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Abstract. An adaptive wavelet method for the chemical master equation is constructed. The
method is based on the representation of the solution in a sparse Haar wavelet basis, the time
integration by Rothe’s method, and an iterative procedure which in each time-step selects those
degrees of freedom which are essential for propagating the solution. The accuracy and efficiency of
the approach is discussed, and the performance of the adaptive wavelet method is demonstrated by
numerical examples.
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1. Introduction. Many biological processes are modeled as complex reaction
systems in which different species interact via a number of reaction channels. Often
the evolution of the entire system is crucially determined by one or two subpopula-
tions which may consist of a very small number of individuals. This is the case, e.g.,
in gene regulatory networks where gene expression is regulated by a few activators or
repressors, in viral kinetics where the fate of very few infectious individuals decides
whether the infection spreads over large parts of the population, or in predator-prey
systems where the presence of a few predators keeps the entire ecosystem in equilib-
rium. In all these examples, small changes in the population numbers of the critical
species due to inherent stochastic noise can cause large-scale effects. Hence, a reason-
able mathematical model of such processes must respect both the stochastic nature
of the time evolution and the discreteness of the population numbers.

This insight has fostered an increasing interest in stochastic reaction kinetics.
Here, the system is described by a time-dependent probability distribution p(t, x)
which, for each state x = (x1, . . . , xd) ∈ N

d, indicates the probability that at time t
exactly xi individuals of the ith species exist. For given initial data p(0, x) = ρ(x), the
distribution p(t, x) evolves according to the chemical master equation (CME), which
is a particular type of the forward Kolmogorov equation. In most applications, solving
the CME is a formidable task because many applications involve multiple scales in
space and time, low regularity, and multimodal, metastable solutions. The main
challenge, however, is the tremendous number of degrees of freedom, which originates
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4374 TOBIAS JAHNKE

from the fact that the solution p(t, x) has to be approximated in each state x of a
large and multidimensional state space.

In the past few years several numerical methods for the CME have been proposed.
In these approaches the number of degrees of freedom is reduced by, e.g., Krylov space
techniques [3, 26], discrete orthogonal polynomials [7, 10, 11], dynamical low-rank
approximations [23], sparse grids [18, 19], adaptive lumping of states [13], continuous
or hybrid models [14, 19, 20, 29], or adaptive state space truncation [27]. Explicit
solution formulas for monomolecular master equations have been proven in [22].

The new method presented here is based on an adaptive representation of the so-
lution in a sparse Haar wavelet basis. Wavelets are a well-established tool to compress
large data sets efficiently and to solve partial differential equations (cf. [5, 6, 30, 31]).
An application to the chemical master equation is particularly promising because of
the discreteness and simple geometry of the state space. In the wavelet representation
the coefficients of smooth signals decay rapidly such that only a few terms are needed
to approximate the data with high accuracy. Since the Haar basis is orthonormal, the
truncation error can easily be controlled by computing the 2-norm of the truncated
coefficients. Moreover, the fast wavelet transform allows one to switch between the
canonical and the Haar basis at low computational costs. These and other well-known
advantages of the Haar basis are used in the novel method to approximate the solu-
tion of the CME in a low-dimensional subspace which is chosen adaptively in each
time-step. In order to select those degrees of freedom which are currently required to
propagate the solution, Rothe’s method is combined with an iterative procedure. In
some respects our approach is loosely related to the method from [18], where a hierar-
chical aggregation-disaggregation strategy similar to nonadaptive Haar wavelets has
been proposed. However, the resulting integrator is completely different from ours,
and to the best of our knowledge, an attempt to solve the CME by adaptive wavelet
techniques has not yet been made.1

In the next two sections, we briefly summarize the most important facts about
the CME (section 2) and the Haar basis (section 3). The purpose of these sections
is to formulate the problem, to define our notation, and to compile the mathematical
toolbox for later use. In section 4, the adaptive wavelet method is constructed step by
step. Moreover, we prove an error bound and discuss the computational costs of the
method. In section 5, the performance of the adaptive wavelet method is demonstrated
by numerical examples. Possible refinements of the approach are sketched in the last
section.

2. Stochastic reaction kinetics.

2.1. The chemical master equation. Consider a reaction system in which d
species interact via K reaction channels (d,K ∈ N).2 Let Xi(t) ∈ N be the number of
“particles” (e.g., molecules, animals, individuals, or other entities) of the ith species
at time t. In stochastic reaction kinetics, the vector X(t) = (X1(t), . . . , Xd(t)) is
considered as the realization of a Markov jump process on the state space N

d. If the
kth reaction channel fires, X jumps from the current state x to the new state x + νk.
The vector νk ∈ Z

d is called the stoichiometric vector and indicates how the particle
numbers are changed by the reaction. Realizations of the Markov jump process can
be generated with the stochastic simulation algorithm from [16]. The d-dimensional
histogram of a sufficiently large number of realizations would yield, in principle, an

1A sketch of the adaptive wavelet method presented here has already been published in [24].
2Here and below, N means the set of all nonnegative integers including zero.
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approximation to the probability distribution

p(t, x) = P
(
X(t) = x

)
, x ∈ N

d,

i.e., the probability that at time t there are exactly xi particles of the ith species
(i = 1, . . . , d). However, using stochastic simulations to approximate the probability
distribution of a very reactive system turns out to be computationally inefficient
because the random variable has to be updated every time one of the reaction channels
fires (cf. the numerical examples in section 5).

Therefore, it is our goal to compute p(t, x) directly by solving the CME

∂tp(t, ·) = Ap(t, · ),(2.1)

where A denotes the operator

(Ap(t, · ))(x) = K∑
k=1

(
αk(x− νk)p(t, x− νk)− αk(x)p(t, x)

)
(2.2)

and αk(x) ≥ 0 is the propensity function of the kth reaction channel (cf. [17, 15]).
For simplicity of notation, we let p(t, x) = 0 and αk(x) = 0 for all x �∈ N

d. Of course,
(2.1) has to be complemented by an initial condition p(0, · ) = ρ( · ) where ρ is
a suitable probability distribution. The CME is a special form of the Kolmogorov
forward equation; a derivation can be found in [17].

2.2. Truncation of the state space. Numerical computations are usually per-
formed only on the truncated state space

Ωξ = {x ∈ N
d : x1 < ξ1, . . . , xd < ξd}(2.3)

with some suitably chosen truncation vector ξ = (ξ1, . . . , ξd) ∈ N
d. On the new

boundaries, one can impose the Dirichlet boundary condition

p(t, x) = 0 for all x ∈ N
d \ Ωξ(2.4)

or the discrete Neumann boundary condition

αk(x) = 0 for all x ∈ Ωξ with x+ νk �∈ Ωξ,(2.5)

which suppresses all reactions leading from x to a state outside the truncated state
space. The error caused by truncation with Dirichlet boundary condition has been
investigated in [27]. From now on, we simply assume that Ωξ is so large that p(t, · )
almost vanishes outside the artificial boundary. Then, the truncation error can be
neglected, and the choice of boundary conditions hardly makes any difference. Of
course, the truncation vector ξ could be chosen adaptively, but for simplicity it will
be kept fixed in what follows.

