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Abstract

Solving chemical master equations numerically on a large state space is known to be a diffi-
cult problem because the huge number of unknowns is far beyond the capacity of traditional
methods. We present an adaptive method which compresses the problem very efficiently by rep-
resenting the solution in a sparse wavelet basis that is updated in each step. The step-size is
chosen adaptively according to estimates of the temporal and spatial approximation errors. Nu-
merical examples demonstrate the reliability of the error estimation and show that the method
can solve large problems with bimodal solution profiles.
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1. Introduction

Stochastic models provide a better understanding of many complex systems in physics, chem-
istry, biology, ecology and other sciences. The evolution of such systems is often driven by the
random interaction of d different types of particles which, depending on the applications, can
represent molecules, humans, animals, or other discrete units. In nearly all processes in nature,
the particle numbers are subject to random fluctuations caused by inherent stochastic noise. If all
species are present in abundance, the effects of fluctuations and the discreteness of individual par-
ticles can be neglected. In this case the dynamics of the system can be reasonably modelled with
the traditional reaction-rate approach, i.e. by solving a set of d ordinary differential equations for
the concentrations of the species. This simplification, however, is inappropriate if applications
such as, e.g., the transcription of genetic information in a gene regulatory network are investi-
gated. Here, the evolution of the system must be regarded as a Markov jump process {X(?), t > 0}
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on the d-dimensional discrete state space N¢. Each state x € N is a vector of particle numbers,
and every reaction event induces a jump of the random variable X(#) to a new state.

The stochastic behavior allows the reproduction of important effects of real-life systems, but
often causes severe computational problems. Realizations of the Markov jump process can be
generated by stochastic simulation (cf. [13]), but the main object of interest is usually the prob-
ability distribution p(t,x) = P(X(#) = x), and approximating this distribution up to the desired
accuracy by generating a huge number of realizations can be computationally inefficient. An
alternative approach is to determine p(z, x) directly, i.e. without stochastic simulations. It is
well-known that p(z, x) is the solution of the chemical master equation, but solving this equa-
tion numerically is a challenging task: since the solution has to be computed in each state of
a huge state space, the number of degrees of freedom is far beyond the capacity of traditional
methods. Novel methods for solving the chemical master equation have been constructed in
[1,8,9, 10,11, 12, 16, 17, 18, 20, 21, 23, 24, 25, 27, 30]. These methods are based on different
approaches and assumptions, but they all have in common that the immense size of the problem
is somehow reduced to a computationally manageable level. Generally speaking, the efficiency
of each method depends mainly on its compression ratio, i.e. on the percentage of unknowns
required to obtain the desired accuracy out of the total number of degrees of freedom.

The method advocated in this article is based on the representation of the solution in a sparse
wavelet basis. In the wavelet basis, the number of essential degrees of freedom only amounts to
a very small fraction of the total number of unknowns. This is due to the fact that the wavelet
transform decomposes the input signal into information on a hierarchy of scales. Since smooth
signals contain relatively few detail information, many coefficients of the wavelet representation
nearly vanish and can be neglected if a tiny approximation error is accepted. Since the solution
moves and changes as time evolves, however, the numerical method must not only propagate the
coeflicients of the essential basis elements, but also has to determine in each step which basis
elements are currently the essential ones.

A prototype of such an adaptive wavelet method has been proposed in [20, 21] where a
Galerkin ansatz with Rothe’s method was combined with an iterative procedure that detects the
essential degrees of freedom in each time step. Numerical experiments have shown the efficiency
of this approach, but also revealed that two major improvements are possible:

o The wavelet used in [20, 21] was the Haar wavelet. The corresponding basis elements are
particularly simple and allow efficient evaluations of the entries of the Galerkin matrix. The
approximation in this basis, however, is usually far from optimal because the polynomial
order of the Haar wavelet is only one. In the refined method presented here, the Haar basis
is replaced by a higher-order basis of Daubechies wavelets. This yields a faster decay of
the wavelet coeflicients and hence a better compression ratio such that larger problems
can be solved with a higher accuracy. We remark that other types of wavelets such as
biorthogonal spline wavelets could also be used, and that this option is already available in
our implementation of the method. In order to keep the presentation as simple as possible,
however, only Daubechies wavelets are considered in this article.

e In [20, 21] the solution was propagated with a fixed step-size. This is inconvenient for
two reasons. First, it is usually not clear a priori which step-size has to be chosen in order
to obtain the desired accuracy. It would be clearly preferable to select the error tolerance
and let the method choose the appropriate step-size by itself. Second, the choice of the
step-size is often restricted by the stiff behavior of the solution in the initial phase whereas
much larger time steps are possible later when p(z, x) converges to a stationary distribution.
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Hence, an adaptive step-size selection would yield important time savings for simulations.
Such an adaptive time-stepping for the adaptive wavelet method is presented in Section 3.3.
Our strategy is not based on comparison with an embedded method, but on analytical
estimates for the errors caused by the approximations in time and space. Moreover, the
second-order scheme used in [20, 21] is replaced by a fourth-order integrator.

In the next section we formulate the problem, introduce the chemical master equation and define
our notation. In Section 3 the Haar wavelet method derived in [20, 21] is extended to higher-
order Daubechies wavelets and provided with an adaptive step-size selection. Some parts of this
section could be found in monographs on wavelet analysis or in [20, 21], respectively, but in order
to make the exposition self-contained we have chosen to briefly compile the most important facts
for the reader. Numerical examples are presented in Section 4. These tests demonstrate that with
the new extensions — higher order wavelets for the space approximation and adaptive step-sizes
for the time integration — the adaptive wavelet method is capable of solving large, non-trivial
problems with bimodal solution profiles.

2. The chemical master equation

Suppose that the evolution of d species S1,...,S  interacting via K reaction channels is de-
scribed by a Markov jump process on the state space N¢. The entry X;(¢) € N of a realization X ()
is the number of particles of the i-th species at time ¢, where N denotes the set of all nonnegative
integers including zero. Our goal is to compute the probability distribution

pt.x) = P(X() =x), xe N,
i.e. the probability that at time ¢ there are exactly x; particles of the i-th species (i = 1, ... ,d). It
is well-known (see, e.g., [14]) that p evolves according to the chemical master equation (CME)
apt,) = Apl, -) (1)
@O, -) = po(-)

where A denotes the operator

K
(Ape, D)@ = " (arlr=vop(t, x = vi) = ex(¥)p(t, x) 2)
k=1

and py is a suitable probability distribution. We will occasionally omit the spatial variable and
write, e.g., p(t) instead of p(t, x). In Equation (2), v, € Z? is the stoichiometric vector which
means that X(¢) jumps from the current state x to the new state x + vy if the k-th reaction channel
fires. The term ai(x) > 0 is the propensity function of the k-th reaction channel. Roughly
speaking, @ (x) indicates how likely it is that the k—th reaction channel will fire in the next
infinitesimal time interval (see [14] for details). Typically, the propensity function of the reaction

mSi1+...+nSqg—mS1+...+mySy

with n;,m; € N and reaction constant ¢ > 0 is given by

a(x) = c(xl) .. (xd).
ni ng
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Reactions which can be inhibited are modelled with more complicated propensity functions; see
Section 4 for examples. Since the term x — v, in (2) may have negative entries and the functions
p(t, x) and a;(x) only make sense for integer nonnegative particle numbers x = (xy, ..., X;) € N,
we define p(t, x) = 0 and ay(x) = 0 for all x ¢ N?.

