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Tag der mündlichen Prüfung: 06. November 2009

Referent: Prof. Dr. D. Zeppenfeld

Korreferent: Prof. Dr. M. Mühlleitner





Abstract

Within the Minimal Supersymmetric Standard Model neutral Higgs bosons,

the CP-odd Higgs A, a light and a heavy CP-even Higgs, h and H , can be

efficiently produced via gluon fusion in high energy hadronic collisions. Real

emission corrections to Higgs production, at order α4
s and α5

s, lead to a Higgs

plus two- and three-jet final state. This thesis presents the calculation of

scattering amplitudes, as induced by triangle-, box-, pentagon- and hexagon-

loop diagrams. Furthermore, the analytic expressions for the amplitudes

were implemented into the Monte Carlo program VBFNLO, with which the

numerical analysis was performed. Finally, resulting hadronic cross sections

are discussed and phenomenologically relevant distributions for the Large

Hadron Collider are shown.

Zusammenfassung

Innerhalb des Minimal Supersymmetrischen Standardmodells können neu-

trale Higgsbosonen, wie das CP-ungerade Higgsboson A, das leichte und

schwere CP-gerade Higgsboson h und H , effizient durch Gluonfusion in hoch-

energetischen hadronischen Kollisionen erzeugt werden. Reelle Emissions-

korrekturen zur Higgsproduktion der Ordnung α4
s und α5

s, führen zu einem

Endzustand mit zwei oder drei Jets. In dieser Dissertation wird die Berech-

nung von Streuamplituden, induziert durch Dreieck-, Box-, Pentagon- und

Hexagonschleifendiagramme präsentiert. Desweiteren wurden die analytis-

chen Ergebnisse in das Monte-Carlo Programm VBFNLO implementiert und

mit dessen Hilfe die numerische Auswertung durchgeführt. Anschliessend

werden resultierende hadronische Wirkungsquerschnitte diskutiert und phä-

nomenologisch wichtige Verteilungen für den LHC gezeigt.





Contents

1 Introduction 3

2 Basics 7

2.1 Standard Model and Higgs Mechanism . . . . . . . . . . . . . 7

2.2 Higgs mechanism in the MSSM . . . . . . . . . . . . . . . . . 10

2.3 Masses and mixing patterns of squarks . . . . . . . . . . . . . 13

2.4 Quantum Chromo-Dynamics . . . . . . . . . . . . . . . . . . . 14

3 Higgs production processes in association with two and three

jets 17

3.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . 17

3.2 Outline of the calculation . . . . . . . . . . . . . . . . . . . . 19

3.3 Higgs production in association with two jets . . . . . . . . . . 22

3.3.1 qQ→ qQΦ and qq → qqΦ . . . . . . . . . . . . . . . . 23

3.3.2 qg → qgΦ . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 gg → ggΦ . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Higgs production in association with three jets . . . . . . . . . 34

3.4.1 qQ→ qQgΦ and qq → qqgΦ . . . . . . . . . . . . . . . 37

3.4.2 qg → qggΦ . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.3 gg → gggΦ . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Numerical implementation and checks 49

5 Applications to LHC physics 53

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Production of the CP-odd Higgs boson A in association with

two jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Production of a CP violating Higgs boson Φ in association

with two jets . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



4 CONTENTS

5.4 Production of the CP-even Higgs bosons h and H in associa-

tion with two jets with additional squark contributions . . . . 61

5.5 Production of the Higgs bosons Φ in association with three jets 67

6 Conclusions 71

A Higgs vertices to fermions and sfermions 73

A.1 Higgs couplings to fermions . . . . . . . . . . . . . . . . . . . 73

A.2 Higgs couplings to sfermions . . . . . . . . . . . . . . . . . . . 75

B Loop tensors 79

B.1 Three-point functions (Triangles) . . . . . . . . . . . . . . . . 79

B.1.1 Fermion-triangle with Higgs vertex . . . . . . . . . . . 79

B.1.2 Fermion-triangle with CP-odd Higgs vertex . . . . . . . 80

B.1.3 Fermion-triangle with CP-even Higgs vertex . . . . . . 81

B.1.4 Sfermion-triangle with CP-even Higgs vertex . . . . . . 82

B.1.5 Sfermion-triangle with CP-even Higgs vertex and q̃q̃gg-

vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.1.6 Sfermion-triangle with CP-even Higgs vertex and two

q̃q̃gg-vertices . . . . . . . . . . . . . . . . . . . . . . . . 85

B.2 Four-point functions (Boxes) . . . . . . . . . . . . . . . . . . . 86

B.2.1 Fermion-box with Higgs vertex . . . . . . . . . . . . . 86

B.2.2 Fermion-box with CP-odd Higgs vertex . . . . . . . . . 88

B.2.3 Fermion-box with CP-even Higgs vertex . . . . . . . . 89

B.2.4 Sfermion-box with CP-even Higgs vertex . . . . . . . . 90

B.2.5 Sfermion-box with CP-even Higgs vertex and q̃q̃gg-vertex 91

B.3 Five-point functions (Pentagons) . . . . . . . . . . . . . . . . 94

B.3.1 Fermion-pentagon with Higgs vertex . . . . . . . . . . 94

B.3.2 Sfermion-pentagon with CP-even Higgs vertex . . . . . 95

B.4 Six-point functions (Hexagons) . . . . . . . . . . . . . . . . . 96

C SU(N) identities 99

C.1 SU(N) tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

C.2 Traces of color generators . . . . . . . . . . . . . . . . . . . . 99

C.3 Convolutions of da1a2a3 and fa1a2a3 with ta . . . . . . . . . . . 100

C.4 Jacobi identities . . . . . . . . . . . . . . . . . . . . . . . . . . 100



D QCD- and SQCD Vertices 101

D.1 QCD vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

D.2 SQCD vertices (only squarks) . . . . . . . . . . . . . . . . . . 102

E Effective Lagrangian 103

F gg → gggΦ 107

F.1 Remaining color factors for diagrams with pentagons . . . . . 107

Bibliography 111

Acknowledgements 117

1





Chapter 1

Introduction

In today’s modern physics, the process of gaining knowledge proceeds in a

close cooperation of theory and experiment. By empirical research, claiming

objectivity and reproducibility of the observation, theoretical assumptions

are verified. Afterwards, the empirical models of experimental physics are

attributed in a mathematical way to the known theoretical basis. Or, if

that is not possible, a new theoretical model has to be invented, which ful-

fills the experimentally measured data. However, a theoretical model should

not only reproduce experimental data, but also make predictions beyond

the experimentally investigated region of the nature or the considered sys-

tem respectively, which have not yet been discovered. With the discovery of

quantum mechanics (QM) and its improved development to quantum field

theory (QFT), the proof of renormalizability of non-Abelian gauge theories

by G. ’t Hooft and Veltman, the basic building blocks were set to the best

experimentally verified and theoretically well established model, applicable

over a wide range of conditions, the Standard Model (SM).

The Standard Model is based on the gauge group SU(3)C ⊗ SU(2)L ⊗U(1)Y

and provides a unified framework to describe phenomena of the electro-weak

as well as of the strong interaction. In spite of the successful description of

elementary particle physics, the SM still has some crucial problems, which

spoil the elegancy of this theoretical framework. It starts already with the

absence of gravity. But, ok, for this problem one can turn a blind eye,

because gravitational effects can be safely neglected at the level of elemen-

tary particle interactions, due to very tiny effects. The introduction of a

scalar field, whose vacuum expectation value breaks the gauge symmetry

SU(2)L ⊗ U(1)Y → U(1)Q spontaneously to generate masses for leptons,

quarks and electro-weak gauge boson, seems to be a smart step for the first
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glance. These masses are generated in a natural way without spoiling gauge

invariance and other symmetries of the theory, and only one new particle, the

Higgs boson, has to be found in experiments at particle colliders. However,

to this day neither the LEP nor the Tevatron collider has found any evidence

for the Higgs boson. But, they could provide a lower limit of 114.4 GeV

for the SM Higgs boson mass. Unfortunately, the introduction of this scalar

particle introduces a further problem, the so called ”hierarchy problem”. To

guarantee unitarity of the scattering amplitude of electro-weak gauge bosons,

the Higgs mass cannot be larger than 1 TeV. Though, quantum corrections

spoil this limit, since they are proportional to a scale, which can be arbitrary

large. A further problem of the SM is the extrapolation of gauge couplings

to a high energy scale using methods of the renormalization group, that,

however, does not lead to a unification. Furthermore, the absence of de-

scribing and providing candidates for dark matter does not make a lasting

impression on the SM... Roughly speaking, there is still enough space for

extensions. Many interesting extensions are already available on the mar-

ket of elementary particle physics: extended Techni-color models, models

with extra dimensions, Little Higgs models,... and of course supersymmetric

models, like the minimal supersymmetric extension of the SM, the MSSM. It

features the extended Higgs sector of a two-Higgs-doublet model: a light and

a heavy neutral CP-even Higgs, h and H , a CP-odd Higgs A and two charged

Higgs bosons H±, and, of course, additional particles, which are referred as

super-partners to the particle content of the SM. It attracted attention due

to possible candidates for dark matter, and the extended particle content

provides solutions to the above mentioned hierarchy problem. In addition,

the much more constrained Higgs sector of the MSSM sets a limit for the

mass of the light scalar h to mh . 135 GeV, which points towards mh ≈ 120

GeV at the 95 % CL. The search for the Higgs bosons of the SM and its

extensions, as well as the investigation of their couplings, is the main mo-

tivation for the construction of the Large Hadron Collider (LHC) at CERN

with 14 TeV center-of-mass energy . The experimental evidence of Higgs

bosons would confirm the idea of electro-weak unification and also show in-

dication for theory beyond the SM.

The most copious sources of the Higgs boson production at the LHC are

electro-weak boson fusion and gluon fusion. Higgs production via fusion of
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electro-weak gauge bosons in association with two tagging jets provide an

adequate possibility to measure the Higgs boson couplings. Small radia-

tive corrections and, hence, small systematic errors characterize this process.

Gluon fusion gives also rise to a Higgs plus two jet final state and constitutes

a large background, which cannot be neglected. Furthermore, in gluon fusion

the azimuthal angle φjj between the more forward and more backward of the

two tagging jets is sensitive to the CP-character of the Higgs coupling to

fermions.

The subjects of this thesis are the calculation and the discussion of the phe-

nomenological implications on the production of neutral Higgs bosons with

two and three additional jets in final state via gluon fusion in high energy

hadronic collisions at the LHC. These are processes like pp → Higgs + jjX

and pp → Higgs + jjjX. As theoretical basis, the minimal supersymmetric

extension of the Standard Model (MSSM) is used. In the following, charged

Higgs bosons are not considered and all neutral Higgs bosons are denoted by

the shorthand Φ. The contributing sub-processes to the Φjj and Φjjj pro-

duction include quark-quark, quark-gluon and gluon scattering. At leading

order, the coupling of the neutral Higgs bosons to gluons is mediated by a

massive loop, whose particle content is restricted in this thesis to the third

generation of quarks and its supersymmetric scalar partners, the squarks.

Thus the requirement of a massive loop is justified, since the Higgs bo-

son couples only to massive particles and the gluon, carrier of the strong

force, has no mass. The loop-topologies, appearing in the calculation of

the amplitudes, range from triangles, boxes, up to pentagons and hexagons,

which make the calculation quite involved. Additionally, Quantum Chromo-

Dynamics (QCD) provides a complicated color structure for the scattering

amplitudes. First results of double real emission corrections to the produc-

tion of the HSM, which lead to a Higgs plus two-jet final state at order α4
S,

were already presented in Refs. [1, 2]. A further calculation with the same

final state was performed for the CP-odd Higgs boson A and is available in

Ref. [3].

The results of the calculation, presented in this thesis, were implemented

into the gluon fusion part GGFLO of the parton-level Monte Carlo program

VBFNLO [4]. The thesis is organized as follows:

Chapter 2 gives a brief outline of the Standard Model and its particle content,
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as well as the Higgs mechanism in the SM and in the supersymmetric exten-

sion, the MSSM. Furthermore, the masses and mixing patterns of squarks

are preparatively introduced. And finally, the basics of perturbative QCD

and the calculation of the cross section in hadronic collisions are reviewed.

Chapter 3 provides a detailed description of the calculation of the scattering

amplitudes for the two processes pp→ Higgs+ jjX and pp→ Higgs+ jjjX.

Further details on various loop contributions are relegated to the Appendices.

Chapter 4 describes analytical and numerical consistency checks of the cal-

culation and implementation.

The main phenomenological results are presented in Chapter 5, for pp scat-

tering at the LHC with a center of mass energy of
√
s = 14 TeV. Integrated

cross sections and differential distributions for the production of the CP-odd

Higgs boson A are shown, as well as arbitrary CP-violating couplings to the

third generation of quarks for general Φjj events. Furthermore, differential

distributions and integrated cross sections are presented for the production

of the CP-even Higgs bosons h and H including fermionic and scalar loop-

contributions of the third generation of quarks and squarks. The last part

provides preliminary results for Φjjj production, showing de-correlation ef-

fects of the azimuthal angle distribution, in comparison to Φjj events.

Final conclusions are drawn in Chapter 6.

Vertices of the neutral Higgs bosons to fermions and sfermions are given in

Appendix A. The Appendix B provides a detailed description of the cal-

culated and implemented loop topologies. In Appendix C useful identities

of the SU(N)-algebra are collected. Vertices of the QCD and SUSY-QCD

(SQCD) are illustrated in Appendix D. The Appendix E gives a short intro-

duction to the effective Lagrangian and its correspondence to the full theory.

Finally, Appendix F contains some stored color structures of the sub-process

gg → gggΦ.
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Chapter 2

Basics

2.1 Standard Model and Higgs Mechanism

The Standard Model is based on some basic principles: special relativity,

locality, quantum mechanics, renormalizability, local and global symmetries.

The model provides a unified framework to describe three forces of nature:

the electro-weak theory, proposed by Glashow, Salam and Weinberg. It de-

scribes electromagnetic and weak interactions between lepton and quarks.

The underlying group structure is composed of a direct product of two gauge

symmetry groups SU(2)L⊗U(1)Y , corresponding to weak left-handed isospin

and hypercharge. The theory of strong interactions between colored quarks

enters via Quantum Chromo-Dynamics (QCD), which is based on the non-

Abelian gauge symmetry group SU(3)C . Thus, the full group structure reads

as

SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (2.1)

The content of matter fields is given by three generations of chiral leptons

and quarks. They are split to left-handed isospin doublets and right-handed

isospin-singlets:

• Leptons:

LL =

(

νe

e

)

L

,

(

νµ

µ

)

L

,

(

ντ

τ

)

L

; LR = eR, µR, τR,

• Quarks:

QL =

(

u

d

)

L

,

(

c

s

)

L

,

(

t

b

)

L

; QR = uR, dR, cR, sR, tR, bR.
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The hypercharge of fermions Yf is defined by the Gell-Mann-Nijishima rela-

tion

Yf = 2
(

Qf − I3
f

)

, (2.2)

with Qf the electric charge in units of +e, and I3
f , the third component of

the weak isospin. The values of Yf for all generations of the fermion matter

fields are given by

YL = −1, YeR
= −2, YQ =

1

3
, YuR

=
4

3
, YdR

= −2

3
. (2.3)

Leptons do not carry color charge and, hence, are color-singlets under the

global SU(3)-symmetry of the QCD, in contrast to quarks, which are assigned

as SU(3)-triplets.

Forces between fermionic matter fields are mediated by spin-one bosons.

These vector fields are derived assuming, that the Lagrangian of a fermion

field is invariant under local gauge transformations for a group G. Here,

of course, the group G corresponds to the three sub-groups, mentioned in

Eq. (2.1). Carrier of the electromagnetic force is the massless photon γ,

whereas the massive W and Z bosons mediate the weak force between the

SU(2)-multiplets, described above. The neutral gauge boson Z interacts with

all fermion fields, the charged gauge bosons W±, however, induce transitions

between the left-handed doublets only. The right-handed singlets remain

untouched. In addition, with this different coupling behavior to left- and

right-handed fermions, the experimentally observed violation of parity of the

weak force is considered automatically. The strong force between quarks

is mediated by eight massless gluons, which carry simultaneously color and

anti-color.

The experimentally observed masses of the weak gauge bosons, leptons and

quarks turn out to be problematic from the theoretical point of view. Explicit

mass terms for gauge bosons, m2AµAµ, destroy gauge invariance, which is a

basic requirement for the renormalizability of the theory. Mass terms for lep-

tons and quarks, mFF = m
(

FLFR + FRFL

)

, are also not possible, because

the product of a doublet with a singlet is not invariant under SU(2)L-isospin

rotations. This problem can be circumvented, if the model is extended by a
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further scalar SU(2)-doublet field Φ

Φ(x) =

(

φ+(x)

φ0(x)

)

, (2.4)

with hypercharge YΦ = 1 and potential

V (Φ) = −µ2
(

Φ†Φ
)

+
λ

4

(

Φ†Φ
)2
, with µ2 > 0, λ > 0 . (2.5)

The minimization of V breaks the SU(2)L ⊗ U(1)Y → U(1)Q spontaneously

and the scalar field Φ acquires a VEV v

〈Φ〉 =
1√
2

(

0

v

)

with v =
2µ√
λ

=
(√

2GF

)−1/2

≈ 246 GeV . (2.6)

GF denotes the Fermi-constant with the experimentally fixed value at GF =

1.16637 · 10−5. The expansion of Φ around the VEV can be written as

Φ(x) =
1√
2

(

θ1(x) + θ2(x)

v +H0
SM(x) + iθ3(x)

)

. (2.7)

According to the Goldstone Theorem, the number of Goldstone bosons,

θ1,2,3(x), corresponds to the number of broken generators. Furthermore, they

can be rotated away using the local SU(2)Y symmetry (unitary gauge)

Φ(x) → exp

[

−iτ
a

v
θa

]

Φ(x) =
1√
2

(

0

v +H0
SM(x)

)

. (2.8)

Masses of the gauge bosons are given by the the kinetic term

(

DµΦ
)†(

DµΦ
)

with DµΦ =
(

∂µ − ig2W
a
µτ

a − ig1
Y

2
Bµ

)

Φ , (2.9)

in which τa = σa/2 with a = 1, 2, 3 are the known Pauli-matrices. W a
µ

correspond to the gauge bosons and g2 to the coupling constant of the SU(2)L

group. Bµ and g1 describe the U(1)Y gauge boson and its coupling constant.

After the diagonalization procedure, one gets the following relations for the

masses of the gauge bosons

MZ =
√

g2
1 + g2

2

v

2
, MW = g2

v

2
, MAµ

= 0 . (2.10)
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Since the SU(3) symmetry is not broken, there is no mass term for the gluon.

Now, the Higgs-doublet Φ allows for Yukawa-like terms

gf

[

(FL · Φ)FR + h.c.
]

, (2.11)

that generate, after the spontaneous symmetry breakdown, the wanted mass-

terms for fermions

gf
v√
2

(

fLfR + fRfL

)

, (2.12)

where f denotes the entry of the corresponding SU(2) doublet and singlet.

Finally, the insertion of the Higgs-doublet (2.8) into the potential (2.5) gives

the mass of the Higgs boson

MH0

SM
=

√
2µ =

v√
2

√
λ . (2.13)

2.2 Higgs mechanism in the MSSM

The Minimal Supersymmetric Standard Model (MSSM) is the simplest su-

persymmetric extension of the SM. In this connection, supersymmetry ex-

tends the Poincaré-group by new generators, that correlate bosonic and

fermionic degrees of freedom. For a more introductive description see Ref. [5].

Thus, the particle spectrum of the SM gets expanded. Quarks and leptons

obtain scalar partners, called squarks and sleptons. The supersymmetric

partners of the gauge bosons are spin-1/2 particles, photinos, winos, zinos

and gluinos. Superpartner of the Higgs boson is the higgsino. The particles of

the SM and their super-partners are then combined to superfield multiplets.

In contrast to the SM, the MSSM contains two Higgs-doublets

Φ1 =

(

φ0
1

φ−
1

)

, YΦ1
= −1 , Φ2 =

(

φ+
2

φ0
2

)

, YΦ2
= 1 . (2.14)

The requirement of two doublets with opposite hypercharge is necessary to

compensate the hypercharges of both higgsinos. This guarantees, that the

sum of all hypercharges vanish, similar to the SM, and leads to an anomaly
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free model. Yukawa couplings to both Higgs-doublets are given by the su-

perpotential [6]

W =
∑

i,j=Gen.

− Y u
ij ûRiΦ̂2 · Q̂j + Y d

ij d̂RiΦ̂1 · Q̂j + Y l
ij l̂RiΦ̂1 · L̂j

+ µ Φ̂2 · Φ̂1 , (2.15)

where the hat marks the corresponding superfield multiplets and the Y de-

notes Yukawa couplings among lepton and quark generations. The mass

parameter µ is necessary to avoid an additional Peccei-Quinn symmetry [7].

Moreover, supersymmetry claims for the superpotential W to be a holomor-

phic function with respect to the superfields and, thus, forces the Higgs-

doublet Φ1 to couple to down-type fermions and Φ2 to up-type fermions

only. By the way, this different coupling behavior of both Higgs-doublets

corresponds exactly to that of the general 2HDM Model II [8]. The scalar

potential reads as

VH = m2
1

(

|φ0
1|2 + |φ−

1 |2
)

+m2
2

(

|φ0
2|2 + |φ+

2 |2
)

−m2
3

(

φ−
1 φ

+
2 − φ0

1φ
0
2

+ h.c.
)

+
g2
1 + g2

2

8

(

|φ0
1|2 + |φ−

1 |2 − |φ0
2|2 − |φ+

2 |2
)2

+
g2
2

2
|φ−∗

1 φ0
1 + φ0∗

2 φ
+
2 |2 , (2.16)

with the abbreviations

m2
1 = |µ|2 +m2

Φ1
, m2

2 = |µ|2 +m2
Φ2
, m2

3 = Bµ , (2.17)

containing soft SUSY-breaking scalar Higgs-mass terms mΦi
[6]. The con-

stants g2 and g1 are the usual SU(2)L⊗U(1)Y gauge couplings. The symmetry-

breaking proceeds similar to the SM. Here, the neutral components of both

Higgs fields acquire VEVs

〈Φ1〉 =
1√
2

(

v1

0

)

, 〈Φ2〉 =
1√
2

(

0

v2

)

, (2.18)

with

tanβ =
v2

v1
=
v sin β

v cosβ
and v2 = v2

1 + v2
2 ≈ 246 GeV . (2.19)
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Phase freedom of both VEVs restricts the angle β to the range 0 ≤ β ≤ π/2.

The expansion of Φ1,2 around the VEVs yields

Φ1 =
1√
2

(

v1 +H0
1 + iP 0

1

H−
1

)

, Φ2 =
1√
2

(

H+
2

v2 +H0
2 + iP 0

2

)

. (2.20)

The mass-matrix of the components of both Higgs-fields results from the

second derivatives of VH (2.16), according to the corresponding fields at the

points given in Eq. (2.18). The conservation of electric charge avoids mix-

ing between charged and neutral Higgs fields. Consequently, there are two

mass matrices, one for the charged sector and one for the neutral sector [9].

