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A PRIMAL-DUAL FINITE ELEMENT APPROXIMATION

FOR A NONLOCAL MODEL IN PLASTICITY

C. WIENERS∗ AND B. WOHLMUTH†

Abstract. We study the numerical approximation of a static in�nitesimal plasticity model of
kinematic hardening with a nonlocal extension involving the curl of the plastic variable. Here, the
free energy to be minimized is a combination of the elastic energy and an additional term depending
on the curl of the plastic variable. In a �rst step, we introduce the stress as dual variable and
provide an equivalent primal-dual formulation resulting in a local �ow rule. To obtain optimal a
priori estimates, the �nite element spaces have to satisfy a uniform inf-sup condition. Finally, we
show that the associated nonlinear mixed formulation can be solved iteratively by a classical radial
return algorithm. Numerical results illustrate the convergence of the applied discretization and the
solver.
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1. Introduction. The abstract setting for variational inequalities provides a
powerful framework for the analysis of in�nitesimal plasticity and its �nite element
discretization, see [11] and the references therein. In the static case, the elasto-
plastic solution is determined by minimizing a (primal) functional for the displacement
and the plastic variable. Unfortunately for perfect plasticity this functional is not
uniformly convex, and the minimizer exists only in a weak sense. We refer to [28] where
suitable Banach spaces for the displacement and the plastic variable are discussed. On
the other hand, the idealistic model of perfect plasticity does not include hardening
nor size e�ects re�ecting internal length scales. There are di�erent possibilities for
including such e�ects, and in most cases this leads to a more regular model with
an associated uniformly convex primal functional, and thus the theory of standard
Sobolev spaces can be applied.

Here, we consider a class of nonlocal models which can be obtained by an extension
of the classical plasticity model with kinematic hardening. More precisely, we study a
subclass of gradient plasticity, where the corresponding elasto-plastic energy includes
only the curl of the plastic strain, see, e.g., [7, 8, 9, 13, 14, 26, 27] for the analytical,
mechanical, and physical properties of such models. In [17, 18] it is shown that a
representative nonlocal model of such type can also be transformed into a variational
inequality.

The �nite element analysis for variational inequalities in plasticity with kinematic
hardening yields a priori estimates involving the best approximation error and addi-
tional nonconformity terms, see [1, 3]. Here, we extend these results to our non-local
formulation and work with curl-conforming �nite elements for the plastic variable. A
di�erent approach for a discontinuous Galerkin formulation of a gradient plasticity
model with full gradient terms is presented in [5, 6, 20], and in [19] a discontinu-
ous Galerkin approximation of a model containing the curl of the plastic strain is
considered.

Following [11], we consider plasticity models which are completely determined by
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the free energy W (u,p) and a dissipation potential j(p), where u denotes the dis-
placement and p the plastic variable. In the static case, for a given load functional `(·)
the elasto-plastic solution (u,p) is determined as minimizer of the primal functional

J(u,p) = W (u,p) + j(p)− `(u)
subject to essential boundary conditions. We assume, see, e.g., [7, 17, 20], that the
free energy can be decomposed in an additive way into

W (u,p) = Welastic(εe) +Wplastic(p) ,
where εe = ε(u) − sym dev p is the elastic strain. Moreover, for standard materials
the plastic evolution is driven by the conjugate variables

σ = ∂Welastic(εe) , (1.1a)

β = ∂Wplastic(p) . (1.1b)

In the in�nitesimal case, linearized constitutive relations hold, i.e., σ = Cεe and
β = Dp, and we assume that the energy contributions are uniformly convex in εe

and p, respectively. Then, the free energy has a primal, a dual, and a primal-dual
representation:

W (u,p) = 〈Cεe, εe〉+ 〈Dp,p〉 = 〈σ, C−1σ〉+ 〈β, D−1β〉 = 〈σ, εe〉+ 〈β,p〉 .
This allows us to reformulate the primal minimization problem as a dual minimization
problem or equivalently as a mixed saddle point problem in terms of the primal
and dual variables. For standard materials in in�nitesimal plasticity, the analysis of
the primal problem determining the displacement and the plastic variable (u,p) is
well-established [11, Chap. 7]. The dual problem determining the generalized stress
(σ,β) can be analyzed independently, see, e.g., [11, Chap. 8]. For local plasticity, the
equivalence of both approaches is shown in [11, Th. 8.3]. A mixed approximation is
considered in [21].

Here, we consider a representative model in gradient plasticity, where Wplastic(p)
depends on curlp and note that the back stress can also be represented in L2. This
observation gives rise to a local �ow rule for the non-local model as it is the case for
local plasticity.

The rest of this paper is organized as follows: In Section 2, the notation is intro-
duced and di�erent problem formulations are stated. For the numerical simulation,
we propose in Section 3 a mixed discretization scheme which approximates the primal
and the dual solution. In Section 4, we provide a priori estimates. To obtain order h
bounds for the discretization error in the stress and the plastic variable, a uniform inf-
sup condition has to be satis�ed or alternatively an order h2 best approximation error
in the L2-norm has to hold. Section 5 is devoted to the numerical solver. The mixed
formulation is of special interest for the construction of a locally de�ned semi-smooth
Newton which turns out to be equivalent to the classical radial return mapping. Fi-
nally, numerical results are presented in Section 6 illustrating the performance of the
algorithm.