Although the CME is actually defined on the infinite state space N, numerical approxima-
tions are usually only computed on the truncated state space

Qe ={xeN : xy <&, ... x5 <&b (3)

where & = (£, ... ,&;) € N is a suitably chosen truncation vector. It will always be assumed
that £ is so large that p(z, - ) vanishes near the artificial border of €2, such that the truncation error
can be neglected. On the new boundaries, we impose the discrete Neumann boundary condition

a(x)=0 if x€Qy and x+v; ¢ Q;, @

which suppresses all reactions leading from x to a state outside the truncated state space. This
boundary condition guarantees that the solution of the truncated CME remains a probability
distribution if pg is a probability distribution, that a stationary distribution exists, and that all
nonzero eigenvalues have negative real part (cf., e.g., [20]).

The truncated state space is finite yet still very large in most applications (see Section 4 for
examples). Since the solution p(, x) has to be computed for every state x € ¢, applying tradi-
tional methods to solve the CME is out of question for all but very small systems. The method
introduced in [20, 21] compresses the huge number of degrees of freedom to a computation-
ally tractable size by representing and propagating the solution in a sparse Haar wavelet basis.
Numerical examples have shown the potential of the method, but also indicated that two exten-
sions are necessary to handle larger problems: First, the Haar wavelet basis must be replaced
by higher-order wavelets with better approximation properties, and second, the time integration
must be enhanced by an adaptive time-stepping strategy. In this paper, we show how these two
extensions can be integrated into the wavelet method from [20, 21].

3. Adaptive wavelet method

3.1. Daubechies’ orthogonal wavelets

The spatial approximation of the CME is not restricted to one particular class of wavelets. In the
current implementation of our method, the user can choose between biorthogonal spline wavelets
and Daubechies wavelets, but for the sake of simplicity, only the case of Daubechies wavelets is
discussed in this article.

Providing an elaborated introduction to Daubechies wavelets and their analysis is far beyond
the scope of this paper. Expert knowledge of wavelet theory, however, is not required to under-
stand how our method works, because we will only make use of certain properties of wavelets,
not of the precise definitions and derivations. The purpose of this subsection is to compile the
most important of these properties. For details, the reader is referred to the monographs [2, 7, 26].

For joy, jmax € N the Daubechies wavelet basis of order m € N\ {0} is a set of functions

{er ke z) Uy 1keZ, j=ooimn— 1} < P® )

with the following properties:



. Scaling function and mother wavelet. There is a scaling function ¢ € L*(R) and a
mother wavelet ™ € L?(R) such that all basis elements are obtained from these functions
by shifts and dilations:

Qi) = 20PgMRhx—k), kel
Pl = PPk, = o a1

The support of the scaling function and of the mother wavelet lies within a compact inter-
val.
. Orthonormality. For all i, j € {jo, ..., jmax — 1} and k, 1 € Z, we have

<<P7:3€ QDB-Z»LZ = Ok, <¢5{7<), ‘//(m)>L2 = 00k < 5:)"1’ l//(m)>L =0,

where 0y is the Kronecker symbol.
. Refinement equations. The scaling function ¢ and the mother wavelet /™ satisfy

2m—1

¢ = D g™ 2x—n)
n=0
1

P = ) ™ x -k

n=2-2m

for certain filter coefficients 4, € R and g, = (—1)"h;_,. There is no explicit formula
for the scaling function or the mother wavelet if m > 1. Values of ¢ (x) and ™ (x)
can be computed with the cascade algorithm which, starting from the known values in
certain points, computes intermediate values by applying the refinement equations itera-
tively. However, evaluations of ¢ (x), /" (x) or the basis elements are rarely necessary.
For the fast wavelet transform and its inverse (see property 4) only the filter coefficients
ho, ..., ho,—1 are required, and these values can be looked up in the literature (see [26]).

. Fast Wavelet transform. Let V; _ be the closure of the span of the wavelet basis (5), and

Jmax

let
/max_l
— (m) m) (m) (m)
YA S I AT ©)
keZ Jj=jo keZ

be the representation of a function f € V; . Since numerical computations can only be
performed on a bounded interval, we assume that the support of f is finite. Hence, only a
finite number of coefficients ai L <905':3( f> and b('") <¢/(m) f) are nonzero. These
coeflicients can be very efficiently computed by the fast wavelet transform, which proceeds
recursively and exploits the properties 1 and 3. Conversely, reconstructing a function from
its coefficients can be efficiently accomplished by the inverse fast wavelet transform.

. The scaling functions and the mother wavelet generate a hierarchy of spaces V; C ... C

Vi © L*(R) defined by

Vin=V,eW, =V, oW, @ W, ®...0 W,

and

Vi, = span{go('") |keZ}, W;= span{z,b%) | k € Z).
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Let P; : L>(R) — V; denote the orthogonal projector onto V;. Note that P;f is obtained
by setting b(m) 0 for all j > iin (6). Then, every f € V; _ can be represented as

Jmax
Jmax—1
F=Py f=Puf+ > (Pii=Pf.
J=Jo
The term

_ (m) _(m)
P jof = Z ]0 i jos € V
keZ

approximates the function on the coarsest scale, whereas the terms

(Pi =PDf = Y By ew;
keZ

represent the new detail information which can be captured when the space V; is enlarged
to Vi =V;@eW, If P; fis sufficiently smooth, one would expect that most of the infor-
mation is already observable on the coarsest scales, and that for large j the coefficients b('")
corresponding to the detail information (P — P;)f are close to zero. Hence, the wavelet
basis allows to compress the data: if a small appr0x1mat1on error is acceptable, then only
the few non-vanishing coefficients have to be stored instead of the entire representation
(6). A mathematically more precise formulation of this fact is stated in property 7.
6. Vanishing moments. The mother wavelet " (x) of order m satisfies

Jmax

fx”w(’”(x)dx:o foralln=0,...,m—- 1.
R

This means that all polynomials with a degree less than m are contained in V.
7. Wavelet compression. Let f € Cj(R) forsomen € {1,...,m}. Then, forall j € {jo, ..., jmax}
the projection error is bounded by

If=Pifl: < C2™If™ W)l 7

This estimate confirms that omitting details by discarding the corresponding coeflicients
can still yield a very precise approximation. Note that the approximation error does not
only depend on the smoothness of the function and on the truncation level j, but also on
the order m of the wavelet, because (7) only holds for n < m. Similar estimates can be
shown under weaker regularity assumptions, cf. [2].