Moreover, assumed CP-invariance of the Higgs sector does not mix real and

imaginary components of the neutral Higgs bosons. The eight degrees of

freedom correspond then to three Goldstone bosons G0, G± and five Higgs

bosons, neutral h, H , A and also two charged H±. The light h and heavy

H are CP-even, whereas G0 and A are CP-odd. The diagonalization of the

mass-matrix is done with the following transformations
(

G0

A

)

=

(

cosβ sin β

− sin β cosβ

)(

P 0
1

P 0
2

)

, (2.21)

(

G±

H±

)

=

(

cosβ sin β

− sin β cosβ

)(

H±
1

H±
2

)

, (2.22)

(

H

h

)

=

(

cosα sinα

− sinα cosα

)(

H0
1

H0
2

)

, (2.23)

with β given in Eq. (2.19). The angle α is defined in the following way

tan 2α =
m2

h +m2
H

m2
A −M2

Z

tan 2β =
m2

A +M2
Z

m2
A −M2

Z

tan 2β , (2.24)

in which α is restricted to the interval −π/2 ≤ α ≤ 0 by 0 ≤ β ≤ π/2. The

tree-level physical squared masses of the two CP-even Higgs bosons are

m2
H,h =

1

2

{

m2
A +M2

Z ±
[

(

m2
A +M2

Z

)2 − 4M2
Zm

2
A cos2 2β

]1/2
}

. (2.25)

Hence, the Higgs-mass spectrum is completely controlled at tree-level by mA

and tanβ. Further important tree-level relations for the remaining Higgs-
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masses are [10]

m2
H± = m2

A +M2
W > max

(

M2
W , m

2
A

)

, (2.26)

m2
h +m2

H = m2
A +M2

Z , (2.27)

mh < min
(

mA,MZ

)

| cos 2β| < min
(

mA,MZ

)

, (2.28)

mH > max
(

mA,MZ

)

. (2.29)

Furthermore, radiative corrections shift the tree-level masses to higher values.

These corrections can be very large, because they contain couplings to top-

quarks as well as to their scalar super-partners. Especially the mass of the

light Higgs boson h is increased by several tens of GeV, shifting it from the

MZ value to mh . 135 GeV. The corresponding correction, which contain

top-quark and -squark contribution is given by

∆m2
h =

3

2π2v2
m4

t log
(

m2
t̃/m

2
t

)

. (2.30)

For a more detailed description of the Higgs-sector in the MSSM see Refs. [6,

9, 10]. Couplings of Higgs bosons to fermions are, in comparison to the SM,

modified by trigonometric functions containing the angles α and β. They

can be looked up in App. A. Moreover, WWA, ZZA and WZH± vertices

are not present at tree-level, because they are forbidden by CP-invariance.

2.3 Masses and mixing patterns of squarks

There are three sources of squark-mass terms in the scalar potential part of

the Lagrangian density . They are given by

V q̃ = V q̃
SOFT + V q̃

F + V q̃
D . (2.31)

V q̃
SOFT contains explicit mass-terms as well as trilinear A-terms. F-term con-

tributions arise from the superpotential W (2.15). Contributions of the

D-terms are specified in Eq (2.33). The squared mass-matrix for up-type

squarks can be then written as

(

m2
t̃L

+m2
t +D

(

t̃L
)

−mt

(

Au + µ cotβ
)

−mt

(

Au + µ cotβ
)

m2
t̃R

+m2
t +D

(

t̃R
)

)

, (2.32)
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with

D
(

t̃L
)

= M2
Z cos 2β

(1

2
− 2

3
sin2 θW

)

,

D
(

t̃R
)

= M2
Z cos 2β

(

+
2

3
sin2 θW

)

. (2.33)

The eigenvalues of this matrix reads as follows

m2
t̃1,2

=
1

2

(

m2
t̃L

+m2
t̃R

)

+
1

4
M2

Z cos 2β +m2
t

∓
{

[

1

2
m2

t̃L
−m2

t̃R
+M2

Z cos 2β
(1

4
− 2

3
sin2 θW

)

]2

−m2
t

(

µ cotβ + At
)2

}
1

2

. (2.34)

If one assumes no flavor mixing, the top-squark mixing matrix has the fol-

lowing form
(

t̃1
t̃2

)

=

(

cos θt sin θt

− sin θt cos θt

)(

t̃L
t̃R

)

. (2.35)

The mixing angle θt can be deduced from

tan θt =
m2

t̃L
+m2

t +M2
Z cos 2β

(

1
2
− 2

3
sin2 θW

)

−m2
t̃1

−mt(At + µ cotβ)
. (2.36)

Taking into account that mb̃L
= mt̃L via SU(2) symmetry, the derivation of

the mass-matrix for down-type squarks follows the same procedure, but with

corresponding definitions for charges, angles and masses (see Ref. [9]). The

off-diagonal terms in the matrix of Eq. (2.32) can be particularly large for the

third generation of squarks. In the case of the top-squark, these terms are

proportional to the top-quark mass and yield a large mass splitting between

t̃1 and t̃2, which can make t̃1 very light.

Higgs couplings to up- and down-type squarks can be found in App. A.

2.4 Quantum Chromo-Dynamics

QCD is a gauge theory, based on the local non-Abelian SU(3)C group and

describes interactions of the strong force between quarks, the constituents
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of hadrons. The involved charge of the interaction is called color and cor-

responds to three degrees of freedom of the fundamental representation of

the global SU(3) symmetry. The strong force is mediated by eight spin-1

bosons, the gluons, which carry color and anti-color. They are related to the

conjugated representation of the SU(3) symmetry group. Due to the fact,

that gluons are charged, in contrast to the photon of QED, they can interact

also among each other via three- and four-gluon vertices. This property has

an effect on the coupling strength αS, which is defined at a certain scale Q2

in the following way

αS

(

Q2
)

=
g2

S

(

Q2
)

4π

=
αS(µ2)

1 + αS(µ2)/12π(11NC − 2Nf ) log(Q2/µ2)
. (2.37)

Nc denotes the number of colors, Nf the number of fermions and µ is a ref-

erence scale. For Q2 → ∞ the coupling strength αS vanishes. This behavior

is known as asymptotic freedom and was discovered by Wilczek, Gross and

Politzer [11, 12]. Now, this feature gives the possibility to perform pertur-

bative QCD calculations at high energies. Whereas for low energies, calcu-

lations get more involved and cannot be done perturbatively. At a scale of

≈ 200 MeV, called ΛQCD, αS even diverges.

Moreover, in experiments, no colored particles were found, but colorless

bound-states. This phenomenon is called confinement and is also an effect of

the gluon self-coupling. For more details about QCD see e.g. Refs.[13, 14].

The analytic expression for a hadronic cross section with two partons (quarks

and gluons) a1 and a2 in initial state reads as follows

σ =

∫

dx1dx2

∑

sub-proc

fa1
(x1, µF ) fa2

(x2, µF )

× 1

4
[

(pa1
· pa2

) −m2
a1
m2

a2

]1/2

∫

dΦΘcuts|Msub-proc|2 , (2.38)

where the flux-factor
[

(pa1
· pa2

)−m2
a1
m2

a2

]1/2
=
[

2Ea1
2Ea2

|va1
− va2

|
]

states

the relative velocity of the beams. The shortcut |Msub-proc|2 denotes the

squared expression of the Feynman amplitude for different sub-processes,
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summed over final polarizations and colors and averaged over initial polar-

izations and colors. The explicite expression is given by

|Msub-proc|2 =
1

4

1

#(color)(a1, a2)

∑

color

∑

pol.

|Msub-proc|2 . (2.39)

The function Θcuts describes selection cuts, which are applied on the kine-

matics of particles in final state. These cuts restrict the integration over

the phase-space to regions, that are accessible by experiments. Furthermore,

they anticipate detector capabilities and jet finding algorithms. The general

expression of the Lorentz-invariant phase-space for a n-particle final-state is

defined as

dΦn(P ; p1, . . . , pn) =

n
∏

i=1

(

d3pi

(2π)32Ei

)

(2π)4δ4

(

P −
∑

i

pi

)

. (2.40)

The final result is then obtained by the twofold integration over the parton

density functions (PDFs) fai
. A PDF describes the probability density to find

a parton ai inside a nucleon with a certain longitudinal momentum fraction

between xi and xi + dxi. The parameter µ is called factorization scale and

corresponds to the resolution, at which short- and long-distance physics is

separated. If all orders of a perturbation series are taken into account, the

final result for a physical observable would not depend on µ. But, in a

finite order perturbation theory physical observables involve the parameter

µ, which is then set to the characteristic scale of the underlying process.
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Chapter 3

Higgs production processes in

association with two and three

jets

3.1 Introduction and motivation

In pp-collisions at the LHC several mechanisms, depicted in Fig. 3.1, con-

tribute to the production of the Higgs boson in the SM. The dominant pro-

duction mechanism, over the entire Higgs mass range and accessible at the

LHC, is gluon fusion (a), which is mediated mainly by a top-quark loop. The

corresponding cross section, including all top-mass effects, is also known at

NLO [15, 16]. Further NNLO calculations were done only within the effective

Lagrangian approximation (see App. E), where the top-mass dependence is

integrated out by using the limit mt → ∞ [17, 18]. The second largest cross

section is produced via weak boson fusion (b), mediated by t-channel W or

Z exchange. It contains an additional pair of hard tagging jets in the final

state, arising from scattered quarks. In addition to this, the same signature

can also appear in gluon fusion via O(α2
S) real emission corrections [2]. They

are discussed and described in detail in the following sub-chapters. QCD

corrections to weak boson fusion [19, 20] are known to NLO and show the

expected improvement of scale uncertainties for cross sections and different

distributions. Full NLO QCD corrections to the Hjj production process via

gluon fusion are only available in the effective Lagrangian approximation [21].

Since the lowest order process is loop-induced, a full NLO calculation would

entail a two-loop evaluation, which is presently not feasible. In this thesis,

only real emission corrections with full-mass effects are discussed in the sub-
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Figure 3.1: Higgs production mechanisms at LHC: (a) Gluon fusion,

(b) weak boson fusion, (c) radiation of a Higgs boson off top pair, (d)

Higgs production in association with a W or Z boson.

sequent chapters. Virtual contributions, coming from two-loop topologies,

are not considered here, but pentagon- and hexagon-loops, which complicate

the evaluation, especially for Hjjj. Further production mechanisms are the

radiation of a Higgs boson off top pairs (c) [22, 23] and electro-weak boson

associated production (d) [24, 25], where the involved boson is identified by

its leptonic decay. In the MSSM gluon fusion is again the most important

production channel for the Higgs bosons h, H and A. Also Higgs-Strahlung

off top and, especially, bottom quarks, which are enhanced by tan β, play

an important role. Higgs radiation off W or Z bosons and Higgs production

via weak boson fusion is only interesting in association with the light Higgs
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boson h.

The next chapter describes the calculation of Higgs production processes with

two and three additional jets. In the following, additional contributions with

squarks are taken into account only for the process with a two jet final state.

Loop-topologies, containing gluino-vertices, are neglected, due to the fact,

that these contributions are suppressed by large gluino-masses on the one

hand. And on the other hand, they appear in loop-diagrams with through-

going light quark lines and, hence, provide an additional suppression of the

Higgs coupling to squarks. Furthermore, no ghost-fields c and c appear in

the calculation, because the colored QCD-ghosts are massless and therefore

imply a vanishing coupling to the Higgs bosons.

3.2 Outline of the calculation

Due to a large number of contributing Feynman graphs, it is most convenient

to give analytic results for the scattering amplitudes for fixed polarizations

of external quarks and gluons, instead of using trace techniques to express

polarization averaged squares of amplitudes in terms of relativistic invariants.

The spinor algebra of those helicity amplitudes can be handled easily with

the help of the formalism and methods developed in Ref. [26, 27]. Further

calculation methods are based on the framework introduced in Ref. [1, 2].

The analytic expressions of amplitudes are then evaluated numerically with

the gluon fusion part GGFLO of the program VBFNLO [4].

Throughout the calculation all masses of external fermions are set to zero. If

not specified explicitly, all gluon momenta are treated as outgoing. Working

in the chiral representation, the external (anti-) fermions can be described

by a two-component Weyl-spinor of chirality τ [27]

ψ (pi, σi)τ = Si

√

2p 0
i δσiτ χσi

(pi) . (3.1)

Here, pi denotes the physical momenta expressing the phase space and the

wave functions of fermions of fixed helicity σi, as well as qi for on-shell gauge

bosons, whereas pi and qi describe momenta appearing in the momentum

flow in Feynman diagrams. Both sets of momenta and helicities are related

by the sign factors Si

pi = Si pi , qi = Si qi and σi = Si σi , (3.2)
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with Si = +1 for fermions and Si = −1 for anti-fermions. Momenta qi of

out- and ingoing gluons are controlled by the factors Si = +1 and Si =

−1 respectively. This allows easy switching between different production

channels. The factor δσiτ ensures conservation of helicity in the chiral limit

and χσi
(pi) denotes the helicity eigenstates. The polarization vectors for

on-shell gluons are available in VBFNLO [4] in two different representations

[28], which, of course, satisfy the transversality property

q · ǫ(q) = 0 with ǫµ(q) =
(

0,~ǫ (q)
)

: (3.3)

1) real polarization vectors, i.e. ǫ∗i (qi) = ǫi(qi), with gauge boson momen-

tum qµ as basis vector:

ǫi(qi, 1) =
(

|~qi|qiT

)−1(
0, qixqiz, qiyqiz,−q2

iT

)

, (3.4)

ǫi(qi, 2) =
(

qiT

)−1(
0,−qiy, qix, 0

)

(3.5)

with

qµ
i =

(

Ei, qix, qiy, qiz

)

, Ei =
(

|~qi|2 +m2
)1/2

, (3.6)

qiT =
(

q2
ix + q2

iy

)1/2
. (3.7)

These real polarization vectors describe transverse polarized gluons.

2) Complex polarization vectors in the helicity basis λ = ± :

ǫi(qi, λ = ±) =
1√
2

(∓ǫi(qi, 1) − iǫi(qi, 2)) . (3.8)

Furthermore, through-going fermion lines with attached gluon vertex and

propagator are combined to effective quark currents,

Jµ
fi = δσf σi

χ†
σf

(p̄f ) (σµ)τχσi
(p̄i)

1

q2
fi

= δσf σi
〈f |(σµ)τ |i〉

1

(pi − pf)2
, (3.9)

where
(

σµ
)

τ=±
are the Dirac matrices in the two-component Weyl-basis,

|i〉, 〈f |, abbreviations for in- and outgoing external fermions and τ = σi = σf

denotes helicity conservation. Analogously to that, one can define a gluon-

current, which is composed of a three-gluon-vertex contracted with two po-

larization vectors of outgoing on-shell gluons with indices i, j

JG,µ
ij (qij) =

1

(qi + qj)2

×
[

2ǫ(qi)
µ qi · ǫ(qj) + ǫ(qi) · ǫ(qj)

(

qj − qi
)µ − 2ǫ(qj)

µ qj · ǫ(qi)
]

. (3.10)
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The propagator term belongs to the uncontracted virtual gluon with momen-

tum qij = qi + qj , which is here defined as ingoing. In addition to that, the

transversality property of Eq. (3.3) was used. For the emission of an on-shell

gluon close to an external quark, one can use a Bra and Ket notation similar

to the quark current of Eq. (3.9), but with an additional momentum variable

ql of the corresponding polarization vector [26]

|ql, i〉 = (p�i − q�l)−σi
(ǫ�l)σi

χσi
(p̄i)

1

(pi − ql)2
, (3.11)

〈f, ql| = χ†
σf

(p̄f)(ǫ�l)σf
(p�f + q�l)−σf

1

(pf + ql)2
. (3.12)

The central part of the calculation are different loop-topologies with fermionic

and scalar particles couplings to CP-even and CP-odd Higgs bosons. The

simplest topology is a triangle graph T µ1µ2

Φ,p (q1, q2, mp), where q1, q2 denote

momenta of the attached gluons. The shortcut Φ stands for all neutral Higgs

bosons, HSM, h, H , A and mp is the mass of the scalar or fermionic loop-

particle. The tensor Bµ1µ2µ3

Φ,p (q1, q2, q3, mp) describes box-like contributions.

The analytically and numerically most complex graphs are the pentagons

P µ1µ2µ3µ4

Φ,p (q1, q2, q3, q4, mp) and hexagons Hµ1µ2µ3µ4µ5

Φ,p (q1, q2, q3, q4, q5, mp).

Charge-conjugation related diagrams, where the loop momentum is running

clockwise and counter-clockwise, can be counted as one by exploiting Furry’s

theorem [29]. This effectively reduces the number of diagrams by a factor of

two. All briefly mentioned topologies differ in their tensor structure, depend-

ing on, which particle couples to the Higgs boson, as well as on the Higgs

boson coupling itself:

1) CP-odd Higgs boson A

For the CP-odd Higgs boson A only couplings to fermions are taken

into account. Massive squark loops can be safely neglected, because

these contributions sum up to zero at amplitude level [8], due to the

fact, that the both attached sfermions have to be in different bases

(left-right basis L,R or mixed basis 1,2, see Eq. (A.25)) to give a non-

vanishing contribution. Here the index f = t, b denotes top and bottom

quark loops.

2) CP-even Higgs bosons HSM, h, H

The CP-even Standard Model Higgs boson HSM is produced only with
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massive quark loops. The couplings of the light h and heavy H MSSM

Higgs bosons differ by additional factors containing the mixing angle

α of the neutral Higgs-doublet components and the mixing angle β of

both vacuum expectation values.

In the MSSM, the CP-even Higgs bosons can also couple to squarks.

However, a single triangle-tensor T
µ1µ2

h,H,f̃(q1, q2, mf̃ ) is proportional to an

ǫ−1-pole in dimensional regularization (DREG) and, hence, it is UV-

divergent. The MSSM provides also a further vertex, which is composed

of two sfermions and two gluons (see Appendix D). Now, this ǫ−1-

pole cancels by addition of a two-point function Sµ1µ2

h,H,f̃
(q1, q2, mf̃ ) (see

Fig. B.3 in App. B), containing the q̃q̃gg-vertex. The new divergence

free triangle tensor is given by

T µ1µ2

h,H,f̃
(q1, q2, mf̃) = T

µ1µ2

h,H,f̃(q1, q2, mf̃) + Sµ1µ2

h,H,f̃
(q1, q2, mf̃) . (3.13)

All contributing topologies are described in more detail in Appendix B.

Furthermore, polarization vectors of on-shell gluons with a triangle-loop in-

sertion can be expressed by effective polarization vectors,

ep,µ1

i Φ =
ǫµ2

(qi)

(qi + PΦ)2
T µ1µ2

Φ,p (qi, qi + PΦ, mp) , (3.14)

where qi is the external gluon momentum, while PΦ denotes the momentum of

the Higgs boson Φ. All coupling constants and loop factors are conveniently

absorbed into an overall factor Fp. Detailed expressions for Fp are declared

in the particular two or three jet process.

3.3 Higgs production in association with two

jets

The production of the neutral Higgs bosons Φ in association with two jets,

at order α4
s, can be carried out via the sub-processes

q q → q q Φ , q Q→ q Q Φ , q g → q g Φ , g g → g g Φ . (3.15)

The first two entries denote scattering of identical and non-identical quark

flavors. The two last entries describe quark-gluon and gluon-gluon scatter-

ing. Further contributions can be achieved by crossing relations using the
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sign factors Si, introduced in Eq. (3.2) and the fact, that the Lagrangian is

invariant under the application of the charge-conjugation operator Ĉ = γ0γ2,

• quark-quark scattering:

q q −→ q q Φ (via C invariance of amplitude) ,

q q −→ q q Φ , (3.16)

q q −→ g g Φ ,

• quark-gluon scattering:

g q −→ g q Φ (flipped beams) ,

q g −→ q g Φ (via C invariance of amplitude) , (3.17)

g q −→ g q Φ (via C invariance of amplitude + flipped beams) ,

• gluon-gluon scattering:

g g −→ q q Φ ,

g g −→ g g Φ . (3.18)

The overall factor F 2j
p reads as

F 2j
p = Cp

g4
S

16π2
= Cpα

2
s (3.19)

The abbreviation Cp stands for the Yukawa coupling to fermions and for the

Higgs coupling to sfermions. Detailed informations on couplings are given in

Appendix A. The index p = t, b, t̃1,2, b̃1,2 denotes top and bottom quarks as

well as stop and sbottom squarks.

3.3.1 qQ→ qQΦ and qq → qqΦ

The sub-process q Q → q Q Φ of Eq. (3.15), depicted on the left side

in Fig. 3.2, is the simplest contribution to Φ + 2 jet production, if the

Higgs boson couples to fermions only. Here Q denotes a different flavor.

For identical quarks, an additional diagram can be obtained by interchang-

ing the final-state-quarks. Higgs couplings to scalar quarks yield additional
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Figure 3.2: Quark and squark contributions to qq → qqΦ amplitudes.

contributions with squark-triangles. Furthermore, the MSSM provides new

vertex-structures, which generate new loop-topologies, e.g. the two-point-

loop, shown in the right panel of Fig. 3.2. At most, there are 6 diagrams,

if both coupling types are taken into account. Following Ref. [2, 3, 30], the

amplitude for different flavors and loop particles can be written as

AqQ =
∑

p

F qQ,2j
p Jµ1

21 J
µ2

43 T
Φ,p
µ1µ2

(q1, q2, mp) t
a
i2i1 t

a
i4i3

= AqQ
2143 t

a
i2i1

tai4i3
. (3.20)

The overall factor

F qQ,2j
p = S1 S2 S3 S4 4

√

p0
1 p

0
2 p

0
3 p

0
4 F

2j
p (3.21)

includes, in addition, normalization factors of external quark spinors (see

Eq. (3.2) and (3.19)). External quark lines are expressed by the effective

quark currents, introduced in Eq. (3.9). Both gluons attached to the tri-

angle tensor TΦ,p
µ1µ2

(q1, q2, mp) are assumed as out-going and have momenta

q1 = p2 − p1 and q2 = p4 − p3. The sum of fermionic and sfermionic charge-

conjugated triangle graphs T µ1µ2 and sfermionic two-point function Sµ1µ2 are

proportional to the single color factor δa2a3 (B.5). The two color factors δa1a2

and δa3a4 , coming from propagators of the virtual gluons, and the remain-

ing color generators ta1

i2i1
and ta4

i4i3
of both gluons-vertices attached to the

fermion currents of Eq. (3.9), yield the following simple color structure for

the amplitude

ta1

i2i1
δa1a2 δa2a3 δa3a4 ta4

i4i3
= tai2i1 t

a
i4i3 . (3.22)

For identical fermions, Pauli-interference has to be considered additionally.

That means, that to the amplitude of equation (3.20) a term with inter-
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.

Figure 3.3: Quark and squark contributions to qg → qgΦ amplitudes.

changed final state quarks must be added

Aqq = Aqq
2143 t

a
i2i1

tai4i3
−Aqq

4123 t
a
i4i1

tai2i3
. (3.23)

Fermi-statistics provides a relative sign-factor swap for the second term. Fi-

nally, the squared amplitude, summed over initial and final particle colors,

becomes

∑

color

|Aqq|2 =
(

|A2143|2 + |A4123|2
)N2 − 1

4
+ 2 Re

(

A2143A∗
4123

)

× N2 − 1

4N
. (3.24)

Setting A4123 = 0 in Eq. (3.24), one gets the squared matrix elements for

AqQ.

3.3.2 qg → qgΦ

This sub-process contains two (anti-)quarks and two gluons as external par-

ticles. The momenta of the initial and final state gluons are set to qi = −qi

and qf = +qf respectively. In the case of fermion-loops, there are only ten

different Feynman graphs, if Furry’s theorem is taken into account. That are

seven graphs with a triangle insertion and three box graphs with cyclic per-

mutation of the attached gluons. They are sketched in the Fig. 3.3. The red

crosses denote further positions for possible triangle-loop or scalar two-point
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function insertions. In the sfermionic case, additional triangle graphs T µ1µ2µ3

B,Φ,f̃

with a box-like color structure and a q̃q̃gg-vertex (see Appendix B1.5) appear

additionally to the 17 graphs composed of squark-triangles with accompany-

ing squark two-point functions and squark-boxes. However, the new triangle

contribution has a vanishing color factor and, hence, does not contribute to

the sub-process (a brief proof of this statement is shown in Appendix B.1.5).