2.3. Properties of the truncated chemical master equation. If the Neu-
mann boundary condition is imposed, this implies

∑
x∈Ωξ

ṗ(t, x) =
∑
x∈Ωξ

K∑
k=1

(αk(x− νk)p(t, x− νk)− αk(x)p(t, x)) = 0

and hence
∑

x∈Ωξ
p(t, x) =

∑
x∈Ωξ

p(0, x) = 1. All solutions with nonnegative initial

data remain nonnegative for all times, because p(t, x0) = 0 for some x0 ∈ Ωξ and
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p(t, x) ≥ 0 for all x �= x0 implies ṗ(t, x0) =
∑K

k=1 αk(x0 − νk)p(t, x0 − νk) ≥ 0. Hence,
the solution of the CME on the truncated state space is a probability distribution if
p(0, · ) is a probability distribution and (2.5) is used. If (2.5) is replaced by (2.4),
then

∑
x∈Ωξ

ṗ(t, x) ≤ 0 and hence
∑

x∈Ωξ
p(t, x) ≤ 1. In this case, 1−∑x∈Ωξ

p(t, x) is
the probability that the system has left the truncated state space, but this probability
remains small on bounded time intervals if ξ is sufficiently large.

By a slight abuse of notation, the operator acting on functions on the truncated
state space is again denoted by A. Since Ωξ contains N = ξ1 · · · · · ξd states, A
is now bounded and could be represented as a (N × N)-matrix A with nonpositive
diagonal entries aii ≤ 0, nonnegative off-diagonal entries aij ≥ 0, and column sum∑N

i=1 aij = 0 (Neumann) or
∑N

i=1 aij ≤ 0 (Dirichlet), respectively. Applying the
Gershgorin circle theorem shows that every eigenvalue either is zero or has a strictly
negative real part. If the Neumann boundary condition is used, then zero is indeed
an eigenvalue with trivial left eigenvector (1, . . . , 1). Thus, (rI −A) is invertible for
all r > 0, and all entries of the inverse are nonnegative, which follows from the fact
that −A is an M -matrix.

2.4. The numerical challenge. The truncated (finite) state space contains
N = ξ1 · · · · · ξd states, and each state corresponds to one degree of freedom in p(t, · ).
In typical applications the dimension d and/or the upper limits ξi are so large that
any attempt to solve the CME with traditional methods (e.g., by applying a Runge–
Kutta scheme, by computing the matrix exponential in a straightforward manner, or
by computing its eigenbasis) is absolutely hopeless. Any numerical method for the
CME must reduce the tremendous number of degrees of freedom considerably without
destroying the essential information. Such a method is constructed in section 4.

2.5. Notation. LetH(Ωξ) be the linear space of all discrete functions f : Ωξ −→
R. Any element f ∈ H(Ωξ) can be represented as a vector (if d = 1), a matrix (if
d = 2), or a tensor (if d > 2) because f maps any (multi-)index x to a real number.
Nevertheless, we rather consider f as a function (usually a probability distribution)
on a discrete space and write f(x) instead of fx. H(Ωξ) is a Hilbert space with respect
to the inner product

〈f , g〉 =
∑
Ωξ

f(x)g(x), f, g ∈ H(Ωξ),(2.6)

and the induced norm ‖f‖2 =
√〈f , f〉. However, we also consider the norm

‖f‖1 =
∑
Ωξ

|f(x)|, f ∈ H(Ωξ),

which is sometimes more appropriate because the solution of the CME is a probability
distribution.

3. Haar wavelets. In this section we provide a brief summary of the most
important facts about the Haar basis; for a more general introduction to wavelets,
we refer to, e.g., [4]. The Haar wavelet is usually defined as a function on a real
interval, but since the state space of the CME is discrete, we adapt all definitions to
the discrete setting. For simplicity, assume that ξ1 = · · · = ξd = 2r for some r ∈ N

such that N = 2rd is the total number of states.
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3.1. Haar basis in one dimension. First, we consider the one-dimensional
case, i.e., d = 1 and Ωξ = {0, . . . , 2r − 1}. Let 0 ≤ l ≤ r, put L = 2r−l, and, for
k = 1, . . . , 2l, define φlk by

φlk(x) =

{
1/

√
L if (k − 1)L ≤ x < kL,
0 else.

(3.1)

The set {φl1, . . . , φl2l} is an orthogonal basis of the subspace Sl = span{φl1, . . . , φl2l} ⊂
H(Ωξ). The spaces S0 ⊂ S1 ⊂ · · · ⊂ Sr = Ωξ are nested because φlk = (φl+1

2k−1 +

φl+1
2k )/

√
2. Note that Sr = Ωξ because Ωξ contains only 2r states; this is not true

for wavelets on a real interval where infinitely many refinements are possible. Let P l

denote the orthogonal projection from H(Ωξ) to Sl. Then, every f ∈ H(Ωξ) can be
represented by the multiscale decomposition

f = Prf = P0f +

r−1∑
l=0

(P l+1 − P l)f,(3.2)

and the term (P l+1 − P l)f is called the detail added to the approximation of f on
the (l + 1)th level. This term can be represented by the functions

ψl
k(x) =

φl+1
2k−1(x) − φl+1

2k (x)√
2

=

⎧⎪⎪⎨
⎪⎪⎩

1√
L

if (k − 1)L ≤ x <
(
k − 1

2

)
L,

− 1√
L

if
(
k − 1

2

)
L ≤ x < kL,

0 else,

(3.3)

where L = 2r−l is the number of nonzero entries of ψl
k, l ∈ {0, . . . , r−1} is the refine-

ment level, and k ∈ {1, . . . , 2l} is the number of the element on that level. All ψl
k can

be obtained by shifting and scaling of the mother wavelet const.·(−1, . . . ,−1, 1, . . . , 1)
and padding the remaining entries with zeros. The coarsest subspace P0H(Ωξ) is
spanned by the base line φ̄ = φ01 = (1, . . . , 1)/

√
2r. The set

{
φ̄
} ∪ {ψl

k | 0 ≤ l ≤ r − 1 , 1 ≤ k ≤ 2l
}

(3.4)

is an orthonormal basis of H(Ω2r ), called the Haar basis. Hence, every p ∈ H(Ωξ)
can be represented as

p = āφ̄ +

r−1∑
l=0

2l∑
k=1

alkψ
l
k, alk =

〈
ψl
k, p
〉
, ā =

〈
φ̄, p

〉
.(3.5)

Each coefficient and basis element depends on two parameters, but it is often conve-
nient to order the elements in a linear way by a suitable enumeration ψ1, . . . , ψN . In
this notation, (3.5) reads p =

∑N
j=1 ajψj with coefficients aj = 〈ψj , p〉 .