2. A model for in�nitesimal nonlocal plasticity with hardening. Let the
reference con�guration Ω be a bounded Lipschitz domain in R3, and let ΓD ∪ ΓN =
∂Ω be a non-overlapping decomposition of the boundary, where we assume that ΓD
has a positive 2-d measure. For simplicity of notation, we only consider the case
of homogeneous Dirichlet boundary conditions. We de�ne the spaces V = {v ∈
H1(Ω,R3) : v|ΓD

= 0} for the displacements, S = L2(Ω,Sym(3)) for the stresses
where Sym(3) ⊂ R3×3 denotes the set of symmetric tensors, and the space Q = {q ∈
L2(Ω,R3×3) : curl q ∈ L2(Ω,R3×3)} for the plastic variables. For tensors q = (qij),
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we set

curl q =

 ∂2q13 − ∂3q12 ∂3q11 − ∂1q13 ∂1q12 − ∂2q11

∂2q23 − ∂3q22 ∂3q21 − ∂1q23 ∂1q22 − ∂2q21

∂2q33 − ∂3q32 ∂3q31 − ∂1q33 ∂1q32 − ∂2q31

 ,

and we use the weighted norms

‖v‖2V =
∫

Ω

ε(v) : C : ε(v) dx , v ∈ V ,

‖σ‖2S =
∫

Ω

σ : C−1 : σ dx , σ ∈ S ,

‖q‖2Q =
∫

Ω

q : H : q dx+
∫

Ω

curl q : L : curl q dx , q ∈ Q .

Here, C : Sym(3) −→ Sym(3) de�ned by C : ε = 2µ ε + λ trace(ε)I is the isotropic
elasticity tensor depending on the Lamé constants λ, µ > 0, H : q = H0q measures
the kinematic hardening, where H0 > 0 is the kinematic hardening modulus, and L :
curl q = µL2

0 curl q describes the nonlocal energy contribution. Here L0 > 0 is a length
scale parameter. The linearized strain tensor is denoted by ε(v) = sym(Dv) with
sym(q) = 1

2 (q + qT ). Finally, the deviatoric part is given by dev ε = ε− 1
3 trace(ε)I.

Note that ‖ · ‖V is a norm on V due to Korn's inequality. We use ‖ · ‖s,ω and
(·, ·)s,ω for the norm and the inner product inHs(ω,R3×3), ω ⊂ Ω, s ≥ 0, respectively,
and we drop the index ω in the case that ω = Ω. The inner product in Q is denoted
by (·, ·)Q, and Q′ stands for the dual space of Q. Moreover 0 < c,C <∞ are generic
constants possibly depending on the material parameters but not on the mesh size of
the discretization.

2.1. The free energy and the primal problem. In our model, we consider
the free energy given by

W (u,p) = Welastic(εe) +Wplastic(p) =
1
2

∫
Ω

εe : C : εe dx+
1
2
‖p‖2Q ,

where εe = ε(u) − εp is the elastic strain and εp = sym devp is the plastic strain.
The plastic strain εp is in the space E = {η ∈ L2(Ω,Sym(3)) : traceη = 0}. In E,
we use the weighted norm ‖η‖2E = (H : η,η)0. The dual space of E will be denoted
by B, i.e., B = {δ ∈ L2(Ω,Sym(3)) : trace δ = 0} = E′. In B, we use the weighted
norm ‖δ‖2B = (H−1 : δ, δ).

The free energy de�nes the conjugate variables σ = Cεe ∈ S and β = Dp ∈ Q′.
Here the operator C : L2(Ω,Sym(3)) −→ S is de�ned locally by σ = C : εe, and
D : Q −→ Q′ is the non-local duality mapping de�ned by 〈Dp, q〉 = (p, q)Q for all
q ∈ Q.

We start with the primal formulation in the space Y = V ×Q with norm ‖y‖2Y =
‖v‖2V + ‖q‖2Q for y = (v, q) ∈ Y and consider on Y × Y the bilinear form

a(y, ỹ) =
∫

Ω

(
ε(v)− sym dev q

)
: C :

(
ε(ṽ)− sym dev q̃

)
dx+ (q, q̃)Q

and the convex functional

j(q) =
∫

Ω

K0 | sym dev q| dx , q ∈ L2(Ω,R3×3) ,

where K0 > 0 is the yield stress and |q| = √q : q.
Depending on a body force density b ∈ L2(Ω,R3) and a traction force density

tN ∈ L2(ΓN ,R3), we de�ne the load functional ` ∈ V ′ by

`(v) =
∫

Ω

b · v dx+
∫

ΓN

tN · v da , v ∈ V .
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Lemma 2.1. A unique minimizer z = (u,p) ∈ Y of

J(z) =
1
2
a
(
z, z

)
+ j(p)− `(u) (2.1)

exists. The minimizer is uniquely characterized by the variational inequality

a
(
z,y − z

)
+ j(q)− j(p) ≥ `(v − u) , y = (v, q) ∈ Y . (2.2)

Proof. Obviously, all involved functionals are continuous. Moreover, j(·) is con-
vex. Then Lemma 2.1 results from [11, Th. 6.6] provided the bilinear form a(·, ·) is
Y -elliptic. Observing that C−1 sym dev q = 1/(2µ) sym dev q and | sym dev q| ≤ |q|,
we �nd for y ∈ Y and s > 1

a(y,y) = ‖C : ε(v)− 2µ sym dev q‖2S + ‖q‖2Q

≥
(

1− 1
s

)
‖C : ε(v)‖2S +

(
1− s

)
‖2µ sym dev q‖2S + ‖q‖2Q

≥ s− 1
s
‖v‖2V −

2µ(s− 1)
H0

‖q‖2Q + ‖q‖2Q

≥ min
{s− 1

s
, 1− 2µ(s− 1)

H0

}
‖y‖2Y .