The amplitude for the sub-process qg → qgΦ can be written in a compact

form, using the notations of Chapter 3.2,

Aqg = Aqg
µ1µ2

ǫµ1

1 ǫ
µ2

2 =
∑

p

F qg,2j
p

×
{

(

ta1ta2

)

i2i1

[

〈2|(e�p
1Φ)σ1

|q2, 1〉 + 〈2, q1|(e�p
2Φ)σ1

|1〉
]

+
(

ta2ta1

)

i2i1

[

〈2|(e�p
2Φ)σ1

|q1, 1〉 + 〈2, q2|(e�p
1Φ)σ1

|1〉
]

+
[

ta1 , ta2

]

i2i1

[

2
(

ep
1Φ · ǫ2J21 · q2 − ep

1Φ · J21ǫ2 · (p2 − p1)

− ep
1Φ · q2J21 · ǫ2

)

− 2
(

ep
2Φ · ǫ1J21 · q1 − ep

2Φ · q1J21 · ǫ1

− ep
2Φ · J21 ǫ1 · (p2 − p1)

)

+ JG,µ1

12 Jµ2

21 T
Φ,p
µ1µ2

(q1 + q2, p2 − p1, mp)

− BΦ,p
µ1µ2µ3

(q1, q2, p2 − p1, mp) ǫ
µ1

1 ǫµ3

1 Jµ3

21

]}

. (3.25)

Spinor normalization factors are absorbed again into the overall factor

F qg,2j
p = −S1 S2 2

√

p0
1 p

0
2 δσ1σ2

F 2j
p . (3.26)

The first four terms correspond to the Compton-like graphs with effective

polarization vectors ep,µ
i Φ (3.14). In the sfermionic case, one has to keep in

mind, that the effective polarization vector is composed of two parts (see

Eq. (3.13))

ef̃ ,µ1

i Φ =
ǫµ2

(qi)

(qi + P )2

[

T
µ1µ2

Φ,f̃ (qi, qi + PΦ, mf̃) + Sµ1µ2

Φ,f̃
(qi, qi + PΦ, mf̃)

]

.

(3.27)
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The color factor
(

ta1ta2

)

i2i1
results from the color contribution δa2a3 of the

gluon propagator of the effective polarization vector and both gluon ver-

tices ta3

i2i1
and ta1

i2i1
. The same applies for

(

ta2ta1

)

i2i1
. The remaining terms

correspond to three graphs containing a three-gluon-vertex with either at-

tached effective polarization vector and effective quark current or both ef-

fective currents of Eqs. (3.9) and (3.10). Box diagrams enter via the tensor

Bµ1µ2µ3

Φ,p (q1, q2, q3, mp), which is described in more detail in Appendix B.2.

These diagrams are proportional to the structure constant fabc with con-

tracted tci2i1 , coming from the effective quark current of Eq.(3.9). Finally, the

amplitude can be separated into two parts with independent color structures

Aqg =
(

ta1ta2

)

i2i1
Aqg

12 +
(

ta2ta1

)

i2i1
Aqg

21 . (3.28)

The indices 12 and 21 label amplitudes with interchanged external gluons.

Thus, the resulting color-summed squared amplitude takes the form,

∑

color

∣

∣Aqg
∣

∣

2
=
(

∣

∣Aqg
12

∣

∣

2
+
∣

∣Aqg
21

∣

∣

2
)

(

N2 − 1
)2

4N
− 2 Re

[

Aqg
12

(

Aqg
21

)∗
]

× N2 − 1

4N
. (3.29)

3.3.3 gg → ggΦ

Here, the momenta of gluons in initial and final state are set again to qi = −qi

and qf = +qf respectively. Taking Furry’s theorem into consideration, 49

fermionic diagrams contribute to that sub-process: 19 graphs with triangle

insertions, 18 box contributions and 12 pentagon diagrams. In the sfermionic

case, additionally to the mentioned topologies, three triangle graphs with two

q̃q̃gg-vertices and 18 box diagrams with one q̃q̃gg-vertex provide further con-

tributions. Both new topologies have a pentagon-like color structure (more

in appendix B). Here, it is strategically favorable to start with the pentagons

and investigate their color structure. The four attached gluons give rise to

4! = 24 different color traces of the form,

tr
[

taitaj taktal
]

, with i, j, k, l = 1, 2, 3, 4 and i 6= j 6= k 6= l ,

(3.30)
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from which (4− 1)! = 6 are independent only due to the invariance property

of the trace under cyclic permutations. They can be combined to three

independent real-valued color structures,

c1 = tr
[

ta1ta2ta3ta4

]

+ tr
[

ta1ta4ta3ta2

]

,

c2 = tr
[

ta1ta3ta4ta2

]

+ tr
[

ta1ta2ta4ta3

]

, (3.31)

c3 = tr
[

ta1ta4ta2ta3

]

+ tr
[

ta1ta3ta2ta4

]

.

All ci correspond to the sum of two pentagons with opposite loop momentum

flow. Finally, to every ci, four charge-conjugated pentagons can be assigned

with cyclic permutation of external gluons. The evaluation of the color traces

yields

c1 =
1

4

(

2

N
δa1a2δa3a4 + da1a2mda3a4m − fa1a2mfa3a4m

)

,

c2 =
1

4

(

2

N
δa1a3δa4a2 + da1a3mda4a2m − fa1a3mfa4a2m

)

, (3.32)

c3 =
1

4

(

2

N
δa1dδa2a3 + da1a4mda2a3m − fa1a4mfa2a3m

)

,

for which some SU(N)-identities of Appendix C were used. The color struc-

ture of the remaining diagrams is proportional to two structure constants

e.g. fa1a2mfma3a4 . Furthermore, the combination of two structure constants

can be expressed with help of the following identities by the color coefficients

of Eq. (3.31)

c1 − c2 = −1

2
fa1a2mfa3dm =⇒ fa1a2mfa3dm = 2

(

c2 − c1
)

,

c3 − c1 = −1

2
fa1dmfa2a3m =⇒ fa1dmfa2a3m = 2

(

c1 − c3
)

, (3.33)

c2 − c3 = −1

2
fa1a3mfda2m =⇒ fa1a3mfda2m = 2

(

c3 − c2
)

.

The sum of all differences of the ci satisfies the Jacobian identity,

−2
[

(

c1 − c2
)

+
(

c3 − c1
)

+
(

c2 − c3
)

]

= fa1a2mfma3a4 + fa1a4mfma2a3 + fa1a3mfma4a2 = 0 . (3.34)
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Figure 3.4: Quark- and squark-box contributions to gg → ggΦ ampli-

tudes.

In terms of these color coefficients, the complete amplitude for g g → g g Φ

can be decomposed into three separately gauge invariant sub-amplitudes,

Agg =
3
∑

i=1

ciAgg
i = F 2j

p

3
∑

i=1

ciA
gg

i,µ1µ2µ3µ4
ǫµ1

1 ǫµ1

2 ǫµ1

3 ǫµ1

4 , (3.35)

with the overall factor F 2j
p from Eq. (3.19). Finally, all remaining diagrams

with box, triangles and two-point topologies are explained briefly:

1) Fermionic and sfermionic box diagrams

Box diagrams are attached to the gluon-current of Eq. (3.10), as shown in

Fig. 3.4. The momentum of the virtual gluon is denoted by qij = qi + qj. For

a gluon permutation (q12, q3, q4) with color factor fa1a2mfma3a4 , the partial

amplitude can be written as,

ABox
12,3,4 = 2

(

c2 − c1
)

B α µ2 µ3

Φ,p (q12, q3, q4, mp)J
G
12, α ǫ3, µ2

ǫ4, µ3
. (3.36)

There are, of course, two further contributions with permutations (q3, q4, q12)

and (q4, q12, q3) with the same color structure, which can be achieved via

cyclic permutation of the attached gluons. Those are already taken into

account in the definition of the box tensor in Eq. (B.28). For the remaining

15 diagrams, all color factors and momenta sets are listed here

• (q13, q2, q4), (q2, q4, q13), (q4, q13, q2) =⇒ fa1a3mfma2a4 = 2(c2 − c3) ,

• (q14, q2, q3), (q2, q3, q14), (q3, q14, q2) =⇒ fa1a4mfma2a3 = 2(c1 − c3) ,

• (q23, q1, q4), (q1, q4, q23), (q4, q23, q1) =⇒ fa2a3mfma1a4 = 2(c1 − c3) ,

• (q24, q1, q3), (q1, q3, q24), (q3, q24, q1) =⇒ fa2a4mfma1a3 = 2(c2 − c3) ,

29



Figure 3.5: Pentagon-like squark-box contribution to gg → ggΦ am-

plitudes.

• (q34, q1, q2), (q1, q2, q34), (q2, q34, q1) =⇒ fa3a4mfma1a2 = 2(c2 − c1) .

2) Sfermionic box diagrams with q̃q̃gg-vertex

The box diagram, depicted in Fig. 3.5, is contracted directly with four polar-

ization vectors of the external gluons. The q̃q̃gg-vertex provides a pentagon-

like color structure, which can be expressed very easily by the color coeffi-

cients of Eq. (3.31). Hence, for a gluon permutation (q12, q3, q4), the partial

amplitude with the box tensor of Eq. (B.48) reads as

ABoxP

12,3,4 =
(

tr
[

ta1ta2ta3ta4

]

+ tr
[

ta2ta1ta3ta4

]

+ tr
[

ta4ta3ta1ta2

]

+ tr
[

ta4ta3ta2ta1

]

)

B µ1 µ2 µ3 µ4

P,Φ,f̃
(q12, q3, q4, mf̃) ǫ1 µ1

ǫ2 µ2
ǫ3 µ3

ǫ4 µ4

= (c1 + c2) B
µ1 µ2 µ3 µ4

P,Φ,f̃
(q12, q3, q4, mf̃) ǫ1, µ1

ǫ2, µ2
ǫ3, µ3

ǫ4, µ4
.

(3.37)

The definition of Bµ1µ2µ3µ4

P,Φ,f̃
(q12, q3, q4, mf̃ ) contains also two additional con-

tributions with cyclicly permuted momenta sets. The remaining 15 graphs

with corresponding color factors are given by,

• (q13, q2, q4), (q2, q4, q13), (q4, q13, q2) =⇒ (c2 + c3) ,

• (q14, q2, q3), (q2, q3, q14), (q3, q14, q2) =⇒ (c1 + c3) ,

• (q23, q1, q4), (q1, q4, q23), (q4, q23, q1) =⇒ (c1 + c3) ,

• (q24, q1, q3), (q1, q3, q24), (q3, q24, q1) =⇒ (c2 + c3) ,

• (q34, q1, q2), (q1, q2, q34), (q2, q34, q1) =⇒ (c1 + c2) .
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Figure 3.6: Quark- and squark-triangle contributions to gg → ggΦ

amplitudes.

3) Fermionic and sfermionic triangle diagrams

All subsequent described contributions with triangle-loop insertions are il-

lustrated in Fig. 3.6. The first three contributions can be built up with the

general triangle tensor T µ1µ1

Φ,p (q1, q2, mp) and two gluon currents of Eq (3.10).

For a momentum set, (q12, q34), the partial amplitude with color factor fa1a2m

fma3a4 is given by,

ATri 1
12,34 = 2 (c2 − c1)T

Φ,p
µ1µ2

(q12, q34, mp) J
G,µ1

12 JG,µ2

34 . (3.38)

The color factors for the remaining two gluon momenta sets are,

• (q13, q24) =⇒ fa1a3mfa2a4m = 2(c2 − c3) ,

• (q14, q23) =⇒ fa1a4mfa2a3m = 2(c1 − c3) .

For the next 15 diagrams, the building blocks are a three-gluon vertex, the

gluon current of Eq. (3.10) and an effective polarization vector of Eq. (3.14).

For a gluon momenta configuration (q12, e
p
3 Φ, q4) with color factor fa1a2mfma3a4 ,

the partial amplitude can be written as,

ATri 2
12,3,4 = 2 (c2 − c1)

[

ep
3 Φ · ǫ4 (q3 + PΦ − q4) · JG

12 + ep
3 Φ · JG

12 (q12 − q3

− PΦ) · ǫ4 + ǫ4 · JG
12 (q12 + q4) · ep

3 Φ, q4)
]

, (3.39)

where PΦ denotes the Higgs momentum. The color coefficients for the other

11 diagrams are
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• (q12, q3, e
p
4 Φ) =⇒ fa1a2mfa3a4m = 2

(

c2 − c1
)

,

• (q13, e
p
2 Φ, q4) =⇒ fa1a3mfa2a4m = 2

(

c2 − c3
)

,

• (q13, q2, e
p
4 Φ) =⇒ fa1a3mfa2a4m = 2

(

c2 − c3
)

,

• (q14, e
p
2 Φ, q3) =⇒ fa1a4mfa2a3m = 2

(

c1 − c3
)

,

• (q14, q2, e
p
4 Φ) =⇒ fa1a4mfa2a3m = 2

(

c1 − c3
)

,

• (q23, e
p
1 Φ, q4) =⇒ fa2a3mfa1a4m = 2

(

c1 − c3
)

,

• (q23, q1, e
p
4 Φ) =⇒ fa2a3mfa1a4m = 2

(

c1 − c3
)

,

• (q24, e
p
1 Φ, q3) =⇒ fa2a4mfa1a3m = 2

(

c2 − c3
)

,

• (q24, q1, e
p
3 Φ) =⇒ fa2a4mfa1a3m = 2

(

c2 − c3
)

,

• (q34, e
p
1 Φ, q2) =⇒ fa3a4mfa1a2m = 2

(

c2 − c1
)

,

• (q34, q1, e
p
2 Φ) =⇒ fa3a4mfa1a2m = 2

(

c2 − c1
)

.

The four-gluon (Appendix D) vertex gives rise to four additional contribu-

tions with one attached effective polarization vector. In addition, this vertex

is composed of three terms, which are separately proportional to two struc-

ture constants. For a permutation (ep
1 Φ, ǫ2, ǫ3, ǫ4), the partial amplitude reads

as follows

ATri 3
1,2,3,4 =2

(

c2 − c1
)

[

(

ep
1 Φ · ǫ3

)(

ǫ2 · ǫ4
)

−
(

ep
1 Φ · ǫ4

)(

ǫ2 · ǫ3
)

]

+2
(

c2 − c3
)

[

(

ep
1 Φ · ǫ2

)(

ǫ3 · ǫ4
)

−
(

ep
1 Φ · ǫ4

)(

ǫ2 · ǫ3
)

]

+2
(

c1 − c3
)

[

(

ep
1 Φ · ǫ2

)(

ǫ3 · ǫ4
)

−
(

ep
1 Φ · ǫ3

)(

ǫ2 · ǫ4
)

]

. (3.40)

The remaining permutations with the same color structure are

• (ǫ1, e
p
2 Φ, ǫ3, ǫ4), (ǫ1, ǫ2, e

p
3 Φ, ǫ4), (ǫ1, ǫ2, ǫ3, e

p
4 Φ) .

4) Sfermionic triangle diagrams with two q̃q̃gg-vertices

Finally, the last triangle topology (B.1.6), depicted in Fig. 3.7, is contracted

directly with four polarization vectors of the external gluons. The two q̃q̃gg-

vertices provide a pentagon-like color structure, which can be also expressed
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Figure 3.7: Pentagon-like squark-triangle contributions to gg → ggΦ

amplitudes.

very easily by the color coefficients of Eq. (3.31). Hence, for a gluon permu-

tation (q12, q34) the partial amplitude with the triangle tensor of Eq. (B.1.6)

is given by,

ATriP
12,34 = 2

(

tr
[

ta1ta2ta3ta4

]

+ tr
[

ta1ta2ta4ta3

]

+ tr
[

ta2ta1ta3ta4

]

+ tr
[

ta2ta1ta4ta3

]

)

TP,Φ,f̃
µ1µ2µ3µ4

(q12, q34, mf̃) ǫ
µ1

1 ǫµ2

2 ǫµ3

3 ǫµ4

4

= 2 (c1 + c2) T
P,Φ,f̃
µ1µ2µ3µ4

(q12, q34, mf̃) ǫ
µ1

1 ǫµ2

2 ǫµ3

3 ǫµ4

4 . (3.41)

The other permutations are

• (q13, q24) =⇒ 2
(

tr
[

ta1ta3ta2ta4

]

+ tr
[

ta1ta3ta4ta2

]

+ tr
[

ta3ta1ta2ta4

]

+tr
[

ta3ta1ta4ta2

]

)

= 2 (c2 + c3) ,

• (q14, q23) =⇒ 2
(

tr
[

ta1ta4ta2ta3

]

+ tr
[

ta1ta4ta3ta2

]

+ tr
[

ta4ta1ta2ta3

]

+tr
[

ta4ta1ta3ta2

]

)

= 2 (c1 + c3) .

The sum over colored gluons of the squared amplitude becomes

∑

color

|Agg|2 =
3
∑

i,j=1

Agg
i

(

Agg
j

)∗
∑

col

cicj

= C1

3
∑

i=1

|Agg
i |2 + C2

3
∑

i,j=1; i6=j

Agg
i

(

Agg
j

)∗
(3.42)
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with

C1 ≡
∑

col

cici =

(

N2 − 1
)(

N4 − 2N2 + 6
)

8N2
, (no sum. over i), (3.43)

C2 ≡
∑

col

cicj =

(

N2 − 1
)(

3 −N2
)

4N2
, i 6= j . (3.44)

3.4 Higgs production in association with three

jets

For the production of Higgs bosons Φ in a 2 → 4 QCD process of the order

α5
s, the former sub-processes are complemented by an additional gluon in

the final-state with momentum qf = +qf . The production of neutral Higgs

bosons Φ can then be carried out via the following sub-processes,

q q → q q gΦ, q Q→ q Q gΦ, q g → q g gΦ, g g → g g gΦ. (3.45)

Further crossing related sub-processes are given by,

• quark-quark scattering:

q q −→ q q g Φ (via C invariance of amplitude) ,

q q −→ q q g Φ , (3.46)

q q −→ Q Q g Φ ,

q q −→ g g g Φ ,

• quark-gluon scattering:

q g −→ q q q Φ ,

q g −→ Q Q q Φ ,

g q −→ q q q Φ (flipped beams) , (3.47)

g q −→ g q g Φ (flipped beams) ,

q g −→ q g g Φ (via C invariance of amplitude) ,

g q −→ g q g Φ (via C invariance of amp. + flipped beams) ,
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• gluon-gluon scattering:

g g −→ q q g Φ ,

g g −→ g g g Φ . (3.48)

Here, the overall factor F 3j
p , containing all coupling constants, reads as

F 3j
p = Cp

( g2
S

4π

)5/2

= Cpα
5
s (3.49)

The present calculation does not include contributions with squarks. To

shorten expressions for amplitudes, one can define new quark currents con-

taining the emission of a gluon close to an external quark in the initial or

final state

Jµ
fi(∗ql) = δσf σi

χ†
σf

(p̄f ) (σµ)τ (p�i − q�l)−σi
(ǫ�l)σi

χσi
(p̄i)

1

(pi − ql)2

1

q2
fi

= δσf σi
〈f |(σµ)τ |qi, l〉

1

(pi − pf + ql)2
, (3.50)

Jµ
fi(ql∗) = δσf σi

χ†
σf

(p̄f)(ǫ�l)σf
(p�f + q�l)−σf

1

(pf + ql)2
(σµ)τχσi

(p̄i)
1

q2
fi

= δσf σi
〈f, ql|(σµ)τ |i〉

1

(pi − pf + ql)2
. (3.51)

Gluon radiation in initial or final state is denoted by a star. It tags the

position of gluon emission. Further fermion currents with the effective po-

larization vector of Eq. (3.14) can be defined in a similar way

Jµ
fi(∗ql,Φ)

= δσf σi
χ†

σf
(p̄f ) (σµ)τ (p�i + q�l + P�Φ)−σi

(e�p
l Φ)σi

χσi
(p̄i)

1

(pi + ql + PΦ)2

1

q2
fi

= δσf σi
〈f |(σµ)τ |ql, i,Φ〉

1

(pi − pf + ql + PΦ)2
, (3.52)

Jµ
fi(ql∗,Φ)

= δσf σi
χ†

σf
(p̄f)(e�

p
l Φ)σf

(p�f − q�l − P�Φ)−σf

1

(pf − ql − PΦ)2
(σµ)τχσi

(p̄i)
1

q2
fi

= δσf σi
〈f, ql,Φ|(σµ)τ |i〉

1

(pi − pf + ql + PΦ)2
. (3.53)
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This formalism also allows for further definitions of quark currents, but with

two emitted gluons

Jµ
fi(ql, qm) = δσf σi

χ†
σf

(p̄f )(ǫ�l)σf
(p�f + q�l)−σf

1

(pf + ql)2
(σµ)τ

× (p�i − q�m)−σi
(ǫ�m)σi

χσi
(p̄i)

1

(pi − qm)2

1

q2
fi

= δσf σi
〈f, ql|(σµ)τ |i, qm〉

1

(pi − pf + ql + qm)2
. (3.54)

Further currents, containing an attached Higgs boson, are

Jµ
fi(ql∗, qm,Φ) = δσf σi

χ†
σf

(p̄f )(e�
p
l Φ)σf

(p�f − q�l − PΦ)−σf

× 1

(pf − ql − PΦ)2
(σµ)τ (p�i + q�m)−σi

(ǫ�m)σi
χσi

(p̄i)
1

(pi + qm)2

1

q2
fi

= δσf σi
〈f, ql,Φ|(σµ)τ |i, qm〉

1

(pi − pf + ql + qm + PΦ)2
, (3.55)

Jµ
fi(ql, ∗qm,Φ) = δσf σi

χ†
σf

(p̄f )(ǫ�l)σf
(p�f − q�l)−σf

1

(pf − ql)2
(σµ)τ

× (p�i + q�m + PΦ)−σi
(e�p

m Φ)σi
χσi

(p̄i)
1

(pi + qm + PΦ)2

1

q2
fi

= δσf σi
〈f, ql|(σµ)τ |i, qm,Φ〉

1

(pi − pf + ql + qm + PΦ)2
. (3.56)

Finally, due to a large number of diagrams in the subsequent sub-processes, it

is useful to introduce a shorthand notation for the three-gluon vertex without

coupling constant

GVµ1µ2µ3

3 (k, p, q) =
[

gµ1µ2(k − p)µ3 + gµ2µ3(p− q)µ1 + gµ3µ(q − k)µ2

]

,

(3.57)

with color coefficient fa1a2a3 . The four-gluon vertex is composed of three

parts with different color and tensor structures (App. D), which are treated

by MadGraph as individual diagrams. For the illustration of partial ampli-

tudes, the first part of the vertex is used only

GVµ1µ2µ3µ4

4 = −(gµ1µ3 gµ2µ4 − gµ1µ4 gµ2µ3) , (3.58)

where fa1a2mfma3a4 is the corresponding color factor.

36



1, 2, 3, 4 5, 6, 7, 8 9, 10, 11 12, 13, 14

Figure 3.8: Quark-loop contributions to qq → qqgΦ amplitudes.

3.4.1 qQ→ qQgΦ and qq → qqgΦ

The simplest contribution contains four quarks pairwise of different flavor and

one gluon as external particles. In total, there are 14 diagrams, in which 11

have a triangle insertion and the remaining 3 a box topology. These diagrams

are illustrated in Fig. 3.8, where different configurations are denoted by a red

cross. Partial amplitudes with the emission of a gluon from a quark line from

initial and final state are listened here

AqQ,Tri 1
∗21,43 =

(

ta2ta1

)

21
ta2

43 J
µ1

21 (∗q) Jµ2

43 T
Φ
µ1µ2

(p2 − p1 + q, p4 − p3, mt),

(3.59)

AqQ,Tri 2
21∗,43 =

(

ta1ta2

)

21
ta2

43 J
µ1

21 (q∗) Jµ2

43 T
Φ
µ1µ2

(p2 − p1 + q, p4 − p3, mt),

(3.60)

AqQ,Tri 3
21,∗43 = ta2

21

(

ta2ta1

)

43
Jµ1

21 J
µ2

43 (∗q) TΦ
µ1µ2

(p2 − p1, p4 − p3 + q,mt),

(3.61)

AqQ,Tri 4
21,43∗ = ta2

21

(

ta1ta2

)

43
Jµ1

21 J
µ2

43 (q∗) TΦ
µ1µ2

(p2 − p1, p4 − p3 + q,mt).