3.2. Properties of the Haar basis in one dimension. Using the Haar basis
for solving the CME is motivated by several advantageous properties of (3.4). Besides
the facts that the basis is orthonormal and that the elements allow fast evaluations
due to their particularly simple form, a very useful feature is the fast Haar wavelet
transform (cf. subsection 1.2 in [4]) which performs the mapping

(
a1, . . . , aN

) −→ N∑
j=1

ajψj
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and its inverse with only O(N) instead of O(N2
)
operations. Another important

advantage is the observation that the wavelet coefficients of a smooth signal decay
quickly because consecutive refinements add less and less detail information; cf. [4].
It is this property which allows one to reduce the number of degrees of freedom in
the approximation of the CME, because the fast decay of the coefficients and the
orthonormality of the basis mean that the signal can still be very well approximated
if many of the terms in the expansion (3.5) are discarded. The following lemma relates
smoothness — measured in terms of the difference between neighboring entries — to
decay of the coefficients. The lemma is illustrated in Figure 3.1.

Lemma 1. Let d = 1, ξ = 2r, 0 ≤ l ≤ r, L = 2r−l = ξ/2l, and p ∈ H(Ωξ). Let
alk be the coefficient corresponding to the kth basis element on the lth level, i.e.,

alk =
〈
ψl
k, p
〉
=
s1 − s2√

L
, s1 =

(k− 1
2 )L−1∑

x=(k−1)L

p(x), s2 =
kL−1∑

x=(k− 1
2 )L

p(x).

If max0≤x<ξ−1 |p(x) − p(x+ 1)| < ε for some ε > 0, then

|alk| ≤
1

4

(
ξ

2l

) 3
2

ε.(3.6)

Remark 1. The estimate is sharp since equality is obtained for p(x) = εx.
Remark 2. This lemma is a discrete counterpart of the well-known estimates in

the continuous case; see page 25 in [4] or Equation (1.2.9) in [5].
Proof. For simplicity, we define p(i) = p(kL− L+ i − 1) such that

(p(1), . . . , p(L)) =
(
p
(
kL− L

)
, . . . , p(kL− 1)

)
, s1 =

L/2∑
i=1

p(i), s2 =

L∑
i=L/2+1

p(i).

By definition we have

s1 − s2 =

L/2∑
i=1

(p(i) − p(i+L/2)) =

L/2∑
i=1

L/2∑
j=1

(p(i+j−1) − p(i+j)),

and since |p(i+j−1) − p(i+j)| ≤ ε by assumption, this yields

|alk| =
|s1 − s2|√

L
≤ 1√

L

(
L

2

)2

ε =
1

4

(
ξ

2l

) 3
2

ε.

The Haar basis shares the above properties (orthonormality, fast transforms, fast
decay of the coefficients) with the Fourier basis. What makes the Haar basis more
suitable, however, is the fact that the support of most basis elements is small. This
means, in particular, that a local change of the signal does not induce changes in all
coefficients, and that the unpleasant Gibbs phenomenon is avoided when nonsmooth
signals have to be approximated. Again, this is important in case of the CME, because
often the solution varies only within a small subset of the state space, and nonsmooth
solution profiles appear in certain applications (see, e.g., the numerical example in
subsection 5.2).

In the context of partial differential equations, it has often been pointed out that
the basis functions (when defined as functions rather than vectors) are discontinuous,
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Fig. 3.1. Left panel: A smooth signal p ∈ Ωξ with ξ = 210. Middle panel: Approximation in

the space spanned by the base line φ̄ and the basis elements ψl
k corresponding to the first five levels

(l = 0, . . . , 4). This approximation reduces the number of degrees of freedom from 1024 to 32. Right
panel: Absolute value of the Haar coefficients alk (dots) and the bound from Lemma 1 (solid line) in
logarithmic scaling. Each step of the “staircase” corresponds to one refinement level. Higher levels
contain more and more coefficients. Only the coefficients on the left-hand side of the dashed line
were used to compute the approximation shown in the middle panel.

that using this basis on domains with complicated geometry requires considerable
technical efforts, and that posing boundary conditions can become difficult. All these
arguments, however, do not apply in case of the CME. Here, the truncated state space
Ωξ is simply a d-dimensional cuboid, the boundary conditions can be incorporated
into the definition of the operator, and the discontinuity of the Haar basis does not
matter since the solution is a spatially discrete object anyway. For all these reasons,
a wavelet approximation of the CME is particularly promising.

3.3. Haar basis in many dimensions. There are several ways to extend the
wavelet concept to the multivariate case. Probably the most popular alternative is to
replace the one-dimensional basis elements defined in (3.1) by tensor products

φlK = φlk1
⊗ · · · ⊗ φlkd

, φlK(x) = φlk1
(x1) · · · · · φlkd

(xd),

where K ∈ N
d is a multi-index with entries ki ∈ {1, . . . , 2l}. As before, the subspaces

Sl = span{φlK | K = (k1, . . . , kd), ki ∈ {1, . . . , 2l}} ⊂ H(Ωξ) are nested, and

f = Prf = P0f +
∑r−1

l=0 (P l+1 − P l)f for every f ∈ H(Ωξ) with P l denoting the
orthogonal projection fromH(Ωξ) to Sl. The detail (P l+1−P l)f can be represented by
tensor products of univariate basis elements, but this time, mixed products composed
of φlk and ψl

j have to be used. As an example, let d = 2 and consider some φlK =

φlk1
⊗ φlk2

with l < r. On the next refinement level l+1, there are four basis elements

which are supported on a subset of the support of φlK , namely,

φl+1
2k1−1 ⊗ φl+1

2k2−1, φl+1
2k1−1 ⊗ φl+1

2k2
, φl+1

2k1
⊗ φl+1

2k2−1, and φl+1
2k1

⊗ φl+1
2k2

.

In order to represent the detail added on the support of φlK , three basis elements have
to be added, namely,

φlk1
⊗ ψl

k2
, ψl

k1
⊗ φlk2

, and ψl
k1

⊗ ψl
k2
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(see [28] for an illustration). In higher dimensions, the number of wavelets required
to represent the detail added on each refinement level is 2d − 1. To be more precise,
the Haar basis in d dimensions is the set{

ψl,σi

k1
⊗ · · · ⊗ ψl,σi

kd

∣∣∣ ψl,0
ki

= φlki
, ψl,1

ki
= ψl

ki
, (σ1, . . . , σd) ∈ {0, 1}d \ 0

}
∪ φ̄(3.7)

(cf. [4]) where φ̄ = φ01 ⊗ · · · ⊗ φ01 is the d-dimensional base line. As in the one-
dimensional case, it is often more convenient to avoid multi-indices by a suitable
enumeration of the basis elements and the corresponding coefficients.

The d-dimensional setting is notationally more complicated, but the composition
via tensor products of univariate basis elements allows one to carry over all advantages
of the one-dimensional Haar basis — orthonormality, fast transforms, localization, fast
decay of the coefficients of smooth signals, conceptual simplicity — to the multivariate
situation.

