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A PRIMAL-DUAL FINITE ELEMENT APPROXIMATION
FOR A NONLOCAL MODEL IN PLASTICITY

C. WIENERS* AND B. WOHLMUTH'

Abstract. We study the numerical approximation of a static infinitesimal plasticity model of
kinematic hardening with a nonlocal extension involving the curl of the plastic variable. Here, the
free energy to be minimized is a combination of the elastic energy and an additional term depending
on the curl of the plastic variable. In a first step, we introduce the stress as dual variable and
provide an equivalent primal-dual formulation resulting in a local flow rule. To obtain optimal a
priori estimates, the finite element spaces have to satisfy a uniform inf-sup condition. Finally, we
show that the associated nonlinear mixed formulation can be solved iteratively by a classical radial
return algorithm. Numerical results illustrate the convergence of the applied discretization and the
solver.
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1. Introduction. The abstract setting for variational inequalities provides a
powerful framework for the analysis of infinitesimal plasticity and its finite element
discretization, see [11] and the references therein. In the static case, the elasto-
plastic solution is determined by minimizing a (primal) functional for the displacement
and the plastic variable. Unfortunately for perfect plasticity this functional is not
uniformly convex, and the minimizer exists only in a weak sense. We refer to [28] where
suitable Banach spaces for the displacement and the plastic variable are discussed. On
the other hand, the idealistic model of perfect plasticity does not include hardening
nor size effects reflecting internal length scales. There are different possibilities for
including such effects, and in most cases this leads to a more regular model with
an associated uniformly convex primal functional, and thus the theory of standard
Sobolev spaces can be applied.

Here, we consider a class of nonlocal models which can be obtained by an extension
of the classical plasticity model with kinematic hardening. More precisely, we study a
subclass of gradient plasticity, where the corresponding elasto-plastic energy includes
only the curl of the plastic strain, see, e.g., [7, 8, 9, 13, 14, 26, 27] for the analytical,
mechanical, and physical properties of such models. In [17, 18] it is shown that a
representative nonlocal model of such type can also be transformed into a variational
inequality.

The finite element analysis for variational inequalities in plasticity with kinematic
hardening yields a priori estimates involving the best approximation error and addi-
tional nonconformity terms, see [1, 3]. Here, we extend these results to our non-local
formulation and work with curl-conforming finite elements for the plastic variable. A
different approach for a discontinuous Galerkin formulation of a gradient plasticity
model with full gradient terms is presented in [5, 6, 20], and in [19] a discontinu-
ous Galerkin approximation of a model containing the curl of the plastic strain is
considered.

Following [11], we consider plasticity models which are completely determined by
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the free energy W(u,p) and a dissipation potential j(p), where u denotes the dis-

placement and p the plastic variable. In the static case, for a given load functional ¢(-)

the elasto-plastic solution (u,p) is determined as minimizer of the primal functional
J(u,p) = W(u,p) +j(p) — {(u)

subject to essential boundary conditions. We assume, see, e.g., [7, 17, 20], that the

free energy can be decomposed in an additive way into

W(u,p) = Welastic (Ee) + Wplastic(p) )
where €¢ = g(u) — symdev p is the elastic strain. Moreover, for standard materials
the plastic evolution is driven by the conjugate variables

o = a‘/Vclastic (Ee) 5 (lla)

/6 = aWplastic(p) . (]--]-b)
In the infinitesimal case, linearized constitutive relations hold, i.e., & = Ce® and
B = Dp, and we assume that the energy contributions are uniformly convex in &°¢
and p, respectively. Then, the free energy has a primal, a dual, and a primal-dual
representation:

W (u,p) = (Ce®,e%) + (Dp,p) = (0,C" o) + (B,D7'B) = (0,€°) + (B, p).
This allows us to reformulate the primal minimization problem as a dual minimization
problem or equivalently as a mixed saddle point problem in terms of the primal
and dual variables. For standard materials in infinitesimal plasticity, the analysis of
the primal problem determining the displacement and the plastic variable (u,p) is
well-established [11, Chap. 7]. The dual problem determining the generalized stress
(o, 8) can be analyzed independently, see, e.g., [11, Chap. 8]. For local plasticity, the
equivalence of both approaches is shown in [11, Th. 8.3]. A mixed approximation is
considered in [21].

Here, we consider a representative model in gradient plasticity, where Wpiastic(p)
depends on curl p and note that the back stress can also be represented in Ly. This
observation gives rise to a local flow rule for the non-local model as it is the case for
local plasticity.

