechanisms. Until now, we have only considered
task migration and semi-concurrent error detection as fault
tolerance mechanisms.

A. Task migration

In the case when a tile fails, the tasks mapped on that
tile should be moved to other tiles. Therefore we will have
a controller implementing a task remapping strategy. For now,
we don’t focus on this but rather deal with the implementation
of task migration mechanisms.

Moving an application component from one tile to another
requires the ability to start the task on the new tile, update the
component mapping tables on each tile, create/destroy MW
tasks for outgoing and incoming connectors of the migrated
components and transfer the tokens already available in the
connectors of the migrated components along with those
components. In case of a fault, the tokens in the queues
pending to be forwarded by the middleware tasks in the failed
tile may be lost along with the state of the task if it had any.
Similarly, there may be some number of received flits that
haven’t been reconstructed to make up a packet yet. We may
need to put in measures to checkpoint the state of the task and
the middleware queues. As a rollback mechanism, we should

76 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

C

C1

C3

C2

a) b)

Multiplicator Majority voter

Fig. 7: Semi-concurrent error detection at application level.
Component in (a) is replicated by three as shown in (b)

be able to transfer both the state of the tasks and the queues
on the faulty tile to the new tiles. The flits already in the
NoC buffers destined to the faulty tile should be re-routed to
the new tiles accordingly. This may be easier to achieve if
we implement the task-awarenes feature in the NoC routers.
Otherwise, it should be the NI or the router of the faulty
tile that should resend those flits back in the network with
correct destinations. We need to futher analyze the scenarios
according to the extend of faults (e.g. only the processing
element is faulty or whole tile is faulty). However, thanks to
the middleware layer, application tasks won’t need to know
that there has been a task migration.

B. Semi-concurrent error detection at application level

We propose to employ semi-concurrent error detection [13]
as a dependability pattern for self-adaptivity. The run-time
environment can adapt the dependability at the application
level. This enables adaptive dependability levels for different
parts of the application pipeline at the granularity of an
application component.

In the case of a single component, parallel instances of
the component are created on different cores along with
multiplicator components and majority voter components for
each input and output ports respectively as shown in Figure
7. Multiplicator component creates a copy of the incoming
message for each redundant instance and forwards it to them
along with a unique tag identifying the set of copied messages.
Majority voter component queues up all the output messages
until it has as many messages with the same tag as the number
of redundant instances. Then it finds out the most recurrent
message and sends it to its output connector. A time-out
mechanism can also be put in place to tolerate when a core is
faulty and no message is being received by a component.

VI. ADAPTIVITY SUPPORT

In [3], [4], we had listed possible run-time adaptations of
KPN applications at application and platform level. Applica-
tion programmer provides a set of goals to be met by the
application. These goals are translated into parameters to be
monitored by the platform. The adaptations are driven by an
adaptation control mechanism that tries to meet the goals by
monitoring those parameters. We need to elaborate on the
implementation of these adaptations on the NoC platform.
An example of a structural adaptation in order to meet
performance and low-power goals is the parallelization pattern
explained below.

C

C1

C3

C2

a) b)

Router Merger

Fig. 8: Adaptation pattern for parallelization. Component in
(a) is parallelized by three as shown in (b)

A. Adapting the level of parallelism

Parallelization of a component is one type of structural
adaptation that can be used to increase the throughput of
the system as shown in Figure 8. This is done by creating
parallel instances of a component and introducing a router
before and a merger after the component instances for each of
the input and output ports. A router is a built-in component
in our framework that can work in a load-balancing or round-
robin fashion; this component routes the incoming messages to
either one of the instances depending on its policy. If there is
no ordering relation between incoming and outgoing messages,
the merger components simply merge the output messages
from the output ports of the instances into one connector
disregarding the order of messages on the basis of whichever
message is first available. However, for the general class of
KPN applications, semantics require that the processes comply
with the monotonicity property. In that case, the ordering
relation has to be preserved. For that purpose, the router
component tags every message that would originally go to
the component with an integer identifier that counts up for
each message from value 1. Then the merger components have
to queue up the output messages so as to achieve an order
in terms of their tags. If there are multiple processor cores
available, this mechanism would increase the parallelism of the
application. However the condition for applicability of such an
adaptation is the absence of inter-message dependencies.

VII. CONCLUSION AND FUTURE WORK

We propose an active middleware layer to accommodate
KPN applications on NoC-based platforms. Besides satisfying
KPN semantics, the middleware allows platform independent
application components with regard to communication. It
is solely based on MPI send and MPI recv communication
primitives, thus it doesn’t require any modification to the
NoC platform. The middleware is an initial step towards
implementing a self-adaptive run-time environment on the
NoC platform.

As future work, the performance implications of additional
middleware tasks should be investigated. The impact of virtual
channel tokens on overloading of the NoC should be assessed.
Although it may not always be a matter of choice, the
performances of KPN applications in NUMA and NORMA
architectures need to be evaluated. We have established a
collaboration with University of Cagliari in order to implement
the presented middleware on their FPGA-based NoC platform

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 77

[14]. This will allow us to evaluate the proposed middleware
in a real setting and obtain results for the active vs. passive
middleware and NORMA vs. NUMA cases.

ACKNOWLEDGMENT

This work was funded by the European Commission under
the Project MADNESS (No. FP7-ICT-2009-4-248424). The
paper reflects only the authors’ view; the European Com-
mission is not liable for any use that may be made of the
information contained herein.

REFERENCES

[1] G. De Micheli and L. Benini, Networks on Chips: Technology and Tools.
Morgan Kaufmann, 2006.

[2] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Information Processing ’74: Proceedings of the IFIP Congress,
J. L. Rosenfeld, Ed. New York, NY: North-Holland, 1974, pp. 471–475.

[3] O. Derin and A. Ferrante, “Simulation of a self-adaptive run-time
environment with hardware and software components,” in SINTER ’09:
Proceedings of the 2009 ESEC/FSE workshop on Software integration
and evolution @ runtime. New York, NY, USA: ACM, August 2009,
pp. 37–40.

[4] O. Derin and A. Ferrante, “Enabling self-adaptivity in component-
based streaming applications,” SIGBED Review, vol. 6, no. 3, October
2009, special issue on the 2nd International Workshop on Adaptive and
Reconfigurable Embedded Systems (APRES’09).

[5] O. Derin and A. Ferrante and A. V. Taddeo, “Coordinated management
of hardware and software self-adaptivity,” Journal of Systems Architec-
ture, vol. 55, no. 3, pp. 170 – 179, 2009.

[6] “Noxim NoC simulator.” [Online]. Available:
http://noxim.sourceforge.net

[7] E. Carara, A. Mello, and F. Moraes, “Communication models in
networks-on-chip,” in RSP ’07: Proceedings of the 18th IEEE/IFIP
International Workshop on Rapid System Prototyping. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 57–60.

[8] “Multicore associations communication api.” [Online]. Available:
http://www.multicore-association.org

[9] “A high performance message passing library.” [Online]. Available:
http://www.open-mpi.org/

[10] Gabriel Marchesan Almeida and Gilles Sassatelli and Pascal Benoit
and Nicolas Saint-Jean and Sameer Varyani and Lionel Torres and
Michel Robert, “An Adaptive Message Passing MPSoC Framework,”
International Journal of Reconfigurable Computing, vol. 2009, p. 20,
2009.

[11] A. B. Nejad, K. Goossens, J. Walters, and B. Kienhuis, “Mapping kpn
models of streaming applications on a network-on-chip platform,” in
ProRISC 2009: Proceedings of the Workshop on Signal Processing,
Integrated Systems and Circuits, November 2009.

[12] T. M. Parks, “Bounded scheduling of process networks,” Ph.D. disser-
tation, University of California, Berkeley, CA 94720, December 1995.

[13] A. Antola, F. Ferrandi, V. Piuri, and M. Sami, “Semiconcurrent error
detection in data paths,” IEEE Trans. Comput., vol. 50, no. 5, pp. 449–
465, 2001.

[14] P. Meloni, S. Secchi, and L. Raffo, “Exploiting FPGAs for technology-
aware system-level evaluation of multi-core architectures,” in Pro-
ceedings of the 2010 IEEE International Symposium on Performance
Analysis of Systems and Software, March 2010.

78 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Dynamic Reconfigurable Computing:
the Alternative to Homogeneous Multicores under Massive Defect Rates

Monica Magalhães Pereira and Luigi Carro
Instituto de Informática

Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil

{mmpereira, carro}@inf.ufrgs.br

Abstract— The aggressive scaling of CMOS technology has
increased the density and allowed the integration of multiple
processors into a single chip. Although solutions based on
MPSoC architectures can increase the application’s speed
through task level parallelism, this speedup is still limited to the
amount of parallelism available in the application, as
demonstrated by Amdahl’s Law. Another fundamental aspect is
that for new technologies, very aggressive defect rates are
expected, since the continuous shrink of device features makes
them more fragile and susceptible to break. At high defect rates a
large amount of processors of the MPSoC will be susceptible to
defects, and consequently will fail, reducing not only yield, but
also severely affecting the expected performance. In this context,
this paper presents a run-time adaptive architecture design that
allows software execution even under aggressive defect rates. The
proposed architecture can accelerate not only highly parallel
applications, but also sequential ones, and it is a heterogeneous
solution to overcome the performance penalty that is imposed to
homogeneous MPSoCs under massive defect rates. In the
experimental results we compare performance and area of the
proposed architecture to a homogeneous MPSoC solution. The
results demonstrate that the architecture can sustain software
acceleration even under a 20% defect rate, while the MPSoC
solution does not allow any software to be executed under a 15%
defect rate for the same area.

Homogeneous MPSoC; Amdahl’s Law; run-time adaptive
architecure; defect tolerance.

I. INTRODUCTION

The scaling of CMOS technology has increased the density
and consequently made the integration of several processors in
one chip possible. Although the use of multicores allows task
level parallelism (TLP) exploitation, the speedup achieved by
these systems is limited to the amount of parallelism available
in the applications, as already foreseen by Amdahl [1].

One solution to overcome Amdahl’s law and sustain the
speedup of MPSoCs is the use of heterogeneous cores, where
each core is specialized in different application sets. In this
way, the MPSoC can accelerate not only highly parallel
applications but also the sequential ones. An example of a
heterogeneous architecture is the Samsung S5PC100 [2] used
in the iPhone technology.

Although the use of heterogeneous cores can be an efficient
solution to improve the MPSoC’s performance, there are other
constraints that must be considered in the design of multicore

systems, such as reliability. The scaling process shrinks the
wires’ diameter, making them more fragile and susceptible to
break. Moreover, it is also harder to keep contact integrity
between wires and devices [3]. According to Borkar [4], in a
100 billion transistor device, 20 billion will fail in the
manufacture and 10 billion will fail in the first year of
operation.

At these high defect rates it is highly probable that the
defects affect most of the processors of the MPSoC (or even all
the processors), causing yield reduction and aggressively
affecting the expected performance. Furthermore, in cases
when all the processors are affected, this makes the MPSoC
useless. To cope with this, one solution is to include some fault
tolerance approach. Although there exists many solutions
proposed to cope with defects [5], most of these solutions do
not cope with high defect rates predicted to future technologies.
Moreover, the proposed solutions present some additional cost
that causes a high impact on area, power or performance, or
even in all three [6].

In this context, this paper presents a reconfigurable
architecture as an alternative to homogeneous multicores that
allows software execution even under high defect rates, and
accelerates execution of parallel and sequential applications.
The architecture uses an on-line mechanism to configure itself
according to the application, and its design provides
acceleration in parallel as well as in sequential portions of the
applications. In this way, the proposed architecture can be used
to replace homogeneous MPSoCs, since it sustains
performance even under high defect rates, and it is a
heterogeneous approach to accelerate all kinds of applications.
Therefore, its performance is not limited to the parallelism
available in the applications.

To validate the architecture, we compare the performance
and area of the system to a homogeneous MPSoC with
equivalent area. The results indicate that the proposed
architecture can sustain execution even under a 20% defect
rate, while in the MPSoC all the processors become useless
even under a 15% defect rate. Furthermore, with lower defect
rates, the proposed architecture presents higher acceleration
when compared to the MPSoC under the same defect rates,
with the TLP available in the applications lower than 100%.

The rest of this paper is organized as follows. Section 2
details the adaptive system. Section 3 presents the defect
tolerance approach and some experimental results. Section 4

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 79

presents a comparison of area and performance between the
reconfigurable system and the equivalent homogeneous
MPSoC considering different defect rates. Finally, section 5
presents the conclusions and future works.

II. PROPOSED ARCHITECTURE

The reconfigurable system consists of a coarse-grained
reconfigurable array tightly coupled to a MIPS R3000
processor; a mechanism to generate the configuration, called
Binary Translator; and the context memory that stores the
reconfiguration [7-8]. Figure 1 illustrates the reconfigurable
system.

Figure 1. Reconfigurable System

The reconfigurable array consists of a combinational circuit
that comprises three groups of functional units: the arithmetic
and logic group, the load/store group and the multiplier group.
Figure 2 presents the reconfigurable array (RA).

Figure 2. Reconfigurable Array

Each group of functional unit can have a different execution
time, depending on the technology and implementation
strategy. Based on this, in this work the ALU group can
perform up to three operations in one equivalent processor
cycle and the other groups execute in one equivalent processor
cycle. The equivalent processor cycle is called level. Figure 2
also demonstrates the parallel and sequential paths of the
reconfigurable array. The amount of functional units is defined
according to area constraints and/or an application set demand
(given by a certain market, e.g. portable phones).

The interconnection model implemented in the
reconfigurable fabric is based on multiplexers and buses. The
buses are called context lines and receive data from the context
registers, which store the data from the processor’s register file.
The multiplexers select the correct data that will be used by
each functional unit. Figure 3 illustrates the interconnection
model.

Figure 3. Interconnection Model

The different execution times presented by each group of
functional units allow the execution of more than one operation
per level. Therefore, the array can perform up to three
arithmetic and logic operations that present data dependency
among each other in one equivalent processor cycle,
consequently accelerating the sequential execution. Moreover,
the execution time can be improved through modifications on
the functional units and with the technology evolution,
consequently increasing the acceleration of intrinsically
sequential parts of a code. Even non parallel code can have a
better performance when executed in the structure illustrated in
Figure 2, as shown in paper [7].

The Binary Translator (BT) unit implements a mechanism
that dynamically transforms sequences of instruction to be
executed on the array. The transformation process is
transparent, with no need of instruction modification before
execution, preserving the software compatibility of the
application. Furthermore, the BT works in parallel with the
processor’s pipeline, presenting no extra overhead to the

80 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

processor. Figure 4 illustrates the Binary Translator steps
attached to the MIPS R3000 pipeline.

IF Instruction Fetch ID Instruction Decode
ID Instruction Decode DV Dependency Verification
EX Execution RA Resource Allocation
MEM Memory Access TU Table Update
WB Write Back

Figure 4. Binary Translator

A. Configuration generation
In parallel with the processor execution the BT searches for

sequences of instructions that can be executed by the
reconfigurable array (RA). The detected sequence is translated
to a configuration and stored in the context memory indexed by
the program counter (PC) value of the first instruction from the
sequence.

During this process the BT verifies the data dependency
among instructions and performs resource allocation according
to data dependency and resources availability. Both data
dependency and resources availability verification are
performed through the management of several tables that are
filled during execution. At the end of the BT stages a
configuration is generated and stored in the context memory.

As mentioned before, since the BT works in parallel with
the processor’s pipeline, there is no overhead to generate the
configuration.

B. RA reconfiguration and execution
While the BT generates and stores the configuration the

processor continues its execution. The next time a PC from a
configuration is found the processor changes to a halt stage and
the respective configuration is loaded from the context memory
and the RA’s datapath is reconfigured. Moreover all input data
is fetched. Finally, the configuration is executed and the
registers and memory positions are written back.

It is important to highlight that the overhead introduced by
the RA reconfiguration and data access are amortized by the
acceleration achieved by the RA. Moreover, as mentioned
before, the configuration generation does not impose any
overhead. More details about the reconfiguration process can
be found in [7].

III. DEFECT TOLERANCE

A. Defect tolerance approach
Reconfigurable architectures are strong candidates to defect

tolerance. Since they consist essentially of identical functional
elements, this regularity can be exploited as spare-parts. This is
the same approach used in memory devices and has
demonstrated to be very efficient [9]. Moreover, the
reconfiguration capability can be exploited to change the

resources allocation based on the defective and operational
resources.

In addition, dynamic reconfiguration can be used to avoid
the defective resources and generate the new configuration at
run-time. Thus, there is no performance penalty caused by the
allocation process, nor extra fabrication steps are required to
correct each circuit.

Finally, as it will be shown, the capability of adaptation
according to the application can be exploited to amortize the
performance degradation caused by the replacement of
defective resources by working ones.

Since the defect tolerance approach presented in this paper
handles only defects generated in the manufacture process, the
information about the defective units is generated before the
reconfigurable array starts its execution, by some classical
testing techniques. Therefore, the solution to provide defect
tolerance is transparent to the configuration generation.

Figure 5 illustrates the defect tolerance scheme
implemented in the reconfigurable array mechanism. Figure 5.a
presents the resources allocation in a defect-free reconfigurable
array. As already detailed, the parallel instructions are placed in
the same row of the reconfigurable array and the dependent
instructions, which must be executed sequentially, are placed in
different rows.

Figure 5. Resource allocation approach

To select the functional units to execute the instructions, the
mechanism starts by allocating the first available unit (bottom-
left). The next instructions are placed according to data
dependency and resources availability. The control of available
units is performed through a table that represents the
reconfigurable array. The table indicates which units are
available and which ones were already allocated (i.e. the units
that are busy).

In Figure 5.a. the instructions 1; 2; 3; and 4 do not have
data dependency among each other, hence they are all placed in
the same row. On the other hand, instruction 5 has data
dependency among one (or more than one) of the previous
instructions. Hence, this instruction is placed in the first
available unit of the second row. Continuing the allocation,
instructions 6; 7 and 8 have data dependency on instruction 5.
Thus, they are placed in the third row. Finally, instructions 9
and 10 have data dependency on one (or more than one)
instruction from the previous row (6; 7; and 8), hence they
must be placed in the fourth row.

In a defective reconfigurable array, the allocation algorithm
is exactly like described above. The only difference is that to
allocate only the resources that are effectively able to work,
before the reconfigurable array starts and after the traditional

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 81

testing steps, all the defective units are set as permanently busy
in the table that controls the resource allocation process, like if
they had been previously allocated. With this approach, no
modification on the reconfigurable array algorithm itself is
necessary.

Figure 5.b and 5.c demonstrate the resource allocation
considering defective functional units. In Figure 5.b the
configuration mechanism placed the instruction in the first
available unit, which in this case corresponds to the second
functional unit of the first row. Since the first row still has
available resources to place the four instructions, the
reconfigurable array sustains its execution time. In this case the
presence of a defective functional unit does not affect the
performance.

Figure 5.c illustrates an example where defective functional
units affect the performance of the reconfigurable array. In this
example, the first row has only three available functional units.
In this case, when there are not enough resources in one row,
the instructions are placed in the next row, and all the data
dependent instructions must be moved upwards. In Figure 5.c,
instruction 5 is dependent on instruction 4. Hence, instruction 5
was placed in the next row, and the same happened with other
instructions (6 to 10). In this example, because of the defective
units it was necessary to use one more row of the RA,
consequently increasing execution time and affecting
performance.

The same approach was implemented to tolerate defects in
the interconnection model of Figure 3. However, the strategy
can be different depending on which multiplexer is affected. If
an input multiplexer is affected the strategy is to consider the
multiplexer and its respective functional unit as defectives. On
the other hand, if an output multiplexer is defective it is
possible simply placing in the respective functional unit a
different instruction that does not use the defective multiplexer.

The defect tolerance approach for functional units and
interconnection model was already proposed in [10], where
more details about the defect tolerance of interconnection
model and experimental results can be found. These details are
not in the scope of this paper, since the main focus of the
current paper is to demonstrate how the reconfigurable
architecture with the defect tolerance approach presented in
[10] can be an efficient alternative to homogeneous multicores
under high defect rates.

B. Experimental results
To evaluate the proposed approach and its impact on

performance we have implemented the reconfigurable
architecture in an architectural simulator that provided the
MIPS R3000 execution trace. Furthermore, as workloads we
used the MiBench Benchmark Suite [11] that contains a
heterogeneous application set, including applications with
different amount of parallelism.

To include defects in the reconfigurable array a tool was
implemented to randomly select functional and interconnection
units as defective, based on several different defect rates. The
tool’s input is the information about the amount of resources
available in the array and its sequential and parallel

distribution, as well as the defect rate. Based on this, the tool’s
output has the same resources information, but now with the
randomly selected units set as busy. This information was used
as input to the architectural simulator. In this study we used
five different defect rates (0.01%; 0.1%; 1%; 10% and 20%),
and the reference design was the reconfigurable array without
defective units.

The size of the RA was based on several studies varying the
amount of functional units and their parallel and sequential
distribution. The studies considered large RAs with thousands
of functional units, and also small arrays with only dozens
functional units. The chosen RA is a middle-term of the studied
architectures. It contains 512 functional units (384 ALUS, 96
load/stores and 32 multipliers). The area of this architecture is
equivalent to 10 MIPS R3000.

It is important to highlight that despite the performance
degradation presented by the reconfigurable system under a
20% defect rate, the performance was still superior to the
standalone processor’s performance. Hence, Figure 6 presents
the acceleration degradation of the reconfigurable system,
instead of the performance degradation.

Figure 6. Acceleration degradation of the reconfigurable system

According to Figure 6, the highest acceleration penalty was
presented in the execution of jpegE, with 6.5% of speedup
reduction under a 20% defect rate. Nevertheless, the
reconfigurable system is still 2.4 times faster than the
standalone processor.

The mean speedup achieved by the defect-free RA in the
execution of MiBench applications was 2.6 times. Under a 20%
defect rate the mean speedup degraded to 2.5 times. This is less
than 4% of speedup degradation.

These results demonstrate that even under a 20% defect
rate, the reconfigurable array combined with the on-line
reconfiguration mechanism is capable of not only ensuring that
the system remains working, but it also accelerates the
execution when compared to the original MIPS R3000
processor.

IV. ADAPTIVE SYSTEM X HOMOGENEOUS MPSOC

A. Area and performance
To demonstrate the efficiency of the proposed architecture

this section presents a comparison between the adaptive system
and a homogeneous MPSoC with the same area.

82 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

As mentioned before, the area of the reconfigurable system
is equivalent to 10 MIPS R3000 processors, including data and
instruction caches. Moreover, the mean speedup achieved by
the reconfigurable system is 2.6 times for the MiBench suite.

The homogeneous MPSoC used to compare area and
performance consists of ten MIPS R3000. In this analysis the
communication and memory access overheads are not
considered. Although the inter-processors communication is
not considered, its impact would certainly be higher in the case
of the MPSoC, hence all presented results are somewhat
favoring the MPSoC.

As mentioned before, according to Amdahl’s law, the
speedup achieved by the MPSoC is limited to the execution
time of the sequential portion of the application. Equation 1
repeats Amdahl’s law for parallel systems:

 (1)

Where f is the fraction of the application that can be
parallelized and n is the number of cores.

Since the MPSoC has ten cores, by varying f and fixing n in
10 (to have the same area of the reconfigurable array, and
hence normalize results by area), from Amdahl’s law we
obtained the results presented in Table I, where one can see the
speedup as a function of f in equation (1), the part that can be
parallelized.

TABLE I. ACCELERATION AS A FUNCTION OF f, n=10.

f Speedup
0.10 1.099
0.15 1.156
0.20 1.220
0.25 1.290
0.30 1.370
0.35 1.460
0.40 1.563
0.45 1.681
0.50 1.818
0.55 1.980
0.60 2.174
0.65 2.410
0.70 2.703
0.75 3.077
0.80 3.571
0.85 4.255
0.90 5.263
0.95 6.897
0.99 9.174
1.00 10.000

Since communication and memory accesses overheads are
not considered, with 10 cores it is possible to achieve a speedup
of 10 times if 100% of the application is parallelized.

According to Table I it is necessary that 70% of the
application be parallelized to achieve a speedup of 2.7 times,
which is approximately the acceleration obtained by the
reconfigurable system.

Now, one can fix the speedup and vary f to find the number
of processors to achieve the required speedup. From equation
1, varying f from 0.1 to 1 we have that when f >= 0.65 we can
achieve the speedup of 2.6. When f < 0.65 it is not possible to
find a number of cores to achieve an acceleration of 2.6 times.
Thus, even with hundreds or thousands of cores, if the
application has less than 65% of parallelism, it will never
achieve the speedup of 2.6, the same of the reconfigurable
array. Nevertheless, with 65% it would be necessary 19 cores
to achieve speedup of 2.6 times, as shown in Figure 7.

Figure 7. Number of cores as a function of f

One solution to cope with this is to improve the
homogeneous core’s performance to increase the speedup of
the sequential execution. Therefore, one can rewrite Amdahl’s
law to take this into account, as it is demonstrated in equation
2. This solution was discussed in [1], where the authors
presented the possible solutions to increase performance of a
homogeneous MPSoC. They conclude that more investment
should be done to increase the individual core performance
even at high cost.

 (2)

Equation (2) is an extension of Amdahl’s law, and reflects
the idea of improving the MPSoC overall performance by
increasing core performance through acceleration of sequential
portions. In equation (2), AS is the speedup of the sequential
portion and AP is the speedup of the parallel portion. Table II
presents values for AS, fixing the speedup in 2.6 (acceleration
given by the reconfigurable array) and AP in 10 (homogeneous
multicore and the reconfigurable array have the same area),
while varying f. As one can see in Table II, only when f=100%
that AS=0, which means that this is the only case that does not
require sequential acceleration. This acceleration cannot be
achieved by the homogeneous MPSoC, however as explained
in section 2, the reconfigurable array can accelerate sequential
portions of the application.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 83

TABLE II. SEQUENTIAL ACCELERATION AS A FUNTION OF f

f Speedup AP AS

0.1 2.60 10 2.402
0.2 2.60 10 2.194
0.3 2.60 10 1.974
0.4 2.60 10 1.741
0.5 2.60 10 1.494
0.6 2.60 10 1.232
0.7 2.60 10 0.954
0.9 2.60 10 0.339
0.99 2.60 10 0.035

1 2.60 10 0.000

The next section presents a comparison between the
MPSoC and the RA considering the fault tolerance capability.
The results are normalized by area and speedup.

B. Defect tolerance
To compare the performance degradation of the

reconfigurable system with the MPSoC caused by the presence
of defects we performed a performance simulation varying the
defect rate.

To simulate the defects in both, MPSoC and reconfigurable
array, a tool was implemented to randomly insert defects in the
architectures. To ensure that the defect position was not
affecting the results thousands of simulations were performed
and in each simulation a new random set of defects was
generated. Moreover, the defects generated had the same size
(granularity) to both MPSoC and reconfigurable architecture.

In the first analysis we normalized RA and MPSoC by area.
In the second analysis we increased the numbers of cores of the
MPSoC to evaluate the tradeoff between area and fault
tolerance capability.

1) MPSoC and RA with same area:
Figure 8 illustrates the number of cores affected by the

defects in function of the defect rate in three different studies.
The first analysis was performed in a homogeneous MPSoC
with 10 MIPS R3000 processors without any fault tolerance
approach. According to the results, when the defect rate is
15% or higher, more than 9 cores are affected. Therefore, the
whole MPSoC system fails under a 15% defect rate.

The second and third analyses were performed considering
that the MPSoC has some kind of fault tolerance solution
implemented. In the second analysis, the fault tolerance
solution consists in replicating the processor in each core. In
this case, instead of having 10 cores with 10 processors, the
MPSoC has 5 cores with 2 processors in each core. The second
processor works as spare that is used only when the first
processor fails. This solution was proposed for two main
reasons. First there is no increase in area. Thus, the MPSoC
still has the same area of the RA. Second, even with half of the
number of cores, the MPSoC still presents higher speedup than
the array when the application presents 100% of parallelism.

The solution proposed in the third analysis is also based on
hardware redundancy. However, in this case instead of
replicating the whole processor, only critical components of the
processor are replicated, e.g. the arithmetic and logic unit. This

solution presents lower area cost compared to the solution of
the second analysis. However, it can be more complex to
implement, since each processor must have an extra unit to
implement the fault tolerance approach. Therefore, this solution
considers that each processor has 3 arithmetic and logic units,
where 2 ALUS are used as spare.

As can be observed in Figure 8, in both second and third
analyses, under a 15% defect rate all the cores fail. This means
that even with fault tolerance solutions, the MPSoC tends to
fail completely at high fault rates.

Figure 8. Defects simulation in the MPSoC

Figure 9 presents the performance degradation of the
MPSoC when the number of cores is reduced due to the
presence of defects. To obtain the speedup it was used the
Amdahl’s law represented in equation 1; the MPSoC with ten
cores (without Fault Tolerance); and the one with 5 cores and 2
processors per core. Again, we considered no communication
costs, and hence real results tend to be worse. The chart also
presents the mean performance degradation of the
reconfigurable system in the execution of the MiBench
applications.

The analysis was performed using f=0.70 (the portion of the
application that can be parallelized). This number was used
because according to Table I, the speedup achieved by the
MPSoC when 70% of the application can be parallelized
approaches the speedup achieved by the reconfigurable system.
The numbers next to the dots in the chart represents the amount
of cores that are still working in the MPSoC under the defect
rate.

Figure 9. Performance degradation of the MPSoC

84 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

As can be observed in Figure 9, the performance of the
MPSoC degrades faster than the degradation presented by the
reconfigurable system, even when the MPSoC presents higher
speedup in a defect-free situation (10-cores MPSoC). This
happens because when a defect is placed in any part of the
processor, the affected processor cannot execute properly. On
the other hand, when a defect is placed in any functional unit or
interconnection element of the reconfigurable array, the run-
time mechanism selects another unit (or element) to replace the
defective one. According to Figure 9 the execution of MiBench
applications by the reconfigurable system presented less than
4% of speedup degradation even under a 20% defect rate.

It is important to highlight that in these analyses it was not
considered the impact on area and performance that the
implementation of the fault tolerance strategies should
introduce. Again the presented results are somewhat favoring
the MPSoC. Moreover, the choice of these fault tolerance
solutions was based on the idea of causing the minimal impact
on the area of the system to maintain both RA and MPSoC
equivalent in area.

Figure 10 presents the graceful degradation of the
applications sha and jpegE. These applications were selected
because the first one achieved the highest speedup by the
reconfigurable system among all the applications from the
MiBench suite and the second presented the highest speedup
degradation.

Figure 10. Graceful degradation of sha and jpegE applications

According to Figure 10 the execution of application sha by
the reconfigurable system presented less than 1% of speedup
degradation even under a 20% defect rate. On the other hand,
even considering that the application was 100% parallelized
(f=1), with an initial acceleration higher than the one achieved
by the reconfigurable system, the 10-cores MPSoC stopped
working under a 20% defect rate. This same behavior was
observed when the amount of parallelism available was
reduced (f=0.85 and f=0.70). In these cases, not only the whole
system stopped working under a 20% defect rate, but the initial
acceleration was equal and lower, respectively, than the one
achieved by the reconfigurable system.

Moreover, as can be observed in the figure, the same
behavior is presented in jpegE results. However, in this
application execution the MPSoC presents higher speedup with
f=0.85 than the RA that rapidly decreases to 0 when the defect
rate is higher than 1%. On the other hand, the RA sustains

acceleration even under a 20% defect rate that presented a
speedup degradation of 6.5%.

2) Increase MPSoC core number:
Since the RA consists in a large amount of identical

functional units that can be easily replaced, the same idea was
proposed to the MPSoC: increase the number of cores to
increase the reliability. Thus, this solution consists in adding
more cores to the MPSoC to allow software execution under
higher defect rates.

As one can observe in Figure 11, the MPSoC with 32 cores
still executes under a 15% defect rate. However the execution
is completely sequential (one core left under 15% defect rate).
Moreover, under a 20% defect rate the 32-cores MPSoC
completely fails. The speedup results presented in Figure 12
also demonstrates the rapid decrease in the MPSoC speedup
even with 32 cores, while the RA sustains acceleration in both
sha and jpegE even under a 20% defect rate.

Figure 11. Defects simulation in the 32-cores MPSoC

Figure 12. Graceful degradation of 32-cores MPSoC

Based on this result, one can conclude that simply
replicating the cores it is not enough to increase the defect
tolerance of the system to tolerate high defect rates that new
technologies should introduce. Moreover, adding a fault
tolerance approach can be costly in area and performance.

The analyses presented in this section demonstrate that to
future technologies with high defect rates, homogeneous
MPSoCs may not be the most appropriate solution. The main
reasons are the fact that a defect in any part of the processor
invalidates this processor. Thus, the higher is the defect rate,

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 85

the more aggressive is the performance degradation, leading to
a completely fail of the system under defect rates already
predicted to futures technologies, such as nanowires [3].
Furthermore, solutions to provide fault tolerance in
homogeneous MPSoCs under high defect rates can be costly,
both in area and performance.

Another disadvantage of homogeneous MPSoCs is the fact
that they can only exploit task level parallelism, depending on
the parallelism available in each application. Therefore, only a
specific application set that is highly parallelized can benefit
from the high integration density and consequently the
integration of several cores in one chip [12].

There are two main solutions to cope with this. The first
one is to use heterogeneous MPSoCs, where each core can
accelerate a specific application set [2]. The main problem of
this solution is that like the homogeneous multicore, the
heterogeneous one must also have some fault tolerance
approach to cope with high fault rates, and this can increase
area and performance costs.

The other possible solution is to increase the speedup of
each core individually. With the improvement of each core it is
possible to accelerate sequential portions of code and
consequently increase the overall performance of the system.
An example of this approach is to change the MIPS R3000
cores for superscalar MIPS R10000 [13]. However, this
strategy can result in a significant area increase. According to
[14], a MIPS R10000 is almost 29 times larger than the MIPS
R3000.

The analyses also demonstrate that the proposed
reconfigurable architecture ensures software execution and also
accelerates the execution of several applications even under a
20% defect rate. Moreover, the reconfigurable system is a
heterogeneous solution that accelerates parallel and sequential
code. Thanks to this approach, the proposed architecture even
exposed to high defect rates predicted to future technologies
can still accelerate code, since the parallelism exploitation is
not the only way to accelerate execution.

V. CONCLUSIONS

The advances on scaling of CMOS technology has
increased the integration density and consequently provided the
inclusion of several cores in one single chip.

The MPSoC solutions allow the acceleration of application
execution through task level parallelism exploitation. However,
the main problem of these solutions is the fact that they are
limited to the amount of parallelism available in each
application, as demonstrated by Amdahl’s law.

One of the solutions to overcome this limit is using
heterogeneous MPSoCs, where each core is specialized in
different applications set or even increasing the speedup of
each core individually. These approaches can improve
performance but cannot handle high defect rates presented in
future technologies.

This paper presented a run-time reconfigurable architecture
that can sustain performance even under high defect rates to

replace homogeneous MPSoCs solutions. The system consists
of a reconfigurable array and an on-line mechanism that
performs defective functional unit replacement at run-time
without the need of extra tools or hardware.

The reconfigurable array design allows the acceleration of
parallel and sequential portions of applications, and can be used
as a heterogeneous solution to replace the homogeneous
MPSoCs and ensure reliability in a highly defective
environment.

To validate the proposed approach several simulations were
performed to compare the performance degradation of the
reconfigurable system and the MPSoC using the same defect
rates, normalizing the architectures by area and speedup.
According to the results, the reconfigurable system sustains
execution even under a 20% defect rate, while the MPSoC with
equivalent area has all the cores affected under a 15% defect
rate.

Future works include analyzing power and energy of these
systems and coping with transient faults in the reconfigurable
system.

REFERENCES

[1] M. D. Hill, M. R. Marty, "Amdahl's Law in the Multicore Era,"
Computer, vol. 41, no. 7, July 2008, pp. 33-38.

[2] Samsung Electronics Co., Ltd, Samsung S5PC100 ARM Cortex A8
based Mobile Application Processor, 2009.

[3] A. DeHon and H. Naeimi, “Seven strategies for tolerating highly
defective fabrication,” in IEEE Design & Test, vol. 22, IEEE Press, July-
Aug. 2005, pp. 306–315.

[4] S. Borkar, “Microarchitecture and Design Challenges for Gigascale
Integration,” keynote address, 37th Annual IEEE/ACM International
Symposium on Microarchitecture, 2004.

[5] I. Koren and C. M. Krishna, “Fault-Tolerant Systems,” Morgan
Kaufmann, 2007.

[6] S. K. Shukla and R. I. Bahar, “Nano, Quantum and Molecular
Computing: Implications to High Level Design and Validation,” Kluwer
Academic Publishers, 2004.

[7] A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev and L. Carro, “Transparent
Reconfigurable Acceleration for Heterogeneous Embedded
Applications,” Proc. of Design, Automation and Test in Europe (DATE),
2008, pp. 1208-1213.

[8] A. C. S. Beck and L. Carro, “Transparent Acceleration of Data
Dependent Instructions for General Purpose Processors,” In International
Conference on Very Large Scale Integration, 2007, pp. 66-71.

[9] E. Scott, P. Sedcole and P. Y. K. Cheung, “Fault Tolerant Methods for
Reliability in FPGAs,” In International Field Programmable Logic and
Applications, Sept. 2008, pp. 415-420.

[10] M. M. Pereira and L. Carro, “A Dynamic Reconfiguration Approach for
Accelerating Highly Defective Processors,” Proc. of 17th IFIP/IEEE
International Conference On Very Large Scale Integration, Oct. 2009.

[11] M. R. Guthaus, et al, “MiBench: a free commercially, representative
embedded benchmark suite,” Proc. of 4th IEEE International Workshop
on Workload Characterization, IEEE Press, Dec. 2001, pp. 3-14.

[12] K. Olukotun, L. Hammond and J. Laudon, “Chip Multiprocessor
Architecture,” Mark D. Hill, 2006.

[13] K. C. Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE
Micro, April 1996, pp.28-40.

[14] M. B Rutzig, et al, “TLP and ILP exploitation throuhg a Reconfigurable
Multiprocessor System,” In 17th Reconfigurable Architectures
Workshop, Atlanta, USA, 2010.

86 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

An NoC Traffic Compiler for efficient FPGA
implementation of Parallel Graph Applications

Nachiket Kapre
California Institute of Technology,

Pasadena, CA 91125
nachiket@caltech.edu

André DeHon
University of Pennsylvania

Philadelphia, PA 19104
andre@acm.org

Abstract—Parallel graph algorithms expressed in a Bulk-
Synchronous Parallel (BSP) compute model generate highly-
structured communication workloads from messages propagating
along graph edges. We can expose this structure to traffic compil-
ers and optimization tools before runtime to reshape and reduce
traffic for higher performance (or lower area, lower energy,
lower cost). Such offline traffic optimization eliminates the need
for complex, runtime NoC hardware and enables lightweight,
scalable FPGA NoCs. In this paper, we perform load balancing,
placement, fanout routing and fine-grained synchronization to
optimize our workloads for large networks up to 2025 parallel
elements. This allows us to demonstrate speedups between 1.2×
and 22× (3.5× mean), area reductions (number of Processing
Elements) between 3× and 15× (9× mean) and dynamic energy
savings between 2× and 3.5× (2.7× mean) over a range of real-
world graph applications. We expect such traffic optimization
tools and techniques to become an essential part of the NoC
application-mapping flow.

I. INTRODUCTION

Real-world communication workloads exhibit structure in
the form of locality, sparsity, fanout distribution, and other
properties. If this structure can be exposed to automation
tools, we can reshape and optimize the workload to im-
prove performance, lower area and reduce energy. In this
paper, we develop a traffic compiler that exploits struc-
tural properties of Bulk-Synchronous Parallel communication
workloads. This compiler provides insight into performance
tuning of communication-intensive parallel applications. The
performance and energy improvements made possible by the
compiler allows us to build the NoC from simple hardware el-
ements that consume less area and eliminate the need for using
complex, area-hungry, adaptive hardware. We now introduce
key structural properties exploited by our traffic compiler.

• When the natural communicating components of the traf-
fic do not match the granularity of the NoC architecture,
applications may end up being poorly load balanced. We
discuss Decomposition and Clustering as techniques to
improve load balance.

• Most application exhibit sparsity and locality; an object
often interacts regularly with only a few other objects in
its neighborhood. We exploit these properties by Placing
communicating objects close to each other.

• Data updates from an object should often be seen by
multiple neighbors, meaning the network must route

�������	
�
��
���
���	���
��

�
�

�

�

�

������
���
��

�����

�����
���������

������
����
��

�
������
���
!$��\

^��
�
`��
!�������

|

�

�

�

���

����

����

����

����

�
�

�

��

��

����

�

��

��

��

��
��

�

�
�

��

��

��
��

Fig. 1: NoC Traffic Compilation Flow
(annotated with cnet-default workload at 2025 PEs)

the same message to multiple destinations. We consider
Fanout Routing to avoid redundantly routing data.

• Finally, applications that use barrier synchronization can
minimize node idle time induced by global synchroniza-
tion between the parallel regions of the program by using
Fine-Grained Synchronization.

While these optimizations have been discussed indepen-
dently in the literature extensively (e.g. [1], [2], [3], [4], [5]),
we develop a toolflow that auto-tunes the control parameters
of these optimizations per workload for maximum benefit
and provide a quantification of the cumulative benefit of
applying these optimizations to various applications in onchip
network settings. This quantification further illustrates how the
performance impact of each optimization changes with NoC
size. The key contributions of this paper include:
• Development of a traffic compiler for applications de-

scribed using the BSP compute model.
• Use of communication workloads extracted from Con-

ceptNet, Sparse Matrix-Multiply and Bellman-Ford run-
ning on range of real-world circuits and graphs.
• Quantification of cumulative benefits of each stage of the

compilation flow (performance, area, energy).

1

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 87

��������
����	���

��	
�

��

��

��
�����
����	���

���
���
�	
	

�����
��
����
�����

�������
������

������
� ��	��

�	
	�	
�
�����

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

� �

��

�

� �

�

�

�

���
���

���
�

���
 �	�

�������	
��
�
	����	������������
	���

�������	���������

�������

��������
�������
������

����
�
	
�

Fig. 2: Architecture of the NoC

II. BACKGROUND

A. Application

Parallel graph algorithms are well-suited for concurrent
processing on FPGAs. We describe graph algorithms in a
Bulk Synchronous Parallel (BSP) compute model [6] and
develop an FPGA system architecture [7] for accelerating such
algorithms. The compute model defines the intended semantics
of the algorithm so we know which optimizations preserve
the desired meaning while reducing NoC traffic. The graph
algorithms are a sequence of steps where each step is separated
by a global BSP barrier. In each step, we perform parallel,
concurrent operations on nodes of a graph data-structure where
all nodes send messages to their neighbors while also receiving
messages. The graphs in these algorithms are known when the
algorithm starts and do not change during the algorithm. Our
communication workload consists of routing a set of messages
between graph nodes. We route the same set of messages,
corresponding to the graph edges, in each epoch. Applications
in the BSP compute model generate traffic with many com-
munication characteristics (e.g. locality, sparsity, multicast)
which also occur in other applications and compute models as
well. Our traffic compiler exploits the a priori knowledge of
structure-rich communication workloads (see Section IV-A) to
provide performance benefits. Our approach differs from some
recent NoC studies that use statistical traffic models (e.g. [9],
[10], [11], [12]) and random workloads (e.g. [13], [14], [15])
for analysis and experiments. Statistical and random workloads
may exaggerate traffic requirements and ignore application
structure leading to overprovisioned NoC resources and missed
opportunities for workload optimization.

In [9], the authors demonstrate a 60% area reduction along
with an 18% performance improvement for well-behaved
workloads. In [11], we observe a 20% reduction in buffer sizes
and a 20% frequency reduction for an MPEG-2 workload. In
[13], the authors deliver a 23.1% reduction in time, a 23%
reduction in area as well as a 38% reduction in energy for

their design. We demonstrate better performance, lower area
requirements and lower energy consumption (Section V).

B. Architecture

We organize our FPGA NoC as a bidirectional 2D-
mesh [16] with a packet-switched routing network as shown
in Figure 2. The application graph is distributed across the
Processing Elements (PEs) which are specialized to process
graph nodes. Each PE stores a portion of the graph in its
local on-chip memory and performs accumulate and update
computations on each node as defined by the graph algorithm.
The PE is internally pipelined and capable of injecting and
receiving a new packet in each cycle. The switches imple-
ment a simple Dimension-Ordered Routing algorithm [21]
and also support fully-pipelined operation using composable
Split and Merge units. We discuss additional implementation
parameters in Section IV-B. Prior to execution, the traffic
compiler is responsible for allocating graph nodes to PEs.
During execution, the PE iterates through all local nodes
and generates outbound traffic that is routed over the packet-
switched network. Inbound traffic is stored in the incoming
message buffers of each PE. The PE can simultaneously handle
incoming and outgoing messages. Once all messages have
been received, a barrier is detected using a global reduce
tree (a bit-level AND-reduce tree). The graph application
proceeds through multiple global barriers until the algorithm
terminates. We measure network performance as the number
of cycles required for one epoch between barriers, including
both computation and all messages routing.

III. OPTIMIZATIONS

In this section, we describe a set of optimizations performed
by our traffic compiler.

1) Decomposition: Ideally for a given application, as the
PE count increases, each PE holds smaller and smaller portions
of the workload. For graph-oriented workloads, unusually
large nodes with a large number of edges (i.e. nodes that

2

88 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

�
�

�

�

�

��	
��

��	
	

�

��

��

��

��
��

Fig. 3: Decomposition

send and receive many messages) can prevent the smooth
distribution of the workload across the PEs. As a result,
performance is limited by the time spent sending and receiving
messages at the largest node (streamlined message processing
in the PEs implies work ∝ number of messages per node).
Decomposition is a strategy where we break down large nodes
into smaller nodes (either inputs, outputs or both can be
decomposed) and distribute the work of sending and receiving
messages at the large node over multiple PEs. The idea is
similar to that used in synthesis and technology mapping of
logic circuits [1]. Fig. 3 illustrates the effect of decomposing a
node. Node 5 with 3 inputs gets fanin-decomposed into Node
5a and 5b with 2 inputs each thereby reducing the serialization
at the node from 3 cycles to 2. Similarly, Node 1 with 4 outputs
is fanout-decomposed into Node 1a and 1b with 3 outputs and
2 outputs each. Greater benefits can be achieved with higher-
fanin/fanout nodes (see Table I).

In general, when the output from the graph node is a
result which must be multicast to multiple outputs, we can
easily build an output fanout tree to decompose output routing.
However, input edges to a graph node can only be decomposed
when the operation combining inputs is associative. Concept-
Net and Bellman-Ford (discussed later in Section IV-A) per-
mit input decomposition since nodes perform simple integer
sum and max operations which are associative and can be
decomposed. However, Matrix Multiply nodes perform non-
associative floating-point accumulation over incoming values
which cannot be broken up and distributed

2) Clustering: While Decomposition is necessary to break
up large nodes, we may still have an imbalanced system if
we randomly place nodes on PEs. Random placement fails
to account for the varying amount of work performed per
node. Lightweight Clustering is a common technique used
to quickly distribute nodes over PEs to achieve better load
balance (e.g. [2]). We use a greedy, linear-time Clustering
algorithm similar to the Cluster Growth technique from [2].
We start by creating as many “clusters” as PEs and randomly
assign a seed node to each cluster. We then pick nodes from the
graph and greedily assign them to the PE that least increases
cost. The cost function (“Closeness metric” in [2]) is chosen to
capture the amount of work done in each PE including sending
and receiving messages.

3) Placement: Object communication typically exhibits lo-
cality. A random placement ignores this locality resulting in
more traffic on the network. Consequently, random placement
imposes a greater traffic requirement which can lead to poor

�

��
��

��

��
��

	�
��

�
�

�

��

��

�� ��

Fig. 4: Placement
(Random Placement vs. Good Placement)

performance, higher energy consumption and inefficient use
of network resources. We can Place nodes close to each other
to minimize traffic requirements and get better performance
than random placement. The benefit of performing placement
for NoCs has been discussed in [3]. Good placement reduces
both the number of messages that must be routed on the
network and the distance which each message must travel.
This decreases competition for network bandwidth and lowers
the average latency required by the messages. Fig. 4 shows a
simple example of good Placement. A random partitioning of
the application graph may bisect the graph with a cut size of 6
edges (i.e. 6 messages must cross the chip bisection). Instead,
a high-quality partitioning of the graph will find a better cut
with size of 4. The load on the network will be reduced
since 2 fewer messages must cross the bisection. In general,
Placement is an NP-complete problem, and finding an optimal
solution is computationally intensive. We use a fast multi-level
partitioning heuristic [17] that iteratively clusters nodes and
moves the clustered nodes around partitions to search for a
better quality solution.

4) Fanout Routing: Some applications may require multi-
cast messages (i.e. single source, multiple destinations). Our
application graphs contain nodes that send the exact same
message to their destinations. Routing redundant messages
is a waste of network resources. We can use the network
more efficiently with Fanout Routing which avoids routing
redundant messages. This has been studied extensively by
Duato et al. [4]. If many destination nodes reside in the same
physical PE, it is possible to send only one message instead
of many, duplicate messages to the PE. For this to work, there
needs to be at least two sink nodes in any destination PE. The
PE will then internally distribute the message to the intended
recipients. This is shown in Fig. 5. The fanout edge from Node
3 to Node 5a and Node 4 can be replaced with a shared edge
as shown. This reduces the number of messages crossing the
bisection by 1. This optimization works best at reducing traffic
and message-injection costs at low PE counts. As PE counts
increase we have more possible destinations for the outputs
and fewer shareable nodes in the PEs resulting in decreasing
benefits.