4. Adaptive Galerkin method with sparse wavelet basis.

4.1. Best approximation with m terms. The third panel of Figure 3.1 shows
that the bound (3.6) can be much too pessimistic. Even on the coarsest approximation
levels, some of the coefficients might almost vanish. Therefore, it is usually not an
efficient strategy to approximate a signal by simply truncating the Haar representation
(3.5) or its multidimensional counterpart after a certain refinement level l. This would
be inefficient, e.g., if the signal almost vanishes on a large subset of the state space,
which is typically the case for solutions of the CME.

Let {ψ1, . . . , ψN} be the Haar basis (3.7), with N = ξ1 · · · · · ξd denoting the total

number of states. Let p =
∑N

j=1 ajψj and suppose that the basis elements are ordered
in such a way that |a1| ≥ · · · ≥ |aN |. Since the Haar basis is orthonormal, the best
m-term approximation with respect to ‖ · ‖2 (i.e., the best approximation which can
be obtained by a linear combination of m ∈ N basis elements) is given by

p̃ =

m∑
j=1

ajψj with error ‖p− p̃‖2 =

⎛
⎝ N∑

j=m+1

|aj |2
⎞
⎠

1
2

.

Hence, an ideal method would select the truncation index m in such a way that the
error is smaller than a prescribed tolerance and approximate the solution by p̃. This
would formally reduce the number of degrees of freedom from N down to m � N .
However, there are at least two reasons why this simple strategy cannot be applied in
practice:

• Although only a1, . . . , am are required to compute the approximation, the
truncation error can only be computed if the truncated coefficients are also
available. If these coefficients were known, however, one could as well compute
the exact solution.

• Since the solution p(t) of the CME changes in time, the set of essential basis
elements (that is, the set of basis elements which appear in the best m-term
approximation) varies because some of the am+1(t), . . . , aN(t) might increase,
whereas some of the a1(t), . . . , am(t) could vanish. This is clearly the case
when transport effects dominate the evolution of p(t), because each basis
element has a local support. Again, selecting the essential basis elements is
simple if all coefficients are known, but this is not a reasonable assumption.

In the next subsections we show how these problems can be avoided and how the
essential basis elements of the unknown solution can be identified.
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4.2. Nonadaptive Galerkin method. As a preparatory step we first consider
the traditional, nonadaptive Galerkin method. Let p(0, ·) = ρ(·) be the initial distri-
bution of the CME and assume that its best m-term approximation is given by3

ρ ≈ y(0) =

m∑
j=1

aj(0)ψj

(possibly after a suitable permutation of the basis elements). The CME can be
projected to the low-dimensional Galerkin space span{ψ1, . . . , ψm} by imposing the
Galerkin condition

〈∂ty −Ay , ψi〉 = 0 for all i ∈ {1, . . . ,m}.

The evolution of the coefficients a = (a1, . . . , am) corresponding to y is then given by
the differential equation

da

dt
= Ama with Am =

(
〈ψi , Aψj〉

)
i,j=1,...,m

.(4.1)

After solving (4.1), an approximate solution of the CME is obtained from the linear
combination y(t) =

∑m
j=1 aj(t)ψj . The differential equation (4.1) contains only m

degrees of freedom and can therefore be solved with significantly lower computational
costs provided that m � N . However, the approximation error ‖y(t, ·) − p(t, ·)‖
can become prohibitively large as t increases, even if ‖y(0, ·)− p(0, ·)‖ is small. The
reason is that y(t) is confined to the small subspace span{ψ1, . . . , ψm}, whereas the
exact solution p(t) propagates in the entire space H. As pointed out in the previous
subsection, the coefficients corresponding to some of the ψm+1, . . . , ψN can increase
so much that these terms can no longer be neglected. This does not mean that it
is impossible to approximate the solution accurately with m terms — it only means
that the Galerkin space has to be chosen adaptively.

4.3. Adaptive Galerkin method. The key idea of adaptive Galerkin methods
is to update the Galerkin space such that the solution can always be sufficiently well
approximated. Let h > 0 be the step size and suppose that

p(tn) ≈ pn =

η∑
i=1

aiψji(4.2)

where tn = t0 + nh and {j1, . . . , jη} is a subset of the index set {1, . . . , N}. Our task
is to find a new selection {k1, . . . , kμ} ⊂ {1, . . . , N} and new coefficients bi such that

p(tn+1) ≈ pn+1 =

μ∑
i=1

biψki .

In other words, in each time-step we have to identify the essential degrees of freedom
and to propagate the solution in the corresponding basis. Of course, the number of
coefficients μ is supposed to be as small as possible.

To this end we apply Rothe’s method, which has been investigated in [1, 2] in
the context of parabolic partial differential equations and has been applied to the

3Here and below, we will occasionally omit the spatial variable and write p(t) instead of p(t, x).
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CME and similar problems in [7, 8, 32]. In contrast to the method of lines which
first projects the problem into an approximation subspace and then performs the
time discretization, Rothe’s method first discretizes the problem in time and then
adapts the spatial approximation in each time-step. Let un+1 ≈ p(tn+1) denote the
approximation obtained by the trapezoidal rule4 applied to the CME (2.1). For given
un, the new approximation un+1 is the solution of the linear system(

I − h

2
A
)
un+1 =

(
I +

h

2
A
)
un.(4.3)

This system contains all N degrees of freedom and is therefore too large to be solved.
However, it is neither necessary nor reasonable to solve (4.3) exactly because the time
discretization causes a small approximation error anyway. Therefore, it is sufficient
to approximate un+1 ≈ pn+1 up to a certain tolerance tol, i.e., to determine the ki
and bi such that∥∥∥∥

(
I − h

2
A
)
pn+1 −

(
I +

h

2
A
)
pn

∥∥∥∥
1

≤ tol holds for pn+1 =

μ∑
i=1

biψki .(4.4)

When the new selection of basis elements is known, the coefficient vector b = (bi)i
can easily be computed by projecting the system (4.3) into the corresponding (low-
dimensional) Galerkin space and solving

Ψ∗
(
I − h

2
A
)
Ψb = Ψ∗

(
I +

h

2
A
)
pn,(4.5)

where Ψ denotes the operator which maps the coefficient vector b = (b1, . . . , bμ) to
the corresponding linear combination, i.e.,

Ψ : Rμ −→ H(Ωξ), Ψb =

μ∑
i=1

biψki .(4.6)

Since the Haar basis is orthogonal, the inverse of Ψ is the adjoint operator

Ψ∗ : H(Ωξ) −→ R
μ, Ψ∗y = (b1, . . . , bμ) with bi = 〈ψki , y〉 .(4.7)

4.4. Selecting new basis elements. The main problem, however, remains:
How can we identify the essential basis elements in each time-step; i.e., how do we
select {k1, . . . , kμ}? Clearly, it would be highly inefficient to change the basis randomly
until (4.4) is met.

In this subsection, we show how to enlarge the present basis in a systematic way.
The question which elements can be removed from the basis is easier and will be
answered in subsection 4.5. Let {ψk1 , . . . , ψkμ} be the basis from the previous step
(i.e., μ = ν and ki = ji), and let pn = Ψa be the approximation at t = tn. After

solving (4.5), the residual of the new approximation p
(0)
n+1 = Ψb is

r =

(
I − h

2
A
)
p
(0)
n+1 −

(
I +

h

2
A
)
pn = p

(0)
n+1 − pn − h

2
A
(
p
(0)
n+1 + pn

)
.