The lower bound holds for all s > 1 yielding the ellipticity constant

c0 = max
s>1

min
{s− 1

s
, 1− 2µ(s− 1)

H0

}
=

H0

µ+H0 +
√
µ2 + 2µH0

. (2.3)

2.2. The primal-dual problem. The primal solution (u,p) de�nes the plastic
strain εp = sym dev p and and the conjugated variables σ = C : (ε(u) − εp) and β.
Here, the plastic variable p ∈ Q and the conjugate variable β ∈ Q′ can be identi�ed
by the Riesz representation theorem. Testing the variational inequality (2.2) with
y = (u± v,p) and y = (u, q) results in a weak equilibrium equation∫

Ω

σ : ε(v) dx = `(v) , v ∈ V , (2.4a)

and the dissipation inequality for the plastic variable

j(q) ≥ j(p) + (devσ, q − p)0 − (p, q − p)Q , q ∈ Q . (2.4b)

The following lemma shows that the back stress is more regular and lives in B ⊂ Q′.
Lemma 2.2. Let (u,p) ∈ V ×Q be the solution of (2.2). Then, there exists a

unique β ∈ B such that

(β, q)0 = (p, q)Q, q ∈ Q . (2.5)

Proof. Testing (2.4b) with p ± p yields 0 = j(p) − (devσ,p)0 + (p,p)Q. Using
the boundedness of j(·) in E, we �nd in terms of (2.4b)

|(p, q)Q| ≤ j(q) + |(devσ, q)| ≤ C(u,p) ‖ sym dev q‖E , q ∈ Q .

Thus the linear functional (p, ·)Q ∈ Q′ is bounded in E. Noting that Q ∩E is dense
in E and that (p, q)Q = 0 for sym dev q = 0, there exists a unique β ∈ B such that
(2.5) holds.
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The higher regularity of β in combination with Lemma 2.1 yields the existence
of a unique solution (u,p,β) ∈ V ×Q×B of the primal-dual problem(

σ, ε(v)
)

0
= `(v) , v ∈ V , (2.6a)

(β, q)0 = (p, q)Q , q ∈ Q , (2.6b)

j(η) ≥ j(εp) + (devσ − β,η − εp)0 , η ∈ E . (2.6c)

Moreover the dissipation inequality (2.6c) is equivalent to the local �ow rule

εp = γ
devσ − β
|devσ − β|

(2.7)

together with the KKT conditions
|devσ − β| ≤ K0 , γ ≥ 0 , γ (|devσ − β| −K0) = 0 , (2.8)

see, e.g., [18, Sect. 2.3].
Remark 2.3. The higher regularity of β implies an additional regularity on p,

i.e., curl curlp ∈ L2(Ω,R3×3) and β = H0p+ L0 curl curlp, see also [7, 17, 18], and
thus the standard in�nitesimal model of kinematic hardening is recovered in the limit
L0 tends to zero.

3. A �nite element approximation of the primal-dual problem. In this
section, we analyze the discretization error of the mixed problem. Associated with
Ω is a shape regular family {Th}h of triangulations, the elements of which are a�ne
equivalent tetrahedra or hexahedra. Let V h×Qh ⊂ V ×Q be a low order conforming
�nite element space for the primal solution with order h best approximation properties
with respect to the ‖·‖Y norm. For the numerical simulation of models with curl-terms
it is appropriate to use Nédélec elements. These types of elements are curl-conforming
and well-established for the numerical approximation of Maxwell's equations [12, 16].
The plastic strain will be approximated in Eh ⊂ E. Here Eh stands for the space of
symmetric trace free element-wise constant �nite elements, and we denote by Πh the
L2-projection onto Eh.

Our discrete primal-dual problem is then equivalent to a discrete primal problem
de�ned by a mesh-dependent free energy. Introducing the mesh-dependent bilinear
form on Y h = V h ×Qh

ah(yh, ỹh) =
(
ε(vh)−Πh sym dev qh,C :

(
ε(ṽh)−Πh sym dev q̃h

))
0

+ (qh, q̃h)Q
and the mesh-dependent convex functional jh(qh) = j(Πhqh), we can de�ne the
discrete primal functional

Jh(yh) =
1
2
ah(yh,yh) + jh(qh)− `(vh) . (3.1)

Using ‖Πhq‖0 ≤ ‖qh‖0, we �nd that the bilinear form ah(·, ·) is also elliptic with
the same ellipticity constant as a(·, ·). This observation guarantees that the solution
(uh,ph) ∈ V h ×Qh of the discrete equilibrium equation with σh = C : (ε(uh)− εph)
and εph = Πh sym dev ph(
σh, ε(vh)