5) Fine-Grained Synchronization: In parallel programs
with multiple threads, synchronization between the threads
is sometimes implemented with a global barrier for sim-
plicity. However, the global barrier may artificially serialize
computation. Alternately, the global barrier can be replaced

3

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 89

�
�

�

��

��

�� ��

�
�

�

��

��

�� ��

Fig. 5: Fanout-Routing

��
��
��
��
��
��

��
��
�	

�

��

�
�

��

�
 ��

�

������
����
�����

�������
�����

��
��
��
��
��
��

��
��
�	

�

�
�

���
�������
��������������
����

��

�

��

��

�	

��

�	

���������������
���
��

Fig. 6: Fine-Grained Synchronization

with local synchronization conditions that avoid unnecessary
sequentialization. Techniques for eliminating such barriers
have been previously studied [18], [5]. In the BSP compute
model discussed in Section II, execution is organized as a
series of parallel operations separated by barriers. We use
one barrier to signify the end of the communicate phase and
another to signify the end of the compute phase. If it is known
prior to execution that the entire graph will be processed, the
first barrier can be eliminated by using local synchronization
operations. A node can be permitted to start the compute phase
as soon as it receives all its incoming messages without waiting
for the rest of the nodes to have received their messages. This
prevents performance from being limited by the sum of worst-
case compute and communicate latencies when they are not
necessarily coupled. We show the potential benefit of Fine-
Grained Synchronization in Fig. 6. Node 2 and Node 3 can
start their Compute phases after they have received all their
inputs messages. They do not need to wait for all other nodes
to receive all their messages. This optimization enables the
Communicate phase and the Compute phase to be overlapped.

IV. EXPERIMENTAL SETUP

A. Workloads

We generate workloads from a range of applications mapped
to the BSP compute model. We choose applications that cover
different domains including AI, Scientific Computing and
CAD optimization that exhibit important structural properties.

1) ConceptNet: ConceptNet [19] is a common-sense rea-
soning knowledge base described as a graph, where nodes
represent concepts and edges represent semantic relationships.
Queries to this knowledge base start a spreading-activation
algorithm from an initial set of nodes. The computation

TABLE I: Application Graphs

Graph Nodes Edges Max
Fanin Fanout

ConceptNet
cnet-small 14556 27275 226 2538
cnet-default 224876 553837 16176 36562

Matrix-Multiply
add20 2395 17319 124 124
bcsstk11 1473 17857 27 30
fidap035 19716 218308 18 18
fidapm37 9152 765944 255 255
gemat11 4929 33185 27 28
memplus 17758 126150 574 574
rdb3200l 3200 18880 6 6
utm5940 5940 83842 30 20

Bellman-Ford
ibm01 12752 36455 33 93
ibm05 29347 97862 9 109
ibm10 69429 222371 137 170
ibm15 161570 529215 267 196
ibm16 183484 588775 163 257
ibm18 210613 617777 85 209

spreads over larger portions of the graph through a sequence
of steps by passing messages from activated nodes to their
neighbors. In the case of complex queries or multiple simul-
taneous queries, the entire graph may become activated after
a small number of steps. We route all the edges in the graph
representing this worst-case step. In [7], we show a per-FPGA
speedup of 20× compared to a sequential implementation.

2) Matrix-Multiply: Iterative Sparse Matrix-Vector Multi-
ply (SMVM) is the dominant computational kernel in several
numerical routines (e.g. Conjugate Gradient, GMRES). In each
iteration a set of dot products between the vector and matrix
rows is performed to calculate new values for the vector to be
used in the next iteration. We can represent this computation
as a graph where nodes represent matrix rows and edges
represent the communication of the new vector values. In
each iteration messages must be sent along all edges; these
edges are multicast as each vector entry must be sent to each
row graph node with a non-zero coefficient associated with
the vector position. We use sample matrices from the Matrix
Market benchmark [20]. In [8], we show a speedup of 2-
3× over optimized sequential implementation using an older
generation FPGA and a performance-limited ring topology.

3) Bellman-Ford: The Bellman-Ford algorithm solves the
single-source shortest-path problem, identifying any negative
edge weight cycles, if they exist. It finds application in
CAD optimizations like Retiming, Static Timing Analysis
and FPGA Routing. Nodes represent gates in the circuit
while edges represent wires between the gates. The algorithm
simply relaxes all edges in each step until quiescence. A
relaxation consists of computing the minimum at each node
over all weighted incoming message values. Each node then
communicates the result of the minimum to all its neighbors
to prepare for the next relaxation.

B. NoC Timing and Power Model

All our experiments use a single-lane, bidirectional-mesh
topology that implements a Dimension-Ordered Routing func-
tion. The Matrix-Multiply network is 84-bits wide while Con-

4

90 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

TABLE II: NoC Timing Model

Mesh Switch Latency
Tthrough (X-X, Y-Y) 2
Tturn (X-Y, X-Y) 4
Tinteface (PE-NoC, NoC-PE) 6
Twire 2
Processing Element Latency
Tsend 1
Treceive (ConceptNet, Bellman-Ford) 1
Treceive (Matrix-Multiply) 9

TABLE III: NoC Dynamic Power Model

Datawidth Block Dynamic Power at diff. activity (mW)
(Application) 0% 25% 50% 75% 100%
52 (ConceptNet,
Bellman-Ford)

Split 0.26 1.07 1.45 1.65 1.84
Merge 0.72 1.58 2.1 2.49 2.82

84 (Matrix-Multiply) Split 0.32 1.35 1.78 2.02 2.26
Merge 0.9 1.87 2.45 2.88 3.25

ceptNet and Bellman-Ford networks are 52-bits wide (with 20-
bits of header in each case). The switch is internally pipelined
to accept a new packet on each cycle (see Figure 2). Different
routing paths take different latencies inside the switch (see
Table II). We pipeline the wires between the switches for high
performance (counted in terms of cycles required as Twire).
The PEs are also pipelined to start processing a new edge
every cycle. ConceptNet and Bellman-Ford compute simple
sum and max operations while Matrix-Multiply performs
floating-point accumulation on the incoming messages. Each
computation on the edge then takes 1 or 9 cycles of latency
to complete (see Table II). We estimate dynamic power
consumption in the switches using XPower [22]. Dynamic
power consumption at different switching activity factors is
shown in Table III. We extract switching activity factor in
each Split and Merge unit from our packet-switched simulator.
When comparing dynamic energy, we multiply dynamic power
with simulated cycles to get energy. We generate bitstreams
for the switch and PE on a modern Xilinx Virtex-5 LX110T
FPGA [22] to derive our timing and power models shown in
Table II and Table III.

C. Packet-Switched Simulator

We use a Java-based cycle-accurate simulator that im-
plements the timing model described in Section IV-B for
our evaluation. The simulator models both computation and
communication delays, simultaneously routing messages on
the NoC and performing computation in the PEs. Our results in
Section V report performance observed on cycle-accurate sim-
ulations of different circuits and graphs. The application graph
is first transformed by a, possibly empty, set of optimizations
from Section III before being presented to the simulator.

V. EVALUATION

We now examine the impact of the different optimizations
on various workloads to quantify the cumulative benefit of
our traffic compiler. We order the optimization appropriately
to analyze their additive impacts. First we load balance our
workloads by performing Decomposition. We then determine

104

105

106

 4 16 100 400 900 2025

C
yc

le
s

PEs

Cycles vs. PEs

undecomposed
decomposed

Fig. 7: Decomposition
(cnet-default)

how the workload gets distributed across PEs using Clustering
or Placement. Finally, we perform Fanout Routing and Fine-
Grained Synchronization optimizations. We illustrate scaling
trends of individual optimizations using a single illustrative
workload for greater clarity. At the end, we show cumulative
data for all benchmarks together.

A. Impact of Individual Optimizations

1) Decomposition: In Fig. 7, we show how the Concept-
Net cnet-default workload scales with increasing PE
counts under Decomposition. We observe that, Decomposition
allows the application to continue to scale up to 2025 PEs
and possibly beyond. Without Decomposition, performance
quickly runs into a serialization bottleneck due to large nodes
as early as 100 PEs. The decomposed NoC workload manages
to outperform the undecomposed case by 6.8× in performance.
However, the benefit is lower at low PE counts, since the
maximum logical node size becomes small compared to the
average work per PE. Additionally, decomposition is only
useful for graphs with high degree (see Table I). In Figure 8
we show how the decomposition limit control parameter
impacts the scaling of the workload. As expected, without
decomposition, performance of the workload saturates beyond
32 PEs. Decomposition with a limit of 16 or 32 allows the
workload to scale up to 400 PEs and provides a speedup
of 3.2× at these system sizes. However, if we attempt an
aggressive decomposition with a limit of 2 (all decomposed
nodes allowed to have a fanin and fanout of 2) performance
is actually worse than undecomposed case between 16 and
100 PEs and barely better at larger system sizes. At such
small decomposition limits, performance gets worse due to an
excessive increase in the workload size (i.e. number of edges
in the graph). Our traffic compiler sweeps the design space
and automatically selects the best decomposition limit.

2) Clustering: In Fig. 9, we show the effect of Clustering
on performance with increasing PE counts. Clustering pro-
vides an improvement over Decomposition since it accounts
for compute and message injection costs accurately, but that
improvement is small (1%–18%). Remember from Section III,
that Clustering is a lightweight, inexpensive optimization that

5

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 91

103

104

 4 16 100 400 900 2025

C
yc

le
s

PEs

Cycles vs. PEs

undecomposed
limit=2
limit=4
limit=8

limit=16
limit=32

limit=256

Fig. 8: Decomposition Limits
(cnet-small)

104

105

106

 4 16 100 400 900 2025

C
yc

le
s

PEs

Cycles vs. PEs

undecomposed
decomposed

decomposed+clustered

Fig. 9: Decomposition and Clustering
(cnet-default)

attempts to improve load balance and as a result, we expect
limited benefits.

3) Placement: In Fig. 10, we observe that Placement
provides as much as 2.5× performance improvement over
a random placed workload as PE counts increase. At high
PE counts, localized traffic reduces bisection bottlenecks and
communication latencies. However, Placement is less effective
at low PE counts since the NoC is primarily busy injecting and
receiving traffic and NoC latencies are small and insignificant.
Moreover, good load-balancing is crucial for harnessing the
benefits of a high-quality placement (See Figure 15 with other
benchmarks).

4) Fanout-Routing: We show performance scaling with
increasing PEs for the Bellman-Ford ibm01 workload using
Fanout Routing in Fig. 11. The greatest performance benefit
(1.5×) from Fanout Routing comes when redundant messages
distributed over few PEs can be eliminated effectively. The
absence of benefit at larger PE counts is due to negligible
shareable edges as we suggested in Section III.

5) Fine-Grained Synchronization: In Fig. 12, we find that
the benefit of Fine-Grained Synchronization is greatest (1.6×)
at large PE counts when latency dominates performance. At
low PE counts, although NoC latency is small, elimination

104

105

106

 4 16 100 400 900 2025

C
yc

le
s

PEs

Cycles vs. PEs

undecomposed
decomposed

decomposed+clustered
decomposed+placed

Fig. 10: Decomposition, Clustering and Placement
(cnet-default)

103

104

105

 4 16 100 400 900 2025

C
yc

le
s

PEs

Cycles vs. PEs

undecomposed
clustered

placed
placed+fanout

Fig. 11: Clustering, Placement and Fanout-Routing
(ibm01)

of the global barrier enables greater freedom in scheduling
PE operations and consequently we observe a non-negligible
improvement (1.2×) in performance. Workloads with a good
balance between communication time and compute time will
achieve a significant improvement from fine-grained synchro-
nization due to greater opportunity for overlapped execution.

102

103

104

105

 4 16 100 400 900 2025

C
yc

le
s

PEs

Cycles vs. PEs

undecomposed
clustered

placed
placed+fanout

placed+fanout+fgsync.

Fig. 12: Clustering, Placement, Fanout-Routing and
Fine-Grained Synchronization (ibm01)

6

92 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

 1x

 1.5x

 2x

 2.5x

 3x

 3.5x
sm

al
l

de
fa

ul
t

ad
d2

0
bc

ss
tk

11
fid

ap
03

5
fid

ap
m

37
ge

m
at

11
m

em
pl

us
rd

b3
,2

00
l

ut
m

5,
94

0

ib
m

01
ib

m
05

ib
m

10
ib

m
15

ib
m

16
ib

m
18

Sp
ee

du
p

ConceptNet Matrix−Multiply Bellman−Ford

Fine−Grained Sync.
Fanout
Placement
Clustering
Decomposition

Fig. 13: Performance Ratio at 25 PEs

 1x

 2x

 3x

 4x

 5x

 6x

 7x

 8x

 9x

sm
al

l
de

fa
ul

t

ad
d2

0
bc

ss
tk

11
fid

ap
03

5
fid

ap
m

37
ge

m
at

11
m

em
pl

us
rd

b3
,2

00
l

ut
m

5,
94

0

ib
m

01
ib

m
05

ib
m

10
ib

m
15

ib
m

16
ib

m
18

Sp
ee

du
p

ConceptNet Matrix−Multiply Bellman−Ford

Fine−Grained Sync.
Fanout
Placement
Clustering
Decomposition

Fig. 14: Performance Ratio at 256 PEs

 2x

 4x

 6x

 8x

 10x

 12x

 14x

sm
al

l
de

fa
ul

t

dd
20

bc
ss

tk
11

fid
ap

03
5

fid
ap

m
37

ge
m

at
11

m
em

pl
us

rd
b3

,2
00

l
ut

m
5,

94
0

ib
m

01
ib

m
05

ib
m

10
ib

m
15

ib
m

16
ib

m
18

Sp
ee

du
p

22x

ConceptNet Matrix−Multiply Bellman−Ford

Fine−Grained Sync.
Fanout
Placement
Clustering
Decomposition

Fig. 15: Performance Ratio at 2025 PEs

B. Cumulative Performance Impact

We look at cumulative speedup contributions and relative
scaling trends of all optimizations for all workloads at 25 PEs,
256 PEs and 2025 PEs.

At 25 PEs, Fig. 13, we observe modest speedups in the
range 1.5× to 3.4× (2× mean) which are primarily due
to Fanout Routing. Placement and Clustering are unable
to contribute significantly since performance is dominated

10%

PEunoptPEopt

AreaRatio =
PEunopt/PEopt

PEs

C
yc

le
s

unoptimized

optimized

Fig. 16: How we compute area savings

by computation. Fine-Grained Synchronization also provides
some improvement, but as we will see, its relative contribution
increases with PE count.

At 256 PEs, Fig. 14, we observe larger speedups in the
range 1.2× to 8.3× (3.5× mean) due to Placement. At
these PE sizes, the performance bottleneck begins to shift
to the network, so reducing traffic on the network has a
larger impact on overall performance. We continue to see
performance improvements from Fanout Routing and Fine-
Grained Synchronization.

At 2025 PEs, Fig. 15, we observe an increase in speedups
in the range 1.2× to 22× (3.5× mean). While there is an im-
provement in performance from Fine-Grained Synchronization
compared to smaller PE cases, the modest quantum of increase
suggests that the contributions from other optimizations are
saturating or reducing.

Overall, we find ConceptNet workloads show impressive
speedups up to 22×. These workloads have decomposable
nodes that allow better load-balancing and have high-locality.
They are also the only workloads which have the most
need for Decomposition. Bellman-Ford workloads also show
good overall speedups as high as 8×. These workloads are
circuit graphs and naturally have high-locality and fanout.
Matrix-Multiply workloads are mostly unaffected by these
optimization and yield speedups not exceeding 4× at any
PE count. This is because the compute phase dominates
the communicate phase; compute requires high latency (9
cycles/edge from Table II) floating-point operations for each
edge. It is also not possible to decompose inputs due to the
non-associativity of the floating-point accumulation. As an
experiment, we decomposed both inputs and outputs of the
fidapm37 workload at 2025 PEs and observed an almost
2× improvement in performance.

C. Cumulative Area and Energy Impact

For some low-cost applications (e.g. embedded) it is impor-
tant to minimize NoC implementation area and energy. The
optimizations we discuss are equally relevant when cost is the
dominant design criteria.

To compute the area savings, we pick the smallest un-
optimized PE count that requires 1.1× the cycles of best
unoptimized case (the 10% slack accounts for diminishing
returns at larger PE counts (see Figure 16). For the fully
optimized workload, we identify the PE count that yields

7

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 93

 2x

 4x

 6x

 8x

 10x

 12x

 14x

 16x
sm

al
l

de
fa

ul
t

ad
d2

0
bc

ss
tk

11
fid

ap
03

5
fid

ap
m

37
ge

m
at

11
m

em
pl

us
rd

b3
,2

00
l

ut
m

5,
94

0

ib
m

01
ib

m
05

ib
m

10
ib

m
15

ib
m

16
ib

m
18

A
re

a
Sa

vi
ng

s

ConceptNet Matrix−Multiply Bellman−Ford

Fig. 17: Area Ratio to Baseline

 1x

 1.5x

 2x

 2.5x

 3x

 3.5x

 4x

sm
al

l
de

fa
ul

t

ad
d2

0
bc

ss
tk

11
fid

ap
03

5
fid

ap
m

37
ge

m
at

11
m

em
pl

us
rd

b3
,2

00
l

ut
m

5,
94

0

ib
m

01
ib

m
05

ib
m

10
ib

m
15

ib
m

16
ib

m
18

En
er

gy
 S

av
in

gs

ConceptNet Matrix−Multiply Bellman−Ford

Fig. 18: Dynamic Energy Savings at 25 PEs

performance equivalent to the best unoptimized case. We
report these area savings in Figure 17. The ratio of these two
PE counts is 3–15 (mean of 9), suggesting these optimizations
allow much smaller designs.

To compute energy savings, we use the switching activity
factor and network cycles to derive dynamic energy reduction
in the network. Switching activity factor is extracted from the
number of packets traversing the Split and Merge units of a
Mesh Switch over the duration of the simulation Activity =
(2/Ports)× (Packets/Cycles). In Figure 18 we see a mean
2.7× reduction in dynamic energy at 25 PEs due to reduced
switching activity of the optimized workload. While we only
show dynamic energy savings at 25 PEs, we observed even
higher savings at larger system sizes.

VI. CONCLUSIONS AND FUTURE WORK

We demonstrate the effectiveness of our traffic compiler
over a range of real-world workloads with performance im-
provements between 1.2× and 22× (3.5× mean), PE count
reductions between 3× and 15× (9× mean) and dynamic
energy savings between 2× and 3.5× (2.7× mean). For large
workloads like cnet-default, our compiler optimizations
were able to extend scalability to 2025 PEs. We observe that
the relative impact of our optimizations changes with system

size (PE count) and our automated approach can easily adapt
to different system sizes. We find that most workloads benefit
from Placement and Fine-Grained Synchronization at large PE
counts and from Clustering and Fanout Routing at small PE
counts. The optimizations we describe in this paper have been
used for the SPICE simulator compute graphs which are dif-
ferent from the BSP compute model. Similarly we can extend
this compiler to support an even larger space of automated
traffic optimization algorithms for different compute models.

REFERENCES

[1] R. K. Brayton and C. McMullen, “The decomposition and factorization
of boolean expressions,” in Proc. Intl. Symp. on Circuits and Systems,
1982.

[2] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: Introduc-
tion to Chip and System Design. Kluwer Academic Publishers, 1992.

[3] D. GreenField, A. Banerjee, J. G. Lee, and S. Moore, “Implications
of Rent’s rule for NoC design and its fault tolerance,” in NOCS First
International Symposium on Networks-on-Chip, 2007.

[4] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An
Enginering Approach. Elsevier, 2003.

[5] D. Yeung and A. Agarwal, “Experience with fine-grain synchronization
in MIMD machines for preconditioned conjugate gradient,” SIGPLAN
Notices, vol. 28, no. 7, pp. 187–192, 1993.

[6] L. G. Valiant, “A bridging model for parallel computation,” CACM,
vol. 33, no. 8, pp. 103–111, August 1990.

[7] M. deLorimier, N. Kapre, A. DeHon, et al “GraphStep: a system
architecture for Sparse-Graph algorithms,” in Proceedings of the 14th
Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, 2006, pp. 143–151.

[8] M. deLorimier, and A. DeHon “Floating-point sparse matrix-vector
multiply for FPGAs” in Proceedings of the International Symposium
on Field-Programmable Gate Arrays. 2005.

[9] W. Ho and T. Pinkston, “A methodology for designing efficient on-chip
interconnects on well-behaved communication patterns,” in Proc. Intl.
Symp. on High-Perf. Comp. Arch., 2006.

[10] V. Soteriou, H. Wang, , and L.-S. Peh, “A statistical traffic model for
on-chip interconnection networks,” in Proc. Intl. Symp. on Modeling,
Analysis, and Sim. of Comp. and Telecom. Sys., 2006.

[11] Y. Liu, S. Chakraborty, and W. T. Ooi, “Approximate VCCs: a new char-
acterization of multimedia workloads for system-level MPSoC design,”
DAC, pp. 248–253, June 2005.

[12] G. Varatkar and R. Marculescu, “On-chip traffic modeling and synthesis
for MPEG-2 video applications,” IEEE Trans. VLSI Syst., vol. 12, no. 1,
pp. 108–119, January 2004.

[13] J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP on-chip
networks,” in Proc. Intl. Conf. Supercomput., 2006.

[14] R. Mullins, A. West, and S. Moore, “Low-latency virtual-channel routers
for on-chip networks,” in ISCA, 2004.

[15] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance
evaluation and design trade-offs for network-on-chip interconnect archi-
tectures,” IEEE Trans. Comput., vol. 54, no. 8, pp. 1025–1040, August
2005.

[16] N. Kapre, N. Mehta, R. Rubin, H. Barnor, M. J. Wilson, M. Wrighton,
and A. DeHon, “Packet switched vs. time multiplexed FPGA overlay
networks,” in Proceedings of the 14th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2006, pp. 205–216.

[17] A. Caldwell, A. Kahng, and I. Markov, “Improved Algorithms for
Hypergraph Bipartitioning,” in Proceedings of the Asia and South Pacific
Design Automation Conference, January 2000, pp. 661–666.

[18] C.-W. Tseng, “Compiler optimizations for eliminating barrier synchro-
nization,” SIGPLAN Not., vol. 30, no. 8, pp. 144–155, 1995.

[19] H. Liu and P. Singh, “ConceptNet – A Practical Commonsense Rea-
soning Tool-Kit,” BT Technical Journal, vol. 22, no. 4, p. 211, October
2004.

[20] NIST, “Matrix market,” <http://math.nist.gov/MatrixMarket/>, June
2004, maintained by: National Institute of Standards and Technology.

[21] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques
in direct networks,” IEEE Computer, 1993.

[22] The Programmable Logic Data Book-CD, Xilinx, Inc., 2100 Logic
Drive, San Jose, CA 95124, 2005.

8

94 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Investigation of Digital Sensors for Variability
Characterization on FPGAs

Florent Bruguier, Pascal Benoit and Lionel Torres
LIRMM, CNRS - University of Montpellier 2

161 rue Ada, 34392 Montpellier, France
Email: {firstname.lastname@lirmm.fr}

Abstract—In this paper, we address the variability problems
in FPGA devices both at design-time and at run-time. We
consider a twofold approach to compensate variations, based
on measurements issued from digital sensors implemented with
FPGA building blocks. We compare two digital structures of
sensors; the Ring Oscillator and the Path Delay Sensor. The Ring
Oscillator allows a fine grain variability characterization thanks
to a tiny replicable hard-macro structure (2 Slices). Although
less accurate, we show that the Path Delay Sensor has a lower
total area overhead as well as a smaller latency compared to the
ring oscillator implementation. In our experiments conducted on
Spartan-3 FPGAs, the ring oscillator is used to perform intra-
chip cartographies (1980 positions), while both sensors are then
compared for characterizing inter-chip performance variations.
We conclude the two structures are efficient for fast variability
characterization in FPGA devices. The Ring Oscillator is the
best structure for design-time measurements, whereas Path Delay
Sensor is the preferred structure to allow rapid performances
estimations at run-time with a minimal area overhead.

I. INTRODUCTION

Variability has become a major issue with recent technolo-
gies in the semiconductor industry [1]. While process varia-
tions impact process, supply voltage and internal temperature
[2], chip performances are also dependent on environmental
and on applicative changes that may further influence chip’s
behavior [3].

Field-Programmable Gate Arrays (FPGAs) devices are not
spared by these unpredictable disparities. As underlined in [4],
both inter-die and within-die variations affect FPGAs. So, it is
necessary to implement solutions in order to compensate these
variations.

Because of their inherent reconfigurability, it is possible to
place a component of a design at a specific place on the
FPGA floorplan, and to relocate it when it is required. In
the literature, it has been suggested either to model FPGA
variability [5] [6], or to measure it [7]. Both methods suggest
then to constraint or to adapt the design so that it takes into
account these variations and improves performance yield.

In this paper, we investigate the problem of variability
characterization on FPGA. We provide a twofold method
for variability compensation based on digital sensors used
either at design-time or at run-time. Our study is focused on
digital sensors, directly implemented in the FPGA building
blocks. Their role is to measure the effective performance
of the device. The novelty of this paper is that we compare
two digital sensor structures, analyze their accuracy and area

overhead in order to determine how they could be efficiently
use to characterize the variability of any FPGA. In the scope
of this paper, experiments was conducted on Xilinx Spartan-3
FPGAs.

The remainder of the paper is organized as follows. The
next section presents the related works in the area of variability
analysis and compensation techniques on FPGAs. Section III
introduces a new multi-level compensation flow. In section IV,
two digital sensors are presented to measure performance vari-
ations. Finally, in section V, results are exposed and discussed:
overhead comparison, experimental setup, intra and inter-chip
comparisons are analyzed to determine the efficiency and the
accuracy of the provided digital sensors.

II. RELATED WORKS

Few recent papers suggest techniques to characterize and
compensate performance variability on FPGAs. A first ap-
proach is based on modelization. Three papers have suggested
theoretical techniques [5] [6] [8]. They are all verified through
timing modeling. First, a multi-cycle Statistical Static Timing
Analysis (SSTA) placement algorithm is exposed in [5]. In
simulation, it is possible to improve performance yield by
68.51% compare to a standard SSTA. A second approach
proposes a variability aware design technique to reduce the
impact of process variations on the timing yield [8]. Timing
variability is reduced thanks to the increase of shorter routing
segments. Another side, the author of [6] confronts different
strategies for compensate within-die stochastic delay variabil-
ity. Worst case design, SSTA, entire FPGA reconfiguration
and sub-circuits relocation within a FPGA are considered.
SSTA provides better results than Worst case design although
both reconfiguration methods allow significant improvements.
However, in these papers, only theoretical techniques and
simulated results are exposed.

A second approach is based on delay measurements [7].
In this paper, a ring oscillator is placed on the FPGA. The
frequency of each oscillator is measured. A cartography of
the chip is done. Nevertheless, the study proposes here to
characterize 8 LUTs together as well as the impact of external
variation is not introduced.

These two sorts of approaches suggest it is required to have
two stages of characterization with digital sensors: one off-line
and one on-line.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 95

III. MULTI-LEVEL COMPENSATION FLOW

In order to tackle FPGA variability issues, a multi-level
compensation flow is proposed. Basically, it uses FPGA digital
resources (LUTs and interconnects) to implement Hard Macro
sensors. An overview of our methodology is depicted in Figure
1. It is divided into two parts. In the first phase, the FPGA
performance is deeply analyzed off-line at a fine granularity
by our dedicated monitors. At run-time, a reduced monitoring
setup is implemented within the system itself, in order to check
the run-time performances. Each level is further explained in
the two following sections.

Fig. 1. Overall flow

A. Off-line monitoring and module placement strategy

The first step of the flow is depicted in Figure 2 and
is divided into two global parts: the FPGA characterization
and the module placement strategy. The monitoring system is
directly applied at the technological level, i.e. it is intended to
check at a fine granularity intrinsic performances of the FPGA
device.

In order to realize an accurate characterization of perfor-
mances, an array of sensors covering the whole area is used
(Fig.2(a)). Sensor data are collected and analyzed to build a
cartography of the floorplan (Fig.2(b)).

Once the cartography of the FPGA is built, a placement
strategy is performed, considering both the system and its
run-time monitoring service (Fig.2(c)). Basically, it consists
in placing critical modules on “ best performance ” areas.
A subset of on-line sensors is also implemented within the
system in order to check at run-time the evolution of the per-
formances. The sensor placement strategy takes into account
requirements of run-time modules as well as the result of the
off-line cartography.

B. On-line monitoring and dynamic compensation

The second stage of the compensation flow is based on
hardware run-time monitoring. The run-time system imple-
mented in the FPGA is composed of a microprocessor, some

Fig. 2. Off-line and On-line Monitoring

peripherals, a Management Unit (MU), a set of sensors and
actuators. The on-line monitoring process is illustrated in
Figure 2(c).

Our objective is to perform a dynamic compensation of
system variations. For this purpose, a subset of digital sensors
using the FPGA resources is implemented. Digital sensors
measure performances; data monitoring are then collected and
analyzed by a management unit. Based on the information
available, this unit can adapt the system to the actual perfor-
mances; for instance, it is possible to adjust the frequency with
a DFS actuator (Dynamic Frequency Scaler).

As depicted in the figure 1, a deeper FPGA performance
analysis can be triggered when the management unit identifies
suspicious system behavior. A partial or total analysis can be
then performed in order to build a new cartography and to
update the module placement strategy.

IV. DIGITAL HARDWARE SENSORS IN FPGA

The objective of the previously described compensation flow
is to adapt the system in relation to the effective performances
of the FPGA device. Next, we study how to measure locally
and globally this performance. The idea developed in this
paper is to use digital hardware sensors designed with internal
resources of the FPGA, namely CLBs and switch matrices. In
this section, we present the principle and the implementation
of two structures: a Ring Oscillator and Path Delay Sensor.

96 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

A. Ring Oscillator Sensor

The Ring Oscillator Sensor is based on the measurement of
the oscillator frequency. In [9], the author exposes an internal
temperature sensor for FPGA. The frequency of a ring oscilla-
tor is measured and converted into temperature. However, the
ring oscillator is implemented into an old technology where
process variability is very low.

An update of this sensor is exposed here. Its structure
is depicted in Figure 3. The main part of the sensor is
a 2p + 1 inverter chain. The oscillation frequency directly
depends on the FPGA performance capabilities. The first logic
stage enables the oscillator to run for a fix number of periods
of the main clock. The flip-flop at the end of the inverter
chain is used as a frequency divider and allows filtering
glitches from the oscillator. The final logic stage counts the
number of transitions in the oscillator and transmits the count
result. Then, the count result is used to calculate the oscillator
frequency as follows:

F =
count ∗ f

p
(1)

where F is the ring oscillator frequency, count is the 14-bit
value of the counter, f is the operating frequency of the clock
and p is the number of enabled clock periods for which the
sensor is active.

Clock

Enable

Hard Macro

Flip-Flop

Driving

Counter

14

Enable

Reset

Fig. 3. Ring Oscillator

In order to use this sensor for the FPGA characterization,
a three-inverter ring oscillator was implemented. With this
configuration, the core of the sensor (ring oscillator + first flip-
flop) takes only 4 LUTs. A Hardware Macro was designed so
that the same sensor structure can be mapped at each floorplan
location (Fig. 4(a)). It possibly allows characterizing separately
each CLB of an FPGA.

B. Path Delay Sensor

In ASIC, in order to estimate the speed of a process,
sensors for Critical Path Monitoring (CPM) are used. A. Drake
presents a survey of CPM [10]. It exists a lot of techniques
to manage Critical Path but very few are used in FPGAs. The
Path Delay Sensor proposed here is directly inspired by CPM.
The structure of the Path Delay Sensor is depicted in Figure 5.
The idea of the Path Delay Sensor is to adapt CPM to FPGA.
Indeed, the regularity of the FPGA structure enables to create
more easily a critical path replica in FPGA than in ASIC.

The Path Delay Sensor is composed of n LUTs and n flip-
flops (FF). The LUTs are chained together and a FF is set

(a) Ring Oscillator (b) Path Delay

Fig. 4. Hard Macro implementation for Spartan 3

at the output of each LUT. A clock signal is applied to the
chain and is propagated into the LUT. At each rising edge, a
n-bits thermometer code is available at the output of FFs. This
thermometer code is representative of LUTs and interconnects
performances.

Hard Macro

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Clock

Enable

Out 0 Out 1 Out 30 Out 31

Fig. 5. Path delay

For example, the sensor is running and the
thermometer code is stored. This code looks like:
”11111111111111000000000000001111”. It is then analyzed.
The position Nz of last 0 is identified. Two different
utilizations are then feasible :

• A fast one where direct compare Nz to the length of a
critical path.

• A slow one where the time T required to cross one LUT
and the associate interconnect is approximate:

T =
Nz + 2

f
(2)

where f is the frequency of the clock signal applied to the
sensor and Nz + 2 represents the number of crossed LUTs
over one for the crossing of the sample rate FF. The time T
measured here enables to fast estimate the maximum frequency
of one critical path.

In order to have relevant information, the size of this sensor
must take into account the FPGA family in which it operates.
For example, for a Spartan-3 device, this sensor is composed
of 32 stages. It allows propagating a complete period of the
Spartan-3 reference frequency clock (50MHz). The figure
4(b) shows the Hard Macro integration of this sensor.

V. EXPERIMENTAL RESULTS

The Ring Oscillator and Path Delay Sensor described in
the previous section are studied and compared. They were

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 97

both implemented into a Xilinx Spartan 3 Starter Kit Board
with a XC3S1000-4FT256 (Fig.6(b)). This FPGA has a nom-
inal operating point of 1.2V @ 25◦C. In order to ensure
reproducible results, the temperature is kept constant in a
thermal chamber during all measurements (this instrument
only allows heating, and then experiments are done at 40◦C;
this point will be discussed further) (Fig. 6(a)). We analyze
first the resource overhead required by both structures. Then,
the measurement errors are exposed and after that their impact
is discussed. Finally, we provide both intra and inter variability
characterizations of Spartan-3 FPGA devices.

(a) Experimental setup in the thermal
chamber

(b) Spartan 3 board

Fig. 6. Experimental setup

A. Overhead comparison

This section introduces an overhead comparison of the two
sensors (Table. I). The area impact and the computing time
for each sensor are presented.

TABLE I
OVERHEAD COMPARISON

Hard Macro Size Total Size Sensor Latency
(# Slices) (# Slices) (# Cycles)

Ring Oscillator 2 80 2046

Path Delay 16 16 2

The Hard Macro corresponds to the “ probe ” of the sensor.
A smaller size for the probe allows characterizing a smaller
area during the off-line monitoring phase. That’s why the
Hard Macro Size is directly connected to the minimal size
probing. Regarding on-line Monitoring, a small Hard Macro
size is preferable to put it close to the critical modules (e.g.
critical path). In this case, the Ring Oscillator Sensor is more
interesting.

The total size of the sensor acts out the space needed for
one full implementation of the sensor. This is to compare
to the total space available in the FPGA. Indeed, the space
used for sensor implementation is no longer available for the
monitoring design. The Path Delay Sensor is better in this
case.

The computing latency represents the number of clock
periods between two successive measurements. Since the Ring

Oscillator Sensor requires 2046 cycles, the Path Delay Sensor
allows updating more rapidly the performance measurements.
However, this potential advantage is to be considered with the
processing capabilities of the management unit.

It is possible to take benefit from each sensor in different
contexts. The Ring Oscillator Sensor will be preferably used
for off-line monitoring characterization and for an accurate
management of performance. The Path Delay Sensor will
be preferred for a dynamic and direct critical path delay
management.

In the next sections, the results of our experiments are
presented. Our objective is to analyze the effectiveness of each
sensor in its chosen field.

B. Impact of sources of error

This part proposes a study of the impact of each error
source. We will reach successively voltage error, temperature
error and toggle count error.

Xilinx Spartan-3 Starter Kit does not provide the feature to
manage directly the power supply voltage. Hence, the voltage
regulator of our boards was substituted by an external voltage
regulator. The figure 7 depicts the normalized output frequency
of the Hard Macro depending on the power supply voltage. A
voltage variation of 0.4V around the default value implies a
22.5% of the sensor frequency. In our experiments, the supply
voltage variation was only about 0.01V between boards. It
involves a variation about 0.65MHz on the frequency (Tab.
II). The supply voltage variation due to the fluctuation effects
of the board regulator is less than 0.001V . This has an impact
of less than 65kHz on the frequency.

Fig. 7. Normalized Output frequency versus Power Supply Voltage

A representation of the normalized frequency depending
on the temperature variation is illustrated in figure 8. The
frequency of the ring oscillator Hard Macro decreases lin-
early as the temperature increases. During our experiments,
the FPGA device is placed into a thermal chamber with a
constant temperature (the variation is more or less 0.5◦C).
This change causes a fluctuation of about 0.1MHz of the
oscillator frequency.

98 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

NormalizedF requency = −0.0010T + 1.0264

Fig. 8. Normalized Output frequency versus external temperature

Regarding the ring oscillator, the fluctuation of the toggle
count is also to take into account. For a best efficiency, this
sensor was dimensioned for an error of a maximum of 3 in
the toggle count. It results an error on the measurement about
73kHz.

TABLE II
ESTIMATE OF SOURCES OF ERROR

Error Frequency impact

Intra-board Voltage 0.001V 0.065MHz

Inter-board Voltage 0.01V 0.65MHz

Temperature 0.5◦C 0.1MHz

Toggle count 3 0.073MHz

The total error due to external sources for intra-chip mea-
surement is around 238kHz. Nevertheless, all measurements
are average 500 times thereby error due to variations is
decreased. In fact, the total variation is around 6 times the
standard deviation σ. The average standard deviation σ̄ is then:

σ̄ =
σ√
N

(3)

where N is the number of samples. Consequently, the total
error attributable to external sources of variation is around
0.005% which corresponds to 10kHz. This variation will be
compared to the results obtained in next sections.

C. Intra-Chip Characterization using Ring Oscillator Sensor

The Ring Oscillator Sensor was used to achieve full car-
tographies of the Spartan-3 S1000 chip. During the measure-
ments, the external temperature of the chip is kept constant
at a temperature of 40◦C. This sensor is alternately placed at
each CLB location, arranged into an array of 40 * 48 positions.
Each measurement provided by the sensor is sent to an external
computer, via an UART (Universal Asynchronous Receiver
Transmitter), which performs the cartography of the chip (Fig.
9). The resulting frequency presented here corresponds to the
mean oscillation frequency at the output of the Hard Macro.

Fig. 9. Oscillator frequency cartography at T = 40◦C for Board 3

Fig. 10. Oscillator frequency cartography at T = 40◦C for Board 4

It takes around 5 hours for a complete cartography with a 500
times averaging for each point.

The figures 9 and 10 depict the results of two cartographies.
The cartography of the Board 4 is relatively constant with a
maximum frequency variation about 458kHz while the second
cartography presents a variation relatively large with a max-
imum frequency variation about 832kHz. The cartography
of the board 3 shows two features. First, there is a gradient
of frequency all over the chip. Second, some slices on the
middle of the chip are much less efficient than others. This
type of results reinforce us in the necessity of a fine-grain
cartography in order to achieve placement strategy for optimal
performances on FPGAs.

Note that variations measured in a same board (> 100kHz)
are minor compared to the error calculate previously (≈
10kHz). Since we can assume that the supply voltage and the
external temperature are fixed, we can infer that the variations
measured on the frequency are effectively due to internal

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 99

performance variations.
In future work, cartographies will be conducted with other

temperature settings in order to confirm the trend on a same
chip.

D. Inter-Chip Characterization

A similar characterization was conducted on several boards.
Sample results are summarized in Table III. The figures 9 and
10 illustrate the difference between two boards. We can see
that there are significant discrepancies between boards. Indeed,
we observe here a difference of about 16.2% of the average
frequency.

In this section, the Path Delay Sensor is used to perform a
comparison between multiple boards. In Table IV, we have
compared the five boards from the experience. This table
introduces a time, which corresponds to the delay required by
a signal edge to cross one LUT and the associate interconnect
of the sensor. The Path Delay Sensor corroborates the results
obtained with the Ring Oscillator Sensor (Fig. 11). However,
with the Path Delay Sensor, we cannot distinguish the best
FPGA between boards 3 and 4. This sensor is less accurate,
but nevertheless allows fast estimations. For this reason, it will
be used for on-line monitoring services.

TABLE III
COMPARISON OF RING OSCILLATOR FREQUENCY BETWEEN MULTIPLE

BOARDS

Board 1 2 3 4 5

Frequency (MHz) 215.0 204.0 198.9 196.6 185.0

TABLE IV
COMPARISON OF PATH DELAY SPEED BETWEEN MULTIPLE BOARDS

Board 1 2 3 4 5

T (ns) 2.86 3.07 3.2 3.2 3.33

Fig. 11. Comparaison between multiple boards

VI. CONCLUSION AND FUTURE WORKS

Managing variability is one of the major issues in recent
silicon technologies. As previously mentioned in the litera-
ture, FPGA devices are also subject to process, voltage, and
temperature variations. In this paper, we have considered a
twofold compensation flow for FPGAs, based on the use
of digital sensors directly implemented in the reconfigurable
resources. For this purpose, this article brought new results
on the comparison of a Ring Oscillator structure and a Path
Delay Sensor. In our experiments on Spartan-3 FPGAs, the
ring oscillator was successfully used to perform intra-chip
cartographies (1980 positions). Both sensors were evaluated
for characterizing inter-chip performance variations.

We conclude that both structures are efficient for fast vari-
ability characterization in FPGA devices. The ring oscillator
is the best structure for design-time measurements, whereas
the Path Delay Sensor will be the preferred structure to allow
rapid performances estimations at run-time with a minimal
area overhead.

In future work, both sensors will be studied to perform run-
time performance measurements. We will particularly focus on
strategies to efficiently manage sensors (number, placement)
and collect monitored information in order to adapt the system.

REFERENCES

[1] “International Technology Roadmap for Semiconductors,” 2009.
[Online]. Available: http://www.itrs.net/Links/2009ITRS/Home2009.htm

[2] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Ke-
shavarzi, and V. De, “Parameter variations and impact on
circuits and microarchitecture,” Design Automation Confer-
ence, 2003. Proceedings, pp. 338–342. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=1219020

[3] O. Unsal, J. Tschanz, K. Bowman, V. De, X. Vera, A. Gonzalez, and
O. Ergin, “Impact of Parameter Variations on Circuits and Microarchitec-
ture,” IEEE Micro, vol. 26, no. 6, pp. 30–39, 2006. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=4042630

[4] P. Sedcole and P. Y. K. Cheung, “Parametric yield in FPGAs due
to within-die delay variations:a quantitative analysis,” International
Symposium on Field Programmable Gate Arrays, 2007. [Online].
Available: http://portal.acm.org/citation.cfm?id=1216949

[5] G. Lucas, C. Dong, and D. Chen, “Variation-aware placement for FPGAs
with multi-cycle statistical timing analysis.” in FPGA, P. Y. K. Cheung
and J. Wawrzynek, Eds. ACM, 2010, pp. 177–180. [Online]. Available:
http://dblp.uni-trier.de/db/conf/fpga/fpga2010.html#LucasDC10

[6] P. Sedcole and P. Y. K. Cheung, “Parametric Yield Modeling
and Simulations of FPGA Circuits Considering Within-Die Delay
Variations,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 1, no. 2, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1371582

[7] P. Sedcole and P. K. Y. Cheung, “Within-die delay variability in 90nm
FPGAs and beyond,” in IEEE International Conference on Field Pro-
grammable Technology. IEEE, 2006, pp. 97–104. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=4042421

[8] A. Kumar and M. Anis, “FPGA Design for Timing Yield Under
Process Variations,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 18, no. 3, pp. 423–435, 2010. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=4799224

[9] S. Lopez-Buedo, J. Garrido, and E. Boemo, “Dynamically
inserting, operating, and eliminating thermal sensors of FPGA-
based systems,” IEEE Transactions on Components and Packaging
Technologies, vol. 25, no. 4, pp. 561–566, 2002. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=1178745

[10] A. Drake, Adaptive Techniques for Dynamic Processor
Optimization, ser. Series on Integrated Circuits and Sys-
tems. Boston, MA: Springer US, 2008. [Online]. Available:
http://www.springerlink.com/content/r61t506740v74220

100 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Investigating Self-Timed Circuits for the
Time-Triggered Protocol

Markus Ferringer
Department of Computer Engineering
Embedded Computing Systems Group

Vienna University of Technology
1040 Vienna, Treitlstr. 3

Email: ferringer@ecs.tuwien.ac.at

Abstract—While asynchronous logic has many potential ad-
vantages compared to traditional synchronous designs, one of the
major drawbacks is its unpredictability with respect to temporal
behavior. Without having a high-precision oscillator, a self-timed
circuit’s execution speed is heavily dependent on temperature and
supply voltage. Small fluctuations of these parameters already
result in noticeable changes of the design’s throughput and
performance. This indeterminism or jitter makes the use of
asynchronous logic hardly feasible for real-time applications.

Based on our previous work we investigate the temporal
characteristics of self-timed circuits regarding their usage in
the Time-Triggered Protocol (TTP). We propose a self-adapting
circuit which shall derive a suitable notion of time for both bit
transmission and protocol execution. We further introduce and
analyze our jitter compensation concept, which is a three-fold
mechanism to keep the asynchronous circuit’s notion of time
tightly synchronized to the remaining communication partici-
pants. To demonstrate the robustness of our solution, we will
perform temperature and voltage tests, and investigate their
impact on jitter and frequency stability.

I. INTRODUCTION

Asynchronous circuits elegantly overcome some of the lim-
iting issues of their synchronous counterparts. The often-cited
potential advantages of asynchronous designs are – among
others – reduced power consumption and inherent robustness
against changing operating conditions [1], [2]. Recent silicon
technology additionally suffers from high parameter variations
and high susceptibility to transient faults [3]. Asynchronous
(delay-insensitive) design offers a solution due to its inherent
robustness. A substantial part of this robustness originates
in the ability to adapt the speed of operation to the actual
propagation delays of the underlying hardware structures,
due to the feedback formed by completion detection and
handshaking. While asynchronous circuits’ adaptive speed
is hence a desirable feature with respect to robustness, it
becomes a problem in real-time applications that are based
on a stable clock and a fixed (worst-case) execution time.
Therefore, asynchronous logic is commonly considered in-
appropriate for such real-time applications, which excludes
its use in an important share of fault-tolerant applications
that would highly benefit from its robustness. Consequently,
it is reasonable to take a closer look at the actual stability
and predictability of asynchronous logic’s temporal behavior.
After all, synchronous designs operate on the same technology,

but hide their imperfections with respect to timing behind a
strictly time driven control flow that is based on worst-case
timing analysis. This masking provides a convenient, stable
abstraction for higher layers. In contrast, asynchronous designs
simply allow the variations to happen and propagate them to
higher layers. Therefore, the interesting questions are: Which
character and magnitude do these temporal variations have?
Can these variations be tolerated or compensated to allow the
usage of self-timed circuits in real-time applications?

In our research project ARTS1 (Asynchronous Logic in
Real-Time Systems) we are aiming to find answers to these
questions. Our project goal is to design an asynchronous TTP
(Time-Triggered Protocol) controller prototype which is able
to reliably communicate with a set of synchronous equivalents
even under changing operating conditions. TTP was chosen for
this reference implementation because it can be considered
as an outstanding example for hard real-time applications.
In this paper we present new results based on our previous
work. We will investigate the capabilities of self-timed designs
to adapt themselves to changing operating conditions. With
respect to our envisioned asynchronous TTP controller we
will also study the characteristics of jitter (and the associated
frequency instabilities of the circuit’s execution speed) and our
corresponding compensation mechanisms. We implement and
investigate a fully functional transceiver unit, as required for
the TTP controller, to demonstrate the capabilities of the pro-
posed solution with respect to TTP’s stringent requirements.

The paper is structured as follows: In Section II we give
some important background information on TTP, the research
project ARTS, and the used asynchronous design style. Section
III presents related work and describes our previous work
and the respective results. We show and discuss experimental
results in Section IV, before concluding in Section V.

II. BACKGROUND

A. Time-Triggered Protocol

The Time-Triggered Protocol (TTP) has been developed for
the demanding requirements of distributed (hard) real-time

1The ARTS project receives funding from the FIT-IT program of the
Austrian Federal Ministry of Transport, Innovation and Technology (bm:vit,
http://www.bmvit.gv.at/), project no. 813578.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 101

���
���

����
��� ���

���
����

���
���

����
��� ���

���
����

���
���

����
��� ���

���
����

Figure 1. TTP system structure.

systems. It provides several sophisticated means to incorporate
fault-tolerance and at the same time keep the communication
overhead low. TTP uses extensive knowledge of the distributed
system to implement its services in a very efficient and flexible
way. Real-time systems in general and TTP in particular are
described in detail in [4], [5].