Example: Haar wavelets. The Daubechies wavelet with m = 1 is the Haar wavelet. The scaling
function is ™ (x) = y[o.(x), and the mother wavelet is ¥(x) = xj0.1/2)(X) — x71/2.1)(x), with
X1 denoting the characteristic function of the interval /. The filter coefficients of the refinement
equations are ip = h; = go = 1 and g; = —1. The space V; contains all functions which are
constant on all intervals 277k + [0, 27/), k € Z. For increasing j, the projection P, f captures more
and more details of the input function f. However, only polynomials of degree m — 1 = 0 can
be represented exactly, and the estimate (7) is only true for n = 1. Hence, the approximation
properties of the Haar wavelet basis are rather modest. This was our motivation to use higher-
order Daubechies wavelets instead of the Haar wavelet to approximate the solution of the CME.
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Example: Daubechies db2 wavelets. The scaling function and the mother wavelet for m = 2
are shown in Figure 1. There is no explicit formula for these functions. Both functions are zero
outside the interval [0, 3]. The filter coefficients are

1+V3 L 3+ 3 h_3—\/§ h_l—\/§

hO 5 1= 5 2 > 3 =
42 42 42 42

and g, = (=1)"hi-.

1.5 2
1 1
0.5 0
0
-1
0% i 2 3 0 i > 3

Figure 1: Scaling function (left) and mother wavelet (right) of the db2 wavelet (m = 2).

Wavelets on Q.. The elements of the wavelet basis defined above are functions on R. For appli-
cation to the CME, however, we need a wavelet basis of functions on the bounded, discrete and
multi-dimensional domain Q; C N¢. We briefly sketch how this adaptation can be made.

There are several ways to define a wavelet basis in more than one spatial dimension. A
straightforward option is to use tensor products of one-dimensional basis elements, but this con-
struction does not generate a multiresolution analysis (cf. Section 2.2 in [2]). An alternative is
described in Sections 1.4 and 2.12 of [2]. In our method both options can be used, and both
options were implemented in our MATLAB code.

A wavelet representation of a function on a bounded interval can be obtained by first ex-
tending the target function to R by periodic continuation and then applying the above setting.
The disadvantage of this strategy is that the extension will introduce an artificial discontinuity at
the boundaries, which will unnecessarily increase the number of wavelet coefficients required to
represent the target function. This inconvenience can be avoided with special wavelets designed
for bounded intervals; cf. Section 2.12 in [2]. Our method is compatible with each of these
alternatives, but for simplicity, periodic continuation is used in the current implementation of our
code.

As soon as wavelets on a bounded interval [a, b] have been defined, one can introduce an
equidistant grid x,, = a + n(b —a)/2" withr € Nand n = 0,...,2" — 1. Then, every function
f on that grid can be identified with a function on the discrete state space {0,...,2" — 1} via
f (n) = f(x,). In the multivariate case, this defines a wavelet basis for functions on Q.

Summary. Let H(Q,) be the linear space of all discrete functions f : Q; — R. On this space,
we define the inner product

(fr)= D fg),  figeHQ), (8)
xeQ,
and the norm ||f], = {f, f). Let N = & - ... &, be the total number of states. With the

construction sketched in this subsection, one obtains an orthonormal, discrete wavelet basis
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{v(lm), .. .,vﬁ\',")} of H(Q;). For simplicity, the basis elements are enumerated by one single in-

dex instead of (multi-)indices for level and number. The properties of this basis are inherited
from the univariate, continuous setting. The coefficients a(jm) = (f, vi.m)) in the representation
f= 21}/:1 a(jm)v(jm) can be computed with O(N) operations with the fast wavelet transform. It is
useful to remark that because we operate in a discrete setting, computing the finest scaling co-
efficients presents no problems, even though the Daubechies scaling functions have no explicit
representation, as these are taken to be the values of the function f itself. Conversely, the func-
tion f can be reconstructed from the coefficients a™ with O(N) operations via the fast inverse
wavelet transform. If f is sufficiently regular, then a higher order m implies a faster decay of the
coeflicients and thus a better compression rate when vanishing coefficients are discarded. As a
consequence of the orthonormality, the compression error in the norm || - ||; is the same as the
2-norm error of the discarded coefficients.

The basis elements are somewhat abstract because there are no explicit formulas for the v;.
As in the univariate, continuous setting, these functions are defined recursively via the discrete
counterpart of the refinement equations. The fast wavelet transform and its inverse do not use
the basis elements explicitly. These transforms can be thought of as black boxes which, given
either the input function or the coefficients of the wavelet representation, return the corresponding
counterpart. In the adaptive wavelet method constructed in the following subsections, the only
part where the basis elements have to be evaluated is the computation of the Galerkin matrix

(16).

3.2. Approximation with fixed step-size

In this subsection we show how the solution of the CME (1) can be approximated adaptively in
the wavelet basis. As a first step, we consider a fixed time step 4 > 0 and concentrate on the
question how the essential degrees of freedom can be detected and propagated. The algorithm
described below is essentially the one proposed in [20, 21]. The difference is that the latter used
only a second-order scheme for the time integration and the Haar basis for the spatial approxi-
mation. A strategy for adaptively selecting the step-size is presented in Subsection 3.3.

Let {v(lm), e, v(Nm)} be the orthonormal, discrete wavelet basis from the previous subsection. It
is assumed that the polynomial order m of the wavelet is chosen by the user, and the index “(m)”
will from now on be omitted. Let

1
Pu= Y Bivi ~ plty) ©)

i=1
be the numerical approximation available at time #, = fo + nh. Here, {j, ... ,j,} is a small
subset of the index set {1, ... ,N}, and 8 = (By,... ,,B,Y)T € R7 is the coefficient vector of p,.