)
0

= `(vh) , vh ∈ V h , (3.2a)

and the dissipation inequality for the plastic variable

jh(qh) ≥ jh(ph) +
(

devσh,Πh sym dev(qh − ph)
)

0
− (ph, qh − ph)Q , qh ∈ Qh

(3.2b)

is the unique minimizer of the discrete primal functional Jh(·) in V h ×Qh.
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As in the continuous setting, we can de�ne a discrete back stress. To do so, we in-
troduceBh = Eh, and we de�neB

0
h = E0

h = {Πh sym dev qh : qh ∈ Qh} ⊂ Eh. From
(3.2b), we observe that (ph, qh)Q = 0 for all qh ∈ Q

0
h = {qh ∈ Qh : Πh sym dev qh =

0}, and thus there exists a unique solution (uh,ph,βh) ∈ V h × Qh × B
0
h of the

discrete primal-dual problem(
σh, ε(vh)

)
0

= `(vh) , vh ∈ V h , (3.3a)

(βh, qh)0 = (ph, qh)Q , qh ∈ Qh , (3.3b)

j(ηh) ≥ j(εph) + (devσh − βh,ηh − ε
p
h)0 , ηh ∈ E

0
h . (3.3c)

Remark 3.1. In the case Eh = E0
h, we can use locally constant basis functions

in the discrete dissipation inequality (3.3c) resulting in the following point-wise �ow
rule

εph = γh
Πh devσh − βh
|Πh devσh − βh|

(3.4)

with the return parameter γh = |εph| characterized by the local KKT conditions

|Πh devσh − βh| ≤ K0 , γh ≥ 0 , γh (|Πh devσh − βh| −K0) = 0 . (3.5)

Thus, the classical radial return algorithm can be applied.

It is easy to see that Bh = B0
h and thus Eh = E0

h if the pair (Qh,Bh) satis�es
a uniform inf-sup stability, i.e., there exists a constant cstab > 0 independent of the
mesh size such that

sup
qh∈Qh,qh 6=0

(δh, qh)0

‖qh‖Q
≥ cstab ‖δh‖Q′ , δh ∈ Bh . (3.6)

However, the uniform inf-sup stability of the pair (Qh,Bh) is not a necessary condition
for having Bh = B0

h. For each given Qh, it is easy to construct an enriched space in
terms of locally de�ned element bubbles bT with bT ≥ 0, supp bT = T , h‖∇bT ‖0,T ≤
C ‖bT ‖0,T . Adding

∏
T∈Th

span{bTεi : i = 1, ..., 5}, where ε1, ..., ε5 is an orthogonal
basis for sl(3)∩Sym(3), to Qh, it is easy to see that the enriched space satis�es Bh =
B0
h. Moreover, these additional degrees of freedom can easily be eliminated locally,

and we have to solve a non-linear system of the original dimension and complexity.
Thus from now on, we always assume without loss of generality that Bh = B0

h.

4. A priori discretization error estimates for the primal-dual problem.

In this section, we provide a priori estimates for the primal-dual problem. As we
will see, order h results can be only obtained under some additional assumptions.
Here, we discuss two cases separately. The case that Qh satis�es an order h2 best
approximation property in the L2-norm and the case that the pair (Qh,Bh) satis�es
a uniform inf-sup stability.

4.1. Error estimates for the primal solutions. The following theorem shows
that the error in the stress and the plastic variable can be bounded by the best
approximation error and the in�uence of the error in the back stress on the plastic
variable.

Theorem 4.1. There exists a constant C <∞ independent of the mesh size but
possibly depending on the material parameters such that

‖σ − σh‖2S + ‖p− ph‖2Q ≤ C
(

inf
vh∈V h

‖u− vh‖2V + inf
δh∈Bh

‖β − δh‖2B

+ inf
qh∈Qh

(
‖p− qh‖2Q + |(β − βh, qh − p)0|

))
.
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Proof. We start with an upper bound for the error in the stress. Using the
Galerkin orthogonality

(
σ − σh, ε(vh)

)
0

= 0 for vh ∈ V h, we �nd

‖σ − σh‖2S =
(
σ − σh, ε(u− uh)

)
0
− (σ − σh, εp − εph)0

≤ ‖σ − σh‖S inf
vh∈V h

‖u− vh‖V + (devσ − devσh, ε
p
h − ε

p)0 . (4.1)

To bound the second term on the right side, we set η = εph in (2.6c) and ηh = Πhε
p

in (3.3c). Adding both inequalities and using j(Πhε
p) ≤ j(εp), we get

(devσ, εph − ε
p)0 + (devσh,Πhε

p − εph)0 ≤ (β − βh, ε
p
h − ε

p)0 . (4.2)

In a second step, we consider the error in the plastic variable. Exploiting (2.6b) and
(3.3b), we obtain for all qh ∈ Qh

‖p− ph‖2Q ≤ ‖p− ph‖Q‖p− qh‖Q + (β − βh, qh − ph)0 .