A TTP system generally consists of a set of Fail-Silent
Units (FSUs), all of which have access to two replicated
broadcast communication channels. Usually two FSUs are
grouped together to form a Fault-Tolerant Unit (FTU), as
illustrated in Figure 1. In order to access the communication
channel, a TDMA (Time Division Multiple Access) scheme is
implemented: Communication is organized in periodic TDMA
rounds, which are further subdivided into various sending
slots. Each node has statically assigned sending slots, thus the
entire schedule (called Message Descriptor List, MEDL) is
known at design-time already. Since each node a priori knows
when other nodes are expected to access the bus, message
collision avoidance, membership service, clock synchroniza-
tion, and fault detection can be handled without considerable
communication overhead. Explicit Bus Guardian (BG) units
are used to limit bus access to the node’s respective time
slots, thereby solving the babbling idiot problem. Global time
is calculated by a fault-tolerant, distributed algorithm which
analyzes the deviations in the expected and actual arrival times
of messages and derives a correction term at each node.

The Time-Triggered Protocol provides very powerful means
for developing demanding real-time applications. The highly
deterministic and static nature makes it seemingly unsuited for
an implementation based on asynchronous logic. Hence, these
properties also make TTP an interesting and challenging topic
for our exploration of predictability of self-timed logic.

B. ARTS Project

The aim of the research project ARTS (Asynchronous Logic
in Real-Time Systems) is to integrate asynchronous logic
into real-time systems. For this purpose, an asynchronous
TTP controller is developed and integrated into a cluster
of (synchronous) TTP chips, as illustrated in Figure 2. The
asynchronous device should be capable of successfully taking
part in time-triggered communication, thereby using solely the
system inherent determinism and a priori knowledge of TTP to
derive a suitable and precise time reference for both bit-timing
as well as high-level services.

The central concern for the project is the predictability of
asynchronous logic with respect to its temporal properties.
We therefore investigate jitter sources (e.g., data dependencies,

TTP

TTP

TTP

TTP

x

TTP-Bus

Figure 2. ARTS system setup.

voltage fluctuations, temperature drift) and classify their im-
pact on the execution time. Using an adequate model allows us
to identify critical parts in the circuit and implement measures
for compensation. Another issue concerns timeliness itself, as
without a reference clock we do not have an absolute notion
of time. Instead, we will use the strict periodicity of TTP to
continuously re-synchronize to the system and derive a time-
base for message transfer.

In this perspective, the main challenge relies in the method
of resynchronization, as the controller will use the data stream
provided by the other communication participants to dynam-
ically adapt its internal time reference. The chosen solution
is to use a free-running, self-timed counter for measuring
the duration of external events of known length (i.e., single
bits in the communication stream). The so gained reference
measurement can in turn be used to generate ticks with the
period of the observed event. This local time base should
enable the asynchronous node to derive a sufficiently accu-
rate time reference for both low-level communication (bit-
timing, data transfer) as well as high-level services (e.g.
macrotick generation). The disturbing impact of environmental
fluctuations is automatically compensated over time, because
periodic resynchronization will lead to different reference
measurements, depending on the current speed of the counter
circuit.

C. Asynchronous Design Style

Our focus is on delay insensitive (DI) circuits2, as they
exhibit more pronounced “asynchronous” properties than
bounded delay circuits. More specifically, we use the level-
encoded dual-rail approach (LEDR [6], [7], used in Phased
Logic [8] and Code Alternation Logic [9]), which encodes
a logic signal on two physical wires. We prefer the more
complex 2-phase implementation over the popular 4-phase
protocol [2], [10], as it is more elegant and we already
gained some practical experience with it. LEDR periodically
alternates between two disjoint code sets for representing
logic “HI” and “LO” (two phases ϕ0 and ϕ1, see Figure
3), thus avoiding the need to insert NULL tokens as spacers
between subsequent data items. On the structural level, LEDR
designs are based on Sutherland’s micropipelines [11]. In
its strongly indicating mode of operation the performance is
always determined by the slowest stage.

2Typically the mandatory delay constraints are hidden inside the basic
building blocks, while the interconnect between these modules is considered
unconstrained

102 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

1 1

0

0

Figure 3. LEDR coding.

Using this approach, completion detection comes down to
a check whether the phases of all associated signals have
changed and match. As usual, handshaking between regis-
ter/pipeline stages is performed by virtue of a capture done
(or simply cDone) signal [11]. The two-rail encoding as well
as the adaptive timing make LEDR circuits very robust against
faults and changing operating conditions, unfortunately at the
cost of increased area consumption and reduced performance.
Interfacing single-rail inputs/outputs require special “interface
gates” [8], which must properly align (“synchronize”) these
to the LEDR operation phases. Concrete implementations and
variations of such interface gates are described in [12].

III. STATE OF THE ART

A. Related Work

Various options for building adequate time references are
commonly used in today’s logic designs, e.g., crystal oscilla-
tors provide high precision at high frequencies. RC oscilla-
tors [13] or simple inverter-loops are alternatives if operating
frequency and precision are no major concerns. It is also
possible to generate clock signals in a fault-tolerant, distributed
way [14].

Another important alternative for generating precise time
references are self-timed oscillator rings, which seem to be
perfectly suited for the chosen asynchronous design method-
ology. A lot of research has been conducted on self-timed
oscillator rings (which are also based on micropipelines). For
example, in [15] a methodology for using self-timed circuitry
for global clocking has been proposed. The same authors also
used basic asynchronous FIFO stages to generate multiple
phase-shifted clock signals for high precision timing in [16].
Furthermore, it has been found that event spacing in self-
timed oscillator rings can be controlled [17], [18]. The Charlie-
and the drafting-effects have thereby been identified as major
forces controlling event spacing in self-timed rings [16], [19].

One of the major requirements of our time base is to be
stable in order to allow for reliable bus-communication. In
the synchronous world, the term “jitter” is commonly used
to classify the deviations of a (clock-) signal from its ideal
behavior [20], [21]. It is also important for our investigations to
fully understand the sources and effects of jitter to implement
adequate countermeasures. In order to classify the frequency
stability of single execution steps and other timed signals, we
use Allan variance plots [22], [23], which provide the appropri-
ate means for a detailed analysis. Instead of a single number,
Allan deviation is usually displayed as a graph describing

gradually increasing durations τ of the averaging window. It
therefore combines measures for both short-term and long-
term stability in a single plot. Thorough circuit analysis, jitter
estimation, classification, and interpretation, in combination
with a corresponding model have already been elaborated in
a previous paper. The next section provides a short summary
of the performed work and the respective results we found.

B. Previous Work

1) Jitter in asynchronous circuits: In our previous work
we investigated the temporal behavior of self-timed (delay
insensitive) circuits not only on an experimental basis, but
also from a theoretical point of view. To fully understand
the complex characteristics of logic circuits it is necessary
to separate and classify the sources and manifestations of
jitter. While jitter terminology and measurement techniques
are well established for synchronous designs, measuring jitter
effects in asynchronous circuits significantly differs in that no
reference values are available. After all, it is a desired property
of asynchronous logic to adapt its speed of operation to the
given conditions. We therefore define execution period jitter,
or just execution jitter, to be the variation in the durations of a
specific LEDR-register. The inherent handshaking guarantees
the average rate of phase changes for all coupled registers to
be the same. However, due to the fact that LEDR circuits are
“elastic”, there may be substantial short-term differences in
the execution speeds of different pipeline stages.

From an abstract point of view, we can categorize jitter in
two major groups. On the one hand, systematic jitter describes
all effects that can be reproduced by our system setup. On the
other hand, random jitter is observed if the timing variations
are not controllable by means of system setup. The following
classification can be made for systematic effects:

• Data-Dependent Execution Jitter (DDEJ) deals with
cases where the actual data values induce (systematic)
jitter on a signal (circuit state, Simultaneous Switching
Noise [24], . . .).

• Consequently, Data-Independent Execution Jitter (DIEJ)
subsumes all non-data-dependent systematic jitter effects
(global changes of temperature and voltage, e.g).

2) Timing Model: Keeping the above classification of jitter
sources in mind, we can examine sources of data-dependent
and random jitter from a logic designer’s point of view. With
the resulting model we can track the sources of data-dependent
jitter to their roots. Figure 4 illustrates the remarkable effects
of data-dependent execution jitter. It shows the jitter histogram
of a free-running, self-timed, 4-bit counter. The solid black line
represents a histogram obtained by simulation of the proposed
timing model. As some of the humps are very close together,
their superpositions often appear as single peak only. If we had
turned random jitter off entirely in the simulation, we could see
16 sharp peaks in the graph (one for each counter value). On
the other hand, the filled area shows the jitter histogram taken
from an FPGA measurement. Again, the peaks are superposi-
tions of different delays caused by the different counter values.
The differences between simulation and actual measurement

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 103

7.6 7.8 8 8.2 8.4 8.6 8.8
x 10−9

0

200

400

600

800

1000

1200

t [s]

N
r.

of
 o

cc
ur

re
nc

es

Simulation

Measurement

Figure 4. Jitter histogram simulated/measured, 4-bit counter.

bit-time �bit

sampling-pointshalf bit-time

quarter bit-time

Bus
measure

�ref

jitter

Manchester coded bit-stream

�gen

ref-time

Figure 5. Manchester code with sampling points.

can be explained by the fact that placement and routing
information of logic gates is not considered for simulation (i.e.,
we perform pre-layout simulations only). However, the results
are still accurate enough to allow for identification of the
main sources of jitter, possible bottlenecks, and a quantitative
estimation of the expected jitter characteristics.

3) Time Base Generation: In order to allow for reliable TTP
communication, the resulting asynchronous controller must
have a precise notion of time. As there is no reliable reference
time available in the asynchronous case, we design a circuit
that uses the TTP communication stream to derive a suitable,
stable time-base. We construct an adjustable tick-generator and
periodically synchronize it to incoming message-bits. In our
configuration, the bit-stream of TTP uses Manchester coding,
thus there is at least one signal transition for each bit which we
can potentially use for recalibration. The Manchester encoding
is a line code which represents the logical values 0 and 1 as
falling and rising transitions, respectively. Consequently, each
bit is transmitted in two successive symbols, thus the needed
communication bandwidth is double the data rate. The top
part of Figure 5 shows three bits of an exemplary Manchester
coded signal, whereby the transitions at 50% of the bittime
define the respective logical values. This encoding scheme
has the advantage of being self-clocking, which means that
the clock signal can be recovered from the bit stream. From
an electrical point of view, Manchester encoding allows for
DC-free physical interfaces.

Figure 5 further illustrates the properties that our design
needs to fulfill. As already mentioned, Manchester coding uses
two symbols to transmit a single bit, thus the “feature-size”
τref of the communication stream is half the actual bit-time
τbit. It can also be seen that the sampling points need to be
located at 25% and 75% of τbit, respectively. We intend to
achieve this quarter-bit-alignment by doubling the generated
tick-frequency (τgen = τref

2). Consequently, each rising edge

C
O
U
N
T
E
R

R
E
F

V
A
L

M
U
X

+1 +1-1

C O N T R O L
=

bus-line ref-time

Figure 6. Basic structure of the timer-reference generation circuit.

of signal ref-time defines an optimal sampling point. As our
circuit is implemented asynchronously, the generated reference
signal will be subject to jitter. Furthermore, temperature and
voltage fluctuations will also change the reference’s signal
period. It is therefore necessary to make the circuit self-
adaptive to changing operating conditions.

The basic structure of the circuit is shown in Figure 6. As
one can see, the interface of our design is quite simple. There
is only one input (bus-line, the receive-line of the TTP bus),
as well as one output (ref-time, an asynchronously generated
signal with known period). The dashed components and the
MUX have been added to the circuit to allow rate correction
on a by-bit basis in combination to the absolute measurement
of τref during the first bit of a message (SOF, Start-of-
Frame). If the control block detects the SOF signature, it
resets the free-running counter unit. The asynchronous counter
periodically increments its own value at a certain (variable)
rate, which mainly depends on the circuit structure, placement
and routing, and environmental conditions. After time τref ,
the corresponding end of SOF will eventually be detected
by the control-block. As a consequence, the current counter
value is preserved in register ref-val (reference value) and the
counter is restarted. The controller is now able to reproduce
the measured low-period τref by periodically counting from
zero to ref-val, and generating a transition on ref-time for each
compare-match. In order to achieve the 25%/75%-alignment,
we double the output frequency by simply halving ref-val.

IV. EXPERIMENTAL RESULTS

In this section we will present a detailed analysis of the
experiments we performed with the proposed circuit from
Figure 6. We will vary temperature and operating voltage and
monitor the generated time reference under these changing
conditions. Simultaneously, we will also evaluate the robust-
ness and effectiveness of the three compensation mechanism
implemented in the final design:

1) Low-Level State Correction: Measuring period τref of
the SOF sequence retrieves an absolute measure of the
reference time. However, as only one measurement is
performed per message, quantization errors and other
systematic, data-dependent delay variations significantly
restrict the achievable precision. The possible resolution
depends on the speed of the free-running counter, and

104 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

is at about 25ns for our current implementation3.
2) Low-Level Rate Correction: As the Manchester code

always provides a signal transition at 50% of τbit, we
can continuously adapt the measured reference value
ref-val. We only allow small changes to ref-val: It is
either incremented or decremented by one, depending
on whether the expected signal transitions are late or
early, respectively. The advantage of this additional cor-
rection mechanism is that quantization errors and data-
dependent effects are averaged over time, thus increasing
precision.

3) High-Level Rate Correction: The software-stack control-
ling the message transmission unit can add another level
of rate correction. As it knows the expected (from the
MEDL) and actual (from the transceiver unit) arrival
times of messages, the difference of both can be used to
calculate an error-term. High-level services and message
transmission can in turn be corrected by this term to
achieve even better precision. The maximum resolution
which can be achieved by this technique depends on the
baud-rate, and is half a bit-time.

Remark: We are well aware that the presented results can
only be seen as snapshot for our specific setup and technology.
Changing the execution platform will certainly change the
outcomes of our measurements, as jitter and the corresponding
frequency instabilities mainly depend on the circuit structure
and the used technology. However, from a qualitative point of
view, our results are valid for other platforms and technologies
as well, even if concrete measurements must be taken for a
quantitative evaluation.

A. Time Reference Generator

Before we start with the message transmission unit, which
implements all of the above compensation mechanisms, we
want to take a closer look at the basic building block (cf.
Figure 6). Clearly, compensation method (3) is not present,
as we just investigate the time reference generation unit. This
unit does not actually receive or transmit messages, it just
generates signal ref-time out of the incoming signal transitions
on the TTP bus. The measurement setup is fairly simple:
There is a (synchronous) sender, which periodically sends
Manchester coded messages. The asynchronous design uses
these messages to generate its internal time-reference. All
measurements have been taken while the bus was idle. This
way, we can observe the circuit’s capability of reproducing
the measured duration without any disturbing state- or rate
correction effects. If not stated otherwise, the measurements
are taken at ambient temperature and nominal supply voltage.

First we take a look at the frequency stability of ref-time
and cDone. The first part of the Allan-plot in Figure 7,
ranging from approximately 2∗10−8s to 10−4s on the x-axis,
is obtained by monitoring the handshaking signal capture-
done from a register cell. The second part, which starts at

3Notice that FPGAs are not in any way optimized for LEDR circuits. Dual-
rail encoding introduces not only considerable interconnect delays, but also
significant area overhead compared to ordinary synchronous logic.

10−8 10−6 10−4 10−2 10010−14

10−12

10−10

10−8

10−6

10−4

10−2

tau [s]

All
an

−V
ari

an
ce

(Hz
)

Capture−done
Time−reference

Figure 7. Allan-Variance.

0 500 1000 1500 2000
4960

4980

5000

5020

5040

5060

ref
−tim

e [n
s]

0 500 1000 1500 2000
256

257

258

259

260

261

262

263

264

265

266

time [s]

ref
−va

l

ref−time
ref−val

Figure 8. ref-val vs. timer reference period for temperature-tests.

3 ∗ 10−6s and thus slightly overlaps with capture-done, has
been obtained by measuring ref-time. Notice that it is no
coincidence that both parts in the figure almost match in
the overlapping section: Signal ref-time is based upon the
execution of the low-level hardware and is therefore directly
coupled to the respective jitter and stability characteristics. It
is obvious from the graph that the stability increases to about
10−10Hz for τ ≈ 10−2s. Furthermore, the reference signal is
far more stable than the underlying generation logic (cDone),
as periodically executing the same operations compensates
data-dependent jitter and averages random jitter. Although the
underlying low-level signals jitter considerably due to data-
dependent jitter, the circuit’s output is orders of magnitudes
more stable, as these variations are canceled out during the
periodic executions.

One of the major benefits of the proposed solution is its
robustness to changing operating conditions, thus we addition-
ally vary the environment temperature and observe the changes
in the period of ref-time. We heat the system from room
temperature to about 83◦C, and let it cool down again. Figure
8 compares ref-val to the signal period of ref-time. While
the ambient temperature increases, ref-val steadily decreases
from 265 down to 256. The period of ref-time makes an
approximately 19ns-step (the duration of a single execution
step) each time ref-val changes. During the periods where the
changes in execution speed cannot be compensated (because
they are too small), ref-time slowly drifts away from the
optimum at 5μs. Without any compensation measures the
duration of ref-time would be about 5180ns at the maximum
temperature, instead of being in the range of approximately
5μs ± 38ns (i.e. the duration of ± two execution steps),
no matter what temperature. Notice that the performance of
the self-timed circuit decreases by 3.5% at the maximum

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 105

Voltage [V]

Ji
tte

r H
is

to
gr

am
 [n

s]

0.8 1 1.2 1.4 1.6

20

30

40

50

60

70

80

90

Voltage [V]

C2
C

Ji
tte

r [
ns

]

0.8 1 1.2 1.4 1.6

−20

−15

−10

−5

0

5

10

15

Figure 9. Cycle-to-cycle jitter (left), Jitter histogram (right).

temperature, which seems to be relatively low, but it certainly
is a showstopper for reliable TTP communication.

Far more pronounced delay variations can be obtained by
changing the core supply voltage. We applied 0.8V to 1.68V in
steps of 20mV core voltage to our FPGA-board. This time the
execution speed of our self-timed circuit increased from about
80ns per step to approximately 15ns per steps, as shown in
Figure 9(right). This plot illustrates the jitter histogram on the
y-axis versus the FPGA’s core supply voltage on the x-axis.
Thereby, the densities of the histogram are coded in gray-scale
(the darker the denser the distribution). It is evident from the
figure that performance increases exponentially with the sup-
ply voltage. This illustration also shows other interesting facts:
For one, almost all voltages have at least two separate humps
in their histograms. These are caused by data-dependencies
that originate in the different phases ϕ0,1. Furthermore, for
low voltages, additional peaks appear in the histograms and
the separations between the phases increase as well. This can
be explained as data-dependent effects caused by different
delays through logic stages are magnified while the circuit
slows down. This property is better illustrated in Figure 9(left),
where cycle-to-cycle execution jitter is plotted over the supply
voltage. The graph appears almost symmetrically along the x-
axis, which is caused by the continuous alternation of phases.

We conclude that varying operating conditions not only af-
fect the speed of asynchronous circuits, but also the respective
jitter characteristics. In this perspective, slower circuits tend
to have higher jitter, which is further magnified by increased
quantization errors due to the low sampling rate.

B. Transceiver Unit

The message transmission unit will implement all three
compensation methods mentioned at the beginning of Section
IV. We intend to use this unit directly in the envisioned
asynchronous TTP controller, thus we need to examine the
gained precision of this design with respect to timeliness.
The interface from the controlling (asynchronous) host to the
sub-design of Section IV-A is realized as dual-ported RAM:
Whenever the bus transceiver receives a message, it stores the
payload in combination with the receive-timestamp4 in RAM

4We define the internal time to be the number of ticks of signal ref-time,
i.e., the number of execution steps performed by the bus transceiver unit.

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.2

−0.1

0

0.1

0.2

0.3

De
via

tio
n

[b
itt

im
es

]

0 1000 2000 3000 4000 5000 6000 7000 8000
20

30

40

50

60

70

Time [s/10]

Te
m

pe
ra

tu
re

 [°
C]

Figure 10. Relative deviation from optimal sending slot and operating
temperature.

1k 2k 5k 10k 20k 50k 75k 100k 200k 250k
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Baudrate [Hz]
De

vi
at

io
n

[b
itt

im
es

]
Figure 11. Mean relative deviation from optimal sending point vs. baudrate.

and issues a receive-interrupt. Likewise, the host can request
to transfer messages by writing the payload and the estimated
sending time into RAM and asserting the transmit request.

During reception of messages, the circuit can continuously
recalibrate itself to the respective baudrate, as Manchester code
provides at least one signal transition per bit. However, be-
tween messages and during the asynchronous node’s sending
slot, resynchronization is not possible. In these phases we
need to rely on the correctness of ref-time. The Start-Of-Frame
sequence of each message must be initiated during a relatively
tight starting window, which is slightly different for all nodes
and is continuously adapted by the TTP’s distributed clock
synchronization algorithm. Failing to hit this starting window
is an indication that the node is out-of-sync.

As we are interested in the accuracy of hitting the starting
window, we configured the controlling host in a way that
it triggers a message-transmission 25 bittimes after the last
bit of an incoming message. We simultaneously heated the
system from room temperature to about 68◦C to check on
the expected robustness against the respective delay variations.
The results are shown in Figure 10, where the deviation
from the optimal sending-point (in units of bittimes) and
the operating temperature are plotted against time. Similar
to Figure 8 one can see that while the circuit gets warmer
(and thus slower), the deviation steadily increases. As soon
as the accumulated changes in delay can be compensated by
the low-level measurement circuitry (i.e., ref-val decreases),
the mean deviation immediately jumps back to about zero.
We can see in the figure that the timing error is in the range
from approximately −0.1 to +0.2 bittimes, which will surely
satisfy the needs of TTP.

The next property we are interested in is the circuit’s behav-

106 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

1k 2k 5k 10k 20k 50k 75k 100k 200k 250k
−0.08

−0.06

−0.04

−0.02

0

0.02

Baudrate [Hz]

Re
l. d

ev
iat

ion
 [b

itt
im

e]

1k 2k 5k 10k 20k 50k 75k 100k 200k 250k
−5

0

5

10

15

20x 10−7

Ab
s.

de
via

tio
n [

s]

Relative deviation
Absolute deviation

Figure 12. Mean relative/absolute deviation from optimum bit-time.

ior with respect to different baudrates. Although low bitrates
have the advantage of minimizing the quantization error, jitter
has much more time to accumulate compared to high data
rates. It is thus not necessarily true that lower baudrates result
in a more stable and precise time reference. On the other hand,
if the data rate is too high, it is not possible to reproduce τref

correctly, and even small changes of the reference value ref-
val lead to large relative errors in the resulting signal period.
The optimum baudrate will therefore be located somewhere
between these extremes. Figure 11 illustrates this by plotting
the mean deviations of the optimum sending points versus
the bitrate (the “corridor” additionally shows the respective
standard deviations). Notice that the y-axis shows the relative
deviation in units of bit-times. Therefore, for example, the
absolute deviation of the 1kHz bit-rate is more than 50 times
larger than that of 50kHz. Clearly, TTP does not support
baudrates as low as 1kHz. Reasonable data rates are at least at
100kHz and above (up to 4Mbit/s for Manchester coding). Our
current setup allows us to use 100kbit/s for communication
with acceptable results. However, we hope to be able to
achieve 500kbit/s in our final system setup (with a more
sophisticated development platform and a further optimized
design).

Finally, we take a look at the accuracy of the generated time
reference for different baudrates. Figure 12 therefore shows
the mean relative (again in units of bit-times) and the absolute
(in seconds) deviations of the actual reference periods from
their nominal values. For all baudrates, the relative deviations
are within a range of approximately ±0.01 bit-times, or ±1%,
while the absolute timing errors are significantly larger for
baudrates below 50kbit/s.

V. CONCLUSION

In this paper we introduced the research project ARTS,
provided information on the project goals and explained the
concept of TTP. We proposed a method of using TTP’s bit
stream to generate an internal time reference (which is needed
for message transfer and most high-level TTP services). With
this transceiver unit for Manchester coded messages we per-
formed measurements under changing operating temperatures
and voltages. The results clearly show that the proposed ar-
chitecture works properly. The results further indicate that the
achievable precision is in the range of about 1%. This is not a
problem while other (synchronous) node are transmitting mes-

sages, as resynchronization can be performed continuously.
However, during message transmission, the design depends on
the quality of the generated reference time. Our measurement
show that we are able to hit the optimum sending point with
a precision of approximately ±0.3 bit-times (assuming an
interframe gap of 25 bits), which should be enough for the
remaining nodes to accept the messages.

However, there still is much work to be done. The presented
temperature and voltage tests are only a relatively small subset
of tests that can be performed. One of the most interesting
questions concerns the dynamics of changing operating con-
ditions: How rapidly and aggressively can the environment
change for the asynchronous TTP controller to still maintain
synchrony with the remaining system? It should be clear from
our approach that an answer to this question can only be
given with respect to the concrete TTP schedule, as message
lengths, interframe gaps, baudrate, etc. directly influence the
achievable precision of our solution. The next steps of the
project plan include the integration of the presented transceiver
unit into an asynchronous microprocessor, the implementation
of the corresponding software stack, and the interface to
the (external) application host controller. Once the practical
challenges are finished, thorough investigations of precision,
reliability and robustness of our asynchronous controller will
be performed.

REFERENCES

[1] C. J. Myers, Asynchronous Circuit Design. Wiley-Interscience, John
Wiley & Sons, Inc., 605 Third Avenue, New York, N.Y. 10158-0012:
John Wiley & Sons, Inc., 2001.

[2] J. Sparso and S. Furber, Principles of Asynchronous Circuit Design - A
Systems perspective. MA, USA: Kluwer Academic Publishers, 2001.

[3] N. Miskov-Zivanov and D. Marculescu, “A systematic approach to
modeling and analysis of transient faults in logic circuits,” in Quality of
Electronic Design, 2009. ISQED 2009., March 2009, pp. 408–413.

[4] H. Kopetz and G. Grundsteidl, “TTP - A Time-Triggered Protocol
for Fault-Tolerant Real-Time Systems,” Symposium on Fault-Tolerant
Computing, FTCS-23.

[5] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications. MA, USA: Kluwer Academic Publishers, 1997.

[6] M. E. Dean, T. E. Williams, and D. L. Dill, “Efficient Self-Timing with
Level-Encoded 2-Phase Dual-Rail (LEDR),” in Proceedings of the 1991
University of California/Santa Cruz conference on Advanced research
in VLSI. Cambridge, MA, USA: MIT Press, 1991, pp. 55–70.

[7] A. McAuley, “Four state asynchronous architectures,” IEEE Transac-
tions on Computers, vol. 41, no. 2, pp. 129–142, Feb 1992.

[8] D. Linder and J. Harden, “Phased logic: supporting the synchronous
design paradigm with delay-insensitive circuitry,” IEEE Transactions
on Computers, vol. 45, no. 9, pp. 1031–1044, Sep 1996.

[9] M. Delvai, “Design of an Asynchronous Processor Based on Code Alter-
nation Logic - Treatment of Non-Linear Data Paths,” Ph.D. dissertation,
Technische Universität Wien, Institut für Technische Informatik, Dec.
2004.

[10] K. Fant and S. Brandt, “NULL Convention LogicTM: a complete and
consistent logic for asynchronous digital circuit synthesis,” in ASAP
96. Proceedings of International Conference on Application Specific
Systems, Architectures and Processors, 1996., Aug 1996, pp. 261–273.

[11] I. E. Sutherland, “Micropipelines,” Communications of the ACM, Turing
Award, vol. 32, no. 6, pp. 720–738, JUN 1989, iSSN:0001-0782.

[12] M. Ferringer, “Coupling asynchronous signals into asyn-
chronous logic,” Austrochip 2009, Graz, Austria, http://www.
vmars.tuwien.ac.at/php/pserver/extern/download.php?fileid=1735.

[13] F. Bala and T. Nandy, “Programmable high frequency RC oscillator,” in
18th International Conference on VLSI Design., Jan. 2005, pp. 511–515.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 107

[14] M. Ferringer, G. Fuchs, A. Steininger, and G. Kempf, “VLSI Imple-
mentation of a Fault-Tolerant Distributed Clock Generation,” in 21st
IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems, 2006. DFT ’06., Oct. 2006, pp. 563–571.

[15] S. Fairbanks and S. Moore, “Self-timed circuitry for global clocking,”
2005, pp. 86 – 96.

[16] ——, “Analog micropipeline rings for high precision timing,” in 10th
International Symposium on Asynchronous Circuits and Systems, 2004.,
April 2004, pp. 41–50.

[17] V. Zebilis and C. Sotiriou, “Controlling event spacing in self-timed
rings,” in 11th IEEE International Symposium on Asynchronous Circuits
and Systems, 2005. ASYNC 2005., March 2005, pp. 109–115.

[18] A. Winstanley, A. Garivier, and M. Greenstreet, “An event spacing ex-
periment,” in Eighth International Symposium on Asynchronous Circuits
and Systems, 2002. Proceedings., April 2002, pp. 47–56.

[19] J. Ebergen, S. Fairbanks, and I. Sutherland, “Predicting performance of
micropipelines using charlie diagrams,” mar-2 apr 1998, pp. 238 –246.

[20] M. Shimanouchi, “An approach to consistent jitter modeling for various
jitter aspects and measurement methods,” in Proceedings of IEEE
International Test Conference, 2001., 2001, pp. 848–857.

[21] I. Zamek and S. Zamek, “Definitions of jitter measurement terms and
relationships,” in Proceedings of IEEE International Test Conference,
2005. ITC 2005., Nov. 2005, pp. 10 pp.–34.

[22] D. W. Allan, N. Ashby, and C. C. Hodge, “The
Science of Timekeeping,” 1997, application Note 1289.
http://www.allanstime.com/Publications/DWA/Science Timekeeping/
TheScienceOfTimekeeping.pdf.

[23] D. Howe, “Interpreting oscillatory frequency stability plots,” in IEEE
International Frequency Control Symposium and PDA Exhibition, 2002.,
2002, pp. 725–732.

[24] B. Butka and R. Morley, “Simultaneous switching noise and safety criti-
cal airborne hardware,” in IEEE Southeastcon, 2009. SOUTHEASTCON
’09., March 2009, pp. 439–442.

108 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

First Evaluation of FPGA Reconfiguration for
3D Ultrasound Computer Tomography

M. Birk, C. Hagner, M. Balzer, N.V. Ruiter
Institute for Data Processing and Electronics

Karlsruhe Institute of Technology
Karlsruhe, Germany

{birk, balzer, nicole.ruiter}@kit.edu

M. Huebner, J. Becker
Institute for Information Processing Technology

Karlsruhe Institute of Technology
Karlsruhe, Germany

{michael.huebner, becker}@kit.edu

Abstract—Three-dimensional ultrasound computer tomography
is a new imaging method for early breast cancer diagnosis. It
promises reproducible images of the female breast in a high qual-
ity. However, it requires a time-consuming image reconstruction,
which is currently executed on one PC. Parallel processing in
reconfigurable hardware could accelerate signal and image
processing. This paper evaluates the applicability of the FPGA-
based data acquisition (DAQ) system for computing tasks by
exploiting reconfiguration features of the FPGAs. The obtained
results show, that the studied DAQ system can be applied for
data processing. The system had to be adapted for bidirectional
data transfer and process control.

Keywords-Altera FPGAs, Reconfigurable Computing, 3D
Ultrasound Computer Tomography

I. INTRODUCTION

Breast cancer is the most common type of cancer among
women in Europe and North America. Unfortunately, an early
breast cancer diagnosis is still a major challenge. In today’s
standard screening methods, breast cancer is often initially
diagnosed after metastases have already developed [1]. The
presence of metastases decreases the survival probability of the
patient significantly. A more sensitive imaging method could
enable detection in an earlier state and thus, enhance survival
probability.

At the Institute for Data Processing and Electronics (IPE) a
three-dimensional ultrasound computer tomography (3D
USCT) system for early breast cancer diagnosis is being devel-
oped [2]. This method promises reproducible volume images of
the female breast in 3D.

Initial measurements of clinical breast phantoms with the
first 3D prototype showed very promising results [3, 4] and led
to a new optimized aperture setup [5], which is currently built
and shown in Figure 1. It will be equipped with over 2000 ul-
trasound transducers, which are in particular 628 emitters and
1413 receivers. Further virtual positions of the ultrasound
transducers will be created by rotational and translational
movement of the complete sensor aperture.

In USCT, the interaction of unfocused ultrasonic waves with an
imaged object is recorded from many different angles and
afterwards computationally focused in 3D. During a measure-
ment, the emitters sequentially send an ultrasonic wave front,

which interacts with the breast tissue and is recorded by the
surrounding receivers as pressure variations over time. These
data sets, also called A-Scans, are sampled and stored for all
possible sender-receiver-combinations, resulting in over 3.5
millions data sets and 20 GByte of raw data.

For acquisition of these A-Scans, a massively parallel,
FPGA-based data acquisition (DAQ) system is utilized. After
DAQ, the recorded data sets are transferred to an attached
computer workstation for time-consuming image reconstruc-
tion steps. The reconstruction algorithms need a significant
acceleration of factor 100 to be clinically relevant.

A promising approach to accelerate image reconstruction is
parallel processing in reconfigurable hardware. This prelimi-
nary work investigates the applicability of the above mentioned
DAQ system for further data processing tasks by a reconfigura-
tion of the embedded FPGAs.

Figure 1. Technical drawing of the new semi-ellipsoidal aperture. It will
be equipped with 628 ultrasound senders and 1413 receivers. During

measurement, emitters sequentially send an ultrasonic wave front, which
interacts with the breast and is recorded by the surrounding recievers.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 109

The remainder of this paper is structured as follows: Sec-
tion II describes the investigated FPGA-based DAQ system in
detail. In Section III, the examined reconfiguration methodolo-
gy is discussed. This includes derived design considerations
and necessary system adaptations. Section IV illustrates an
experimental procedure, which was used as proof of functional-
ity of the used reconfiguration methodology and as a perfor-
mance test of the DAQ system architecture. The paper is con-
cluded in Section V. Therein, the attained performance results
and limiting factors are discussed. Section VI gives an outlook
into future work in this field of research.

II. DATA ACQUISITION SYSTEM

The investigated data acquisition (DAQ) system has been
developed at IPE as a common platform for multi-project
usage, e.g. in the Pierre Auger Observatory [6], the Karlsruhe
Tritium Neutrino Project [7], and has also been adapted to the
needs of 3D USCT. The DAQ system is described in detail in
the following subsections.

A. Setup & Functionality
In the USCT configuration, the DAQ system consists of 21

expansion boards: one second level card (SLC) and 20 identical
first level cards (FLC). Up to 480 receiver signals can be
processed in parallel by processing 24 channels on each FLC,
resulting in a receiver multiplex-factor of three. The complete
system fits into one 19” crate, which is depicted in Figure 2.
The SLC is positioned in the middle between 10 FLCs to the
right and left, respectively.

The SLC controls the overall measurement procedure. It
triggers the emission of ultrasound pulses and handles data
transfers to the attached reconstruction PC. It is equipped with
one Altera Cyclone II FPGA and a processor module (Intel
CPU, 1 GHz, 256 MB RAM) running a Linux operating sys-
tem.

Figure 2. Image of the DAQ system in the USCT configuration. It is
composed of one Second Level Card (SLC) for measurement control and
communiation management (middle slot) and 20 First Level Cards (FLC)

for parallel sensor signal aqcuision and data storage.

2 MB

2 MB

2 MB

2 GB

Figure 3. Block diagram of the digital part of an FLC in the 3D USCT
DAQ system. It is equipped with four Altera Cyclone II FPGAs. One is
used for local control (control FPGA, Cntr FPGA) and three for signal

acuisition (computing FPGAs, Comp FPGA). Each Comp FPGA is fed by
an 8fold ADC and is attached to a 2 MB QDR static RAM. The Cntrl

FPGA is attached to an 2 GB DDRII dynamic RAM. There are two separate
means of communication between the FPGAs: the slow local bus (Local

Bus, 80 MB/s) and a fast data link (Fast Link, 240MB/s)

Communication with the attached PC is either possible via
Fast Ethernet or an USB interface. For communication between
SLC and the FLCs within the DAQ system a custom backplane
bus is used.

B. First Level Card
A FLC consists of an analogue and a digital part. Only the

digital part will be considered throughout this paper. A block
diagram of this part is given in Figure 3. Besides three 8fold
ADCs for digitization of the 24 assigned receiver channels, one
FLC is equipped with four Altera Cyclone II FPGAs, which are
used for different tasks:

� Control FPGA (Cntrl FPGA): One FPGA is used as lo-
cal control instance. It handles communication and da-
ta transfer to the other FPGAs and to the SLC via
backplane bus.

� Computing FPGA (Comp FPGA): The three other
FPGAs are used for actual signal acquisition. Each of
these is fed by one ADC and thus processes 8 receiver
channels in parallel.

As intermediate storage for the acquired A-Scans, there are
two different types of memory modules: Each computing
FPGA is connected to a distinct static RAM module (QDRII, 2
MB each) and the control FPGA is attached to a dynamic RAM
module (DDRII, 2 GB), summing up to a system capacity of
40 GB.

110 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

RAM

Figure 4. Data-flow of the DAQ system in the current configuration: the
acquired signals from the ultrasound receivers are conditioned and

afterwards digitized. They are digitally pre-filtered and decimated in the
FPGAs and stored in on-board memory. After a complete measurement,

they are transferred to an attached PC for further processing.

There are two separate means of communication between
the control FPGA and the computing FPGAs, see also Figure
3: a slow local bus with a width of 32bit (Local Bus, 80 MB/s)
and 8bit wide direct data links (Fast Links, 240MB/s per com-
puting FPGA). Additionally, there are several connections for
synchronization on board.

III. METHODOLOGY

As outlined in Section I, 3D USCT promises high-quality
volumetric images of the female breast and has therefore a high
potential in cancer diagnosis. However, it includes a set of
time-consuming image reconstruction steps, limiting the me-
thod’s general applicability.

To achieve a clinical relevance of 3D USCT, i.e. applica-
tion in clinical routine, image reconstruction has to be accele-
rated by at least a factor of 100. A promising approach to re-
duce overall computation time is parallel processing of recon-
struction algorithms in reconfigurable hardware.

In the current design, the DAQ system is only used for con-
trolling the measurement procedure and acquisition of the ul-
trasound receiver signals. The overall data-flow of the DAQ
system is shown in Figure 4. The acquired signals are condi-
tioned and subsequently digitized, digitally pre-filtered and
decimated in the FPGAs and afterwards stored in on-board
memory. After a complete measurement cycle, the resulting
data is transferred to an attached PC for signal processing and
image reconstruction.

In this preliminary work, the utilization of the FPGAs in the
DAQ system for further processing tasks has been investigated.
Due to resource limitations, the full set of the processing algo-
rithms cannot be configured statically onto the FPGAs in an
efficient manner, either alone or even less in combination with
the abovementioned DAQ functionality.

Therefore, a reconfiguration of the FPGAs is necessary to
switch between different configurations, enabling signal acqui-
sition and further processing on the same hardware system.

As the DAQ system has not been designed for further
processing purposes, the scope of this work was to identify its
capabilities as well as architectural limitations in this regard.

Only a reconfiguration of the FPGAs on the FLCs has been
investigated, since these hold the huge majority of FPGAs
within the complete system. Therefore, only these cards and
their data-flow are considered in the following sections. Fur-
thermore, an interaction of different FLCs has not been consi-
dered in this preliminary study.

Figure 5. Detailed data-flow on one FLC during the conventional
acquisition mode: Every FLC processes 24 receiver channels in parallel,
whereas a group of 8 signals is digitized in a single ADC. The resulting

digital signals are digitally filtered and averaged in the computing FPGAs.
Finally, the signals are transmitted to the control FPGA and stored in

DDRII memory.

Figure 6. Detailed data-flow on one FLC during the newly craeated
processing mode: As the data sets were previously stored in DDRII

memory, they are transferred back to QDRII memory and processed in the
computing FPGAs. Finally, the resulting data is stored again in DDRII

memory.

The hardware setup of a FLC was given in Section II and
shown in Figure 3. The detailed data-flow on a FLC in conven-
tional operation mode is shown in Figure 5. During DAQ, 24
receiver channels are processed per FLC. The signals are split
into groups of 8. Every group is digitized in one ADC and fed
into one computing FPGA. Within a FPGA, the signals are
digitally filtered and averaged by means of the attached QDR
memory. Finally, the measurement data is transmitted via fast
data links to the control FPGA, where it is stored in DDRII
memory and afterwards transmitted to the SLC via backplane
bus.

In this work, after completion of a measurement cycle, i.e.
the data is stored in DDRII memory, the FPGAs were reconfi-
gured to switch from conventional acquisition to data
processing mode. As depicted in Figure 6, instead of transmit-
ting the data sets via SLC to the attached PC, they were loaded
back to QDR II and subsequently processed in the computing
FPGAs. After completion, the resulting data was transmitted
back to the control FPGA and again stored in DDRII memory.
For providing this reconfiguration methodology, the following
tasks had to be performed:

� Preventing data loss during reconfiguration

� Establishing communication and synchronization

� Implementing bidirectional communication interfaces

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 111

Figure 7. Passive serial configuration of a the FPGAs on a FLC at start-up
time: first the control FPGA and then the computing FPGAs are configured

in parall with data from an embedded configuration ROM.

Figure 8. JTAG chain for reconfiguration of a the FPGAs on a FLC. In
JTAG reconfiguration mode, each FPGA can be selected seperately for a
reconfiguration, whereas deselected FPGAs remain in normal operation

mode. Reconfiguration of FPGAs in chain takes place sequentially.

A. Preventing data loss during reconfiguration
The DAQ system is built up of Altera Cyclone II FPGAs,

which do not allow partial reconfiguration [8]. Therefore, the
complete FPGA chip has to be reconfigured. To prevent a loss
of measurement data during the reconfiguration cycle, all data
has to be stored outside the FPGAs in on-board memory, i.e.
QDRII or DDRII memory.

The QDRII is static memory, so that stored data is not cor-
rupted during reconfiguration of the FPGAs on the FLC. How-
ever, only the larger memory (DDRII) is capable of holding all
the data sets recorded on one FLC. This dynamic memory
module needs a periodic refresh cycle to keep stored data. On
the FLC, the control FPGA is responsible for triggering these
refresh cycles.

During a reconfiguration this FPGA is not able to perform
this task. Since a refresh interval of the dynamic memory mod-
ule is in the order of a few microseconds and a reconfiguration
of the control FPGA takes even in the fastest mode about
100ms [8], it must not be reconfigured, or otherwise data in
DDRII memory is lost.

Due to this requirement, only the three computing FPGAs
are allowed to be reconfigured during operation. At a normal
start-up of the DAQ system, all FPGAs on a FLC are confi-
gured via passive serial mode [8] with data from an embedded
configuration ROM. As depicted in Figure 7, first the control
FPGA and then all three computing FPGAs are configured in
parallel in this mode.

In the current hardware setup it is not possible to exclude
the control FPGA from a configuration in passive serial mode.
Thus, each FPGA on the FLC has to be addressed and reconfi-
gured separately, which is only possible in JTAG configuration
mode [8] by using a JTAG chain through all four FPGAs as

shown in Figure 8. In JTAG mode, each FPGA within the
chain has to be configured sequentially.

B. Communication and Synchronization
Another important task in establishing the described recon-

figuration methodology was to organize communication and
control on the FLC as well as synchronization of parallel
processing on the computing FPGAs.

As described in Section II, there are two means of commu-
nication between the computing FPGAs and the control FPGA,
see also Figure 3: the slow local bus (Local Bus) and fast direct
data links (Fast Links).

In conventional DAQ operation mode, measurement data is
transmitted only in the direction from computing FPGAs to the
control FPGA. Unfortunately, due to operational constraints in
the FPGA pins, which are assigned for the fast links, this con-
nection can only be used in the abovementioned sense, i.e. un-
idirectional.

Thus, in processing mode, the slower local bus has to be
used for data transfer, since only this connection allows a bidi-
rectional communication. The complete communication infra-
structure is shown in Figure 9.

As the control FPGA is not reconfigured during operation,
it must be statically configured to handle data transfer in each
system state, i.e. DAQ as well as processing mode. Further-
more, it must be able to determine the current state in order to
act appropriately. As also depicted in Figure 9, a single on-
board spare connection (conf_state) is used for that purpose,
which is connected to all four FPGAs.

In addition, each computing FPGA can be addressed and
selected directly by the control FPGA via further point-to-point
links to establish process control and synchronization. The re-
spective chip_select signal triggers processing in a computing
FPGA and by the busy signal completion of processing is indi-
cated to the control FPGA.

Figure 9. Communication structure during processing mode on a FLC:
bidrectional data transfer is only possible via the slower Local Bus (80
MB/s). Separate point-to-point links (chip_select & busy) are used for

control and synchronization of parallel processing. A further single point-
to-point link is connected to all four FPGAs and indicates the current

system state, i.e. DAQ or processing mode.

112 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Figure 10. Block diagram of an computing FPGA: defined interfaces for
communiation with the control FPGA (communication I/F) via Local Bus
or Fast Links and access to QDRII memory (memory I/F). The variable

algorithmic part is also indicated.

C. Communication Interfaces
A further task was structuring communication and memory

interfaces in the computing FPGAs. As a result, modular inter-
faces for transmitting data over the Local Bus (communication
I/F) and storing data in QDRII memory (memory I/F) were
created. Figure 10 shows a block diagram of these modules on
the computing FPGAs. The created modular design allows a
simple exchange of algorithmic modules without the need to
change further elements.

The communication interface is controlled by the control
FPGA. It performs data transfers via Local Bus during
processing or via fast data link during DAQ mode. The memo-
ry interface handles accesses to the QDRII memory. It can be
either accessed by the control FPGA via Local Bus or by the
algorithmic modules. In the current configuration, an algorith-
mic module only interacts with the memory interface and thus,
only processes data which has already been stored in QDRII
memory.

In order to guarantee a seamless data transfer over the Lo-
cal Bus, the respective memory interface in the control FPGA
had to be supplemented by a buffered access mode to the
DDRII memory. When a data transfer is initialized, enough
data words are pre-loaded into a buffer, so that the transmission
is not interrupted during a refresh cycle.

IV. EXPERIMENTAL RESULTS

The reconfigurable computing system was tested by acqui-
sition of a test pulse. The used pulse was in the same frequency
range as regular measurement data and was handled as a nor-
mal data set (A-Scan). This was followed by the reconfigura-
tion of the computing FPGAs and an exemplary data
processing. The main goals were to determine the required
transfer time per data set over the Local Bus as well as reconfi-
guration times.

A. Test setup
For functional validation and performance measurements, a

reduced setup of the complete DAQ system, containing a SLC
but only one FLC was used. However, as in the current confi-
guration only a single FLC without interactions with other
FLCs has been considered, this setup allows a projection for a
fully equipped system.

Figure 11. Detailed test procedure after DAQ and manual reconfiguration of
the computing FPGAs via JTAG. Firstly, computing FPGA A is supplied

with a set of A-Scans and processing on this FPGA is started. While
processing is underway, also data transfer and processing on the computing
FPGAs B and C is initiated. After completion of processing on FPGA A, the
resulting data is tranferred back to DDRII memory and further unprocessed
A-Scans are loaded. This scheme is applied repeatedly until all data sets are

processed.

B. Detailed Test Procedure
The system has been tested as follows: At system start-up,

the initial DAQ configuration was loaded into the FPGAs as
outlined in Section IIa. Afterwards, the test pulse has been ap-
plied at the inputs of the ADCs on the FLC. This pulse was
digitized and finally stored in DDRII memory.

The further detailed procedure is indicated in Figure 11. Af-
ter a manual reconfiguration of the computing FPGAs via
JTAG, the first set of A-Scans were transferred to the first
computing FPGA (FPGA A) via Local Bus, stored in its at-
tached QDRII memory and subsequently processed. While data
in this FPGA is being processed, the other two computing
FPGAs (FPGA B and FPGA C) are supplied with their initial
data sets and processing on these FPGAs is started.

After completion of processing in FPGA A, the resulting A-
Scan data was transmitted back to DDRII memory and subse-
quently further unprocessed A-Scans were sent to this FPGA.
This scheme is repeatedly applied until all A-Scans have been
processed.

C. Results
A JTAG configuration of a single computing FPGA re-

quires 1.8s, resulting in a reconfiguration time of 5.4s for one
FLC, when only the three computing FPGAs are configured in
a JTAG chain. A reconfiguration of all 60 computing FPGAs,
distributed over the 20 FLCs in the complete DAQ system
would take up to 2 minutes by building up a JTAG chain
through all FPGAs. The determined JTAG reconfiguration
times are illustrated in Table I.

TABLE I. JTAG RECONFIGURATION TIMES

Procedure Required time

Reconf. of one computing FPGA 1.8s

Reconf. of one FLC 5.4s

Extrapolated reconf. of the DAQ system ~2min

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 113

TABLE II. COMPUTING FPGA OCCUPATION

Components
Configuration

Data Acquisition Data Processing Comm & Mem I/F only

Logic Elements 5766 (17%) 9487 (29 %) 1231 (4%)

Embedded Multipliers 68 (97%) 64 (91%) 0 (0%)

Memory Bits 4236 (<1%) 393268 (81%) 0 (0%)

The transfer of one data set via Local Bus in either direc-
tion, i.e. from control FPGA to computing FPGA or vice versa,
takes 75us. Usage of the Local Bus limited to one computing
FPGA at a time and the same bus is used for data transfer to
and from all three computing FPGAs.

Assuming the applied data parallel processing strategy, i.e.
each computing FPGAs performs the same computation on a
different data set, a high efficiency can only be reached, if the
following condition holds:

The parallelized processing time per A-Scan on a compu-
ting FPGA has to be longer than 450us, which is 6 times the
transmission time of a single data set. In this context, paralle-
lized time is the processing time per A-Scan on one computing
FPGA divided by the number of concurrently processed A-
Scans on this FPGA. In this case, transfer time to and from all
three FPGAs could be hidden. As observable in Figure 11, this
requirement was not completely fulfilled by our exemplary
data processing.