The function p, is supposed to be propagated by one step of the 2-stage Gauss-Runge-Kutta
method. For linear problems this method is equivalent to the (2,2)-Padé approximation to the
exponential function, and its order (order 4) is the highest possible among all integrators with
two stages. Moreover, the method is A-stable, which is important because the real parts of all
eigenvalues of the operator A are nonpositive and the CME can be very stiff in the initial phase.
Performing one time step means that the new approximation u,.; ~ p(f,1;) must be computed
by solving the linear equation

OhAunsy = P(hA)py (10)



with
h o, h o,
OhA) = I- —f( + —ﬂ PhA) = I+ 53{ + Ef( . (11)

Here and below, I denotes the identity operator/matrix. An equivalent formulation is

h
Unei = Pnt 5(81+82) 12)
where (g1, g2) is the solution of
h 1_ V3
I-3A (z - ?) g Ap,
= . (13)
_h(% + \/Tﬁ)ﬂ y ) Ap,

Unfortunately, neither (10) nor (13) can be solved in a straightforward way because both linear
systems are far too large for standard direct or iterative schemes. The exact solution, however,
is not required — it is sufficient to approximate u,,; up to an error which does not significantly
increase the local error of the time integration. According to the properties of the wavelet basis it
can be expected that an approximation p,,+; = u,4; can be found in a low-dimensional subspace
of H(Q;). A first candidate for this subspace is the span of {v;,,...,v jq}, i.e. the subspace of the
previous step. An approximation

0 0 0 0 0 0
Pyt = Zv“vh P =put (g”+g(2)) “”—Zggfvh se{l,2) (14)

in this space is obtained by imposing the Galerkin conditions

(v (0= §70g)") - h(% I)W A"y = (vi Apn) (15)
R [N R ONA V¥ L S O
foralli=1,...,n. Let A € R denote the Galerkin matrix defined by
A= @) an= (v Avy). (16)
Then, (15) can be rewritten as
I-1"A —h l—ﬁ)A ©
4( 4 6 ( é/%o) ) ( ﬁﬁ ) (17)
1 3 h
—h (Z + ?)A I - ZA 2 ﬁ
where O = ({iol) ey §OJ)T Since the Galerkin matrix A € R7 is much smaller than A €

RN _(17) can be solved with GMRES or other iterative methods. The approximation pfﬁfl is

then obtained by a fast inverse wavelet transform of the new coefficient vector y© = g + £ 2 O 4
§§O)). Due to the equivalence of (10) and (13), ¥© solves the equation

0hAY? = P(hA)B. (18)
9



0)

Of course, e

Let

does in general not coincide with the solution u,,; of the full problem (10).

r¥ = QAP ~ PhA)py

n+l1

be the residual. The Galerkin condition (15) implies that the residual is orthogonal to the approx-
imation space. Hence, the residual shows which “part” of the full problem has been neglected
by solving (18) instead of (10). Roughly speaking, the value (v, r?) (i.e. the coefficient of
the residual in the wavelet basis) tells “how much the residual points into the direction of v;”.
If [(ve, ¥©) is large, then the approximation will probably improve if v, is added to the current
basis. Note that (v, *O) = 0 if v is already contained in the selection of basis elements.

Now the adaptive wavelet method proceeds as follows. First, the basis is enlarged by a fixed
number Ay of new elements. The new elements v; ..., v; ,, are those which yield the largest
values [(v¢, "?)|. Next, the Galerkin matrix (16) is updated by adding Au new lines and columns
corresponding to vj,.,,...,v;,,. Then, solving the system (18) with the enlarged A yields a
refined coefficient vector y" and an improved approximation P511+)1 = 21.7:1) y\Vv;, with 5 =
1 + Au terms. Iterating this procedure leads to a sequence of approximations pig)l , pfllﬁl , P512+)1’ e
in a hierarchy of increasing approximation spaces. As soon as ||| is smaller than the chosen
tolerance, the iteration is stopped, and the approximation piﬁl is accepted.

In order to prevent unlimited growth of the number of basis elements, all dispensable terms
are removed from the representation of 1’;{21 = Z?ji yl@v j, in a post-processing step. Let 1 C
{1,...,17} be a subset of the index set, and let pL{JI = Dier yf,[) vj, be the approximation obtained
by deleting all terms with i ¢ 7 from the representation. Since the wavelet basis is orthonormal,

the truncation error in || - ||» is the 2-norm of the discarded coeflicients, i.e.
@) (7] _ 0)?
P =P = DT 0)
ieT

In order to reach an accuracy || p;?] - pl[i]] |l £ tolume With a minimal number of basis elements,

we simply order the coefficients by magnitude and truncate the smallest coefficients as long as
Die I(ylgf))z < tollzmm,. If the error is measured with respect to || - ||; rather than || - ||, we choose
tolyune < ¢ - tol where ¢ is a factor which accounts for the equivalence of the norms. The
choice ¢ = 1/ VN is correct, but often too pessimistic. A more optimistic choice can be made
by replacing N by the number of states where p;‘zl is essentially larger than zero. The function
Do+l = p,[i]l obtained by thresholding is the final result of the entire time step.

The following algorithm sketches one single time step of the adaptive wavelet method with
fixed step size. The algorithm does not store pilojl, 1’511431’ P512+)1’ ... but only one single function
Pn+1 Which is overwritten in each iteration.

Parameter: step-size i > 0, tolerance tol, safety factor C, (see remark 3) below)

Input: index subset {ji, ... , j,} and coefficients Sy, ..., 5, of the
current approximation p, = 2?21 Bivj,
Galerkin matrix A defined by (16)

Qutput: index subset {ki, ... ,k,} and coeflicients 1, ...,y, of the new
approximation p,.; = Zé‘zl YiVk,
updated Galerkin matrix

10



. Setjpa=m.

Solve the linear system

AB
AB
and set = 3 + %({1 + (»). The vector j3 is an embedding of 8 € R” into R :

B=1,....5,,0,...,0 (19)

]

Compute the new approximation p,,; = Z’?z | ¥ivj; by a fast inverse wavelet transform.
Compute the residual r = Q(hA)p,y1 — P(WA)p, with Q and P defined by (11).
If ||r]l; > C, - tol:

(a) Compute y; = |(v1, r>| forl/ =1,...,N by a fast wavelet transform.

(b) Find the indices jut1, ... , ja+au Of the Au largest entries of (yq, ..., xn).

(©) Addvj,,,,...,Vj,,, to the current selection of basis elements.

(d) Update the Galerkin matrix by adding new blocks corresponding to the new basis

vectors:

_ A+Ap —
A = @iy » ajx = (vj,., ﬂvjk>.

(e) Setfa i+ Au.

(f) Go to step 2.
The result p,+1 = Zil vivk, 1s obtained by discarding all coefficients y; with i ¢ 7, where
7 is the index set of the largest coefficients. The number of coefficients is chosen in such
a way that ||p,+1 — Par1lli < tol (see above). The corresponding columns and lines are
deleted from the Galerkin matrix A.

Remarks.

1.

2.

