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Abstract
Research on Moving Object Databases (MOD) has re-

sulted in sophisticated query mechanisms for moving ob-
jects and regions. Wireless Sensor Networks (WSN) support
a wide range of applications that track or monitor moving
objects. However, applying the concepts of MOD to WSN
is difficult: While MOD tend to require precise object po-
sitions, the information acquired in WSN may be incom-
plete or inaccurate. This may be because of limited detec-
tion ranges, node failures or detection mechanisms that only
determine if an object is in the vicinity of a node, but not
its exact position. In this paper, we study the processing of
spatio-temporal queries in WSN. First, we adapt the mod-
els used in MOD to WSN while keeping their semantical
depth. Second, we propose two approaches for processing
such queries in WSN in-network instead of collecting all data
at the base station. Based on a model that estimates commu-
nication costs of these strategies, nodes can determine the
most energy-efficient strategy. Compared to collecting all
data at the base station, our approaches reduce communica-
tion by up to 89%.

1 Introduction
Wireless Sensor Networks (WSN) have a broad range

of applications. Many of them track moving objects and
have spatio-temporal semantics. For example, environmen-
tal protection agencies track animals or hazardous materi-
als in nature-protection areas [1, 25]. Authorities observe if
unauthorized persons enter sensitive regions [21, 2].

Research on WSN has demonstrated that the declarative-
ness of queries (e.g., [37, 24]) is advantageous, but has fo-
cused on relational queries so far. However, [16, 35] have
shown that expressing spatio-temporal semantics using re-
lational query languages results in complex queries that are
“hopelessly inefficient to process”. This is because model-
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ing the movement of objects and regions requires data types
and operators not offered by purely relational database sys-
tems. To solve this problem, researchers on Moving Object
Databases (MOD) have proposed languages to query mov-
ing objects and regions. To our knowledge, the question how
to process such queries efficiently in WSN is untouched so
far.

Well-known limitations of WSN render the problem diffi-
cult: MOD tend to assume precise and complete information
on objects and regions queried. A region is modelled as a set
of points that meet a user-defined criterion, e.g., all positions
inside a forest. Applying this model to WSN would require
precise knowledge which points fulfill such a criterion. This
frequently is impractical, in particular if the area where the
WSN has been deployed is large. Instead, for many WSN ap-
plications, one can say for each node if a certain user-defined
criterion is met, e.g., if the node has been deployed inside or
outside the forest. Thus, spatio-temporal queries in such set-
tings typically target the topological relationship of objects
detected and a set of nodes. The semantics of such spatio-
temporal queries have not been defined yet. Additionally,
object detection mechanisms in WSN have limited accuracy.
Thus, even if precise information on the location of a region
was available, nodes might be unable to determine if objects
are inside, on the border or outside of a region. Finally, sen-
sor nodes have limited energy resources. Communication in
particular dominates energy consumption by orders of mag-
nitude compared to other operations [24], e.g., computation.
Thus, it is important to minimize communication when pro-
cessing spatio-temporal queries in WSN.

In this paper, we show how to compute meaningful re-
sults for spatio-temporal queries in WSN. We first provide
semantics for such queries related to object movement in re-
lation to a set of nodes. These semantics also take the limited
accuracy of object detection into account, while keeping the
semantical depth of MOD. We then show how these seman-
tics are integrated into the theoretical foundations for MOD,
the 9-intersection model [9] in particular. This is important
because it allows the re-use of existing concepts, e.g., spatio-
temporal query languages [10].

To compute detection scenarios and query results, nodes
must collect information on objects. A simple way to do so
is sending all information about objects detected to the base
station. This is prohibitive regarding energy consumption.
To avoid this, we propose two strategies which compute re-



sults in-network. They differ in the way they collect infor-
mation from nodes close to each other. By combining the
spatial correlation of object detections and spatio-temporal
semantics, both strategies reduce the number of messages
exchanged significantly. It depends on the query in question
which strategy requires less communication. Our approach
also addresses node failures. We provide mechanisms for the
detection of such failures.

Since communication dominates energy consump-
tion [24, 37], determining the strategy that is most energy
efficient requires predicting the communication costs of
each strategy. This prediction must meet two conflicting
requirements: (1) It must be sufficiently simple to work
with information that is available locally, i.e., on every node.
(2) Its accuracy must be sufficient to determine the best
strategy. – Given these difficulties, we propose a respective
cost model.

Our study includes an evaluation using simulations as
well as a Sun SPOT deployment. It shows that the predic-
tions of the cost model are sufficiently accurate to choose the
most energy-efficient strategy. Furthermore, it demonstrates
that our in-network strategies reduce communication by 45-
89%, compared to collecting all information at the base sta-
tion.

Summing up, we focus on the following questions:
Q1 How can point-set based semantics of MOD be trans-

lated to node sets in WSN?
Q2 How can WSN derive predicate results efficiently using

the semantics just mentioned?
We answer Q1 by adapting the point-set model for WSN in
Section 4. Section 5 answers Q2 with execution strategies
for spatio-temporal predicates in WSN.

2 Application Example
This section introduces our running example. Several bi-

ology projects track the movement of individuals at large
spatial and temporal scale [19]. An example of a species
studied in this way are caribous [26, 28]. The following
query is an example of a spatio-temporal query scientists
studying caribous could issue: “Which caribous have moved
into the tree-covered swamp area on the south-western side
of the river?” See Figure 1. The area that is covered by trees
and on the south-western side of the river is a set of points.
For most WSN deployments, recording the exact location of
trees, swamp and river is impractical and unnecessarily com-
plex. Instead, the majority of WSN use a controlled deploy-
ment [15] to reduce the time and effort spent for such record-
ings: Before the nodes [36, 31] start sensing, node positions
and properties of their surroundings are recorded. Examples
of such properties are if a node has been deployed inside the
forest or in a treeless area, close to food resources, in the
swamp or in a calving area. This information allows users to
derive a set of nodes that are, say, in a tree-covered swamp
area on the south-western side of the river (black-colored cir-
cles in Figure 1). It is sufficiently accurate for the purpose of
such an installation if the WSN observes caribou movement
in relation to this set of nodes. Our paper studies this case,
i.e., users are interested in object movements in relation to a
set of nodes. We refer to this set of nodes as zone to distin-

guish it from the term ‘region’ used in MOD, which is a set
of points. Thus, users of WSN typically express their interest
described above as follows: “Which caribous c have entered
the zone Z?” See Figure 1. We define the exact meaning of
such a query in Section 4.

Figure 1. Illustration of the application scenario

This current work relies on several assumptions: Nodes
are stationary, and they can distinguish between query-re-
levant objects and irrelevant ones. There exist several ap-
proaches to detect animals, e.g., acoustic recognition [22]
or radio receivers which detect caribous wearing radio col-
lars [26]. Typically these mechanisms only determine if an
animal is in the vicinity of a node, but not its exact position.
While our approach can be applied to more accurate mecha-
nisms, we do not assume that object detection acquires more
accurate information on the object location. Further, nodes
are able to identify objects. For instance, if Sensor Si detects
a certain object, and Sj detects the object later on, the WSN
knows that it is the same object. Such an identification is
usually available, e.g., through identification numbers on the
radio collars or noise patterns that are characteristic. Finally,
we limit this paper to queries regarding the relationship be-
tween moving objects and one zone.
3 Preliminaries
3.1 Foundations of MOD

We only review the foundations of MOD as far as relevant
for this paper; see [16, 11] for further details. In MOD there
exist three spatial entities: objects, lines and regions. An
entity is a set of points of the d-dimensional Euclidean space
Ed [14]. To ease presentation, we focus on d = 2, and leave
aside lines in the following.

An entity divides the space into three pair-wise disjoint
partitions: The interior, the border and the exterior. For a
region R, the border RB contains all points of the line en-
compassing the interior RI . All points that are neither in RB

nor in RI are part of the exterior RO. Typically, an object x
is represented by its position p ∈ E2 and partitions the space
as follows: The interior xI contains only p, the border xB is
empty, and all points except p are the exterior xO. See [9] for
formal definitions.

The 9-intersection model [9] describes the topological re-
lationship of two entities A and B: As illustrated in Figure 2,



AB∩BB 6=∅ AB∩BI 6=∅ AB∩BO 6=∅
AI ∩BB 6=∅ AI ∩BI 6=∅ AI ∩BO 6=∅
AO∩BB 6=∅ AO∩BI 6=∅ AO∩BO 6=∅


Figure 2. 9-Intersection Model for two spatial entities A and B(F F F
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Inside (p3,R) Meet (p2,R) Dis joint (p1,R)

Figure 3. 9-Intersection representation of spatial predi-
cates (A = pi and B = R)

Inside (p3,R) Meet (p2,R) Dis joint (p1,R)

Figure 4. Spatial Predicates for Point/Region relations

there are nine possible intersections of the exterior, the bor-
der and the interior of A with the exterior, the border and the
interior of B, respectively. Each of these intersections is ei-
ther empty or not. Hence, a matrix of nine boolean values
identifies the relationship of A and B.