Table II outlines the occupation of the computing FPGA
during the test procedure. The extensive use of embedded mul-
tipliers in DAQ mode, which are required due to the hard real-
time constraints, state a clear demand for the established recon-
figuration methodology. Furthermore, the implemented com-
munication and memory interfaces are lightweight, occupying
only 4% of the device’s logic elements.

As the main result of this preliminary work, the possibility
of reusing the existing DAQ system for data processing has
been shown. By the reconfiguration of the FPGAs the functio-
nality of the complete system has been increased.

V. CONCLUSIONS & DISCUSSION

In this paper, the concept of a reconfigurable computing
system based on an existing DAQ system for 3D USCT has
been presented.

The main drawback of the existing system is the slow data
transfer over the Local Bus, which limits the achievable per-
formance during the processing phase. This issue could partly
be resolved by using a modified communication scheme, where
data transfers from the computing FPGAs to the control FPGA
is still done via Fast Links as in DAQ mode and the Local Bus
is only used for the opposite direction.

Likewise, due to the long reconfiguration time, the number
of reconfiguration cycles gives an essential contribution to the

total processing time. To which extend this constraint will re-
strict the applicability of the presented methodology can not be
assessed at this point and needs a further investigation. Howev-
er, the reconfiguration time could be significantly reduced by
separate JTAG chains for each FLC and concurrent reconfigu-
ration.

VI. OUTLOOK

For future work, two obvious aspects have already been de-
rived in the last section. Namely, reducing data transfer time by
a modified communication scheme in the processing phase and
reducing reconfiguration time by parallel JTAC chains.

Further tasks will also be porting processing algorithms to
the DAQ system and thus, evaluating the established reconfigu-
ration ability in real application.

What has not been considered so far is a direct communica-
tion between the computing FPGAs on a FLC and an interac-
tion of different FLCs in general. This would open up manifold
implementation strategies for algorithmic modules, besides the
applied data parallel scheme.

In the long term, the next redesign of the DAQ system will
put special focus on processing capabilities, e.g. high-speed
data transfer.

VII. REFERENCES

[1] D. van Fournier, H.J.H.-W. Anton, G. Bastert, “Breast cancer
screening”, P. Bannasch (Ed.), Cancer Diagnosis: Early Detection,
Springer, Berlin, 1992, pp. 78-87.

[2] H. Gemmeke and N. V. Ruiter, “3D ultrasound computer tomograph for
medical imaging,” Nucl. Instr. Meth., 2007

[3] N.V. Ruiter, G.F. Schwarzenberg, M. Zapf and H. Gemmeke,
"Conclusions from an experimental 3D Ultrasound Computer
Tomograph," Nuclear Science Symposium, 2008.

[4] N.V. Ruiter, G.F. Schwarzenberg, M. Zapf, A. Menshikov and H.
Gemmeke, “Results of an experimental study for 3D ultrasound CT,”
NAG/DAGA Int. Conf. On Acoustics, 2009

[5] G.F. Schwarzenberg, M. Zapf and N.V. Ruiter, “Aperture optimization
for 3D ultrasound computer tomography,” IEEE Ultrasonics
Symposium, 2007

[6] H. Gemmeke, et al., “First measurements with the auger fluorescence
detector data acquisition system,” 27th International Cosmic Ray
Conference, 2001.

[7] A. Kopmann, et al. "FPGA-based DAQ system for multi-channel
detectors," Nuclear Science Symposium Conference Record, 2008.

[8] Altera Corporation, “Cyclone II Device Handbook”, 2007

114 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

ECDSA Signature Processing over Prime Fields for
Reconfigurable Embedded Systems

Benjamin Glas, Oliver Sander, Vitali Stuckert, Klaus D. Müller-Glaser, and Jürgen Becker
Institute for Information Processing Technology (ITIV)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

Email: {glas,sander,becker,kmg}@itiv.uni-karlsruhe.de

Abstract—Growing ubiquity and safety relevance of embedded
systems strengthens the need to protect their functionality against
malicious attacks. Communication and system authentication
by digital signature schemes is a major issue in securing such
systems. This contribution presents a complete ECDSA signature
processing system over prime fields on reconfigurable hardware.
The flexible system is tailored to serve as a autarchic subsystem
providing authentication transparent for any application. Inte-
gration into a vehicle-to-vehicle communication system is shown
as an application example.

I. INTRODUCTION

With emerging ubiquitity of embedded electronic systems
and a growing part of distributed systems and functions even
in safety relevant areas the security of embedded systems
and their communication gains importance quickly. One major
concern of security is authenticity of communication peers
and the information exchange. Especially if many different
remote participants have to communicate or not all participants
are known in advance, asymmetric signature schemes are
beneficial for authentication purposes. In contrast to symmetric
schemes like the Keyed-Hash Message Authentication Code
HMAC [1], asymmetric signature schemes like RSA [2],
DSA [3] and the ECDSA scheme [3] considered in this
contribution get along without key exchange or predistributed
keys, relaying usually on a certification authority as trusted
third party instead.

This benefit comes at the cost of a much greater computa-
tional complexity of these schemes compared to authentication
techniques based on symmetric ciphers or solely on hashing.
This imposes major problems especially for embedded systems
where resources are scarce.

This contribution presents a hardware implemented system
for complete prime field ECDSA signature processing on
FPGAs. It can be integrated as an autarchic subsystem for
signature processing in embedded systems. As an application
example the integration in a vehicle-to-vehicle communication
system is presented.

The remainder of this paper is organized as follows. In the
following section II some related work is given, section III
presents basics of the implemented signature scheme ECDSA
and section IV outlines the assumed situation and requirements
for the system. The structure and implementation of the
signature system itself is presented in section V and section

VI shows an application example and integration in a wireless
communication system. Section VII details on performance
and resource usage. The contribution is concluded in section
VIII.

II. RELATED WORK

Since elliptic curves where proposed as basis for public
key cryptography in 1985 by Koblitz [4] and Miller [5]
independently, many implementations of prime field ECDSA
and elliptic curve cryptography (ECC) in general have been
published. Software implementations on general purpose pro-
cessors need lots of computation power. The eBACS ECRYPT
benchmark [6] gives values for 256 bit ECDSA of e.g. 1.88
msec for generation and 2.2 msec for verification on a Intel
Core 2 Duo at 1.4 GHz, and 2.9 msec resp. 3.4 msec on
an Intel Atom 330 at 1.6 GHz. Values for a crypto system
based on a ARM7 32-bit microcontroller are given in [7] for
a key bitlength of 233 bit. Using a comb table precomputation
(w = 4) 742 ms are needed for a generation and 1240 ms for
a verification of an ECDSA signature.

To achieve usable throughputs and latencies on embedded
systems, various specialized hardware has been proposed, e.g.
many approaches for implementation of Fp arithmetic and the
ECC primitives point add and point double on reconfigurable
hardware. A survey of hardware implementations can be found
in [8]. Güneysu et al present in [9] a very fast approach based
on special DSP FPGA slices. The implementation presented
here is based on a Fp ALU presented by Gosh et al [10].

Nevertheless open implementations of complete signature
processing units performing complete ECDSA are scarce.
Järvinen et al [11] present a Nios II based ECDSA system
on an Altera Cyclone II FPGA for a key length of 163 Bit
performing signature generation in 0.94 msec, verification in
1.61 msec.

This contribution presents an FPGA-based autarchic
ECDSA system for longer key lengths of 256 bit containing
all necessary subsystems for application in embedded systems
on reconfigurable hardware.

III. ECDSA FUNDAMENTALS

The Elliptic Curve Digital Signature Algorithm ECDSA is
based on group operations on an elliptic curve E over a finite
field Fq . Mostly two types of finite fields are technically used:

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 115

Fields F2n of characteristic two and prime fields Fp with large
primes p.

Algorithm 1 ECDSA signature generation
Input: Domain parameter D = (q, a, b,G, n, h), secret key d, message m
Output: Signature (r, s)

1: Chose random k ∈ [1, n− 1], k ∈ N

2: Compute kG = (x1, y1)
3: Compute r = x1 mod n. If r = 0 goto step 1.
4: Compute e = H(m)
5: Compute s = k−1(e+ dr) mod n. If s = 0 goto step 1.
6: return (r, s).

For the use of ECDSA a set of common domain parameters
is needed to be known to all participants. These are the
modulus q identifying the underlying field, parameters a, b
defining the elliptic curve E used, a base point G ∈ E, the
order n of G and the cofactor h = order(E)

n . The signature
generation and verification for a key pair (Q, d) can then
be performed using the secret key d or the public key Q
respectively. The procedures needed are shown in algorithms
1 and 2.

Algorithm 2 ECDSA signature verification
Input: Domain parameter D = (q, a, b,G, n, h), public key Q, message m,

signature (r, s).
Output: Acceptance or Rejection of the signature

1: if ¬(r, s ∈ [1, n− 1] ∩ N) then
2: return ”reject”
3: end if
4: Compute e = H(m)
5: Compute w = s−1 mod n.
6: Compute u1 = ew mod n and u2 = rw mod n.
7: Compute X = (xX , yX) = u1G+ u2Q.
8: if X =∞ then
9: return ”reject”

10: end if
11: Compute v = xX mod n.
12: if v = r then
13: return ”accept”
14: else
15: return ”reject”
16: end if

IV. SETUP AND SITUATION

We assume an embedded system communicating with sev-
eral peers which are not entirely known in advance. Therefore
the exchanged signed messages are sent with a certificate
attached that is issued by a commonly trusted certification
authority.

This contribution focuses on prime field ECDSA as it
is proposed also for the application example. Implemented
are especially two elliptic curves recommended by the U.S.
National Institute of Standards and Technology (NIST) in [12],
namely the curves p224 and p256 with bitlengths 224 and 256
respectively and the corresponding domain parameters also
given in the standard.

The proposed system works as a security subsystem ex-
clusively performing signature processing and passing and
receiving messages m to and from the external system.

V. SIGNATURE PROCESSING SYSTEM

Processing of ECDSA consists of several layers of computa-
tion. On the top level the signature generation and verification
algorithms as well as the certificate validation are performed.
These signature scheme-dependent layer is based on the group
operations point add (PA) and point double (PD) in the
underlying elliptic curve. These are in turn based on the
underlying finite prime field (Fp) arithmetic, that is modular
arithmetic modulo a prime p. In a even higher layer there is
also the communication protocol to consider at least partially
as needed for the signature system.

������	
��
����
������	
������
����������
���������

����������	
���
����
�����
��	��������
������

��!	��

"�#�$

����
���	�

��
�

�
��	�	�
���

����

�������
���

�������
���

Fig. 1. Overview of the signature system

The architecture and presentation of the system reflects this
layering. The two upper layers are implemented as finite state
machines (FSM) and make use of a basic Fp arithmetic logical
unit (ALU) and some additional auxiliary modules. Figure 1
outlines the structure of the system. The different building
blocks are detailed in the following paragraphs.

A. Fp modular ALU

The central processing is done by a specialized Fp-ALU for
primes of maximum 256 bit length. It is based on the ALU
proposed by Ghosh et al in [10]. Figure 2 depicts the structure.
The ALU contains one Fp adder, subtractor, multiplier and
divider/inverter each. All registers and datapaths between the
modules are 256 bit wide so that complete operands up to 256
bit width (as in the p256 case) can be stored and transmitted
within a single clock cycle. Four Inputs, two outputs and
four combined operand/result register as well as a flexible
interconnect allow for a start of two operations each at the
same time as long as they do not use the same basic arithmetic
units. The units perform operations independently, so that
using different starting points parallel execution in all four
subunits is possible. This allows for parallelisation in the scalar
multiplication (see paragraph V-B1).

The Fp-adder and -subtractor perform each operation in
a single clock cycle as a general addition/subtraction with
subsequent reduction. The Fp multiplying module computes
the modular multiplication iteratively as shift-and-add with
reduction mod p in every step. It therefore needs |p| clock
cycles for one modular multiplication, |p| being the bitlength

116 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

��! ��! ��! ��!

�
&

'�'�'�'�

*���7 *���8 *���9 *���;

�

&

�

&

?�7 ?�8 ?�9 ?�;

@	�8@	�7

�����	��	��
�����
��� *�� �����	���
�	��
�

���
�

��!Q

���
�

��!Q

!��X���

�	��X����!!X���

�	YX���

��X
��X��X��� ��X
��X�!X���

!��	����������"	�
� ���	����������"	�
�

Fig. 2. Schematic overview of the Fp ALU

of the modulus and thereby also the maximum bitlength of the
operands.

Modular inversion and division is the most complex task
of the ALU. It is based on a binary division algorithm on
Fp, see [10] for details. The runtime depends on the input
values, maximum runtime being 2|p| clock cycles, in the p256
case therefore up to 512 cycles. Statistical analysis showed an
average runtime of 1.5 · |p| clock cycles.

ALU control is performed over multiplexer and module
control wires and is implemented as finite state machine
presented in the following paragraph. The complete ALU
allocates 14256 LUT/FF pairs in a Xilinx Virtex-5 FPGA and
allows for a maximum clock frequency of 41.2 MHz (after
synthesis).

In addition to the 256 bit arithmetic based on the modulus
p256 the ECDSA unit also implements the arithmetic for
modulus p224. This can be done using the same hardware
and is also implemented in the overlaying FSM. Theoretically
all moduli up to 256 bit width are supported by the ALU.
Details on resource consumption and performance values are
given in section VII.

B. Elliptic curve processing

On the elliptic curve E addition of points is defined as group
operation. Doubling of a point is specially implemented as it
requires a different computation because general point addition
is not defined with operands being equal. A comprehensive
introduction to elliptic curve arithmetic including algorithms
can be found in [13].

The operation schedules for point addition and point dou-
bling for execution on the ALU are given in tables I and II.

The execution schedules map the operations to the executing
units using three auxiliary register t1, t2, t3 for storing inter-
mediate results.

1) Scalar multiplication on E: Scalar multiplication is the
central step 2 of the signature generation algorithm 1. Com-
putation is done iteratively using the so-called Montgomery
ladder [14], [15] showed in algorithm 3.

Step Fp unit # cycles
1. t1 = y2 − y1 sub 1
2. t2 = x2 − x1 sub 1
3. t2 = t1/t2(= λ); t3 = x1 + x2 div; add max. 2|p|
4. t1 = t2 · t2 mult |p|
5. t1 = t1 − t3(= x3) sub 1
6. t1 = x1 − t1 sub 1
7. t1 = t2 · t1 mult |p|
8. t1 = t1 − y1(= y3) sub 1

max. 4|p|+ 5

TABLE I
HARDWARE EXECUTION OF POINT ADDITION

Step Fp unit # cycles
01. t1 = x1 · x1 mult |p|
02. t2 = t1 + t1 add 1
03. t1 = t1 + t2 add 1
04. t1 = t1 + a add 1
05. t2 = y1 + y1 add 1
06. t2 = t1/t2(= λ); t3 = x1 + x1 div; add max. 2|p|
07. t1 = t2 · t2 mult |p|
08. t1 = t1 − t3(= x3) sub 1
09. t1 = x1 − t1 sub 1
10. t1 = t2 · t1 mult |p|
11. t1 = t1 − y1(= y3) sub 1

max. 5|p|+ 7

TABLE II
HARDWARE EXECUTION OF POINT DOUBLING

The operations in the branches inside the FOR-loop, mean-
ing steps 5 and 6 in the IF-branch rsp. 8 and 9 in the
ELSE-branch can be executed in parallel. Since it is a point
addition and a point doubling each, a real parallel execution
on the ALU is possible using a tailored scheduling. Figure 3
depicts the implemented schedule. Execution time is therefore
at maximum ((|p| − 1) · (6|p|+7)+ (5|p|+7)) = 6|p|2+6|p|
clock cycles for the combination of point add and point double.

2) Double scalar multiplication: For verification of
ECDSA signatures two independent scalar multiplications
have to be executed (see algorithm 2 step 7). Instead of
computing independently in sequence it is faster to compute
them together using an approach published originally by
Shamir [16] also known as ”Shamirs trick” shown in algorithm
4.

Algorithm 3 Scalar multiplication in E

Input: Point P ∈ E; Integer k =
l−1∑

i=0
ki2

i with ki ∈ {0, 1} and kl−1 = 1.

Output: Point Q = kP ∈ E.

1: P1 = P
2: P2 = 2P
3: for i = l − 2 downto 0 do
4: if k = 0 then
5: Pnew

1 = 2P old
1

6: Pnew
2 = P old

1 + P old
2

7: else
8: Pnew

1 = P old
1 + P old

2
9: Pnew

2 = 2P old
2

10: end if
11: end for
12: return Q = P1

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 117

#$$ �%& �%' $*,

Fig. 3. Parallel Scheduling of PA and PD

Algorithm 4 Simultaneous multiple point multiplication

Input: Point P,Q ∈ E; Integers k =
l−1∑

i=0
ki2

i and m =
l−1∑

i=0
mi2

i

with ki,mi ∈ {0, 1} and kl−1 ∨ml−1 = 1.
Output: Point X = kP +mQ ∈ E.

1: Precomputation: P +Q
2: X = O (point at infinity)
3: for i = l − 2 downto 0 do
4: X = 2X
5: X = X + (kiP +miG)
6: end for
7: return X

In contrast to algorithm 3 the central operations in steps
4 and 5 cannot be parallelized as they depend on each
other. The maximum time consumption of the algorithm is
therefore ((4|p| + 5) + |p| · ((5|p| + 7) + (4|p| + 5))) =
9|p|2+16|p|+5 clock cycles. This is nevertheless less than the
2 · (6|p|2 +6|p|)+ (4|p|+5)) = 12|p|2 +16|p|+5 cycles two
independent scalar multiplications would consume. Assuming
uniform distribution step 5 is omitted in 25% of the cases
leaving an estimated runtime of ((4|p|+5)+ |p| · ((5|p|+7)+
0, 75 · (4|p|+ 5))) = 8|p|2 + 14, 75|p|+ 5 clock cycles.

C. Signature and certificate control system

On top of the elliptic curve (EC) operations and the control
FSM performing them the actual signature algorithms and
the certificate verification are implemented. This is done in
a seperate FSM (see figure 1), controlling the EC arithmetic
FSM, some registers and the auxiliary hashing and random
number generation. Figure 4 shows the sequence of operations
of the signature verification. See algorithms 1 and 2 for the
implemented procedures.

This FSM is the upmost layer of the signature module and
provides a register interface for operands like messages, sig-
natures, certificates and keys. For integration in an embedded
system it has to be wrapped to support the message format and
create the inputs to select the function needed. An example for
an integration is given in section VI.

��#�/;���<

�*>?

�
�������
�
'��@KQ

Z[K/\�]K�\^

�
��	�	���

,��	`��	��

;��������{<

��
��	�	
���
����K���	��

$	����`�
�
����

��
�@��	����K�

�	����K�

,��	`?

�
$

|

|

�
��	�	���

,��	`

}��

|

}��

����
����~�*��>Z�
&K��
�

�
��	�	���

����

�
�`

����
��
��	�	���

;'�%<

{�	�

}��

�
����
��Z

Fig. 4. Procedure for signature verification

D. SHA2 Hashing Module

The SHA2 hashing unit provides functions SHA-224 and
SHA-256 according to the Secure Hash Algorithm (SHA)
standard [17]. It is based on a freely available verilog SHA-256
IP-core1 adapted with a wrapper performing precomputation
of the input data and providing a simple register interface
accepting data in 32 bit chunks. In addition the core has been
enhanced to support SHA-224. Figure 5 shows an overview.

�
��
��������
����
��
������
�����
�

�Z��88;\8^`
��
�

����
�������"	������
*�	�!�"	������

���������|��������"	������

���
�

�~�X��!�

!���X�����~

!���

��|���
!X
��

��!Q

~��~

Fig. 5. Schematic overview of hashing submodule

The unit processes input data in blocks of 512 bit needing
68 clock cycles each at a maximum clock frequency of 120
MHz (after synthesis) and a ressource usage of 2277 LUT/FF-
pairs. After finishing the operation the result is available in a
256 bit register.

E. Pseudo-Random Number Generation

For ECDSA signature generation, a random value k is
needed. To provide this k the system incorporates a Pseudo-
Random Number Generator (PRNG) consisting of a two linear
feedback shift registers (LFSR), one with 256 bit length,
feedback polynomial x255+x251+x246+1 and a cycle length
of 2256 − 1 [18] and a second LFSR with 224 bit length,
feedback polynomial x222+x217+x212+1 and a cycle length
of 2224 − 1.

The LFSR occupies 480 LUT/FF pairs and allows for a
maximum clocking of 870 MHz although operated in the

1Available as SHA IP Core at http://www.opencores.com

118 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

system in the general system clock of 50 MHz. It is operated
continuously to reduce predictability of the produced numbers.
The current register content is read out on demand.

F. Certificate Cache

Usually digital signatures or their respective public key
needed for verification are endorsed by a certificate issued by
a trusted third party, a so-called certification authority (CA),
to prove its authenticity. Verification of the certificate requires
a signature verification itself and is therefore equally complex
than the main signature verification of the message. If com-
municating several messages with the same communication
peer using the same signature key the certificate can be stored
hence saving the effort for repetitive verification.

The system incorporates a certificate cache for up to 81
certificates stored in two BRAM blocks. It can be searched in
parallel to the signature verification. Replacement of certifi-
cates is performed using a least recently used (LRU) policy.

VI. APPLICATION EXAMPLE

The system offers complete ECDSA signature and certifi-
cate handling and can be used in a variety of embedded
systems seeking authentication and security of communication.
As an application example we show the integration into a
vehicle-to-X (V2X) communication system. V2X communi-
cation is an emerging topic aiming at information exchange
between vehicles on the road and between vehicles and
infrastructure like roadside units. This can be used to enhance
safety on roads, optimize traffic flow and help to avoid traffic
congestions.

To be able to base decisions and applications on information
received from other vehicles, trustworthiness of this infor-
mation is mandatory. To ensure the validity and authenticity
of information, signature schemes are used to protect the
messages broadcasted by the participating vehicles against
malicious attacks. As V2X communication is at present in the
process of standardization, no fixed settings are available yet,
but the use of ECDSA is proposed in the IEEE 1609 Wireless
Access in Vehicular Environments standard draft [19] as well
as the proposals of european consortia [20].

In the chosen realization V2X communication is performed
by a modular FPGA-based On-Board-Unit (OBU) presented
in [21]. It consists of different functional modules connected
by a packet-based on-chip communication system [22]. The
signature verification system is integrated as a submodule
and performs signature handling for incoming and outgoing
messages automatically, being therefore transparent to the
other modules except for the unavoidable processing latency. It
is connected to two different on-chip communication systems,
one transmitting unsecured messages and the other transmit-
ting only secured messages containing signatures and certifi-
cates. A short description of the security system and its system
integration is given in [23]. Figure 6 depicts the wrapped
signature system with the interfacing to both communication
structures.

�����

����'����

*������
����

���
����
����

�������
*��

��������

����
��
����	�

����	�
����

����
��

��Q
��������

����
��

����

�@��?���
�����8

����	�
�

����
����
��

�@��?���
�����7

����	�
�

��������
��

������'	�

��!��'	�

��
������������~�

$*

������

���
������

Z��~
������

���
��*$

���\?"

����

Fig. 6. Wrapping of the signature system for V2X-integration

The signature system accepts incoming messages, verifies
signatures and certificates and passes only verified messages
on to further processing. In case of an invalid signature the
outer system is informed. For outgoing messages signatures
are generated and the corresponding certificate is attached to
the message which is then passed on to the wireless interface.

A. Key container

In the V2X environment privacy of participants is of major
importance. As messages containing vehicle type and values
like current position, speed and heading are continuously
broadcasted from twice to up to ten times a second, these
messages could easily be used by an eavesdropper to trace
participants. To counter such attempts anonymity in the form
of pseudonyms is used that are changed on a regular basis. A
number of pseudonymes for change are stored directly in the
signature modules key container (see figure 6). It also contains
the public keys of trusted certification authorities needed for
verification of certificates. The change itself is triggered by a
dedicated message sent to the signature processing system by
the central information processing module of the C2X system.
For all other modules this privacy function is fully transparent
as well.

VII. RESOURCES AND PERFORMANCE

The presented system has been realized using a Xilinx
XC5VLX110T Virtex-5 FPGA on a Digilent XUP ML509
evaluation board. The following values refer to an implemen-
tation of the complete signature generation and verification
unit with interfacing for the application example given above.
Table III shows an overview of the resource usage.

After integration of all submodules the ECDSA unit allows
for a maximum clock frequency of 50 MHz that has been
successfully tested. Table IV shows signature verification
performance values of the ECDSA unit at 50 MHz. Values
for signature generation are given in table V.

In both tables the worst case values given are calculations
based on the statistically estimated runtime of the algorithms

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 119

Lut-FF Pairs rel. res. usage max. frequency
(Synthesis) on FPGA [MHz]

Signature unit 32,299 46.7% 50
ECDSA unit 24,637 36% 50.1
Hashing unit 2,277 3% 120.8
PRNG 482 0.7% 872.6
Fp-ALU 14,256 20% 41.2

Fp-ADD 858 1.2% 83
Fp-SUB 857 1.2% 92.8
Fp-MUL 2,320 3.4% 42.3
Fp-DIV 5,670 8.2% 73.4

TABLE III
RESOURCE USAGE ON A XC5VLX110T WITH 69,120 LUTS

Verification secp224r1 secp256r1
Compute time worst-case 7,23 9,42

[ms/Sig] simulated 7,17 9,09
Throughput worst-case 138 106

[Sig/s] simulated 140 110
Latency worst-case 361151 471111

[cycles/Sig] simulated 358478 454208

TABLE IV
PERFORMANCE OF SIGNATURE VERIFICATION AT 50 MHZ

for scalar multiplication. As these runtimes depend on the
operand values, the measured computation times are different.

Generation secp224r1 secp256r1
Compute time worst-case 5,56 7,26

[ms/Sig] simulated 5,45 7,15
Throughput worst-case 180 138

[Sig/s] simulated 184 140
Latency worst-case 278097 362881

[Cycles/Sig] simulated 272345 357315

TABLE V
PERFORMANCE OF SIGNATURE GENERATION AT 50 MHZ

VIII. CONCLUSION AND FURTHER WORK

We presented a hardware implemented subsystem for
ECDSA signature processing for integration into embedded
systems based on reconfigurable hardware. It can be integrated
as a stand-alone subsystem performing transparent authentica-
tion functionality for communication systems. Applicability of
the system has been shown using vehicle-to-X communication
as a practical example.

The performance values presented in section VII are suffi-
cient for applications like entry control systems or electronic
payment where the number of communication peers is small.
For V2X communication even larger throughput up to over
2000 signatures per second are necessary. Further work there-
fore includes speeding up the computation and reducing the
footprint. Also the use of low cost FPGAs is required for the
use in embedded systems.

REFERENCES

[1] FIPS, “Pub 197: Advanced Encryption Standard (AES),” federal infor-
mation processing standards publication, U.S. Department of Commerce,
Information Technology Laboratory (ITL), National Institute of Stan-
dards and Technology (NIST), Gaithersburg, MD, USA, 2001.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[3] FIPS, “Pub 186-3: Digital signature standard (dss),” federal informa-
tion processing standards publication, U.S. Department of Commerce,
Information Technology Laboratory, National Institute of Standards and
Technology (NIST), Gaithersburg, MD, USA, 2009.

[4] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, no. 177, pp. 203–209, 1987.

[5] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in
Cryptology: CRYPTO ’85 Proceedings, pp. 417–426, 1986.

[6] eBACS, “ECRYPT Benchmarking of Cryptographic Systems,” website,
http://bench.cr.yp.to/ebats.html, 2010.

[7] M. Drutarovsky and M. Varchola, “Cryptographic System on a Chip
based on Actel ARM7 Soft-Core with Embedded True Random Number
Generator,” in DDECS ’08: Proceedings of the 2008 11th IEEE Work-
shop on Design and Diagnostics of Electronic Circuits and Systems,
(Washington, DC, USA), pp. 1–6, IEEE Computer Society, 2008.

[8] G. M. de Dormale and J.-J. Quisquater, “High-speed hardware im-
plementations of Elliptic Curve Cryptography: A survey,” Journal of
Systems Architecture, vol. 53, pp. 72–84, 2007.

[9] T. Güneysu and C. Paar, “Ultra high performance ecc over nist primes
on commercial fpgas,” in CHES, pp. 62–78, 2008.

[10] S. Ghosh, M. Alam, I. S. Gupta, and D. R. Chowdhury, “A robust
gf(p) parallel arithmetic unit for public key cryptography,” in DSD ’07:
Proceedings of the 10th Euromicro Conference on Digital System Design
Architectures, Methods and Tools, (Washington, DC, USA), pp. 109–
115, IEEE Computer Society, 2007.

[11] Kimmo Järvinen, Jorma Skyttä, “Cryptoprocessor for Elliptic Curve
Digital Signature Algorithm (ECDSA),” tech. rep., Helsinki University
of Technology, Signal Processing Laboratory, 2007.

[12] NIST, “Recommended elliptic curves for federal government use,” tech.
rep., National Institute of Standards and Technology, U.S. Department
of Commerce, 1999.

[13] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Springer-Verlag New York, 2004.

[14] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of Computation, vol. 44, pp. 519–521, 1985.

[15] P. L. Montgomery, “Speeding the Pollard and elliptic curve methods
of factorization,” Mathematics of Computation, vol. 177, pp. 243–264,
january 1987.

[16] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms,” IEEE Transactions on Information Theory,
vol. 31, july 1985.

[17] FIPS, “Pub 180-2: Secure hash standard (shs),” federal information pro-
cessing standards publication, U.S. Department of Commerce, National
Institute of Standards and Technology (NIST), Gaithersburg, USA, 2002.

[18] Roy Ward, Tim Molteno, “Table of Linear Feedback Shift Registers,”
2007. electronically available at http://www.otagophysics.ac.nz/px/
research/electronics/papers/technical-reports/lfsr table.pdf.

[19] IEEE Vehicular Technology Society, ITS Committee, IEEE Trial-Use
Standard for Wireless Access in Vehicular Environments (WAVE) - Se-
curity Services for Applications and Management Messages, 06.07.2006.

[20] COMeSafety Project, “European ITS Communication Architecture -
Overall Framework,” 2008. available at www.comesafety.org.

[21] O. Sander, B. Glas, C. Roth, J. Becker, and K. D. Müller-Glaser, “Design
of a vehicle-to-vehicle communication system on reconfigurable hard-
ware,” in Proceedings of the 2009 International Conference on Field-
Programmable Technology (FPT09), pp. 14–21, Institute of Electrical
and Electronics Engineers, IEEE, Dec. 2009.

[22] O. Sander, B. Glas, C. Roth, J. Becker, and K. D. Müller-Glaser,
“Priority-based packet communication on a bus-shaped structure for
FPGA-systems,” in DATE, 2009.

[23] B. Glas, O. Sander, V. Stuckert, K. D. Müller-Glaser, and J. Becker,
“Car-to-car communication security on reconfigurable hardware,” in
VTC2009-Spring: Proceedings of the IEEE 69th Vehicular Technology
Conference, (Barcelona, Spain), 2009.

120 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

A Secure Keyflashing Framework for Access
Systems in Highly Mobile Devices

Alexander Klimm, Benjamin Glas, Matthias Wachs, Jürgen Becker, and Klaus D. Müller-Glaser
Institut für Technik der Informationsverarbeitung, Universität Karlsruhe (TH)

email: {klimm,glas,mueller-glaser,becker}@itiv.uni-karlsruhe.de

Abstract—Public Key Cryptography enables for entity authen-
tication protocols based on a platform’s knowledge of other
platforms’ public key. This is particularly advantageous for
embedded systems, such as FPGA platforms with limited or none
read-protected memory resources. For access control to mobile
systems, the public key of authorized tokens need to be stored
inside the mobile platform. At some point during the platform’s
lifetime these might need to be updated in the field due to loss or
damage of tokens. This paper proposes a secure scheme for key
flashing of Public Keys to highly mobile systems. The main goal of
the proposed scheme is the minimization of online dependencies
to Trusted Third Parties, certification authorities, or the like
to enable for key flashing in remote locations with only minor
technical infrastructure. Introducing trusted mediator devices,
new tokens can be authorized and later their public key can be
flashed into a mobile system on demand.

I. INTRODUCTION

Embedded systems in various safety critical application
domains like automotive, avionic and medical care perform
more and more complex tasks using distributed systems like
networks of electronic control units (ECUs). The introduction
of Public-Key Cryptography (PKC) to embedded systems
provides essential benefits for the production of electronic
units needing to meet security requirements as well as for
the logistics involved. Due to the nature of PKC, the number
of keys that need to be stored in the individual platforms
is minimized. At the same time only the private key of the
platform itself needs to be stored secretly inside each entity
- in contrast to symmetric crypto systems where a secret key
needs to be stored inside several different entities at the same
time. In context of PKC, if one entity is compromised, the
others remain uneffected.

Computational efforts of cryptographic functionalities are
very high and time consuming if carried out on today’s
standard platforms (i.e. microcontrollers) for embedded appli-
cations. Integrating security algorithms into FPGA platforms
provides for high speed up of demanding PKC crypto systems
such as hyperelliptic curve cryptography (HECC). By adding
dedicated hardware modules for certain parts of a crypto
algorithm, a substantial reduction of computation time can be
achieved [10] [9].

Besides encrypting or signing messages, PKC can be em-
ployed to control user access to a device via electronic tokens.
Examples for this are Remote Keyless Entry (RKE) systems
[17] in the automotive domain, or Hilti’s TPS technology
[2]. These systems incorporate contactless electronic tokens

that substitute classical mechanical keys. The owner or au-
thenticated user identifies himself to the user device (UD) by
possession of the token. The UD and token are linked. Only if
a linked token is presented to the UD it is enabled or access
to the UD is granted. In order to present a token to a UD,
information needs to be exchanged between the two over an
usually insecure channel. To prevent the usage of a device
or its accessibility through an unauthorized person this data
exchanged needs to be secured.

Authentication schemes based on Public Key Cryptography
such as the Needham-Schroeder protocol [11], Okamoto Pro-
tocol [12], and Schnorr-Protocol [16] provide authentication
procedures where no confidential data needs to be transmitted.
Secret keys need only be stored in the tokens and not in the
UD thus omitting the need for costly security measures in the
UD. Only public keys need to be introduced into the UD (see
section II). This operation certainly does need to be secured
against attacks. For real-world operation this operation is done
in the field where the UD is not necessarily under the control
of the manufacturer (OEM) and a live online connection to the
OEM is not possible.

In this paper we propose a system to introduce public keys
into FPGA based user devices to pair these with a new token.
The proposed key flashing method allows for authorization of
the flashing process through an OEM. At the same time it can
be carried out with the UD in the field and with no active
online connection while flashing the key.

Introduction or flashing of new keys to an embedded device
can be seen as a special case of a software update. Here
the main focus is usually on standardization, correctness,
robustness, and security. Recent approaches for the automotive
area have been developed e.g. in the german HIS [8], [7] or
the EAST-EEA [3] project. A general approach considering
security and multiple software providers is given in [1].
Nevertheless general update approaches are focused on the
protection of IP and the provider against unauthorized copying
and less on the case that the system has to be especially
protected against unwanted updates as in our keyflashing
scenario.

The remainder of this paper is structured as follows. In sec-
tion II we present the basic application scenario followed by
a short introduction of public key cryptography in section III.
The requirements for the targeted scenario are described in IV.
In section V the protocol is shown and some implementational
results are given in section VI. We conclude in section VII.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 121

II. APPLICATION SCENARIO

A mobile user device (UD) such as a vehicle, construction
machine or special tool with restricted access is fitted with an
FPGA based access control system. This allows only the owner
or certified users access to the device’s functionalities or even
the device itself. This is achieved with a transponder (TRK)
serving as an electronic version of a mechanical key. The
transponder is able to communicate to the UD via a wireless
communication channel. The user device accepts a number of
transponders. If one of these is presented to the user device it
authenticates the transponder and the device is unlocked, thus
granting access.

Authentication is done using Public Key Cryptography
(PKC). The Public Key of the transponders are stored securely
inside the user device thus establishing a ”‘guest list”’ of legal
users to the device. During production two initial Public Keys
are introduced into the user device.

In case of loss of a transponder it is desirable to replace it,
particularly if the user device itself is very costly or actually
irreplaceable. Since the user device is mobile, replacement of
the transponder’s public key usually needs to be done in the
field. This might include very remote areas with minor to none
communication infrastructure.

III. BASIC PKC FUNCTIONALITIES

In 1976, Whitfield Diffie and Martin Hellman introduced
PKC crypto systems [6]. Two different keys are used, one
public and the other secret (SK). SK and VK are a fixed
and unique keypair. It is computational infeasible to deduce
the private or secret key (SK) from the public key1 (VK).
With VK a message Mp can be encrypted into Mc but not
decrypted with the same key. This can only be done with
knowledge of SK. If an entity Alice wants to transmit a
message MAlice,plain to an entity Bob, it encrypts it with Bobs
public key VKBob. Only Bob can retrieve the plain text from
the encrypted message, by applying the appropriate decryption
algorithm using his own secret key SK.

PKC can also be used to digitally sign a message. For this
a signature scheme is used that is usually different from the
encryption scheme. When signing a message the secret key is
used and the signature can be verified by using the according
public key. In other words, if Bob wants to sign a message,
he uses his own private key that is unique to him. This key is
used to encrypt the hash value of the message MBob,plain. The
resulting value {HASH(MBob,plain)}sig is transmitted the
together with MBob,plain. A receiver can validate the signature
by using Bob’s public key and retrieving HASH(MBob,plain).
From MBob,plain the receiver can reconstruct the received hash
value and compare it with the decrypted value. If both match
the signature has been validated.

IV. SITUATION AND REQUIREMENTS ANALYSIS

In our application scenario we have the following main
entities:

1In the case of signature schemes the public key is often called verification
key.

• A user device UD that can only be accessed or used by
an authenticated user

• A human user OWN. He is authorized to access or use UD
if he possesses a legit token

• A transponder key token TRKorig originally linked to UD
and a second token TRKnew that shall be flashed to UD
additionally.

• The manufacturer OEM that produces UD
UD accepts a number of TRK to identify an authenticated

human user OWN of the UD. At least two tokens are linked
to a UD, by storing the respective public keys VKTRK inside
the UD. The OEM is initially the only entity allowed to write
public keys into any UD.

Solely the public keys stored inside the UD are used for any
authorization check of TRKs using any PKC authentication
protocol (e.g. [11], [12], [16]). The OEM’s public key VKOEM

is stored in the UD as well.
OEM, TRK, and UD can communicate over any insecure

medium, through defined communication interfaces.

A. Goals

A new TRKnew should be linked to a UD to substitute for
an original TRKorig that has been lost or is defective. From
this point on we’ll call the process of linking TRKnew to
a UD flashing. Flashing a TRK should be possible over the
complete life cycle of the UD. When flashing the UD it is
probably nowhere near the OEM’s location while flashing of a
TRK needs to be explicitly authorized by the OEM. Any TRK
can only be flashed into a single UD. Theft or unauthorized
use of the UD resulting from improper flashing of the TRK
needs to be prohibited.

In addition we demand that online connection of UD and
OEM during flashing a TRK must not be imperative.

B. Security Requirements

The protocol shall allow dependable authorized flashing
under minimal requirements while preventing unauthorized
flashing reliably. Therefore it has to guarantee the following
properties, while assuming communication over an unsecured
open channel:

• Correctness: In absence of an adversary the protocol has
to deliver the desired result, i.e. after complete execution
of the protocol the flashing should be accomplished.

• Authentication: The flashing should only be feasible if
both OEM and OWN have been authenticated and have
authorized the operation.

• No online dependency: The protocol shall not rely on
any live online connection to the OEM.

• Confidentiality: No confidential data like secret keys
should be retrievable by an adversary.

C. Adversary model

We assume an in processing power and memory polynomi-
ally bounded adversary A that has access to all inter-device
communications, meaning he can eavesdrop, delete, delay,
alter, replay or insert any messages. We assume further that

122 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

the adversary is attacking on software level without tampering
with the participating devices.

Without choosing particular instances of the cryptographic
primitives we assume that the signature scheme used is secure
against existential forgery of signatures and regard the hashing
function used as a random oracle.

V. KEY FLASHING CONCEPT

Focus of the proposed key flashing protocol is the intro-
duction of a public key VKTRK into UD. We abstract over
the implementation of communication interfaces, PKC systems
as well as the immediate implementation of the devices and
entities themselves.

Two basic Flashing Scenarios are conceivable. One is that
TRKs are flashed directly by the OEM, either during production
or via an online connection. We concentrate on the second one,
flashing of TRKs through an authorized service point (SP) with
no immediate online connection to the OEM.

A. Entities

In addition to the entities introduced above (UD, OWN,
TRK and OEM) we use two additional participants, namely a
service point SP and an employee SPE of this service point
conducting the flashing procedure.

1) OEM - Manufacturer: The OEM manufactures the UD
and delivers it to OWN. OWN is issued the corresponding TRKs
linked to the UD. All UDs are obviously known to the OEM.
The verification keys VKTRK are stored by the OEM together
with their pairing to the UD. Therefore the OEM knows what
TRK is linked to what UD. We regard the entity OEM as a
trusted central server with a database functionality.

The OEM can store data, sign data with SKOEM and
send data. It possesses all cryptographic abilities for PKC
based authentication schemes and can thereby authenticate
communication partners.

2) UD - User Device: UD is enabled only when a linked
TRK is presented by authenticating the TRK via a PKC
authentication scheme. All linked TRKs’ public keys VKTRK

are stored in the UD. Additionally the public key of the OEM
VKOEM is stored in the UD and can not be erased or altered
in any way and UD has a OEM-issued certificate for it’s own
public key certifying being a genuine part. UD grants read
access to all stored public keys. Write access to the memory
location of VKTRK is only granted in the context of the
proposed key flashing scheme.
UD possesses all cryptographic abilities for PKC based

authentication schemes and can thereby authenticate commu-
nication partners.

3) OWN - Legal User: OWN is the legal user of UD and can
prove this by possession of a linked TRKorig .

4) TRK - Transponder: TRK2 possesses a keypair
VKTRK /SKTRK for PKC functionality. It is generated inside
the TRK to ensure that the secret key SKTRK is known solely

2TRKs can be manufactured by a supplier that has been certified by the
OEM

to TRK. Read access to VKTRK is granted to any entity over
a communication interface.
TRK possesses cryptographic primitives for PKC based

authentication schemes on prover’s side and can thereby be
authenticated by communication partners.

5) SP - Service Point: SP is a service point in the field
such as a wholesaler, certified by the OEM. Typically a SP
is a computer terminal. Access to the terminal is secured by
means of a password as in standard PC practice. A SP can
communicate to the OEM as well as to the UD. At the same
time it is able to read the VKTRK of any TRK.

Furthermore the SP constitutes a trusted platform meaning
that it always behaves in the expected manner for the flashing
procedure and accommodates a trusted module responsible for:

• storage of authorized VKTRK

• secure counter
• key management of authorized VKTRK

SP possesses cryptographic primitives for PKC based au-
thentication schemes on prover’s and verifier’s side and can
thereby be authenticated by communication partners as well
as authenticate communication partners.

6) SPE - Employee of Service Point: A SPE is a physical
person that is operating the SP and is regarded as a potential
attacker of the flashing operation. Access control of a SPE to
the SP is enforced via password or similar. SPE is responsible
for the system setup for the flashing application consisting of
establishing the communication links of UD, SP, TRK, and
OEM if needed.
UD, TRKnew, and SP are under control of the SPE and the

communication links to UD, TRKorig , TRKnew, SP, and OEM
can be eavesdropped, the trusted module can not be penetrated
though.

B. Steps

The following steps are necessary to introduce an new
VKTRK into a UD avoiding online dependency. All of them
are included in figure 1.

1) Delegation of trust to SP
2) Authorization of SPE by SP
3) Authorization of TRKnew by OEM
4) Introducing an authorized TRKnew into a UD
Authorization of SPE can be done e.g. via a password

(knowledge) or by biometrical identification (physical prop-
erty). The delegation of trust and authorization of TRKnews is
very closely related and described in section V-C. These steps
form the first phase of the flashing process and can be done in
advance without UD and OWN but need a communication link
to OEM. The final introduction of a new VKTRK is the second
phase and is detailed in section V-D. It does no longer depend
on interaction with OEM.

C. Trust Delegation and TRKnew Authorization

To be able to perform a key flashing procedure without an
active link to OEM a local representative has to be empowered
by the OEM to perform the flashing, assuming that UD trusts

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 123

Fig. 1. Flashing Scheme

only the OEM to flash legit keys. This is done by presenting a
credential to UD accounting that flashing is authorized by OEM.
The exchange of this credential is denoted in the following as
trust delegation.

In our case SP is the local representative. In order to request
the flashing credential from the OEM, SPE has to be authen-
ticated first to prevent SP abusive operations. Afterwards SP
can connect to OEM and request a trust credential. This is
issued only after mutual authentication and only to known
partner service points. It is always valid for only a limited
time and limited number of flashing operations to minimize
negative impact of compromised SPs. This is controlled and
enforced by the trusted component inside SP using the secure
unforgeable counter keeping track of the number of flashing
cycles.

The public key of a TRKnew needs to be authorized by
OEM. SP can read out VKTRK and send it to OEM. If SP is
allowed to flash TRKs into a UD, the OEM sends the authorized
VKTRK back to SP which is stored in SP’s trusted module.
Only a limited number of authorized TRKs can be stored at
any given point in time.

As soon as a TRK has been authorized by the OEM, physical
access to the TRK needs to be controlled. The authorization
process of TRKs is the only step that demands for a data
connection between SP and OEM. This does not necessarily
need to be an online connection since data could be transported
via data carriers such as CDs, memory sticks, or the like.

D. Flashing of TRK

The actual flashing of a TRKnew to a given UD demands
for a valid new transponder TRKnew, authorization by OEM

and OWN, former either directly or delegated to SP using the
credential introduced above, latter done by presenting a valid
linked TRKorig assumed to be solely accessible by OWN. If
an online connection to OEM is available the protocol can
be performed by UD and OEM directly, SP only relaying
communication.

In either case UD and SP authenticate each other mutually
using their respective OEM-issued certificates. UD additionally
checks authorization by OWN, testing whether a valid linked
token is present or not. If all these tests passed, SP presents the
authorized and OEM-signed new TRKnew to UD which checks
the OEM signature and credential. In the case of successful
verification UD accepts the new token TRKnew and adds
VKTRK to it’s internal list of linked tokens.

E. Entity Requirements

Regarding the proposed flashing protocols certain require-
ments for the entities’ functionalities have to be satisfied. An
overview is given in table I

OEM SP UD TRK
Initiate Communication • •
Acknowledge Communication • • •
Generation of Keypairs • •
Signatures Generation • • • •
Signature Verification • • •
Random Number Generation • • •
Datamanagement for suppliers •
Datamanagement for User Devices •
Datamanagement for Service Points •
Datamanagement for TRKs • •
Secure Storage for delegated Trust •
Knowledge of OEM’s public key • •

TABLE I
ENTITY REQUIREMENTS

Data management is one of the key requirements in the
protocol in the sense that public key data needs to be stored.
Secure storage for delegated trust has some additional require-
ments such as intrusion detection to protect data from being
altered in any way. At the same time it is mandatory that this
data is always changed correctly as demanded by the protocol.
Also the OEM’s public key needs to be firmly embedded into
the entity and must not be altered in any case, otherwise the
OEM can not be identified correctly from the protocol’s point
of view.

VI. IMPLEMENTATION

The protocol has been implemented as a proof of concept
in a prototypical setup based on a network of a standard PC
representing OEM and SP. Furthermore Digilent Spartan3E
Starter Boards with a Xilinx XC3S500 FPGA represent TRKs
and UDs.

In figure 2 all implemented instances are depicted. TRK,
SP, and UD have to be connected when flashing the key. The
OEM connection needs to be established anytime prior to the
flashing according to the proposed protocol and is connected
via TCP/IP with the SP.

124 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Fig. 2. Component Interaction

Key Length 1024 Bit
Exponent 216 + 1 (65537)
Padding Scheme PKCS#1 v1.5
Signature Scheme PKCS#1 v1.5
Hashing Scheme used for signing SHA1

TABLE II
PARAMETERS FOR RSA-SYSTEM

All other communication is done over RS232 interfaces
that are available both on PC and the FPGA boards as well.
These can be substituted for other communication structures
if needed, i.e. wireless transmitters.

A. Choice of cryptographic Algorithms

The proposed keyflashing concept demands for asymmetric
encryption and a cryptographic hashfunction. RSA [15] is
chosen for encryption and signing, SHA1 for hash function-
ality. Both schemes are today’s standard and have not been
broken yet, but can be substituted in our implementation
for more secure schemes if needed. RSA as well as SHA1
implementations are freely available as software and hardware
IP for numerous platforms. In table II the RSA parameters
chosen are given.

All signatures in our context are SHA1-hash values of
data that has been encrypted according to the signing scheme
PKCS#1 v1.5 [14]. Such a signature has a length of 128 Byte
when using a keylength of 1024 bit and hashvalues of 160 bit
bitlength.