The adaptive wavelet method described here is closely related to similar methods for solv-
ing elliptic and parabolic partial differential equations; cf. [3, 4, 5, 6, 28, 29]

It is not advisable to compute the coefficient vector by solving (18) because the matrix
A? which occurs in Q(hA) typically increases the condition number tremendously. This is
avoided in the equivalent formulation (17). The price to pay, however, is the fact that the
linear system (17) has twice as many unknowns as (18). The doubling of the linear system
can be avoided if the 2-stage Gauss-Runge-Kutta method is replaced by a singly diago-
nally implicit Runge-Kutta method (cf. Section IV.6 in [15]) where only linear systems
with the same matrix (I — chA) € R"7, but different right-hand sides have to be solved.
Unfortunately, singly diagonally implicit Runge-Kutta method are either less accurate (or-
der 3 with two stages) or require more stages (three stages for order 4) than the 2-stage
Gauss-Runge-Kutta method. Therefore, it is difficult to say a priori which method will be
more efficient for a particular problem. We have tested both possibilities on several ap-
plications and did not notice a significant difference in efficiency, as the computationally
critical part of the algorithm is the assembly of the Galerkin matrix A in Step 5(d) of the
algorithm described above.
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3. The iteration terminates if ||r]|; > C, - tol. The safety factor C, < 1 in step 5 can be
chosen as follows. If ||r]l; < C, - tol, then comparing Q(hA)u,.; = P(hA)p, (cf. (10))
and Q(hA)py+1 = P(hA)p,, + r yields the error bound

st = Pusills < IQRAY ' rlly < 11QRRA) 1 - C, - tol. (20)

In order to conclude that ||u,s1 — Pps1lli < tol, we have to choose C, = 1/]|QRA) ;.
Based on our numerical experiments, we conjecture that lo(hA)Y|; = 1, but unfortu-
nately we were not able to prove this. However, since (I — hA/2)~! is known to be
contractive and Q(hA)~! is a higher order perturbation, choosing C, < 1 seems to be
reasonable.

4. The limited memory of the computer imposes an upper bound for the maximal number
of used basis elements. Thus, it is sometimes more convenient to prescribe the number
of degrees of freedom instead of the accuracy of the approximation. In this case, the
number of basis elements which are kept after the time-step (u) is chosen by the user.
Moreover, one can select a second parameter (t,,,,, Which denotes the maximal number of
basis elements during the time-step. The condition “If ||r]|; > C, - tol” in step 5 is then
replaced by “If ||r||; > C, - tol and i + Au < fpax”-

5. If the time step is rather large, then propagating the approximation sometimes demands
much more basis elements than representing it. In such a situation, many of the basis
elements discarded at the end of a time step are selected again in the next time step. This
decreases the efficiency of the algorithm, because the corresponding entries in the Galerkin
matrix have to be computed once again. It is thus advantageous to fix a lower bound i,
for the number of degrees of freedom in step 6.

3.3. Adaptive step-size control

Up to now, the wavelet method was adaptive in space, but not in time. Solving chemical master
equations with a fixed step-size, however, can be rather inefficient because often the short stiff
transient phase at the beginning of the time interval imposes severe step-size restrictions whereas
much larger time steps can be made towards the end.

In this subsection we introduce a strategy to select the step-size adaptively' in such a way
that the (local) approximation error remains under or close to the chosen tolerance tol. Strictly
speaking, the error bounds given below will only guarantee that the error is smaller than C - tol
with some (moderate) constant C > 1. If it is of crucial importance to keep the error always
below the tolerance, this can be achieved by introducing an appropriate safety factor.

We start with the following bound for the local error.

Theorem 1. Let p, be the approximation computed in the n-th time step with tolerance tol > 0
and let p(t) be the exact solution of the CME

Ap(t)  fort € [ty, the1]
Pn

p()

21
p(t) @D

'We remark that adaptive in this context means the ability to control the global step-size and not a fully adaptive
scheme where each degree of freedom is propagated with its own step-size. Although such a local time stepping method
could increase performance, it is dependent on advanced knowledge of the problem, and our goal is to construct a method
that is free of such assumptions.
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which starts from p, at time t,. Suppose that the representation of p,.1 before the truncation
(step 6) is Pne1 = i, Yivj, and let

V = span{v;,,...,v;,} C H(Q)

be the iteratively enlarged approximation space. Note that p, € V because V is the approxima-
tion space before the truncation step. Let q(t) be the solution of the projected CME

4(®)

q(t,)

PVﬂq(t) fort € [tn’tn+l]
Pn

(22)

where
Py : H( Q) —V, Pyw = i <le., w> v
i=1

denotes the orthogonal projection from H(Qy) onto V. Then, the local error pyii — p(ty+1) is
bounded by

[(PyAY pu|, + O(h°) + £o1 + f I(Py — DAg(s)lids. (23)

In

/’15

- <
IPner = Pl < =55

Proof. The error is split into the three parts

lpner = @Dl < llPnet = Pustlly + 1Pne1 = (e Dl + lg(tas) = pGeDlly - (24)

The error bound ||p,+1 — Pu+1lli < tol follows directly from the definition of p,.; in step 6 of
the algorithm. The steps 2 and 3 in the algorithm are equivalent to applying the 2-stage Gauss
method to the projected CME (22). The local error of the Gauss method is bounded by

hS

N _ < 2
||pn+l q(tn+l )” = 720

vy’ pul, + (i) (25)

which can be shown by standard arguments. In order to derive an error bound for the last term in
(24) we use that d(¢) = g(t) — p(¢) satisfies the equation

d(t) = Ad(t) + (Py — DAg(1).

The variation-of-constants formula yields

t

dit) = d(t,) + f exp ((t — )A)(Py — DAq(s)ds

ty

where exp((t — ,)A) denotes the flow of the CME (21). Since d(t,) = ¢q(t,) — p(t,) = 0 and
[lexp((t — t,)A)||; = 1 for all ¢ > t,, it follows that

Iny1

lg(tns1) = p(tns Dl = Nld(Ens DIl < fII(Pv — DAq(s)|l1ds.

13



Substituting these bounds in (24) proves the assertion. [ ]

In (23) the term 4’ ||(PV?[)5 p,,”1 /720 arises from the time integration of the projected CME.
Evaluating the expression (PyA)’p, in a straightforward way would imply five evaluations of
A, but fortunately, this can easily be avoided: if p, = Z’lle Bivj, is the representation of the old
approximation, then

Qi
PVA Py = Y v e = ABr B

i=1

Hence, only the relatively small Galerkin matrix A has to be applied five times, not the full
operator A. The integral term in (23) represents the error caused by the spatial approximation
in the sense that it describes how the solution of the projected CME deviates from the solution
of the full CME. Since the function ¢(#) is not computed in the algorithm, an exact evaluation of
this term is not available, but a first-order approximation is given by

fII(Pv—I)ﬂq(S)IIIdS ~ (tpr1 = WPy = DAq(t)Ily = All(Py = DApall- (26)

ty

With (23) and (26) the condition ||p(¢,+1) — pn+1lli = tol leads to the step-size selection

_ 1/5
b = min tol . Cae ( 720 1;01 ) 27
I(Pyv — DAPpl I(PyvA)° pally

with an optional safety factor Cy,r, < 1. The main difficulty is that the step-size i has to be
chosen before the time step p, — p,41 is carried out, but the space V is only known after the
time step. At time ¢, only the subspace