(3.62)

These four contributions provide the basis for the color structure of this sub-

process. Hence, all subsequent partial amplitudes are distributed to that

basis.

Four similar amplitudes with the same color factors can be constructed by

removing the triangle insertion between both quark lines and replacing the

usual polarization vector by an effective one

AqQ,Tri 5
∗21,43 =

(

ta2ta1

)

21
ta2

43 J21(∗q,Φ) · J43 , (3.63)

AqQ,Tri 6
21∗,43 =

(

ta1ta2

)

21
ta2

43 J21(q∗,Φ) · J43 , (3.64)
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AqQ,Tri 7
21,∗43 = ta2

21

(

ta2ta1

)

43
J21 · J43(∗q,Φ) , (3.65)

AqQ,Tri 8
21,43∗ = ta2

21

(

ta1ta2

)

43
J21 · J43(q∗,Φ) . (3.66)

The next two graphs contain a three-gluon vertex and are given by

AqQ,Tri 10
21,43 = ta2

i2i1

[

ta2ta1 − ta1ta2

]

i2i1
Jµ1

21 T
Φ
µ1µ2

(p2 − p1, p4 − p3 + q,mt)

×
[

2 Jµ2

43

(

p4 − p3

)

· ǫ(q) + J43 · ǫ(q)
(

p3 − p4 + ǫ(q)
)µ2

+ ǫ(q)µ2

(

p3 − p4 − 2 q
)

· J43

]

, (3.67)

AqQ,Tri 9
21,43 = ta2

i2i1

[

ta2ta1 − ta1ta2

]

i2i1
Jµ1

21 T
Φ
µ1µ2

(p2 − p1, p4 − p3 + q,mt)

×
[

2 Jµ2

43

(

p4 − p3

)

· ǫ(q) + J43 · ǫ(q)
(

p3 − p4 + ǫ(q)
)µ2

+ ǫ(q)µ2

(

p3 − p4 − 2 q
)

· J43

]

. (3.68)

The remaining contribution with a triangle insertion is composed of a three-

gluon vertex, effective polarization vector of Eq. (3.14) and two quark cur-

rents, defined in Eq. (3.9)

AqQ,Tri 11
21,43 = ta2

i2i1

[

ta2ta1 − ta1ta2

]

i2i1
J21 · J43

(

p1 + p4 − p2 − p3

)

· ep
Φ

+ J43 · ep
Φ

(

p3 − p4 + q + PΦ

)

· J21 + J21 · ep
Φ

(

p2 − p1

− q − PΦ

)

· J43 . (3.69)

In addition, one can insert a box-topology into the diagram with a three-gluon

vertex in three different ways. The 3! permutations of the attached gluons

are reduced by Furry’s theorem to three graphs, which are already captured

by the box tensor Bµ1µ2µ3

Φ (q1, q2, q3, mt). The partial amplitude reads as

AqQ,Box
21,43 =

[

ta3ta2 − ta2ta3

]

i2i1
BΦ

µ1µ2µ3
(q, p2 − p1, p4 − p3, mt) ǫ(q)

µ1

× Jµ2

21 J
µ3

34 . (3.70)

The color coefficient of the last four partial amplitudes is proportional to

a structure constant f . It is useful to decompose it into the color basis of

Eqs. (3.59-3.62)

fa1a2a3ta2

i2i1
ta3

i4i3
= ita2

i2i1

[

ta2ta1 − ta1ta2

]

i4i3
. (3.71)
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Identical quark-flavors double the amount of diagrams by interchanging final

states. This provides four additional color factors,
(

ta2ta1

)

41
ta2

23,
(

ta1ta2

)

41
ta2

23, ta2

41

(

ta2ta1

)

23
, ta2

41

(

ta1ta2

)

23
. (3.72)

One has to keep Pauli-interference in mind, that changes the sign of the

corresponding diagrams. In total, there are eight different color structures,

which interfere among each other. All interference terms form a symmetric

8× 8 matrix RGBqq
ij , containing products of Casimir-operators of the funda-

mental and adjoint representation of the SU(N) algebra. For N = 3, it is

given by

RGBqq
ij =

1

9























































24 −3 −6 21 −8 1 10 1

−3 24 21 −6 1 10 1 −8

−6 21 24 −3 10 1 −8 1

21 −6 −3 24 1 −8 1 10

−8 1 10 1 24 −3 −6 21

1 10 1 −8 −3 24 21 −6

10 1 −8 1 −6 21 24 −3

1 −8 1 10 21 −6 −3 24























































. (3.73)

The squared amplitude, summed over initial- and final-particle color, be-

comes

∑

color

|Aqq|2 =
(

F qQ,3j
p

)2
8
∑

i,j=1

RGBqq
ij Re

[

Ai

(

Aj

)∗
]

, (3.74)

with

F qQ,3j
p = S1 S2 S3 S4 4

√

p0
1 p

0
2 p

0
3 p

0
4 F

3j
t . (3.75)

For a sub-process with different quark-flavors, only the symmetric 4× 4 part

of the RGBqq
ij matrix with i, j = 1, . . . , 4 should be used to calculate the

squared expression of the amplitude.
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1a 1b 1c

Figure 3.9: Quark-triangle contributions to qg → qggΦ amplitudes.

3.4.2 qg → qggΦ

With MadGraph [31], 84 distinct diagrams were generated for the sub-process

qg → qggΦ within the effective theory. The correspondence between the full

and the effective theory is described in more detail in appendix E. Further-

more, the application of abbreviations introduced in previous chapters allows

an indexing of different diagrams according to certain features. This proce-

dure was already used in the Higgs + 2 jets process. It ensures a better view

over the large variety and number of diagrams. In the following, expressions

for partial amplitudes for a fixed permutation of external particle momenta

are shown only:

1) Triangle diagrams with effective polarization vector only

Fig. 3.9 shows three different possibilities to attach a triangle loop to the

emitted gluons

Aqg,Tri 1a
21 =

(

ta1 ta2 ta3

)

i2i1
J21(q3∗, q1,Φ) · ǫ2 , (3.76)

Aqg,Tri 1b
21 =

(

ta1 ta2 ta3

)

i2i1
J21(q3, q1) · ep

2 Φ , (3.77)

Aqg,Tri 1c
21 =

(

ta1 ta2 ta3

)

i2i1
J21(q3, q1∗,Φ) · ǫ2 . (3.78)

There are in total 18 diagrams: 3! = 6 different permutations of the attached

gluons and three possibilities of Higgs emission. The remaining color factors

are

(

ta3 ta1 ta2

)

i2i1
,
(

ta1 ta3 ta2

)

i2i1
,
(

ta2 ta1 ta3

)

i2i1
,

(

ta2 ta3 ta1

)

i2i1
,
(

ta3 ta2 ta1

)

i2i1
. (3.79)

These six color structures provide the color basis for that sub-process.
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2a 2b 2c

Figure 3.10: Quark-triangle contributions to qg → qggΦ amplitudes.

2) Triangle diagrams with one three-gluon vertex

There are 24 different contributions, containing an effective polarization vec-

tor or a triangle loop with off-shell gluons. Three possibilities, shown in

Fig. 3.10, are available to construct the partial amplitudes with given re-

sources

Aqg,Tri 2a = ifa2a1m
(

tmta3

)

21
J21(∗q3,Φ) · JG

12 (q1 + q2)
2 , (3.80)

Aqg,Tri 2b = ifa2a1m
(

tmta3

)

21
J21(∗q3) · JG

12(q1∗, q2,Φ)

× (q1 + q2 + PΦ)2 , (3.81)

Aqg,Tri 2c = ifa2a1m
(

tmta3

)

21
T µ1µ2

Φ (p2 − p1 + q3, q1 + q2, mt)

× Jµ1

21 (∗q3) JG
12 . (3.82)

All appearing color factors can be reduced to the basis, given by Eqs. (3.76-

3.79)

ifa2a1m
(

tmta3

)

i2i1
=
(

ta2ta1ta3 − ta1ta2ta3

)

i2i1
, (3.83)

ifa3a1m
(

tmtab
)

i2i1
=
(

ta3ta1ta2 − ta1ta3ta2

)

i2i1
, (3.84)

ifa2a3m
(

tmta1

)

i2i1
=
(

ta2ta3ta1 − ta3ta2ta1

)

i2i1
, (3.85)

ifa2a1m
(

ta3tm
)

i2i1
=
(

ta3ta2ta1 − ta3ta1ta2

)

i2i1
, (3.86)

ifa3a1m
(

ta2tm
)

i2i1
=
(

ta2ta3ta1 − ta2ta1ta3

)

i2i1
, (3.87)

ifa2a3m
(

ta1tm
)

i2i1
=
(

ta1ta2ta3 − ta1ta2ta3

)

i2i1
. (3.88)
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3a 3b 3c

Figure 3.11: Quark-triangle contributions to qg → qggΦ amplitudes.

3) Triangle diagrams with two three-gluon vertices A total of 15 dia-

grams with a triangle insertion connected to two three-gluon vertices makes

contributions: 9 with effective polarization vector and 6 with a triangle tensor

attached to two virtual gluons. Construction possibilities for partial ampli-

tudes, depicted in Fig. 3.11, are given by,

Aqg,Tri 3a = fa2a1mfa3mntni2i1
GVµ1µ2µ3

3 (−q3,−q12 − PΦ, p1 − p2)

× ǫ3,µ1
JG

12,µ2
(q1, q2∗,Φ) J21,µ3

, (3.89)

Aqg,Tri 3b = fa2a1mfa3mntni2i1
GVµ2µ3µ4

3 (−q3, p2 − p1 + q3, p2 − p1)

× TΦ
µ1µ2

(q12, p2 − p1 + q3, mt) J
G,µ1

12 J21,µ3
ǫµ4,3

× 1

(p2 − p1 + q3)2
, (3.90)

Aqg,Tri 3c = fa2a1mfa3mntni2i1
GVµ1µ2µ3

3 (−q3 − PΦ,−q12, p1 − p2)

× e3,Φ
p,µ1

JG
12,µ2

J21,µ3
. (3.91)

Here, only three different color factors appear in the calculation, which can

be reduced to the color basis using the identity of Eq. (C.10) in the following

way

fa2a1mfa3mntni2i1
= (−ta2ta1ta3 + ta1ta2ta3 + ta3ta2ta1 − ta3ta1ta2)i2i1 ,

(3.92)

fa3a1mfa2mntni2i1
= (−ta3ta1ta2 + ta1ta3ta2 + ta2ta3ta1 − ta2ta1ta3)i2i1 ,

(3.93)

fa2a3mfma1ntni2i1
= (−ta2ta3ta1 + ta3ta2ta1 + ta1ta2ta3 − ta1ta3ta2)i2i1 .

(3.94)
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4a 4b

Figure 3.12: Quark-triangle contributions to qg → qggΦ amplitudes.

5a 5b 5c

Figure 3.13: Quark-box contributions to qg → qggΦ amplitudes.

4) Triangle diagrams with four gluon vertex

MadGraph [31] generates 12 graphs, which correspond to 4 four-gluon ver-

tices. The partial amplitudes, shown in Fig. 3.12, reads as

Aqg,Tri 4a = fa1a2mfma3ntni2i1 GV4, µ1µ2µ3µ4
eµ1, p
3 Φ ǫµ2

2 ǫµ3

3 J
µ4

21 , (3.95)

Aqg,Tri 4b = fa1a2mfma3ntni2i1
GV4, µ1µ2µ3µ4

ǫµ1

1 ǫµ2

2 ǫµ3

3

× T µ4µ5

Φ (q123, p2 − p1, mt)J21,µ5
. (3.96)

The color structure is the same as in Eqs. (3.92 -3.94), except for a relative

sign, due to different permutations of the involved gluons.

5) Box diagrams

Partial amplitudes with a box tensor, depicted in Fig. 3.13, can be con-

structed in the following ways

Aqg,Box 5a = ifa2a1m
(

tmta3

)

i2i1
BΦ

µ1µ2µ3
(q2, q1, p2 − p1 + q3, mt)

× ǫµ1

2 ǫµ2

1 Jµ3

21 (q3∗) , (3.97)

Aqg,Box 5b = fa2a1mfa3mntni2i1
BΦ

µ1µ2µ3
(q12, q3, p2 − p1, mt)
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× JG, µ1

32 ǫµ2

1 Jµ3

21 , (3.98)

Aqg,Box 5c = fa2a1mfa3mntni2i1
GV3, µ3µ4µ5

BΦ
µ1µ2µ3

(q2, q1, p2 − p1 + q3, mt)

× ǫµ2

1 ǫµ1

2 ǫµ4

1 Jµ5

21 . (3.99)

The decomposition of the color factors in terms of the basis elements was

already shown in Eqs. (3.83 -3.88) and (3.92 -3.94).

6) Pentagon diagrams

In the effective theory there is only one pentagon, that corresponds to a

four-gluon vertex with an additional Higgs boson emission. Furthermore, it

features the same tensor and color structure of a four-gluon vertex. The full

loop theory provides 12 pentagon diagrams, if Furry’s theorem is taken into

account. The color structure does not correspond to a four-gluon vertex and

therefore has to be treated separately

• perm.:







(a1, a2, a3, d), (a2, a3, d, a1), (a3, d, a1, a2), (d, a1, a2, a3)

(a1, d, a3, a2), (d, a3, a2, a1), (a3, a2, a1, d), (a2, a1, d, a3)

c1 t
a4

i2i1
= − 1

2N
da1a2a3δi2i1 +

1

2

(

ta1ta2ta3 + ta3ta2ta1

)

i2i1
, (3.100)

• perm.:







(a1, a3, d, a2), (a3, d, a2, a1), (d, a2, a1, a3), (a2, a1, a3, d)

(a1, a2, d, a3), (a2, d, a3, a1), (d, a3, a1, a2), (a3, a1, a2, d)

c2 t
a4

i2i1
= − 1

2N
da1a2a3δi2i1 +

1

2

(

ta3ta1ta2 + ta2ta1ta3

)

i2i1
, (3.101)

• perm.:







(a1, d, a2, a3), (d, a2, a3, a1), (a2, a3, a1, d), (a3, a1, d, a2)

(a1, a3, a2, d), (a3, a2, d, a1), (a2, d, a1, a3), (d, a1, a3, a2)

c3 t
a4

i2i1
= − 1

2N
da1a2a3δi2i1 +

1

2

(

ta2ta3ta1 + ta1ta3ta2

)

i2i1
, (3.102)

where the ci of Eq. (3.32) and SU(N)-identities of Appendix C were used.

The color generator ta4

i2i1
comes from the attached quark current of Eq. (3.9)

and is contracted with the free index a4 inside the ci. An example of such

a diagram is shown in Fig. 3.14. In comparison to the effective theory, the
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Figure 3.14: Quark-pentagon contributions to qg → qggΦ amplitudes.

existence of the total symmetric structure constant da1a2a3 extends the color

space by an additional dimension. Using the basis (3.76-3.79) at first, one

can build up a symmetric 6× 6 matrix RGBqg
ij , which contains again SU(N)

Casimir invariants

RGBqg
ij =

1

9
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−8 10 1 64 −8 1

1 1 10 −8 64 −8

10 −8 1 1 −8 64







































. (3.103)

The squared expression and interference term of the total symmetric struc-

ture constant d with the color basis read as

C1 =
(

− 1

2N
da1a2a3δi2i1

)2 N=3
=

10

36
, (3.104)

C2 = − 1

2N
da1a2a3δi2i1

[

(taitaj tak)i2i1

]† N=3
=

10

72
,

i, j, k = 1, 2, 3 and i 6= j 6= k .

For the loop-induced theory, the squared amplitude, summed over initial-

and final-particle color, becomes

∑

color

|Aqq|2 =
(

F qg,3j
p

)2
{

6
∑

i,j=1

RGBqg
ij Re

[

Ai

(

Aj

)∗
]

+ C1

∣

∣Apen
∣

∣

2

45



+ 2C2

6
∑

i=1

Re
[

Ai

(

Apen
)∗
]

}

, (3.105)

with

F qg,3j
p = −S1 S2 2

√

p0
1 p

0
2 δσ1σ2

F 3j
p . (3.106)

The shorthand (Apen) denotes the sum of the 12 pentagon contributions. To

switch to the effective theory, one has to set both color coefficients Ci = 0

and take notice of the different color structure of the effective pentagons.

3.4.3 gg → gggΦ

Using MadGraph [31], 380 diagrams were generated in the effective limit ap-

proach. The full theory provides further hexagon-like topologies additionally

to the already complicated pentagons. This circumstances make that pro-

cess numerically very challenging. Due to the large number of diagrams and

the length of the result, expressions for the amplitudes are not written here

explicitly. It is strategically favorable to start with the hexagons and inves-

tigate their color structure. The five external gluons give rise to 5! = 120

hexagons. They are proportional to 120 different color traces of the form

tr
[

taitaj taktaltam
]

with i, j, k, l,m = 1, . . . , 5

and i 6= j 6= k 6= l 6= m , (3.107)

in which (5 − 1)! = 24 are independent, only due to the invariance property

of the trace under cyclic permutations. They are given explicitly by

(1) tr
[

ta1ta2ta3ta4ta5

]

, (2) tr
[

ta1ta2ta3ta5ta4

]

, (3) tr
[

ta1ta2ta4ta5ta3

]

,

(4) tr
[

ta1ta2ta5ta4ta3

]

, (5) tr
[

ta1ta3ta4ta5ta2

]

, (6) tr
[

ta1ta3ta5ta4ta2

]

,

(7) tr
[

ta1ta4ta5ta3ta2

]

, (8) tr
[

ta1ta5ta4ta3ta2

]

, (9) tr
[

ta1ta3ta4ta2ta5

]

,

(10) tr
[

ta1ta3ta2ta5ta4

]

, (11) tr
[

ta1ta3ta3ta2ta4

]

, (12) tr
[

ta1ta4ta2ta5ta3

]

,

(13) tr
[

ta1ta4ta5ta2ta3

]

, (14) tr
[

ta1ta5ta2ta4ta3

]

, (15) tr
[

ta1ta3ta2ta4ta5

]

,

(16) tr
[

ta1ta5ta4ta2ta3

]

, (17) tr
[

ta1ta2ta4ta3ta5

]

, (18) tr
[

ta1ta2ta5ta3ta4

]

,

(19) tr
[

ta1ta4ta3ta5ta2

]

, (20) tr
[

ta1ta5ta3ta4ta2

]

, (21) tr
[

ta1ta4ta3ta2ta5

]

,

(22) tr
[

ta1ta5ta2ta3ta4

]

, (23) tr
[

ta1ta4ta2ta3ta5

]

, (24) tr
[

ta1ta5ta3ta2ta4

]

.

(3.108)
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These 24 traces provide the color basis for the sub-process. The number of

hexagons can be now reduced via Furry’s theorem [29] from 120 to 60. All

charge-conjugated hexagons are then distributed to 12 differences of two op-

posite color traces, which are built up from the color basis (3.108). In the

previous sub-process, all pentagons were attached to the quark current of

Eq. (3.9), which is here replaced by the gluon current (3.10). This replace-

ment gives rise to 120 contributions with pentagon insertions. Using the

color coefficients (3.31) and the commutator relation
[

ta1 , ta2

]

= ifa1a2a3ta3 ,

one arrives at 10 basic momenta configurations for the pentagon graphs. The

first momenta configuration
{

1, 2, 3, [4, 5]
}

with gluon current JG
45 yields

c1 f
ma4a5 = −i

(

tr
[

ta1ta2ta3ta4ta5

]

tr − tr
[

ta1ta2ta3ta5ta4

]

+ tr
[

ta1ta4ta5ta3ta2

]

− tr
[

ta1ta5ta4ta3ta2

]

)

, (3.109)

c2 f
ma4a5 = −i

(

tr
[

ta1ta3ta4ta5ta2

]

− tr
[

ta1ta3ta5ta4ta2

]

+ tr
[

ta1ta2ta4ta5ta3

]

− tr
[

ta1ta2ta5ta4ta3

]

)

, (3.110)

c3 f
ma4a5 = −i

(

tr
[

ta1ta4ta5ta2ta3

]

− tr
[

ta1ta5ta4ta2ta3

]

+ tr
[

ta1ta3ta2ta4ta5

]

− tr
[

ta1ta3ta2ta5ta4

]

)

. (3.111)

The structure constants f are contracted via the index m with the free index

a4, replaced by m inside the ci. One has to keep in mind, that every ci
is proportional to a sum of four charge-conjugated pentagons with cyclicly

permuted gluons. The remaining permutations are listened in Appendix F.1.

Graphs with triangle and box insertions are all proportional to a color factor

composed of three structure constants f . It can be decomposed in terms of

the color basis in the following way using the SU(N) identities of Appendix

C

fa1a2mfma3nfna4a5

= 2 i
(

− tr
[

ta1ta2ta4ta5ta3

]

+ tr
[

ta1ta2ta5ta4ta3

]

− tr
[

ta1ta2ta3ta4ta5

]

+ tr
[

ta1ta2ta3ta5ta4

]

− tr
[

ta2ta1ta4ta5ta3

]

+ tr
[

ta2ta1ta5ta4ta3

]

− tr
[

ta2ta1ta3ta4ta5

]

+ tr
[

ta2ta1ta3ta5ta4

]

)

. (3.112)
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All remaining Feynman graphs, containing a triangle- or a box-loop, are

substantially similar to those shown in the former sub-process, but with

quark-currents replaced by the corresponding gluon-currents. The rewriting

rules of the Appendix E for triangle- and box-diagrams provide a simple

switch to the full theory. Even the pentagons can be implemented in a

quite easy way, because their color structure (see Eq. (3.109) and App. F.1)

can be reduced directly to the color basis of Eq. (3.108). Finally a 24 ×
24 symmetric color matrix RGBgg

ij , built up from the color basis, mixes all

partial amplitudes and yields the squared expression of the sum of all partial

amplitudes

∑

color

|Aqq|2 =
(

F 3j
p

)2
24
∑

i,j=1

RGBgg
ij Re

[

Ai

(

Aj

)∗
]

. (3.113)

The entries of the matrix RGBgg
ij can be extracted directly from the corre-

sponding sub-process, generated by MadGraph [31].
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Chapter 4

Numerical implementation and

checks

Analytic expressions for the amplitudes of the previous chapters were imple-

mented in the Fortran program VBFNLO [4]. The tensor reduction of the

loop contributions up to boxes is performed via Passarino-Veltman reduc-

tion [32, 33], while for the pentagons the Denner-Dittmaier algorithm [34, 35]

is used, which avoids the inversion of small Gram determinants emerging in

planar configurations of the Higgs and the two final state partons. The

program was numerically tested in several ways. Besides usual gauge- and

Lorentz-invariance tests, the different topologies were also checked separately.