B. OEM/Service Point - Software Platform

Both components OEM and SP have been implemented on
a standard PC. All functionalities have been implemented in
software under the .NET frameworks version 2.0 using C#.
The .NET framework provides the Berkeley Socket-interface
for communication over the PC’s serial interface. At the same
time in includes the Cryptography-namespace providing
all needed cryptographic primitives including hashing func-
tions and a random number generator that are based on the
FIPS-140-1 certified Windows CryptoAPI. The software is
modularized to enable for easy exchange of functional blocks
and seamless substitution of algorithms. Software modules
communicate only over defined interfaces to enable for full

Module lines of code percentage
Main application 1234 41.77
GUI 264 8.94
Cryptography 385 13.03
Interaction 383 12.97
Communication 545 18.45
Data Management 143 4.84
Total 2954 100

TABLE III
PROPERTIES OF OEM COMPONENT

Slices 1.791 of 4.656 (38%)
Slices: FlipFlops uses 1.590 of 9.312 (17%)
Slices: LUTs used 1.941 of 9.312 (20%)
BlockRAMs used 16 of 20 (80%)
Equivalent Logic Cells 1.135.468
Minimal clock period 18,777 ns
Maximum clock frequency 53,257 MHz

TABLE IV
FPGA RESOURCES

functional encapsulation. For ease of usage a graphical user
interface (GUI) is included as well in both entities.

C. Transponder/UserDevice - FPGA platform

The targeted user device is an FPGA. To enable for
easy reuse of functionalities the exemplary TRK has been
implemented on FPGA as well, but can also be integrated
into a smart card or RFID chip as long as the appropriate
cryptographic primitives are provided.

A MicroBlaze softcore processor is incorporated that pro-
vides all functionality including cryptographic functions.
Hardware peripherals such as a LCD controller have been
integrated for debugging purposes. To enable for handling of
big numbers, as are used in the cryptographic functions of the
protocol, the libraries libtommath [5] and libtomcrypt
[4] are used. Only necessary components have been extracted
from those libraries and are integrated into TRK and UD.

D. Resource Usage

The resource usage of the components OEM and SP are very
similar, since almost identical functional software blocks are
used in both. Table III gives an exemplary overview of the lines
of codes of the OEM implementation. The memory footprint of
the compiled OEM implementation is 129 KB (139 KB for the
SP implementation). At start up 15400 KB of main memory
is used. The execution times for RSA- and SHA1-operations
were measured on a PC (2 GHz, 1024 MB RAM) and are all
in the range of milliseconds.

Resource usage of the FPGA based components UD and
TRK are given in table IV. By implementing all functionality
on a MicroBlaze softcore, the hardware usage is quite moder-
ate. On the other hand the software footprint is 295 KB for the
UD implementation, due to the non-optimized memory usage
of the crypto library used.

Shown in table V are the execution times of the divers pro-
tocol instances. The duration of parts of the protocol that are

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 125

Protocol instance Duration
(min:sek.ms)

ReadOut of Transponder 01:32.000
Mutual Authentication of UD und TRK 03:14.000

Direct Keyflashing
Keyflashing to Transponder by OEM 23:50.000

Keyflashing by ServicePoint
Delegation of trust OEM to SP 00:00.350
Transponderdelegation 00:00.250
Keyflashing to Transponder by SP 12:43.000

TABLE V
PROTOCOL EXECUTION TIMES

based soley on OEM and SP is in the area of few milliseconds.
As soon as mobile devices (UD, TRK) process parts of the
protocol, speed is declining since all crypto operations are
currently carried out on an embedded microcontroller. Main
factor here is the RSA decryption operation. With appropriate
hardware support, choice of parameters and cryptosystem,
substantial speedups can be achieved as shown in [9].

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a scheme for flashing public keys
into mobile FPGA devices under the constraint that no online
connection to the system manufacturer (OEM) is mandatory.
It is applicable for a variety of embedded systems that need
to implement and enforce access or usage restrictions in the
field. The scheme was implemented as a proof-of-concept
using a combination of PC-based and FGPA-based protocol
participants.

A. Security Analysis

Looking at the security of the proposed concept some
points can be identified where security relies on policies and
implementing rules while other issues are covered by design.

Using PKC primitives and trusted computing approaches the
protocol ensures confidentiality of secret keys and mutual au-
thentication of SP and OEM, OWN and UD, SP and UD, SP and
SPE. But due to the necessity of online-independence there are
some assumptions that have to be made to guarantee security.
This is mainly the trustworthiness of the SP in combination
with the physical protection of authorized TRKorig .

If these assumptions are broken e.g. by theft of authorized
TRK, the corresponding SP and the SPE password, unautho-
rized flashing may be possible. As countermeasures the usage
of the protocol can be adapted to dilute effects of such events.
So the number of allowed authorized TRK should be as low
as possible and the SP should be implemented using trusted
components and based on a trusted platform secrets should be
especially protected against misuse by a physical attacker.

B. Future Work

Flashing speed is of utmost importance in real world im-
plementation. To make allowance for a real world integration
of the proposed flashing schemes, optimizations regarding
usage and speed of the computational units involved are
needed. In the current prototype the MicroBlaze processor

has been used for simplicity. Speed up can be achieved with
a hardware/software codesign as done in [10]. For maximal
speed a full FPGA hardware implementation is desirable, as
has been done in [13] for cryptographic functionalities of a
HECC system.

The user authentication via PKC can be a solution for
dedicated function enabling. Different functionalities can be
configured onto an FPGA using partial dynamic reconfigura-
tion. By either allowing or prohibiting, the configuration of a
certain bitstream depending on the user employing the system,
usage policies could be enforded thus opening up new business
models for suppliers of FPGA based systems.

One crucial point is the protection of the TRK’s public key
stored in the UD against physical attackers. The possibility
of countermeasuring attacks that might alter stored keys on a
physical level needs to be investigated in the future as well.

REFERENCES

[1] Andr Adelsbach, Ulrich Huber, and Ahmad-Reza Sadeghi. Secure
software delivery and installation in embedded systems. In Robert H.
Deng, editor, ISPEC 2005, volume 3439 of LNCS, pages 255–267.
Springer, 2005.

[2] Hilti Corporation. Electronic theft protection. Available electronically
at www.hilti.com, 2007.

[3] Gerrit de Boer, Peter Engel, and Werner Praefcke. Generic remote
software update for vehicle ecus using a telematics device as a gateway.
Advanced Microsystems for Automotive Applications, pages 371–380,
2005.

[4] Tom St. Denis. Libtomcrypt. http://libtomcrypt.com/.
[5] Tom St. Denis. Libtommath. http://math.libtomcrypt.com/.
[6] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.

IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.
[7] Herstellerinitiative Software (HIS). HIS-Presentation 2004-05, 2005.

available electronically at www.automotive-his.de.
[8] Herstellerinitiative Software (HIS). HIS Security Module Specification

v1.1, 2006. available electronically at www.automotive-his.de.
[9] Alexander Klimm, Oliver Sander, and Jurgen Becker. A microblaze

specific co-processor for real-time hyperelliptic curve cryptography on
xilinx fpgas. Parallel and Distributed Processing Symposium, Interna-
tional, 0:1–8, 2009.

[10] Alexander Klimm, Oliver Sander, Jürgen Becker, and Sylvain Subileau.
A hardware/software codesign of a co-processor for real-time hyperel-
liptic curve cryptography on a spartan3 fpga. In Uwe Brinkschulte, Theo
Ungerer, Christian Hochberger, and Rainer G. Spallek, editors, ARCS,
volume 4934 of Lecture Notes in Computer Science, pages 188–201.
Springer, 2008.

[11] Roger M. Needham and Michael D. Schroeder. Using encryption
for authentication in large networks of computers. Commun. ACM,
21(12):993–999, December 1978.

[12] Tatsuaki Okamoto. Provably secure and practical identification schemes
and corresponding signature schemes. In CRYPTO ’92: Proceedings of
the 12th Annual International Cryptology Conference on Advances in
Cryptology, pages 31–53, London, UK, 1993. Springer-Verlag.

[13] J. Pelzl, T. Wollinger, and C. Paar. Embedded Cryptographic Hardware:
Design and Security, chapter Special Hyperelliptic Curve Cryptosystems
of Genus Two: Efficient Arithmetic and Fast Implementation. Nova
Science Publishers, NY, USA, 2004. editor Nadia Nedjah.

[14] RSA Laboratories Inc: RSA Cryptograpy Standard PKCS No.1. Elek-
tronisch verfügbar unter http://www.rsasecurity.com/rsalabs.

[15] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[16] Claus P. Schnorr. Efficient identification and signatures for smart cards.
In CRYPTO ’89: Proceedings on Advances in cryptology, pages 239–
252, New York, NY, USA, 1989. Springer-Verlag New York, Inc.

[17] Henning Wallentowitz and Konrad Reif, editors. Handbuch Kraft-
fahrzeugelektronik: Grundlagen, Komponenten, Systeme, Anwendungen.
Vieweg, Wiesbaden, 2006.

126 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Teaching Reconfigurable Processor: the Biniou
Approach

Loic Lagadec ∗ †, Damien Picard ∗ † and Pierre-Yves Lucas

∗ Université Européenne de Bretagne, France.
† Université de Brest ; CNRS, UMR 3192 Lab-STICC, ISSTB,

20 avenue Le Gorgeu
29285 Brest, France.

loic.lagadec@univ-brest.fr

Abstract—This paper presents the Biniou approach, that we
have been developping in the Lab-STICC, together with a
”software for embedded systems” master course and its related
project. This project addresses building up a simple RISC
processor, that supports an extensible instruction set thanks to
its reconfigurable functional unit. The Biniou approach covers
tasks ranging from describing the RFU, synthesizing it as VHDL
code, and implementing applications over it.

I. INTRODUCTION

a) The Master curriculum LSE: The master curriculum
LSE (Software for Embedded Systems) opened two years ago
at the university of Western Brittany. It addresses emerging
trends in embedded systems, mainly from a software point of
view despite warmly welcoming EE (Electronic Engineering)
students. It highly focuses on RC (Reconfigurable Computing)
based embedded systems, with a set of courses for teaching
hardware/configware/software co-design.

b) The underlying research support: The research group
behind this initiative is the Architectures & Systems team
from the Lab-STICC (UMR 3192). This group owns a legacy
expertise in designing parallel reconfigurable processor (the
Armen [1] project was initiated in 1991) but focuses on CAD
environment developments (Madeo framework [2]).

c) The Madeo framework: The madeo framework is
an open and extensible modeling environment that allows
representing reconfigurable architectures. It acts as a one-
stop shopping point providing basic functionalities to the pro-
grammer (place&route, floorplanning, simulation, etc.). Based
on Madeo, several commercial and prospective architectures
have been designed (Virtex, reconfigurable datapath, etc.), and
some algorithms have been tailored to address nano-computing
architectures (WISP, etc.).

d) Biniou: The Madeo project ended in 2006 while
being integrated as facilities in a new framework. This new
framework, named Biniou, embeds additional capabilities such
as, from the hardware side, VHDL export of the modeled
architecture and wider interchange format and extended syn-
thesis support from the software side. Biniou targets Recon-
figurable SOCs design and offers middleware facilities to
favor a modular design of reconfigurable IPs within the SOC.

Optimizing
ContextAccessADL

Model

Circuit

VHDL

Bitstream Metrics

Tool Set

Prospection

MemoryC code

Application

BLIF

Verilog

EDIF

Fig. 1. Overview of the Biniou flow.

Hence Biniou enhances durability and modularity, and shorten
development time of programming environments.

Figure 1 provides an overview of Biniou. In the application
side (right) an application is specified as C-code, memory
access patterns and some optimizing contexts we use to tailor
the application. This side outputs some post-synthesis files
conforming to mainstream formats (Verilog, EDIF, BLIF).
Results can be further processed by the Biniou P&R layer
to produce a bitstream. Of course the bitstream matches the
specification of the underlying reconfigurable target, be the
target modeled using a specific ADL. A model is issued on
which the P&R layer can operate as previously mentioned,
and a behavioral VHDL description of the target is generated
for simulation purposes and FPGA implementation.

Also some debugging facilities can be added either in the
architecture itself or as parts of the application [3].

e) From research to teaching: Biniou has been exercised
as a teaching platform for Master 2 students from the LSE
class. This happened in the one-year DOP (standing for
Description and Physical Tools) course, during which students
had to perform practical sessions and to lead a project covering
VHDL hand-writing, reconfigurable architecture modeling and
programming, code generation, modules assembly to exhibit
a simple processor with a reconfigurable functional units
allowing to extend its instruction set.

The rest of this paper is organized as follows: section II
describes the DOP course, section III introduces the project
while section IV points out the results that came out from the
project. Finally some concluding remarks and perspectives are
presented in section V.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 127

II. AN OVERVIEW OF THE DOP MASTER COURSE

A. Students profile
1) Former curriculum: The master gathers students from

both CS (Computer Science) and EE former curricula. The
current master size is 12, coming from half a dozen countries.
Half of the students are former local students hence own
a local background in term of CS but suffer from lacks in
electronic system design.

As this situation could carry some risks, we chose to make
students pair-achieve the project. In this way, beyond simply
averaging the pre-requisites matching so that the pairs are
equally offered a chance to succeed, we intended to favor
incidental learning as pointed out by Shanck [4].

2) Foreigners issues: Unfortunately, one remaining diffi-
culty the foreigners must face, lies in gaining the visa to enter
the country, what can take an unpredictable long delay. We
activated a facility that the remote-teaching service of the UBO
offers, that is a secured collaborative web site, on which all
the slides and supports remain at the student’s disposal as soon
as he got an access code - that we provide early enough to
serve as a remedial class. Also, this offers monitoring features
(recent activities such as document downloads or due work
uploads are logged on).

B. Course organization
Courses are organized around two main topics covering

the hardware (architectures) and software (CAD tools and
compiler basics) aspects of reconfigurable computing. Tradi-
tionally, these topics are not grouped in a same curriculum and
are either taught in CS or EE. DOP courses enable students to
build from their previous knowledge a cross-expertise giving
a complete vision of the domain.

1) An overview of the reconfigurable computing landscape:
This course aims at giving a global overview of the reconfig-
urable computing (RC) landscape. It focuses on both industrial
and academic architectural solutions and is structured in three
parts:

• Overview of RC for embedded systems (2 sessions)
• Virtualization techniques for RC (2 sessions)
• Modeling and generation of reconfigurable architectures

(1 session)
a) Overview of RC for embedded systems: This part

introduces the increasing needs for performance of embedded
systems executing digital signal processing applications, such
as smartphones, set-top boxes, HD cameras and so on. A
major part of students are not familiar with the concept of
computation acceleration, a comparison between the Moore
and Shannon law illustrates the need for different architectures
and computation models than traditional GPP.

A first solution proposed to student for tackling the Shannon
law is to implement intensive tasks as ASICs in order to exploit
instruction parallelism. However, flexibility, NRE costs and
short life cycle issues related to ASICs are pointed out leading
to look for a trade-off between flexibility and performance
with reconfigurable computing as an answer. Three types of

architectures are presented: fine-grained FPGA, coarse-grained
architectures and reconfigurable processors.

Before describing the main architectural characteristics,
general definitions are given for reconfigurable computing,
reconfigurable architectures and the notion of granularity.

FPGAs are introduced by presenting the FPGA marketplace
and the main suppliers. We also show ASICs costs trends for
justifying the growing interest for reconfigurable technology
and an evolution of the FPGA application domain which tends
to diversify over time.

In order to give to students the main architectural concepts
behind FPGAs, we present a first simple architecture. A mesh
of basic processing elements (PE) composed of one 4-LUT
with its output possibly latched. Combination of the basic
blocks (LUT, switch, buses and topology) is presented as a
template to be extended and complexified (in terms of routing
structure and processing elements) for building real FPGA. A
more complex view is given by an example from the industry,
a Xilinx Virtex-5, with an emphasis on locating template basic
blocks within Xilinx schematics. As a result, students are able
to locate the essential elements for a better understanding of
state-of-the-art architectures.

The coupling of a reconfigurable unit with a processor (as
know as reconfigurable processor) is presented as another
alternative for accelerating intensive DSP tasks. The concept
of instruction set metamorphosis [5] is defined and a set of
architectures are described. For example, P-RISC [6], Garp
[7], XiRISC [8] and Molen [9]. A specific focus is set on the
Molen programming model and its architectural organization.
The Molen approach is presented as a meeting point between
the software domain (sequential programming and compiler)
and the hardware domain (specific instruction designed in
hardware).

Drawbacks of fine-grained architectures such as low compu-
tation density and routing congestion are highlighted to intro-
duce coarse-grained architectures. This type of reconfigurable
architecture is firstly presented as a specialization of FPGA (in
term of routing resources and processing elements) suited for
DSP application domain. Architectures presented are Kress-
Array [10], Piperench [11], PACT XPP [12], Morphosys [13].
Programming model issues are discussed with a comparison
between software oriented approach (generally using subsets
of C) and hardware approach (netlist based descriptions). A
case study of the DREAM architecture is presented with
an emphasis on the compiler friendly approach of the tools
targeting the PicoGA [14], [15].

b) Virtualization techniques for RC: Second part of the
course aims at giving details on advanced use of reconfig-
urable architectures. The motivation is to leverage, thanks to
virtualization techniques, some well-known limitations of RA:
limited amount of resources, lack of high-level programming
model and non-portability of bitstream.

In a first step virtualization is defined as a general concept
originally applied to computer (e.g. virtual memory and virtual
machine).

In order to leverage resource amount limitation, time multi-

128 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

plexing is defined and its support by reconfigurable architec-
tures is detailed. It starts from temporal partitioning, dynamic
reconfiguration and the different configuration plan structures:
multi-context and partial reconfiguration. These notions are
illustrated by architectures such as DPGA [16], WASMII [17]
and their programming flows.

Computation model for reconfigurable computing is ad-
dressed by two different approaches. The first approach de-
scribes programming model directly supported by hardware
such as Piperench or STREAM [18]. These architectures
provide facilities: CAD tools and runtime management for
virtualizing resources. Application portability is ensured by
the availability of the programming model in a device family,
similarly to GPP ISA family.

A second approach is to use soft-cores comparable to
software virtual machines. Soft-cores are implemented on off-
the-shelf reconfigurable devices avoiding a costly ASIC design
but sacrificing some performances. Illustrative examples are
given by Mitrion [19] and Quku [20].

c) Modeling and generation of reconfigurable architec-
tures: This course aims at giving to student a deep under-
standing of FPGA internal behavior.

In a first part, every elements of a basic FPGA (used as an
example in the first course) are detailed and a VHDL behav-
ioral description is explained. It starts from atomic elements,
such as pass gates, multiplexers and shows how to interconnect
them for building up input/output blocks and configurable
logic blocks. A daisy-chain architecture is detailed as well
as a configuration controller.

A second part describes the Biniou generation of the ar-
chitecture from an ADL description. This part makes students
ready for practical sessions and for the project.

A FPGA is described using an ADL increasing the level
of abstraction compared to a VHDL description. The config-
uration plan is described as a set of domains permitting to
exploit partial reconfiguration. The approach relies on model
transformation, with an automatic VHDL code generation
from an high-level description.

2) Software part: The software part of the courses ad-
dresses both state-of-the-art tools and algorithms in one hand
as well as locally designed tools in another hand. The key idea
is that students are naturally attracted to learning classical (or
vendors’) tools so that they can bring a direct added-value
to any employer of the field, hence get in an interesting and
well-paid job.

However, tools obviously encapsulate the whole domain-
specific expertise, and letting students ”open the box” closes
the gap between ”lambda users” and experts. This takes up the
challenge of providing a valuable and inovative curriculum.

Several computational models are introduced with a special
highlight on temporal versus spatial computing. In addition,
several scheme of mixing up temporal and spatial computing
are presented, such as reconfigurable functional units, recon-
figurable co-processor, etc.

The link takes place when introducing the Molen paradigm,
with hardware blocks running as accelerated functions that

provide results back to the processor.
To implement accelerated functions, a resources allocation

is required, that remains highly dependent of the hardware
platform.

We introduce Data Flow Graph (DFGs) and Control Data
Flow Graph (CDFGs) representations that act as entry point
to the resources allocation.

Here happens the circuit synthesis, and some algorithms (A∗

point to point routing, pathfinder global routing, placement,
TCG floorplanning, etc.) and backend tools are presented
(Madeo, VPR, etc.).

C. A Morpheus inheritance
Biniou is partially issued from our contribution to the

Morpheus FP6 project [21], standing for ”Multi-purpose dy-
namically reconfigurable Platform for Intensive Heterogeneous
processing” (2006-2009). MORPHEUS addresses innovative
solutions for embedded computing based on a dynamically
reconfigurable platform and adequate tools. The main chal-
lenge of the ”platform work package” was to propose a smart
reconfigurable computing hardware carefully crafted for use
with methods and tools developed in the ”methodologies and
tools” work package. The approach of the MORPHEUS toolset
provides both an effortless management of reconfigurable
accelerated functions within a global application C code, and
an easy design of the accelerated functions through high level
description and synthesis. There was the place in which our
contribution - being at the birth of Biniou - mainly appears.

Our second contribution was within the ”training work pack-
age” that intents to setup courses and to affect the curricula for
hardware and software engineers targeting heterogeneous and
reconfigurable SoCs. The LSE Master is one practical result
coming out from Morpheus.

D. Practical sessions
Practical sessions are organized as three activities. The first

activity is to gather documentation and publications related to
a particular aspect of the course; the students have to present
their short bibliographic study individually in front of the
whole class.

The second activity is centered on algorithms used for
implementing application over a reconfigurable architecture:
point-to-point and global routers, floorplanners, placers. Some
data structures such as transitive closure graphs are introduced
later on in order to point out the need for refactoring and
design patterns use [22]. This bridges the software expertise
to the covered domain (CAD tools for RC). Another place
where this link appears is when designing a BLIF CABA
netlist simulator in a couple of hours by simply combining
well known software design patterns: observer (propagation
of change), state (current value, and future value for flip-
flops), composite (both hierarchical combinations of modules
and single netlist appear in the same way).

The third activity is related to tools and formats. Three slots
are dedicated to VHDL that most of the students do not know.
Manual description of fine-grained reconfigurable architecture

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 129

is introduced within this amount of time. Some sessions are
dedicated to practicing required tools during which students
manipulate logic synthesis tools (SIS, ABC), file formats con-
version (PLA, BLIF, EDIF), behavioral synthesis and CDFG-
to-Verilog translation according to some data access pattern
(Biniou).

Biniou lets students create their own FPGA, that is further
reused in the project under a tuned up version, and highlights
the configuration scheduling issue.

We also offer a Web based tool [23] to output RTL netlists
that students use to exercise several options when generating
their netlists.

III. THE PROJECT

A. Overview of the project
The project consists in designing a simple RISC processor,

that can perform spatial execution through a reconfigurable
functional unit. This scheme conforms to the Molen paradigm.

Figure 2 illustrate the schematic view of the whole proces-
sor, including the RFU.

The processor supports a restricted instruction set (table
I). Instructions SET and EXRU respectively configures and
activates the RFU.

Opcode Code
NOT 0000
AND 0001
OR 0010

XOR 0011
LSL 0100
LSR 0101
ADD 0110
SUB 0111
CMP 1000
JMP 1001
JE 1010

JNE 1011
SET 1100

EXRU 1101
LOAD 1110
STORE 1111

TABLE I
INSTRUCTION SET OPCODES.

Res

selRes

Instruction register

portB

BAW

portW

Op1

Op2

instruction opcode

+1

selAdr

writeread

write_enable

zero

PC

zero

M
A

1
M

A
0

16

16

16 16

16

16 16 16

16
16

16

16

2

5

16

portA
16

ALU

co
nt

ro
l

Adapter

st
ar

t_
co

nf
ig

en
d_

co
nf

ig

Configuration
cache

read writeData_outAddrData_in

memory bus

Control unit

RFU
controlRegister

Reconfigurable processor

bench FPGA

bitSt.

bi
t

re
ad

y

index_config

op1 op2
5

1216 4

RFU

st
at

us

reset

clock

Fig. 2. Schematic of the entire reconfigurable processor.

In order to keep the project reasonably simple, we restrict
the use of the RFU to implementing DFGs on one hand,
and we provide students with the Biniou framework on the
other hand. Restricting the use of the reconfigurable part as
a functional units (as depicted by figure 3) also mitigates the
complexity of the whole design. However, this covers the need
for being reachable by average students while preserving the
ability to arouse top students’ curiosity. by offering a set of
interesting perspectives for further developments.

We believe that this project is a perfect starting point to let
students to build and stress new ideas in many disciplines
related to RC-computing such as spatial versus temporal
execution, architectures, programming environments and al-
gorithms.

1) Context: This project takes place during the fall
semester, from mid October to early January. A noticeable
point is that almost no free slots within the timetable are
dedicated to this project that overlaps with courses as well
as with ”concurrent” projects. This intends to stress students
and make them aware of handling competing priorities.

To prevent students from postponing managing this project
we use the Moodle platform for monitoring activities, col-
lecting deliverables and broadcasting updates/comments/addi-
tional information.

2) Expected Deliverables: We define three milestones and
three deliverables. The milestones are practical session in front
of the teacher, one out of which session is shared with another
course as students learn and practice logic synthesis from
behavioral code.

Three main milestones:
M1: RISC Processor, running its provided test programs
M2: RFU, with Galois Field based operations imple-

mented as bitstream
M3: Integration, Final review
3) Schedule: The schedule is provided during the project

”kick-off”. The collaborative platform allows specifying time-
windows during which deliverables can be submitted. Re-
minders can be sent by mail when the dead line is approaching.
Once the dead line is over, over due deliverables are applied
a penalty per extra half-day.

Fig. 3. RFU is interfaced with the processor registers through an adapter.

130 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Fig. 4. User interface of the configuration scheduler. Configuration pages
(part A) are scheduled (part B) for producing the configuration controller
program initialized by a generated testbench.

B. Provided facilities
In order to make this project feasible on time, some building

blocks are implemented during practical sessions or ready-to-
use elements are given to students as starting points.

The processor is partially implemented during practical
sessions dedicated to VHDL. Besides designing basics com-
binatorial and sequential circuits, advanced exercises lead
students to design an ALU controlled by a FSM. The goal
is to exercise the execution of a simple dataflow graph over
the ALU. At the end of these sessions, they have implemented
a first prototype of a controller and a complete ALU.

Concerning the reconfigurable part, Biniou facilities allevi-
ate the students’ workload. Biniou generates a reconfigurable
matrix specified in Madeo-ADL, and we provide skeletons of
element descriptions (e.g. IOB) that students finalize during
a practical session. Then students generate a reconfigurable
matrix.

A programmable configuration controller is also pro-
vided which interfaces the reconfigurable matrix. This con-
troller manages partial reconfiguration and configuration pages
scheduling. The manual scheduling of the configuration page
comes from a user interface depicted by figure 4. For valida-
tion purposes, a global testbench is also generated enabling
to test the reconfigurable matrix configuration and execution.
It instantiates the matrix, the configuration controller and
performs initialization steps such as sending the scheduling
program to the controller.

1) Processor soft-core: A preliminary version with missing
control structures was provided in order to ensure a minimal
compatibility of the designs. Obviously, the matter here was
to ease evaluation from a scholar point of view as well as to
force students to handle kind of legacy system and refactoring
rather than full re-design.

We also provided the instruction set and opcode (but without
compiler). In an ideal world, and with a more generous amount
of time to spend on the project, as the design is highly modular,
building a working design by picking best-fit modules out of
several designs would have also been an interesting issue.

2) Decoder: It outputs signals from input instruction ac-
cording to layout on table II.

a) Testbench program: Students are familiar with agile
programming, and we assume in a software-coding context

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode MA OP1 OP2

TABLE II
INSTRUCTION LAYOUT.

to reward test-first approach. When designing a processor the
same approach applies but at a wider granularity. Hence, we
distributed some testbench programs, one of which is provided
in table III.

Analyzing at specific timestamps (including after the appli-
cation stops) the internal states (some signals plus registers
contents), leads to design scoring.

RAM(0)<=1110010000000000;
−−LOAD R0,0;Initializing
RAM(1)<=0110010000011111;
−−ADD R0,31;R0=31
RAM(2)<=0110010000011111;
−−ADD R0,31;R0=62
RAM(3)<=0110010000011111;
−−ADD R0,31;R0=93
RAM(4)<=0110010000000111;
−−ADD R0,7;R0=100
RAM(5)<=1111010000000000;
−−STORE [R0],0; Memory init
RAM(6)<=1110010000101011;
−−LOAD R1,11; Selecting op
RAM(7)<=1110010001000001;
−−LOAD R2,1;Mask
RAM(8)<=1110010010000000;
−−LOAD R4,0;Bit counter
RAM(9)<=1110010010110000;
−−LOAD R5,16; Loop counter
RAM(10)<=1000010010100000;
−−CMP R5,0;Loop ending?
RAM(11)<=1010010000010100;
−−JE 20;(OP2 as addr)Jump up to end
RAM(12)<=1110000001100001;
−−LOAD R3,R1;Ref value copying
RAM(13)<=0001000001100010;
−−AND R3,R2;Mask forcing
RAM(14)<=1000010001100001;
−−CMP R3,1;set-to-1 bit detection?
RAM(15)<=1011010000010001;
−−JNE 17;(OP2 as addr) Else jump
RAM(16)<=0110010010000001;
−−ADD R4,1; Increment if true
RAM(17)<=0101010000100001;
−−LSR R1,1; Next bit
RAM(18)<=0111010010100001;
−−SUB R5,1;Decrement
RAM(19)<=1001010000001010;
−−JMP 10;(OP2 as addr) Jump to start
RAM(20)<=1111000000000100;
−−STORE [R0],R4; Saving result
RAM(21)<=1001010000010101;
−−JMP 21; Infinie loop
−−endtest2

TABLE III
EXAMPLE PROGRAM: A BIT COUNTER.

3) Reconfigurable FU design: Designing a RFU does
through sizing the matrix, defining a basic cell and isolat-
ing border cells that deserve special attention because their

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 131

structure is slightly different from the common template. The
basic cell is both used as is for the internal cells and tuned to
generate the border cells.

Defining the domains appears as shown by figure 5.

Fig. 5. On the right, view of the different cell types composing the matrix
(border cells, middle cells, IO cells). On the left, configuration domains are
defined as a set of rectangular boxes. They can be reconfigured independently
from each other.

The basic cell schematic view is provided by figure 6.
Ultimately, the full matrix appears as an array of N2 cells

as illustrated by the snapshot of the Biniou P&R layer (figure
7).

4) Application synthesis over the RFU: To let students
figuring out the benefit of adding the RFU to the processor
design, it is desirable that students can assess and compare
the impact of several options. One classical approach consists
in implementing a DFG to exhibit spatial execution. Another
option lies in implementing combinational operations (such
as a multiplier) instead of performing a loop of processors
instructions (addition, shifts, etc.). In both cases, the RFU
extends the instruction set. On the opposite, the underlying
arithmetic can vary keeping the instruction set stable, but
this goes through either a library-based design or dedicated
synthesizers. Libraries are typically targeted to a reduced set of
pre-defined macroblocks, and they are not easily customizable
to new kinds of functions or use-context.

We chose to focus on the second item as this seems to
carry extra added-value compared to classical flows, while
neglecting the need for a coding extra effort. Figure 8 il-
lustrates the Biniou behavioral application synthesizer. The

Fig. 6. Structure of a basic cell within the RFU matrix.

Fig. 7. Whole view of the RFU’s fine grained reconfigurable matrix.

optimizing context here is made up of typing as Galois Field
GF 16 values the two parameters. A so-called high-level truth
table is computed per graph node for which values are encoded
and binarized before the logic minimization starts. The result
appears as a context-dependent BLIF file. This BLIF file is
further processed by the Biniou P&R layer, that relies on a
pathfinder like algorithm. As application is simple enough to
keep the design flatten, no need exists for using a floorplanner.
However, for modular designs, a TCG based floorplanner is
integrated within Biniou.

Some constraints are considered, such as making some loca-
tion immutable to conform to the pinout of the adapter (figure
3). Once the P&R process ends, a bitstream is generated. Each
element of the matrix both knows its state (used, free, which
one out of N, etc.) and its layout structure. The full layout
is gained by composing recursively (bottom up) these sub-
bitstreams. An interesting point is that the bitstream structure
can vary independently from the architecture by applying
several generation schemes. It’s highly valuable in a partial

Fig. 8. Specification of a GF 16 adder.

132 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Fig. 9. An application placed and routed over the RFU.

reconfiguration scope when the designer faces several axes
during the architectural prospection phase. In the frame of the
project an example of bitstream structure is provided by the
figure 10.

5) Reconfigurable Functional Unit Integration: The recon-
figurable functional unit (RFU) is composed of three main
components: the reconfigurable matrix (RM) generated by
Biniou, a configuration cache and the RFU controller both
hand-written (see bottom right in figure 2).

Configuration is triggered by the processor controller which
reacts to a SET instruction by sending a signal to the RFU
controller. The RFU controller drives the configuration cache
controller, which provides back on demand a bitstream. The
processor controller gets an acknowledgement after the con-
figurations completes.

One critical issue about the processor-RFU coupling lies in
data transferts to/from the RFU. Students have to design a
simple adapter which connects a set of RFU’s iopads to the
processor registers holding input and output data (Op1, Op2
and Res in figure 2) with regards to the ones assigned to the
I/O of a placed and routed application (see figure 9). Figure
3 gives a detailed view of the adapter.

IV. RESULTS COMING OUT OF THE PROJECT

A. Environment results
1) Simulation: The simulation environment is ModelSim

[24] as illustrated by figure 11.
The loader module - that loads up the program - was not

provided but students could easily get one by simply reusing
and adapting the generated testbench. Only 1 group out of five
got it right.

1

LUT LATCH MUX0 MUX1 MUX2 MUX3 T0 T2 T3T1 PIP0 PIP60PIP1

CLB Block Inputs Block Outputs Switch

Cell

16

16

1 3 3 3 3

17 28 29 33 93340

1 1 1

Fig. 10. Example of a bitstream hierarchical organization.

This allowed to set a properly initialized state prior to
execution’s start. Of course, this was a critical issue, and
students would have done well to fix it in an early stage as
tracing values remained the one validation scheme. This was
all the more important as the full simulation took a long time
to complete and rerun had a real cost for students.

The simulation of the processor itself is time-affordable but
the full simulation takes around 4 hours, including bitstream
loading, and whole testbench program execution.

2) Optimizations: Students came to us with several policies
to speed up the simulation. A first proposal is to let simulation
happen at several abstraction levels, with a high rate of early
error detection. Second, some modules have been substituted
by a simpler version. As an example, by providing a RFU
that only supports 8 bit ADD/SUB operations, the bitstream is
downscaled to 1 bit with no compromise on the architecture
decomposition itself. This approach is very interesting as it
confines changes to the inside of the RFU while still preserving
the API. In addition, it joins back the concern of grain increase
in a general scope (i.e. balancing the computation/flexibility
and reducing the bitstream). Also this approach must be linked
to the notion of ”mock object” [25] software engineers are
familiar to, when accelerating code testing.

Third, as the application is outputted as RTL code, the code
can be used as a hard FU instead of using reconfigurable one.
In this way, the students validated the GF based synthesis.

Grabbing these last two points, the global design can be
validated very fast, be the scalability issue. This issue has
been ignored during the project, but is currently addressed as
the global design is been given a physical implementation.

3) Reports: Students had to provide three reports, one per
milestone. The reports conformed to a common template, and
ranged from 10 to 25 pages each. The last report embedded the
previous ones so that the final document was made available
straight after the project and students were given another
chance to correct their mistakes.

Some recommendations were mandatory such as embedding
all images as source format within the package, so that we
could reuse some of them. As an illustration, more or less
half of the figures in this paper come from students’ reports.

The students had no constraints over the language but
some of them chose to give back English-written reports. We
selected some reports to be published on line as examples or
next year students.

4) Oral defense: The last deliverable was made up of a
report, working VHDL code and an oral defense. Students
had to expose within 10 minutes, in front of the group, course
teachers, and a colleague responsible for the ”communication
and job market” course.

Fig. 11. Modelsim simulation.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 133

Some students chose to center their defense on the project
and the course versus project adequation, some others around
the ”product”, that was their version of the processor. One con-
fined its presentation inside an introduction of reconfigurable
computing and was considered offside.

B. Physical realization
The physical implementation was out of the scope of the

project. Several reasons motivated this choice, the first of
which was timing issues but also FPGA boards availability.

We offered one student to finalize this during a 5 weeks
individual project. This is still under development by now.
The development platform we use for this demonstrator is a
Virtex-5 FXT ML510 Embedded Development Platform.

V. CONCLUSION

A. Forces
One interesting point regarding this project lies in the

change in the students feeling. When we presented at the
first time the project, thought they would never complete the
goals. After the first milestone, one group gave up to avoid
paying the over due penalty and bounded their work to the
first deliverable. They finally reached 7 points out of 20. The
other groups faced the challenge and discovered that the key
issue lies in getting proper tools to free oneself from manually
developing both architectures and application mapping. The
final results were very likely acceptable and we collected
several working packages.

With this experience in mind, students are now ready for
entering a very competitive job market, with a deep under-
standing of both hardware design over reconfigurable archi-
tecture, micro-processors and reconfigurable cross integration
and tools&algorithms development.

B. Future evolutions
Obviously, the testbench examples we provided are not

sufficient to practice real metrics based measurements. Ex-
ploring the benefits of this approach (e.g. measuring speed-up)
requires an easy path from a structured programming language
such as C to the processor execution. Hence, the application’s
change would carry no need for hand-written adjustments.
From our point of view, such an add-on would be a fruitful
upgrade to the course, and would spawn new opportunities
for cross H/S expertise; keeping in mind that the DOP course
intends to get out with highly trained students sharing skills
in both area.

Developing a small compiler was out of the scope of this
project due to some timing constraints, but remains one hot
spot to be further addressed. This could benefit from some
Biniou facilities such as the C-entry both the logic and CDFG
synthesizers support.

An open option is then to benefit from another course and
invited keynoters to fulfill the prerequisites so that adapting/de-
veloping simple C parser becomes feasible in the scope of our
project, at the cost of around an extra week.

REFERENCES

[1] J. M. Filloque, E. Gautrin, and B. Pottier, “Efficient global computations
on a processor network with programmable logic,” in PARLE (1), pp. 69–
82, 1991.

[2] L. Lagadec, Abstraction and Modélisation et outils de CAO pour les
architectures reconfigurables. PhD thesis, Université de Rennes 1, 2000.

[3] L. Lagadec and D. Picard, “Software-like debugging methodology for
reconfigurable platforms,” Parallel and Distributed Processing Sympo-
sium, International, vol. 0, pp. 1–4, 2009.

[4] R. Schank tech. rep., Institute for the Learning Sciences (ILS) at
Northwestern University.

[5] P. M. Athanas and H. F. Silverman, “Processor reconfiguration through
instruction-set metamorphosis,” IEEE Computer, vol. 26, pp. 11–18,
1993.

[6] R. Razdan, K. S. Brace, and M. D. Smith, “Prisc software acceleration
techniques,” in ICCS ’94: Proceedings of the1994 IEEE International
Conference on Computer Design: VLSI in Computer & Processors,
(Washington, DC, USA), pp. 145–149, IEEE Computer Society, 1994.

[7] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The garp architecture
and c compiler,” Computer, vol. 33, no. 4, pp. 62–69, 2000.

[8] F. Campi, R. Canegallo, and R. Guerrieri, “Ip-reusable 32-bit vliw
risc core,” in Proceedings of the 27th European Solid-State Circuits
Conference, vol. 18, pp. 445–448, 2001.

[9] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov,
and E. M. Panainte, “The molen polymorphic processor,” IEEE Trans.
Comput., vol. 53, no. 11, pp. 1363–1375, 2004.

[10] R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger, “Using
the kress-array for reconfigurable computing,” in Proceedings of SPIE,
pp. 150–161, 1998.

[11] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor,
“Piperench: a reconfigurable architecture and compiler,” Computer,
vol. 33, pp. 70–77, Apr 2000.

[12] J. Becker and M. Vorbach, “Coarse-grain reconfigurable xpp devices
for adaptive high-end mobile video-processing,” SOC Conference, 2004.
Proceedings. IEEE International, pp. 165–166, Sept. 2004.

[13] G. Lu, M. hau Lee, H. Singh, N. Bagherzadeh, F. J. Kurdahi, and
E. M. Filho, “Morphosys: A reconfigurable processor targeted to high
performance image application,” in Proceedings of the International
Symposium on Parallel and Distributed Processing, pp. 661–669, 1999.

[14] F. Campi, A. Deledda, M. Pizzotti, L. Ciccarelli, P. Rolandi, C. Mucci,
A. Lodi, A. Vitkovski, and L. Vanzolini, “A dynamically adaptive dsp
for heterogeneous reconfigurable platforms,” in DATE’07, 2007.

[15] C. Mucci, C. Chiesa, A. Lodi, M. Toma, and F. Campi, “A c-based
algorithm development flow for a reconfigurable processor architecture,”
in IEEE International Symposium on System on Chip, 2003.

[16] A. DeHon, “Dpga utilization and application,” 1996.
[17] X.-P. Ling and H. Amano, “Wasmii: a data driven computer on a virtual

hardware,” in Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machine, pp. 33–42, 1993.

[18] E. Caspi, M. Chu, Y. Huang, J. Yeh, Y. Markovskiy, A. Dehon,
and J. Wawrzynek, “Stream computations organized for reconfigurable
execution (score): Introduction and tutorial,” in in Proceedings of the In-
ternational Conference on Field-Programmable Logic and Applications,
pp. 605–614, Springer-Verlag, 2000.

[19] Mitrionics, “http://www.mitrionics.com/.”
[20] S. Shukla, N. W. Bergmann, and J. Becker, “Quku: A two-level

reconfigurable architecture,” in ISVLSI ’06: Proceedings of the IEEE
Computer Society Annual Symposium on Emerging VLSI Technologies
and Architectures, (Washington, DC, USA), p. 109, IEEE Computer
Society, 2006.

[21] “Multi-purpose dynamically reconfigurable platform for intensive het-
erogeneous processing.” http://www.morpheus-ist.org/pages/part.htm.

[22] S. R. Alpert, K. Brown, and B. Woolf, The Design Patterns Smalltalk
Companion. Boston, MA, USA: Addison-Wesley, 1998.

[23] “Madeo-web, the madeo+ web version.” http://stiff.univ-
brest.fr/MADEO-WEB/.

[24] “Modelsim.” http://www.model.com/.
[25] D. Picard and L. Lagadec, “Multilevel simulation of heterogeneous

reconfigurable platforms,” International Journal of Reconfigurable Com-
puting, vol. 2009, 2009.

134 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Behavioral modeling and C-VHDL co-simulation of
Network on Chip on FPGA for Education

C. Killian, C. Tanougast, M. Monteiro, C. Diou,
A. Dandache

LICM, University Paul Verlaine of Metz
Metz, France

{Cedric.Killian, Camel.Tanougast}@univ-metz.fr

S. Jovanovic
IADI, University Henri Poincaré

Nancy, France
s.jovanovic@chu-nancy.fr

Abstract—In this paper, we present a behavioral modeling and
simulation of Network on Chip (NoC), some parts being
implemented on a FPGA education Board. This modeling can be
effectively used by students for educational purposes. Indeed,
experience proves that behavioral modeling and simulation of the
NoC concepts help the students to understand MPSoC, design
approach, and make more practical and reliable designs related
to NoC. We have chosen C-VHDL co-simulation for educational
purposes; all design steps being given in the study. The
experience covers NoC concepts for MPSoC design from
postgraduate education to Ph.D level education. For each
targeted audience, different properties of the system can be
emphasized. Our approach of embedded systems education is
based on classic referenced research findings.

Keywords: NoC, C-VHDL Co-simulation, SoC design,
Education purpose.

I. INTRODUCTION

Given the evolution and the increasing complexity of
System on Chip (SoC) toward Multiprocessors Systems on Chip
(MPSoC), communication interconnection of modules or
Intellectual Property (IP) constituting these systems, had
undergone topological and structural evolution. Actually, the
trend is moving towards the full integration of a Network on
Chip to implement the transmission of data packets among the
interconnected nodes which are computing modules or IPs
(processors, memory controllers, and so on.). Fig. 1 illustrates
this trend of on chip interconnection.

In this study, we present a behavioral modeling and simulation
of the Network on Chip (NoC) communication used to
overcome some difficulties encountered in understanding the
concepts of Multi-Processor System on Chip (MPSoC)

communication design. Indeed, we observed that students
learning prototyping based on FPGA education boards had
some difficulties and were wasting time on the embedded
communication design linking computing nodes of the MPSoC
in the same chip. To overcome this problem, a NoC behavioral
modeling and simulation was designed, some parts being
synthesized on a FPGA board used at our laboratory. This
functional modeling and simulation was prepared as an
electronic design example of the configurable on chip
communication part in the embedded system course plan. We
have preferred a NoC modeling and behavioral simulation was
designed with C-VHDL co-simulation in Modelsim tool
environment for educational purposes. The setup demonstrated
in this paper is suited for introductional modeling and
verification of the designed NoC for MPSoC design based on
FPGA technology. More precisely, this paper introduces an
initiation educational project of modeling, and functional
simulation of a mesh NoC [1], led by postgraduate students -
Master 2 RSEE (Radiocommunications and Embedded
Electronic Systems) specialty education of the Paul Verlaine
University of Metz.

The paper outline is as follows. Pre-design studies are
introduced in the Section II. We start with a short technical
overview (from an educational point of view) of the Modeling
of the NoC concepts, and the NoC model of the case study in
this Section. We cover key properties of NoC and relate them
to training of students. In the Section III, all modules of the
modeling and functional simulation are introduced separately
in details waveform simulation reports from the test example,
and advantages of the behavioral simulation are assessed in
terms of practicality, time saving and reliability. Finally,
Section IV concludes the education experiences for the paper.

Time

1990 1995 2000 2005 2010

Connections P2P Shared Bus Hierarchical Shared
Bus

Crossbar Bus Network on Chip

Figure 1. Interconnection evolution in Systems on Chip.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 135

II. MODELING AND SIMULATION OF NOC : CASE STUDY

The network transmission is realized through routers
constituting the network, and by using switching techniques
and routing rules [1]. In this context we propose an initiation
project to the RSEE student using Modelsim hardware
simulator tool [2].

We propose to students the modeling of a NoC by using
switching data packets constituted of messages, and based on
mesh topology of configurable size (3x3, 6x6 and 10x10),
Wormhole switching rules and standard XY routing rules [1].
Fig.2 illustrates the NoC to be designed by the students. It is a
mesh-network where each one is associated to a Processing
Element (PE). Each PE-router pair possesses a specific address
and can emit messages through the network.

00

10

20

N0

01

11

21

N1

02

12

22

N2

0N

1N

2N

NN

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

ij
Address router i, j

R RRR

R RRR

R RRR

R RRR

R

N Node = module (processor, IPs, memory, etc.)

X

Y

Figure 2. Illustration of the proposed nxn Mesh NoC to model.

Each packet is constituted of flits (flow control units)
corresponding to data word with fixed size. We define the
Phits (physical units) notion corresponding to the information
unit able to be emitted in one cycle trough a physic channel in
the network.

1) Routeur behavioral VHDL modelling
The students model a VHDL behavioral description of a

NoC router characterized by data packets composed of 5 flits.
The phit size corresponds to the channel size. The router input
buffer is equal to one flit size. The router specifications are
described as follows:

- Data packets composed of 5 flits of 9 bits size (5 x 9 bits)

- Data channel of 9 bits (phit size)

- One buffer of 2 flits deep (2 x 9 bits) in each input of
routers

- An internal switching logic based Crossbar

- 4 data transmit directions (East, West, South and North)

- Wormhole switching rules: the connections between the
inputs and direction outputs of the routers are maintained until
all the packets flits have been sent.

Fig.3 gives the description of the specification of one NoC
router. The global NoC is then made by a structural VHDL
description realized by router module instantiations in order to
design a NoC with a configurable size of 3x3, 6x6 and 10x10
(see Fig. 2).

2) Routing algorithm
The algorithm proposed to the student is an XY static

routing algorithm. Thus, the data packets are routing toward
the destination PE through the network router first along X
axis, and then along Y axis. The XY routing algorithm is
realized in VHDL functional description from the following
algorithm:
- If X_router < X_destination, direction paquets = Direction_East

- If X_router > X_destination, direction paquets = Direction_West

- If X_router = X_destination and Y_router > Y_ destination, direction
paquets = Direction_South

- If X_router = X_destination and Y_router < Y_ destination, direction
paquets = Direction_North

- If X_router = X_destination and Y_router = Y_ destination, direction
paquets = Local_PE

Switch - Crossbar

PE

Buffers

Buffers
Buffers

Buffers

Routing
-

Priority

East_Direction

West_Direction

south_Direction

North_Direction
Pe_out

Pe_in

Figure 3. Illustration of the structural architecture of one NoC router.

Fig. 4 illustrates the XY routing algorithm of data packets
between the PE_00 and PE_22. An erroneous description of
this algorithm can lead to deadlock or livelock of data packets
[1] during the behavioral simulation steps of the modeled NoC.
The elaboration of the priority rules of the data packets in
routers is defined and designed by the students. These rules
need to be associated with the routing algorithm, the number of
flits constituting the data packets and the wormhole switching
rules. The goal is leading students use an iterative and
progressive description of the routing and priority rule module
gradually in the modeling and simulation phases highlighting
situations of temporary deadlock, starvation, and the impacts
on the data packets transmission latency notion.