W = span{vj,,...,v;} CV C H(Q)

spanned by the basis elements from the representation p,, = Z?zl Bivj, = p(t,) is available. For
the estimate (25), this difference is negligible, because this term estimates the error caused by
the time integration. For the estimate of the spatial error, however, simply replacing V by W is
far too pessimistic. An estimate for the term ||(/ — Py)Ap,ll; can be computed by means of a
prediction of how many new basis elements will be chosen during the time step. Let

N
Apy = Z LAY (28)
=1

be the representation of Ap,,. First, we apply the projection (/—Py) which removes all terms with
index [ € {ji,..., j,} from (28). From the remaining coefficients, we discard the m coeflicients
with the largest absolute value, because the corresponding basis elements are most likely to be
selected during the enlargement of the approximation space. The number m should depend on
how many basis elements are currently used (17) and on the maximal number of basis elements
(Umax), 1.€. m = § - (Umax — 1) With some safety factor s € [0, 1]. In our numerical experiments,
the value s = 0.5 was used. The larger the value m, the larger the new step-size A, but this also
means that more basis elements will be necessary.

14



These considerations are summarized in the following algorithm for the step-size selection.
This algorithm is started at the beginning of every time step, i.e. before the algorithm from
Subsection 3.2.

Parameter: error tolerance tol > 0

Input: index subset {ji, ... , j,} and coefficients 3y, ..., 5, of the
current approximation p, = Z?:l Bivj,
Galerkin matrix A defined by (16)

Qutput: step-size h for the step t,, =t =t, + h

1. Compute Aspace:
(a) Compute Ap, and, via a fast wavelet transform, its representation (28).
(b) Set6;=O0foralll=ji,...,J,
(c) Putm = s (Umax — 1) and set the m largest (in modulus) coefficients to zero. With
a fast inverse wavelet transform, compute ¢ = }} . 6;v; where D is the index set of
the discarded terms.

(d) Set hspace = tol/llsll:-
2. Compute Agjme:
(a) Compute

n

(PyA) pn = L), oo )T =B B
i=1

720 - tol )”5

l(PwAY palli
3. Choose h = min {hspace, htime} .

(b) Set hjme = Ciase - (

Remark. In a previous version of our code, we did not fix the step-size at the beginning of
the time step, but instead changed the step-size during the iterations (steps 2 through 5) based
on the new informations gained from the enlargement of the approximation space. However,
this strategy was not successful, because the decision which basis elements are chosen depends
implicitly on the step-size, such that the basis elements which have been selected in previous
iterations are no longer suitable if the step-size has changed.

4. Numerical examples

The following four numerical examples demonstrate the performance of the adaptive wavelet
method. The first two examples confirm that the accuracy of our method indeed agrees with the
tolerance selected by the user. The third and fourth examples showcase the capability of our
approach to solve large, non-trivial problems with bimodal solution profiles.
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4.1. Merging Modes
Let us consider two species S| and S, that interact via the following reaction channels

R1 . Sl — Sz a; = (X Vi = (—l,l)T
R2 . Sz —> S1 @y = (X2 V2 = (1,—])T
Ry: § — a3z = C3X] vy = (—I,O)T
Ry : S2 — % Q4 = C4X2 V4 = (0, —I)T

with rate constants ¢; = 1.5,¢, = 0.7,¢3 = 0.7 and ¢4 = 0.2. The purpose of this very simple ex-
ample is to check the behavior of the error with respect to the tolerance selected by the user. This
is made possible because the exact solution of the corresponding CME is known: all reactions
are of monomolecular type, and for such systems an explicit formula has been derived in [22].

64 64 4 4
t=0 t=0.25 t=0.5 t=0.75

32} \ 3l (&

Figure 2: Exact solution of the Merging Modes system at ¢ = 0,7 = 0.25,¢ = 0.5 and ¢ = 0.75 (from left to right).

For any x € N?>, N € Nand any r = (r1, r») with 7, € [0,1] and r; + 7, < 1, the multinomial
distribution M(x, N, r) is defined by
nry (= =N

M(X,N,F)Z 'xl!le (N—)Cl—XQ)!

ifx;+x <N

0 otherwise.

M is a two-dimensional extension of the well known binomial distribution. For the initial distri-
bution we choose

p(x) = 0.5- M(x, N, D) + 0.5 - M(x, N, r?) (29)

with ¥V = (0.7,0.)7, ¥® = (0.1,0.7)", and N = 63. Then, the exact solution of the correspond-
ing CME is

p(t,x) = 0.5- M(x, N, sV (@) + 0.5 - M(x, N, s2(1)), (30)
with

() — () _ [ —(c1+c3) o)
sY(1) = exp(tC)r”, C-= o 2 4 ¢2)

(cf. [22]). Figure 2 shows that p(t, x) consists of two modes which merge to one single peak as
time evolves.?

2Because of the discrete nature of the solution of the CME, contour or mesh plots are somewhat misleading, since the
robability distribution is only defined at discrete points x € N¥. Such lots, however, provide a much clearer picture of
p y y p p p p
the solution profile than other visualization methods.
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The adaptive wavelet method was applied to this problem on the time interval [0, 1] using
db2 wavelets and four different tolerances. In the left panel of Figure 3 we plot the error of
the adaptive wavelet method in the 1-norm by comparing each of the approximations with the
explicitly derived solution. The plot illustrates that for tolerances up to tol = 1073 the error
estimator described in (27) works well and the error is almost always below the chosen tolerance.
For smaller tolerances, however, the selection of the step-size is too optimistic, i.e. the steps are
not small enough. We remark that this behavior appears only for tolerances that are going to be
used for small problems. An easy fix is to use a safety factor Cy,y, in the second term in (27),
and the result is illustrated in the right panel of Figure 3. It is also important to mention that the
1-norm scales with the state space, so for bigger problems, a tolerance of 10! or 1072 provides
a sufficiently good accuracy. As additional information, the evolution of the step size and the
number of basis elements used by the runs without the safety factor are plotted in Figure 4.

107 107
1072 h i m e 1072 mm e e
b o " OO - e e-0-0-0-0-0_ ¢ -0--0--0 -4 ...-o-.-.o-o--—o-O—o-o-o-..-.-.—o-o--o-.-.-J
v
07 h o g g 1 0 ]
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Figure 3: Left panel (a): Error of the adaptive wavelet approximation of the Merging Modes problem for fol; = 107!
(square), tol, = 1072 (circle), fols = 1073(diamond) and toly = 10™* (cross). The error was computed in the 1-
norm by comparing each of the approximations with the exact solution. Left panel (b): Error of the adaptive wavelet
approximation for tol = 1071,1072,1073 and 107 using a safety factor Cyype = 0.7 for Ayipe.