The contraction of a fermionic triangle-tensor T µ1µ2

Φ,f (q1, q2, mf) with gluon

momentum qµ
i vanishes in the case of the CP-odd Higgs-boson, due to total

antisymmetry of the Levi-Civita symbol and in the CP-even case, since both

form factors FL and FT , defined in Eqs. (B.8, B.9), are transversal. Hence,

the Ward-identity for triangle loops is given by

qµ1

1 TΦ,f
µ1µ2

(q1, q2, mf) = qµ1

2 TΦ,f
µ1µ2

(q1, q2, mf) = 0 . (4.1)

Contracting with external gluon momenta, the tensor expressions of fermionic

boxes, pentagons and hexagons reduce to differences of triangles, boxes and

pentagons respectively. With the tensor integrals as defined in the Ap-

pendix B, the Ward-identities for the boxes read

qµ1

1 B
Φ,f
µ1µ2µ3

(q1, q2, q3, mf) = TΦ,f
µ2µ3

(q12, q3, mf) − TΦ,f
µ2µ3

(q2, q3, mf) , (4.2)

qµ2

2 B
Φ,f
µ1µ2µ3

(q1, q2, q3, mf) = TΦ,f
µ1µ3

(q1, q23, mf) − TΦ,f
µ1µ3

(q12, q3, mf) , (4.3)

qµ3

3 B
Φ,f
µ1µ2µ3

(q1, q2, q3, mf) = TΦ,f
µ1µ2

(q1, q2, mf) − TΦ,f
µ1µ2

(q1, q23, mf) , (4.4)
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where the abbreviation qij = qi + qj has been used. Similarly, for the pen-

tagons one finds

qµ1

1 P
Φ,f
µ1µ2µ3µ4

(q1, q2, q3, q4, mf)

= BΦ,f
µ2µ3µ4

(q12, q3, q4, mf ) −BΦ,f
µ2µ3µ4

(q2, q3, q4, mf ) , (4.5)

qµ2

2 P
Φ,f
µ1µ2µ3µ4

(q1, q2, q3, q4, mf)

= BΦ,f
µ1µ3µ4

(q1, q23, q4, mf ) −BΦ,f
µ1µ3µ4

(q12, q3, q4, mf) , (4.6)

qµ3

3 P
Φ,f
µ1µ2µ3µ4

(q1, q2, q3, q4, mf)

= BΦ,f
µ1µ2µ4

(q1, q2, q34, mf ) −BΦ,f
µ1µ2µ4

(q1, q23, q4, mf) , (4.7)

qµ4

4 P
Φ,f
µ1µ2µ3µ4

(q1, q2, q3, q4, mf)

= BΦ,f
µ1µ2µ3

(q1, q2, q3, mf) −BΦ,f
µ1µ2µ3

(q1, q2, q34, mf ) . (4.8)

In the exactly same manner, one can continue with this procedure for the

hexagons [36]. These identities were tested numerically and they, typically,

are satisfied at least at the 10−9 level, when using Denner-Dittmaier reduc-

tion for the tensor integrals. With decreasing number of external legs the

accuracy of these identities improves.

In addition, one can perform a QED-check for the pentagons. Replacing

gluons by photons and considering the process γγ → γγΦ, diagrams with

three- and four-gluon-vertices vanish, because these structures are not avail-

able in an Abelian theory. The amplitude is simply given by the sum of all

pentagon graphs, without color factors. When contracting with an external

gauge boson momentum, one obtains zero, since boxes are not allowed for

photons, by Furry’s theorem. The amplitudes pass this test as well.

Squared expressions of amplitudes with squark-contributions and the Higgs

couplings to up-type and down-type squarks were checked numerically for

a selection of randomly generated phase space points against the FeynArts,

FormCalc [37, 38, 39] package and agreed at least at 10−6 level. Also full

cross sections of individual sub-processes in the Φjj production coincided

within the integration error, which was below 1%.

To check the full scattering amplitudes, one can make use of the heavy-top

effective Lagrangian, which is explained in more detail in App. E. As mt

becomes large, the results calculated with full fermion loops must approach

the approximate ones, derived from the effective Lagrangian. This check was
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performed with mt = 5000 GeV, and cross sections of the two jet processes

converge towards the effective limit as expected.

The implementation of scattering amplitudes of the Φjjj production into the

framework of VBFNLO was checked against MadGraph [31] within the ef-

fective limit by comparing amplitudes at individual phase space points. The

comparisons for the Higgs-bosons HSM and A agreed at the 10−16 level. For

large top-quark mass values, mt = 5000 GeV, the full loop contributions were

checked only for sub-processes containing quark and gluons as external par-

ticles (see Eqs. (3.46) and (3.47)). As expected, the convergence towards the

effective limit could also be confirmed numerically for a selection of randomly

generated phase space points and fully integrated cross sections.
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Chapter 5

Applications to LHC physics

5.1 Introduction

The numerical analysis of the Φ+2 and Φ+3 jet cross section was performed

with the gluon fusion part GGFLO of the parton level Monte Carlo program

VBFNLO [4], using the CTEQ6L1 [40] set for parton-distribution functions.

In order to prevent soft or collinear divergencies in the cross sections, a

minimal set of acceptance cuts has to be introduced [1]

pTj > 20 GeV, |ηj | < 4.5, Rjj > 0.6 , (5.1)

where pTj is the transverse momentum of a final state parton and Rjj de-

scribes the separation of the two partons in the pseudo-rapidity η versus

azimuthal-angle plane

Rjj =
√

∆η2
jj + φ2

jj , (5.2)

with ∆ηjj = |ηj1−ηj2| and φjj = φj1−φj2. These cuts anticipate LHC detec-

tor capabilities and jet finding algorithms and will be called ”inclusive cuts”

(IC). For weak-boson fusion (WBF) studies, gluon-fusion induced processes

can be suppressed by the use of an additional set of selection cuts (WBFC)

[2]

∆ηjj = |ηj1 − ηj2| > 4.2 , ηj1 · ηj2 < 0 , mjj > 600 GeV . (5.3)

The WBFC allow only well separated tagging jets, lying in opposite detector

hemispheres and having large dijet invariant mass. Furthermore, a one-

loop running of αs was performed with a fixed value at the MZ scale, that

is αs(MZ) = 0.13. If not specified explicitely, for the top-quark mass the
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updated value of mt = 171.3 GeV [41] is used in Yukawa couplings as well

as in loops with virtual top-quarks. In the case of bottom-loops, a running

Yukawa coupling is taken into account with the Higgs-mass as reference scale.

Within the Higgs-mass range of 100-600 GeV, the bottom-quark mass is 33-42

% smaller than, the pole mass of 4.79 GeV [41] used in the loop propagators.

The evolution of mb up to a reference scale µ can be expressed as

mb(µ) = mb (mb)
c
[

αs(µ)/π
]

c
[

αs(mb)/π
] . (5.4)

with mb (mb) = 4.2 GeV, as derived from the relation between pole mass and

MS-bar mass. For the coefficient function c the five flavor approximation [16]

is given by

c(x) =

(

23

6
x

)
12

23
[

1 + 1.175x+ 1.501x2 + 0.1725x3
]

. (5.5)

Unless specified otherwise, the factorization scales for two and three jet pro-

cesses are set to

µ2j
f =

√
pT1 pT2 and µ3j

f = (pT1 pT2 pT3)
1/3 , (5.6)

while the renormalization scales are fixed by setting [1, 42]

α4
s(µR) = αs(pT1)αs(pT2)α

2
s(mΦ) and (5.7)

α5
s(µR) = αs(pT1)αs(pT2)αs(pT3)α

2
s(mΦ) . (5.8)

5.2 Production of the CP-odd Higgs boson A

in association with two jets

The production of the CP-odd Higgs boson A in association with two jets

at order α4
s , proceeds in analogy to the CP-even Higgs boson HSM of the

SM [2, 3]. The Higgs boson A is produced via massive quark loops, for

which only the third quark generation is taken into account. Here, for the

top-quark mass the value of mt = 172.6 GeV is used. Furthermore, massive

squark loops can be safely neglected, because these contributions sum up to

zero at amplitude level (see (A.25)).
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Figure 5.1: A + 2 jet cross sections as a function of the Higgs boson

mass. Left panel: individual contributions to the gluon-fusion process

(gg, qg and qq amplitudes) for tan β = 1. Right panel: cross sections

of the complete A + 2 jet process for different tan β. All processes

include interferences of top- and bottom-quark loops. For both panels

the inclusive cuts (IC) of Eq. (5.1) are applied.
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Figure 5.2: A + 2 jet cross sections as functions of the Higgs boson

mass but with applied WBFC set (5.3).

Expected cross sections at the LHC are shown in Fig. 5.1, as a function of

the Higgs boson mass mA within the minimal cuts of Eq. (5.1). The left
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panel in Fig. 5.1 shows different cross sections of the individual contribu-

tions (gg, qg and qq amplitudes) to the gluon fusion process with tanβ = 1.

Cross sections for processes containing external gluons are much bigger than

those induced by quark-quark contributions. The reason is an increase of

the gluon-pdf at small x leading to soft events in the initial state. The mass

dependence of the cross section of the complete gluon-fusion process for dif-

ferent tan β and with top- and bottom-quark interference is given in the right

panel of Fig. 5.1. For small tanβ, the cross section induced by a top-quark

loop dominates compared to the cross section with bottom-quark loop, which

is naturally suppressed by the small Yukawa coupling. The minimal cross

section is obtained for tan β ≈ 7 due to CA
t ≈ CA

b (see Eq. (A.7) and (A.8)).

In case of large tan β, the bottom-quark contributions dominate. However,

they show a much more rapid decrease of the cross section with rising mA,

since the suppression scale of loops is now set by the heavy Higgs boson

mass instead of the quark mass. The striking peak arises due to threshold

enhancement at mH ≈ 2 mt, whereas for the bottom-quark loop dominated

process no peak appears within this mass range. To avoid singular increase

of the cross section, the threshold enhancement was smeared out by integrat-

ing over the expected Breit-Wigner peak of the Higgs. For this purpose, the

width was determined by adding partial widths for A→ {gg, τ+τ−, bb̄, tt̄}.
In comparison to Fig. 5.1, subprocesses with external gluons, shown in Fig. 5.2,

are strongly suppressed by the WBFC set, because events with jets in the

central region are cut away due to the requirement of large dijet invariant

mass. Hence the over-all cross section decreases as expected.

The left side of Fig. 5.3 shows the tan β dependence of the cross section for

different Higgs-masses. Here, the minimum moves with increasing Higgs-

mass to higher values of tanβ. On the one hand this behavior is correlated

with the steeper fall-off of the bottom-loop dominated contributions to the

cross section for large tanβ with increasing Higgs mass. And on the other

hand, it is simply the fact, that couplings to up-type quarks are weakened

and to down-type quarks enhanced by tanβ respectively. The presence of the

γ5-matrix in the analytic expression for the fermion loops leads, of course,

to a new tensor structure (see Appendix B) and to a normalization of the

loops, that gives rise to a (3/2)2 = 2.25 bigger cross section compared to the

Standard Model [1], if tan β = 1, as given in Fig. 5.3. Up to Higgs-masses
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Figure 5.3: Cross section as a function of tan β for different Higgs

masses (left panel) and comparison of cross sections of the CP-odd

and CP-even Higgs coupling in both loop-induced and effective theory

(right panel). Here, the inclusive cuts (IC) of Eq. (5.1) were applied.

of 160 GeV and for small transverse momenta pTj . mt, the effective La-

grangian approximation gives correct results and can be used as a numerically

fast alternative for phenomenological studies. The effective Lagrangians for

the CP-even and CP-odd Higgs bosons are described in more detail in Ap-

pendix E. Furthermore, the enhancement at threshold is more smoother in

the case of the CP-even Higgs boson due to the additional contributing par-

tial widths of decays to W and Z gauge bosons. For the CP-odd case, those

decay modes are forbidden at tree-level and, thus, have not been considered.

Effects of bottom-loop dominated Ajj production become also noticeable on

the transverse momentum distributions of the accompanying jets. They are

clearly visible in Figs. 5.4 and 5.5, where the transverse-momentum distri-

butions of the softer and the harder of the two jets are shown for pseudo-

scalar Higgs masses mA = 120, 200 and 400 GeV and tanβ = 1, 7, 30.

For pTj > mb, the large scale of the kinematics invariants leads to an ad-

ditional suppression of the bottom induced sub-amplitudes compared to the

heavy quark effective theory. Furthermore, with increasing tanβ both dis-

tributions fall more steeply, which means, that both tagging jets get softer.

Above tanβ ≈ 30 this evolution stagnates.
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Figure 5.4: Normalized transverse-momentum distributions of the

softer jet in Ajj production at the LHC, for different tan β and Higgs-

mass values The inclusive selection cuts of Eq. (5.1) are applied.
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Figure 5.5: Normalized transverse-momentum distributions of the

harder jet in Ajj production at the LHC, for different tan β and Higgs-

mass values The inclusive selection cuts of Eq. (5.1) are applied.

The azimuthal angle distribution between the more forward and more back-

ward of the two tagging jets provides information about the CP-property of

the Higgs coupling. Here, for the CP-odd case the maxima of the distribu-

tion are located at φjj ≈ ±90 degrees in contrast to the CP-even coupling.

A direct comparison is shown in the left panel of Fig. 5.7. The calculation
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Figure 5.6: Azimuthal-angle distributions between the two final jets of

the CP-odd Higgs boson for different Higgs-masses and tan β values.

Here, the ICphi set of Eq. (5.9) is used.

was carried out with a modified inclusive cuts set (ICphi) [43]:

pTj > 30 GeV, |ηj | < 4.5, Rjj > 0.6; ∆ηjj = 3 . (5.9)

The additional ∆ηjj cut is necessary to get that distinct shape for the φjj-

distribution, which is shown in figures 5.6 and 5.7. For a relatively light

pseudo-scalar Higgs boson and large tanβ, the softer transverse momentum

distribution of the Higgs leads to kinematical distortions of the φjj distri-

bution: at φjj ≈ 0 the Higgs recoils against two jets and hence must have

pTH > 60 GeV, and this high pT -scale leads to an additional suppression

as compared to the φjj ≈ ±180 degree case where transverse momentum

balancing of the jets does allow pT,Φ = 0.

5.3 Production of a CP violating Higgs boson

Φ in association with two jets

The azimuthal angle distribution for the CP-even and CP-odd Higgs bosons

were investigated at first in the context of effective theories [44]. As men-

tioned already in the previous chapter, both distributions are clearly distin-

guishable by the position of the extreme values. Furthermore, it is interesting

to investigate models with CP-violating Higgs sector and see the impact of
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Figure 5.7: The azimuthal-angle distribution of the CP-odd and CP-

even coupling (left panel). Interference pattern within a toy model

with CP-violating Higgs-sector for different tan β (right panel). The

CP-odd coupling was adjusted to the CP-even one by a factor of 2/3.

Here, the ICphi set (5.9) was used.

CP-effects on the azimuthal angle distribution. Such effects can appear e.g.

in the cMSSM, where complex phases and loop effects cause mixing of scalar

and pseudo-scalar Higgs bosons to new CP-eigenstates. But these analyses

are quite involved and lie beyond the scope of this work. Unfortunately the

original azimuthal angle variable, defined by

cosφjj =
~pTj1 · ~pTj2

|~pTj1||~pTj2|
, (5.10)

is not sensitive to these effects and would give a flat distribution correspond-

ing to that one of the electro-weak boson fusion [45]. A redefinition of the

azimuthal angle variable was introduced in Refs. [43, 46]. To mimic CP vio-

lation in the Higgs sector, one can combine simply the CP-even and CP-odd

Yukawa couplings together

YΦ =
yq mq

v

(

iCH + CAγ5

)

with yu = cot β, yd = tan β (5.11)

and investigate the impact on the azimuthal angle distribution. The scaling

factor yq allows to change the strength of the new coupling to up-type and

down-type quarks with tanβ, similar to the case of the A boson. The parame-

ters CA and CH denote the magnitudes of the CP-odd and CP-even coupling
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respectively. Depending on the value of these parameters, the azimuthal-

angle distribution moves between these curves and characterizes the grade of

CP-violation. An example, which also includes interference effects between

bottom- and top-quark loops, is shown for different tanβ in the right panel

of Fig. 5.7. The value of CA was fixed at CA = 2/3 to yield equal strengths

for both Higgs-couplings. However, there are additional distortions of the

azimuthal angle distributions, which can again be explained by kinematical

effects due to transverse momentum balancing of the two jets and the Higgs

boson.

5.4 Production of the CP-even Higgs bosons

h and H in association with two jets with

additional squark contributions

Numerical investigation of the CP-even HSM within the SM was already per-

formed in Ref. [2]. For the contributing subprocesses, only contributions

mediated by top-quark loops were taken into account. Loops with bottom-

quarks were neglected, because of the missing enhancement of the Yukawa

coupling by further model parameters, like tanβ, e.g. in a general 2HDM

or the MSSM. As already mentioned, the two Higgs-doublet structure of

the MSSM provides two CP-even Higgs bosons with different masses, but

with the same tensor structure corresponding to that of the SM Higgs boson

HSM. However, their Yukawa couplings to up-type and down-type quarks

are modified by additional factors containing the mixing angle α of the neu-

tral components of both Higgs-doublets and the angle β coming from the

ratio of the two vacuum expectations values v1 and v2. This means, that

contributions mediated by bottom-quark loops can gain sizeable enhance-

ment. Furthermore, all massive supersymmetric partners of the SM particles

can couple to the Higgs bosons and, hence, give further contributions. The

new couplings involve additional model parameters, like the trilinear cou-

plings At, Ab and supersymmetric Higgs-mass parameter µ, whose values are

restricted by given experimental exclusion limits [41]. Here, in this analy-

sis only contributions with squarks of the third generation are taken into

account. This third generation of squarks is somewhat special, due to the
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non-negligible masses of their fermion partners. The off-diagonal L-R mixing

terms (see chapter 2.3) in the squark mass matrix are large, because of their

proportionality to mb or mt. They provide a large splitting, especially in

the stop case. The bottom and top squarks manifest themselves physically

as the mass eigenstates b̃1,2 and t̃1,2. This makes t̃1 the lightest squark and

hence interesting for the analysis. The calculation of squark mixing angles

θq̃ is explained briefly in chapter 2.3. A further property of supersymmetry

is, that contributions with SM-like particles are canceled by contributions

containing supersymmetric partners, which carry opposite sign factors. This

effect is investigated below in more detail for the light Higgs boson h and

heavy Higgs boson H . The evaluation was done using the following values

as input parameters:

At [GeV ] Ab [GeV ] µ [GeV ] mA [GeV ]

1000 1500 150 200

.

Based on the statement, that the top squark is possibly the lightest squark,

the t̃1-mass was chosen as the scan parameter for the analysis. All other

masses of the remaining top and bottom squarks were calculated with the

FeynArts, FormCalc [37, 38, 39] package using the input parameters men-

tioned above. Depending on the values for the squark masses and the param-

eter tan β, loop corrected masses for the Higgs bosons h and H were calcu-

lated with the help of FeynHiggs [47, 48, 49, 50]. The masses of both Higgs

bosons alter very slightly, although the contributions mediated by squark-

loops change continuously during the scanning procedure. They are shown

in Fig. 5.8. Hence, only marginal changes of the cross section are expected

over the whole scanning range. The mass mh ≈ 102 GeV is excluded by

experiment and is used only for the purpose of illustration. The final evalua-

tion was done with the gluon fusion part GGFLO of the VBFNLO program.

Expected cross sections for the production of the light and the heavy Higgs

bosons are shown in Fig. 5.9 as a function of the t̃1-mass for different values

of tanβ within the minimal cuts of Eq. (5.1).

For the light Higgs boson h, one can see very clearly the expected impact

of the contributions mediated by squark-loops (left panel of Fig. 5.9). In

the range between 180-400 GeV the cross section is strongly suppressed as a
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Figure 5.8: Loop-corrected Higgs masses of h and H as a function of

the t̃1-mass for different values of tan β.
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Figure 5.9: Full cross section with t and b quark as well as t̃1,2 and

b̃1,2 squark contributions as a function of t̃1-mass for different values

of tan β and Higgs-masses shown in Fig. 5.8. For both panels the

inclusive cuts (IC) of Eq. (5.1) were applied.

result of strong cancellations between SM-like particle and SUSY-like parti-

cles. For masses beyond 600 GeV, the scalar loops decouple or rather become

negligible and the evolution of the cross section stagnates with contributions
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mediated only by top- and bottom-quarks. To get a feeling for the influence

of tan β on the Yukawa and scalar couplings, the cross sections of individual

loop-contributions and the full result including interference effects of all am-

plitudes are shown in the upper table 5.1 for a t̃1-mass of 180 GeV, which

corresponds to the first parameter set of Fig. 5.9:

σ(h) [fb]

tanβ t b t̃1 t̃2 b̃1 b̃2
∑

+int.

3 16058,2 20,8 2717,5 89,7 0.5 2, 9 · 10−2 7263.2

7 15135,1 17,1 2964,6 84,4 0.5 1, 0 · 10−3 6242.1

50 15092,2 16,4 3236,9 84,0 1,9 1,2 5746.4

σ(H) [fb]

3 1585,8 5,4 919,3 13,8 0,3 0,9 213.2

7 385,7 36,5 413,0 4,8 1,9 2,5 46.7

50 8,3 1980,7 140,5 1.0 117,7 229,3 1963.5

Table 5.1: Cross sections of the light Higgs h (top) and heavy Higgs H

(bottom) ordered by individual contributions with different loop-masses

and values of tan β. Total cross sections contain interference effects of

all amplitudes. The inclusive selection cuts of Eq. (5.1) were applied.

With increasing tanβ, only contributions induced by b̃2-loop gain an appre-

ciable enhancement. Furthermore, loops with t̃1 provide the biggest con-

tribution in the squark-sector up to high values of tanβ, because of their

relative small mass. However, the influence of tan β is quite slight. Also the

contribution of t̃2 remains almost constant and yields a small cross section,

which is an effect of the bigger loop-mass. Amplitudes with top- and bot-

tom quarks hardly get modifications, because the ratio of the trigonometric

functions depending on α and β inside the Yukawa couplings (see App. A.1)
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stay, roughly speaking, in equilibrium, a sign of h decoupling at large mA.

Similar evolution of the cross sections for the heavy Higgs boson H is found

in the right panel of Fig. 5.9, except for high values of tanβ. Generally, the

cross section for the Hjj production turns out to be smaller in comparison

to the light Higgs boson h. Namely it gets additional suppression due to the

bigger mass. The cross sections show an equal behavior for masses beyond

600 GeV, where contributions with squarks get strongly suppressed indepen-

dently of tanβ by rising squark-masses in the loop-propagators. To get a

better understanding of the behavior of the cross section for tanβ = 50, val-

ues of σ for the first parameter set corresponding to the t̃1-mass of 180 GeV

and for different tanβ are shown in the lower table 5.1. Here, contributions

with top-quarks are strongly suppressed in contrast to contribution mediated

by bottom-quark loops for raising values of tanβ. This behavior is similar

to that of the CP-odd Higgs boson A. The same happens for up-type and

down-type squarks. For high values of tanβ, amplitudes with bottom-loops

dominate, however, contributions induced by all squark-loops are still too

small to compensate the contribution given by the quark-loops.

The result is an almost flat distribution over the whole t̃1-mass range. By

the way, full cross sections show also a distinct minimum for tan β = 7.
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Figure 5.10: Normalized transverse-momentum distributions of the

harder and softer jet in hjj production at the LHC, for different tan β

and Higgs-masses shown in Fig. 5.8.
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Figure 5.11: Normalized transverse-momentum distributions of the

harder and softer jet in Hjj production at the LHC, for different tan β

and Higgs-masses shown in Fig. 5.8.

The reasons for this minimum are already small contributions provided by

quark-loops and further suppression by amplitudes with squark-loops.

Complementary to the table 5.1, distributions for the transverse momenta of

the accompanying jets and azimuthal angle are shown in Figs. 5.10, 5.11 and

Fig. 5.12 respectively. The almost equal shapes for the production of the light

Higgs boson h with fermionic and sfermionic contributions for different tan β

confirm the fact, that there is no significant influence of the parameter tan β.

On the contrary, the heavy Higgs boson H is much more sensitive to tan β

and shows a similar behavior as the CP-odd Higgs boson A. With increasing

values of tan β, the transverse momentum distribution of the softer and the

harder of the two jets fall more steeply. Furthermore, the softer transverse

momentum distributions of H leads also to kinematical distortion of the

azimuthal angle distribution, which is here very clearly visible at φjj ≈ ±90.

Ones has to keep in mind, that contributions of sfermionic loops provide an

additional suppression of the cross section, which becomes noticeable on the

behavior of the φjj-distribution for tan β = 7 in comparison to the Higgs

boson A.
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Figure 5.12: Azimuthal-angle distributions between the two final jets

of the CP-even Higgs bosons h and H for different tan β and Higgs-

masses shown in Fig. 5.8. Here the ICphi set is used.