4The trapezoidal rule is chosen because it is A-stable and simple, but the same approach could
be made with any other implicit method. A-stability is advantageous because all eigenvalues of the
operator A have a nonnegative and possibly large real part (cf. subsection 2.3).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ADAPTIVE WAVELET METHOD FOR THE CME 4383

Since (4.5) implies Ψ∗r = 0 and since (I −ΨΨ∗)p(0)n+1 = (I −ΨΨ∗)pn = 0, we obtain

r = (I −ΨΨ∗)r = −(I −ΨΨ∗)
h

2
A(p

(0)
n+1 + pn).(4.8)

(4.8) suggests that if the residual r is too large, then the current basis should be
extended by so many new basis elements that the projection of the residual into
the orthogonal complement of the enlarged Galerkin space is almost zero. However,

enlarging the Galerkin space changes the approximation p
(0)
n+1 obtained from (4.5)

and the residual r, too. Therefore, an iterative strategy is applied. First, we select
only Δμ ∈ N new basis elements ψkμ+1 , . . . , ψkμ+Δμ , where, for simplicity, the number
Δμ ∈ N is supposed to be defined a priori. The new elements are chosen in such a
way that ∥∥∥(I −Ψ(1)Ψ(1)∗)r

∥∥∥
2

is as small as possible for the current residual r, where Ψ(1) and Ψ(1)∗ are defined
like Ψ and Ψ∗, but with μ replaced by μ+Δμ. In practice, this is achieved by com-
puting a fast wavelet transform of r and finding the largest (in modulus) coefficients
among those degrees of freedom which have not yet been selected. Then, a refined

approximation p
(1)
n+1 = Ψ(1)b(1) is computed by solving

Ψ(1)∗
(
I − h

2
A
)
Ψ(1)b(1) = Ψ(1)∗

(
I +

h

2
A
)
pn

for b(1) and letting p
(1)
n+1 = Ψ(1)b(1). If the new residual

r(1) = −(I −Ψ(1)Ψ(1)∗)
h

2
A(p

(1)
n+1 + pn)

is small enough, the approximation is accepted. Otherwise, the procedure is iterated,

which yields a series of approximations p
(0)
n+1, p

(1)
n+1, p

(2)
n+1, . . . , corresponding to an in-

creasing family of approximation spaces. The full algorithm is listed in subsection 4.6.

4.5. Removing basis elements. In order to keep the computational workload
as low as possible, basis elements which have been included in earlier steps must

be discarded when they become negligible. Let p̂n+1 = p
(l)
n+1 =

∑μ̂
i=1 biψki be the

approximation obtained after l ∈ N enlargements of the Galerkin basis, and assume
that (after a suitable enumeration) |b1| ≥ |b2| ≥ · · · ≥ |bμ̂|. Let pn+1 =

∑μ
i=1 biψki be

the best μ-term approximation of p̂n+1 (cf. subsection 4.1). Our goal is to choose μ
as small as possible under the condition that the truncation error p̂n+1 − pn+1 does
not exceed the tolerance tol. If the error is measured with respect to ‖ · ‖2, the
truncation error is the 2-norm of the discarded coefficients (cf. subsection 4.1), and
one can simply set

μ = min

⎧⎨
⎩m ∈ N :

(
μ̂∑

i=m+1

|bi|2
) 1

2

≤ tol

⎫⎬
⎭ .

In many cases, however, it is desirable to use the norm ‖ · ‖1 because the solution of
the CME is a probability distribution. In this case, one could use the equivalences of
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norms and set

μ = min

⎧⎨
⎩m ∈ N :

(
μ̂∑

i=m+1

|bi|2
) 1

2

≤
√
Ntol

⎫⎬
⎭ .

Because of the large factor
√
N this choice is often too pessimistic, which means

that more basis elements are stored than actually needed. Better estimates for μ can
be obtained iteratively by truncating a certain number of coefficients and checking
how this affects the error ‖p̂n+1 − pn+1‖1. This procedure requires one fast wavelet
transform in each iteration, but the additional numerical work is moderate because it
is not necessary to determine the optimal value of μ.

In practice it is impossible to predict a priori how many degrees of freedom are
required to reach the chosen accuracy. On the other hand, the limited memory of
the computer imposes an upper bound for the maximal number of basis elements.
Therefore, it is sometimes more convenient to prescribe the number of degrees of
freedom instead of the accuracy of the approximation. In this case, the numbers μ
and μmax = μ + const. ·Δμ are chosen by the user. While μ is the number of basis
elements which are kept after the time-step, μmax denotes the maximal number of
basis elements which are used during the time-step. This strategy was used in the
numerical examples in section 5.

4.6. Algorithm. Summarizing, one time-step of the adaptive wavelet method
for the CME proceeds as follows.

Parameter: step size h > 0, parameter Δμ ∈ N \ {0}, tolerance tol > 0
and/or maximal number of basis elements μ, μmax

(the proper choice of tol is discussed in the next subsection)

Input: index subset {j1, . . . , jη} and coefficients a1, . . . , aη of the
current approximation pn =

∑η
i=1 aiψji = Ψa

Galerkin matrix Ψ∗ (I − h
2A
)
Ψ

Output: index subset {k1, . . . , kμ} and coefficients b1, . . . , bμ of the new
approximation pn+1 =

∑μ
i=1 biψki

updated Galerkin matrix

1. Set μ̂ = η and ki = ji for all i = 1, . . . , η.
2. Solve the linear system

Ψ∗
(
I − h

2
A
)
Ψb = Ψ∗

(
I +

h

2
A
)
pn

and obtain the coefficients b1, . . . , bμ̂.

3. Compute the new approximation p̂n+1 =
∑μ̂

i=1 biψki = Ψb.
4. Compute the residual r = (I − h

2A)p̂n+1 − (I + h
2A)pn.

5. If ‖r‖1 > tol and/or μ̂+Δμ ≤ m:
(a) Compute χl = | 〈ψl , A(pn + p̂n+1)〉 | for l = 1, . . . , N by a fast wavelet

transform.
(b) Find the indices kμ̂+1, . . . , kμ̂+Δμ of the Δμ largest entries of

(χ1, . . . , χN ) among those degrees of freedom which are not contained
in the current basis.
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(c) Enlarge the basis: add ψkμ̂+1
, . . . , ψkμ̂+Δμ

to the current set of basis
elements and put μ̂ → μ̂+Δμ.

(d) Update the Galerkin matrix by adding new blocks corresponding to the
new basis vectors.

(e) Go to step 2.
6. Compute pn+1, μ, and {k1, . . . , kμ} by removing dispensable basis elements

from the representation of p̂n+1 as explained in subsection 4.5. The corre-
sponding columns and lines are deleted from the Galerkin matrix.