There exist three predicates to describe the relationship
of an object x and a region R: Inside (x,R), Meet (x,R) and
Dis joint (x,R). Figure 4 illustrates each predicate.

Example 1: The left-most matrix in Figure 3 describes
Inside (p3,R). Since the border p3

B is empty, it does not in-
tersect with any partition of R, as reflected by the first row of
the matrix. p3

I contains one point, and the second row im-
plies that pI

3∩RI 6=∅, i.e., p3 is inside R. The last row shows
that p3

O intersects with all partitions of R. The matrices for
Meet (p2,R) and Dis joint (p1,R) only differ from the matrix
for Inside (p3,R) in the second row: The topological rela-
tion of p2 and R conforms to Meet (p2,R) if pI

2 ∩RB 6= ∅.
Similarly, pI

1 ∩RO 6= ∅ implies that p1 is outside of x, i.e.,
Dis joint (p1,x). �

Objects can move, and the topological relation of an ob-
ject and a region can change over time. To deal with such
changes, [11] defines the concatenation operator:

Definition 1 (Concatenation): The concatenation of two
predicates P and Q, referred to as P .Q, is true if P is true
for some time interval [t0; t1[, and Q is true at t1. �

Concatenation allows users to formulate sequences of
predicates P1 . P2 . . . . . Pp. These sequences, also called
spatio-temporal developments, express the interest in the
spatio-temporal relationship of an object and a region over
time.

Example 2: A user interested in all objects x that move
into a region R can express this using the following spatio-
temporal development:

Dis joint (x,R).Meet (x,R). Inside (x,R) (1)

This predicate sequence is paraphrased as Enter (x,R).
Other sequences like Touch (x,R) are possible as well:

Dis joint (x,R).Meet (x,R).Dis joint (x,R) (2)

3.2 Related Work
[5, 7] have shown that accessing WSN declaratively is de-

sirable for several reasons: Users formulate queries instead
of writing code on sensor-node level. Such query engines
can be re-used for different applications, which reduces de-
velopment costs. Furthermore, these systems prolong the
lifetime of battery-powered nodes by reducing communica-
tion [37, 24]. So far, relational queries have been the focus
of research on query processing in WSN [6, 8, 29, 23]. Re-
lational approaches are sufficient for queries like “What is
the average temperature measured by all nodes?”. But even
simple spatio-temporal queries become very complex [35]
and inefficient to process [16] in particular because they re-
sult in a large number of joins. Research on join process-
ing [38, 20] in WSN has shown that, except for special cases,
joins should be processed at the base station. Examples of
such cases are join queries with high selectivity or queries
where source nodes of tuples that join are close to each
other. For example, [38] concludes that the distance between
source nodes must be less than a few hops. This is because
determining which nodes store tuples that meet the join con-
dition possibly requires communication among many nodes.
For spatio-temporal queries one join condition would be a
selection that distinguishes between objects detected that are
relevant and those that are not. First, the number of nodes
detecting an arbitrary number of query-relevant objects over
time can be arbitrarily high, i.e., selectivity is low. Second,
the distance between these nodes may be large. Hence, ex-
isting join-processing approaches for WSN are not applica-
ble, or they send all tuples to the base station to compute the
join. Therefore, our reference point is collecting all informa-
tion on object movements at the base station. Additionally,
we show that taking spatio-temporal semantics into account
reduces communication significantly, see Section 7. This oc-
curs even if nodes detecting an object are close to each other.

A straightforward application of the existing results on
MOD [11, 13, 16, 17] instead of using the existing relational
query processors for WSN is not possible as well: First, the
semantics of spatio-temporal queries in MOD are defined for
regions, i.e., point sets, but not for zones, i.e., node sets. Sec-
ond, sensor nodes typically cannot determine an object po-
sition precisely. [34, 33] have shown how to process spatio-
temporal queries in MOD if only some points of object tra-
jectories are known. While this helps if object positions are



determined periodically, it still does require precise object
positions from time to time. Our approach tries to derive
meaningful results based on inaccurate object detections by
sensor nodes.

In [4], we have shown how to acquire meaningful results
for spatio-temporal queries in WSN referring to regions. As
mentioned in Section 2, acquiring precise information on the
location of a region is sometimes impractical. Thus, we leave
aside regions in the following and focus on zones. Addition-
ally, detection mechanisms used in WSN often cannot deter-
mine if an object is inside, on the border or outside of a re-
gion. [4] addresses the inaccuracy of detection mechanisms
used in WSN by categorizing detected objects as follows:
One category for all objects that conform to the movement in
question for sure, one for objects that do not conform for sure
and one for objects that might conform. As the complexity
of queries increases, the number of objects in the latter cate-
gory increases. To leave aside these complications, we now
focus on spatio-temporal queries regarding sets of nodes. Fi-
nally, [4] does not address the processing of queries at all, in
contrast to this paper.

4 Predicate Semantics in WSN
This section provides the theoretical foundation of our ap-

proach. Based on a generic WSN model and a set of nota-
tions, we show how to acquire meaningful results for spatio-
temporal predicates in WSN.

4.1 Network Model and Notations
Notation (WSN): A wireless sensor network is a set N =
{S1, . . . ,Sn} of sensor nodes. pi is the position of Si.
Processing spatio-temporal predicates requires detection of
objects moving in the area where the WSN has been de-
ployed. To detect an object, it must be “in range”, i.e., in
the area observed by the detection function.
Definition 2 (Detection Area): The detection area of node
Si is the set of points Di ⊆E2 where Si can detect an object.

�

Definition 3 (Detection Function): The detection function
detect (Si,x, t) is defined as follows:

detect (Si,x, t) =
{

T iff x ∈ Di at t
F otherwise (3)

We say that object x is detected at time t if
detect (Si,x, t) = T for at least one i ∈ {1, . . . ,n}. The de-
tection area can have any shape or size, may overlap with
detection areas of other nodes and may change over time.
This is illustrated by Figure 5 where a rock prevents a sensor
node from detecting objects behind it. Overlap of detection
areas results in simultaneous detection.
Notation (Detection Set): The detection set Dx

t ⊆ N is the
set of nodes that detect x at some time t.

Dx
t = {Si ∈ N | detect (Si,x, t)} (4)

Sensor nodes typically cannot determine their detection area.
However, the maximum detection range of the detection
mechanism is typically available prior to deployment.

Definition 4 (Maximum Detection Range): The maxi-
mum detection range Dmax is the maximum distance of an
object to a node to be detected. �

Example 3 illustrates the difference between the detection
area of a node and the max. detection range.
Example 3: For PIR-based motion detectors, Dmax ≈ 30
meters. The sensor node in Figure 5 has been deployed close
to a rock and cannot detect any object behind it. Thus, the
area observed is much smaller than Dmax. Next, if there is an
object in front of the lens of such a sensor, the area observed
may be only a few centimeters. Nodes cannot detect this. �

Definition 5 (Communication Area): The communication
area of node Si is the set of points Ci ⊆ E2 where a node Sj
with i 6= j can receive messages sent by Si. �

Communication areas may change over time and can have
any shape or size. We say that a node Si can directly com-
municate with another node Sj if p j ∈ Ci.
Definition 6 (Communication Neighbors): The commu-
nication neighbors CNi of a node Si are the nodes Si can
directly communicate with. �

Wireless communication is not bi-directional, i.e., Sj ∈
CNi does not imply that Si ∈ CNj. – There exist several
protocols [27, 12] that let nodes exchange information via
multiple hops if they cannot communicate directly. These
protocols typically require a routing table on each node that
contains all communication neighbors.

4.2 Spatio-Temporal Predicates for Zones
In line with our application example in Section 2, users

are interested in the spatio-temporal relationship between
objects and a zone, i.e., a set of nodes.
Definition 7 (Zone): A zone Z is a non-empty set of nodes.
We say a node Si is inside of Z if Si ∈ Z. Si is outside of Z
otherwise. �

To process spatio-temporal predicates in WSN, one must
consider which nodes inside and outside of the zone detect
an object. I.e., we are interested in the intersections of Dx

t

with Z and Z. We refer to the different cases as detection
scenarios, and there are four of them:
DSO: Only nodes outside of Z currently detect x:

Dx
t ∩Z=∅∧Dx

t ∩Z 6=∅ (5)

DSI: Only nodes inside of Z detect x:

Dx
t ∩Z 6=∅∧Dx

t ∩Z=∅ (6)

DSB: Dx
t contains nodes from Z as well as Z:

Dx
t ∩Z 6=∅∧Dx

t ∩Z 6=∅ (7)

DSN: Dx
t neither intersects with Z nor with Z, i.e., x is cur-

rently undetected:

Dx
t ∩Z=∅∧Dx

t ∩Z=∅ (8)

LEMMA 1. For any point of time, exactly one detection sce-
nario holds.