The rest of this paper is organized as follows: In Section 2, the notation is intro-
duced and different problem formulations are stated. For the numerical simulation,
we propose in Section 3 a mixed discretization scheme which approximates the primal
and the dual solution. In Section 4, we provide a priori estimates. To obtain order h
bounds for the discretization error in the stress and the plastic variable, a uniform inf-
sup condition has to be satisfied or alternatively an order h? best approximation error
in the L?-norm has to hold. Section 5 is devoted to the numerical solver. The mixed
formulation is of special interest for the construction of a locally defined semi-smooth
Newton which turns out to be equivalent to the classical radial return mapping. Fi-
nally, numerical results are presented in Section 6 illustrating the performance of the
algorithm.

2. A model for infinitesimal nonlocal plasticity with hardening. Let the
reference configuration Q be a bounded Lipschitz domain in R?, and let Tp UTy =
0f) be a non-overlapping decomposition of the boundary, where we assume that I'p
has a positive 2-d measure. For simplicity of notation, we only consider the case
of homogeneous Dirichlet boundary conditions. We define the spaces V = {v €
HY(Q,R?): v|p, = 0} for the displacements, S = Ly(£2,Sym(3)) for the stresses
where Sym(3) C R?*? denotes the set of symmetric tensors, and the space Q = {q €
Ly(Q,R3%3): curlq € Lo(Q, R3*3)} for the plastic variables. For tensors g = (g;5),



we set
O2q13 — O3q12 O3q11 — O1¢q13 O1q12 — Oaqin
curlg = | 0Oaq23 — J3q22 O3q21 — 01¢23 O1q22 — Oaq21 |
02q33 — O3q32 0331 — 01433 01432 — Oag31
and we use the weighted norms
|2 = / e(w):C:e(w)dn, weV,
Q
lolz = /U:(C_lza'da:, cesS,
Q
Hq||%2 = /q:H:qdaz—l—/curlq:]L:curlqu, g€qQ.
Q

Q

Here, C: Sym(3) — Sym(3) defined by C : € = 2ue + Atrace(e)I is the isotropic
elasticity tensor depending on the Lamé constants A, u > 0, H : ¢ = Hpq measures
the kinematic hardening, where Hy > 0 is the kinematic hardening modulus, and L :
curl ¢ = pL3 curl g describes the nonlocal energy contribution. Here Lo > 0 is a length
scale parameter. The linearized strain tensor is denoted by e(v) = sym(Dv) with
sym(q) = %(q +q7). Finally, the deviatoric part is given by deve = & — étraee(s)I.

Note that || - ||y is a norm on V due to Korn’s inequality. We use | - |5 and
(*,+)sw for the norm and the inner product in H*¥(w, R?**3), w C Q, s > 0, respectively,
and we drop the index w in the case that w = Q. The inner product in Q is denoted
by (+,-)q, and Q' stands for the dual space of Q. Moreover 0 < ¢, C' < oo are generic
constants possibly depending on the material parameters but not on the mesh size of
the discretization.

2.1. The free energy and the primal problem. In our model, we consider

the free energy given by

W("—hp) = Welastic(se) + Wplastic(p) = % /Qse :C:etde + % HpHQQa
where €¢ = g(u) — €P is the elastic strain and e? = symdev p is the plastic strain.
The plastic strain € is in the space E = {n € L2(Q, Sym(3)): tracen = 0}. In E,
we use the weighted norm ||n||% = (H : n,1)o. The dual space of E will be denoted
by B, i.e., B ={d € Ly(Q,Sym(3)): traced = 0} = E’. In B, we use the weighted
norm ||8]|% = (H™!:4,4).

The free energy defines the conjugate variables o = Ce® € S and B8 = Dp € Q'.
Here the operator C': Lo(€2,Sym(3)) — S is defined locally by o = C : €, and
D: Q — Q' is the non-local duality mapping defined by (Dp,q) = (p,q)q for all
qgcq.