5.5 Production of the Higgs bosons Φ in as-

sociation with three jets

As already discussed in the previous chapters, the azimuthal angle correla-

tion φjj between the accompanying jets is a sensitive measure of the tensor

structure for the Higgs couplings to electro-weak bosons or gluons. Espe-

cially in the case of Higgs boson production via gluon fusion, characteris-

tic shapes of the φjj-distribution for CP-even and CP-odd Higgs couplings,

shown in Fig. 5.7, allow to discriminate between the SM or extensions e.g.

the MSSM. A further aspect of interest is the modification of the azimuthal

angle correlation by the emission of additional gluons. Former investigations

with showering and hadronisation provided a strong de-correlation between

the tagging jets in Higgs +2 jet production [51]. The de-correlation effects,

however, were disproportionately illustrated due to approximations in the

parton-shower. More recent analyses [52, 53] show, that after separation

of hard radiation and showering effects with subsequent hadronisation, the

φjj-correlation survives with minimal modifications. Similar results were ob-

tained by a parton level calculation with NLO corrections [21] to the Hjj

process in the framework of the effective Lagrangian.
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Figure 5.13: Normalized azimuthal-angle distributions for the pro-

duction of the CP-odd and CP-even Higgs bosons in the sub-processes

qq → qqΦ, qq → qqgΦ and crossing related sub-processes. The ICphi

set of Eq. (5.9) is used.

The calculation and implementation of the process Φjjj with full massive

loops, introduced in chapter 3.4, allows also among other things, the inves-

tigation of de-correlation effects beyond present frameworks, which only use

the effective Lagrangian approach.

As a primal result, the azimuthal-angle distributions of the processes qq →
qqΦ and qq → qqgΦ with Φ = HSM, A are shown in Fig. 5.13 for the modified

inclusive cuts of Eq. (5.9). Furthermore, crossing related sub-processes were

also taken into account (see also Eq. (3.46) ). All processes contain top-quark

triangle loops and the three jet process even additional Feynman diagrams

with box-loop insertions. In order to simplify matters, the value of tan β = 1

is taken in the coupling of the CP-odd Higgs boson A.

Both φjj distributions confirm de-correlation effects, when the process Φjj

is extended by a further jet. One can see, that the dips at φjj ≈ 0 for

the CP-odd A and φjj ≈ ±π/2 for the CP-even HSM are shallower then in

the corresponding process with two jets. But these first results have to be

handled with care, because they show contributions, which only represent a

small fraction of the total process. The additional sub-processes qg → qggΦ,

gg → gggΦ and crossing related sub-processes, that are expected to give the
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main contributions, however, could not be taken into account. The ampli-

tudes of these contributions contain pentagons and even hexagons and make

the numerical analysis quite involved. Due to the extended phase-space in

the three jet process, and hence, increased amount of possible invariants en-

tering the tensor reduction, numerical instabilities appeared at the level of

five-point functions from rank two up to four. They deformed different distri-

butions, which are the subjects of this investigation, and made the analysis

impossible. A further analysis of the involved phase-space regions is neces-

sary to have a better control over the numerical evolution of the five-point

functions, that are also important as input for the six-point functions. Also

further comparisons with the two-jet processes have to be performed, because

the numerical evaluation of these processes caused no problems, although all

versions of five-point functions up to rank four were applied. The produced

results were already shown in the analysis chapters for the Higgs production

processes with two jets, using at least 224 randomly generated phase-space

points.
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Chapter 6

Conclusions

Searching for the Higgs boson within the framework of the Standard Model

and its supersymmetric extensions is one of the main tasks of the LHC. The

two main sources of Higgs plus two jet events are weak-boson fusion and

gluon fusion. Hence, a precise description of both processes is needed, in or-

der to separate them from each other. This thesis present the calculation of

scattering amplitudes for the production of neutral Higgs bosons within the

MSSM via gluon fusion with a two and three jet finale-state. The scattering

amplitudes for this processes are induced by triangle-, box-, pentagon- and

hexagon-loop diagrams at leading order. In this connection analytical ex-

pressions of loop-topologies were evaluated for scalar and fermionic particles

as well as for CP-odd and CP-even Higgs couplings. The tensor reduction

for triangle- and box-loops was performed via Passarino-Veltman reduction,

while for the pentagons and hexagons the Denner-Dittmaier algorithm was

applied to obtain numerically stable results. In the first part of the Chap-

ter 3, a detailed description of the analytical expressions of φjj scattering

amplitudes for sub-processes qq → qqφ, qg → qgφ, gg → ggφ and crossing

related sub-processes was presented. The second part of Chapter 3 described

in a detailed way the calculation of scattering amplitudes for a Higgs plus

three-jet final state. Chapter 4 was devoted to a brief description of analyti-

cal and numerical consistency checks of the calculation and implementation

into the Monte Carlo programVBFNLO. In Chapter 5 fully integrated cross

sections of the Ajj production with interference effects between top- and

bottom-loops were compared for different values of tanβ and masses mA

of the CP-odd Higgs boson. Furthermore, it was shown, that small quark

masses in the bottom-loops provide a softening effect on the transverse mo-

mentum distribution of the accompanying jets, which cannot be described
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within the framework of the effective Lagrangian. Distortion effects were also

observed in the azimuthal angle correlation of both jets in the bottom-loop

dominated Ajj production. Moreover, a pronounced difference between Ajj

and Hjj production in the azimuthal angle distribution between the two jets

could also be observed. This effect provides the possibility to determine the

CP-properties of the produced Higgs boson at the LHC. In addition to that,

effects of CP-violating couplings were simulated, which allow to investigate

scenarios with a CP-violating Higgs sector. Furthermore, interference effects

of contributions containing squark- and quark-loops in the production of the

CP-even Higgs bosons h and H plus two jets were investigated. Performed

scans for a set of MSSM-parameters confirmed the expected cancellations be-

tween the sfermionic and fermionic contributions, which resulted in a strong

reduction of the integrated cross sections. Based thereupon, effects of dif-

ferent values of tan β, especially for the heavy Higgs boson H , on azimuthal

angle and transverse momentum distributions could be illustrated. Finally,

preliminary results of the φjjj implementation were presented for a small set

of sub-processes. Here, de-correlation effects of the two-jet azimuthal angle

distribution were presented, which were an effect of the third jet produced

by the additional gluon in the final state.
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Appendix A

Higgs vertices to fermions and

sfermions

A.1 Higgs couplings to fermions

The Lagrangian for Higgs-fermion Yukawa interactions has the following form

LY =
∑

φ=h,H,A

∑

f=u,d

Cφ
fF fFfφ , (A.1)

in which the corresponding factors Cφ
f are given by

[

HSM, CP-even
]

:

CSM
u,d = i

mf

v
(A.2)

[

h, CP-even, u-type
]

:

Ch
u = i

mu

v

cosα

sin β
(A.3)

[

h, CP-even, d-type
]

:

Ch
d = −i

md

v

sinα

cos β
(A.4)

[

H, CP-even, u-type
]

:

CH
u = i

mu

v

sinα

sin β
(A.5)
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[

H, CP-even, d-type
]

:

CH
d = −i

md

v

cosα

cosβ
(A.6)

[

A, CP-odd, u-type
]

:

CA
u = −mu

v
cot β γ5 (A.7)

[

A, CP-odd, d-type
]

:

CA
d = −md

v
tan β γ5 (A.8)
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A.2 Higgs couplings to sfermions

General expressions for the couplings of neutral Higgs bosons to squarks can

be looked up in Ref. [10]. Assuming no flavor mixing, these expressions were

evaluated using parameters of the MSSM. Furthermore, abbreviations are

introduced for expressions containing the mixing angle α between the neutral

components of both Higgs doublets, β coming from the ratio of the two

vacuum expectations values, the electro-weak mixing angle θW and squark

mixing angles θf̃ :

s{α,β} = sin{α, β} , c{α,β} = cos{α, β} , tW = tan θW ,

sα+β = sin(α + β) , cα+β = cos(α + β) ,

sθ
f̃

= sin θf̃ , cθ
f̃

= cos θf̃ .

The Lagrangian for Higgs-sfermion interactions can be written as

Lφ f̃ =
∑

φ=h,H,A,

∑

f̃=ũi,d̃j

Cφ

f̃i
φf̃ ∗

i f̃i ,

in which the corresponding factors Cφ

f̃i
are given by

[

h, CP-even, u-type, 1
]

:

Ch
ũ1

=
2

vsβ

[

(

cθũ
sθũ
muA

u −m2
u

)

cα −muµcθũ
sθũ
sα

]

+
M2

W

v

[

c2θũ

(

1 − 1

3
t2W
)

+
4

3
s2

θũ
t2W

]

sα+β (A.9)

[

h, CP-even, u-type, 2
]

:

Ch
ũ2

= − 2

vsβ

[

(

cθũ
sθũ
muA

u +m2
u

)

cα −muµcθũ
sθũ
sα

]

+
M2

W

v

[

s2
θũ

(

1 − 1

3
t2W
)

+
4

3
c2θũ
t2W

]

sα+β (A.10)

[

h, CP-even, u-type, L
]

:

Ch
ũL

− 2

vsβ

m2
ucα +

M2
W

v

(

1 − 1

3
t2W
)

sα+β (A.11)

75



[

h, CP-even, u-type, R
]

:

Ch
ũR

− 2

vsβ
m2

ucα +
M2

W

v

4

3
t2W sα+β (A.12)

[

H, CP-even, u-type, 1
]

:

CH
ũ1

=
2

v sβ

[

(

cθũ
sθũ
muA

u −m2
u

)

sα +muµcθũ
sθũ
cα

]

− M2
W

v

[

c2θũ

(

1 − 1

3
t2W
)

+
4

3
s2

θũ
t2W

]

cα+β (A.13)

[

H, CP-even, u-type, 2
]

:

CH
ũ2

= − 2

vsβ

[

(

cθũ
sθũ
muA

u +m2
u

)

sα +muµcθũ
sθũ
cα

]

− M2
W

v

[

s2
θũ

(

1 − 1

3
t2W
)

+
4

3
c2θũ
t2W

]

cα+β (A.14)

[

H, CP-even, u-type, L
]

:

CH
ũL

= − 2

vsβ
m2

usα − M2
W

v

(

1 − 1

3
t2W
)

cα+β (A.15)

[

H, CP-even, u-type, R
]

:

CH
ũR

= − 2

vsβ
m2

usα − M2
W

v

4

3
t2W cα+β (A.16)

[

h, CP-even, d-type, 1
]

:

Ch
d̃1

= − 2

vcβ

[

(

cθ
d̃
sθ

d̃
mdA

d −m2
d

)

sα −mdµcθ
d̃
sθ

d̃
cα

]

− M2
W

v

[

c2θ
d̃

(

1 +
1

3
t2W
)

+
2

3
s2

θ
d̃
t2W

]

sα+β (A.17)

[

h, CP-even, d-type, 2
]

:

Ch
d̃2

=
2

vcβ

[

(

cθ
d̃
sθ

d̃
mdA

d +m2
d

)

sα −mdµcθ
d̃
sθ

d̃
cα

]

− M2
W

v

[

s2
θ
d̃

(

1 +
1

3
t2W
)

+
2

3
c2θ

d̃
t2W

]

sα+β (A.18)
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[

h, CP-even, d-type, L
]

:

Ch
d̃L

=
2

vcβ
m2

dsα − M2
W

v

(

1 +
1

3
t2W
)

sα+β (A.19)

[

h, CP-even, d-type, R
]

:

Ch
d̃R

=
2

vcβ
m2

dsα − M2
W

v

2

3
t2Wsα+β (A.20)

[

H, CP-even, d-type, 1
]

:

CH
d̃1

=
2

vcβ

[

(

cθ
d̃
sθ

d̃
mdA

d −m2
d

)

cα +mdµcθ
d̃
sθ

d̃
sα

]

+
M2

W

v

[

c2θ
d̃

(

1 +
1

3
t2W
)

+
2

3
s2

θ
d̃
t2W

]

cα+β (A.21)

[

H, CP-even, d-type, 2
]

:

CH
d̃2

= − 2

vcβ

[

(

cθ
d̃
sθ

d̃
mdA

d +m2
d

)

cα +mdµcθ
d̃
sθ

d̃
sα

]

+
M2

W

v

[

s2
θ
d̃

(

1 +
1

3
t2W
)

+
2

3
c2θ

d̃
t2W

]

cα+β (A.22)

[

H, CP-even, d-type, L
]

:

CH
d̃L

= − 2

vcβ
m2

dcα +
M2

W

v

(

1 +
1

3
t2W
)

cα+β (A.23)

[

H, CP-even, d-type, R
]

:

CH
d̃R

= − 2

vcβ
m2

dcα +
M2

W

v

2

3
t2W cα+β (A.24)

[

A, CP-odd, squarks
]

:

All calculated topologies restrict the coupling squarks to reside either

in one of the L,R or 1,2 bases. The property of this coupling implies,

that all contributions to the cross section for the CP-odd Higgs boson

A, containing loop topologies with squarks, are zero at amplitude level.

For more details see the Appendix A.8 p. 399 of Ref. [8].

(A.25)
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Appendix B

Loop tensors

B.1 Three-point functions (Triangles)

B.1.1 Fermion-triangle with Higgs vertex

q1

q2

k + q1

k + q1 + q2

k

φ
T

µ1µ2
φ,1,f

q1

q2

k + q2

k

k + q1 + q2

φ
T

µ1µ2
φ,2,f

Figure B.1: Three-point functions connected by charge-conjugation.

The generic three-point functions for fermionic triangle graphs with Higgs

vertex and opposite loop momentum, depicted in Fig. B.1, have the following

expressions,

T µ1µ2

Φ,1,f (q1, q2, mf) =

∫

d4k

iπ2
tr

[

k�+mf

k2 −m2
f

γµ1
k�+ q1� +mf

(k + q1)2 −m2
f

γµ2

× k�+ q12� +mf

(k + q12)2 −m2
f

VΦ

]

, (B.1)

T µ1µ2

Φ,2,f (q1, q2, mf) =

∫

d4k

iπ2
tr

[

k�+mf

k2 −m2
f

γµ2
k�+ q2� +mf

(k + q2)2 −m2
f

γµ1
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× k�+ q12� +mf

(k + q12)2 −m2
f

VΦ

]

, (B.2)

where q1, q2 are outgoing gluon momenta and q12 = q1 + q2. The factor

VΦ denotes the CP property of the Higgs coupling: VA = γ5 for CP-odd and

VHSM ,h,H = 1 for CP-even Higgs boson. Using the charge conjugation matrix

Ĉ,

ĈγµĈ
−1 = −γT

µ , Ĉγ5Ĉ
−1 = γT

5 with Ĉ = γ0γ2 , Ĉ2 = 1 (B.3)

and the property of the trace tr
[

(γµ1)T (γµ2)T . . .
]

= tr
[

. . . γµ2γµ1

]

, one can

derive (Furry’s theorem [29])

T µ1µ2

Φ,1,f (q1, q2, mf) = T µ1µ2

Φ,2,f (q1, q2, mf ) ≡ T µ1µ2

Φ,f (q1, q2, mf ) . (B.4)

Hence, the relative sign of charge-conjugated graphs changes with the number

of fermion-gluon vertices. From this it follows for the color structure

tr
[

ta1ta2

]

T µ1µ2

Φ,1,f (q1, q2, mq) + tr
[

ta2ta1

]

T µ1µ2

Φ,2,f (q1, q2, mf)

= δa1a2T µ1µ2

Φ,f (q1, q2, mf) , (B.5)

in which the identity tr
[

ta1ta2

]

= 1
2
δa1a2 was used.

B.1.2 Fermion-triangle with CP-odd Higgs vertex

The evaluation of the Dirac trace with VA = γ5 yields

T µ1µ2

A,f (q1, q2, mf) = 4 m2
f ε

µ1µ2q1q2 C0(q1, q2, mf) . (B.6)

Here, C0 denotes the scalar three-point function and εµ1µ2q1q2 is the total

anti-symmetric tensor (Levi-Civita symbol) contracted with attached gluon

momenta q1 and q2. The tensor T µ1µ2

A,f (q1, q2, mf ) is UV-finite. Hence, no

difficulties arise with definition of the γ5 Dirac-matrix in d dimensions.
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B.1.3 Fermion-triangle with CP-even Higgs vertex

The Relations of Eqs. (B.3), (B.4) and (B.5) hold also here, but with γ5

replaced by 14. The calculation of the Dirac trace leads to [2]

T µ1µ2

HSM ,h,H,f(q1, q2, mf) = 4 m2
f

[

FT

(

q2
1, q

2
2, (q1 + q2)

2
)(

q1 · q2 gµ1µ2

− qµ1

1 qµ2

2

)

+ FL

(

q2
1, q

2
2, (q1 + q2)

2
)(

q2
1 q

2
2 g

µ1µ2 − q2
1 q

µ1

2 q
µ2

2

− q2
2 q

µ1

1 qµ2

1 + q1 · q2 qµ1

1 qµ2

2

)

]

, (B.7)

with the form factors

FL

(

q2
1, q

2
2, (q1 + q2)

2, mf

)

= − 1

2 detQ2

{

×
[

2 − 3q2
1q2 · (q1 + q2)

detQ2

]

(

B0(q1, mf ) −B0(q1 + q2, mf )
)

+

[

2 − 3q2
1q2 · (q1 + q2)

detQ2

]

(

B0(q2, mf) − B0(q1 + q2, mf)
)

−
[

4mf + q2
1 + q2

2 + (q1 + q2)
2 − 3q2

1q
2
2 · (q1 + q2)

2

detQ2

]

× C0(q1, q2, mf ) − 2

}

, (B.8)

FT

(

q2
1, q

2
2, (q1 + q2)

2, mf

)

= − 1

2 detQ2

{

(q1 + q2)
2
[

B0(q1, mf)

+B0(q2, mf) − 2 B0(q1 + q2, mf) − 2 q1 · q2 C0(q1, q2, mf )
]

+
(

q2
1 − q2

2

)(

B0(q1, mf ) −B0(q2, mf)
)

}

− q1 · q2 FL . (B.9)

Here, detQ2 = q2
1 q2

2 −
(

q1 · q2
)2

stands for the Gram determinant. The

shortcuts B0 and C0 denote scalar two- and three-point functions. Emerging

ǫ−1-poles from the B0-functions cancel each other at intermediate steps, so

that the tensor T µ1µ2

HSM ,h,H,f(q1, q2, mf ) remains UV-finite. For more details see

Ref. [2].
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q1

q2
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k + q1 + q2

k

φ
T
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φ,1,f̃

q1

q2

k + q2

k

k + q1 + q2

φ
T

µ1µ2

φ,2,f̃

Figure B.2: Triangle-loops with opposite fermion flow

B.1.4 Sfermion-triangle with CP-even Higgs vertex

The generic three-point functions for sfermionic triangle graphs with CP-

even Higgs vertex and opposite loop momentum, shown in Fig. B.2, have the

following expressions

T
µ1µ2

Φ,1,f̃(q1, q2, mf̃ )

=

∫

d4k

iπ2

[

2 k + q1
]µ1
[

2 (k + q1) + q2
]µ2

[

k2 −m2
f̃

][

(k + q1)2 −m2
f̃

][

(k + q12)2 −m2
f̃

] , (B.10)

T
µ1µ2

Φ,2,f̃(q1, q2, mf̃ )

=

∫

d4k

iπ2

[

2 k + q2
]µ2
[

2 (k + q2) + q1
]µ1

[

k2 −m2
f̃

][

(k + q2)2 −m2
f̃

][

(k + q12)2 −m2
f̃

] . (B.11)

The q̃q̃A-vertex (Eq. (A.24)) gives only a contribution, if both squarks do

not reside in the same basis (L/R or 1/2). Hence, for the case depicted in

Fig. B.2, all contribution sum to zero at amplitude level.

Both tensors can be related via a shift of the loop momentum k → −k−q1−q2,
so that the relation of Eq. (B.4) also holds for scalar loops

T
µ1µ2

Φ,1,f̃(q1, q2, mf̃ ) = T
µ1µ2

Φ,2,f̃(q1, q2, mf̃ ) ≡ T
µ1µ2

Φ,f̃ (q1, q2, mf̃ ) . (B.12)

82



The evaluation of the numerator leads to

T
µ1µ2

Φ,f̃ (q1, q2, mf̃)

=

∫

d4k

iπ2

4 kµ1kµ2 + 2 qµ1

1 k
µ2 + 2 kµ1 (2 qµ2

1 + qµ2

2 ) + qµ1

1 (2 qµ2

1 + qµ2

2 )
[

k2 −m2
f̃

][

(k + q1)2 −m2
f̃

][

(k + q12)2 −m2
f̃

]

= 4 Cµ1µ2

(

q1, q2, mf̃

)

+ 2 qµ1

1 C
µ2

(

q1, q2, mf̃

)

+ 2 Cµ1

(

q1, q2, mf̃

)(

2 qµ2

1

+ qµ2

2

)

+ qµ1

1 (2 qµ2

1 + qµ2

2 )C0

(

q1, q2, mf̃

)

= 2 qµ1

2

[

qµ2

2

(

C12 + 2 C22

)

+ 2 qµ2

1

(

C12 + C23

)

]

+ qµ1

1

{

2 qµ2

1

(

C0 + 3 C11

+ 2 C21

)

+ qµ2

2

[

C0 + 2
(

C11 + C12 + 2 C23

)

]

}

− 4 gµ1µ2C24 . (B.13)

The coefficients Cij originate from the Passarino-Veltman tensor reduction

procedure [32, 33]. However, the Cµ1µ2 function contains an ǫ−1-pole in di-

mensional regularization and hence, it is UV-divergent. This ǫ−1-pole cancel

by addition of a two-point function Sµ1µ2

h,H,f̃
(q1, q2, mf̃) with a q̃q̃gg-vertex (see

Fig. B.3).

This graph has a simple analytic expression

q1

q2

k + q1 + q2

φ

k

S
µ1µ2
φ,f̃

Figure B.3: Scalar two-point function with a q̃q̃gg-vertex.

Sµ1µ2

h,H,f̃
(q1, q2, mf̃ ) =

∫

d4k

iπ2

gµ1µ2
[

k2 −m2
f̃

][

(k + q1 + q2)2 −m2
f̃

]

= gµ1µ2 B0

(

q12, mf̃

)

(B.14)

The ǫ−1-pole coming from B0 cancels the corresponding poles originating

from both sfermion triangles. Furthermore, the proportionality of the q̃q̃gg-

vertex to the color factor
{

ta1 , ta2

}

matches perfectly with Eq. (B.5), so that
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all three graphs can be summed up to a divergence free contribution

T µ1µ2

h,H,f̃
(q1, q2, mf̃ ) = T

µ1µ2

h,H,f̃(q1, q2, mf̃) + Sµ1µ2

h,H,f̃
(q1, q2, mf̃) . (B.15)

B.1.5 Sfermion-triangle with CP-even Higgs vertex and

q̃q̃gg-vertex

q1

q3

k + q12

k + q12 + q3

k

φ
q2

T
µ1µ2µ3
B,φ,1,f̃

q1

q3

k + q3

k

k + q12 + q3

φ
q2

T
µ1µ2µ3
B,φ,2,f̃

Figure B.4: Triangle-loops with opposite fermion flow and q̃q̃gg-

vertex

The q̃q̃gg-vertex (D.5) allows also for triangle-graphs with three attached

gluons. They are depicted in Fig. B.4. The integrals can be written in this

way

T µ1µ2µ3

B,Φ,1,f̃
(q12, q3, mf̃)

=

∫

d4k

iπ2

gµ1µ2

[

2 (k + q12) + q3
]µ3

[

k2 −m2
f̃

][

(k + q12)2 −m2
f̃

][

(k + q123)2 −m2
f̃

]

= 2 gµ1µ2Cµ3(q12, q3, mf̃ ) + gµ1µ2(2 qµ3

12 + qµ3

3 )C0(q12, q3, mf̃ ) , (B.16)

T µ1µ2µ3

B,Φ,2,f̃
(q12, q3, mf̃)

=

∫

d4k

iπ2

gµ1µ2

[

2 k + q3
]µ3

[

k2 −m2
f̃

][

(k + q3)2 −m2
f̃

][

(k + q123)2 −m2
f̃

]

= 2 gµ1µ2Cµ3(q12, q3, mf̃ ) + gµ1µ2qµ3

3 C0(q12, q3, mf̃) . (B.17)

Again, with a simple shift of the loop momentum k → −k− q12 − q3 one gets

T µ1µ2µ3

B,Φ,1,f̃
= −T µ1µ2µ3

B,Φ,2,f̃
≡ T µ1µ2µ3

B,Φ,f̃
. (B.18)
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Although it is a triangle-loop, it has a box-like color structure (see Eq. (B.26))

{

tr
[

{

ta1 , ta2

}

ta3

]

− tr
[

ta3

{

ta1 , ta2

}

]

}

T µ1µ2µ3

B,Φ,f̃
=
{

tr
[

ta1ta2ta3

]

+ tr
[

ta2ta1ta3

]

− tr
[

ta3ta1ta2

]

− tr
[

ta3ta2ta1

]

}

T µ1µ2µ3

B,Φ,f̃
= 0 , (B.19)

in which the cyclic invariance of the trace was used. Hence, these graphs give

no contribution.