Figure 5. Illustration
of the node model

Figure 6. Point set model
for zones

Detection Scenario Predicate Partition
DSN - ZN

DSO Dis joint (x,Z) ZO

DSI Inside (x,Z) ZI

DSB Meet (x,Z) ZB

Table 1. Mapping detection of an object x to
predicates/space partitions

Proof. The set of detection scenarios is exhaustive be-
cause it covers all points in E2. A point p ∈ E2 is either in-
cluded in at least one detection area or unobserved. DSN cov-
ers all points E2 \

⋃
1≤i≤n Di. The observed points

⋃
1≤i≤n Di

are covered by one of the remaining scenarios: All points ex-
clusively observed by nodes outside of R are covered by DSO.
Similarly DSI covers all points solely observed by nodes in-
side R. All points observed by nodes inside and outside of
R are covered by DSB. Each of these point sets is pair-wise
disjoint with the others, i.e., for all t ∈ time exactly one de-
tection scenario holds. �

Detection scenarios formalize the information acquired by
object detection in WSN and abstract from the details of ob-
ject detection, i.e., they are applicable to any detection hard-
ware or mechanism. Based on detection scenarios, we de-
fine the semantics of spatio-temporal predicates as follows:
When an object x is undetected, the WSN cannot make any
statement on the topological relation of x and Z. Thus, when
DSN occurs, no predicate is true. DSO occurs if x is exclu-
sively detected by nodes outside of the zone. Likewise, DSI
occurs if x is exclusively detected by nodes in the zone.
Definition 8 (Inside (x,Z)): Object x conforms to the pred-
icate Inside (x,Z) if DSI occurs. �

Definition 9 (Dis joint (x,Z)): Object x conforms to the
predicate Dis joint (x,Z) if DSO occurs. �

If nodes from Z and Z detect an object, i.e., DSB occurs,
the WSN can derive that the object is between being inside
and outside of the zone. Hence, we define:
Definition 10 (Meet (x,Z)): The object x conforms to
Meet (x,Z) if DSB occurs. �

Table 1 serves as a summary. . and other concepts from
MOD, e.g., lifting [16], are applicable to these predicates
as well. Thus, one can construct developments that query
the spatio-temporal relationship of objects and a zone. For
instance, one could define:

Enter (x,Z) = Dis joint (x,Z).Meet (x,Z). Inside (x,Z)
(9)

4.3 Point-Set Topology for Zones
According to point-set topology, a region partitions the

(Euclidean) space into three subsets of points. By definition,

this partitioning is regular [32]: This means that a region R
does not contain holes, is continuous, and the border RB en-
compasses the interior RI completely. The space partitioning
of zones in turn is not regular, as we will explain. We show
how this affects the semantics of spatio-temporal queries in
WSN and how to deal with this non-regularity.

First we derive a space partitioning based on the predicate
definitions and detection scenarios above using the following
idea: Without loss of generality, let x be detected according
to DSO, i.e., Dis joint (x,Z). From this, we infer that the po-
sition of x is some p ∈ E2 exclusively observed by nodes
outside of Z, i.e., the exterior of the zone. For each predicate
we can derive such a subset of the space.
Definition 11 (Unobserved Area): All points not contained
in a detection area form the unobserved area ZN :

ZN =
{

p ∈ E2 | @Si ∈ N : p ∈ Di

}
(10)

Definition 12 (Exterior): All points exclusively observed
by nodes in Z constitute the exterior of a zone ZO:

ZO =
{

p ∈ E2 | p /∈ ZN ∧@Si ∈ Z : p ∈ Di

}
(11)

Definition 13 (Interior): All points of space exclusively
observed by nodes in Z constitute the interior of a zone ZI :

ZI =
{

p ∈ E2 | p /∈ ZN ∧@Si ∈ Z : p ∈ Di

}
(12)

Definition 14 (Border): All points of space observed by
nodes in Z and Z form the border of a zone ZB:

ZB =
{

p ∈ E2|∃Si ∈ Z,∃Sj ∈ Z : p ∈ Di, p ∈ D j

}
(13)

LEMMA 2. The point sets ZN , ZO, ZI and ZB partition the
space.

Proof. Follows directly from Lemma 1. �

Figure 6 illustrates the space partitioning for zones. Black-
colored circles or squares1 represent nodes in the zone. Ex-

1The difference between squares and circles is irrelevant here
and will be explained in Section 5.3.



ternal factors influence detection areas which in turn deter-
mine the partitions. Unobserved areas may exist perma-
nently or temporarily. This results in holes in the interior ZI

of a zone or borders not encompassing ZI completely. For
example, node failures might cause an unobserved area as
illustrated on the right-hand side of the zone in Figure 6.
Hence, space partitioning based on zones is not regular.

Non-regularity has an impact on spatio-temporal develop-
ments, as we illustrate with Enter (x,R)/Enter (x,Z): MOD
can assume that point sets are regular, i.e., an object x has to
cross the border RB. This is not true for WSN: x may be
detected according to DSO first, move through an unobserved
area and then appear inside of Z. Users interested in objects
moving in this way can not express this as follows:

P(x,Z) = Dis joint (x,Z). Inside (x,Z) (14)

This sequence in (14) never occurs, because . requires In-
side (x,Z) to follow Dis joint (x,Z) immediately. On the
other hand, Enter (x,Z) excludes all objects that are unob-
served while moving into the zone because Meet (x,Z) never
occurs. In other words, users cannot express such a query
given the three predicates and ..
Definition 15 (Relaxed Concatenation): The relaxed con-
catenation of two predicates, P .̃Q, is true if P is true for
some interval [t0, t1[, and Q is true at t2 > t1. �

(15) expresses the query discussed above, and Example 4
shows that this new primitive increases the semantical depth:

WSNEnter (x,Z) = Dis joint (x,Z) .̃ Inside (x,Z) (15)

Example 4: The area where the WSN in Figure 1 is de-
ployed contains a river with several bridges. Suppose that
nodes are deployed so that caribous moving over a bridge are
detected, but caribous swimming are not, i.e., the river itself
is unobserved. A user only interested in caribous c entering
Z by crossing bridges can use Enter (c,Z). A user interested
in all caribous can express this as WSNEnter (x,Z). �

Next, we study some important properties of the .̃ oper-
ator like associativity and how it can be combined with the .
operator.
LEMMA 3. P1 .P2⇒ P1 .̃P2

Proof. According to Definition 15, the right-hand side
is true if P1 is true for some interval [t0, t1[ and P2 is true at
t2 ≥ t1. The left-hand side of the implication states that P1 is
true for some interval [t0, t1[ and P2 is true at t2 = t1. Hence,
if the left-hand side is true, the right-hand side is also true.
�

LEMMA 4. P1 .̃ (P2 .̃P3) = (P1 .̃P2) .̃P3.
Proof. The left hand side means ∃ [t0, t1[ : P1 and ∃t2 ≥

t1 : (P2 .̃P3). Further, ∃ [t2, t3[ : P2 and ∃t4 ≥ t3 : P3. The right
hand side expresses that ∃ [t ′0, t ′3[ : (P1 .̃P2) and ∃t ′4 ≥ t ′3 : P3.
Additionally, ∃ [t ′0, t ′1[ , t ′1 ≤ t ′3 : P1 and ∃t ′2 ≥ t ′1 ∧ t ′2 ≤ t ′3 : P2.
If the left hand side is true for t ′0 = t0, t ′1 = t1, t ′2 = t2, t ′3 = t3
the right hand side is fulfilled also (and vice versa). �

LEMMA 5. P1 . (P2 .̃P3) = (P1 .P2) .̃P3

Proof. P1 . (P2 .̃P3) implies P1 .̃ (P2 .̃P3) based on
Lemma 3. Similarly, (P1 .P2) .̃P3 implies (P1 .̃P2) .̃P3.

Hence, we get P1 .̃ (P2 .̃P3) = (P1 .̃P2) .̃P3 which is true ac-
cording to Lemma 4. �

Users can express spatio-temporal queries using both con-
catenation operators using spatio-temporal developments.
Definition 16 (Spatio-Temporal Development): A spatio-
temporal development P(x,Z) is a sequence of predicates
P1 (x,Z)θ . . .θPq (x,Z) with θ ∈ { ., .̃}, and Pi (x,Z) ∈ {In-
side (x,Z), Meet (x,Z), Dis joint (x,Z)}.
The movement of an object x conforms to P(x,Z) if each
pair Pi−1 (x,Z) θ Pi (x,Z) with 2≤ i≤ q is true. �

This concludes our study regarding Q1. We have defined
the semantics of spatio-temporal predicates for SN that ex-
press the topological relation of an object and a zone. Fur-
thermore, we have shown how to take unobserved areas into
account when expressing spatio-temporal queries for SN and
provided a space partitioning for zones.
5 Computing Detection Scenarios

In this section, we provide an answer to Q2, i.e., process
spatio-temporal queries efficiently: We propose two strate-
gies that reduce the number of messages exchanged between
nodes, compared to a straightforward approach that collects
all information at the base station. Recall that this approach
resembles relational query processors used for spatio-tem-
poral queries, as discussed in Section 3.2. Appendix B
shows that reducing communication can increase the battery-
lifetime significantly for the used Sun SPOT sensor nodes.
Other nodes show similar behaviour, e.g., [24] provides sim-
ilar results for MicaZ [36]. Reducing the number of mes-
sages is crucial because communication dominates energy
consumption by orders of magnitude [24]. We present our
approach in the following steps; the numbers are in line with
the ones of the respective sections:
5.1 Data Structures and Algorithms: We describe a rela-

tional schema to store information on objects detected
and show how to derive detection scenarios from this.
The remainder of the section deals with acquiring the
necessary information.