136 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Add 00 Add 01 Add 02 Add 03

Add 10 Add 11 Add 12 Add 13

Add 20

Add_30

Add 21 Add 22 Add 23

Add 31 Add 32 Add 33

PE

PE

Figure 4. Illustration of the XY routing algorithm.

III. C-VHDL CO-SIMULATION

From a description in C language modeling the data packets
transmission and reception by all PE associated at each NoC
router, the students realized a detailed NoC VHDL behavioral
description (routers, control data flow, logic routing, etc.).
From this hardware language description, a validation via C-
VHDL co-simulation by using VHDL FLI (Foreign Language
Interface) on the ModelSim tool is performed [3]. NoC design
and simulation steps developed by the students, correspond to a
VHDL description associated to a C/C++ program modeling
all PEs providing emission or reception of data packets
transmitted in the modeled NoC. Fig. 5 depicts the interface
and the association of co-simulation in ModelSim environment.
From files containing the data packets to be sent in the NoC by
some PE transmitters to PE receivers, an interface between the
NoC VHDL description and the C/C++ function modeling the
packets transmitting or receiving for each PE, is executed in
ModelSim.

Add 00 Add 0j

Add i0 Add ij

NoC.vhd

ModelSim

PEoo

PE01

PE0i

PE10

PEij

PEs.C
PEs.vhd

Testbench.vhd

Data packets emitting
PEs

Data packets reception
PEs

Figure 5. C-VHDL co-simulation in Modelsim environment.

In fact, PEs are modeled in the simulation through a DLL
compilation of the C/C++ function modeling each PE of the
NoC. This DLL is defined as the architectural parts of PEs in

the VHDL description of the simulated NoC in ModelSim. Fig.
7 shows the integration of the C/C++ functionality modeling
PEs in the VHDL description of the NoC.

Fig. 6 presents the file contents associated to each PE and
containing the packets (of 5 flits size) to transmit. The first flit
corresponds to the source address of the emitting PE. The
second one is the address of the destination PE. The next flits
are the data to transmit between two PEs of the network.

Figure 6. Data packets examples to transmit by PE address 00

During the co-simulation phases, students are aware about
the deadlock, livelock and starvation risks of data packets in
the modeled NoC [1]. These risks are mainly due to the limited
resources sharing and the resources access rules. They are
usually studied and analyzed in the NoC design suitable for the
conception of specific MPSoC. Fig. 8 and 9 give examples of
co-simulation results in ModelSim. Fig. 8 presents a data
packets received from a wormhole switching using the XY
routing in the switch associated with the PE-54. Fig. 9 shows
the reception of data packets by the PE_54. This co-simulation
allows a rapid behavioral validation of the design NoC while
highlighting his characteristic performances as the latency and
throughput notions. Fig. 10 gives an example of generated files
by the simulation results given the latency results in terms of
the cycle number of transmitted packets in the NoC by an
emitter PE toward a destination PE.

IV. CONCLUSION

This paper proposes, for educational purposes, the
modeling, simulation and performance evaluation of the chip
network communication architecture using C-VHDL co-
simulation with ModelSim. This approach overcomes some
understanding difficulties encountered during the teaching of
the communication concepts in Multi-Processor System on
Chip (MPSoC) design. It alerts the students to the fundamental
impact of the interconnection in MPSoC to meet the required
performances. The data packet transmission modeling and
simulation is described in C/C++ allowing the rapid simulation
required to validate the functionality, and the performances of a
Network on Chip. Routers are described in VHDL aiming the
synthesis towards FPGA technology. The educational purpose
is to provide the students the fundamental concepts in the
design, and development of on chip interconnection, a
significant key of MPSoC performances.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 137

Figure 7. Attribution FLI of abstract model by DLL in the VHDL description.

Figure 8. Simulation results of the transmit data packets in the modeled NoC based on the Wormhole switching and XY algorithm.

Figure 9. Simulation results of the received data packets in the PE_54.

138 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Figure 10. Latency results in term of clock simulation cycle of the transmitted data packets by the PE_00.

This experience covers the major NoC concepts for MPSoC
design from postgraduate education to Ph.D level education.
Moreover, it shows the usefulness of tool like ModelSim in the
validation of a functional architecture in its working
environmental context through co-simulation. This lab is
complementary to the teaching of high level modeling system
languages such as SystemC. Indeed, the increasing complexity
of System on Chip rely more and more on specific tools whose
mastery is fundamental for microelectronic design education.

REFERENCES

[1] G. De Micheli et L. Benini, « Networks on Chips, Technology and
tools », Morgan Kaufmann publishers, 2006.

[2] Mentor Graphics, « Modelsim SE User’s Manuel, Sofware, Version 6.
4 », 2008. http://www.mentor.com/.

[3] Mentor Graphic, « ModelSim, Foreign Language Interface, version
5.6d», August 2002.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 139

140 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Experimental Fault Injection based on the
Prototyping of an AES Cryptosystem

Jean-Baptiste Rigaud∗, Jean-Max Dutertre∗, Michel Agoyan†, Bruno Robisson†, Assia Tria†,
∗École Nationale Supérieure des Mines de Saint Étienne,†CEA-LETI,

SAS Department,
Centre Microélectronique de Provence Georges Charpak,

880 avenue de Mimet 13541 Gardanne, FRANCE
Email: ∗name@emse.fr,†firstname.name@cea.fr

Abstract—This paper presents a practical work for Masters
students in Microelectronics Design with optional modules in
cryptography and secured circuits. This work targets the design
and the prototyping of the Advanced Encryption Standard
algorithm on a Spartan 3 Xilinx platform and how fault injection
techniques could jeopardize the secrecy embedded within a design
dedicated to the security thanks to simple equipments: a fault
injection platform based on the use of an embedded FPGA’s
Delay Locked Loop.

I. INTRODUCTION

This paper proposes a wide spectrum practical work for
Masters students in Microelectronics Design with optional
modules in cryptography and secured circuits. This is the
development of an experimental fault injection based on
the prototyping of an AES cryptosystem. The main goal is
the application of academic courses around VHDL, design
methodology, FPGA prototyping, cryptography and security of
integrated circuits. The work has two parts. The first one is the
VHDL implementation of a standard symmetric key algorithm:
a 128-bit AES. Then, this cypher block is prototyped on
Spartan 3 development board [12]. A serial communication
interface completes the design. It allows communication be-
tween a PC and the Xilinx board using ad hoc commands.
Lastly, the automated generation of test programs for this
environment is addressed. All this part is mainly composed
of lab work.

The second part of the course is dedicated to the design
of a fault injection platform. It includes both lectures and
laboratory work. The lectures consist in introducing the
theory of digital ICs’ timing constraints, Differential Fault
Analysis (DFA) and the use of Xilinx FPGA’s Digital
Clock Managers (DCM). Then, during the laboratories, the
students apply these principles to designing fault injection
platform (implemented on a Xilinx Virtex 5 demo board), and
performing fault injection experiments by various means on
the previously designed AES. This course part is devoted to
make the students aware of fault attacks against cryptosystems.

II. THE ATTACKED CIRCUIT : AES CRYPTOSYSTEM

The first part focuses on the description of the cryptosys-
tem to be designed. Second, the AES VHDL modeling and

prototyping is presented. Then, the AES test environment is
targeted with the insertion of an UART interface. Finally,
a test pattern generation program is proposed using Perl
programming language.

A. Advanced Encryption Standard Algorithm

The Rijndael block cipher [4] has been standardized as
the Advanced Encryption Standard (AES) by the National
Institute of Standards and Technology (NIST) in 2001 [8] . It
replaces the Data Encryption Standard (DES) for symmetric-
key encryption.

Plain Text

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Cypher Text

RoundKey 0Round 0

Round 1 to 9

Round 10

RoundKey i

RoundKey 10

Fig. 1. AES algorithm

It is a Substitution-Permutation Network (SPN) block cipher
whose operations are based on binary extension fields. It
processes a 128-bit plaintext and a key of 128, 192 or 256 bits
long to produce a 128-bit ciphertext. From now on, we only
consider a 128-bit key AES. The AES encryption algorithm
is divided into two processes: the “Data path” and the “Key
Schedule”. The words processed by these two parts are two
4x4 matrices of bytes called “states”.

1) Data path Encryption Process: AES has an iterative
structure (Fig. 1). The data path is a sequence of ten sub-
processes called “rounds”. A regular round is composed of the

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 141

four transformations called “SubBytes”, “ShiftRows”, “Mix-
Columns” and “AddRoundKey”. Before the first round, the
original key and the plaintext are added. The last round uses
all but the MixColumns transformation.

00

11

22

33

44

55

66

77

88

99

AA

BB

CC

DD

EE

FF

⇒
00

55

AA

FF

44

99

EE

33

88

DD

22

77

CC

11

66

BB

Fig. 2. ShiftRows transformation

SubBytes transformation substitutes each byte of the state
according to a table called “Sbox”.

ShiftRows transformation is a cyclic permutation on the
state rows (fig.2).

MixColumns is a matrix product of the current state S by
a constant matrix C over GF (28) (fig.3).

2

1

1

3

3

2

1

1

1

3

2

1

1

1

3

2

•
00

55

AA

FF

44

99

EE

33

88

DD

22

77

CC

11

66

BB

=

AA

B0

00

1A

E5

77

4F

4D

22

38

88

92

6D

FF

C7

55

Fig. 3. MixColumns transformation

The AddRoundKey transformation adds (using a bit wise
XOR) the round data to the round key processed by the
KeySchedule.

2) KeySchedule Process: Each round key is derived from
the previous one through the operation described in Figure 4.
The first round key (RoundKey 0) is the secret key. For each
round two transformations, “RotWord” and “SubBytes” are
applied to the last column of the round key state. This column
is then added to a round constant (“RCon”). The next round
key state is obtained column wise: the next first column is
the result of a XOR operation between this modified column
and the former first one. Each following column of the former
state is added to the column computed just before.

0F

0E

0D

0C

0F

0E

0D

0C0F

0E

0D

0C

0B

0A

09

08

07

06

05

04

03

02

01

00

AB

D7

FE

76
SBOX

Round key RotWord SubBytes

AB

D7

FE

76 00

00

01

00

03

02

01

00

07

06

05

04

0B

0A

09

08

0F

0E

0D

0C

AB

D6

FE

76

AA

D6

FD

74

AF

D2

FA

72

A6

DA

F1

78

03

02

01

00

07

06

05

04

0B

0A

09

08

0F

0E

0D

0C

AB

D6

FE

76

AA

D6

FD

74

AF

D2

FA

72

A6

DA

F1

78

AA

D6

FD

74

AF

D2

FA

72

A6

DA

F1

78

AB

D6

FE

76

RCon

Fig. 4. Keyscheduling

B. AES Design

The AES is a good example for teaching integrated circuits
design: it involves a lot of architecture dilemnas with very

interesting issues such as the synchronization of data path and
key expansion or the Sbox modeling. This task provides the
students with the opportunity to apply by themselves the whole
FPGA design flow.

1) Specifications and framework: In addition to the AES
standard, the following specifications are given to the students:

• The inputs and outputs are 128-bit long.
• A “start” and a “done” signals trigger the beginning and

the end of each encryption.
• An asynchronous active low reset initializes the whole

circuit.
• The clock nominal frequency is 100 MHz.
• A complete cyphering has to be done in eleven clock

cycles.
• There is no area constraint.
The following design constraints are directly linked to the

evaluation environment described in the next section. The
AES clock is also provided by the external environment and
connected to the second FPGA board (cf. III). The “start”
signal is a trigger for the clock fault generator (fig. 11). The
target is a Spartan-3AN (XC3S700AN) evaluation board . All
the circuits and test benches are modeled in VHDL. The
simulations (at functional, post-synthesis and post-place and
route levels) are performed with ModelsimTM from Mentor
Graphics. The synthesis, place and route and bitstream gener-
ation are performed with the Xilinx ISETM development suite.

2) AES Hardware Description: The AES circuit is com-
posed of three parts (fig. 5) which are the “Data Path” which
encompasses the four transformations, the “KeyExpander”
and the “StateController” which is the finite state machine
sequencing the entire algorithm. The StateController enables
signals to activate each part of the circuit. Multiplexers and
demultiplexers are inserted in order to transfer and select data
between different rounds (they are also controlled by this sub-
circuit). KeySchedule computes the round keys on the fly and
each round is computed within a clock cycle. Data is latched
just before the S-Boxes (both in the data and key paths).

resetbclock

start

data

key

cypher

done

128

128

128

128

M
u
x

D

m
u
x

e

DataPath

KeyExpander

State Controller

ARKMCSRSB

Fig. 5. AES block diagram

The timing constraint of 11 clock cycles per cyphering
means that 16 S-Boxes are needed for the SubBytes operation

142 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

and 4 for the KeyExpansion. Several solutions exist to design
S-Boxes ([11], [7]). In this paper we choose the look-up
table approach. It is also possible to use integrated block
RAM (BRAM) configured as ROM used depending on the
FPGA target chosen. The latter approach allows the students to
discover a way to generate memory blocks with Xilinx Coregen
application for example.

C. Evaluation Environment

One of the goals of this course is to give a concrete lab
work in design debugging or design testing. Once the AES
modeling is completed and all the simulations work fine, it is
important to test it in a real environment scenario.

Here, a dedicated evaluation environment between a PC
and the Spartan-3 board is proposed to the students. A serial
communication based on the RS232 protocol is used. Figure
6 shows the communication scheme between PC and AES
block.

1) A Simple Communication Protocol: The aim in this
part is to perform cyphering, i.e. to program the key, give
a plaintext and retrieve the cypher. The following commands
are used:

• m or M followed by 64 ASCII characters followed by
”EOL”: to send a 128-bit message

• k or K followed by 64 ASCII characters followed by
”EOL”: to send a 128-bit key

• g or G followed by ”EOL”: stands for go, to start the
encryption

The interface has to acknowledge the M and K commands
by sending the string of 2 characters OK. The go command is
acknowledged by the 32 hexadecimal characters of the result
and OK.

The same computation can be done several times where
only the key or the message is changed between two AES
executions. All these commands are sent via the RS232 port
via an serial ”terminal”.

The automation of the cyphering will be described in
subsection II-C3.

2) UART Hardware Implementation: A light UART is used
to ensure communication between the PC and the AES. It only
takes into account the baud rates. Each frame is 8-bit long with
one stop bit. Other features such as parity checking are not
considered here. This part could be improved in the future.

This entity is composed of 4 blocks :
• Baud generator: generates the correct local clock fre-

quency depending on the baud rate. The Baud rate is
initially controlled by external on-board dip switches but
can be hard-coded as well.

• Transmitter: sends serialized data to the PC to acknowl-
edge a command or to send back the cyphertext.

• Receiver: receives deserialized data from the PC.
• Controller: is a finite state machine dedicated to decoding

the received commands, to control the AES and to send
back results and acknowledging to the PC.

This communication interface is designed within one same
AES design flow. Once the bit stream is loaded into the FPGA,

the first step in the debugging process is to send a command
from a serial terminal and wait for the answer (“OK”) from
the FPGA. Then test patterns provided by the NIST are used.

cypher

done

UART

AES

Xilinx FPGA

block

start data key

128128128

interface

Rx

Tx

Fig. 6. AES test environment

3) An Automated Cyphering : Once the communication
between the AES and the PC is validated, this first part course
ends with the generation of test programs. The goal here is to
create scenario files based on the communication commands
(cf. II-C1). After a quick overview of Perl programming lan-
guage [9], students are asked to generate multiple encryption
scenarios for the FPGA. They use features like simple text
handling and easy configuration of the serial port (open, close,
baud rate,etc.). At last, with “Crypt::OpenSSL::AES” [3], a
Perl wrapper module of the OpenSSL’s AES library, they can
compare, on the fly, the received cyphertexts with the expected
results.

With this we conclude the first part of the course. It has
presented the AES algorithm, its design and prototyping on
Xilinx development board, the integration of a communication
interface (UART block) and the automation of AES executions
with an external PC and Perl programming. This last step is
very important for the experimental fault injection in the next
part of the article.

III. DESIGN AND USE OF AN FPGA-BASED ATTACK
PLATFORM

A. Overview of the course

This part of the course includes both lectures and labo-
ratory work. The lectures introduce the theory of the timing
constraints related to the synchronous operation of digital ICs,
the concept of Differential Fault Attack (DFA) applied to the
Advanced Encrytpion Standard (AES) algorithm and the use
of an FPGA on board delay locked loop (DLL) to design an
attack platform. The laboratory work is divided into two parts:
the synthesis and test of the modified clock signal intended to
inject faults and a fault injection experiment on our AES board,
as designed in section II. After completing this course, students
will be aware of the threats that fault injection techniques pose
to the physical implementation of cryptographic algorithms.

B. Theoretical work

This subsection introduces the theoretical background used
for fault injection purposes.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 143

1) Digital IC timing constraints: Almost all digital ICs
work according to the principle of synchrony: their internal
computations are sampled by a global clock signal (except
asynchronous circuits which are out of scope of this course).
Figure 7 symbolizes the internal architecture of any syn-
chronous circuit: combinational logic surrounded by registers
(i.e. banks of D flip-flops). The data are released from the first
register banks on a clock rising edge and then processed by
the logic before being latched into the next bank on the next
clock rising edge. It takes a certain amount of time, called the
propagation delay, to process the data through the logic. As a
consequence, the time between two rising edges (i.e. the clock
period) depends on the propagation delay.

D Q D Q

Combinational
logic

clk

data
1 1 1 1

propagation delay

Dffi Dffi+1

n-1 m-1

Fig. 7. Internal architecture of Digital ICs

More precisely, to operate without any computation error,
the data must arrive at the second register’s input before a
required time. The data arrival time is expressed in equation
1, where tclk to Q is a latency time between the clock’s rising
edge and the arrival of the data on the register output Q,
and where tMax(prop delays) is the biggest propagation delay
through the combinational logic (namely its critical time).

tdata arrival = tclk to Q + tMax(prop delays) (1)

Equation 2 gives the required time for which the data must
be present. This is the sum of the clock period (Tclk) and
a time skew (Tskew) which reflects the clock propagation
time between the two registers minus the register’s setup time
(δsetup), the setup time being the amount of time for which
the D flip-flop input must be stable before the clock’s edge to
ensure reliable operation.

tdata required = Tclk + Tskew − δsetup (2)

Hence, the timing constraint (Equation 3) is derived from
the two previous equations:

Tclk > tclk to Q + tMax(prop delays) − Tskew + δsetup (3)

The violation of the timing constraint results in computa-
tional errors. This principle is well known and frequently used
as fault injection means to attack secure circuits [1].
Moreover, the faults’ locations are linked to the propagation

delays. Consider a combinational logic block implementing
a given logical function (depicted in figure 8). Each output
possesses its own propagation delay: tprop delay(i).

n

delay

m

D0
D1

Dm-1

Combinational
logic

inputs outputs

Fig. 8. Propagation delay

Then, any fault will be injected in a place (output Di)
where the propagation delay is large enough to induce a timing
constraint violation as expressed in equation 4:

tprop delay(i) > Tclk + Tskew − tclk to Q − δsetup (4)

Besides, these delays depend on the handled data. In other
words, each propagation delay is changing with the data
and so do the faults’ locations (we will return to this point
later in subsection III-C2). In addition, the propagation delays
also depend on the power supply voltage and the chip’s
temperature.

2) Differential Fault Attack on AES: Fault attacks consist
in injecting faults in the encryption process of a cryptographic
algorithm through unusual environmental conditions. They
may result in reducing the ciphering complexity (a round re-
duction number for example, see [2]) or the injected faults may
allow an attacker to gain some information on the encryption
process by comparing the correct with the faulty ciphertexts.
This technique is called Differential Fault Attack (DFA). An
extended explanation of DFA’s theory (as done during our
lectures) would be too long and of little relevance to this paper.
However, the reader could find a complete description of two
major DFA schemes in [10] and [6].
These attacks allow an attacker to retrieve the secret key used
by the AES cryptosystem. The key points are that the fault
injection means must allow the attacker to control precisely:

• the exact time of fault injection (i.e. only for a given and
precise round),

• the number of faults (i.e. to limit the faults locations to
a byte or even to one bit).

If not, it will be impossible to extract any information related
to the encryption key.

3) FPGA-based attack platform: A basic approach to in-
ject faults through timing constraints violation (as shown in
subsection III-B1) is overclocking. It consists in decreasing
the clock’s period until faults appear by setup time violation.
However, it provides no timing control: faults are injected at
each clock cycle, which is not suitable for DFA. To overcome
this, we choose local overclocking (or clock glitching), which

144 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

is based on inducing a timing violation by modifying only
one clock period. The corresponding modified clock signal is
denoted clk′ in Figure 9.
Moreover, it offers to our students the opportunity to use
and reconfigure dynamically the Delay Locked Loop (DLL)
embedded in the Digital Clock Managers (DCM) of the Xilinx
Virtex 5 FPGA [5].

���

����

���� � Δ

����

��� ↑↑↑↑

��� ↓↓↓↓

Δ

Δ�	

Fig. 9. Faulty clock signal generation

The modified clock signal, clock′, is built from a correct
one, clk, as depicted in Figure 9. The DLL allows delaying an
input clock signal by a programmable duration. A first Δ/2
delayed clock, clock ↓, is derived from the input clock to
produce the falling edge of the modified cycle and a second
one Δ delayed, clock ↑, to produce its rising edge. Then, they
are combined to obtain the modified clock signal, clock′, used
for fault injection purposes. As a consequence, the duration of
the corresponding clock period is decreased by an amount of
time Δ. A trigger signal is used to indicate the location of
the modified cycle. This technique allows choosing the fault
injection cycle. Furthermore, the ability to set precisely Δ
enables a fine control over the number of faulted bits (the
experimental results reported in subsection III-C2 demonstrate
the ability to inject one bit faults).

C. Laboratory work
The laboratory work addresses both the VHDL description

and synthesis of the fault injection platform described in
subsection III-B3 and the implementation of the fault injection.

1) Synthesis: This experimental work takes place after the
lectures described in subsection III-B and the VHDL synthesis
of the AES crytposystem described in section II have been
given. The students have to complete a very concise task:
design a fault injection platform based on local overclocking
as described in the corresponding lecture (see subsection
III-B3) on a Xilinx Virtex 5 demo board [13]. The following
guidelines are given:

• use a dynamic configuration mode to set Δ via a serial
communication port,

• reuse and adapt the IP already developped in section II-C
to implement the communication protocol,

• set the CLOCKOUT PHASE SHIFT’s attribute of the
DLL to VARIABLE POSITIVE to obtain an elementary
variation step, δt, equal to 35 picoseconds for Δ,

• use a nominal clock frequency of 100 MHz (which is
consistent with the AES test chip).

No instructions are given for the design of the combinational
logic block devoted to obtaining the faulty clock (clock′ in
figure 9) from the DLL input’s clock signals and the trigger
signal issued by the AES chip. In addition, the students need
to discover by themselves that a programmable counter is
required to monitor the instant the faulty period is generated
to be able to target any of the AES rounds.
The achievement of this work is validated by measuring the
modified clock signal for different settings of Δ and of the
targeted rounds.

Fig. 10. Faulty clock (uppermost) and trigger signal(lowermost)

Figure 10 illustrates an oscilloscope’s screen shot typically
asked for validation, where Δ is set to 1.8 picoseconds and the
modified period located during the ninth round of the AES.

2) Fault injection experiments: The main part of the labora-
tory work is focused on fault injection experiments. A first part
is dedicated to fault injection by using local overclocking and
to controlling precisely the injection process. Then, a second
part addresses the ability to inject faults by modification of
the power supply voltage and the temperature of the chip.
The experimental setup is depicted in Figure 11.

Fig. 11. Experimental setup

The first test campaign is ran as described in Algorithm 1,

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 145

where δt is the variation elementary step of Δ.

Algorithm 1 Test Campaign Pseudo-Code
send the key K and the plaintext M to the test chip.
Δ ← 0.
while (clock period > Δ) do

encrypt and retrieve the ciphertext
Δ ← Δ + δt

end while

It is carried out to illustrate the fault injection process. The
final round of the AES is targeted to allow a direct reading of
the errors by direct comparison between a correct and a faulty
ciphertexts. The AES plays the role of a big propagation delay.
The bar chart of Figure 12 shows the faults’ timing and nature
as a function of the faulty period’s duration (the horizontal
axis). It uses a color code to reflect the nature of the faults
(no fault, one-bit, two-bit and more faults) and their time of
appearance. As expected, the comparisons between correct and
faulty ciphertexts reveal that the device progressively transits
from normal operation to multi-bit faults. This is done by
exhibiting none, one-bit, two-bit and multiple-bit faults.

�������	

��
��	�����	

���
��	������	

	��������	

�
�
�
�
�
�
�
�
�
��
��
��
��
��
��

�����

 !
	�
��
�"
�#

�

������������

���
����������������������

Fig. 12. Fault injection as a function of faulty period duration

These statistics were obtained thanks to the very small value
of the faulty period granularity, namely 35 ps. This allows
injecting a one-bit fault at every round of the ciphering process
with a high degree of confidence, which is a requirement for
many DFA methods.
The next point is about controlling the faults’ location. The
second bar chart in Figure 13 is obtained with the same
experimental protocol and with the same secret key but with
a different plaintext. The first injected fault is a single bit
fault on byte number three for a clock period equal to 7585
ps, whereas the first one-bit fault injected in the previous
experiment was on byte thirteen for a clock period equal to
7340 ps. This confirms, with many other experimental results,
that the critical time’s location and value vary with the data (as
stated in III-B1). This experiment is carried out to illustrate the
ability to change the fault location by changing the plaintext.

Another means of injecting faults is to increase the combina-
tional logic’s propagation delays until faults appear due to tim-

������ ������

�
�
�
�
�
�
�
�
�
��
��
��
��
��
��

�

 !
	�
��
�"
�#

�������	

��
��	�����	

���
��	������	

	��������	

���
����������������������

�����

Fig. 13. Fault injection for a different plaintext

ing constraints violation according equation 3. As suggested
in III-B1, this is achieved by decreasing the device’s power
supply voltage (VDD) or increasing the chip’s temperature.
The students have to carry out these experiments and to report
the corresponding critical time as a function of VDD and the
temperature. Figures 14 and 15 illustrate the corresponding
typical results.

8500

9000

9500

10000

10500

11000

11500

12000

12500

1,2 1,15 1,1 1,05 1 0,95 0,9

VDD (V)

critical path (ps)

pi
co

se
co

nd
s

�$�%

1.07 V

Fig. 14. Fault injection based on power supply decrease

Fig. 15. Fault injection based on temperature increase

As expected, as VDD decreases, the critical time increases.
And when it crosses the clock period (Tclk) value (namely
10,000 ps) at VDD = 1.07V , the first fault appears.

146 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Similarly, an increase in the chip’s temperature results in
a linear increase in the critical time (on the variation range).
Faults are injected for temperatures above 210oC when the
critical time goes beyond the nominal clock period.
The objective of these laboratory experiments is to make the
students aware of fault injection means based on setup time
violation and of the ability they offer to control the faults’
sizes and locations. As a result, they will take care of the
way they design crytposystems in their professional life or in
further research activities.

IV. CONCLUSION

This paper presents an ambitious two-in-one course. It
mainly targets Masters students in Microelectronics Design
with optional modules in cryptography and secured circuits. It
offers two parts.

The first one presents the full design of AES cryptosystem.
The students start from specifications and in the end they
test their prototyped circuit in a complete test environment.
They have to implement the communication interface and to
generate all the test sequences. The Xilinx Spartan 3 platform
is used for the practical experimentations. Some evolutions can
be done as modifying the data path length, exploring different
architectures for the Sbox or completing the UART interface.
The whole design can also be split in smaller student groups.

The second part is mainly dedicated to the design and use of
an FPGA-based attack platform. At first, lectures introduce the
theory of fault injection through timing constraints violation,
the basis of DFA and the use of a DLL to build a modified
clock signal for fault injection. Then, laboratory works allow
the students to become familiar with the practice of fault
injection and the combined threats over secure ICs. This
second part is an optional extension of the first one. However,
it could be teached independently by providing an already
programmed AES test board. This part is also used as an
introduction course on IC security for the PhD and internship
students in our research group.

REFERENCES

[1] Hagai BarEl, Hamid Choukri, David Naccache, Michael Tunstall, and
Claire Whelan. The sorcerer’s apprentice guide to fault attacks. In
Special Issue on Cryptography and Security 94(2), pages 370–382, 2006.

[2] Hamid Choukri and Michael Tunstall. Round reduction using faults.
Proc. Second Int’l Workshop Fault Diagnosis and Tolerance in Cryp-
tography (FDTC ’05), 2005.

[3] CPAN. http://search.cpan.org/ttar/crypt-openssl-aes-
0.01/lib/crypt/openssl/aes.pm.

[4] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer,
2002.

[5] Bernhard Fechner. Dynamic delay-fault injection for reconfigurable
hardware. In Parallel and Distributed Processing IEEE Symposium, page
282.1, Washington, DC, USA, April 2005. IEEE Computer Society.

[6] Christophe Giraud. DFA on AES. In H. Dobbertin, V. Rijmen, and
A. Sowa, editors, Advanced Encryption Standard − AES, volume 3373
of Lecture Notes in Computer Science, pages 27–41. Springer, 2005.

[7] Olivier Faurax Julien Francq. Security of several aes implementations
against delay faults. In Proceedings of the 12th Nordic Workshop on
Secure IT Systems (NordSec 2007), October 2006.

[8] NIST. Announcing the Advanced Encryption Standard (AES). Federal
Information Processing Standards Publication, n. 197, November 26,
2001.

[9] Perl. http://http://www.perl.org.

[10] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack
technique against spn structures, with application to the aes and khazad.
In Proc. Cryptographic Hardware and Embedded Systems (CHES ’03),,
Lecture Notes in Computer Science, pages 77–88, 2003.

[11] Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger. An
asic implementation of the aes sboxes. In CT-RSA, pages 67–78, 2002.

[12] Xilinx. http://www.xilinx.com/products/spartan3/3a.htm.
[13] Xilinx. http://www.xilinx.com/products/virtex5/index.htm.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 147

148 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Reducing FPGA Reconfiguration Time Overhead using Virtual Configurations

Ming Liu‡†, Zhonghai Lu†, Wolfgang Kuehn‡, Axel Jantsch†

‡ II. Physics Institute † Dept. of Electronic Systems
Justus-Liebig-University Giessen (JLU), Germany Royal Institute of Technology (KTH), Sweden

{ming.liu, wolfgang.kuehn}@physik.uni-giessen.de {mingliu, zhonghai, axel}@kth.se

Abstract—Reconfiguration time overhead is a critical factor
in determining the system performance of FPGA dynamically
reconfigurable designs. To reduce the reconfiguration overhead,
the most straightforward way is to increase the reconfiguration
throughput, as many previous contributions did. In addition
to shortening FPGA reconfiguration time, we introduce a new
concept of Virtual ConFigurations (VCF) in this paper, hiding
dynamic reconfiguration time in the background to reduce
the overhead. Experimental results demonstrate up to 29.9%
throughput enhancement by adopting two VCFs in a consumer-
reconfigurable design. The packet latency performance is also
largely improved by extending the channel saturation to a
higher packet injection rate.

I. INTRODUCTION

Partial Reconfiguration (PR) enables the process of dy-
namically reconfiguring a particular section of an FPGA de-
sign while the remaining part is still operating. This vendor-
dependent technology provides common benefits in adapting
hardware modules during system run-time, sharing hardware
resources to reduce device count and power consumption,
shortening reconfiguration time, etc. [1] [2] [3]. Typically
partial reconfiguration is achieved by loading the partial bit-
stream of a new design into the FPGA configuration memory
and overwriting the current one. Thus the reconfigurable
portion will change its behavior according to the newly
loaded configuration. Despite the flexibility of changing
part of the design at system run-time, overhead exists in
the reconfiguration process since the reconfigurable portion
cannot work at that time due to the incompleteness of the
configuration data. It has to wait to resume working until the
complete configuration data have been successfully loaded in
the FPGA configuration memory. Therefore in performance-
critical applications which require fast or frequent switching
of IP cores, the reconfiguration time is significant and should
be minimized to reduce the overhead.

To reduce the dynamic reconfiguration overhead, the most
straightforward way is to increase the data write-in through-
put of the configuration interface on FPGAs, specifically
the Internal Configuration Access Port (ICAP) on Xilinx
FPGAs [4]. As an additional approach, we address the
challenge of reducing the reconfiguration overhead by em-
ploying the concept of virtualization on FPGA configuration
contexts. The remainder of the paper will be organized as
follows: In Section II, related work of reducing dynamic
reconfiguration overhead will be discussed. In Section III,

we introduce the concept of Virtual ConFigurations (VCF),
with which the dynamic reconfiguration time may be fully
or partly hidden in the background. Experimental results
will demonstrate the performance benefits of using VCFs in
Section IV, in terms of data delivery throughput and latency.
Finally we conclude the paper and propose our future work
in Section V.

II. RELATED WORK

FPGA dynamic reconfiguration overhead refers to the
time spent on the module reconfiguration process. At that
time, the reconfigurable region on the FPGA cannot effec-
tively work due to the lack of a complete bitstream, and
consequently it has negative effects on the system perfor-
mance. Reconfiguration overhead may be minimized either
with a reasonable scheduling policy which decreases the
context switching times of hardware modules, or by reducing
the required time span for each configuration. There is
related discussion on the former approach in our previous
publication of [5]. We observe from the experimental results
that only less than 0.3% time is spent on the configuration
switching with a throughput-aware scheduling policy, not
exacerbating much the overall processing throughput of the
under-test system; With regard to the latter approach, design
optimization approaches have been previously adopted to
increase the configuration throughput. For instance in [6],
[7] and [8], authors explore the design space of various ICAP
designs and enhance the reconfiguration throughput to the
order of magnitude of Megabytes per second. Unfortunately
the reconfiguration time is still constrained by the physical
bandwidth of the reconfiguration port on FPGAs. Other ap-
proaches of compressing the partial bitstreams are discussed
in [8] and [9] for shrinking the reconfiguration time under
the precondition of a fixed configuration throughput. In ad-
dition to all the above described contributions, in this paper
we will address the challenge of reducing the reconfiguration
overhead, employing the concept of virtualization on FPGA
configuration contexts.

III. VIRTUAL CONFIGURATION

In canonical PR designs, one Partially Reconfigurable
Region (PRR) has to stop from working, when a new module
is to be loaded to replace the existing one by run-time recon-
figuration. This is the overhead of switching hardware pro-
cesses, which restricts the overall system performance. As a

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 149

solution, we propose the concept of Virtual ConFiguration
(VCF) to hide the configuration overhead of a PR design.
As shown in Figure 1, two copies of configuration contexts,
each of which represents a VCF, are altogether dedicated to
a single PRR on a multi-context FPGA [10] [11] [12]. The
active VCF may still keep working in the foreground when
module switching is expected. The run-time reconfiguration
only happens invisibly in the background, and the new
partial bitstream is loaded into configuration context 2. After
the reconfiguration is finished, the newly loaded module
can start working by being swapped with the foreground
context, migrating from the background to the foreground.
The previously active configuration will be deactivated into
the background and wait for the next time reconfiguration.
The configuration context swapping between the background
and the foreground is logically realized by changing the
control on the PRR among different VCFs. It does not
need to really swap the configuration data in the FPGA
configuration memory, but instead switches control outputs
taking effect on the PRR using multiplexer (MUX) devices.
Hence the configuration context swapping takes only very
short time (normally some clock cycles), and is tiny enough
to be negligible compared to the processing time of the
system design.

Figure 1. Virtual reconfigurations on multi-context FPGAs

With the approach of adopting VCFs, the reconfiguration
overhead can be fully or partly removed with the duplicated
configuration contexts. The timing advantage is illustrated
in Figure 2, comparing to the canonical PR designs without
VCFs. We see in Figure 2a, the effective work time and the
reconfiguration overhead have to be arranged in sequence on
the time axis, in the canonical PR design without VCFs. By
contrast in Figure 2b, the reconfiguration process only hap-
pens in the background and the time overhead is therefore
hidden by the working VCF in the foreground.

In normal FPGAs with only single-context configuration
memories, VCFs may be implemented by reserving du-
plicated PRRs of the same size (see Figure 3). At each
time, only one PRR is allowed to be activated in the
foreground and selected to communicate with the rest static
design by MUXes. The other PRR waits in the background
for reconfiguration and will be swapped to the foreground
to work after the module is successfully loaded. Taking
into account the resource utilization overhead of reserving
duplicated PRRs, usually we do not adopt more than 2
VCFs.

Figure 2. Timing diagrams of PR designs without or with VCFs

Figure 3. Virtual reconfigurations on single-context FPGAs

IV. EXPERIMENTS

A. Experimental Setup

To investigate the impact of VCFs on performance, we
set up a producer-consumer design with run-time recon-
figuration capability. As illustrated in Figure 4, the pro-
ducer periodically generates randomly-destined packets to
4 consumers and buffers them in 4 FIFOs. Each FIFO is
dedicated to a corresponding consumer algorithm, which
can be dynamically loaded into the reserved consumer PRR.
The scheduler program monitors the “almost_full” signals
from all FIFOs and arbitrate the to-be-loaded consumer
module using a Round-Robin policy. Afterwards, the loaded
consumer will consume its buffered data in a burst mode,
until it has to be replaced by the winner of the next-
round reconfiguration arbitration. The baseline canonical PR
design has only one configuration context and must stop the
working module before the reconfiguration starts. In the PR
design with VCFs, we adopt only two configuration contexts
since the on-chip area overhead of multiple configuration
contexts should be minimized. Experimental measurements
have been carried out in cycle-accurate simulation using
synthesizable VHDL codes. Simulation provides much con-
venience for observing all the signals in the waveform and
debugging the design. It will have the same results when
implementing the design on any dynamically reconfigurable
FPGA. Both the baseline and the VCF designs run at a
system clock of 100 MHz. The overall on-chip buffering
capability is parameterized in the order of KiloBytes. For
the reconfiguration time of each module, we select 10

150 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

μs which is a reasonable value when using the practical
Xilinx ICAP controller for partial reconfiguration [7]. The
generated packets are 256-bit wide. The FIFO width is 32
bits. Before packets go into the FIFO, they are fragmented
into flits.

Figure 4. Experimental setup of the consumer-reconfigurable design

B. Results

We did measurements on the received packet throughput
in the unit of packets per cycle per consumer node, with the
FIFO depth of 512, 1K and 2K respectively. Measurement
results are demonstrated in Figure 5. We observe from the
figure that:

1) As the packet injection rate increases, the on-chip
communication becomes saturated progressively due
to the limitation of the packet consuming capability;

2) For both types of PR designs (red or light curves for
with 2 VCFs and blue or dark curves for without),
larger FIFO depths lead to higher saturated throughput,
since the data read-out burst size can be increased
by larger buffering capability, and the reconfiguration
time overhead is comparatively reduced;

3) Introducing VCFs can further reduce the reconfigura-
tion overhead by hiding the reconfiguration time in
the background. In the most obvious case of 1K FIFO
depth, two VCFs increase the throughput from 0.0127
packets/cycle/node to 0.0165, achieving a performance
enhancement of 29.9%. Other two cases of 512 and
2K FIFO depth have a performance enhancement of
26.4% and 17.9% respectively.

We enlarged the time span of each configuration from 10
μs to 50 μs and did further throughput measurements with
a middle-size FIFO depth of 1K. Results are demonstrated
in Figure 6, comparing the PR design using 2 VCFs with
the one without VCF. We observe that the overall system
throughput is worsened by the increased reconfiguration
time overhead, specifically from a saturated value of 0.0127
(see Figure 5) into 0.00492 packets/cycle/node for the non-
VCF design. The increased reconfiguration time also easily
results in the channel saturation at an even lower packet
injection rate of about 1 packet per 50 cycles. In this test,
we can still see the performance improvement of 27.6%

Figure 5. Throughput measurement results (reconfiguration time = 10 μs)

(0.00628 vs. 0.00492 packets/cycle/node), using 2 VCFs to
partly counteract the reconfiguration overhead. The channel
saturation point is extended to about 1 packet per 35 cycles
by duplicated VCFs

Figure 6. Throughput measurement results (reconfiguration time = 50 μs)

Except for the throughput comparison, we collected also
statistics on packet latency performance to demonstrate the
effect of using VCFs. We discuss the average latency of a
certain amount of packets, and exclude the system warm-up
and cool-down cycles out of measurements, only taking into
account steady communications. The latency is calculated
from the instant when the packet is injected into the source
queue to that when the packet is received by the destination
node. It consists of two components: the queuing time in the
source queue and the network delivery time in flit FIFOs.
Measurements were conducted in the experimental setup
with the smaller reconfiguration time of 10 μs and the
middle-size FIFO depth of 1K. Results are illustrated in
Figure 7. We observe that 2 VCFs have a slight reduction
effect on the packet latency before the channel saturation. In
this curve segment, packets do not stay in the source queue
for too long time, but they must wait in flit FIFOs until

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 151

their specific destination node is configured to read them
out in a burst mode. Therefore we see two comparatively flat
curve segments before the channel saturation, because of the
steady switching frequency of consumer nodes. Nevertheless
after the channel’s packet delivery capability is saturated,
packets have to spend much time waiting in the source
queue to enter the flit FIFOs. Thus the average latency of
packets deteriorates significantly and generates rising curve
segments in the figure. By contrast, using 2 VCFs may
reduce the reconfiguration overhead and extends the channel
saturation to a higher packet injection rate. It reduces the
packet wait time in the source queue and introduce them
into the flit FIFOs at an early time, leading to a large
improvement on the packet latency performance.

Figure 7. Latency measurement results (reconfiguration time = 10 μs)

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce the concept of virtual con-
figurations to hide the FPGA dynamic reconfiguration time
in the background and reduce the reconfiguration overhead.
Experimental results on a consumer-reconfigurable design
demonstrate up to 29.9% throughput improvement of re-
ceived packets by each consumer node. The packet latency
performance is largely improved as well, by extending the
channel saturation to a higher packet injection rate. This
approach is well suited for PR designs on multi-context FP-
GAs. For single-context FPGAs, performance improvement
is accompanied by resource utilization overhead of reserving
duplicated PR regions.

In the future work, we will take advantage of VCFs
in practical PR designs for specific applications. Research
and engineering work on multi-context FPGAs will also
be useful to popularize this technology in dynamically
reconfigurable designs with high performance requirements.

ACKNOWLEDGMENT

This work was supported in part by BMBF under contract
Nos. 06GI9107I and 06GI9108I, FZ-Juelich under contract

No. COSY-099 41821475, HIC for FAIR, and WTZ: CHN
06/20.

REFERENCES

[1] C. Kao, “Benefits of Partial Reconfiguration”, Xcell Journal,
Fourth Quarter 2005, pp. 65 - 67.

[2] E. J. Mcdonald, “Runtime FPGA Partial Reconfiguration”, In
Proc. of 2008 IEEE Aerospace Conference, pp. 1 - 7, Mar.
2008.

[3] C. Choi and H. Lee, “An Reconfigurable FIR Filter Design
on a Partial Reconfiguration Platform”, In Proc. of First
International Conference on Communications and Electronics,
pp. 352 - 355, Oct. 2006.

[4] Xilinx Inc., “Virtex-4 FPGA Configuration User Guide”,
UG071, Jun. 2009.

[5] M. Liu, Z. Lu, W. Kuehn, and A. Jantsch, “FPGA-based Adap-
tive Computing for Correlated Multi-stream Processing”, In
Proc. of the Design, Automation & Test in Europe conference,
Mar. 2010.

[6] J. Delorme, A. Nafkha, P. Leray and C. Moy, “New OPBHW-
ICAP Interface for Realtime Partial Reconfiguration of FPGA”,
In Proc. of the International Conference on Reconfigurable
Computing and FPGAs, Dec. 2009.

[7] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time Partial
Reconfiguration Speed Investigation and Architectural Design
Space Exploration”, In Proc. of the International Conference
on Field Programmable Logic and Applications, Aug. 2009.

[8] S. Liu, R. N. Pittman, and A. Forin, “Minimizing Partial
Reconfiguration Overhead with Fully Streaming DMA Engines
and Intelligent ICAP Controller”, In Proc. of the International
Symposium on Field-Programmable Gate Arrays, Feb. 2010.

[9] J. H. Pan, T. Mitra, and W. Wong, “Configuration Bitstream
Compression for Dynamically Reconfigurable FPGAs”, In
Proc. of the International Conference on Computer-Aided
Design, Nov. 2004.

[10] Y. Birk and E. Fiksman, “Dynamic Reconfiguration Archi-
tectures for Multi-context FPGAs”, International Journal of
Computers and Electrical Engineering, Volume 35, Issue 6,
Nov. 2009.

[11] M. Hariyama, S. Ishihara, N. Idobata and M. Kameyama,
“Non-volatile Multi-Context FPGAs using Hybrid Multiple-
Valued/Binary Context Switching Signals”, In Proc. of Inter-
national Conference Reconfigurable systems and Algorithms,
Aug. 2008.

[12] K. Nambaand H. Ito, “Proposal of Testable Multi-Context
FPGA Architecture”, IEICE Transactions on Information and
Systems, Volume E89-D, Issue 5, May. 2006.

152 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Timing Synchronization for a Multi-Standard
Receiver on a Multi-Processor System-on-Chip

Roberto Airoldi, Fabio Garzia and Jari Nurmi
Tampere University of Technology
Department of Computer Systems

Korkeakoulunkatu 1, P.O. Box 553, FI-33101
Tampere, Finland

email: name.surname@tut.fi

Abstract—This paper presents the implementation of timing
synchronisation for a multi-standard receiver on Ninesilica, a ho-
mogeneous Multi-Processor System-on-Chip (MPSoC) composed
of 9 nodes. The nodes are arranged in a mesh topology and the
on chip communication is supported by a hierarchical Network-
on-Chip. The system is prototyped on FPGA. The mapping on
Ninesilica of the timing synchronisation algorithms showed a
good parallelization efficiency leading to speed-ups up to 7.5x
when compared to a single processor architecture.

I. INTRODUCTION

In the last twenty years the development of embedded
systems has been driven by the boom of wireless technology.
A continuous development of new wireless protocols has
imposed new constraints on the receivers. Today’s state of
the art devices are able to work over a heterogeneous set
of networks, such as: 2G, 3G, bluetooth Wi-Max and Wi-Fi.
Traditional design approaches, based on a collage of single-
standard receivers, introduce limitations in the number of
supported wireless protocols due to constraints such as power
and area consumption, flexibility and efficiency. In the past
few years research institutes from both academia and industry
moved their focus towards Software Defined Radio (SDR).
SDR platforms might be a feasible approach to implement
highly flexible transceivers. Ideally a SDR terminal would be
able to work over different networks just re-configuring/re-
programming the software running on the platform, according
to the user’s willing. Hence SDR enabling platform must
provide a high computational power to meet the strict real-time
requirements of today’s and tomorrow’s wireless standards
within high flexibility. Many solutions have been proposed
from both academia and industry to meet the requirements
for SDR applications. Reconfigurable architectures (such as
Montium [1]) as well as DSP solutions (see [2] [3]) have been
widely explored for SDR applications. Furthermore, in the past
few years Multi-Processor Systems-on-Chip (MPSoCs) have
gained a growing interest from the research community as a
possible way to meet high performance required by wireless
standards within high flexibility[4].

Two communication protocols are mostly utilised for the
physical layer processing in wireless communications: W-
CDMA and OFDM. In this paper the authors present the

implementation of the timing synchronisation procedure for
W-CDMA and OFDM systems on a homogeneous MPSoC.

This paper is organised as follows: in the next section a brief
overview of the Multi-processor System-on-Chip architecture
is given; in section III timing synchronisation for W-CDMA
and OFDM systems and their mapping onto the MPSoC are
analysed; finally in section IV and V results and conclusions
are drawn.

II. NINESILICA MPSOC OVERVIEW

Ninesilica is a homogeneous MPSoC composed of nine
nodes arranged in a 3x3 mesh topology. Ninesilica is derived
from the Silicon Café template, developed at Tampere Uni-
versity of Technology. The template allows the creation of
either heterogeneous or homogeneous multi-processor archi-
tecture with a generic number of nodes. The communication
between nodes take place through a hierarchical Network-on-
Chip (NoC)[6] that taps directly into the node communication
system.

Fig. 1 presents a schematic view of Ninesilica while figure
2 shows the internal structure of a single node. Each node
hosts a COFFEE RISC processor [5], data and instruction
memories and a Network Interface (NI). The NI is composed
of two parts: initiator and target. The initiator is responsible
for routing remote data (coming from the NoC) inside the
node. On the other hand the target is responsible to route
data from the node to the NoC. The central nodes is also
equipped with I/O interfaces and takes care of the data
distribution among the other nodes. Moreover it acts as a
schedule manager distributing tasks to the others nodes (also
referred as computational nodes). Indeed its main task is to
control the communication flow and the other nodes activities.

The system was prototyped on an Stratix IV FPGA device.
The synthesis results are collected in Table I. More details
about the architecture can be found in [7].

III. W-CDMA AND OFDM TIMING SYNCHRONISATION

Considering the signal processing chain for wireless stan-
dard’s physical layer it is possible to identify two different
communication techniques that cover most of the wireless

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 153

Fig. 1. Schematic view of Ninesilica MPSoC

signal processing for today and next generation communica-
tion. W-CDMA [8] is utilised as physical layer for UMTS
systems while OFDM [9] is for example utilised in Wi-Fi
(IEEE 802.11a/g/n), Wi-Max (IEEE 802.16) and 3GPP-LTE.