Combing the second term on the right side of (4.1) with the second term on the right
side of (4.1), we �nd in terms of (4.2)

(devσ − devσh, ε
p
h − ε

p)0 + (β − βh, qh − ph)0

≤ (devσh,p−Πhp)0 + (β − βh, qh − p)0 + (β,Πhph − ph)0 .
The �rst term is bounded for all qh ∈ Qh by

(devσh,p−Πhp)0 ≤ 2 ‖ dev(σ − σh)‖B‖εp −Πhε
p‖E ≤ 4 ‖σ − σh‖B‖p− qh‖Q ,

and for the last term, we obtain for all δh ∈ Bh

(β,Πhph − ph)0 ≤ 2 ‖β − δh‖B‖p− ph‖E ≤ 2 ‖β − δh‖B‖p− ph‖Q .
In a next step, we add (4.1) and (4.1) and use the last inequality to get
‖σ − σh‖2S + ‖p− ph‖2Q ≤ ‖σ − σh‖S inf

vh∈V h

‖u− vh‖V

+ 4 ‖σ − σh‖B inf
qh∈Qh

‖p− qh‖Q

+ 2 ‖p− ph‖Q inf
δh∈Bh

‖β − δh‖B

+ inf
qh∈Qh

(
‖p− ph‖Q‖p− qh‖Q + (β − βh, qh − p)0

)
.

Using ‖σ − σh‖B ≤ C‖σ − σh‖S and Young's inequality, we �nd the assertion.
Remark 4.2. The proof of Theorem 4.1 shows that the only term involving a

constant depending on the parameter H0 stems from (devσh,p−Πhp)0. In the case
of lowest order elements in V h on tetrahedral meshes, we have devσh = Πh devσh.
As a consequence, we obtain in Theorem 4.1 a parameter independent bound.

If we consider the non-standard term (β−βh, qh−p)0 in more detail, we �nd in
terms of the triangle inequality, the KKT conditions (2.8) and (3.5)

(β − βh, qh − p)0 ≤ 2
(
K0

√
|Ω|+ ‖σ − σh‖0

)
‖qh − p‖0 . (4.3)

Observing ‖u−uh‖V ≤ ‖σ−σh‖S +C‖p−ph‖Q and using the best approximation
properties of the spaces V h, Qh and Bh, we get the a priori estimate in terms of
Theorem 4.1 and (4.3).

Corollary 4.3. Under the regularity assumption (u,p,β) ∈ H3/2(Ω,R3) ×
H3/2(Ω,R3×3) × H1/2(Ω,R3×3) on the solution, we �nd the sub-optimal a priori
estimate

‖u− uh‖V + ‖p− ph‖Q ≤ C
√
h
(
‖u‖3/2 + ‖p‖3/2 + ‖β‖1/2 + 1

)
.

We remark that in contrast to Theorem 4.1, the constant in the upper bound
depends for all type of meshes on the parameter and degenerates if H0 tends to zero.
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4.2. An order h a priori error estimate. In this subsection, we discuss two
cases such that an order h a priori estimate can be established.

Case 1: Order h approximation property of Qh in a mesh dependent norm

inf
qh∈Qh

(
‖q − qh‖Q + h−1‖q − qh‖0

)
≤ C h ‖q‖2, q ∈ H2(Ω,R3×3) .

Case 2: Uniform inf-sup stability of the pair (Qh,Bh), i.e., (3.6) is satis�ed with a
mesh independent constant.

Before we are going to establish our main result, we discuss brie�y two examples
of �nite element spaces satisfying Case 1 or Case 2.

Unfortunately, Case 1 does not hold for lowest order Nédélec elements. However
Case 1 is satis�ed for second order Nédélec elements, cf. [15, Th. 5.41], or for the
lowest order curl conforming elements of the second type [15, Th. 8.15].

As example for Case 2, we start from the standard lowest order Nédélec �nite
element space QNE

h ⊂ Q, see, e.g., [15, Chap. 5] and use suitable bubble functions
for an enrichment. To obtain a uniformly stable pair, it is not su�cient to guarantee
Πh sym devQh = Bh, and we have also to add face bubbles. Let Fh be the set of
faces of the triangulation. We denote by bf ≥ 0 face bubbles satisfying

‖∇bf‖0 ≤ C h−1/2‖bf‖0,f supp bf = T ∪ T ′, f = ∂T ∩ ∂T ′ .
In terms of these face and the element bubbles, we de�ne

Qh = QNE
h + span{bTεi : T ∈ Th, i = 1, ..., 5}+ span{∇(bfej) : f ∈ Fh, j = 1, 2, 3} ,

where e1, e2, e3 is the Euclidean basis in R3.

To verify the inf-sup condition (3.6), we construct a Fortin operator Ph : Q −→ Qh

satisfying

(Phq − q, δh)0 = 0 , q ∈ Q, δh ∈ Bh , (4.4a)

‖Phq‖Q ≤ C ‖q‖Q , q ∈ Q . (4.4b)

Note that H1(Ω,R3×3) is dense in Q, and thus it is su�cient to construct the
Fortin operator on H1(Ω,R3×3) [2, Prop. 2.8]. The construction of Ph is based on a
Helmholtz-type decomposition of q ∈ H1(Ω,R3×3). De�ne w ∈ H1

0 (Ω,R3) by
(∇w,∇θ)0 = (q,∇θ)0 , θ ∈ H1

0 (Ω,R3) ,
and set ψ = q−∇w. By construction, this gives divψ = 0, ‖∇w‖0+‖ψ‖Q ≤ 2 ‖q‖Q.
Let us assume that on Ω it holds