5.2 Centralized Data Collection: A straightforward strat-
egy to acquire information necessary to compute detec-
tion scenarios collects all data at the base station. This
is our base-line strategy.

5.3 Distributed Data Collection: We propose two strate-
gies that exploit spatial correlation of object detections
to derive detection scenarios. Our evaluation shows that
they reduce communication significantly.

5.4 Failures: Failures of nodes may impact query results.
For every strategy, we investigate when a failure affects
the query result and how to detect such a failure.

We assume that the following steps have been completed be-
fore the WSN starts to process a query:

1. Definition of a zone Z.
2. Specification of the movement of interest as a develop-

ment P(x,Z).
3. Dissemination of Z and P(x,Z) to all nodes.

The query result returned to the user by the base station in-
cludes every object whose movement conforms to P(x,Z).
To accomplish this, the WSN must compute the detection



scenario when an object is detected. Using Table 1, any node
can determine which predicate the detected object conforms
after the detection scenario has been computed.

An object x fulfills P(x,Z) if the WSN derives from the
detection scenarios of x that the predicates have occurred in
the correct order. The distributed strategies notify the base
station whenever a predicate P(x,Z) in P(x,Z) is satisfied.
Thus, the base station determines if x has fulfilled P(x,Z).
Note that a node Si may send several notifications regard-
ing a predicate to the base station because it detects the same
object more than once. This is intended, for two reasons:
First, the query may be a predicate sequence that contains a
predicate twice, e.g., Touch (x,Z) (cf. (2)). Second, coordi-
nating nodes such that they only send notifications regarding
predicates that have not occurred on any other node requires
communication. A preliminary study of ours has shown that
the communication effort for such coordination only pays
off if the network is very small, the zone is small, and if the
object moves through detection areas of many nodes repeat-
edly. Thus, we do not intend to prevent this. On the other
hand, we show in Section 5.3 how to exploit spatio-temporal
semantics to reduce the number of notifications, e.g., only
few nodes send notifications for queries like Enter (x,Z).
5.1 Data Structures and Algorithms

A relation Detections contains data on objects detected.
It depends on the strategy where it is stored: All tuples are
sent to the base station (centralized), or they are distributed
and/or replicated among the nodes in the WSN (distributed).
Detections has the following attributes:
• NodeID: Identifier of the node Si detecting the object

identified by attribute ObjectID.
• ObjectID: Identifier of the object detected by Si.
• tentry: t ∈ time when Si starts to detect the object.
• texit : This value is either > or a t > tentry. If it is >, Si

is still detecting the object. Otherwise, Si has detected
the object during the time interval [tentry; texit [.

We say that a tuple T originates from node Si if T.NodeID=
Si.

The memory consumption for each tuple in Detections
is computed as follows: Sun SPOT sensor nodes are uniquely
identified by IEEE addresses which require 16 bytes of mem-
ory. Thus, the attribute NodeIDrequires 16 bytes. The times-
tamps tentry and texit are longvalues which each require 16
bytes as well according to the specification of the Squawk
VM running on Sun SPOT sensor nodes. For the identifiers
of detected objects, i.e., ObjectID, our implementation uses
intvalues, which require 4 bytes. Summing up, a tuple of
in Detections requires 16+4+16+16 = 52 bytes. Since
Sun SPOTs have 512 kilobytes of main memory, a node can
store thousands of tuples. Therefore, we assume in the fol-
lowing that nodes have sufficient memory to store tuples re-
quired to compute a detection scenario and leave aside mem-
ory optimization.

We refer to the moment an object x moves into the detec-
tion area of a node Si as entry event. When such an entry
occurs at time t, a tuple [Si,x, t,>] is added to Detections.
Then the object may be inside the detection area for an arbi-
trary interval of time. We refer to the moment when x leaves
the detection area as exit event. When x this happens at t ′,

the existing tuple is updated, i.e., becomes [Si,x, t, t ′]. Al-
gorithm 5.1 illustrates the insertion of a new tuple and Algo-
rithm 5.2 illustrates the corresponding update when an exit
occurs.

Algorithm 5.1: Insertion of tuples into Detections
when an object x enters the detection area Di of Si

Input: Object identifier x, current time t ∈ time
1 INSERT INTO
2 Detections (NodeID,ObjectID, tentry, texit)
3 VALUES (Si,x, t,>);

Algorithm 5.2: Updating tuples in Detections when
an object x leaves the detection area Di of Si

Input: Object identifier x, current time t ′ ∈ time
1 UPDATE Detections
2 SET texit = t ′
3 WHERE texit => AND ObjectID= x

For non-continuous detection mechanisms nodes can de-
rive the interval [tentry; texit [ by temporal interpolation: Sup-
pose Si checks periodically at t0, t1, . . . for objects. An entry
event occurs at t j if Si did not detect an object at t j−1 but
detects it at t j. An exit event occurs at t j if Si detected an
object at t j−1 and does not detect it at t j. The frequency at
which nodes must check for objects obviously depends on
the properties of the used hardware and the object it is in-
tended for. An example of such a property is the expected
maximum speed of the objects observed.

To determine the detection scenario, the system must
compute how the detection set Dx

t intersects with Z and Z
at t based on Detections. We refer to this computation as
isDetecting(S∗,x,t), which is defined as follows:

isDetecting(S∗,x,t)=
{

T if ∃Si ∈ S∗ : detect (Si,x, t)
F otherwise

(16)
The input parameter S∗ is either Z or Z. Algorithm 5.3 im-
plements this function and we define for each strategy where
the algorithm is executed. isDetecting(S∗,x,t)consists
of two nested loops: The outer loop runs through the nodes
contained in S∗, and the inner loop determines for each of
these nodes if it detects x at time t. To compute a detection
scenario, we use this algorithm twice, to determine isDe-
tecting(Z,x,t)as well as isDetecting(Z,x,t). Based
on the results, one can determine the detection scenario ac-
cording to Table 2: Each cell corresponds to a pair [is-
Detecting(Z,x,t), isDetecting(Z,x,t)] and contains
the corresponding detection scenario. In the following, we
deal with the collection of tuples in Detections to ensure a
correct computation of detection scenarios.
Definition 17 (Correctness): The computation of the de-
tection scenario is correct if the space partition correspond-
ing to the detection scenario computed (cf. Table 1) contains
the position p ∈ E2 of the object detected. �



Algorithm 5.3: isDetecting(S∗,x,t)computes if a
node from a set S∗ detected object x at time t.

Input: Relation Detections, an object identifier x, a
set of nodes S∗ and a value t ∈ time

Output: T if a node in S∗ detected x at t, otherwise F .
1 for each node ID id in S∗ do
2 for each entry E in Detections do
3 if E.ObjectID= x AND E.NodeID= id

AND E.tentry ≤ t ≤ E.texit then
4 return T ; // Node inS∗ detectsx at

t
5 end
6 end
7 end
8 return F

isDetecting(Z,x,t)
T F

isDetecting(Z,x,t) T DSB DSI

F DSO DSN

Table 2. Deriving detection scenarios from Detections

Definition 18 (Completeness): Detections is complete
regarding an object x and a time t if it contains all tuples
{Si,x, t1, t2} with t1 ≤ t and t ≤ t2 or t2 =>. �

LEMMA 6. If the relation Detections is complete, the de-
tection scenario computed according to Table 2 is correct.

Proof. Without loss of generality, assume the computed
detection scenario is DSO which means that x is in ZO. Thus,
at least one Si ∈ Z detects x at time t. The computed de-
tection scenario would be incorrect, if there existed a node
Sj ∈ Z that detects x at t as well. Such a node cannot exist
since Detections is complete. For the other detection sce-
narios, the proof is similar. �

Summing up, the base station or an arbitrary node must store
a complete set of tuples locally to compute a detection sce-
nario for an object x and a time t. In the following we deal
with acquiring these tuples.

5.2 Centralized Data Collection
A straightforward approach is that every node notifies the

base station whenever an object enters or leaves a detection
area. The base station then modifies Detections as shown
and computes a detection scenario. See Algorithm 5.4.