A very critical step in the signal processing for wireless
systems is the timing synchronisation. Timing synchronisation
procedure takes care of synchronising the mobile terminal
to the baseband station that offers the best available down-
link. Hence errors in the timing would lead into an incorrect
demodulation of the incoming data. Moreover this procedure
is highly computational demanding and should be performed
continuously to keep the synchronisation. Independently from
the radio communication protocol utilised, the timing syn-
chronisation step is based on the evaluation of correlation
sequences.

TABLE I
STRATIX IV SYNTHESIS RESULTS OF NINESILICA MPSOC

Component Adapt. Registers Utilisation
LUT %

COFFEE RISC 7054 4941 2.0
Local network node 296 226 0.1

Computational Node 7360 5167 2.1
Global Network 5104 4170 1.3
Total 71679 50897 20

A. W-CDMA Timing Synchronisation mapping on Ninesilica

W-CDMA transmissions are organised in frames. Each
frame is composed of 15 different slots. To ease the synchroni-
sation procedure between cell and mobile terminal W-CDMA
protocol utilises 3 separate channels: Primary Synchronisation
Channel (P-SCH), Secondary Synchronisation Channel (S-
SCH) and Common Pilot Channel (CPICH). However for
the timing synchronisation only 1 channel is utilised. As
figure 3 shows, P-SCH transmits the same sequence of 256

Fig. 2. Detailed view of a Ninesilica node

sample for each slot. This sequence is common to all the
transmitting cells and it is known at the receiver. The slot
boundary identification is then done through a match filter.
The match filters correlate the incoming data stream to the
known sequence. Output values in the sequence that exceed a
pre-fixed threshold indicates a match in the slot search. Once
the position of a slot is known it is possible to perform a multi-
path detection for a better accuracy in the synchronisation. The
match filter computes a sum of 256 complex multiplications.
This operation is performed on Ninesilica in a distributed
way. Each computational node computes a part of the sum
returning the partial results to the control node. Hence the
control node performs the final sum and check if the threshold
was exceeded. In that case the multi-path correction can be
performed, otherwise a new evaluation of the match filter is
done.

The multi-path estimation and correction is based on the
observation of four consecutive slots. The incoming data
stream is correlated to the known sequence over a multi-path
window (1024 samples). The correlation sequences are then
averaged and the maximum value of the sequence indexes the
multi-path that offers the best signal-noise ratio. The data of
the four slots are equally divided among the computational
nodes. Each node working on independent sets of data returns
the correlation values to the central node which performs the
average and the maximum search to identify the best path.

B. OFDM Timing Synchronisation mapping on Ninesilica

OFDM timing synchronisation for IEEE 802.11a is obtained
through a delay and correlate approach. Each transmission

154 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Fig. 3. Data structure of the P-SCH over 1 frame period

begin with a preamble. This preamble is utilised by the
receiver to synchronise to the transmitter. Figure 4 shows
its structure. The first part of the preamble is the short
training sequence. This sequence is the continuous repetition
of a short sequence. For this reason the course grain timing
synchronisation can be done through a delay and correlate
approach. The received data-stream is correlated to a delayed
version of itself. The delay introduced is equal to the length of
the short sequence. Peaks in the correlation sequence identifies
the beginning of a communication. Ninesilica performs this
operation in a distribute way. The central node distribute a
chunk of data among the computational nodes, which perform
the correlation on independent sections of data returning the
processed data to the control node. The control node evaluates
if a communication was found by analysing the correlation
values received. If not a new chunk of data is sent for a
further correlation analysis. After the initial synchronisation
is performed a multi-path estimation can take place.

OFDM multi-path estimation and correction is based on the
correlation between the long training sequences of the com-
munication preamble and a known sequence. This operation
is performed following the same approach of the W-CDMA
case. Data is sent to the computational nodes which process
independently the data and return the correlation evaluations
to the control node. The control node finally analyses the
correlation sequence refining the timing synchronisation with
the estimation of the multi-path.

IV. RESULTS

The mapping of the timing synchronisation algorithm for
OFDM and W-CDMA receivers on the Ninesilica was evalu-
ated in terms of number of clock cycles spent to accomplish
the procedure. Data for the simulation was provided by a
Matlab model of WCDMA and OFDM systems. It was utilised
a signal to noise ratio of −20dB. Moreover the Matlab model
was utilised as reference for the validation of the simulation
results. Furthermore the simulation results were compared to
an implementation on a single processor to determine the
scalability of the algorithm parallelization.

A single correlation point for W-CDMA is performed in
2,546 clock cycles on Ninesilica and 12,381 on a single
COFFEE core, leading to a speed-up of 5x. For the OFDM sys-
tem a single correlation point (delay and correlate approach)
takes respectively 88 and 350 clock cycles on Ninesilica and
COFFEE core, giving a speed-up of 4x. The execution of the
whole synchronisation process for W-CDMA on Ninesilica
gives a speed up of 7.5x when compared to a single COFFEE

Fig. 4. Data structure of a IEEE 802.11a OFDM preamble

core execution. For the OFDM system the achieved speed up
is 6.7x.

V. CONCLUSIONS

In this work the authors presented the timing synchro-
nisation for W-CDMA and OFDM systems on Ninesilica.
Ninesilica takes advantage of data level parallelism leading
to high speed-ups if compared to a single core. Future work
will explore the scalability of the system with the number of
nodes.

ACKNOWLEDGEMENT

The author gratefully acknowledges Nokia Foundation for
their support.

REFERENCES

[1] G. Rauwerda, P. M. Heysters, and G. J. Smit, “An OFDM Receiver
Implemented on the Coarse-grain Reconfigurable Montium Processor,”
in roceedings of the 9th International OFDM Workshop (InOWo’04),
(Dresden, Germany), pp. 197–201, September 15-16 2004.

[2] J. Glossner, D. Iancu, M. Moudgill, G. Nacer, S. Jinturkar, and M. Schulte,
“The sandbridge sb3011 sdr platform,” in Mobile Future, 2006 and the
Symposium on Trends in Communications. SympoTIC ’06. Joint IST
Workshop on, pp. ii–v, June 2006.

[3] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner, “Soda: A high-performance dsp architecture for software-
defined radio,” Micro, IEEE, vol. 27, pp. 114–123, Jan.-Feb. 2007.

[4] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor System-on-Chip
(MPSoC) Technology,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 27, pp. 1701–1713, Oct. 2008.

[5] J. Kylliinen, T. Ahonen, and J. Nurmi, “General-purpose embedded
processor cores - the COFFEE RISC example,” in Processor Design:
System-on-Chip Computing for ASICs and FPGAs (J. Nurmi, ed.), ch. 5,
pp. 83–100, Kluwer Academic Publishers / Springer Publishers, June
2007. ISBN-10: 1402055293, ISBN-13: 978-1-4020-5529-4.

[6] T. Ahonen and J. Nurmi, “Hierarchically heterogeneous network-on-
chip,” in Proceedings of the 2007 International Conference on Computer
as a Tool (EUROCON ’07), pp. 2580–2586, IEEE, 9-12 September 2007.
ISBN: 978-1-4244-0813-9, DOI: 10.1109/EURCON.2007.4400469.

[7] R. Airoldi, F. Garzia, and J. Nurmi, “Implementation of a 64-point FFT
on a Multi-Processor System-on-Chip,” in Proceedings of the 5th Interna-
tional Conference on Ph.D. Research in Microelectronics & Electronics
(Prime ’09, (Cork, Ireland), pp. 20–23, IEEE, July 2009.

[8] E. Dahlman, P. Beming, J. Knutsson, F. Ovesjo, M. Persson, and
C. Roobol, “W-CDMA - the radio interface for future mobile multimedia
communications,” Vehicular Technology, IEEE Transactions on, vol. 47,
pp. 1105–1118, November 1998.

[9] X. Wang, “OFDM and its application to 4G,” in Proc. International
Conference on Wireless and Optical Communications 14th Annual WOCC
2005, p. 69, 22–23 April 2005.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 155

�

156 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Mesh and Fat-Tree comparison for
dynamically reconfigurable applications

Ludovic Devaux, Sebastien Pillement, Daniel Chillet, Didier Demigny
University of Rennes I / IRISA

6 rue de Kerampont, BP 80518, 22302 LANNION, FRANCE
Email: Ludovic.Devaux@irisa.fr

Abstract—Dynamic reconfiguration of FPGAs al-
lows the dynamic management of various tasks that
describe an application. This new feature permits,
for optimization purpose, to place tasks on line in
available regions of the FPGA. Dynamic reconfigu-
ration of tasks leads notably to some communication
problems since tasks are not present in the matrix
during all computation time. This dynamicity needs
to be supported by the interconnection network. In
this paper, we compare the two most popular inter-
connection topologies which are the Mesh and the Fat-
Tree. These networks are compared considering the
dynamic reconfiguration paradigm also with the net-
work performances and the architectural constraints.

I. INTRODUCTION

Evolution of technologies permits to support
complex signal processing applications. The num-
ber of tasks constituting an application grows up
and starts to outnumber the available resources pro-
vided by many FPGAs. Facing this implementation
constraint, FPGAs that can be reconfigured on-the-
fly were proposed. Hence, at each moment, only
the hardware tasks which need to be executed are
configured in the FPGA fabric. Assuming that all
the tasks do not have to be executed simultaneously,
they are allocated and scheduled at runtime. This
is the Dynamic and Partial Reconfiguration (DPR)
paradigm.

The management of the DPR leads to high chal-
lenges to be effective. Thus, the interconnection
architecture needs to be compliant with the dynamic
implementation, and location, of the tasks. This
architecture should support the constraints induced
by the DPR paradigm by providing a flexible way
for transferring data between every sets of logical

resources that are used to define the hardware parts
of the tasks. These sets can be the hardware imple-
mentation of the tasks (static or dynamic), shared
elements (memory, input/output), or also hardware
processors running software tasks.

In this article, we compare the two more popular
interconnection networks called Meshes and Fat-
Trees. Our proposed comparison is based over the
adequacy between these networks and current par-
tially and dynamically reconfigurable FPGAs. Do-
ing so, we present which interconnection network is
the most useful for implementing real life complex
applications using dynamic reconfiguration. The
paper is organized as follow. In section II, FPGAs
supporting dynamic reconfiguration are introduced.
In section III, Mesh and Fat-Tree architectures are
discussed considering typical applicative require-
ments and FPGA’s characteristics. To conclude, we
indicate which of the Mesh or the Fat-Tree topology
best fits present applications using the dynamic
reconfiguration and current FPGA architectures.

II. CONTEXT

A. Reconfigurable architectures

The industrial products supporting dynamic re-
configuration are Atmel AT40K series [1], Altera
Stratix IV series [2] and Xilinx Virtex2 pro, Vir-
tex4, Virtex5 and most recently Virtex6 series [3],
[4]. Atmel FPGAs are very limited in number of
available reconfigurable resources so they do not
support complex applications like signal processing
[1]. Altera circuits are not reconfigurable like Atmel
or Xilinx FPGAs [2]. Indeed, they currently do not
support the dynamic reconfiguration for all logical

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 157

resources but only for inputs/output parameters.
Thus, Xilinx series are the best choice for current
dynamic hardware dependent researches. Consid-
ering that Xilinx is currently the market leader
in dynamically reconfigurable devices, the inter-
connection networks are adapted to Xilinx FPGA
characteristics and especially on the Virtex5, and
Virtex6 series that are the most recent ones.

Dynamic reconfiguration of Xilinx FPGAs is al-
lowed by the PlanAhead tool [5]. PlanAhead allows
to specify dynamically reconfigurable regions, so
called PRRs (Partially Reconfigurable Regions). A
PRR is implemented statically despite the fact that
its content is dynamic. Thus, at runtime, dynamic
reconfiguration takes place inside the PRRs. This
is the base element of dynamic reconfiguration. In
Xilinx Virtex2 pro FPGAs, the dynamic reconfigu-
ration impacted the wall columns of resources even
if only a little part of then is declared to be part of
a PRR. This limitation had a great impact on the
possibility to implement complex application, but
it no longer exists in Virtex4, virtex5, and Virtex6
series. In these series, the dynamic reconfiguration
only impacts the resources inside a PRR so that sev-
eral PRR can be declared using the same columns
of resources.

III. COMPARISON OF MESH AND FAT-TREE
TOPOLOGIES

In this section, The Mesh and Fat-Tree topolo-
gies are presented in detail. In order to compare
them, hardware costs, network performances, and
adequacy to be implemented in present FPGAs, are
studied.

A. Used resources

A Mesh (Figure 1.(a)) is a direct network in
which each switch connects a hardware task. On
the contrary, a Fat-Tree (Figure 1.(b)) is an indirect
network. Since the number of connected tasks is
N and the number of inputs/outputs of each switch
is k, then the number of switches in a Fat-Tree is
calculated by

SFat−Tree =
2N

k
(log k

2
N) [6]

Fig. 1. Presentation of a (a) Mesh and (b) Fat-Tree topologies.
S boxes are switch elements while R boxes represent a set of
logical resources used to implement the tasks.

In this formula, assuming that the fat-tree is com-
plete in terms of connected tasks, N is expressed
by N = 2x where x is an integer and x ≥ 1.
When N does not match the previous formula,
designers should build the network considering the
admissible value of N just higher in order to keep
the complete tree based structure of the network.
The number of connection links needed by the Fat-
Tree is calculated by

LFat−Tree = N(log k
2

N) [6]

In a Mesh, if the number of connected tasks is
N whose value can be every positive integer, and
if D is the radix of the Mesh, then the number of
switches needed to build a regular bi-dimensional
square Mesh is calculated by

SMesh =
⌈√

N
⌉2

= D2

The number of needed communication links is
calculated by

LMesh = N + 2(D2 − D)

Results presented Table I can be calculated from
previous formulas. Thus, a Mesh has the advantage
of consuming less resources for routing purpose
than a Fat-Tree. But, from these results we can see
that the difference between Fat-Tree and Mesh re-
sources scales down when the number of connected
tasks is low.

158 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

TABLE I
NUMBER OF SWITCHES AND LINKS NEEDED TO IMPLEMENT
A MESH AND A FAT-TREE DEPENDING ON THE NUMBER OF

CONNECTED TASKS.

Connected Tasks FAT-TREE MESH
Switch Link Switch Link

2 1 2 4 6
4 4 8 4 8
8 12 24 9 20
16 32 64 16 40
32 80 160 36 92
64 192 384 64 176

B. Network characteristics for dynamic operation

An application is typically constituted of some
statically implemented tasks and of several dy-
namic tasks. In order to fit the largest scope of
applications, no assumptions are made over the
implementation of the tasks. So, they are imple-
mented heterogeneously in terms of needed logical
resources.

Concerning the placement, every task can be
connected everywhere to the network even if it leads
to the worst cases of communication. Indeed, two
tasks exchanging a large amount of data (data-flow
applications) can be connected to the same switch
in a Fat-Tree or to two neighbor switches in a Mesh,
but also to the opposite sides of the network. This
concept is presented Figure 2.

Fig. 2. Mesh (A,B) and Fat-Tree (C,D) topologies interconnect-
ing 4 PRRs. Dynamic tasks T1 and T3 communicate respectively
with tasks T2 and T4.

From this point of view, a Fat-Tree topology has
many advantages compared to a Mesh. Indeed, a
Fat-Tree avoids deadlock risks that can occur in
a Mesh if the control does not possess specific
mechanisms to anticipate this risk [6]. The fact that
the bandwidth is constant between each hierarchical
level of the Fat-Tree is also a very interesting
characteristic. Thus even if communicating tasks are
placed at the opposite sides of the network, a Fat-
Tree guaranties every data to be routed over the
network without any contention because there is
always at least one communication way available
with a constant bandwidth. While a Mesh is a
direct network, the routing can not be guaranteed
like in a Fat-Tree because of the low available
bandwidth compared to the number of switches
[7]. Futhermore, in a Mesh, the communication
requirements between tasks and shared elements
induce the creation of hot-spots, increasing the
likelihood of livelocks and deadlocks. One way to
avoid contention risks is to use virtual channels.
However, this solution has a very high cost in terms
of used memories.

The two networks are simulated using ModelSim
9.5c [8] for a 32 bits data width, and with a
buffer depth of 4x32 bit words. Concerning network
performances, the highest data rates are chosen in
order to place the two topologies into the worst
functioning cases. So, for a connection of 8 tasks,
their transfer rate are fixed to 800Mbit/s each.
Simulations were realized sending 1562 packets of
16 words each for an injection time of 1ms (Figure
3).

From these results, with a transfer rate fixed to
800Mbit/s per task, Mesh and Fat-Tree topologies
provide equal latencies until 4 simultaneously con-
nected tasks. Then, due to a change of the network
scales, a Mesh present a lower average latency until
9 connected tasks. Fat-Tree provides a just higher
average latency but it can connect 12 tasks without
saturating. This is a very important result because,
with a uniform repartition of the data traffic, a Mesh
seems interesting for interconnecting a low number
of tasks. For more connected tasks, a Fat-Tree is
well suited. However, These results were obtained
from a simulation with a Uniform repartition of data

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 159

Fig. 3. (A) Comparison of the average latencies for a connection
of 8 tasks, and (B) maximal admissible data rates per task
depending on the number of simultaneously connected tasks.

and without any hot-spot. In usual systems using
shared elements, a Mesh will present hot-spots near
these elements and the resulting average latency will
grow up significantly. While this problem has no
influence over the Fat-Tree topology, the latter is
more suited than a Mesh for an implementation in
real life applications.

Considering the maximal admissible transfer
rates per tasks, a Fat-Tree supports equal or higher
rates than a Mesh. So, in real life applications where
bandwidth is a major requirement, Fat-Trees should
be implemented instead of Meshes.

C. Network implementation

The implementation of Fat-Tree and Mesh
topologies in a Xilinx Virtex5 VC5VSX50T lead
to the results presented in Table II. Considering the
FPGA resource utilization, implementing a NoC as
a central column presents many advantages. Thus,
depending on the hierarchical level, the Fat-Tree
can be implemented with a very limited number of
resources. Therefor, the resources remain free for
other tasks or for a processor implementation.

Thus, with this concept of implementation, both
Mesh and Fat-Tree topologies are compliant with
present technology and can be implemented with

TABLE II
NUMBER OF USED RESOURCES NEEDED TO IMPLEMENT A
MESH AND A FAT-TREE DEPENDING ON THE NUMBER OF

CONNECTED TASKS.

Resources FAT-TREE MESH
4 tasks 8 tasks 4 tasks 8 tasks

Registers 900 2700 524 1549
LUTs 3416 10248 1992 6083
Free registers 97% 92% 98% 95%
Free LUTs 90% 69% 94% 81%

the guarantee that their specifications (routing, la-
tency...) are respected even if the FPGAs and the
tasks are heterogeneous. However, considering its
structure, the Fat-Tree is particularly suited for this
concept of implementation.

IV. CONCLUSION
In this article, we have presented a compari-

son between the two more popular interconnec-
tion networks, the Mesh and the Fat-Tree. It ap-
peared that a Mesh has the advantage to consume
less routing resources than the Fat-Tree. However,
considering present applications that do not often
need much than ten simultaneously implemented
dynamic tasks, and rarely much than fifteen, the
difference in terms of logical resources utilization
for routing purpose can be acceptable. Furthermore,
if both of them are compliant with present FPGA
specifications, the demonstration was made that a
Fat-Tree is more adapted to the dynamic reconfigu-
ration paradigm. It presents equal or higher network
performances, a deadlock free optimal routing algo-
rithm, and a material structure allowing to provide a
constant bandwidth to every tasks everywhere into
the network.

REFERENCES

[1] ATMEL, AT40K05/10/20/40AL. 5K - 50K Gate FPGA with
DSP Optimized Core Cell and Distributed FreeRam, En-
hanced Performance Improvement and Bi-directional I/Os
(3.3 V)., 2006, revision F.

[2] Altera, Stratix IV Device Handbook - Volume 1, ver 4.0, Nov
2009., 11 2009.

[3] Xilinx, Virtex-5 FPGA Configuration User Guide, 2008,
v3.5.

[4] ——, XST User Guide for Virtex-6 and Spartan-6 Devices,
December 2, 2009, uG687 (v 11.4).

[5] ——, PlanAhead User Guide - version 1.1, 2008.
[6] J. L. Hennessy and D. A. Patterson, Computer Architecture:

A Quantitative Approach. Morgan Kaufmann, 2006, ch.
Appendix E : Interconnection Networks.

[7] V.-D. Ngo and H.-W. Choi, “Analyzing the performance of
mesh and fat-tree topologies for network on chip design,”
Computeur Science, vol. 3824, pp. 300–310, 2005.

[8] M. graphics, ModelSim LE/PE Users Manual 6.5.c, 2009.

160 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Technology Independent, Embedded Logic Cores
Utilizing synthesizable embedded FPGA-cores for ASIC design validation

Joachim Knäblein, Claudia Tischendorf, Erik Markert, Ulrich Heinkel
Chair Circuit and System Design

Chemnitz University of Technology
Chemnitz, Germany

Abstract—This article describes an approach to embed
technology independent, synthesizable FPGA-like cores into
ASIC designs. The motivation for this concept is to combine the
best aspects of the two chip design domains ASIC and FPGA.
ASICs have better timing performance, are cheaper in mass
production and less power consumptive. FPGAs have the big
advantage to be reconfigurable. With FPGA-like cores being
embedded into ASICs this extraordinary FPGA feature is
transferred to the ASIC domain. The main innovative aspect of
the approach proposed in this paper is not the concept of
combining ASIC and FPGA on one die. This has already been
done before. The novelty is to find ways to use standard
components and cells for the FPGA part to be able to enhance
ASIC designs without being restricted by technological and
vendor related barriers.
Among many other applications reconfigurability can be
leveraged to improve verification problems, which arise with
today’s 100 million gate designs. Dedicated, synthesized PSL [23]
monitors, which are loaded in embedded FPGA cores, accelerate
the process of narrowing error locations on the chip.

Keywords-component; ASIC; FPGA; synthesis; PSL;

I. INTRODUCTION
Whether to use FPGAs and/or ASICs in the design of a new
system is a fundamental question. Both chip domains have
their benefits and drawbacks, which must be considered
carefully. ASICs have better timing performance, better
scalability, more options, are cheaper in mass production and
less power consumptive. On the other hand FPGA based
designs offer faster design cycles, better debugging and bug
fixing capabilities, less costs for small lots and reconfiguration
capabilities. Depending on numerous parameters, the one or
the other concept is more suitable for a particular design job.
An obvious question is why not to combine the best of both
worlds and embed a FPGA-like core into an ASIC design?
This paper deals with technical aspects of the implementation
of this idea based on components and cells, which are
available in (almost) all technologies and from all
manufacturers. In the course of this paper such an embedded,
independent FPGA core shall be denoted as EPLA (Embedded
Programmable Logic Array).
The paper is organized as follows: First related work is listed
and the advantages of synthesizable FPGA cores are
discussed. Then appropriate structures of logic elements and
interconnection concepts are investigated. Finally a special
application of such embedded cores is presented.

II. RELATED WORK
The idea of embedding an EPLA core into ASICs is not new.
Several companies (Abound Logic currently [1], Adaptive
Silicon in 2002 [2]) attempted to introduce such a concept in
the market. A similar approach was implemented by a project
funded by the European Union [3]. And there are even more
projects pursuing this idea (e.g. GARP [24]). Nevertheless it
seems, that it is difficult to be commercially successful with
the technology dependent, synthesizable core idea, although
there is a certain demand in the industry for such a concept:
Adaptive Silicon disappeared after the year 2002 from the
market and Abound Logic moved their scope away from the
embedded core concept to their own family of stand-alone
FPGA devices. Two of the reasons for this lacking market
acceptance might be:
� Technology dependency

In order to achieve a good ratio between physical silicon
area consumption and implemented logic, the cores are
typically optimized on transistor level. As a consequence
it takes a lot of effort and time to be able to offer them for
a particular technology and a particular manufacturer. In a
time with fast innovation cycles in chip design it is not
possible to supply solutions for all technologies of all
manufacturers. This limits the manufacturer selection
range of potential EPLA customers very much and thus,
those customers may tend to implement without an EPLA
instead of being forced to go with a certain
technology/manufacturer.

� Cost overhead
As described above, the individual design of EPLA cores
for particular technologies is a very complex job and
customers of course have to pay for this. On the other side
the customer must justify the use of an embedded core in
his application from the commercial point of view. If
these aspects do not match, it makes no sense to embed an
EPLA in the design.

Consequently, the aspects manufacturer independency and
cost effectiveness are vital for dissemination of EPLA
approaches in the chip design industry. This paper introduces
a concept for EPLA cores, which takes that into account.

III. MANUFACTURER INDEPENDENT FPGA CORES
This chapter discusses how an EPLA can be realized in a
manufacturer independent way. To be independent means:

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 161

� The EPLA must be built from cells, which are available in
(almost) every technology library, i.e. only standard logic
cells and RAM blocks are permitted

� The EPLA design must fit in a standard ASIC design flow
� The core is limited to ASIC capabilities in size and timing

performance
Typically FPGA architectures comprise logic element arrays,
which are variably interconnected. Such a logic element (LE)
consists of one or more look-up-tables (LUTs), which realize a
part of the logic function of the design to be mapped onto the
FPGA. In addition, the LE contains one or more flip-flops in
order to allow sequential behavior. The basic principles were
patented by Xilinx co-founder Ross Freeman in 1988 [4]. This
patent however expired in 2004 and this paved the way to use
such principles for a wide range of applications.

A. EPLA Structure
The challenge is to find a LE architecture and an
interconnection scheme, which fulfills the above
independency requirements and is still efficient with respect to
the physical area consumption and timing performance of the
core. Other than expected, not the LE design is the most
challenging task when developing EPLA architectures, but it
is the interconnection scheme. This is the case, because the
number of possible interconnections of n LEs is O(n2) [5].
Simplified example: for a core which comprises 1000 4-input
LEs, the number of possible interconnections (crossbar) is 4
million. Since every interconnection must be switchable in the
general case, this results in a reconfiguration storage
requirement of 4 million storage elements only for the
interconnection definition. On the other side typically only a
very small amount of these possible interconnection are really
needed and thus such a trivial interconnection approach would
be a terrible waste of silicon resources. Therefore this full
interconnection scheme must be reduced by two measures:
� Interconnection clusters must be defined, which have full

internal interconnection capabilities. The connections
within the clusters must be efficient with respect to timing
and area consumption. The interconnection in-between
the clusters must be reduced as far as possible, because
these are limited in number and time and area consuming.

� The input count of the LEs must be chosen as high as
possible. The reason for this is that the more fine grained
an architecture is, the more logic cells are needed to form
a given logic function. The more logic cells must be
interconnected, the more wires are needed for this job and
wiring must be minimized, because it is costly. Another
driver for this large input count is the so called “group
optimization”, which is described in section C.

The counter problem of high LE input count, however, is that
the gate effectiveness (the ratio between logic gate count and
physical gate count) of a LUT decreases with the input count
of the LUT. The reason for this is that a LUT with k inputs can
realize 22� different boolean functions as can be deduced from
a truth table representation. Consider a LE structure like
shown in Figure 1.

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Logic_in

A0

A1

 Z

A0A1An-1

 Z

Logic_out

Q

QSET

CLR

D
Config_in Config_out

S

Figure 1: Logic structure of a logic element (LE)

In order to decode this number of boolean functions 2�
storage elements are needed. On the other side in [6] an upper
bound for the gate count of a k-input logic cone is derived to
be O(2k/k). Thus the maximum gate effectiveness of a LUT is

 O �2�� ∗ 2−� � = O �1��

In other words: the maximum gate effectiveness decreases
with the input count of the LUT on a reciprocal basis.
Moreover, this optimum effectiveness can only be achieved, if
an LE is packed with logic. In typical designs the distribution
of input logic cones may vary from 2 inputs to more than 1000
inputs. If the EPLA architecture only offers LE with a huge
number of inputs, a lot of logic resources are wasted even if
such a large LE is able to realize a particular number of
smaller input cones. The following example illustrates this
aspect:

Example:
Given is an 8-input LE with 4 outputs. This LE can realize
logic in the range of one boolean function with 8 independent
variables or four functions with two variables. The maximum
effectiveness of the first case is a factor of 28/8*2-8=1/8
whereas the effectiveness of the second case is a factor
of.4*22/2*2-8=1/32.
At this point we have gathered a number of parameters, which
play an important role in the design of an technology
independent EPLA. These parameters are:
� Number of LEs in the core
� Input count of the LEs
� Number of outputs of the LEs
� Size of cluster with full interconnection capability

B. Logic Element Design
So far we have dealt in this paper with considerations on how
LEs should be structured and connected in the EPLA. The
next thing is to reason about the internals of a logic element
with n inputs and m outputs. The main building block of an LE
is the LUT that realizes up to m logic functions of n input
variables. For the implementation of this LUT a RAM is used
which holds m output bits for each of the 2� input
combinations. This is shown in Figure 2.

162 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Depending on the technology of the manufacturer an efficient
realization with a RAM block may only be reasonable for
greater values of n and m. If n is less than a particular,
technology dependent value, the realization of the LUT might
be more efficient when based on flip-flops or latches like
shown in Figure 1. The area consumption of the RAM based
solution can be optimized if multi-read-ports are available in a
technology. Then the LUTs of several LEs can share one
RAM block like shown in Figure 3. Such shared RAM blocks
consume less area than the sum of individual RAM blocks
would do.
The rest of the components of an LE is straightforward. Every
output of the LUT feeds a flip-flop that can be optionally
bypassed. Each configuration capability in a LE like this
bypass multiplexer control needs one or more storage
elements. In order to set those storage elements in a simple but
efficient way, they are connected to form a long shift register
like known from the scan chain approach. Configuring the
EPLA with a particular circuit means to load the core with
specific data by using this chain and by loading the RAM
based LUTs.

C. Interconnection Scheme
Several of the LEs described above are combined to form a LE
cluster. In addition, such a cluster comprises an
interconnection block, which connects LE outputs to other LE
inputs inside this cluster (see Figure 4 for details). The
interconnection block must meet several requirements. The
terminology for discussion of such requirements in the
following is borrowed from switching theory [19].
1. Allow arbitrary permutations of inputs N at M outputs

with N ≥ M. Such a network is called “non-blocking”. In
[19] a distinction is used between “rearrangeably non-
blocking” and “strictly non-blocking”. This distinction is
only of interest for the case of dynamical switching,
which does not apply to our problem.

2. Allow connection of one input to more than one output. In
the following text this feature is called “multicast”.

3. The network should consume as low gate count as
possible

4. The network should have as low propagation delay as
possible

5. Groups of outputs are defined. Within such groups the
order of input permutations is “don’t care”, i.e. it only
matters that a particular input route appears inside the
output group. Its position inside the group is irrelevant.
This aspect allows for particular optimizations. The
reason why this optimization is possible, is that in the
application of the interconnection block the order of
inputs for e.g. a specific target LE is not significant,
because the LUT input configuration can be chosen
freely.

RAM
logic_in[n-1:0]

logic_out[m-1:0]

Q

QSET

CLR

D

A0

A1

 Z

clk
Q

QSET

CLR

D

config

Figure 2: RAM based logic element

LUT0
8 Inputs

LUT255
8 Inputs

LUT256
16 Inputs

Write
port for
configur

ation
data

RAM 128K X 4 Bits

"0.0000.0000" + 8xInput "0.1111.1111" + 8xInput

"1" + 16xInput

logic_out0[3:0]

Q
Q

Q
Q

SET

CLR

SET

CLR

D
D

logic_out255[3:0]

Q
Q

Q
Q

SET

CLR

SET

CLR

D
D

logic_out256[3:0]

Q
Q

Q
Q

SET

CLR

SET

CLR

D
D

Read
port 256

Read
port 1

Read
port 0

Figure 3: Using multiple read ports to share one RAM between LEs

Several interconnection block concepts have been
investigated:
� Multiplexer based interconnection concepts
� The multicast Clos network [15][16][17]
� The Beneš network [18][19] and optimizations [20] with

multiplexer based multicast extension
� The reverse Omega network [19] used in a Fat Tree

architecture
Since the reverse Omega network has some interesting
properties, this particular interconnection approach is
discussed here deeper.
The structure of a reverse Omega network is shown in Figure
5. On the positive side the reverse Omega network offers
permutation capability at low gate and delay cost compared to
all the other concepts. The number of 2:1 multiplexers in the
structure for M = N is
2 log2
 and the delay in units of 2:1
multiplexer delays is log2
.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 163

LEx,0 LEx,y-1

Figure 4: Structure of a LE cluster

Figure 5: A 16 x 16 Reverse Omega network

On the negative side the Omega network is only non-blocking
under very strict conditions and it does not support multicast.
In [19], p. 114 it is shown, that an Omega network is only
non-blocking, if the input-to-output assignment is sorted in a
so called cyclic compact monotone sequence (CCM). This
aspect restricts the routing ability of the Omega network very
much, but can be overcome with the approach described in the
following.
Although the Omega network is used normally in its
symmetric form, i.e. M = N, it is possible to reduce it to
asymmetric use, i.e. N ≥ M. The simplest way to achieve this
is to set
 − � output ports to unconnected and let the
synthesis process do the rest. Remarkably, the ports, which are
set to unconnected, must be carefully selected to achieve the
best reduction result. It can be shown, that for M and N being a
power of 2, the multiplexer count of a N:M reverse Omega
Network is approximately:

�
 = �
 ∗ log2
 − (
 − �) , � ≥
2(
 − 1) ∗ log2 � + (
 − 1), � <
2
�

D. Combining Fat Tree and Omega Network (FTON)
The Fat Tree concept is described in [21]. A binary Fat Tree
consists of several stages splitting input-to-output connections
into two branches in every stage. The splitting is done here
using reverse Omega networks. The reverse variant is chosen,
because our application requires, that the output and not the
inputs are CCM. The idea is illustrated in Figure 6. Due to the
output group optimization aspect, the routing within the
Omega networks can be chosen in a way that blocking does
not take place. The gate count behavior of the fat tree Omega
network is shown in Figure 7 for � =
/4 , � = �/8 on
logarithmic scale.
Due to the multi stage structure the delay behavior of the
binary Fat Tree Omega network is bad compared to the other
interconnection realizations, but the binary tree can be
generalized towards a r-Tree meaning not two, but r branches
are used in each stage. Then, for constant r over the stages,
logr G stages are needed, resulting in a delay of:

d = log2 N + log2 M/r + log2 M/r2 + log2 M/r3 + …=
 log2 N + log2 M + log2 M + …-log2r(1+2+…) =
log2 N + (logr G-1)* (log2 M- ½*log2r* logr G)

This equation is valid for 2 ≤ r ≤ G. For r = G the entire
circuit is reduced to a single stage with an individual network
for every output group.
The delay behavior is shown in Figure 8.

Figure 6: Fat Tree realized with Omega networks for r = 2

When inspecting the diagrams it is obvious that there is a
competition between gate count and delay. The less the gate
count, the higher the delay. The best interconnection concepts
are the Benes Network and the FTON. The Benes based
realization makes the interconnection block with the least gate
count, but the highest delay. With the FTON, gate count can
be traded for reduced delay in a wide range by variation of
parameter r.

N
inputs

M
outputs
in
G
groups

4*M/2 x M/4 8*M/4 x M/8 2*N x M/2 network

164 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

E. Architecture of the EPLA
With all the considerations we now define an architecture for
the EPLA. The interconnection concept has three layers as
shown in Figure 9. The first layer deals with inter-cluster
connections. Since this is the most powerful interconnection
layer the software flow described in section F takes care that
strongly connected components (i.e. LEs) are concentrated
inside clusters. The next interconnection layer connects
adjacent LE clusters. Again, the fitting software takes care to
allocate strongly connected clusters in adjacent blocks.
 The rest of the connections is wired by the last
interconnection layer, the global switch.

Figure 7: Gate consumption of the Fat Tree Omega network compared to

other listed concepts

Figure 8: Delay of the FTON for different values of r

(same color coding like above)

F. Tool Flow
In the previous section the hardware architecture of the FPGA
core was discussed. This chapter introduces some aspects of
the mapping tool flow, i.e. the software flow, which is applied
to convert a VHDL model to an EPLA load. This flow is
depicted in Figure 10.

I
n
p
u
t
s

O
u
t
p
u
t
s

Global Switch

Figure 9: Architecture of the EPLA

Figure 10: Tool flow

A first synthesis of the VHDL model is done with a
commercial tool and the resulting netlist is created in verilog.
During the synthesis step the compiler is restricted to a set of
simple cells (e.g. AND, OR, NOT, flip-flop) to simplify the
following processing and reduce the primitive library. In the
next step the verilog netlist is read into a tool, which does the
fitting of the netlist to the architecture as described below.

1,E+00

1,E+02

1,E+04

1,E+06

1,E+08

1,E+10

2:1
multiplexer

count

Input Count N

Simple Multiplexer Benes + Multicast
Fat Tree Omega (r=2) Fat Tree Omega (r=4)
Fat Tree Omega (r=32)

1

10

100 delay

Input Count N

Synthesize RTL-Code of
Application

Only use AND2, OR2,
INVERTER, D_FF

Read the VERILOG
netlist into Mapping tool

At this stage we have a VERILOG netlist for our
application, which is made of a few simple primitives

Analyze netlist and
partition logic to fit to

EPLA Architecture

FPGA Core
Architecture

Create bit stream for
EPLA core and write out

At this stage we have a software model
of the FPGA core definitions

Simple
primitives

library

DONE

START

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 165

G. Decomposing the Logic Cones
The logic cones of the first synthesis step are not appropriate
to be fit into a k-input LUT. Logic cones, which have more
than k input variables must be split into pieces with k inputs at
maximum. This splitting process is called decomposition and
can be done based on BDD (binary decision diagram) [7]
operations. The decomposition topic has been covered in
academic circles very deeply and therefore several
implementations are freely available. For this job the package
BDS-pga 2.0 [8] has been chosen for the decomposition step.
This package, however, does neither support verilog input nor
allows sequential elements in the netlist. Therefore a new tool
has been developed, which only re-uses the decomposing
algorithms of BDS-pga. The result of this decomposition step
is a data structure, which consists of a tree of AND, OR, XOR,
XNOR, MUX operators applied to the input signals of a k-ary
chunk of logic.

H. Placement
Placing is the process, which assigns particular logic cone
pieces to a dedicated EPLA LE. Starting with the data
structure of the decomposing step, chunks of logic are
searched, which fit into the current LE allocation. Metrics for
this search are:
� How well does a chunk fill the potentially partly used LE
� How many inputs can be reused when allocating the

chunk to the LE
These criteria are evaluated for every LE, which is not yet full.
The LE, which has the best ranking, is chosen to house the
logic cone piece under investigation. The result of this process
is a list of (partly) used LEs, which carry the logic of the
netlist.

I. Routing
Routing is the process of defining interconnections between
LEs. Starting with the above list of logic pieces, an
interconnection table is created, which tells, which LE output
is connected to which LE inputs. This interconnection table
can be regarded as a graph and thus graph theoretical
considerations can be applied. Remember, that such LEs must
be packed to clusters, which have tight interconnection. The
inter-cluster-connections shall be reduced to a minimum,
because such connections are expensive with respect to EPLA
resources. This can be achieved by applying a graph
partitioning algorithm to the interconnection table. There are
many graph partitioning algorithms with the Kernighan/Lin
[9] being the most famous. Unfortunately, this algorithm is
O(n3) and therefore not suitable for the size of our problem.
However, alternative algorithms like the Fiduccia/Mattheyses
algorithm [22] have been developed to overcome this
deficiency. The original version of this algorithm only
supports splitting into two partitions. Therefore there was a
need to generalize this algorithm to multi-partitions. As a
result of this partitioning step LE clusters of almost equal LE
counts are found, which have minimized inter-cluster
connections.

J. Creating the Load File for the FPGA
Based on the results of the decomposition and the place &
route steps, the load file is generated by the tool. The LUT
logic is created as a truth table to be loaded into the LUT
RAMs. The single storage elements of the bypass multiplexer
and the interconnection networks form a long shift register.
The configuration data for these (e.g. bypass, interconnection
configuration) are created as a bit stream file to be loaded into
the storage element chain.

IV. UTILIZING THE EPLA
The EPLA concept described in this paper can be utilized for
several purposes:

� Updating of ASIC functionality e.g. because

implemented standards have changed
The ASIC can be manufactured before standards are
settled finally. Once the standard definition phase is
finished the ASIC can be adapted to the new version by
updating the built-in EPLA circuit.

� Fixing of ASIC bugs
In case a bug is present in the ASIC functionality it might
be fixed by loading an error correction configuration in
the EPLA. An architecture, which supports such a kind of
application, is shown in Figure 11.

� Saving additional accompanying FPGA devices on the
board
Sometimes functionality, which was defined after the
manufacturing of the ASIC, is implemented in additional
FPGA devices on the board. Such FPGA device can be
saved, if the ASIC itself contains such an option.

� Deployment of the same ASIC in different hardware
environments
Depending on the application it may make sense to
develop a universal ASIC for multiple purposes, which
incorporates an EPLA. The adaptation of the ASIC for a
concrete function is done by loading the EPLA with a
particular configuration. This approach, however, makes
only sense, if the number of different configurations
exceeds the number of 50 or the configurations are not
known at design time. The reason for this is that the
EPLA consumes a lot more ASIC silicon than the
function, which can be realized in the EPLA.

� Using the EPLA as a bed for variable circuit monitors
This approach is extraordinary in particular and therefore
this concept is described in detail in the next section.

Figure 11 illustrates the test and modification point
architecture for bug fixing and monitoring purposes. This
architecture gives the chance to insert a module at anticipated
ASIC path locations. If no monitor and no bug fixing is
required, the EPLA is just a pass through for the paths. If a
monitor is required e.g. to locate a bug location, the EPLA
configuration is modified with the insertion of such a circuit
(shown in red) at a particular path location.

166 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Figure 11: Architecture for variable test and modification point insertion

A. Utilizing Cores as a Bed for Runtime Monitors
In the previous chapter a method for the embedding of
technology independent, synthesizable FPGA cores in an
ASIC was introduced. The advantage of this method is that all
kind of circuits can be implemented after the ASIC was
manufactured. This also includes modules, which support the
validation engineer during his work. A problem during this
phase in general is the observabililty of the design. This
lacking observability is the main reason, why identifying the
location of a design error on hardware level is a time
consuming job. And thus it might be useful to be able to
integrate monitors in the design at runtime. Such monitors do
concurrent checking of the behavior of the design and flag
errors if something suspicious happens. Monitors could be
embedded in the hardcoded part of an ASIC. Then they only
are of limited benefit, because their scope is very restricted.
Here the EPLA technology can be helpful. A user-defined
monitor is loaded into the FPGA core as needed. Such
monitors can be derived from pre-existing PSL [12][23]
assertions. This synthesis step is described in the following
section.

B. Automata Construction
PSL comes with distinct flavors for each different
implementation language. In this work we concentrate on the
VHDL flavor, but the algorithm can also be applied to all
other languages. PSL is divided into four layers of abstraction.
The boolean layer contains only the expressions of the
underlying flavor, such as the VHDL operators and, or and
not. All temporal aspects are contained in the next layer, the
temporal layer. It supports expressions like always and until.
The verification layer and modeling layer describe how the
property must be used and they specify aspects of the
verification environment. To generate a checker automaton it
is only necessary to consider the boolean and the temporal
layer. In fact, the boolean layer is transparent to the generation
algorithm, since the expressions in this layer can be virtually
substituted by simple boolean variables. Thus, only the
operators of the temporal layer will influence the generation
algorithm. The IEEE PSL standard [13] supports three sets of
operators in the temporal layer. Sequential Extended Regular

Expressions (SERE) and the usual LTL operator’s represent
the Foundation Language (FL). Additionally, the Optional
Branching Extensions (OBE) provides a CTL-like set of
operators. From the multitude of PSL operators, the standard
defines a subset of only a few simple operators given in Table
1 that can be used to express all other more complex
operators.

Table 1: Simple Subset
FL SERE
b r
s r

(p) r1 ; r2
s! r1 : r2
!b r1 | r2

The mapping of the subset to the operators is defined by so-
called rewrite rules. Each PSL expression is recursively
constructed from its basic parts. For example, to construct the
automaton for the expression always{a; b}, first the automaton
for {a; b} is constructed and then used by the algorithm for the
always operator. The result of each step of the construction
algorithm is a nondeterministic finite automaton with epsilon
transitions (ϵ-NFA). ϵ-transitions are executed without any
input. First, all the ϵ-transitions are eliminated. The result still
contains non-deterministic transitions. In order to generate
synthesizable VHDL code it has to be converted into a
deterministic finite automaton (DFA). Listing 1 describes the
algorithm, which transform an NDFA into a DFA.

Listing 1: NDFA → DFA

A → generate automat (DFA)
A1 given automat
for all states Z in A1 do

find all following states of Z
combine all transition conditions
create new transitions from Z to combinations of the following

states
set start state

In the first step all outgoing transitions from the start state are
determined, which do not contain ϵ-transitions. Afterwards all
combinations of these transitions conditions and all following
states are generated. These new states and transitions were
added to the new deterministic automaton. This process will
be performed for all states of the non-deterministic automaton.
During this algorithm different final states are generated. One
or more final states are definitely correct. Additionally there is
one more final state to signal the first failure of the expression.
As long as no final state is reached, the result of the expression
is still pending. The main state of the automaton is the final
error state, because the designer is only interested in the point
in time when the property actually fails.
The generation process of a specification is supported by the
specification platform ”SpecScribe” [14]. This tool offers the
possibility to define requirements, components and

EPLA

logic

logic

ASIC
Core

logic

logic

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 167

dependencies in a hierarchical way. One of these requirements
can be defined as ”verification property”. The PSL expression
is added. After that, a finite state machine will be generated.
To simulate a monitoring automaton or implement it into a
design, different representations can be generated
automatically, e.g. synthesizable VHDL or SystemC.

C. Results
Currently the EPLA fitting tool is in experimental status. In
comparison to commercial tools, which reach an estimated
ratio between physical gate count to logic gate count of 20-50,
the achieved factor of > 50 is still subject to further
investigations.
The PSL approach has been verified so far on a Xilinx FPGA
board with a Virtex-II Pro. The board was programmed with a
design, which receives packages and echoes them after being
processed. A finite state machine was integrated into this
design. The final error state is indicated by an LED, whenever
the PSL expression failed. The structure of the board is shown
in Figure 12.

Figure 12: Structure of demo board

V. CONCLUSION AND OUTLOOK
This paper presented an approach for the synthesis of
technology independent FPGA cores (EPLA) as part of SoC
ASIC designs. Such cores can be used for a wide spectrum of
applications.
As an example an interesting concept was presented, which
supports the test engineer in his work. In the case of functional
deficiencies dedicated monitors are loaded on the technology
independent, synthesizable EPLA core in order to narrow the
specific location of a design error. For this purpose assertions
written in PSL are synthesized and loaded into the EPLA.
The status of the described scenario is currently experimental.
Therefore the fitting results of a given RTL code to an EPLA
with respect to area and timing optimizations are still a matter
of further investigations.
Another topic under investigation is the ambition to
reconfigure the EPLA as fast as possible in order to reduce the
reconfiguration impact to a minimum.

It is planned to automatically introduce an error reporting
infrastructure into the design that connects all monitor
automata, collects the results and reports the corresponding
data either to a processor within or to an entity outside the
chip.

VI. REFERENCES
[1] Homepage of FPGA Manufacturer Abound Logic:

http://www.aboundlogic.com/
[2] Design & Reuse Article: Adaptive silicon’s MSA 2500 programmable

logic core TSMC test chips are fully functional. June 6, 2001
[3] Voros, N., Rosti, A., Hübner, M., eds.: Dynamic System

Reconfiguration in Heterogeneous Platforms - The MORPHEUS
Approach. Springer (2009)

[4] Freeman, R.H.: Configurable electrical circuit having configurable
logic elements and Configurable Interconnects. (Feb 19, 1988) Google
Patent Repository.

[5] MathWorld, W.: Introduction to big-o-notation.
http://mathworld.wolfram.com/AsymptoticNotation.html

[6] Erickson, J.: Cs 497: Concrete models of computation.
http://compgeom.cs.uiuc.edu/jeffe/teaching/497/13-circuits.pdf (Spring
2003)

[7] Bryant, R.E.: Graph-based algorithms for boolean function
manipulation. Computers, IEEE Transaction (1986) C-35(8):677-691.