‖q‖1 ≤ C
(
‖q‖+ ‖ curl q‖+ ‖ div q‖

)
, q ∈ H1(Ω,R3×3) , (4.5)

see, e.g., [15, Th. 3.50 and Cor. 3.51]. Then ψ ∈ H1(Ω,R3×3).
Now, choose a suitable approximationwh in theH

1 conforming lowest order �nite
element space∑

f∈F

‖w −wh‖20,f ≤ C h ‖∇w‖20 (4.6)

[24], and choose a suitable approximation ψh ∈ Q
NE
h such that

‖ψ −ψh‖0 ≤ C h ‖ψ‖1 . (4.7)

[22, 23]. Observing that ∇wh ∈ Qh, we de�ne

Phq = ∇wh +ψh −
∑
f∈Fh

∇(bfaf )−
∑
T∈Th

bTaT ∈ Qh ,

where af =
∑3
j=1 af,jej and aT =

∑5
i=1 aT,iεi with coe�cients given by

af,j =
(w −wh, ej)0,f

(bfej , ej)0,f
, aT,i =

(ψ −ψh, εi)0,T

(bTεi, εi)0,T
. (4.8)

Exploiting the orthogonality (εi, εj) = 0 for i 6= j, we �nd

(ψh −ψ, εi)0,T = aT,i(bTεi, εi)0,T = (bTaT , εi)0,T
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and using integration by parts and the fact that εi is constant on T , we get

(∇wh −∇w, εi)0,T = (wh −w, εinT )0,∂T

=
∑
f

(bfaf , εinT )0,∂T =
∑
f

(∇(bfaf ), εi)0,T ,

where nT denotes the outer normal vector on ∂T . To verify (4.4a), we know that each
δh ∈ Bh can be written as δh =

∑
T,i δT,iχTεi ∈ Bh, where χT is the characteristic

function on T . Thus it is su�cient to consider

(Phq − q, εi)0,T =
(
∇wh −∇w −

∑
f∈Fh

∇(bfaf ), εi
)

0,T
+ (ψh −ψ − bTaT , εi)0,T = 0 .

Next, we show (4.4b). Using the scaling properties of the bubble functions, the
approximation properties (4.6), (4.7) and the de�nition of the coe�cients (4.8), we
get in terms of (4.5)

‖
∑
T∈Th

bTaT ‖2Q ≤ C
∑
T∈Th

|aT |2‖∇bT ‖20,T ≤ C h−2
∑
T∈Th

|aT |2‖bT ‖20,T

≤ C h−2
∑
T∈Th

‖ψ −ψh‖20,T ≤ C ‖ψ‖21 ≤ C ‖ψ‖2Q ,

‖
∑
f∈Fh

∇(bfaf )‖20 ≤ C
∑
f∈Fh

|af |2‖∇bf‖20 ≤ C h−1
∑
f∈Fh

|af |2‖bf‖20,f

≤ C h−1
∑
f∈Fh

‖w −wh‖20,f ≤ C ‖∇w‖20 ,

(where | · | is the Euclidean norm), which �nally gives

‖Phq‖Q ≤ ‖∇wh‖E + ‖
∑
f∈Fh

∇(bfaf )‖E + ‖ψh‖Q + ‖
∑
T∈Th

bTaTεi‖Q ≤ C ‖q‖Q .

Theorem 4.4. Under the assumption that Case 1 or Case 2 hold and that the
solution is smooth enough, we �nd

‖u− uh‖V + ‖p− ph‖Q = O(h) .
Moreover, in Case 2 we also �nd ‖β − βh‖Q′ = O(h).

Proof. The Case 1 follows directly from Theorem 4.1 and (4.3), and we have
to consider only Case 2 in more detail. In Case 2, we use (β − βh, qh − p)0 ≤
‖β − βh‖Q′‖p − qh‖Q. In a next step, we bound the error in ‖β − βh‖Q′ by the
primal error and a best approximation result yielding in terms of (3.6)

‖β − βh‖Q′ ≤ ‖β −Πhβ‖Q′ + c−1
stab

sup
qh∈Qh,qh 6=0

(Πhβ − βh, qh)0

‖qh‖Q

≤ (1 + c−1
stab

) ‖β −Πhβ‖Q′ + c−1
stab

sup
qh∈Qh,qh 6=0

(β − βh, qh)0

‖qh‖Q
≤ O(h) + c−1

stab
‖p− ph‖Q .

5. A generalized Newton method for the mixed �nite element approx-

imation. In the primal-dual formulation the dissipation inequality (3.3c) is a local
equation which can be directly evaluated with a standard return mapping algorithm,
i.e., we have a nonlinear response function for the plastic strain depending on the trial
stress. This observation can be used to de�ne an e�cient nonlinear iterative solver.

As it is well known, the classical radial return algorithm can be interpreted within
the abstract framework of generalized Newton methods. More precisely, we use a
semi-smooth Newton method to solve numerically the variational inequality. Local
variational inequalities can be easily rewritten as non-linear equality constraints in
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terms of NCP-functions. We refer to [4] for a general construction and analysis and
to [10] for some stabilization techniques.