Arbitrary nodes detecting an object execute the first part
of Algorithm 5.4. Sending tuples from Si to the base station
requires routing protocols [27, 12]. These protocols forward
messages via multiple hops if Si is not a communication
neighbor of the base station.

The base station executes the second part. Line 5 modi-
fies Detections as described previously. The base station
then has to wait a timeout tdelay before it computes the detec-
tion scenario according to Table 2. The timeout ensures that

Algorithm 5.4: Centralized Data Collection
1 When x enters/leaves Di of Si at t do
2 Si sends corresponding notification to base station
3 end
4 When base station receives notification from Si do
5 Modify Detections at base station
6 Wait tdelay
7 Compute

[isDetecting(SR,x,t),isDetecting(SR,x,t)]
8 end

notifications of nodes which simultaneously detect an object
have arrived before the detection scenario is computed. tdelay
is the maximum time a notification may need to be forwarded
to the base station. Its actual value depends on factors such
as communication hardware, WSN size, routing protocol etc.
For our reference implementation we use a delay of 30 sec-
onds.
LEMMA 7. If tdelay is the maximum time a notification
needs to travel from a node Si to the base station,
Detections stored at the base station is complete at t +
tdelay.

Proof. We produce the proof of the contrary. Let Si be
a node that detected x at t and send a notification to the base
station. If this notification has not arrived at the base station
by t + tdelay, tdelay was not the maximum time a notification
may need to reach the base station from an arbitrary node.
�

Thus, the computation of the detection scenario based on
centralized data collection is correct.

5.3 Distributed Data Collection
In the following, we propose two strategies which dis-

tribute the relation Detections. The distribution is done
in such a way that any node Si detecting an object x can
compute the detection scenario. As we show, this reduces
communication for two reasons:
• Nodes only notify the base station on objects that pos-

sibly fulfill the query.
• The nodes data must be collected from are fewer, i.e.,

only some nodes communicate.
The latter point stems from the following idea: When a node
Si detects an object x, only nodes in its vicinity can de-
tect the object simultaneously. This is because x at position
p ∈ E2 can be detected only by nodes whose detection area
contains p. The problem is that detection mechanisms in
WSN typically do not allow precise localization of the ob-
ject detected, i.e., p is unknown. But in turn, Si can derive
that only nodes whose detection area overlaps with Di could
possibly detect x simultaneously, i.e., contain p.

Definition 19 (Detection Neighbor): Node Sj is a de-
tection neighbor of Si if the detection areas of both nodes
overlap, i.e., Di∩D j 6=∅. DNi is the set of detection neigh-
bors of Si. �



Section 5.3.1 shows how to approximate the detection
neighbors if detection areas are indeterminable. Since Z is
disseminated to all nodes, every Si can derive for each de-
tection neighbor Sj ∈ DNi if it is in Z or not.
Notation (Detection-Neighbor Subsets): We refer to the
subset of detection neighbors of Si in the zone Z as DNi

Z.
DNi

Z contains all detection neighbors of node Si that are
outside of Z.

LEMMA 8. Detections stored at Si is complete regard-
ing x and t if Si detects x at t and obtains all tuples on x
originating from its detection neighbors DNi.

Proof. We prove this by showing that there cannot exist a
node Sj /∈ DNi that detects x at t. Sj /∈ DNi implies that the
detection areas of Si and Sj do not overlap, i.e., Di∩D j =∅.
Thus, there does not exist a p ∈ E2 where Si and Sj can
detect x simultaneously. Hence, Sj cannot detect x at t. �

Lemma 8 limits the nodes from which Si must be acquire
tuples to the detection neighbors DNi. By taking into account
that Si is either in Z or Z we actually can compute a correct
detection scenario without Detections being complete.
Definition 20 (Semi-Completeness): Detections re-
garding x and t stored at a node Si ∈ Z is semi-complete
if it contains all tuples [Sj,x, t1, t2] with t1 ≤ t ≤ t2 where
Sj ∈ DNi

Z.
Detections regarding x and t stored at a node Si ∈ Z is

semi-complete if it contains all tuples [Sj,x, t1, t2] with t1 ≤
t ≤ t2 where Sj ∈ DNi

Z. �

LEMMA 9. Let Si detect x at t. Without loss of generality,
let Si ∈ Z. If Detections stored at Si is semi-complete
regarding x and t, the computation of the detection scenario
at Si according to Table 1 is correct.

Proof. Since Si detects x, isDetecting(Z,x,t)= T .
Thus, only isDetecting(Z,x,t)remains to be computed
by Si. This only requires tuples from Z. �

Lemma 9 implies that the detection scenario computation is
still correct if Detections contains only tuples from a sub-
set of certain detection neighbors. This reduces the commu-
nication, in particular when this subset is empty.
Definition 21 (Border Node): Si is a border node if
• Si ∈ Z and DNi

Z 6=∅, or
• Si ∈ Z and DNi

Z 6=∅. �

Figure 6 illustrates a WSN, a zone Z and the resulting
space partitioning based on detection areas (cf. Section 4.3).
Nodes are represented as squares or circles, and there are
four kinds of nodes: Non-border nodes inside Z are repre-
sented by black-colored circles. Black-colored squares cor-
respond to border nodes inside Z. Similarly, grey-colored
squares and circles correspond to border and non-border
nodes outside of Z, respectively. A significant share of the
nodes in this scenario are non-border nodes. According to
Lemma 10, non-border nodes can compute detection scenar-
ios without obtaining tuples originating from any detection
neighbor. This reduces communication and thus conserves
energy.

LEMMA 10. If a non-border node Si detects x at t and
modifies Detections accordingly, Detections stored at
Si is semi-complete.

Proof. Without loss of generality let Si ∈ Z and DNi
Z =

∅, i.e., Si is not a border node. DNi
Z =∅ implies that there

does not exist a node Sj ∈ Z whose detection area overlaps
with the detection area of Si. Thus, simultaneous detec-
tion of an object by Si and some Sj ∈ Z is not possible by
definition. Hence, detection of an object x by Si implies
isDetecting(Z,x,t)= F and isDetecting(Z,x,t)=
T . �

LEMMA 11. Let P(x,Z) = P1 (x,Z).P2 (x,Z). Tuples orig-
inating from non-border nodes are not necessary to process
P(x,Z).

Proof. Without loss of generality, assume the non-border
node Si detects x at time t and derives P1 (x,Z). If x ful-
fills P(x,Z) at some time t ′ > t, there will be a border node
Sj that detects x and derives P1 (x,Z) directly followed by
P2 (x,Z). If no such border node exists, x does not fulfill
P(x,Z) and therefore x is irrelevant regarding the users in-
terest. Hence, the detection of a non-border node is irrelevant
for developments like P(x,Z). �

Lemma 11 refers to developments constructed using . exclu-
sively. Sensor nodes typically have a deep-sleep modus [30]
which reduces their energy consumption significantly. This
is important since non-border nodes can use deep-sleep
while developments like Enter (x,Z) are processed.
5.3.1 Approximation of Detection Neighbors

As stated in Section 4.1, there exist detection mechanisms
where the detection area is indeterminable. In this case,
nodes cannot determine their detection neighbors. To solve
this problem, we use a superset DNi

approx which contains at
least all detection neighbors DNi, i.e., DNi ⊆ DNi

approx. Us-
ing DNi

approx instead of DNi obviously still yields a correct
result, because those nodes in DNi

approx that are not detec-
tion neighbors of Si cannot detect an object simultaneously.
Several approaches to derive such a superset are conceivable,
and we outline two of them:
Communication Neighbors: If the communication range

can be assumed to be much larger than the maxi-
mum detection range, a valid superset is CNi, i.e.,
DNi

approx = CNi. In this case, all detection neighbors
are communication neighbors as well. This approach is
applicable to most detection mechanisms used in WSN,
and we use it for our evaluation.

Node Positions: Another approach is applicable if nodes
know their position: The set DNi

approx contains all
nodes with a distance of at most 2·Dmax to Si.