Remark 1. In each step of the iteration a linear system has to be solved (in step 2).
This can be done efficiently because in each iteration only Δμ rows and columns are
appended to the matrix from the previous step. If a direct solver is used, the matrix
decomposition available from the previous step can be updated. If an iterative method
is applied, the old approximation p̂n+1 provides an excellent starting value.

Remark 2. In order to start the algorithm, step 6 is applied to the initial distri-
bution ρ. This yields a sparse approximation p0 =

∑η
i=1 aiψji ≈ ρ which is the input

for the very first time-step.

4.7. Accuracy. Next, we investigate how the choice of the tolerance tol affects
the global error or, conversely, how this tolerance should be chosen in relation to the
step size h. For convenience of the reader, the most relevant definitions are compiled
in the following list:

• Let p(t) denote the exact solution of the CME ∂tp(t, ·) = Ap(t, · ) with initial
condition p(0, ·) = ρ(·) on the truncated state space Ωξ in the time interval
[0, tend].

• Let un be the approximation obtained by formally applying the trapezoidal
rule (

I − h

2
A
)
un+1 =

(
I +

h

2
A
)
un, u0 = ρ(4.9)

with step size h > 0 for n = 0, . . . , nmax where nmax ≤ tend/h. (4.9) includes
the full CME operator A without any spatial approximation. Thus, the error
‖p(tn)− un‖ is the error of the time integration only. As we have explained
earlier, the un cannot really be computed in practice due to the large size of
the linear system (4.9).

• Let pn be the approximation computed by the adaptive wavelet method.
Our method approximates un up to a small error which originates from the
following two sources:

– The linear system is only solved up to a small residual rn; i.e., for given
pn we determine p̂n+1 such that(

I − h

2
A
)
p̂n+1 =

(
I +

h

2
A
)
pn + rn.(4.10)

– At the end of each time-step, basis elements corresponding to small co-
efficients are removed from the representation of p̂n+1 (cf. subsection 4.5
and step 6 in subsection 4.6). The result of this truncation is pn+1, and
the corresponding difference is denoted by δn+1 = pn+1 − p̂n+1.

The error ‖p(tn)−un‖ of the temporal approximation can be estimated in a straight-
forward way.

Lemma 2. The global error of the trapezoidal rule (4.9) is bounded by

‖p(tn)− un‖1 ≤ Ch2tend‖A3ρ‖1(4.11)
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for all n = 1, . . . , nmax. The proof of this lemma uses standard arguments and is
therefore omitted.

Now, the error of the adaptive wavelet method is investigated. The following
theorem states that if rn and δn+1 are small enough, then the accuracy of the adaptive
wavelet method is essentially the same as the accuracy of the trapezoidal rule (4.9)
without spatial approximation. “Small enough” means that tol should be in the
same order of magnitude as the local error of the time integration.

Theorem 1. Let ρ be the initial distribution, and assume that the sparse wavelet
approximation p0 used as input for the first time-step (cf. remark 2 in subsection 4.6)
satisfies ‖ρ − p0‖1 ≤ Ch2. Let tol = Ch3 and suppose that ‖rn‖1 ≤ tol and
‖δn+1‖1 ≤ tol for all n. Then the error of the method is bounded by

‖p(tn)− pn‖1 ≤ Ch2tend‖A3ρ‖1(4.12)

for all n = 1, . . . , nmax. Here, C denotes constants which, at different occurrences, can
take different values.

Remark. In most applications, the accuracy of the adaptive wavelet method is
much better than the error bound (4.12) predicts. The rather large constant ‖A3ρ‖1
is often too pessimistic. Moreover, the factor tend suggests that the error increases
linearly in time, which is usually not the case because the solution converges to a
stationary distribution.

Proof. After applying the triangle inequality

‖p(tn)− pn‖1 ≤ ‖p(tn)− un‖1 + ‖un − pn‖1
and Lemma 2, we have to investigate only the defect ‖un − pn‖1, that is, the error
caused by the spatial approximation. Comparing (4.9) with (4.10) yields

pn − un = Φh(pn−1 − un−1) + εn(4.13)

with εn = (I − hA/2)−1rn−1 + δn and with Φh = (I − hA/2)−1(I + hA/2) denoting
the propagator of the numerical flux. It can be shown by induction that applying
(4.13) recursively gives

pn − un = Φn
h(p0 − ρ) +

n−1∑
k=0

Φk
hεn−k−1 for all n > 1.(4.14)

Since the semigroup generated by A is contractive (cf. [10]) the Hille–Yosida theorem
implies that ‖(λI −A)−1‖1 ≤ 1/λ for all λ > 0 (see, e.g., [12]), and choosing λ = 2/h
yields ‖(I − h

2A)−1‖1 ≤ 1. Substituting

‖εj‖1 ≤
∥∥∥∥∥
(
I − h

2
A
)−1

rj−1

∥∥∥∥∥
1

+ ‖δj‖1 ≤ ‖rj−1‖1 + ‖δj‖1 ≤ 2tol ≤ Ch3

into (4.14) and using that ‖p0 − ρ‖1 ≤ Ch2 by assumption gives

‖pn − un‖1 ≤ ‖Φn
h‖1 · Ch2 + nmax

k
‖Φk

h‖1 · Ch3 for all n = 1, . . . , nmax.(4.15)

Since

‖Φk
h‖1 ≤ ‖ exp(khA)‖1 + ‖(Φk

h − exp(khA))‖1 ≤ 1 + Ch2tend‖A3‖1(4.16)

is bounded, the assertion follows.
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4.8. Computational cost. The efficiency of the method is due to the fact that
the CME is projected to a small subspace which is adaptively changed along with the
solution. This allows one to replace the huge linear system (4.3) by the much smaller
problem (4.5) which involves only μ� N degrees of freedom. The only terms that are
computed on the full state space are Ap̂n+1, Apn, the residual r, and the coefficients
χl. Evaluations of A can be performed at a cost of O(N) instead of O(N2

)
because

the operator A is sparse in the sense that each entry is coupled to at most K other
states if the system involves K reactions. The coefficients χl are obtained from a fast
wavelet transform at the cost of O(N) operations. The Galerkin terms 〈ψki , Aψkl

〉
required for assembling the Galerkin matrix do not require any operations on the
large space in most cases, because the majority of Haar basis elements has only a
small support. Moreover, the evaluation is greatly simplified by the fact that these
elements are piecewise constant and all nonzero entries are ±1 (up to a normalization
constant). Thus, our method does not require any operation with a computational
cost of O(N2

)
or larger. Of course, the efficiency could still be improved by evaluating

the above terms only on the essential support of the probability distribution. The
essential support (i.e., all states where pn(x) is larger than some threshold) can be
easily determined from the wavelet representation on a coarse scale.

5. Numerical examples. In this section the performance of the adaptive
wavelet method is illustrated by several numerical examples. All computations were
performed on a laptop equipped with Intel� CoreTM 2 Duo 2.2 GHz processor and 2
GB of RAM. The adaptive wavelet method was implemented in Matlab�; only the
fast wavelet transform was coded in C.