4.2. Genetic Toggle Switch

In this example, we investigate a pair of mutually repressing genes, where the two competing
species S| and S, each inhibits the transcription of its opponent. The reaction channels are

Ry : x — 5 a = C11/(6‘12+x§) v = (1,0)T
Ry : % — 5 a = /(e + X%) v, = (0, l)T
Ri: S — x% s = C3x] v; = (=1,0)7
R4 : Sz — % Q4 = C4X2 V4 = (O, —1)T

with parameters ¢;; = ¢p; = 10, ¢12 = ¢ =30and c3 = ¢4 = 0.017. If copies of S, are present
in abundance, then the propensity function for reaction R; almost vanishes, which inhibits the
transcription of new copies of §|. However, over sufficiently long time intervals, stochastic
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Figure 4: Left panel (a): Evolution of the step-size i for the Merging Modes problem without the safety factor, using
tol; = 107! (solid), fol, = 1072 (dashed), tols = 1073(dotted) and toly = 10~ (dash-dot). Right panel (b): Number
of basis elements used in each step to compute the approximation for tol; = 107! (solid), rol, = 1072 (dashed), rol3 =
1073 (dotted) and toly = 10~* (dash-dot).

fluctuations can cause an increase in the copy-numbers of S |, meaning that the production of S,
will be inhibited instead, and leading to a switch in the roles of S| and S,. Consequently, the
solution of the CME develops two peaks that correspond to the two possible scenarios. Reactions
R3 and R4 model the decay of the two competing species.

The corresponding CME was solved by the adaptive wavelet method on the time interval
[0, 500] using db3 wavelets. As initial distribution a “discrete Gaussian”,

p0,x) = y-exp(—(x— ) C(x—p), forall x € Q,

_ (10000 0 )

¢ 0 10000

centered at u = (20, 18) was chosen; the normalization constant y was determined via the condi-
tion X cq, P(0,x) = 1. In this example, the truncated state space €23, 3, was small enough such
that a reference solution could be obtained with the MATLAB routine odel5s. Three different
runs of the adaptive wavelet method using the same parameters but different tolerances were
performed. In the left panel of Figure 5 the error of the adaptive wavelet approximation for each
of the three tolerances is shown. The error was computed in the 1-norm by comparing each of
the approximations with a reference solution obtained using the routine odel5s. The plot reveals
that the error usually lies below the chosen tolerance and thus the method almost always pro-
vides an approximation of the exact solution at the desired accuracy. In the right panel, the time
evolution of the step-size & corresponding to the different tolerances is shown. As expected, the
adaptive method selects larger time steps for low tolerances, while higher tolerances imply the
use of smaller step-sizes. Moreover, small time steps are only required in the stiff transient phase
at the beginning of the time interval, which shows that our adaptive step-size control is clearly
more efficient than time integration with a fixed step-size.
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Figure 5: Left panel (a): Error of the adaptive wavelet approximation of the toggle switch for tol; = 0.1 (square),

tol, = 0.01 (diamond) and tol3 = 0.001 (circle). The error was computed in the 1-norm by comparing each of the
approximations with the reference solution. Right panel (b): Evolution of the step-size h for the toggle switch solved by
the adaptive wavelet method with rol; = 0.1 (square), tol, = 0.01 (diamond) and ro/3 = 0.001 (circle).

4.3. Extended Toggle Switch

As a third more challenging example, we consider another genetic toggle switch, which
consists of two mutually repressing gene products, S| and S, that express two proteins, denoted
by S5 and S 4 respectively. The interactions between these four species (d = 4) are modeled by
the following reaction system:

Ry: *x —> S] ) = C]]/(C12+X%) vV, = (I,O,O,O)T
Ry: % —> Sz ay; = 021 /(6‘22 + xf) vV, = (0, 1,0, O)T
R3 . Sl — % a3 = C3X1 vy = (—1,0, 0, O)T
R4 . S2 — % g4 =  C4X2 V4 = (O, —1, 0, O)T
Rs: §¢ — S§1+83 a5 = C5X] Vs = (O,O,I,O)T
R6 : Sz —> Sz + S4 Qg = CgX2 Ve = (0, 0, 0, l)T
R7: S3 — % a7 = C71X3 v, = (0, 0, -1, O)T
Rg : S4 — x% ag = (CgX4 vg = (0, 0, 0, - l)T

In addition to reactions R, through R4 which have been discussed in the previous subsection,
four more reactions have been added to the model. R; and Rg model the decay of the respective
species, while the expression of proteins is described by reactions Rs and R¢. The parameters for
the reaction channels are

C11 =C1 = 10, Clp =Cpp = 30, C3 =Cq = 0017, Cs =Ce=C7 =Cg = 001,

with the initial distribution being a “discrete Gaussian” with a small variance, centered at u =

(20, 18,22, 5), which closely resembles a delta peak located at y. The number of degrees of

freedom in this example is 220, the state space being 32x32x32x32 (d = 4). The corresponding
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CME was solved by the adaptive wavelet method on the time interval [0, 500], with the method
being configured to use tol = 0.5 in the 1-norm. This value seems to be unreasonably large, but
since the 1-norm scales with the size of the state space, this choice will in fact provide a very
good accuracy. An equally distributed error € with |||, = 0.5 would, for example, correspond to
a maximal error of ||g]|e = 0.5/2%° ~ 4.77 - 107".

The method was configured to keep a minimum of 5000 of the largest coeflicients at the end
of each time step, while the total number of elements that could be used within the algorithm was
not allowed to exceed 6000. Hence, the solution was approximated using only 0.47% of the total
number of 1,048, 576 degrees of freedom. New basis elements were proposed in batches of 250
elements each and the db3 wavelet basis was again chosen to approximate the solution.

The time evolution of the CME solution is shown in Figure 8. As the full distribution is a
four-dimensional object, we only plot the most relevant 2D marginal distributions at different
times. The first two columns depict mesh and contour plots of the marginal distribution of the
gene products S| —S; at different times, while in the third column, a contour plot for the marginal
distribution of the proteins S3 — S4 is shown. Pronounced bi-modality is evident at £ = 500 in
both marginal distributions.

The change in step-size h for the integrator is plotted in panel (a) of Figure 6, and the 1-norm
of the residual is shown in panel (b). The stiffness of the problem is clearly visible in Figure §,
and the evolution of the time step conforms to the expectation that small step-sizes are selected
in the initial phase, while larger ones are possible as the distribution approaches the steady state.
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Figure 6: Left panel (a): Evolution of step-size & for the 4D toggle switch. Middle panel (b): Evolution of the 1-norm
(scaled) of the residual for the same problem. Right panel (c): Number of basis elements used in each step to compute
the approximation.