[8] Homepage of BDS-pga: http://www.ecs.umass.edu/ece/tessier/rcg/bds-
pga-2.0/

[9] Kernighan, B.W., Lin, S.: An efficient heuristic procedure for
partitioning graphs. Bell Sys. Tech. J., Vol. 49, 2, pp. 291-308 (1970)

[10] Hendrickson, B., Leland, R.: The chaco user’s guide: Version 2.0.
Sandia National Laboratories (1994)

[11] IEEE: Standard VHDL Language Reference Manual. IEEE Std 1076-
2002 (Revision of IEEE Std 1076) (2002)

[12] Eisner, C., Fisman, D.: A Practical Introduction to PSL (Series on
Integrated Circuits and Systems). Springer-Verlag New York, Inc.
(2006)

[13] IEEE: Standard for Property Specification Language PSL. IEEE Std
1850 (2005)

[14] Pross, U., Richter, A., Langer, J., Markert, E., Heinkel, U.: “Specscribe
– Specification data capture, analysis and exploitation”, Software
Demonstration at DATE’08 University Booth (2008)

[15] Charles Clos: “A study of non-blocking switching networks”, Bell
System Technical Journal 32, March 1953

[16] Yuanyuan Yang: “A Class of Interconnection Networks”, IEEE
TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 8, August 1998

[17] Yuanyuan Yang, Gerald M. Masson: “The Necessary Conditions for
Clos-Type Nonblocking Multicast Networks”, IEEE TRANSACTIONS
ON COMPUTERS, VOL. 48, NO. 1, November 1999

[18] Václav E. Beneš: "Mathematical Theory of Connecting Networks and
Telephone Traffic", Academic Press, 1965

[19] Achille Pattavina: “Switching theory: architectures and performance in
broadband ATM networks”, Wiley 1998, ISBN-13: 978-0471963387

[20] Bruno Beauquier, Eric Darrot; „On Arbitrary Waksman Networks and
their Vulnerability”, INSTITUT NATIONAL DE RECHERCHE EN
INFORMATIQUE ET EN AUTOMATIQUE, October 1999

[21] C.E. Leiserson, “Fat-trees: Universal Networks for Hardware-Efficient
Supercomputing,” IEEE Transactions on Computers, 34(10):892-901,
Oct. 1985

[22] C. M. Fiduccia and R. M. Mattheyses. „A linear time heuristic for
improving network partitions“, 19th Design Automation Conference,
1982

[23] Accelera, “Property Specification Language Reference Manual”, v1.1,
June 9, 2004

[24] John R. Hauser and John Wawrzyneck, Garp, “A MIPS Processor with
a Reconfigurable Coprocessor”, Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM '97,
April 16-18, 1997).

monitor automaton

Board Virtex-II Pro

TX

RX

Debug
Unit

MAC

R
egister

L
E
D

line_loop_en recv_
debug got_

debug

PC

Config
Unit

168 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

A New Client Interface Architecture for the
Modified Fat Tree (MFT) Network-on-Chip

(NoC) Topology
Abdelhafid Bouhraoua and Muhammad E. S. Elrabaa

Computer Engineering Department
King Fahd University of Petroleum and Minerals

PO Box 969, 31261 Dhahran, Saudi Arabia
{abouh,elrabaa}@kfupm.edu.sa; orwa@diraneyya.com

Abstract— A new client interface for the Modified Fat Tree
(MFT) Network-on-Chip (NoC) is presented. It is directly
inspired from the findings related to lane utilization and
maximum FIFO sizes found in simulations of the MFT. A new
smart arbitration circuit that efficiently realizes a round-robin
scheduler between the receiving lanes has been developed.
Simulation results show a clear viability and efficiency of the
proposed architecture. The limited number of the active
receiving links has been verified by simulations. Simulations
also show that the central FIFO size need not be very large.

Keywords — Networks-On-Chip, Systems-on-Chip, ASICs,
Interconnection Networks, Fat Tree, Routing

I. INTRODUCTION

There has been a significant amount of effort made in the
area of NoCs, and the focus has mostly been on proposing
new topologies, and routing strategies. However, recently
the trend has shifted towards engineering solutions and
providing design tools that are more adapted to reality. For
example, power analysis of NoC circuitry has intensively
been studied [1, 2], more realistic traffic models have been
proposed [3], and more adapted hardware synthesis
methodologies have been developed.

However, high throughput architectures haven’t been
addressed enough in the literature although the need for it
started to become visible [4]. Most of the efforts were
based on a regular mesh topology with throughputs
(expressed as a fraction of the wire speed) not exceeding
30% [5]. In [6, 7] a NoC topology based on a modified Fat
Tree (MFT) was proposed to address the throughput issue.
The conventional Fat Tree topology was modified by
adding enough links such that contention was completely
eliminated thus achieving a throughput of nearly 100% [6]
while eliminating any buffering requirement in the routers.
Also, simplicity of the routing function, typical of Trees,
meant that the router architecture is greatly simplified.
These results did not come without a price, mainly the high
number of wires at the edge of the network in this case.
Also buffering was pushed to the edge of the network at the
client interfaces. Many of these issues have been discussed
in [6, 7].

In order to overcome these limitations a new client
interface architecture is proposed. This interface aims at
reducing the number of parallel FIFOs into a single
centralized FIFO. The modification of the client interface
opens the door for a more practical implementation of the
MFT NoC. This paper presents the new client interface
architecture and its different circuitry. It also shows through
simulation that the new architecture draws on the practical
results to reduce the amount of required hardware
resources. MFT NoCs are first briefly reviewed in the next
section. The newly proposed client interface is then
presented in section 3. Simulations results are presented in
section 4 followed by conclusions in section 5.

II.MODIFIED FAT TREE NOCS

MFT is a new class of NoCs based on a sub-class of
Multi-Stage Interconnection Networks topology (MIN).
More particularly, a class of bidirectional folded MINs;
chosen for its properties of enabling adaptive routing. This
class is well known in the literature under the name of Fat
Trees (FT) [8]. The FT has been enhanced by removing
contention from it as detailed in [7]. Below is a brief
description of the FT and MFT network topologies.

A. FT Network Topology
A FT network, Figure 1, is organized as a matrix of

routers with n rows; labeled from 0 to n-1; and 2(n-1)

columns; labeled from 0 to 2(n-1) -1. Each router of row 0
has 2 clients attached to it (bottom side). The total number
of clients of a network of n rows is 2n clients. The routers
of other rows are connected only to other routers. So, in
general, a router at row r can reach 2(r+1) clients.

B. MFT Topology
Contention is removed in MFT by increasing the number

of output ports in the downward direction of each router [6,
7], Figure 2. At each router, the downward output ports
(links) are double the number of upper links. Then the input
ports of the adjacent router (at the lower level), to which it
is connected are also doubled. This is needed to be able to
connect all the output ports of the upper stage router. This

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 169

will continue till the client is reached where it will have 2n

– 1 input links. Each of these I/P links will feature a FIFO
buffer as called for by the original MFT architecture [6, 7].

Figure 1: Regular Fat Tree Topology (8 clients)

Figure 2 – Modified FT Topology

III. CLIENT INTERFACE

As was explained in section II, the original MFT
architecture requires 2n – 1 input FIFOs at the client
interface. The sizes of these FIFOs is set by the NoC
designer depending on many factors such as the
communication patterns among clients, emptying (data
consumption) rate by a client, application requirements
(latency), …etc. [7]. Figure 3 below shows the structure of
the client interface in the original MFT.

Figure 3: Client interface of the original MFT

It is evident that although these FIFOs may be of a small
size, their structure represents the largest part of the cost in

terms of area for the MFT network since the routers are
bufferless and have a very low gate count. Also, extensive
simulations with different traffic generators showed that
only a small fraction of FIFO lanes are active per client
simultaneously [6, 7].

In order to reduce the wasted FIFOs space represented
by the original MFT’s client interface, a newly designed
interface is proposed, Figure 4. It is made of two parts; an
upper part consisting of several bus-widener structures that
will be named parallelizers from this point forward and a
lower part that is simply a single centralized FIFO memory
to which all the outputs of the different parallelizers are
connected through a single many-to-one multiplexer.

Figure 4: Block Diagram of the New Client Interface.

Each one of the parallelizers is made of two layers. The
first layer is a collection of registers connected in parallel to
the incoming data bus from one of the receiving ports.
Packet data is received into one of these registers one word
at a time. When this layer is full, an entire line made by
concatenating all the registers of the first layer is
transferred to a second set of registers (the second layer in
the parallelizer) in a single clock cycle. The ratio between
the width of the parallel bus and the width of a single word
is called the parallelization factor.

Packets portions from different sources are received on
different parallelizers simultaneously and independently.
When the first portion of a packet is received and
transferred to the second layer of the parallelizer, a flag is
set to request transfer of a new packet to the FIFO. The
control logic responsible for these transfers will first
attempt to reserve space in the FIFO corresponding to one

Many-To-One MUX

Central
FIFO

FIFO Allocation/
Deallocation

Ctrl Ctrl Ctrl

Client Side

Receiving Links

Client/IP

Down Links (from router)

Up
Link

 F
IF

O

 F
 IF

O

 F
IF

O

 F
IF

O

 F
IF

O

C

R R R R

C

R R R R

R R R R

C C C C C C

Row 0

Column 0 Column 3

C

R

C C C C C C C

R RR

R R R R

R R R R

170 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

packet. The condition here for this architecture to produce
efficient results is the adoption of a fixed packet size. This
condition simplifies the space allocation in the FIFO and
alleviates the control logic from any space or fragmentation
management due to variable size allocation and disposal. In
the case the FIFO is full and no space could be reserved,
the request is rejected and the backpressure mechanism is
triggered on that requesting port.

The control logic continuously transfers the received
packet words to the FIFO. Every time a packet portion
enters the second layer of registers in one of the
parallelizers a flag is set to indicate the presence of data.
Those parallelizers which are currently receiving packets
are said to be active. Only active parallelizers are
continuously polled to check the presence of data. The
polling follows a round-robin policy. A single clock cycle
is used to process the currently selected parallelizer.

Figure 5: Intelligent Request Propagation Circuitry.

Polling the active parallelizers only supposes some
mechanism to “skip” all the non-active parallelizers
between two active ones. In order to avoid wasting clock
cycles crossing those non-active parallelizers, a special
request propagation circuit has been designed. Figure 5
shows this circuit’s schematic. The upper set of flip-flops
correspond to the status flag indicating whether a
parallelizer is active or not while the lower one is used to
indicate which parallelizer is selected to transfer its data
during a given clock cycle. The multiplexers are used to
instantly skip the non-active parallelizers.

As a result of this fast polling scheme packets arriving
simultaneously on different parallelizers may be received in
different order. Packet order from the same source is still
guaranteed though because the network is bufferless.

IV. SIMULATION RESULTS

Simulations were carried out using a cycle-accurate C-
based custom simulator (developed in-house) that supports
uniform and non-uniform destination address distribution
as well as bursty and non-bursty traffic models. The packet
size was fixed at 64 words. Only bursty traffic with non-
uniform address generation was used. The varying
parameters were: the network size, central FIFO size and
the parallelizer factor value.

Five injection rates corresponding to 0.5, 0.6, 0.7, 0.8
and 0.9 words(flits)/cycle/client were simulated. The first
result confirming the viability of the solution was the
throughput that matched the input rate in most of the cases
and with a maximum difference lower than 1% in few
cases.

In all the figures that follow, the latency is expressed in
clock cycles.

Figure 6: Latency Comparison with the original client
interface.

Latency values were reduced dramatically because of the
output rate of the FIFO. Dual-port memories are the natural
choice for implementing FIFOs. Both data buses are
generally the same size on both ports of the dual-port
memory. Therefore, the FIFO data bus has the same size as
the paralellizers bus. A wide output bus translates in fewer
clock cycles to read or write an entire packet. More packets
are moved per unit of time which means that packets spend
less time in the FIFO waiting to be sent out leading to
smaller latencies as shown in Figure 6. It is important to
note that the latency figures across the network did not
change and is expected to be small as the entire network is
bufferless.

Figure 7 shows a subset of the obtained simulation
results. The 32 clients network results are shown (left to
right) for parallelization factor values of 8, 16 and 32 for
different central FIFO sizes (from 8 packets to 32 packets).
The latency figures are very low compared to those
obtained with the previous architecture of the client
interface (Figure 6). The latency range corresponding to a
wider parallelizer is lower than the range corresponding to
a narrower one. The other results (not shown here for lack
of space) are similarly lower for wider parallelizers. These
findings confirm the efficiency of the proposed solution.

D Q
_
Q

DQ
_
Q

1
0

D Q
_
Q

1
0

DQ
_
Q

DQ
_
Q

D Q
_
Q

1
0

DQ
_
Q

D Q
_
Q

1
0

en[0] en[1]

en[n-2] en[n-1]

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 171

Figure 7 - Simulation Results: latency (clock cycles) versus injection rate (flits/clock cycle/client) for three
parallelization factors (8, 16 and 32 from left to right) for several central FIFO sizes (8, 16, 24 and 32 packets).

The central FIFO size has little impact on the results
which favors size reduction as a FIFO with a size as low as
8 packets can produce acceptable results.

A tentative synthesis of the new structure yielded about
35K gates per client for a parallelization factor of 8 for a
network of 64 clients. This represents approximately an
area of 0.185 mm2 for the 0.13 µ technology. Added to that
the dual-port SRAM area of 0.009, 0.018, 0.028 and 0.038
mm2 for a FIFO size that accommodates respectively 8, 16,
24 and 32 packets. This represents a significant
improvement compared to the 2.1 mm2 occupied by the
client interface in the previous architecture and which uses
63 SRAM FIFOs of 2K-Bytes each.

V. CONCLUSIONS

A new architecture of the client interface of the MFT
NoC has been proposed. This new architecture
considerably reduces the hardware resources necessary to
implement the receiving client interface. Detailed block
diagrams and of this architecture have been shown and
described. Its operations and step by step behavior have
been described as well. A new arbitration circuit that
intelligently “skips” disabled request lines to realize an
efficient round-robin where no clock cycles are wasted is
presented. Simulations have given clear evidence on the
viability of a single centralized FIFO that is simultaneously
filled by several, yet limited number, of receiving links.
The limited number of the active receiving links has been
verified by simulations. The simulation results have shown
a considerable reduction of latency compared with the
previous solution. They have also shown the little impact of
the FIFO size on the latency which implies that a larger size
FIFO is not necessary. The client interface synthesis
yielded smaller area than in the previous architecture of the
client interface by one order of magnitude.

ACKNOWLEDGMENTS

This work was supported by King Fahd University of
Petroleum and Minerals (KFUPM) through grant #
IN070367.

REFERENCES

[1] E. Nilsson and J. Öberg, “Reducing power and latency in 2-D mesh
NoCs using globally pseudochronous locally synchronous clocking”,
CODES+ISSS 2004.

[2] E. Nilsson and J. Öberg, “Trading off power versus latency using
GPLS clocking in 2D-mesh NoCs”, ISSCS 2005.

[3] V. Soteriou, H. Wang and L. Peh, “A Statistical Traffic Model for
On-Chip Interconnection Networks”, in Proceedings of the 14th IEEE
Intl. Symp. on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS '06), Sept. 2006, pp 104-
116.

[4] Freitas H.C., Navaux P. “A High Throughput Multi-Cluster NoC
Architecture”, 11th IEEE International Conference on
Computational Science and Engineering, July 16-18, 2008 Sao
Paulo, Brazil, pages 56-63

[5] K. Goossens, J. Dielissen, A. Radulescu, “Æthereal network on chip:
concepts, architectures, and implementations”, IEEE Design and Test
of Computers, Volume 22, Issue 5, Sept.-Oct. 2005 Page(s)414 –
421.

[6] A. Bouhraoua and Mohammed E.S. El-Rabaa, “A High-Throughput
Network-on-Chip Architecture for Systems-on-Chip Interconnect,”
Proceedings of the International Symposium on System-on-Chip
(SOC06), 14-16 November 2006, Tampere, Finland.

[7] A. Bouhraoua and Mohammed E.S. El-Rabaa, “An Efficient
Network-on-Chip Architecture Based on the Fat Tree (FT)
Topology”, Special Issue on Microelectronics, Arabian Journal of
Science and Engineering,, Dec. 2007, pp 13-26.

[8] C. Leiserson, "Fat-Trees: Universal Networks forHardware-Efficient
Supercomputing", IEEE Transactions on Computers, Vol. C-34, no.
10, pp. 892-901, October 1985.

172 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Implementation of Conditional Execution on a
Coarse-Grain Reconfigurable Array

Fabio Garzia, Roberto Airoldi, Jari Nurmi
Department of Computer Systems
Tampere University of Technology

33101 Tampere, FI
Email: name.surname@tut.fi

Abstract—This paper presents a method to implement
switch/case type conditional execution on a coarse-grain recon-
figurable array based on a SIMD paradigm. The implementation
do not introduce dedicated hardware but it utilizes only the
functional units of the processing elements composing the ma-
chine and the possibility to reconfigure each processing element
at run-time in one clock cycle. The method is employed to map
algorithms for linear search or calculation of the maximum value
on vectorized data.

I. INTRODUCTION

During recent years academic and industrial research groups
have proposed several coarse-grain reconfigurable architec-
tures (CGRA). The typical CGRA is characterized by a
one or two dimensional array of processing elements (PEs),
modeled on general-purpose computer systems. A common
choice is to provide very simple processing elements based on
programmable arithmetic-logic modules and characterized by
multiplexing logic for the interconnections between PEs. It is
the case of Morphosys [1] and Montium [2]. These machines
are particularly suitable to map SIMD applications. However,
they provide poor support for control tasks. The main issue
is the mapping of conditional execution. In Morphosys the
designers introduced the support for guarded execution and
pseudo-branches [1] using dedicated logic to store branch
tags and implement predication. In Montium [2] an external
sequencer takes care of conditional execution.

In this work we propose an alternative approach to imple-
ment switch/case type of conditional execution on a coarse-
grain reconfigurable machine. This approach uses the func-
tional units already provided in each PE of the machine and the
possibility to reconfigure functionalities and interconnections
in one clock cycle.

The paper is organized as follows. First we present some
details of the reconfigurable device. Then we describe the
implementation of the switch/case conditional execution and
some practical example of its employment. Finally we draw
some conclusions.

II. CREMA ARCHITECTURE

CREMA [3] is a Coarse-grain REconfigurable array with
Mapping Adaptiveness. Its architecture is based on a matrix
of 4 × 8 coarse-grain processing elements (PEs) that can
process two 32-bit inputs and generates two 32-bit outputs

per clock cycle. Operations supported are integer and floating-
point arithmetics, shifting, LUT-based and boolean. In addi-
tion, CREMA supports 16 different inter-PE interconnections
divided into nearest-neighbor, interleaved, and global intercon-
nections.

CREMA is based on a template that is customized according
to the requirements of a kernel to execute. This is the reason
for the term “mapping adaptiveness”. The idea is that the
application developer maps a certain kernel onto CREMA
template. This mapping generates a set of contexts that are
used in the run-time execution of the kernel by CREMA.
Based on the set of contexts required, a minimal version of
CREMA is generated, in which all the unused functional units
and interconnections are removed from the initial template.

The reduced version of CREMA implements run-time re-
configuration, because each PE may support more than one
operation or connection. The run-time choice between the
functional units and the interconnections provided in hard-
ware is performed setting a configuration word in each PE.
Changing the configuration word corresponds to changing
the current functionality of the PE. In practice, configuration
words are stored in a PE memory, that can host more than one
configuration words allowing a one-cycle reconfiguration.

III. IMPLEMENTATION OF A switch/case STATEMENT

A control flow mechanism based on a switch/case statement
is implemented using these features of the CREMA template:

1) the Look-Up Table (LUT) among its functional units;
2) the possibility for any PE to acquire the configuration

word from the upper PE instead of using its own
configuration memory;

3) the run-time reconfiguration performed in one clock
cycle.

A switch/case conditional statement is based on the execu-
tion of different operations according to the value of a selection
variable. To implement it on CREMA array, we assume that
the possible values of the selection variable can be used to
address a memory, i.e., they compose a sequence of integers
starting from zero or can be easily converted into such a
sequence using arithmetic or logic operations. The idea is that
this values can select one location of a LUT instantiated in
one PE. In addition, consider that each PE can be configured
by the upper PE instead of its own configuration memory.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 173

Fig. 1. Implementation of a switch/case with four branches.

Therefore, we can map a selection mechanism followed by a
conditional operation using two consecutive PEs in a column
of the array (see Fig. 1). The first PE (“LD” in the figure)
loads a value from its LUT addressed by the condition variable
and the second PE (in black in the figure) implements the
functionality specified by the output of the LUT.

There is no theoretical limitation on the size of the
switch/case, because the size of the LUT can be decided
at design time. However, there is a practical constraint. The
different operations required by the branches of the switch/case
must be implemented using different configurations of the
same PE. This is not always possible. An alternative is to use
the PE as a selector, whose only task consists of taking a value
from one of the possible execution paths mapped using more
than one PE. Fig. 1 depicts a situation in which the switch/case
is characterized by 4 branches, each branch is mapped on a
set of PE (“Branch #”) and the condition is also evaluated
using two PEs. This way the implementation of the switch/case
mechanism is constrained only by the array resources.

Notice that the switch/case mechanism can be used to
implement an if-then-else. It is sufficient to convert the if-
then-else in a switch/case with two branches. However, the
condition evaluation may be more difficult to map.

IV. TEST CASES

The mechanism illustrated here can be used to implement
a linear search on vectorized data. For example, it is possible
to check in a vector of integers if there are elements greater
than, less than or equal to a fixed value. Due to the nature
of CREMA execution, the outcome is always another vector.
For example, this vector may have ones in the position of
the elements that satisfy the required condition and zeros
elsewhere. Such a vector can be used for further processing by
CREMA, like adding together all the ones to know how many
elements satisfy the fixed condition. These linear searches can

be performed in N clock cycles by CREMA, where N is the
number of elements of the array.

One of the implementation issues in these algorithms is to
match the condition with a switch/case statement, that implies
that a value is associated to each result of the condition
evaluation. Our approach does not insert adhoc logic for
condition evaluation, therefore the value must come from one
of the provided PE operation. In most cases, the solution is
simple. If we need to evaluate the condition x > C, we can
perform in a PE the operation x − C and then consider the
most significant bit by shifting the result by 31, so that we
get 0 or 1 according to the condition. This means that we
need only two PEs. On the other hand, the condition x = C
requires a subtraction and then a bitwise OR between all the
bits of the result.

The same mechanism was used to implement an iterative
algorithm for the search of a maximum inside a vector. The
algorithm is composed of several steps. At each step the
elements are grouped in pairs and the maximum inside each
pair is stored into the memory. At each step we get a new
vector that is half of the size of the previous one. The steps are
iterated until only one element is left. Therefore the execution
requires log2 n steps. The algorithm employs another feature
of CREMA that allows to write the results in the output
memory according to a specific pattern. The algorithm was
used in the implementation of a W-CDMA cell search on a
platform based on CREMA [4].

V. CONCLUSION

In this paper we propose a method to map switch/case
conditional execution on a coarse-grain reconfigurable array.
The method does not require additional logic for predication or
branch support, but it is based on the possibility to reconfigure
the PE functionality in one clock cycle and to map condi-
tion evaluation and conditional operations onto the PEs. The
method has been employed for the mapping of linear search
on vectorized data or calculation of the maximum value inside
a vector.

ACKNOWLEDGMENT

This work was partially funded by a grant awarded by
the Finnish Cultural Foundation, which is gratefully acknowl-
edged.

REFERENCES

[1] M. Anido, A. Paar, and N. Bagherzadeh, “Improving the operation
autonomy of simd processing elements by using guarded instructions and
pseudo branches,” in Proceedings of Euromicro Symposium on Digital
System Design, 2002, pp. 148 – 155.

[2] G. Smit, P. Heysters, M. Rosien, and B. Molenkamp, “Lessons Learned
from Designing the MONTIUM - a Coarse-grained Reconfigurable Pro-
cessing Tile,” in Proc. International Symposium on System-on-Chip, 2004,
pp. 29–32.

[3] F. Garzia, W. Hussain, and J. Nurmi, “Crema: A coarse-grain recon-
figurable array with mapping adaptiveness,” in Proceedings of the 19th
International Conference on Field Programmable Logic and Applications
(FPL2009). Prague, CZ: IEEE, September 2009, pp. 708–712.

[4] F. Garzia, “From run-time reconfigurable coarse-grain arrays to
application-specific accelerator design,” Ph.D. dissertation, Tampere Uni-
versity of Technology, December 2009.

174 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Dynamically Reconfigurable Architectures for High
Speed Vision Systems

Omer Kilic, Peter Lee
School of Engineering and Digital Arts

University of Kent
Canterbury, KENT, CT2 7NT, England

Email: {O.Kilic, P.Lee}@kent.ac.uk

Abstract—High-Speed Vision applications have very specific
and demanding needs. Many vision tasks have high compu-
tational requirements and real-time throughput constraints. In
addition to a large number of fine-grain computations, vision
tasks also have complex data flow which varies significantly in a
single application and across different applications.

Conventional architectures, like Microprocessors and standard
Digital Signal Processors (DSP) are not optimised for these kinds
of highly specific applications and as a result do not perform well
because of their mostly sequential nature. By using a combination
of reconfigurable architectures that can adapt themselves to the
requirements of the system dynamically, significant performance
improvements can be achieved.

I. INTRODUCTION

This PhD project focuses on evaluating the performance
gains achieved by utilising a combination of processing de-
vices, each with different characteristics and strengths to
satisfy the requirements of high speed vision systems. In the
proposed system, a combination of a Field Programmable
Gate Array (FPGA), a Central Processing Unit (CPU) and
a Graphics Processing Unit (GPU) will be employed. The
FPGA portion of the system will be responsible for image
acquisition and the low-level pre-processing tasks such as
filtering, edge detection and thresholding and the CPU will
act as the system supervisor overseeing the operation of the
FPGA and the GPU sections of the system. The CPU will also
be responsible for coordinating the outside connectivity of the
system, which can be in the form of network communication
or standard embedded interfaces. For processing data on
the GPU, CUDATM(Compute Unified Device Architecture)
framework will be used.

While there are some custom highly specialised systems
available that utilise this sort of heterogeneous combination of
devices, there is a lack of an open, non-proprietary platform,
hence the ultimate aim of this project is to define a flexible
low-cost framework for high speed vision systems that utilises
commercial off-the-shelf (COTS) peripherals, where vision
tasks can be described in a high level system description
package. The system description package will define the
overall purpose of the system and it will also provide flexible
constructs that enable the system to adapt itself to the changes
in the operating environment.

In Section 2, a general overview of processing requirements
of Vision Systems will be discussed. Section 3 will outline

advantages of using reconfigurable architectures and Section
4 will provide details about the proposed system. Section 5
will outline the challenges and Section 6 will provide the
conclusion for this paper.

II. VISION SYSTEMS

The goal of Machine Vision is to robustly extract useful,
high level information from images and video. The type of
high-level information that is useful depends on the applica-
tion. Vision systems have a wide range of applications from
highly specialised instrumentation and process automation
tasks to general consumer electronics, although this proposed
architecture mainly focuses on providing a flexible low-cost
framework for industrial instrumentation tasks.

Vision algorithms have several stages of processing. The
lowest level operations, performed on raw sensor data usually
involve a lot of arithmetic operations on pixel values. These
operations can benefit from the parallel nature of the architec-
ture in use quite significantly and reconfigurable architectures
have been most widely used for accelerating these algorithms.
Examples of computations at this level include filtering, edge
detection, and edge-based segmentation, among others[1].

An example application that can benefit from our proposed
system is Stereo Vision. Stereo Vision is a traditional method
for acquiring 3-dimensional information from a stereo image
pair. The instruction cycle time delay caused by numerous
repetitive operations causes the real-time processing of stereo
vision to be difficult when using a conventional computer[2].
By abstracting the different layers of the Stereo Vision system
to run in parallel on different devices, significant performance
improvements can be expected.

III. RECONFIGURABLE ARCHITECTURES

Reconfigurable architectures utilise hardware that can be
adapted at run-time to facilitate greater flexibility without
compromising performance. Fine-grain and coarse-grain par-
allelism can be exploited because of this adaptability, which
provides significant performance advantages compared to con-
ventional microprocessors[3]. An example of this adaptability
could be an image processing system that dynamically adjusts
the window size of the algorithm employed. The ability to
change the functionality of the device during run-time also
makes these architectures more flexible compared to traditional

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 175

methods like using Application Specific Integrated Circuits
(ASIC) or static instruction-set processors. Depending on the
application, they may also provide cost-savings by reducing
the required logic density.

Most research on reconfigurable computing has been done
based on Field Programmable Gate Arrays (FPGAs) due to
their flexible configuration and their shorter design cycle
compared to ASICs. The FPGA approach adds design flex-
ibility and adaptability with optimal device utilization while
conserving both board space and system power, which is often
not the case with DSP chips. Currently, FPGAs are capable of
supporting multi-million gate designs on a chip and the com-
puter vision community has become aware of the potential for
massive parallelism and high computational density in FPGAs.
In addition, the software-like properties afforded by Hardware
Description Languages (HDLs) such as encapsulation and
parameterization allow creating more abstract, modular and
reusable architectures for image algorithms.[4]

IV. PROPOSED SYSTEM

As discussed earlier, the proposed system will employ
FPGA and GPU co-processors, connected to a CPU host
machine which will act as the co-ordinator of the entire
system. This host machine will be responsible for parsing the
system description package and off-loading relevant process-
ing tasks on to the co-processors. It will also be responsible for
interfacing the system to the outside world, which can be in
the form of network communication or conventional embedded
interfaces.

The system description package will define the overall
purpose of the system and will have flexible constructs to
provide adaptability to the changes in the processing tasks.
By providing a flexible format, the need for constant mon-
itoring and the reconfiguration overhead of the system can
be reduced. In order to maximise the performance potential
of the inherent parallel nature of the FPGA and the GPU
devices, concurrent programming languages (and languages
with concurrency support) are being investigated for use within
the system description package.

The system can essentially be partitioned into two sub-
systems:

• The low-level image acquisition and pre-processing unit,
powered by an FPGA device which will have an array of
reconfigurable blocks that can be modified to customise
the operation of the device dynamically

• Further processing and characterisation unit, powered by
the CPU and the GPU on the host machine that can
further process the images coming from the FPGA unit

These units are tightly coupled with each other and pre-
venting bottlenecks will be a very important part of the
implementation. A high speed PCI Express interface will be
employed to provide connectivity between these sub-systems.

A. FPGA Co-processor

Programmable Logic Devices, mainly FPGAs, have always
been the choice for high speed and computationally intensive

applications. The speed advantage of FPGAs derives from the
fact that programmable hardware is customised to a particular
algorithm. Thus the FPGA can be configured to contain exactly
and only those operations that appear in the algorithm. In
contrast, the design of a fixed instruction set processor must
accommodate all possible operations that an algorithm might
require for all possible data types[5].

Because of the flexible nature of FPGAs, reconfigurable
architectures often make use of these devices. Modern FPGAs
have native support for dynamic reconfigurability and contain
dedicated DSP resources and high speed memory interfaces
which makes them particularly suitable for low level image
pre-processing tasks.

Input
Controller

PCI/E
Interface

Reconfigurability
Controller

Memory
Interface

External
Memory

Camera(s) HOST

FPGA Device
Static Portion

RC
Block

RC
Block

RC
Block

RC
Block

RC
Block

RC
Block

RC
Block

RC
Block

RC
Block

RC
Block

RC
Block

RC
Block

Reconfigurable Portion

Fig. 1. FPGA Architecture

Figure 1 outlines the proposed FPGA Co-processor archi-
tecture. The static part of the system consists of:

• Input controller, responsible for data/image acquisition
from outside sources, such as a single or several high
speed camera(s)

• PCI Express Interface, to transfer data in and out of the
FPGA co-processor and to provide host machine access
to the Reconfigurability Controller within the device

• Memory Interface, to provide external high speed mem-
ory access to the system that may be used by certain
algorithms and possibly for buffering the data between
the FPGA and the host machine

• Reconfigurability Controller, that deals with the operation
and (re)configuration of the reconfigurable blocks. Host
machine controls the operation of the Reconfigurability
Controller depending on the system description package

The dynamic part of the system has reconfigurable blocks
arranged in a flexible matrix structure which enables the
system to continue processing even when a number of these
blocks are under reconfiguration. The functionality of these
blocks can be dynamically altered to enhance the performance
and/or the accuracy of the algorithm used or simply to replace
the running algorithms with a new set. This provides flexibility

176 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

so the system will be able to adapt itself to the changes in the
operating environment easily.

B. Host Machine

After the initial image acquisition and pre-processing stages,
the image data will be transferred to the host machine where
further processing and classification can commence. This host
machine will have an x86 CPU and it will run a customised
operating system. The co-processors will be connected to this
system via PCI Express interface.

A CUDA framework capable NVIDIA R©GPU will be used
as an arithmetic accelerator to enhance the performance of
certain image processing algorithms that can benefit the
massively parallel nature of a GPU device. CUDA is the
programming language provided by NVIDIA to run general
purpose applications on NVIDIA GPUs. It incorporates an
API (Application Programmer Interface), a runtime, couple
of higher level libraries and a device driver for the underlying
GPU. The most important thing about the CUDA is that it has
almost addressed some of the inherited general purpose com-
puting problems with GPUs. CUDA’s API for the programmer
is an extension to the C programming language and CUDA
allows developer to scatter data around the DRAM as well
as it features a parallel data cache or on chip shared memory
for bringing down the bottleneck between the DRAM and the
GPU[6]. In the past GPUs have been used as general-purpose
computational units by wrapping computations in graphics
function libraries but with the emergence of CUDA this level
of abstraction is not necessary anymore.

PCI/E
Driver

CUDA
InterfaceFPGA GPU

Host

Process
Monitor

System
Parser

Scheduler

Fig. 2. Host Architecture

Figure 2 outlines the elements of the host machine. These
elements consist of:

• System Parser, that reads the system description package
and the Scheduler that offloads relevant processing tasks
to the co-processors

• CUDA Interface, that manages and coordinates CUDA
processing tasks running on the GPU

• PCI Express Driver, that interfaces the host machine with
the FPGA co-processor

V. CHALLENGES

Challenges in the development of this system include:
• Understanding the operation of Partial Dynamic Re-

configuration on the FPGA device used, which include

investigation of bus macros and generation of partial
bitstreams in an efficient and effective way.

• The structure of dynamically reconfigurable blocks with
emphasis on details such as block size (granularity of the
blocks) and support for the FPGA specific silicon features
such as DSP blocks, Block RAMs, etc.

• The arrangement of dynamically reconfigurable blocks
in a flexible matrix structure and placement issues on the
actual silicon device

• Getting the PCI Express communication between the
FPGA and the Host System working and coming up with
a solution that deals with the prevention of bottlenecks
between the devices

• Designing the Input Controller and the physical hardware
so that the system can be interfaced with high speed
cameras

• The definition of a comprehensive system description
package format, where the operation of the entire system
accompanied by the relevant processing directives can be
described in a flexible and simple format. The parallel
nature of the system is a major factor in the choice of
a language for the system package format and several
programming languages with concurrency features are
being investigated.

After the initial implementation phase, the system will be
benchmarked with a few common algorithms and applications
such as the Hough Transform, Object Recognition/Tracking
and Stereo Vision. The outcome of these tests will help us
fine tune the system and improve the overall performance.

VI. CONCLUSION

A multi-device, dynamically reconfigurable architecture is
proposed to satisfy the requirements of high-speed/real-time
vision systems.

Initial specification of this system has been defined and
implementation of different sub-systems is under way.

If successful, authors believe that this system will provide
a flexible low-cost framework for high speed vision systems.

REFERENCES

[1] M. A. Iqbal and U. S. Awan, “Run-time reconfigurable instruction set
processor design: Rt-risp,” in Proc. 2nd International Conference on
Computer, Control and Communication IC4 2009, 17–18 Feb. 2009, pp.
1–6.

[2] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S.-K. Park, M. Kim, and J. W. Jeon,
“Fpga design and implementation of a real-time stereo vision system,”
Circuits and Systems for Video Technology, IEEE Transactions on, vol. 20,
no. 1, pp. 15 –26, jan. 2010.

[3] K. Bondalapati and V. K. Prasanna, “Reconfigurable computing systems,”
Proceedings of the IEEE, vol. 90, no. 7, pp. 1201–1217, July 2002.

[4] C. Torres-Huitzil, S. Maya-Rueda, and M. Arias-Estrada, “A reconfig-
urable vision system for real-time applications,” Dec. 2002, pp. 286–289.

[5] M. Gokhale and P. S. Graham, Reconfigurable Computing: Accelerating
Computation with Field-Programmable Gate Arrays. Springer, 2005,
http://www.amazon.co.uk/dp/0387261052.

[6] N. Karunadasa and D. Ranasinghe, “Accelerating high performance
applications with cuda and mpi,” pp. 331 –336, dec. 2009.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 177

�

178 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

Virtual SoPC rad-hardening for satellite applications
SYRIUS project

L. Barrandon1,
T. Capitaine2

MIS laboratory
Amiens, France

L. Lagadec3

CACS team
Lab-STICC

Brest, France

N. Julien4

CACS team
Lab-STICC

Lorient, France

C. Moy5

SCEE team
SUPELEC/IETR
Rennes, France

T. Monédière6

OSA department
XLIM laboratory
Limoges, France

1ludovic.barrandon@u-picardie.fr, 2thierry.capitaine@u-picardie.fr, 3loic.lagadec@univ-brest.fr, 4nathalie.julien@univ-ubs.fr,
5christophe.moy@supelec.fr, 6thierry.monediere@xlim.fr

Abstract— Our contribution addresses the specific problematic of
the design of satellites’ on-board computers based on the use of
non rad-hard devices while keeping the security and functioning
safety constraints. The topics dealt with in this context will be
based on the dynamic programming related to the exploitation of
data provided by the development of auto diagnostic tools for
embedded re-programmable devices, considering safety/power
consumption trade-offs.

Keywords-virtual layer; auto-diagnostic; non rad-hard FPGAs;
satellite on-board computer; power/energy consumption; SDR.

I. INTRODUCTION

Cosmic rays and solar winds (protons) can induce two
types of failures in space-borne digital devices: single-event
upsets (SEUs are transient and cause bit inversions) and single-
event latch-ups (SELs are permanent and destroy logic and
routing resources). Anti-fuse FPGAs can circumvent the SEUs
issue but do not permit reconfiguration: triple redundancy
techniques are needed to prevent malfunctions due to SELs.

The main motivation of the SYRIUS project (SYstèmes
embaRqués générIques reconfigUrables pour Satellites i.e.
Generic and reconfigurable embedded systems for satellites) is
to design a generic and reconfigurable embedded system taking
into account the up-to-date methods and technologies to ensure
reliability, low power/energy consumption and flexibility as
stated in [1]. The use of non radiation-hardened devices stands
for a technological paradigm to enable space electronics
industries not to implement either rad-hard device (expensive,
difficult to maintain, under ITAR -International Traffic in
Arms Regulations- and technologically old-fashioned) or
ASICs (long design processes, extremely costly, poorly/not
reconfigurable and “right-first-time” in 60% of the cases).

The system will be composed of the following « modules »:
auto-diagnostic, smart patch-antenna arrays, dynamic partial
reconfiguration for reliability and power/energy consumption
optimization, digital radio. They will integrate the spatial-
domain environmental constraints so as to obtain the related
certifications and validations (radiations, vibrations and
thermal test-bench) mandatory to integrate and launch this
platform on a 30x30x30cm satellite (French National Space
Agency –CNES– RISTRETTO format [2]). Communication,
reconfiguration and exploitation of embedded scientific
experimentations will be done via our GENSO ground station
[3] (i.e. several current or future projects will be able to join the
satellite’s payload as scientific experimentations).

II. TECHNICAL SHIFTS

A. Killing three birds with one stone

Present space digital hardware designs mainly use
expensive and ITAR-constrained rad-hard devices and ASICs.
Using off-the-shelf Systems on Programmable Chip (SoPC) (1)
would dramatically reduce the costs in terms of hardware (2)
shorten time-to-market (enabling design-and-reuse) and (3)
offer the possibility to use up-to-date technologies. This last
remark associated with SoPC reconfigurability lead to consider
many potential improvements for space embedded systems
which are intended to be studied in the frame of SYRIUS:

• Remote redefinition of the satellite’s mission;

• Software Defined Radio (SDR) and Smart Radio [4]
with protocol testing and auto-adaptive functionalities;

• Design under safety and power/energy constraints;

• “Programmed death”: the SoPC will experience a
gradual destruction of its resources until a minimum
functional state is reach whereas rad-hard devices can
become permanently faulty at anytime.

B. Auto-diagnostic and DPR

The detection and localization of faults associated with the
Dynamic Partial Reconfiguration (DPR) is of major interest:
the goal is to take advantage of the reconfigurability and the
regularity of the SRAM FPGAs’ structure to consider unused
logic as spare resources in case of SELs. This can be done
thanks to a priori allocation using spare configurations,
selecting the best partitioning granularity (programmable-logic-
block level, triple modular redundancy with standby
configurations or modular level) or with dynamic processes to
re-route or repair algorithms [5]. Built-in self test (BIST)
methods are to be implemented and can be inspired from [6]
(off-line method) or [7] where roving self-test areas are
exhaustively displaced across the FPGA while in operation and
from [8] implementing competing configurations.

C. Methodology

1) Virtual layer
In the software domain, the notion of virtual machine (VM)

is renowned for its ability to isolate the physical target (OS and
hardware) from the application layer. This method ensures both
portability and sustainability. In the embedded systems

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 179

domain, constrained environments can take advantage of the
VM approach: the resources needed by the virtual layer can be
compensated by the design of a VM optimized according to the
physical target. In the fault-tolerant context, the common
method consists in post-processing the netlists to insert
redundancy before place-and-route steps. TMRTool [9] and
BL-TMR [10] software can handle this technique. Its weakness
is due to the need to implement redundancy for each new
application, that’s why we believe that factorizing this effort
within a virtual layer is of particular interest: it would enable to
implement the design without manipulating the netlists.

The hardware targets are usually considered as reliable
which is not true in this non rad-hard context. A challenge is to
implement failure schemes and correction methods in the
virtual layer to ensure robustness while relaxing failure
management tools.

2) Safety engineering and power/energy consumption
Whereas research is prosperous in both domains, there are

few studies dealing simultaneously with these two constraints
[11]. We are willing to develop an innovative design technique
based on a state-graph driven system-level modeling. It will
provide an optimum solution led by both quality of service and
power/energy consumption and implement decision algorithms
to reconfigure the application.

III. HARDWARE ARCHITECTURE

The SYRIUS system is composed of a ground section for
radio-communications, scientific experimentation, failure
recovery and fault analysis and the satellite (payload and on-
board computer itself). This last module stands for the core of
the system and is multi purpose: analog and digital radio
management, power management, autodiagnostic, fault
recovery and reconfiguration management.

Figure 1. Hardware architecture of the SYRIUS platform.

A multi-frequency patch-antenna array will be designed to
be mounted on each face of a satellite ([12], [13]), using the

state-of-the art results about auto-adaptive coupling to optimize
the Earth-satellite radio link budget and, consequently, to
reduce the electrical power and energy consumption.

A secured management sub-system, necessary to any
satellite, will ensure the vital tasks and the mission redefinition
by dynamic reprogrammation of digital devices via a ground
station. In this context, an auto-adaptive and multi-protocol
SDR sub-system will be implemented.

IV. PERSPECTIVES

Designing this generic space-borne on-board computer
aims at reducing costs, time-to-market and validation cycles
keeping high reliability constraints. Preparing the launch of this
system for testing purpose will drive our developments.

ACKNOWLEDGMENT

The SYRIUS project has been submitted to the French
National Research Agency and is intended to involve two
societies (Steel Electronique and Nova Nano) and the AMSAT
association for amateur radio.

REFERENCES

[1] Sghairi, M.; Aubert, J.-J.; Brot, P.; de Bonneval, A.; Crouzet, Y.;
Laarouchi, Y., "Distributed and Reconfigurable Architecture for Flight
Control System", 28th Digital Avionics Systems Conference, DASC
2009, IEEE/AIAA, 23-29 Oct. 2009, pp. 6.B.2-1 - 6.B.2-10.

[2] M. Saleman, D. Hernandez, C. Lambert, “RISTRETTO: A French Space
Agency Initiative for Student Satellite in Open Source and International
Cooperation,” AIAA/USU Conf. on Small Satellites, Logan, UT, USA,
Aug. 10-13, 2009, SSC09-VII-8.

[3] T. Capitaine, V. Bourny, L. Barrandon, J. Senlis, A. Lorthois, “A
satellite tracking system designed for educational and scientific
purposes”, ESA 4S (Small Satellite Systems and Services) Symposium
31 May - 4 June 2010, Funchal, Madeira.

[4] W. Jouini, C. Moy, J. Palicot, “On decision making for dynamic
configuration adaptation problem in cognitive radio equipments: a multi-
armed bandit based approach”, 6th Karlsruhe Workshop on Software
Radios, March 3 - 4, 2010.

[5] M. G. Parris, “Optimizing Dynamic Logic Realizations for Partial
Reconfiguration of Field Programmable Gate Arrays”, School of
Electrical Engineering and Computer Science, University of Central
Florida, Orlando.

[6] T. Nandha Kumar, C. Wai Chong, “An automated approach for locating
multiple faulty LUTs in FPGA” Microelectronics Reliability 48 (2008)
pp 1900-1906.

[7] J.M. Emmert, C.E. Stroud, M. Abramovici, “Online Fault Tolerance for
FPGA Logic Blocks”, IEEE Trans. on VLSI Syst. 2007 vol 15, 216-226.

[8] R.F. Demara, K. Zhang, “Autonomous FPGA fault handling through
competitive runtime reconfiguration”, NASA/DoD Conference on
Evolvable Hardware, Washington D.C., U.S.A., 2005, 109-116.

[9] Xilinx, “TMR tool”, www.xilinx.com/ise/optional_prod/tmrtool.htm

[10] Brigham young University, “BYU EDIF Tools Home Page“,
http://sourceforge.net/projects/byuediftools/.

[11] Toshinori Sato, Toshimasa Funaki, "Dependability, Power, and
Performance Trade-off on a Multicore Processor", Asia & South Pacific
Design Automation Conf., ASPDAC, 21-24 March 2008, pp. 714–719.

[12] Saou-Wen Su, Shyh-Tirng Fang, Kin-Lu Wong “A Low-Cost Surface-
Mount Monopole Antenna for 2.4/5.2/5.8-GHz Band Operation”
Microwave and Optical technology letters, vol 36, March 2003.

[13] C. Ying and Y.P. Zhang “Integration of Ultra-Wideband Slot Antenna
on LTCC Substrate”, Electronics Letters, 27 May 2004, vol 40, N°11.

Smart radio

On-board computer

G
ro

un
d

st
at

io
n

Autodiagnostic, failure recovery

RAM (bitstreams)

SoPC

144Mhz/430Mhz/1.2Ghz/2.4Ghz Antenna arrays

RF and mixed–
signal front-end

Power supply

Sensors, actuators, solars panels

Radio applications

Scientific experiments

Scientific experiments

Sa
te

lli
te

180 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

ISBN 978-3-86644-515-4
ISSN 1869-9669

9 783866 445154

ISBN 978-3-86644-515-4

	Busseuil, R. et al.: A Self-adaptive communication protocol allowing fine tuning between flexibility and performance in Homogeneous MPSoC systems
	Möler, L. et al.: Instruction Set Simulator for MPSoCs based on NoCs and MIPS Processors
	Goehringer, D. et al.: Impact of Task Distribution, Processor Configurations and Dynamic Clock Frequency Scaling on the Power Consumption of FPGA-based Multiprocessors
	Ktata, I. et al.: Novel Approach for Modeling Very Dynamic and Flexible Real Time Applications
	Belaid, I. et al.: New Three-level Resource Management for Off-line Placement of Hardware Tasks on Reconfigurable Devices
	Farooq, U. et al.: Exploration of Heterogeneous FPGA Architectures
	Schuck, C. et al.: Dynamic Online Reconfiguration of Digital Clock Managers on Xilinx Virtex-II/Virtex-II-Pro FPGAs: A Case Study of Distributed Power Management
	Döbrich, S. et al.: Practical Resource Constraints for Online Synthesis
	Thoma, F. et al.: ISRC: a runtime system for heterogeneous reconfigurable architectures
	Amin, M. et al.: A Self-Checking HW Journal for a Fault Tolerant Processor Architecture
	Derin, O. et al.: A Task-aware Middleware for Fault-tolerance and Adaptivity of Kahn Process Networks on Network-on-Chip
	Pereira, M. M. et al.: Dynamic Reconfigurable Computing: the Alternative to Homogeneous Multicores under Massive Defect Rates
	Kapre, N. et al.: An NoC Traffic Compiler for efficient FPGA implementation of Parallel Graph Applications
	Bruguier, F. et al.: Investigation of Digital Sensors for Variability Characterization on FPGAs
	Ferringer, M. : Investigating Self-Timed Circuits for the Time-Triggered Protocol
	Birk, M. et al.: First Evaluation of FPGA Reconfiguration for 3D Ultrasound Computer Tomography
	Glas, B. et al.: ECDSA Signature Processing over Prime Fields for Reconfigurable Embedded Systems
	Klimm, A. et al.: A Secure Keyflashing Framework for AccessSystems in Highly Mobile Devices
	Lagadec, L. et al.: Teaching Reconfigurable Processor: the BiniouApproach
	Killian, C. et al.: Behavioral modeling and C-VHDL co-simulation of Network on Chip on FPGA for Education
	Rigaud, J. B. et al.: Experimental Fault Injection based on the Prototyping of an AES Cryptosystem
	Liu, M. et.al.: Reducing FPGA Reconfiguration Time Overhead using Virtual Configurations
	Airoldi, R. et. al.: Timing Synchronization for a Multi-StandardReceiver on a Multi-Processor System-on-Chip
	Devaux, L. et. al.: Mesh and Fat-Tree comparison fordynamically reconfigurable applications
	Knaeblein, J. et. al.: Technology Independent, Embedded Logic Cores, Utilizing synthesizable embedded FPGA-cores for ASIC design validation

	Bouhraoua, A. et.al.:
A New Client Interface Architecture for theModified Fat Tree (MFT) Network-on-Chip(NoC) Topology
	Garzia, F. et.al.:
Implementation of Conditional Execution on aCoarse-Grain Reconfigurable Array
	Kilic, O. et. al.:
Dynamically Reconfigurable Architectures for HighSpeed Vision Systems
	Barrandon, L. et.al.:
Virtual SoPC rad-hardening for satellite applications - SYRIUS project