B.1.6 Sfermion-triangle with CP-even Higgs vertex and

two q̃q̃gg-vertices

q1

q3

k + q12

k + q1234

k

φq2
T

µ1µ2µ3µ4
P,φ,1,f̃

q4

q1

q3

k + q34

k

k + q1234

φq2

T
µ1µ2µ3µ4

P,φ,2,f̃

q4

Figure B.5: Sfermionic triangle-loops with opposite fermion flow and

pentagon-like color structure

The two q̃q̃gg-vertices allow also for triangle-graphs with four attached gluons

(see Fig. B.5)

T µ1µ2µ3µ4

P,Φ,f̃
(q12, q34, mf̃)

=

∫

d4k

iπ2

gµ1µ2gµ3µ4

[

k2 −m2
f̃

][

(k + q12)2 −m2
f̃

][

(k + q1234)2 −m2
f̃

] (B.20)

This topology is invariant under reversion of the momentum flow. More-

over, it has a pentagon-like color structure. For the sum of two graphs with
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opposite loop momentum, the color factor reads as follows

(

tr
[

{

ta1 , ta2

}{

ta3 , ta4

}

]

+ tr
[

{

ta3 , ta4

}{

ta1 , ta2

}

]

)

× T µ1µ2µ3µ4

P,Φ,f̃
(q12, q34, mf̃) = 2

(

tr
[

ta1ta2ta3ta4

]

+ tr
[

ta1ta2ta4ta3

]

+ tr
[

ta2ta1ta3ta4

]

+ tr
[

ta2ta1ta4ta3

]

)

T µ1µ2µ3µ4

P,Φ,f̃
(q12, q34, mf̃ ) , (B.21)

with

T µ1µ2µ3µ4

P,Φ,f̃
(q12, q34, mf̃ ) = gµ1µ2gµ3µ4 C0(q12, q34, mf̃ ) . (B.22)

B.2 Four-point functions (Boxes)

B.2.1 Fermion-box with Higgs vertex

q1

k + q123

φ

q3

q2

k + q12

k + q1

kB
µ1µ2µ3
φ,1

q1

k

φ

q3

q2

k + q3

k + q23

k + q123B
µ1µ2µ3
φ,2

Figure B.6: Four-point functions connected by charge-conjugation.

Four-point functions for the production of the Higgs boson Φ connected via

charge-conjugation have the following analytical expressions

B
µ1µ2µ3

Φ,1,f (q1, q2, q3, mf ) =

∫

d4k

iπ2
tr

[

k�+mf

k2 −m2
f

γµ1
k�+ q�1 +mf

(k + q1)2 −m2
f

× γµ2
k�+ q�12 +mf

(k + q12)2 −m2
f

γµ3
k�+ q�123 +mf

(k + q123)2 −m2
f

VΦ

]

, (B.23)
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B
µ1µ2µ3

Φ,2,f (q1, q2, q3, mf) =

∫

d4k

iπ2
tr

[

k�+mf

k2 −m2
f

γµ3
k�+ q3� +mf

(k + q3)2 −m2
f

× γµ2
k�+ q�23 +mf

(k + q23)2 −m2
f

γµ1
k�+ q�123 +mf

(k + q123)2 −m2
f

VΦ

]

, (B.24)

where q1, q2 and q3 are outgoing momenta, qij = qi +qj and qijk = qi +qj +qk.

From charge conjugation one gets

B
µ1µ2µ3

Φ,1,f (q1, q2, q3, mf) = −Bµ1µ2µ3

Φ,2,f (q1, q2, q3, mf)

≡ B
µ1µ2µ3

Φ,f (q1, q2, q3, mf) . (B.25)

Further two permutations can be achieved by cyclic permutation of (1, 2, 3).

The color structure for the sum of the two diagrams is

tr
(

ta1ta2ta3

)

B
µ1µ2µ3

Φ,1,f (q1, q2, q3, mf ) + tr
(

ta3ta2ta1

)

B
µ1µ2µ3

Φ,2,f (q1, q2, q3, mf )

=
[

tr
(

ta1ta2ta3

)

− tr
(

ta3ta2ta1

)

]

B
µ1µ2µ3

Φ,f (q1, q2, q3, mf )

=
i

2
fa1a2a3 B

µ1µ2µ3

Φ,f (q1, q2, q3, mf) , (B.26)

in which the following identity was used

tr
(

ta1ta2ta3

)

=
1

4

(

da1a2a3 + i fa1a2a3

)

. (B.27)

Altogether the sum over the six permutations of boxes is then proportional to

the single factor fa1a2a3 . In the Fortran program VBFNLO all permutations

of boxes are combined to one box factor

Bµ1µ2µ3

Φ,f (q1, q2, q3, mf) =
1

2

[

B
µ1µ2µ3

Φ,f (q1, q2, q3, mf)

+B
µ2µ3µ1

Φ,f (q2, q3, q1, mf ) +B
µ3µ1µ2

Φ,f (q3, q1, q2, mf)
]

, (B.28)

which is totally antisymmetric in the gluon indices (qi, µi), i = 1, 2, 3.
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B.2.2 Fermion-box with CP-odd Higgs vertex

The evaluation of the Dirac-trace for the permutation (1, 2, 3) of attached

gluons with VA leads to

B
µ1µ2µ3

A,f (q1, q2, q3, mf ) = 4 m2
f

{

[

εµ3q1q2q3 gµ1µ2 − εµ2q1q2q3 gµ1µ3 + εµ2µ3q2q3 qµ1

1 − εµ2µ3q1q3 qµ1

2

+ εµ2µ3q1q2 qµ1

3 + εµ1q1q2q3 gµ2µ3 + εµ1µ3q2q3 qµ2

1 − εµ1µ3q1q2 qµ2

3

− εµ1µ2q2q3 qµ3

1 + εµ1µ2q1q3 qµ3

2 + εµ1µ2µ3q3 gµ1µ2 − εµ1µ2µ3q2 gµ1µ3

+ εµ1µ2µ3q1 gµ2µ3 + εµ1µ3q1q3

(

2 qµ2

1 + qµ2

2

)

+ εµ1µ2q1q2

[

2 (qµ3

1

+ qµ3

2 ) + qµ3

3

]

]

D0(q1, q2, q3, mf)

− εµ1µ2µ3q3 C0(q1 + q2, q3, mf) − εµ1µ2µ3q1 C0(q1, q2 + q3, mf)

+ 2 εµ2µ3q2q3 Dµ1(q1, q2, q3, mf) + 2 εµ1µ3q1q3 Dµ2(q1, q2, q3, mf)

+ 2 εµ1µ2q1q2 Dµ3(q1, q2, q3, mf)

}

. (B.29)

The D0 and Dµ are four-point functions. Whereas the former denotes a

scalar function, the latter can be expressed by the usual Passarino-Veltman

decomposition [32] as

Dµ(q1, q2, q3, mf ) = qµ
1 D11 + qµ

2 D12 + qµ
3 D13 . (B.30)

Note that after contraction with polarization vectors ǫµ1

1 , ǫµ2

2 and quark

current Jµ3

21 (3.9), the expression (B.29) still contains terms with factors

(ǫ1 · q1), (ǫ2 · q2), (J21 · q3) even though they vanish, since gluon polarization

vectors ǫµi and momenta qµ
i are perpendicular to each other and the quark

current J21 is conserved. However, these terms are important for numerical

gauge checks, where the corresponding gluon polarization vector is replaced

by its momentum. In this connection, the virtual gluon has a non-zero q2
i ,

and hence, these terms give finite contributions.
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B.2.3 Fermion-box with CP-even Higgs vertex

Following Ref. [2], the four-point function with CP-even Higgs vertex can be

expressed in terms of few independent tensor structures

Bµ1µ2µ3

HSM ,h,H,f(q1, q2, q3, mf ) = 4 m2
f

{

gµ1µ2qµ3

1 Ba(q1, q2, q3)

+ gµ2µ3qµ1

2 Ba(q2, q3, q1) + gµ3µ1qµ2

3 Ba(q3, q1, q2)

− gµ2µ1qµ3

2 Ba(q2, q1, q3) − gµ1µ3qµ2

1 Ba(q1, q3, q2)

− gµ3µ2qµ1

3 Ba(q3, q2, q1) + qµ1

3 q
µ2

3 q
µ3

1 Bb(q1, q2, q3)

+ qµ1

2 qµ2

1 q
µ3

1 Bb(q2, q3, q1) + qµ1

2 q
µ2

3 q
µ3

2 Bb(q3, q1, q2)

− qµ1

3 q
µ2

3 q
µ3

2 Bb(q2, q1, q3) − qµ1

2 q
µ2

1 q
µ3

2 Bb(q1, q3, q2)

− qµ1

3 q
µ2

1 q
µ3

1 Bb(q3, q2, q1) + qµ1

2 q
µ2

3 q
µ3

1 Bc(q1, q2, q3)

− qµ1

3 q
µ2

1 q
µ3

2 Bc(q2, q1, q3)
}

, (B.31)

with scalar functions

Ba(q1, q2,q3) =
1

2
q2 · q3

[

D0(q1, q2, q3) +D0(q2, q3, q1) +D0(q3, q1, q2)
]

− q1 · q2
[

D13(q2, q3, q1) +D12(q3, q1, q2) −D13(q3, q2, q1)
]

− 4
[

D313(q2, q3, q1) +D312(q3, q1, q2) −D313(q3, q2, q1)
]

− C0(q1, q2 + q3) , (B.32)

Bb(q1, q2,q3) = D13(q1, q2, q3) +D12(q2, q3, q1) −D13(q2, q1, q3)

+ 4
[

D37(q1, q2, q3) +D23(q1, q2, q3) +D38(q2, q3, q1)

+D26(q2, q3, q1) −D39(q2, q1, q3) −D23(q2, q1, q3)
]

, (B.33)

Bc(q1, q2,q3) = −1

2

[

D0(q1, q2, q3) +D0(q2, q3, q1) +D0(q3, q1, q2)
]

+ 4
[

D26(q1, q2, q3) +D26(q2, q3, q1) +D26(q3, q1, q2)

+D310(q1, q2, q3) +D310(q2, q3, q1) +D310(q3, q1, q2)
]

. (B.34)

The coefficients Dij and Dijk originate from the Passarino-Veltman tensor

decomposition of Dµ, Dµ1µ2 and Dµ1µ2µ3 respectively. For more details see

Ref. [2].
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B.2.4 Sfermion-box with CP-even Higgs vertex

q1

k + q123

φ

q3
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Figure B.7: Sfermionic box-loops with opposite fermion flow

The generic four-point functions for sfermionic box graphs with CP-even

Higgs vertex and opposite loop momentum, shown in Fig. B.7, have the

following expressions

B
µ1µ2µ3

Φ,1,f̃ (q1, q2, q3, mf̃ ) =

∫

d4k

iπ2

[

2 k + q1
]µ1
[

2 (k + q1) + q2
]µ2

[

k2 −m2
f̃

][

(k + q1)2 −m2
f̃

]

×
[

2 (k + q12) + q3
]µ3

[

(k + q12)2 −m2
f̃

][

(k + q123)2 −m2
f̃

] , (B.35)

B
µ1µ2µ3

Φ,2,f̃ (q1, q2, q3, mf̃ ) =

∫

d4k

iπ2

[

2 k + q3
]µ3
[

2 (k + q3) + q2
]µ2

[

k2 −m2
f̃

][

(k + q3)2 −m2
f̃

]

×
[

2 (k + q23) + q1
]µ1

[

(k + q23)2 −m2
f̃

][

(k + q123)2 −m2
f̃

] . (B.36)

After a shift of the loop momentum k → −k − q1 − q2 − q3, the relations

of Eq. (B.25), (B.26) and (B.28) also holds for the sfermionic box factor.

Evaluation of the numerator for the gluon permutation (1, 2, 3) yields

B
µ1µ2µ3

Φ,f̃ (q1, q2, q3, mf̃ ) = 8 Dµ1µ2µ3 + 4 (2 qµ3

1 + 2 qµ3

2 + qµ3

3 )Dµ1µ2

+ 8 qµ2

1 D
µ1µ3 + 4 qµ2

2 D
µ1µ3 + 4 qµ1

1 D
µ2µ3 + 2 (2 qµ2

1 + qµ2

2 )
(

2 qµ3

1

+ 2 qµ3

2 + qµ3

3

)

Dµ1 + 2 qµ1

1 (2 qµ3

1 + 2qµ3

2 + qµ3

3 )Dµ2 + 4 qµ1

1 q
µ2

1 D
µ3

+ 2 qµ1

1 q
µ2

2 D
µ3 + qµ1

1 (2 qµ2

1 + qµ2

2 ) (2 qµ3

1 + 2 qµ3

2 + qµ3

3 )D0 . (B.37)
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B.2.5 Sfermion-box with CP-even Higgs vertex and q̃q̃gg-

vertex

q4

k + q123

φ

q3

q1

k + q12

k

k + q1234B
µ1µ2µ3µ4
P,φ,1,f̃q2

q4

k + q4

φ

q3

q1

k + q34

k + q1234

kB
µ1µ2µ3µ4
P,φ,2,f̃q2

Figure B.8: Sfermionic box-loops with opposite fermion flow and

q̃q̃gg vertex.

The cyclic permutation of the momentum set (q12, q3, q4) provides three differ-

ent box contributions. The first contributions with opposite loop-momentum

are depicted in Fig. B.8. All distinct box diagrams and their partners with

opposite loop momentum flow are described now in more detail:

1) Permutation (q12, q3, q4)

B
µ1µ2µ3µ4

P,Φ,1,f̃ (q12, q3, q4, mf̃) =

∫

d4k

iπ2

gµ1µ2

[

2 (k + q12) + q3]
µ3

[

k2 −m2
f̃

][

(k + q12)2 −m2
f̃

]

×
[

2 (k + q123) + q4
]µ4

[

(k + q123)2 −m2
f̃

][

(k + q1234)2 −m2
f̃

] , (B.38)

B
µ4µ3µ2µ1

P,Φ,2,f̃ (q4, q3, q12, mf̃) =

∫

d4k

iπ2

gµ1µ2

[

2 k + q4]
µ4

[

k2 −m2
f̃

][

(k + q4)2 −m2
f̃

]

×
[

2 (k + q4) + q3
]µ3

[

(k + q34)2 −m2
f̃

][

(k + q1234)2 −m2
f̃

] , (B.39)

2) Permutation (q3, q4, q12)

B
µ1µ2µ3µ4

P,Φ,3,f̃ (q4, q12, q3, mf̃) =

∫

d4k

iπ2

gµ1µ2

[

2 (k + q124) + q3
]µ3

[

k2 −m2
f̃

][

(k + q4)2 −m2
f̃

]
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×
[

2 k + q4
]µ4

[

(k + q124)2 −m2
f̃

][

(k + q1234)2 −m2
f̃

] , (B.40)

B
µ4µ1µ2µ3

P,Φ,4,f̃ (q3, q12, q4, mf̃) =

∫

d4k

iπ2

gµ1µ2

[

2 k + q3
]µ3

[

k2 −m2
f̃

][

(k + q3)2 −m2
f̃

]

×
[

2 (k + q123) + q4
]µ4

[

(k + q123)2 −m2
f̃

][

(k + q1234)2 −m2
f̃

] , (B.41)

3) Permutation (q4, q12, q3)

B
µ3µ4µ1µ2

P,Φ,5,f̃ (q3, q4, q12, mf̃) =

∫

d4k

iπ2

gµ1µ2

[

2 k + q3
]µ3

[

k2 −m2
f̃

][

(k + q3)2 −m2
f̃

]

×
[

2 (k + q3) + q4
]µ4

[

(k + q4)2 −m2
f̃

][

(k + q1234)2 −m2
f̃

] , (B.42)

B
µ1µ2µ3µ4

P,Φ,6,f̃ (q12, q4, q3, mf̃) =

∫

d4k

iπ2

gµ1µ2

[

2 (k + q12) + q4
]µ4

[

k2 −m2
f̃

][

(k + q12)2 −m2
f̃

]

×
[

2 (k + q124) + q3
]µ3

[

(k + q124)2 −m2
f̃

][

(k + q1234)2 −m2
f̃

] . (B.43)

Performing a shift of the loop momentum k → −k− q1234 in the box tensors

no. 2, 4, 6 gives

B
µ1µ2µ3µ4

P,Φ,1,f̃ = +B
µ4µ3µ2µ1

P,Φ,2,f̃ ≡ B
µ1µ2µ3µ4

P,Φ,a,f̃ (q12, q3, q4, mf̃) , (B.44)

B
µ1µ2µ3µ4

P,Φ,3,f̃ = +B
µ4µ3µ2µ1

P,Φ,4,f̃ ≡ B
µ1µ2µ3µ4

P,Φ,b,f̃ (q3, q4, q12, mf̃) , (B.45)

B
µ1µ2µ3µ4

P,Φ,5,f̃ = +B
µ4µ3µ2µ1

P,Φ,6,f̃ ≡ B
µ1µ2µ3µ4

P,Φ,c,f̃ (q4, q12, q3, mf̃) . (B.46)

Furthermore, all diagrams have a pentagon-like color structure, which is de-

noted by the index P . Due to the invariance property of the trace under cyclic

permutations, the color structure is the same for all three contributions. For
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a permutation such as (q12, q3, q4), it is given by

tr
[

{

ta1 , ta2

}

ta3ta4

]

B
µ1µ2µ3µ4

P,Φ,1,f̃ + tr
[

ta4ta3

{

ta1 , ta2

}

]

B
µ4µ3µ2µ1

P,Φ,2,f̃

=
(

tr
[

ta1ta2ta3ta4

]

+ tr
[

ta2ta1ta3ta4

]

+ tr
[

ta4ta3ta1ta2

]

+ tr
[

ta4ta3ta2ta1

]

)

B
µ1µ2µ3µ4

P,Φ,a (q12, q3, q4, mf̃) (B.47)

In the Fortran program VBFNLO all permutations are combined to one box

factor

Bµ1µ2µ3µ4

P,Φ,f̃
(q12, q3, q4, mf̃) = B

µ1µ2µ3µ4

P,Φ,a,f̃ +B
µ3µ4µ1µ2

P,Φ,b,f̃ +B
µ4µ1µ2µ3

P,Φ,c,f̃ (B.48)

with

B
µ1µ2µ3µ4

P,Φ,a,f̃ (q12, q3, q4, mf̃)

= 4 gµ1µ2Dµ3µ4 + 2 gµ1µ2

(

2 qµ3

1 + 2 qµ3

2 + qµ3

3

)

Dµ4 + 2 gµ1µ2

(

2 qµ4

1

+ 2 qµ4

2 + 2 qµ4

3 + qµ4

4

)

Dµ3 + gµ1µ2

(

2 qµ3

1 + 2 qµ3

2 + qµ3

3

)(

2 qµ4

1

+ 2 qµ4

2 + 2 qµ4

3 + qµ4

4

)

D0 , (B.49)

B
µ1µ2µ3µ4

P,Φ,b,f̃ (q3, q4, q12, mf̃)

= 4 gµ1µ2Dµ3µ4 + 2 gµ1µ2

(

2 qµ3

1 + 2 qµ3

2 + 2 qµ3

4 + qµ3

3

)

Dµ4

+ 2 gµ1µ2qµ4

4 D
µ3 + gµ1µ2

(

2 qµ3

1 + 2 qµ3

2 + 2 qµ3

4 + qµ3

3

)

qµ4

4 D0 , (B.50)

B
µ1µ2µ3µ4

P,Φ,c,f̃ (q4, q12, q3, mf̃)

= 4 gµ1µ2Dµ3µ4 + 2 gµ1µ2qµ3

3 D
µ4 + 2 gµ1µ2

(

2 qµ4

3 + qµ4

4

)

Dµ3

+ gµ1µ2qµ3

3

(

2 qµ4

3 + qµ4

4

)

D0 . (B.51)
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B.3 Five-point functions (Pentagons)

B.3.1 Fermion-pentagon with Higgs vertex

q4

k + q12

φ

q3

q1

k + q1

k

k + q123

P
µ1µ2µ3µ4
φ,1

q2

k + q1234

q4

k + q34

φ

q3

q1

k + q234

k + q1234

k + q4

P
µ1µ2µ3µ4
φ,2

q2

k

Figure B.9: Five-point functions connected by charge-conjugation.

The two five-point functions connected by charge conjugation for the gluon

permutation (1,2,3,4) have the following expressions

P µ1µ2µ3µ4

Φ,1,f (q1, q2, q3, q4, mf ) =

∫

d4k

iπ2
tr

[

k�+mf

k2 −m2
f

γµ1

× k�+ q�1 +mf

(k + q1)2 −m2
f

γµ2
k�+ q�12 +mf

(k + q12)2 −m2
f

γµ3

× k�+ q�123 +mf

(k + q123)2 −m2
f

γµ4
k�+ q�1234 +mf

(k + q1234)2 −m2
f

VΦ

]

, (B.52)

P µ1µ2µ3µ4

Φ,2,f (q1, q2, q3, q4, mf ) =

∫

d4k

iπ2
tr

[

k�+mf

k2 −m2
f

γµ4

× k�+ q�4 +mf

(k + q4)2 −m2
f

γµ3
k�+ q�34 +mf

(k + q34)2 −m2
f

γµ2

× k�+ q�234 +mf

(k + q234)x2 −m2
f

γµ1
k�+ q�1234 +mf

(k + q1234)2 −m2
f

VΦ

]

, (B.53)

where q1, q2, q3 and q4 are outgoing momenta (qij = qi + qj and analog for

qijk and qijkl). Using Furry’s theorem, one gets for the sum
(

tr
[

ta1ta2ta3ta4

]

+ tr
[

ta4ta3ta2ta1

]

)

P µ1µ2µ3µ4

Φ,f (q1, q2, q3, q4, mf ) . (B.54)
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In total, there exist 12 pentagons related by charge conjugation. Due to the

length of the expressions for the fermionic pentagons, the tensorial structure

will be described in a very brief way. For all pentagons, tensor reduction

methods developed by Denner and Dittmaier [34, 35] were applied, which

avoid the inversion of small Gram determinants, in particular for planar

configurations of the Higgs and the two final state partons. Furthermore,

all pentagons are UV- and IR-finite and are implemented as independent

functions in the gluon fusion part GGFLO of the program VBFNLO [4].

The evaluation of the Dirac-trace with VA = γ5 contains Eµ1µ2 , Eµ, E0,Dµ,

D0 and C0 functions.

The pentagon contribution for the CP-even Higgs bosons HSM, h and H with

VHSM,h,H = 1 is composed of Eµ1µ2µ3µ4 , Eµ1µ2µ3 , Eµ1µ2 , Eµ1 , E0, Dµ1µ2 , Dµ1

and D0 functions.