Next, we propose two strategies which allow a node Si that
detects x to obtain tuples originating from detection neigh-
bors efficiently to compute the detection scenario.
5.3.2 Reactive Strategy

The core idea of the reactive strategy is as follows: At
query-dissemination time, each node has received P(x,Z).
Each predicate of the development is related to a detection
scenario according to Table 1. For instance, for WSNEn-
ter (x,Z) each node knows that only DSO and DSI are rele-



Figure 7. Detection Events
(S1 ∈ Z, S2 ∈ Z)

Reactive Si ∈ Z Si ∈ Z

DSI
Entry DNi

Z ∅
Exit ∅ DNi

DSB
Entry DNi

Z DNi
Z

Exit ∅ ∅

DSO
Entry ∅ DNi

Z

Exit DNi ∅

Table 3. Detection-neighbor partitions
for the reactive strategy

Proactive Si ∈ Z Si ∈ Z

DSI
Entry ∅ DNi

Z

Exit ∅ DNi
Z

DSB
Entry DNi

Z DNi
Z

Exit DNi
Z DNi

Z

DSO
Entry DNi

Z ∅
Exit DNi

Z ∅

Table 4. Detection-neighbor partitions
for the proactive strategy

vant. When an object x enters or leaves the detection area
of Si at time t, Si checks if this possibly results in a predi-
cate P(x,Z) of the query being true. If so, Si requests tuples
on x from some or all of its detection neighbors. Si stores
each such tuple and computes the detection scenario after
the tuples requested have arrived. If the detection scenario
computed results in one predicate of P(x,Z) being true, the
base station is notified. A core question is: “When Si detects
x, which detection neighbors could have tuples that are rel-
evant to compute the detection scenario?” This depends on
three points:
• The predicates P(x,Z) that form P(x,Z).
• Whether Si ∈ Z or Si ∈ Z.
• Whether x has entered or left the detection area Di.

Table 3 summarizes from which detection neighbors a node
has to request tuples to check if a given detection scenario
has occurred when it detects x. In the following, we explain
these cells, using Figure 7 as an illustration. Figure 7 shows
two nodes and their detection areas as well as two objects
that enter/leave these detection areas at different times ti.

The first row of Table 3 is related to DSI, i.e., In-
side (x,Z) ∈ P(x,Z). There are two cases that can lead to
DSI: (1) an object enters the detection area Di of a node
Si ∈ Z or (2) an object leaves D j of Sj ∈ Z. For all other de-
tection events, no communication is required, as reflected by
the ’∅’ entries. Case (1) occurs at t2 and t5 in Figure 7 since
S2 ∈ Z. Applying Lemma 9, S2 only requires tuples from
DNi

Z to compute the detection scenario. The corresponding
DNi

Z entry in Table 3 reflects this. For t2, S1 ∈DNi
Z returns

a tuple [S1,x1, t1,>]. From this, S2 can derive that S1 and S2
detect x1 simultaneously, i.e., DSI did not occur. Contrary to
this, S2 derives DSI for x2 for t5. Case (2) is different, be-
cause objects leave D j of Sj ∈ Z, i.e., Sj does not detect the
object any more and thus cannot apply Lemma 9. Hence,
Detections stored at Sj has to be complete, i.e., Sj must
request tuples from all detection neighbors. This is reflected
by the DNi entry in the first row of Table 3. This case occurs
at t3 and t8 in Figure 7 since S2 ∈ Z. In both cases, S1 must
verify that no other node outside of Z still detects the object,
and that there is at least one node in the zone detecting it.
Hence, DSI occurs at t3 but not at t8.

The second row of Table 3 is related to DSB, i.e.,
Meet (x,Z) is part of P(x,Z). DSB requires simultaneous de-
tection of x by nodes inside and outside of the zone. Thus,
when an object leaves a detection area, DSB either already has

occurred or does not occur at all, i.e., no communication is
required. Contrary to that, objects entering a detection area
can result in DSB. This allows applying Lemma 9. Thus, if
Si ∈ Z, only tuples from DNi

Z are required and vice versa.
The entries for DSO, i.e., Dis joint (x,Z) ∈ P(x,Z), are de-

rived analogously to those for DSI.

Algorithm 5.5: Reactive Strategy
1 When x enters or leaves the detection area of Si do
2 Modify Detections as described in Section 5.1;
3 DN∗ ← Set of detection neighbors that must be

queried according to Table 3;
4 Request tuples on x from every node in DN∗;
5 Wait for response from every node in DN∗;
6 Determine detection scenario d according to

Table 2;
7 Compute predicate result from d based on Table 1;
8 Notify base station if x fulfills a predicate of the

query;
9 end

5.3.2.1 Reactive Strategy – Summary
Algorithm 5.5 summarizes the reactive strategy. When x

enters or leaves the detection area of Si at t, Si modifies
Detections accordingly. Afterwards, Si requests tuples on
x from a set DN∗ of detection neighbors. Each response from
a detection neighbor is inserted into Detections stored at
Si. After all detection neighbors have responded, Si deter-
mines the detection scenario.

5.3.3 Proactive Strategy
As illustrated in Algorithm 5.5, the reactive strategy re-

quires communication for requesting tuples and for respond-
ing to these requests. The proactive strategy tries to avoid
responses. Algorithm 5.6 outlines the strategy, and the core
idea is as follows: When x enters or leaves at t the detec-
tion area of Si, Detections stored at Si is modified. This
modification is either an insertion of a tuple [Si,x, t,>] or
an update of a tuple [Si,x, t ′ < t,>] to [Si,x, t ′, t] (cf. Sec-
tion 5.1). Afterwards, Si immediately sends the modified tu-
ple to a subset DN∗ of its detection neighbors. Each detection
neighbor Sj ∈ DN∗ stores the modified tuple. This ensures
that Detections stored at Si and each Sj is semi-complete.
According to Lemma 9, Si and any Sj ∈ DN∗ that currently



detects x can compute the detection scenario. Again, the im-
portant step is determining the set DN∗ in Line 3 since it
determines the number of messages. Analogously to the re-
active strategy, Table 4 lists which detection neighbors must
receive an update to ensure semi-completeness, for each de-
tection scenario. We explain each cell in the following using
Figure 7.

Algorithm 5.6: Proactive Strategy
1 When x enters/leaves detection area of Si do
2 Modify Detections as described in Section 5.1;
3 DN∗ ← Set of detection neighbors whose

information must be updated according to Table 4;
4 Send updated tuple(s) to every node in DN∗;
5 Goto Line 9;
6 end
7 When Si receives updated tuples about x do
8 Insert updated tuples into Detections;
9 Determine detection scenario d according to

Table 2;
10 Compute predicate result from d based on Table 1;
11 Notify base station if x fulfills a predicate of the

query;
12 end

Recall that DSI can either occur (1) when an object enters
the detection area of a node inside the region or (2) when
the detection area of a node outside of the region is left. An
object detection conforming to DSI requires at least one node
Si ∈ Z to detect the object. If such a detection occurs, Si
must determine if there exists a simultaneous detection by
another node Sj ∈ Z. Using Figure 7 again, Case (1) occurs
at t2 and t5. To compute the detection scenario correctly at
t2, S2 must know that S1 ∈ Z currently detects x1. Case (2)
occurs when x1 leaves the detection area of S1 at t3. In this
case, the information at S2 is updated, and S1 then correctly
determines DSI for x1. Regarding x2, S2 computes DSI at
t5, because there do not exist any relevant detections by any
Si ∈ Z. Thus, if the query requires DSI, nodes outside of the
zone must send updates to their detection neighbors inside
the zone when objects enter/leave their detection areas.

DSB requires simultaneous detection by nodes in Z as well
as Z. Thus, every Si ∈ Z must be informed about detections
of detection neighbors in Z and vice versa.

5.4 Node Failures
When a node fails, there are two possible consequences:

(1) An object x that would have been detected is not detected.
(2) Nodes detect x, but the detection-scenario computation
is possibly incorrect because it is based on an incomplete
relation Detections. We have shown how users can express
queries if they are interested in objects that are temporarily
unobserved in Section 4.3. Therefore we focus on (2), i.e.,
we notify the user if query results returned could be incorrect
due to node failures. We discuss the detection of failures first
and continue with failure handling.

5.4.1 Failure Detection
It depends on the strategy used for data collection how

failures are detected. A node Si using the reactive strategy
requests tuples from its detection neighbors DN∗ and expects
a response from each of them. If no such response has been
received after a timeout, Si derives that the detection neigh-
bors whose responses are missing have failed.

The drawback of the proactive strategy is that nodes can-
not detect failures of detection neighbors using missing re-
sponses. Without further measures, a failed node might not
send updates to detection neighbors and thus affect query
results. A practical approach to solve this is sending bea-
con messages periodically to detection neighbors. If bea-
con messages are missing from a detection neighbor, nodes
will assume a failure and send a notification if this failure
could have an impact on the detection scenario computed.
Our evaluation includes the additional messages induced by
this. Note that this problem also occurs with the centralized
strategy, i.e., additional messages are required to detect node
failures.

5.4.2 Failure Handling
The user must be notified of a node failure if it could have

an impact on the query result, i.e., if the computation of the
detection scenario is incorrect. In the following, we refer
to the node whose failure has been detected as Sf. When
Si detects the failure of Sf ∈ DNi and computes a detection
scenario later, the result is possibly incorrect. We denote the
detection scenario computed based on an incomplete relation
Detections with DS f ail .
LEMMA 12. If DS f ail = DSB, the failure of Sf did not affect
the computation of the detection scenario.