We remark that by eliminating from the model the reactions involving the proteins S3 and
S4, 1.e., Rs through Rg, we obtain the simplified 2D toggle switch presented in Section 4.2. The
solution of this smaller problem agrees with the marginal distribution in the §| — S, plane of
the 4D model, and as such can be used as a sort of reference solution, because the truncated
state space Q3; 3, of the simplified problem is small enough such that it is possible to compute
a reference solution with the MATLAB routine odel5s. In Figure 7, we use this property to
illustrate the need for higher-order wavelet basis when the number of degrees of freedom is
large. Firstly, the Haar basis is used to compute an approximation using the adaptive wavelet
method for the 4D toggle switch. The marginal distribution in the S| — S, plane is shown at
time ¢ = 500 in the leftmost panel. The middle panel displays the results obtained using the same
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parameters for the solver, but this time employing the db3 wavelet basis. The “reference” solution
computed using MATLAB’s odel5s on the simplified 2D problem is shown in the right panel. It
is immediately clear that for problems of a certain size, the Haar wavelet basis used in [20] is no
longer adequate as the number of basis elements needed would simply be too high. This factor
would then drive the computational cost above reasonable levels. In contrast, the possibility to
use the entire Daubechies wavelet family (which includes Haar) increases the flexibility of the
adaptive wavelet method allowing the efficient numerical treatment of a variety of problems.

32 32 32

32

Figure 7: Comparison between approximations for the 4D toggle switch obtained using Haar basis (a), Daubechies db3
wavelet basis (b) and Matlab’s odel5s on the simplified 2D problem (c)

4.4. Infectious diseases

The SEIR is an epidemic model used to describe the spread of communicable diseases within
a population (see [19] for details). The population is split into four classes (d = 4), namely
individuals susceptible to become infected with the disease (S), exposed individuals (E) that are
infected but not yet contagious, infectious individuals (I) and individuals that have recovered (R),
and in the process acquired immunity to the disease. The sub-populations of the model interact
via the following reaction channels:

Ri: S+1I — E+1 @ = C1X1X3 vi = (-1,1,0,0)7
R2 . E — 1 ay = (X2 vV, = (O, —l, l, O)T
R3 . /I — S a3 = C3X3 vy = (1,0,—1,0)T
Ry : S — % s = C4x va = (-1,0,0,0)7
Rs : E — x s = C5X2 vs = (0,-1,0,0)7
RG . I — R Qg = CeX3 Ve = (0, 0, —1, l)T
R7 : * — S a7 = C7 vV, = (1, O, O, O)T

Reaction R; models the process through which susceptible individuals become infected by
having contact with infectious ones. The infected individuals first enter the latent phase of the
disease becoming members of the E class, and can become infectious themselves after the in-
cubation period via reaction R,. The temporary recovery of infected individuals can occur via
reaction R;. Reactions R4 and Rs describe the death of susceptible and exposed individuals,
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whereas reaction R; represents new arrivals that are prone to becoming infected. Reaction Rg
describes the recovering process of infectious individuals, that also acquire immunity to the dis-
ease. We assume that the inflow of susceptible individuals via reaction Ry is constant and is
independent of the current size of the population. We are interested in the scenario where the
disease starts with only a few infected individuals. This variant of the model is stochastic as the
question whether the disease quickly spreads to a large section of the population or disappears at
some early stage is dependent on the fate of the these first infectious individuals. In our example
the parameters for the reaction channels are

Cl=0.], C2:0.5, C3=], C4=C5=C6=O.01, C7=0.4,

and as initial distribution, a "discrete Gaussian® centered at u = (50, 4, 0, 0) was considered.

Figure 9 shows the time evolution of the probability distribution for our SEIR model. For the
marginal distribution in the S-E plane both contour and mesh plots are shown (left and middle
column, from top to bottom). The rightmost column shows a contour plot for the marginal
distribution in the S-I plane. During the course of the simulation, the marginal distribution in
the S-E plane splits up into two distinct peaks. The peak located at (50, 0) depicts the scenario
in which the first few infectious individuals have either died or recovered before their number
reached a critical mass and therefore the disease extinguished itself after some time. If the
opposite happens, and the infection spreads fast enough during the initial phase, then the system
will eventually reach a state where most of the population is infected, as indicated by the second
peak located at (11, 27). Similar bimodalities appear in the marginal distributions of the S-I plane
(left column) and E-I plane (data not shown).

The fact that the solution is multi-modal and the peaks are located far apart poses no sig-
nificant challenges to the adaptive wavelet method. In the last row of panels from Figure 9, the
non-smooth character of the solution can be clearly observed. At time ¢ = 7 the solution vanishes
close to the S-axis but does not vanish on the axis itself. This local non-smoothness will pose
problems to methods which assume a certain regularity of the solution. Although wavelets are
best suited for the approximation of sufficiently smooth signals, the method is also able to handle
such difficult scenarios.

Between t = 3 and ¢ = 5 the solution profile for SEIR conforms to a rather thin line that is
not parallel to any of the axes. Methods which represent the solution in terms of global tensor
products (e.g., the method from [23]) would need too many degrees of freedom to achieve an
usable accuracy. The adaptive wavelet method suffers from no such drawbacks, because the
elements of the wavelet basis used are local tensor products with small support.

As before, the adaptive wavelet method was used with the db3 wavelet basis to approximate
the solution of the corresponding CME. The choice of wavelet basis was motivated by the desire
to have good compression properties while keeping the support reasonably small. In order to
cover the time interval [0, 7], 122 steps of the algorithm were required. The method was config-
ured to use tol = 0.61 in the 1-norm, and the iteration for solving the linear system was stopped
if this tolerance was met or if the total number of basis elements exceeded 6500. At the end of
each step, only the largest 6000 coefficients were kept which corresponds to 0.57% out of the
total number of 2%° degrees of freedom. New basis elements were added in batches of 250 ele-
ments each and solving the linear system (18) was accomplished via GMRES with restarts and a
tolerance of 5 - le™*.

From a numerical point of view, the biggest limiting factor in computing the solution of the
CME for this and the previous problem is the huge state space with more than 1, 000, 000 states.
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As can be clearly seen in the panels of Figures 8 and 9, most of these states are never populated
throughout the time evolution, which means that the subset of essential states is actually smaller.
However, this information is of little practical use, because we only know which states can be
ignored a posteriori. As the adaptive wavelet method is specifically designed to find the essential
degrees of freedom, it is particularly suited to deal with these type of problems.
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Figure 8: Marginal distribution of the 4D toggle switch model at different times. Surf plot (first column) and contour
plots (second and third columns) of the approximation obtained with the adaptive wavelet method.
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Figure 9: Marginal distributions of the stochastic SEIR model at different times. Surf plot (first column) and contour
plots (second and third columns) of the approximation obtained with the adaptive wavelet method.
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