B.3.2 Sfermion-pentagon with CP-even Higgs vertex
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φ

q3
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k + q1

k
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P
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k + q4

P
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k

Figure B.10: Sfermionic pentagon-loops with opposite fermion flow

The generic five-point functions for sfermionic pentagon graphs with CP-

even Higgs vertex and opposite loop momentum, shown in Fig. B.10, have

the following expressions

P µ1µ2µ3µ4

Φ,1,f̃
(q1, q2, q3, q4, mf̃ ) =

∫

d4k

iπ2

[

2 k + q1
]µ1
[

2 (k + q1) + q2
]µ2

×
[

2 (k + q12) + q3
]µ3
[

2 (k + q123) + q4
]µ4

[

k2 −m2
f̃

][

. . .
][

. . .
][

. . .
][

(k + q1234)2 −m2
f̃

] , (B.55)

95



P µ1µ2µ3µ4

Φ,2,f̃
(q1, q2, q3, q4, mf̃ ) =

∫

d4k

iπ2

[

2 k + q4
]µ3
[

2 (k + q4) + q3
]µ2

×
[

2 (k + q34) + q2
]µ1
[

2 (k + q234) + q1
]µ1

[

k2 −m2
f̃

][

. . .
][

. . .
][

. . .
][

(k + q1234)2 −m2
f̃

] . (B.56)

The shorthand notation [. . .] denotes intermediate propagators. After a shift

of the loop momentum, both Pentagons can be replaced by one expression

with the color structure of Eq. (B.54). The evaluated expression of the

sfermionic pentagon is given by

P µ1µ2µ3µ4

h,H,f̃

(

q1, q2, q3, q4, mf̃

)

= 16Eµ1µ2µ3µ4 + 8
(

2qµ4

1 + 2qµ4

2 + 2qµ4

3 + qµ4

4

)

Eµ1µ2µ3 + 8
(

2qµ3

1

+ 2qµ3

2 + qµ3

3

)

Eµ1µ2µ4 + 8
(

2qµ2

1 + qµ2

2

)

Eµ1µ3µ4 + 8qµ1

1 E
µ2µ3µ4 + 4

(

2qµ3

1

+ 2qµ3

2 + qµ3

3

)(

2qµ4

1 + 2qµ4

2 + 2qµ4

3 + qµ4

4

)

Eµ1µ2 + 4
(

2qµ2

1 + qµ2

2

)(

2qµ4

1

+ 2qµ4

2 + 2qµ4

3 + qµ4

4

)

Eµ1µ3 + 4qµ1

1

(

2qµ4

1 + 2qµ4

2 + 2qµ4

3 + qµ4

4

)

Eµ2µ3

+ 4
(

2qµ2

1 + qµ2

2

)(

2qµ3

1 + 2qµ3

2 + qµ3

3

)

Eµ1µ4 + 4qµ1

1

(

2qµ3

1 + 2qµ3

2

+ qµ3

3

)

Eµ2µ4 + 4qµ1

1

(

2qµ2

1 + qµ2

2

)

Eµ3µ4 + 2
(

2qµ2

1 + qµ2

2

)(

2qµ3

1 + 2qµ3

2

+ qµ3

3

)(

2qµ4

1 + 2qµ4

2 + 2qµ4

3 + qµ4

4

)

Eµ1 + 2qµ1

1

(

2qµ3

1 + 2qµ3

2 + qµ3

3

)(

2qµ4

1

+ 2qµ4

2 + 2qµ4

3 + qµ4

4

)

Eµ2 + 2qµ1

1

(

2qµ2

1 + qµ2

2

)(

2qµ4

1 + 2qµ4

2 + 2qµ4

3

+ qµ4

4

)

Eµ3 + 2qµ1

1

(

2qµ2

1 + qµ2

2

)(

2qµ3

1 + 2qµ3

2 + qµ3

3

)

Eµ4 + qµ1

1

(

2qµ2

1

+ qµ2

2

)(

2qµ3

1 + 2qµ3

2 + qµ3

3

)(

2qµ4

1 + 2qµ4

2 + 2qµ4

3 + qµ4

4

)

E0 (B.57)

B.4 Six-point functions (Hexagons)

The hexagons Hµ1µ2µ3µ4µ5

Φ,p (q1, q2, q3, q4, q5, mp) are computed using traditional

methods, that is, computing the Feynman diagrams and giving the result in

terms of tensor coefficient integrals Fij of six-point functions up to rank five

for the CP-even case and up to rank three for the CP-odd case. In the

process, some simplification has been used, the scalar products between of

loop momenta and external momenta are rewritten in terms of propagators

and some simplification can be done. Furthermore, tensor reduction methods

of Denner and Dittmaier [34, 35] were used. In the hexagon subroutine also
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appear Eij and some Dij functions. Moreover, all the gluons are kept off-

shell to be able to attach to them some external current. For more details

see Ref. [36]. The five external gluons give rise to 5! = 120 hexagons, which

are of course proportional to 120 different color traces of the form

tr
[

taitaj taktaltam
]

with i, j, k, l,m = 1, . . . , 5

and i 6= j 6= k 6= l 6= m . (B.58)

In total there exist 60 hexagons related by charge conjugation. With the

permutation (1,2,3,4,5) of the attached gluons the color structure for a sum

of two hexagons reads as follows

(

tr
[

ta1ta2ta3ta4ta5

]

− tr
[

ta5ta4ta3ta2ta1

]

)

×Hµ1µ2µ3µ4µ5

Φ,p (q1, q2, q3, q4, q5, mp) . (B.59)
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Appendix C

SU(N) identities

This appendix contains a summary of useful identities of the SU(N) algebra,

which were used in processes, explained in former chapters. For more details

see references [14, 54, 55, 56].

C.1 SU(N) tensors

δa1a2 = 2 tr
(

ta1ta2

)

, (C.1)

da1a2a3 = 2 tr
(

{

ta1 , ta2

}

ta3

)

, (C.2)

fa1a2a3 = 2 i tr
(

ta1

[

ta3 , ta2

]

)

. (C.3)

C.2 Traces of color generators

tr
[

ta
]

= 0 , (C.4)

tr
[

ta1ta2

]

= TF δa1a2 =
1

2
δa1a2 , (C.5)

tr
[

ta1ta2ta3

]

=
1

4

(

da1a2a3 + ifa1a2a3

)

, (C.6)

tr
[

ta1ta2ta3ta4

]

=
1

4N
δa1a2δa3a4

+
1

8

(

da1a2m + ifa1a2m
)(

da3a4m + ifa3a4m
)

, (C.7)
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tr
[

ta1ta2ta3ta4ta5

]

=
1

8N

(

da1a2a3 + ifa1a2a3

)

δa4a5

+
1

8N
δa1a2

(

da3a4a5 + ifa3a4a5

)

+
1

16

(

da1a2m + ifa1a2m
)

×
(

dma3n + ifma3n
)(

dna4a5 + ifna4a5

)

. (C.8)

C.3 Convolutions of da1a2a3 and fa1a2a3 with ta

da1a2mdma3ntni2i1

=
(

ta1ta2ta3 + ta2ta1ta3 + ta3ta1ta2 + ta3ta2ta1

)

i2i1

− 1

3
da1a2a3δi2i1 −

2

3
δa1a2ta3

i2i1
, (C.9)

fa1a2mfma3ntni2i1

=
(

− ta1ta2ta3 + ta2ta1ta3 + ta3ta1ta2 − ta3ta2ta1

)

i2i1
, (C.10)

da1a2mfma3ntni2i1

= i
(

− ta1ta2ta3 − ta2ta1ta3 + ta3ta1ta2 + ta3ta2ta1

)

i2i1
(C.11)

fa1a2mdma3ntni2i1

= i
(

− ta1ta2ta3 + ta2ta1ta3 − ta3ta1ta2 + ta3ta2ta1

)

i2i1

− 1

3
fa1a2a3δi2i1 . (C.12)

C.4 Jacobi identities

da1a2mfma3a4 + da2a3mfma1a4 + da3a1mfma2a4 = 0 , (C.13)

fa1a2mfma3a4 + fa1a4mfma2a3 + fa1a3mfma4a2 = 0 . (C.14)
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Appendix D

QCD- and SQCD Vertices

This Appendix illustrates only the vertices of the QCD and SQCD used in

former calculations. Further vertices, especially of the SQCD, can be looked

up in Ref. [10].

D.1 QCD vertices

µ
ga

q

q

igSγ
µta (D.1)

ρ
gc

ga

gb

k
p

q

µ

ν

gSf
abc
[

gµν(k − p)ρ + gνρ(p− q)µ

+ gρµ(q − k)ν
]

(D.2)
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ga

gc

µ

ρ

gd

gb

σ

ν
− ig2

S

[

fabef cde
(

gµρgνσ − gµσgνρ
)

+ facef bde
(

gµνgρσ − gµσgνρ
)

+ fadef bce
(

gµρgνσ − gµρgνσ
)

]

(D.3)

D.2 SQCD vertices (only squarks)

µ
ga

q̃L,R/1,2

q̃L,R/1,2

pi

pf
igSt

a
(

pi + pf

)µ
(D.4)

q̃L,R/1,2

q̃L,R/1,2 gb

ga

ν

µ

ig2
S

{

ta, tb
}

gµν (D.5)
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Appendix E

Effective Lagrangian

The calculation of Higgs + 2 jet and 3 jet via gluon fusion is quite involved,

due to the fact, that already at leading order the Higgs boson is produced via

a quark loop. For Higgs masses smaller than the threshold for the creation

of a top-quark pair, mφ . 2mt, and jet transverse energies smaller than the

top-quark mass, p⊥ . mt [57] it is possible to replace different quark loop

topologies by effective vertices [58]. In this connection low-energy theorems

for Higgs boson interactions are used to relate amplitudes of two processes

which differ by the insertions of a zero momentum Higgs boson [59, 60]. A

direct comparison between loop and effective theory induced production of

the CP-even and CP-odd Higgs boson with two jets is shown in plot E.1.

The striking peak, which is absent in the effective limit, arises due to thresh-

old enhancement at mH ≈ 2 mt. For that reason, finite width effects were

included to control the behavior of this resonance. The threshold enhance-

ment is smoother in the case of the CP-even Higgs boson, due to its large

width, which is caused by additional contributions of decays to W and Z

gauge bosons. For the CP-odd case those decays are forbidden at tree-level.

The effective Lagrangian density for the CP-even Higgs boson H can be de-

rived from the γγ − H coupling, which is mediated by a triangle fermion

loop. Similar to that, one can derive the effective Lagrangian of the CP-

odd Higgs boson A from the anomaly of the axial-vector current [61, 62].

Then, it is quite straightforward to generalize both Lagrangians to the non-

Abelian SU(3) group. Hence, the effective theory is a powerful tool to exam-

ine QCD-processes without enormous numerical effort. For more details see

also Refs. [15, 63, 64]. The effective Lagrangians for both Higgs bosons read

as

103



 1

 10

 100

 100  200  300  400  500  600
mA [GeV]

σ 
[p

b]

mA,H=120 GeV, IC

A, tan β=1
A, eff. th.
H
H, eff. th.

Figure E.1: Comparison of cross sections of the CP-odd and CP-even

Higgs coupling in both loop-induced and effective theory. Here, the

inclusive cuts (IC) of Eq. (5.1) were applied.

Leff = LH0gg + LA0gg

=
1

v

αs

12π
Ga

µ1µ2
Gµ1µ2aH +

1

v

αs

8π
Ga

µ1µ2
G̃µ1µ2aA (E.1)

with

G̃aµ1µ2 =
1

2
ǫµ1µ2µ3µ4Ga

µ3µ4
, αs =

g2
s

4 π
,

1

v
=
(√

2GF

)1/2

, (E.2)

where Ga
αβ denotes the non-Abelian field strength tensor of the SU(3) gluon

field, v the vacuum expectation value and GF the Fermi constant.

The effective Lagrangians generate vertices involving two, three or four gluons

and, of course, the Higgs bosons. Up to the box diagrams, the full loop and

the effective theory can be related to each other very easily, because their

color structure is equal.
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• Effective ggφ vertex ↔ triangle loops

The effective ggφ interactions for both Higgs bosons without couplings

constants are [65]

T µ1µ2

H, eff(q1, q2) =
1

3
δa1a2

(

gµ1µ2q1 · q2 − qµ1

1 q
µ2

2

)

and (E.3)

T µ1µ2

A, eff (q1, q2) =
1

2
δa1a2εµ1µ2µ3µ4 q1, µ3

q2, µ4
(E.4)

To involve full mass dependence, one has to replace the effective vertices

by the expression δa1a2 T µ1µ2

φ (q1, q2, mt) (B.5) containing two charge-

conjugated triangle loops

• effective gggφ vertex ↔ box loops

The tensor structure of the effective gggφ interaction corresponds ex-

actly to that of a three-gluon vertex (D.2)

Bµ1µ2µ3

H, eff (q1, q2, q3) = fa1a2a3

[

gµ1µ2(q2 − q1)
µ3 + gµ2µ3(q3 − q2)

µ1

+ gµ3µ1(q1 − q3)
µ2

]

. (E.5)

Inserting a box diagram denoted by fa1a2a3 Bµ1µ2µ3

φ (q1, q2, q3, mt) (B.28)

into the effective vertex brings the full mass dependence back. In total,

however, there are six box graphs with different permutations of the

external momenta. These can be reduced via Furry’s theorem [29] to

three boxes with cyclicly permuted gluons.
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• effective ggggφ vertex ↔ pentagon loops

” ”

The effective ggggφ interaction with φ = HSM, h
0, H0 is a copy of the

four-gluon vertex (D.3)

P µ1µ2µ3µ4

H, eff (q1, q2,q3, q4) =
[

fa1a2mfa3a4m
(

gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3

)

+ fa1a3mfa2a4m
(

gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3

)

+ fa1a4mfa2a3m
(

gµ1µ3gµ2µ4 − gµ1µ3gµ2µ4

)

]

(E.6)

For the CP-odd Higgs boson A0, there exists no effective vertex. It van-

ishes due to the anti-symmetry of the Levi-Civita symbol and structure

constants and the Bose symmetry of the four attached gluons. A de-

tailed proof is described in Ref. [3]. The non existence of this vertex can

also be explained in a geometrical way. The four polarization vectors

contain only space-like entries and hence span a three-dimensional sub-

space of the Minkowski vector space. Due to the fact that the maximal

number of basis vectors is three, the fourth vector has to be a linear

combination of the basis vectors. For this case the contraction of the

four polarization vectors with the Levi-Civita symbol is exactly zero.

The full theory contains 4! = 24 pentagons. Furry’s theorem reduces

the number of pentagons to 12. In chapter 3.3.3 it is shown that only

six different color traces exist, which can be combined further to three

real-valued color factors ci (3.31). By means of c1 (3.32),

c1 =
1

4

(

2

N
δa1a2δa3a4 + da1a2mda3a4m − fa1a2mfa3a4m

)

, (E.7)

one can see that the additional two terms spoil the simplicity of the

color structure of a four-gluon vertex. Therefore, diagrams with a pen-

tagon insertion have to be treated separately.
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Appendix F

gg → gggΦ

F.1 Remaining color factors for diagrams with

pentagons

The momenta configuration of the gluon current (3.10) is denoted by squared

brackets. Furthermore, the structure constants f are contracted via the index

m with the ci of Eq. (3.31) using the following prescription

ci f
mapar = tr

[

taj taktaltm
]

fmapar

with j, k, l,m, p, r = 1, . . . , 5 and j 6= k 6= l 6= p 6= r .

Here the index i = 1, 2, 3 denotes the corresponding order of the color gen-

erators inside the trace for a given ci. The remaining permutations are

◦ permutation:
{

3, 4, 5, [1, 2]
}

c1 f
ma1a2 = −i

(

tr
[

ta3ta4ta5ta1ta2

]

− tr
[

ta3ta4ta5ta2ta1

]

+ tr
[

ta3ta1ta2ta5ta4

]

− tr
[

ta3ta2ta1ta5ta4

]

)

, (F.1)

c2 f
ma1a2 = −i

(

tr
[

ta3ta5ta1ta2ta4

]

− tr
[

ta3ta5ta2ta1ta4

]

+ tr
[

ta3ta4ta1ta2ta5

]

− tr
[

ta3ta4ta2ta1ta5

]

)

, (F.2)

c3 f
ma1a2 = −i

(

tr
[

ta3ta1ta2ta4ta5

]

− tr
[

ta3ta2ta1ta4ta5

]

+ tr
[

ta3ta5ta4ta1ta2

]

− tr
[

ta3ta5ta4ta2ta1

]

)

, (F.3)

107



◦ permutation:
{

2, 4, 5, [1, 3]
}

c1 f
ma1a3 = −i

(

tr
[

ta2ta4ta5ta1ta3

]

− tr
[

ta2ta4ta5ta3ta1

]

+ tr
[

ta2ta1ta3ta5ta4

]

− tr
[

ta2ta3ta1ta5ta4

]

)

, (F.4)

c2 f
ma1a3 = −i

(

tr
[

ta2ta5ta1ta3ta4

]

− tr
[

ta2ta5ta3ta1ta4

]

+ tr
[

ta2ta4ta1ta3ta5

]

− tr
[

ta2ta4ta3ta1ta5

]

)

, (F.5)

c3 f
ma1a3 = −i

(

tr
[

ta2ta1ta3ta4ta5

]

− tr
[

ta2ta3ta1ta4ta5

]

+ tr
[

ta2ta5ta4ta1ta3

]

− tr
[

ta2ta5ta4ta3ta1

]

)

, (F.6)

◦ permutation:
{

2, 3, 5, [1, 4]
}

c1 f
ma1a4 = −i

(

tr
[

ta2ta3ta5ta1ta4

]

− tr
[

ta2ta3ta5ta4ta1

]

+ tr
[

ta2ta1ta4ta5ta3

]

− tr
[

ta2ta4ta1ta5ta3

]

)

, (F.7)

c2 f
ma1a4 = −i

(

tr
[

ta2ta5ta1ta4ta3

]

− tr
[

ta2ta5ta4ta1ta3

]

+ tr
[

ta2ta3ta1ta4ta5

]

− tr
[

ta2ta3ta4ta1ta5

]

)

, (F.8)

c3 f
ma1a4 = −i

(

tr
[

ta2ta1ta4ta3ta5

]

− tr
[

ta2ta4ta1ta3ta5

]

+ tr
[

ta2ta5ta3ta1ta4

]

− tr
[

ta2ta5ta3ta4ta1

]

)

, (F.9)

◦ permutation:
{

(2, 3, 4, (1, 5)
}

c1 f
ma1a5 = −i

(

tr
[

ta2ta3ta4ta1ta5

]

− tr
[

ta2ta3ta4ta5ta1

]

+ tr
[

ta2ta1ta5ta4ta3

]

− tr
[

ta2ta5ta1ta4ta3

]

)

, (F.10)

c2 f
ma1a5 = −i

(

tr
[

ta2ta4ta1ta5ta3

]

− tr
[

ta2ta4ta5ta1ta3

]

+ tr
[

ta2ta3ta1ta5ta4

]

− tr
[

ta2ta3ta5ta1ta4

]

)

, (F.11)

c3 f
ma1a5 = −i

(

tr
[

ta2ta1ta5ta3ta4

]

− tr
[

ta2ta5ta1ta3ta4

]

+ tr
[

ta2ta4ta3ta1ta5

]

− tr
[

ta2ta4ta3ta5ta1

]

)

, (F.12)
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◦ permutation:
{

(1, 4, 5, (2, 3)
}

c1 f
ma2a3 = −i

(

tr
[

ta1ta4ta5ta2ta3

]

− tr
[

ta1ta4ta5ta3ta2

]

+ tr
[

ta1ta2ta3ta5ta4

]

− tr
[

ta1ta3ta2ta5ta4

]

)

, (F.13)

c2 f
ma2a3 = −i

(

tr
[

ta1ta5ta2ta3ta4

]

− tr
[

ta1ta5ta3ta2ta4

]

+ tr
[

ta1ta4ta2ta3ta5

]

− tr
[

ta1ta4ta3ta2ta5

]

)

, (F.14)

c3 f
ma2a3 = −i

(

tr
[

ta1ta2ta3ta4ta5

]

− tr
[

ta1ta3ta2ta4ta5

]

+ tr
[

ta1ta5ta4ta2ta3

]

− tr
[

ta1ta5ta4ta3ta2

]

)

, (F.15)

◦ permutation:
{

(1, 3, 5, (2, 4)
}

c1 f
ma2a4 = −i

(

tr
[

ta1ta3ta5ta2ta4

]

− tr
[

ta1ta3ta5ta4ta2

]

+ tr
[

ta1ta2ta4ta5ta3

]

− tr
[

ta1ta4ta2ta5ta3

]

)

, (F.16)

c2 f
ma2a4 = −i

(

tr
[

ta1ta5ta2ta4ta3

]

− tr
[

ta1ta5ta4ta2ta3

]

+ tr
[

ta1ta3ta2ta4ta5

]

− tr
[

ta1ta3ta4ta2ta5

]

)

, (F.17)

c3 f
ma2a4 = −i

(

tr
[

ta1ta2ta4ta3ta5

]

− tr
[

ta1ta4ta2ta3ta5

]

+ tr
[

ta1ta5ta3ta2ta4

]

− tr
[

ta1ta5ta3ta4ta2

]

)

, (F.18)

◦ permutation:
{

(1, 3, 4, (2, 5)
}

c1 f
ma2a5 = −i

(

tr
[

ta1ta3ta4ta2ta5

]

− tr
[

ta1ta3ta4ta5ta2

]

+ tr
[

ta1ta2ta5ta4ta3

]

− tr
[

ta1ta5ta2ta4ta3

]

)

, (F.19)

c2 f
ma2a5 = −i

(

tr
[

ta1ta4ta2ta5ta3

]

− tr
[

ta1ta4ta5ta2ta3

]

+ tr
[

ta1ta3ta2ta5ta4

]

− tr
[

ta1ta3ta5ta2ta4

]

)

, (F.20)

c3 f
ma2a5 = −i

(

tr
[

ta1ta2ta5ta3ta4

]

− tr
[

ta1ta5ta2ta3ta4

]

+ tr
[

ta1ta4ta3ta2ta5

]

− tr
[

ta1ta4ta3ta5ta2

]

)

, (F.21)
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◦ permutation:
{

(1, 2, 5, (3, 4)
}

c1 f
ma3a4 = −i

(

tr
[

ta1ta2ta5ta3ta4

]

− tr
[

ta1ta2ta5ta4ta3

]

+ tr
[

ta1ta3ta4ta5ta2

]

− tr
[

ta1ta4ta3ta5ta2

]

)

, (F.22)

c2 f
ma3a4 = −i

(

tr
[

ta1ta5ta3ta4ta2

]

− tr
[

ta1ta5ta4ta3ta2

]

+ tr
[

ta1ta2ta3ta4ta5

]

− tr
[

ta1ta2ta4ta3ta5

]

)

, (F.23)

c3 f
ma3a4 = −i

(

tr
[

ta1ta3ta4ta2ta5

]

− tr
[

ta1ta4ta3ta2ta5

]

+ tr
[

ta1ta5ta2ta3ta4

]

− tr
[

ta1ta5ta2ta4ta3

]

)

, (F.24)

◦ permutation:
{

(1, 2, 4, (3, 5)
}

c1 f
ma3a5 = −i

(

tr
[

ta1ta2ta4ta3ta5

]

− tr
[

ta1ta2ta4ta5ta3

]

+ tr
[

ta1ta3ta5ta4ta2

]

− tr
[

ta1ta5ta3ta4ta2

]

)

, (F.25)

c2 f
ma3a5 = −i

(

tr
[

ta1ta4ta3ta5ta2

]

− tr
[

ta1ta4ta5ta3ta2

]

+ tr
[

ta1ta2ta3ta5ta4

]

− tr
[

ta1ta2ta5ta3ta4

]

)

, (F.26)

c3 f
ma3a5 = −i

(

tr
[

ta1ta3ta5ta2ta4

]

− tr
[

ta1ta5ta3ta2ta4

]

+ tr
[

ta1ta4ta2ta3ta5

]

− tr
[

ta1ta4ta2ta5ta3

]

)

. (F.27)
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