Proof. According to Table 1, DSB occurs if there exists at
least one node in Z and one node outside of Z that detect the
object. This is independent from the potential detection of Sf
and thus the detection scenario computation is not affected
by the failure of Sf. �

LEMMA 13. If DS f ail = DSI and Sf ∈ Z or DS f ail = DSO

and Sf ∈ Z, the failure of Sf did not affect the computation
of the detection scenario.

Proof. We prove this only for the case of DS f ail = DSI.
The reasoning for DS f ail = DSO is analogous. DS f ail = DSI

implies that there exists a node Sj ∈ Z that currently detects
x. Since Sf ∈ Z, an additional tuple originating from Sf
would not change the result of the detection scenario com-
putation. Hence, the failure of Sf cannot affect the result. �

Summing up, the base station must be notified of node fail-
ures in the following two cases:
• DS f ail = DSI, and Sf ∈ Z
• DS f ail = DSO, and Sf ∈ Z

This notification is a message that contains DS f ail and an
identifier of Sf.

6 Estimating Energy Consumption
In this section we derive a cost model to estimate the num-

ber of messages sent and received during the execution of a
strategy for a given node. Since communication dominates



energy consumption [24], this allows us to pick the most
energy-efficient strategy.

For each strategy, the total number of messages is esti-
mated by two addends: Ecollect estimates the energy con-
sumption for collecting all tuples required to compute the
detection scenario. E f orward estimates the energy consump-
tion for sending the detection scenario to the base station.

Etotal = Ecollect +E f orward (17)

This energy consumption occurs for every object that con-
forms to the query. Since every correct strategy determines
the objects, it is sufficient to look at the communication re-
garding one object in the following.

For the model, we assume the energy consumption for
sending and receiving to be constant and thus introduce two
constant cost factors: esnd represents energy consumption
for sending, ercv for receiving a message. The function
f orward (h) estimates the energy consumption for sending
a message from one node to another one via h hops as fol-
lows:

f orward (h) = h·(esnd+ercv) (18)

The value h from Si to the base station is typically available
in data structures of routing protocols [27, 12].
LEMMA 14. Suppose Si is a non-border node and an ob-
ject x enters and exits the detection area of Si. Etotal =
2· f orward (h) estimates the energy consumption for the
centralized strategy and the upper bound for the en-
ergy consumption for the distributed strategies is Etotal =
f orward (h).

Proof. Nodes using the centralized strategy notify the
base station whenever an object enters or leaves the detection
area, i.e., two notifications in this case. Afterwards, comput-
ing the detection scenario at the base station does not require
any further communication, hence Etotal = 2· f orward (h).
According to algorithms 5.5 and 5.6, a node Si detecting x
has to exchange messages with the appropriate partition of
the measurement neighbors DNi. If Si is a non-border node,
this partition is empty by definition, i.e., no messages are sent
or received. Thus Si computes the detection scenario from
Detections according to Table 2. The result of this com-
putation is sent from Si if the object detected fulfills at least
one predicate of the query. The energy consumption for this
is estimated by f orward (h). These costs only occur once:
Either when the object enters or when it leaves the detection
area as shown in tables 3 and 4. Etotal = f orward (h) is an
upper bound, because Si does not notify the base station at
all if the object does not fulfill at least one predicate of the
query. �

Lemma 14 implies that for non-border nodes the energy con-
sumption of the centralized strategies is at least twice as
high as with the distributed strategies. Furthermore, for non-
border nodes the distributed strategies perform equally well.
Thus, for the remainder of this section we focus on estimat-
ing energy consumption of border nodes.

6.1 Estimating E f orward
The centralized strategy does not require any messages to

send the result to the base station:

Ecentralized
f orward = 0 (19)

For the other two strategies, after an arbitrary Si has com-
puted the detection scenario, it sends a message to the base
station. Thus, we estimate E f orward as follows:

Ereactive
f orward =E proactive

f orward = f orward (h) = h·(esnd+ercv) (20)

6.2 Broadcast vs. Unicast
With the distributed strategies, a border node Si must

send messages to a set of nodes S∗ ∈ {DNi
Z,DNi

Z,DNi} de-
pending on its own position. Si can achieve this using either
unicasts or broadcast. For unicast, this results in |S∗| sepa-
rate messages.

ucast (S∗) = |S∗|·(esnd+ercv) (21)

Broadcasting the same message consumes esnd once, but
reaches all communication neighbors CNi:

bcast (CNi) = esnd+ |CNi|·ercv (22)

Thus, it depends on |S∗| and |CNi| if Si should use broadcast
or unicast. The function neighbors(S∗,CNi) estimates the
respective energy consumption:

neighbors(S∗,CNi) = min(ucast (S∗) ,bcast (CNi)) (23)

6.3 Estimating Ecollect
Every border node Si using the reactive strategy requests

tuples from a set of nodes S∗. Each recipient sends a re-
sponse, which Si receives. Equation (24) reflects this.

reactive(S∗,CNi)= neighbors(S∗,CNi)+|S∗|·(esnd+ercv)
(24)

If Si uses the proactive strategy, messages are only sent
when updating information on detection neighbors S∗.

proactive(S∗,CNi) = neighbors(S∗,CNi) (25)

Nodes using the centralized strategy send all tuples to the
base station.

centralized (h) = f orward (h) (26)

To compare the communication required to compute a given
detection scenario, the number of times each strategy is trig-
gered must be taken into account. While the exact number
depends on the object movement, we can derive ratios from
Tables 3 and 4: The centralized strategy notifies the base
station whenever an object enters or leaves a detection area.
Thus, any detection event consumes centralized (h). Con-
trary to this, for DSI and DSO, both distributed strategies do
not cause any communication in 50% of the cases.

Ecentralized
collect

(
DSI
)
= centralized (h) (27)

E proactive
collect

(
DSI
)
= 0.5· proactive(S∗,CNi) (28)

Ereactive
collect

(
DSI
)
= 0.5·reactive(S∗,CNi) (29)
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Figure 8. Exemplary Estimation of Energy Consumption

Formulas for DSB and DSO are derived similarly but omitted
here for lack of space.
Example 5: Figure 8 shows the estimated energy con-
sumption for DSI, a varying size of S∗ and a varying distance
to the base station. It shows two facts: First, the centralized
approach is best for nodes close to the base station, which
is expected. This changes with increasing distance to the
base station, because notifications of object detections re-
quire more hops to reach the base station. Second, for nodes
beyond a distance of 5-10 hops, the proactive strategy is bet-
ter than the centralized or the reactive strategy. This is ex-
pected as well, since objects leaving the detection area of a
node Si∈ Z must request tuples from all detection neighbors
DNi for the reactive strategy. Contrary to that, the proactive
strategy requires only sending updates to DNi

Z. The edge
marked with an arrow indicates the size S∗ must have so that
switching from unicast to broadcast is more energy-efficient.

�

7 Evaluation
We have evaluated our approach thoroughly using simu-

lations and a Sun SPOT deployment to investigate the fol-
lowing hypotheses:
H1 Both distributed strategies scale better with the number

of nodes than the centralized strategy.
H2 The proactive strategy is the most energy-efficient for

Inside (x,Z) and Dis joint (x,Z).
H3 The reactive strategy is the most energy-efficient for

Meet (x,Z).
H4 The centralized strategy is energy-efficient for small

networks and nodes around the base station.
H5 Distributed strategies reduce communication required

for processing spatio-temporal developments like En-
ter (x,Z) or WSNEnter (x,Z).

7.1 Simulation Setup
To run exactly the same software for simulations and

case study, we used the Sun SPOT simulator of the KSN
project [3]. Each simulation run consists of the following
steps:

1. Generate a WSN of 100-300 nodes that are randomly

deployed over an area. The size of the area is constant to
account for different node densities, i.e., varying num-
bers of detection and communication neighbors.

2. Define a zone of varying size. Zones contain between 2
and 30 nodes.

3. Generate 50 different object paths using a random walk
model with starting points randomly chosen.

4. For each object path evaluate each detection scenario
using each strategy.

5. Count the number of messages sent and received.
Overall, the results presented here are based on more than
100.000 simulation runs.

Since detection areas tend to be indeterminable, we have
approximated the set of detection neighbors with the set of
communication neighbors: To do so, a node sends a beacon
message periodically. Each node receiving it adds the sender
to the list of detection neighbors. We graph the communica-
tion required for these beacons for distributed strategies sep-
arately. For the proactive approach, these periodic beacon
messages would allow the detection of failures and notifica-
tion of the base station as well.