We generalize the classical radial return algorithm for local plasticity to our non-
local situation, see, e.g., [25, Chap. 3.3.1]. Introducing the deviatoric trial stress
θh = 2µΠh dev ε(uh)− βh, we de�ne locally on each cell

Rh(θh) = αhθh , αh =
max{0, |θh| −K0}

2µ|θh|
.

Lemma 5.1. Let (uh,βh) ∈ V h × Bh be given. Then, the discrete dissipation
inequality

j(ηh) ≥ j(εph) + (devσh − βh,ηh − ε
p
h)0 , ηh ∈ Eh .

is satis�ed for the plastic strain εph = Rh(θh) and the stress σh = C : (ε(uh)− εph).
Proof. For convenience of the reader, we recall the basic steps of the proof. We

�nd |θh| −max{0, |θh| −K0} ≤ K0 and thus(
θh − 2µRh(θh)

)
: ηh ≤ K0 |ηh| , ηh ∈ Eh.

Then, the identity K0 |Rh(θh)| −
(
θh − 2µRh(θh)

)
: Rh(θh) = 0 and dev εph = εph

yields

K0 |ηh| ≥ K0 |Rh(θh)|+ (θh − 2µRh(θh)) : (ηh −Rh(θh))
= K0 |εph|+ (devσh − βh) : (ηh − ε

p
h) , ηh ∈ Eh .

Inserting the radial return in (3.3c) rewrites (3.3) as a nonlinear variational equal-
ity: �nd (uh,ph,βh) ∈ V h ×Qh ×Bh such that

(
C : ε(uh)− 2µRh(2µdev ε(uh)− βh), ε(vh)

)
0

= `(vh) , vh ∈ V h , (5.1a)

(βh, qh)0 = (ph, qh)Q , qh ∈ Qh , (5.1b)(
Rh(2µdev ε(uh)− βh), δh

)
0

= (ph, δh)0 , δh ∈ Bh . (5.1c)

This de�nes εph = Rh(2µdev ε(uh)− βh) = Πh sym dev ph.
For a consistent linearization, we select a realization Rh(θh) ∈ ∂Rh(θh). For

|θh| 6= 0 the sub-di�erential is given by

∂Rh(θh) =
∂
(

max{0, |θh| −K0}
)

2µ
θh
|θh|
⊗ θh
|θh|

+ αh

(
id− θh
|θh|
⊗ θh
|θh|

)
.

The mixed system (5.1) is solved with a generalized Newton method (see Algo-
rithm 1). The method is well de�ned since the Newton linearization is always regular.

Lemma 5.2. A unique solution of the linearized problem in step S2) of Algo-
rithm 1 exists.

Proof. We have to show that the equation Bkh[(vh, qh, δh), (·, ·, ·)] = 0 only has
the trivial solution. For all rh ∈ Qh holds

0 = Bkh[(vh, qh, δh), (0, rh,0)] = (qh, rh)Q − (δh, rh)0 . (5.2)

Next, we observe on all elements where γkh = max{0, |θkh| −K0} > 0

δh : Rkh : δh =
1

2µ
(θkh : δh)2

|θkh|2
+

γkh
2µ|θkh|

(
δh : δh −

(θkh : δh)2

|θkh|2
)

=
γkh

2µ|θkh|
δh : δh +

K0

2µ
(θkh : δh)2

|θkh|2
≥ 0
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S0) Choose start iterates (u0
h,p

0
h,β

0
h) ∈ V h ×Qh ×Bh. Set k = 0.

S1) Compute the deviatoric trial stress θk = 2µdev ε(ukh)− βkh and the residual

F kh [vh, qh, δh] =
(
C : ε(ukh)0 − 2µRh(θk), ε(vh)

)
0
− `(vh)

+(pkh, qh)Q − (βkh, qh)0

+
(
Rh(θk)− pkh, δh

)
0
.

If the residual norm ρk = ‖F kh ‖ is small enough, STOP.

S2) Compute the solution (∆ukh,∆p
k
h,∆β

k
h) ∈ V h×Qh×Bh of the linear problem

Bkh[(∆ukh,∆p
k
h,∆β

k
h), (vh, qh, δh)] = −F kh [vh, qh, δh]

for (vh, qh, δh) ∈ V h×Qh×Bh, where the symmetric bilinear form is given
by

Bkh[(∆uh,∆ph,∆βh), (vh, qh, δh)] =
(
C : ε(∆uh), ε(vh)

)
0

−4µ2
(
Rkh : dev ε(∆uh),dev ε(vh)

)
0

+ 2µ
(
Rkh : ∆βh,dev ε(vh)

)
0

+(∆ph, qh)Q − (∆βh, qh)0

+2µ
(
Rkh : dev ε(∆uh), δh

)
0
−
(
∆ph, δh

)
0
−
(
Rkh : ∆βh, δh

)
0

with Rkh =
1

2µ
θkh

|θkh|
⊗ θkh

|θkh|
+ αh

(
id− θ

k
h

|θkh|
⊗ θkh

|θkh|

)
if αh = max{0,|θk

h|−K0}
2µ|θk

h|
> 0

and Rkh = 0 else;

S3) Choose a suitable damping parameter sk ∈ (0, 1] and set

(uk+1
h ,pk+1

h ,βk+1
h ) = (ukh,p

k
h,β

k
h) + sk(∆ukh,∆p

k
h,∆β

k
h) .