5.1. Merging modes. Consider two species S1 and S2 which interact via the
reaction channels

R1 : S1 −→ S2 α1 = c1x1 ν1 = (−1, 1)T

R2 : S2 −→ S1 α2 = c2x2 ν2 = (1,−1)T

R3 : S1 −→ � α3 = c3x1 ν3 = (−1, 0)T

R4 : S2 −→ � α4 = c4x2 ν4 = (0,−1)T

(5.1)

with rate constants

c1 = 2, c2 = 1, c3 = 1, c4 = 0.5.

The purpose of this simple example is to verify the error bound proven in Theorem 1.
This is possible because the exact solution of the CME corresponding to (5.1) is
known: all reactions are monomolecular, and for such systems an explicit solution
formula has been derived in [22].

S
1

S
2

t = 0

0 64 128
0

64

128

S
1

t = 0.25

0 64 128
0

64

128

S
1

t = 0.5

0 64 128
0

64

128

S
1

t = 0.75

0 64 128
0

64

128

Fig. 5.1. Exact solution (5.3) of the reaction system (5.1) at t = 0, t = 0.25, t = 0.5, and
t = 0.75 (from left to right).
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For any x ∈ N
2, N ∈ N, and any r = (r1, r2) with r1, r2 ∈ [0, 1] and r1 + r2 ≤ 1,

the multinomial distribution M(x,N, r) is defined by

M(x,N, r) =

⎧⎪⎨
⎪⎩

N !
rx1
1

x1!

rx2
2

x2!

(1− r1 − r2)
N−x1−x2

(N − x1 − x2)!
if x1 + x2 ≤ N,

0 otherwise.

M is a two-dimensional extension of the well-known binomial distribution. For the
initial distribution we choose

ρ(x) = 0.5 · M
(
x,N, r(1)

)
+ 0.5 ·M

(
x,N, r(2)

)
(5.2)

with r(1) = (0.8, 0.1)T , r(1) = (0.1, 0.8)T , and N = 127. Then, the exact solution of
the corresponding CME is

p(t, x) = 0.5 ·M
(
x,N, s(1)(t)

)
+ 0.5 · M

(
x,N, s(2)(t)

)
,(5.3)

with

s(i)(t) = exp(tC)r(i), C =

( −(c1 + c3) c2
c1 −(c2 + c4)

)

(cf. [22]). Figure 5.1 shows that p(t, x) consists of two modes which merge to one
single peak as time evolves. Since the probability distribution is defined only at
discrete points x ∈ N

d, it is actually not correct to visualize it in a mesh or contour
plot. Such plots, however, give a much clearer idea of the solution profile than other
ways of visualization.

The adaptive wavelet method was applied to this problem with several different
step sizes h and tolerances tol = h3. Of course, our method did not take any
advantage of the exact solution formula. The left panel in Figure 5.2 shows that the
error with respect to ‖·‖1 decays approximately likeO(h2) as predicted by Theorem 1.
As expected, the constant ‖A3ρ‖1 ≈ 24184 appearing in the error bound (4.12) is too
pessimistic; cf. the remark after Theorem 1.
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Fig. 5.2. Left: Errors of the adaptive wavelet method applied to the problem (5.1), (5.2) for
different step sizes h and with tolerance tol = h3. The errors were measured by the expressions
maxn=1,...,nmax ‖p(tn) − pn‖1 (circles) and maxn=1,...,nmax ‖p(tn) − pn‖∞ (dots). The function
h �→ 400 · h2 (dotted line) is included for comparison. As predicted by Theorem 1, the global error
of the adaptive wavelet method behaves like O(

h2
)
if tol = O(

h3
)
. Right: Number of used basis

elements as a function of time for step sizes h = 10−2, 10−2.5, 10−3 and tolerances tol = h3.
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The adaptive wavelet method only uses as many degrees of freedom as necessary to
represent and propagate the approximation. The right panel in Figure 5.2 illustrates
how the number of degrees of freedom varies adaptively in time. The three curves
correspond to the step sizes h = 10−2, 10−2.5, 10−3 and tolerances tol = h3. Smaller
step sizes and tolerances imply higher accuracy, but require more basis elements. It is
interesting to see that the number of basis elements first increases, but then decreases
when the two modes approach each other and finally merge to one single mode.

5.2. Infectious diseases. The SEIS model (susceptible-exposed-infectious-
susceptible) is widely used to describe the spread of an infectious disease within a
population; cf. [21] and references therein. The population is divided into three classes
(d = 3), namely, individuals susceptible to infection (S), infectious individuals (I), and
exposed individuals (E) in the latent period who are infected but not yet infectious.
The subpopulations interact via the following reactions:

R1 : S + I −→ E + I α1 = c1x1x3 ν1 = (−1, 1, 0)T

R2 : E −→ I α2 = c2x2 ν2 = (0,−1, 1)T

R3 : I −→ S α3 = c3x3 ν3 = (1, 0,−1)T

R4 : S −→ � α4 = c4x1 ν4 = (−1, 0, 0)T

R5 : E −→ � α5 = c5x2 ν5 = (0,−1, 0)T

R6 : I −→ � α6 = c6x3 ν6 = (0, 0,−1)T

R7 : � −→ S α7 = c7 ν7 = (1, 0, 0)T .

(5.4)

R1 models the infection of susceptible individuals by infected ones. The infected
person first enters the E class, but can become infectious after the latent period via
reaction R2. Infectious individuals can recover from the disease via R3. R4, R5, and
R6 describe the death of individuals, whereas R7 represents the birth or the arrival of
new susceptible individuals. It is assumed that this inflow is constant and does not
depend on the current size of the population.

We consider a stochastic variant of the model, which accounts for the fact that
an infection may start with only a few infected individuals. In this situation, the
question whether the disease spreads over large parts of the population or disappears
early depends on the fate of the first few infectious individuals. In our example, the
parameters are

c1 = 0.1, c2 = 0.5, c3 = 1, c4 = c5 = c6 = 0.01, c7 = 0.4,

and the initial distribution is a delta peak at (50, 0, 2).
Figure 5.3 shows the time evolution of the probability distribution. Since the full

distribution is a three-dimensional object, we depict mesh and contour plots of the two-
dimensional marginal distribution in the S-E-plane at different times (t = 1, 3, 4, 5, 7
from top to bottom). The panels in the left andmiddle columns show the approximation
given by the adaptive wavelet method. The results are compared with the distribution
obtained with the stochastic simulation algorithm from [16] (right column).

Figure 5.3 shows that the solution splits up into two distinct peaks. The peak
located at (50, 0) indicates that with a certain probability the first few infectious
individuals die or recover before a critical number of susceptibles has been infected
such that the disease disappears after some time. However, if the infection spreads fast
enough in the initial phase, then the system eventually reaches a state where most of
the population is infected, as indicated by the second peak located at (11, 27). Similar
bimodalities appear in the marginal distributions of the S-I-plane and the E-I-plane
(data not shown).
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Fig. 5.3. Marginal distribution of the stochastic SEIS model (5.4) at times t = 1, 3, 4, 5, 7 (from
top to bottom). Contour plot (first column) and mesh plot (second column) of the approximation
obtained with the adaptive Haar wavelet method. Third column: Approximation computed with the
stochastic simulation algorithm.