7.2 Simulation Results
Figure 9 shows the average number of messages per sim-

ulation run for WSN of 100-300 nodes to compute DSI.
Graphs for other detection scenarios are similar and omit-
ted here. As expected, the number of messages required
by the centralized strategy increases linearly with network
size. Contrary to this, network size only affects both dis-
tributed strategies marginally. The reason for this is the
increasing node density, i.e., more detection neighbors per
node. Even the added overhead for the approximation of de-
tection neighbors does not change this. The large share of
communication related to detection-neighbor approximation
suggests that more sophisticated mechanisms for this could
reduce energy-consumption even further. Thus, we conclude
that H1 is true. Detection-neighbor approximation should be
investigated in future work.
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Figure 9. Scalability of data-collection strategies

Figure 10 shows the average number of messages per
detection-scenario computation. The result is that distributed
strategies require between 45%−85% less messages than the



centralized strategy. Comparing both distributed strategies
shows that the proactive strategy is advantageous for DSI and
DSO. This is expected, because S∗ is smaller for the proac-
tive strategy when objects leave the detection area of a node
(cf. Tables 3 and 4). These roles are reversed for DSB, be-
cause the proactive strategy is triggered more often than the
reactive one. Summing up, these results confirm H2 and H3.
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The distributed strategies reduce communication to
process spatio-temporal developments as well. Table 5
shows the average number of messages to determine that
x conforms to Enter (x,Z) (see (9)) or WSNEnter (x,Z)
(see (15)), respectively. As expected, the centralized
strategy requires at least twice as much communication
since every detection event must be forwarded to the base
station. For WSNEnter (x,Z), the proactive strategy is
most efficient. This is because this development does not
contain Meet (x,Z). The difference between Enter (x,Z)
and WSNEnter (x,Z) must be attributed to Lemma 11
because all non-border nodes are basically inactive for
Enter (x,Z). Compared to the centralized strategy the
savings of distributed strategies are between 51% and 89%.
This confirms H5.

Strategy Number of Messages per Object for
Enter (x,Z) WSNEnter (x,Z)

centralized 334 334
proactive 44,3 123,8
reactive 39,1 163,1

Table 5. Avg. number of messages for Enter (x,Z) and
WSNEnter (x,Z)

7.3 Sun SPOT Case Study
Since simulations always abstract from certain real-world

phenomena and these may impact performance, e.g., inter-
ferences or collisions, we conducted a case study using real
sensor nodes. For our case study, we have deployed 26

Sun SPOT sensor nodes and a base station on our office
floors. The query was Inside (x,Z). In analogy to the sim-
ulations, we assumed that nodes cannot determine their de-
tection areas by themselves. Thus, a node periodically sent
beacons to approximate the set of its detection neighbors,
i.e., DNi = CNi.

Strategy Number of Messages
Collect Result Forward. Total

centralized 137 0 137
proactive 115 42 157
reactive 145 33 178

Table 6. Case study results

Table 6 shows the result of the case study: The rightmost
column contains the total number of messages sent, i.e., the
sum of the two columns in the middle which reflect messages
for data collection (left) and result forwarding (right). Since
the centralized strategy computes all results at the base sta-
tion, the number of messages sent to forward the result is 0.
A simulation that replicated the node setup and object move-
ment of the case study had the same results. This confirms
that the findings based on simulations are not significantly
changed by real-world phenomena from which the simula-
tions abstracted.

The centralized strategy required 137 messages, the dis-
tributed approaches a few more. Considering the cost model,
this is expected due to the relatively small network: Mes-
sages required 5 hops at most to reach the base station.
Considering the simulation results and the result of the case
study, we conclude that H4 is true.

Further analysis shows that the approximation
DNi

approx = CNi has resulted in an over assessment:
Prior to the experiment, we determined the number of
detection neighbors |DNi| for every node by calibration.
Approximately 50% of the communication neighbors were
not detection neighbors. While this does not affect the result,
it increases the number of messages sent for data collection.
Thus, while the simple approximation DNi

approx = CNi

yields correct results, the potential for further reduction
of energy consumption by improving detection-neighbor
approximation is large.

Summing up, our evaluation confirms all of our hypothe-
ses.
8 Conclusions

For many applications, WSN are used to track moving
objects. Research has shown that accessing WSN declar-
atively is important. But research so far has focused on
relational queries which are insufficient to express spatio-
temporal semantics inherently required by these applica-
tions. This paper is the first that addresses the processing of
declarative, spatio-temporal queries based on object detec-
tions of WSN. First, we defined the fundamental concepts of
spatio-temporal queries in WSN and the semantics of spatio-
temporal predicates for zones. Second, we have provided
a space partitioning for zones which allows the application
of the 9-intersection model and other existing research to
WSN. Processing of spatio-temporal queries requires nodes



Figure 11. Case Study: Sun SPOT positions and object path

to exchange information on objects detected. We have shown
how to reduce the communication for this exchange signifi-
cantly and proposed two execution strategies for processing
predicates in-network. Based on the different execution
strategies, we derive a cost model, which allows each node
to determine an energy-efficient strategy for the execution
of spatio-temporal queries based on easy-to-acquire infor-
mation about its surroundings. Our strategies can deal with
node failures that could affect the query result. This is impor-
tant for the applicability of our approach for outdoor deploy-
ments where nodes may be subject to unfavorable influences
that lead to sporadic or permanent failures. We have evalu-
ated our approach using both simulations and a Sun SPOT
deployment. Our evaluation shows that distributed strategies
perform well for WSN consisting of many nodes in particu-
lar.
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A Sun Smart Programmable Object Technol-
ogy (SPOT)

This section provides a brief description of the sensor nodes used dur-
ing our experiments. [31] provides more detailed information and technical
specifications of the hardware as well as the software used.

Figure 12. Sun SPOT sensor node

Sun SPOTs consist of three parts as shown in Figure (from top to bot-
tom): The sensor board, a main board and a battery. The main board con-
tains a 32-bit ARM920T processor which executes at 180MHz max. clock
speed. Furthermore, 512KB RAM and 4MB flash memory are used to
store data. Even though access to flash memory consumes non-negligible
amounts of energy, we disregard this, since all our mechanisms run exclu-
sively on RAM. For communication, SPOTs use a CC2420 radio chip which
is IEEE 802.15.4 compatible (“ZigBee”). Software for SPOTs is written in
Java and executed using a Squawk virtual machine which is specifically de-
signed for platforms such as sensor nodes.

The default sensor board contains sensors for light, temperature and ac-
celeration. Furthermore, the sensor board has pins which can be used to
attach almost any kind of sensing or detection hardware. For real deploy-
ments, these pins could be used to attach detection mechanisms customized
to the application.

SPOTs are powered by a rechargeable 3.7V lithium-ion battery with a
capacity of 750 mAh.

B Energy Consumption in WSN
This section provides results of energy measurements taken for Sun

SPOT sensor nodes. It shows that reducing the number of messages sent
and received is important to prolong the lifetime of battery-powered sensor
nodes. More precisely, the following hypotheses are proven experimentally:

H1 Exchanging information via wireless communication reduces the time
until batteries are depleted significantly.

H2 Energy consumption for sending a message is marginally higher than
receiving a message.

H3 The number of bytes contained in a single message has a minor impact
on energy consumption.

At first, we describe the setup and then present results which underline
above hypotheses.

B.1 Experimental Setup
To measure the energy consumption of Sun SPOT sensor nodes we used

the hardware introduced in [18]. The measurement unit was attached be-
tween the battery and the other components of the sensor nodes, e.g., CPU,
memory, wireless communication chip and sensing board. Figure 13 illus-
trates a simplified circuit diagram of the setup. We measured the voltage

Figure 13. Circuit diagram for energy measurements

drawn by the node at a high temporal resolution of up to 20 kHz and com-
puted the energy consumption based on this.

B.2 Results and Analysis
In this section we discuss the results of the energy measurement dis-

played in Figures 14 and 15 with regard to our hypotheses.
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To prove H1, we fully charged the batteries of three SPOTs according
to the specification of the battery. Afterwards, each SPOT executed three
different applications: The application “high” was permanently using the
communication interface and CPU. The “medium” application sent data ev-
ery 5 minutes and then put the SPOT into shallow sleep mode to conserve
energy. The third application “low” only put a node into shallow sleep mode
for the whole experiment. Figure 15 shows the measured voltage over time
(in hours). The result proves H1, as the usage of the communication inter-
face significantly reduces the lifetime of the sensor nodes: The application
“high” depleted the battery an hour while each of the other applications ran
15 hours or more. Regarding the absolute values in Figure 15 it must be
noted, that in shallow sleep certain parts of the hardware are still switched
on and consume energy. To save more energy, SPOTs also support a deep
sleep mode which allows lifetimes of up to 900 hours.

To show that H2 and H3 are valid, we conducted the following experi-
ment whose results are displayed in Figure 14: One node was sending mes-
sages to a specified node. The size of the messages was increased from 1



packet to 10 packets and for each message, the energy consumed was mea-
sured on both nodes. The result in Figure 14 shows the following:
• The difference between sending and receiving is relatively small and

constant over all messages sizes.
• The size of the message has a minor impact on energy consumption.

For example sending a message consisting of a single packet con-
sumed 13.14 mAs. Doubling the message size to two packets only
increases the energy consumption to 16.94 mAs, i.e., approximately
28%.

We conclude that H2 as well as H3 are valid.
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