Set k := k + 1 and go to S1).

Algorithm 1: Generalized Newton algorithm for the solution of the primal-dual sys-
tem (5.1).

and

4µ2 dev ε(vh) : Rkh : dev ε(vh)

= 2µ
(θkh : ε(vh))2

|θkh|2
+

2µγkh
|θkh|

(
|dev ε(vh)|2 − (θkh : ε(vh))2

|θkh|2
)

≤ 2µ
(θkh : ε(vh))2

|θkh|2
+ 2µ

(
|ε(vh)|2 − (θkh : ε(vh))2

|θkh|2
)

≤ ε(vh) : C : ε(vh) .
Then,

0 = Bkh[(vh, qh, δh), (vh, qh,−δh)]
=

(
C : ε(vh), ε(vh)

)
0
− 4µ2

(
Rkh : dev ε(vh),dev ε(vh)

)
0

+ (qh, qh)Q +
(
Rkh : δh, δh

)
0

≥ (qh, qh)Q
gives qh = 0, and (5.2) yields δh = 0 due to our assumption B0

h = Bh. Now, testing
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with (0,0,dev ε(vh)) gives dev ε(vh) = 0 and �nally testing with (vh,0,0) yields
vh = 0.

The Lemma guarantees that our solver is well-de�ned and�since the nonlinearity
in (5.1) is strongly semi-smooth�local super-linear convergence is guaranteed.

Remark 5.3. We note that there exists always a solution (∆ukh,∆p
k
h,∆β

k
h) in

S2) assuming that our start iterate satis�es (β0
h, qh)0 = (p0

h, qh)Q for all qh ∈ Qh.

6. Numerical example. We apply our solver for a test con�guration de�ned
in [18], cf. Fig. 6.1. In our example we use the Lamé parameters µ = 80193.80
[N/mm2], λ = 110743.82 [N/mm2], the yield stress K0 = 367.42 [N/mm2], a very
small hardening modulus H0 = 0.0001µ and the length scale parameter L0 = 0.1. The
bottom of the con�guration is �xed (homogeneous Dirichlet boundary conditions), on
the top a traction load of 70 [N/mm2] is applied.

The computation is realized in the parallel �nite element code M++ [29]. For
simplicity, we use standard �nite element spaces on hexahedral meshes: trilinear
elements V h for the displacements, lowest order hexahedral Nédélec elements Qh for
the plastic variable, and element-wise constant tensors Bh for the back stress. In
contrast to our theoretical results, we do not enrich our space. In our example we
observe that the bilinear form Bh[·, ·] is regular which holds if and only if B0

h 6= Bh.
The linearized problems are solved with the BiCGStab method. As precondi-

tioner, we apply a fully parallel multigrid method using overlapping block Gauÿ-Seidel
smoothing and exact coarse problem solver, cf. [30] for details on the parallel data
structure and the solution method. In order to obtain a robust method, very large
blocks in the smoother and multiple smoothing is used, so that in all steps and on
all levels less than 10 BiCGStab iterations are su�cient to reduce the residual norm
by the factor 10−6. The semi-smooth Newton method show super-linear convergence
(see Tab. 6.1). However, our numerical results indicate a linear dependency on the
re�nement level.

Fig. 6.1. Final norm distribution of the stress σh and the plastic variable ph. On the left a
2D cut is shown whereas on the right the 3D solution is visualized.

The numerical results in Tab. 6.2 show the convergence of the computed values
with respect to the re�nement level. The plastic region (i.e., all cells where εph is not
zero) is identi�ed correctly already on very coarse meshes, but a precise computation
of displacements requires the �nest level; by extrapolation of the computed data
an accuracy of approx. 5% can be estimated. Due to the reentrant corners of the
computational domain we do not expect full regularity and thus no convergence of
σh in L∞. The resulting distribution of the stress and the plastic variable on level 4
are illustrated in Fig. 6.1 (the background mesh is plotted on level 0).
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j ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9

0 160.3 16.4 0.06 0.000001 ε

1 89.6 46.2 17.24 0.970748 0.0024 ε

2 47.1 39.5 13.11 2.842823 0.0726 0.000023 ε

3 24.1 12.4 11.68 8.649902 7.7275 1.572126 0.190 0.0011 ε

4 12.2 6.7 6.13 4.661071 4.5857 1.235850 0.156 0.0016 0.000002 ε

Table 6.1

Convergence history (up to ε ≤ 10−9) of the semi-smooth Newton method. For the �rst two
steps on level j = 4 a line search was required in order to reduce the residual.

j d.o.f. # cells # plastic cells |uh(z)| ‖σh‖∞
0 1 426 50 8 0.0167 581.64

1 8 903 400 77 0.0158 879.08

2 62 419 3 200 836 0.0192 1161.38

3 466 499 25 600 7 122 0.0214 1506.84

4 3 605 251 204 800 60 622 0.0228 1941.87

Table 6.2

Convergence for successive uniform re�nements of the displacement at a test point z = (0, 0, 7)
and for the stress maximum. In every re�nement step each cell is divided into 8 cells.
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