From the numerical perspective, the problem is challenging for the following
reasons:

1. The size of the state space is 64× 64× 32. Many of the 217 = 131, 072 states
are never populated throughout the time evolution such that the number of
“essential” states is smaller. However, the information which states can be



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ADAPTIVE WAVELET METHOD FOR THE CME 4391

ignored is not known a priori in practical applications. The adaptive wavelet
method finds out this information by itself.

2. At t = 7the solutionvanishesclose to theS-axis, butdoesnotvanishon thataxis
where one of the twopeaks is located (see the panels in the last rowofFigure 5.3).
This local nonsmoothness poses difficulties to methods which assume a certain
regularity of the solution. Some of these methods would even fail to represent
the highly nonsmooth initial distribution (a delta peak) correctly.

3. In the initial phase, the problem is stiff.
4. The time evolution is dominated by transport rather than by diffusion. This is

a disadvantage for our method because as the support of the probability distri-
butionmoves and grows,more andmore new basis elements have to be selected.

5. Between t = 3 and t = 4 the solution profile is confined to a rather thin line
which is not parallel to any of the axes. Methods which represent the solution
in terms of global tensor products (e.g., the method from [22]) would need
many degrees of freedom to achieve an acceptable accuracy. The adaptive
wavelet method does not suffer from such problems, because the elements of
the Haar basis are local tensor products with small support.

6. The fact that the distance between the two peaks of the bimodality is rather
large poses problems to all methods which rely on the assumption that the
solution remains more or less unimodal.

In this example, the adaptive wavelet method was used with step size h = 0.05. The
iteration for solving the linear system (cf. subsection 4.6) was stopped if the tolerance
tol = 0.001 was met or if the total number of basis elements exceeded 3600. At the
end of each step, only the 3000 largest coefficients were kept, which corresponds to
2.3% of the total number of degrees of freedom. The total runtime was 26 min, 7 sec.
The approximation in the third column of Figure 5.3 is based on 10,000,000 runs of
the stochastic simulation algorithm, which took more than 47.5 h.

Figure 5.3 shows that the results of the adaptive wavelet method agrees well
with the stochastic simulation. Only toward the end of the time interval do the two
approximations differ with respect to the height of the second peak. The reason is that
some part of the probability mass is spread over several states due to numerical errors
in the coefficients of basis elements with large support. Of course, this effect vanishes
if the approximation parameters (tolerances, step size, number of basis elements)
are refined. At t = 7, the maximal difference between the two approximations was
5.52 · 10−4. It should be pointed out, however, that the estimated accuracy of the
stochastic simulation is only 4.23 · 10−5. This value was obtained by computing the
90% confidence interval at t = 7 according to subsection 1.9 in [25].

5.3. Two metabolites and one enzyme. As a second example we consider
the interaction of two metabolites and one enzyme in a model discussed in [9, 29].
The reactions are

R1 : � −→ M1 α1 =
c11x3

1 + x1/c12
ν1 = (1, 0, 0)T

R2 : � −→ M2 α2 = c2 ν2 = (0, 1, 0)T

R3 : M1 +M2 −→ � α3 = c3x1x2 ν3 = (−1,−1, 0)T

R4 : M1 −→ � α4 = c4x1 ν4 = (−1, 0, 0)T

R5 : M2 −→ � α5 = c5x2 ν5 = (0,−1, 0)T

R6 : � −→ E α6 =
c61

1 + x1/c62
ν6 = (0, 0, 1)T

R7 : E −→ � α7 = c7x3 ν7 = (0, 0,−1)T .

(5.5)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4392 TOBIAS JAHNKE

Adaptive wavelet method Stoch. simulation

M1

M2

t = 0

0 64 128
0

64

128

0
1280

128
0

0.0002

0.0004

M1M2 0
1280

128
0

0.0002

0.0004

M1M2

M1

M2

t = 10

0 64 128
0

64

128

0
1280

128
0

0.0005

0.001

M1M2 0
1280

128
0

0.0005

0.001

M1M2

M1

M2

t = 20

0 64 128
0

64

128

0
1280

128
0

0.0005

0.001

0.0015

0.002

M1M2 0
1280

128
0

0.0005

0.001

0.0015

0.002

M1M2

M1

M2

t = 30

0 64 128
0

64

128

0
1280

128
0

0.0005

0.001

0.0015

0.002

M1M2 0
1280

128
0

0.0005

0.001

0.0015

0.002

M1M2

M1

M2

t = 50

0 64 128
0

64

128

0
1280

128
0

0.0005

0.001

0.0015

0.002

M1M2 0
1280

128
0

0.0005

0.001

0.0015

0.002

M1M2

Fig. 5.4. Marginal distribution of the system (5.5) at times 0, 10, 20, 30, and 50 (from top to
bottom). Contour plot (first column) and mesh plot (second column) of the approximation obtained
with the adaptive Haar wavelet method. The third column shows the approximation computed with
the stochastic simulation algorithm.

The parameters

c11 = 0.3, c12 = 60, c2 = 1, c3 = 0.001, c4 = c5 = c7 = 0.002, c61 = 0.02, c62 = 30

were taken from [29]. In this example, the size of the state space is 128 × 128 ×
32 (d = 3). In order to demonstrate that the adaptive wavelet method can also
be applied when the essential support of the solution is large, a discrete Gaussian
with large variance was chosen as initial distribution. The adaptive wavelet method
was configurated in such a way that in each time-step 500 new basis elements were
proposed and only the basis elements corresponding to the 4000 largest coefficients
were stored. Hence, the solution was approximated with only 0.76% of the total
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number of 524,288 degrees of freedom. Solutions were computed on the time interval
[0, 50] with step size h = 0.5, which took 20 min, 36 sec. In the stochastic simulation,
2,500,000 realizations were produced, which took more than 13 h.

The time evolution of the solution is shown in Figure 5.4. In spite of the rather
sparse spatial representation, our method agrees very well with the solution obtained
by stochastic simulation (third column). At t = 50 the maximal difference was
1.73 · 10−4. The estimated accuracy of the stochastic simulation in terms of the 90%
confidence interval is 2.43 · 10−5.

6. Conclusion and possible extensions. In this work a new method for solv-
ing chemical master equations is proposed. The solution is represented in a small
subset of the Haar basis, and the essential basis elements are determined adaptively
in each time-step by combining Rothe’s method with an iterative strategy.

The new method reduces the huge number of degrees of freedom considerably.
However, we expect that the efficiency can still be largely improved by the following
refinements. First, the Haar wavelet can be replaced by discrete wavelets of higher
order. Such wavelets would allow even better compression rates thanks to their better
approximation properties. Second, the trapezoidal rule for the time integration can be
replaced by a higher order integrator or by a variable order strategy. Third, the time
integration can be carried out with an adaptive step size. This is attractive because
the stiffness in the initial phase imposes small time-steps, whereas much larger time-
steps are possible when the fast modes of the solution have disappeared. Work on
these refinements is currently in progress.
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