We start with the primal formulation in the space Y = V x Q with norm |y||3 =
vl + llqllg for y = (v,q) € Y and consider on Y x Y the bilinear form

a(y,9) :/Q (e(v) —symdevq) : C: (e(v) — symdev q) dz + (¢, q)q
and the convex functional
(@) = / Ko|symdevg|de, g€ Ly(Q,R>?),
Q

where Ky > 0 is the yield stress and |q| = /g : q.
Depending on a body force density b € Lo(2, R?) and a traction force density
ty € Ly(I'y, R3), we define the load functional £ € V' by

é(v):/bmd:c—i—/ ty-vda, veV.
Q 'y



LeEMMA 2.1. A unique minimizer z = (u,p) € Y of

1 .
J(2) = 5a(z,2) + j(p) — {(w) (2.1)
exists. The minimizer is uniquely characterized by the variational inequality
a(z,y—z) +j(@) —jp) 2 lv-u), y=(@wqgEeY. (2.2)

Proof. Obviously, all involved functionals are continuous. Moreover, j(-) is con-
vex. Then Lemma 2.1 results from [11, Th. 6.6] provided the bilinear form a(-,-) is
Y -elliptic. Observing that C~!symdevq = 1/(2u) symdev g and |symdev q| < |q,
we find for y € Y and s > 1

a(y,y) = |C:e(v)—2usymdevqls +ald
1
> (1) IC @l + (1) [2nsymdevqlf + alif
s—1 s 2u(s—1) 2 2
> ||U||V_TOHQ||Q+H(1HQ
. (s—1 2u(s —1) 9
> - } :
> min {2 A 11
The lower bound holds for all s > 1 yielding the ellipticity constant
—1 2 —1 H
co = maxmin{s ,1— s )} = 0 . (2.3)
s>1 s Hy pw+ Ho+ /12 +2uH,

2.2. The primal-dual problem. The primal solution (u,p) defines the plastic
strain e? = symdev p and and the conjugated variables o = C : (e(u) — €P) and B.
Here, the plastic variable p € Q and the conjugate variable 3 € Q' can be identified
by the Riesz representation theorem. Testing the variational inequality (2.2) with
y = (utv,p) and y = (u, q) results in a weak equilibrium equation

/ o:e(v)de =L(v), veV, (2.4a)
Q
and the dissipation inequality for the plastic variable

j(q) > j(p) + (deve,q —p)o — (P, —P)q, q€Q. (2.4b)

The following lemma shows that the back stress is more regular and lives in B C Q.

LEMMA 2.2. Let (u,p) € V x Q be the solution of (2.2). Then, there exists a
unique 3 € B such that

Proof. Testing (2.4b) with p + p yields 0 = j(p) — (devo,p)o + (P, p)g. Using
the boundedness of j(-) in E, we find in terms of (2.4b)
(P, @)q| <j(q) +[(deve,q)| < C(u,p)[|symdevgle, qeQ.
Thus the linear functional (p,-)g € Q' is bounded in E. Noting that Q N E is dense

in E and that (p,q)g = 0 for symdev g = 0, there exists a unique 8 € B such that
(2.5) holds. O



The higher regularity of B in combination with Lemma 2.1 yields the existence
of a unique solution (u,p,B) € V x Q x B of the primal-dual problem

(o’,s(v))o ={(v) , veV, (2.6a)
(B.9)o = (P.9)q » 9€Q, (2.6b)
j(m) > j(e?’) + (devo — B,m —€)o, nckE. (2.6¢)

Moreover the dissipation inequality (2.6¢) is equivalent to the local flow rule
devo — B

P _ 2.7

&= |deveo — 3| 27)
together with the KKT conditions

|deva—ﬁ|§K0, 7201 ’7(|d6V0’—IB|—K()):O7 (28)

see, e.g., [18, Sect. 2.3].

REMARK 2.3. The higher regularity of B implies an additional reqularity on p,
i.e., curlcurlp € Lo(Q, R3*3) and B = Hop + Lo curl curl p, see also [7, 17, 18], and
thus the standard infinitesimal model of kinematic hardening is recovered in the limit
Lo tends to zero.

3. A finite element approximation of the primal-dual problem. In this
section, we analyze the discretization error of the mixed problem. Associated with
Q is a shape regular family {7}, of triangulations, the elements of which are affine
equivalent tetrahedra or hexahedra. Let V', x Q;, C V x @ be a low order conforming
finite element space for the primal solution with order h best approximation properties
with respect to the ||-||y- norm. For the numerical simulation of models with curl-terms
it is appropriate to use Nédélec elements. These types of elements are curl-conforming
and well-established for the numerical approximation of Maxwell’s equations [12, 16].
The plastic strain will be approximated in E; C E. Here E}, stands for the space of
symmetric trace free element-wise constant finite elements, and we denote by II; the
Lo-projection onto Ej,.

Our discrete primal-dual problem is then equivalent to a discrete primal problem
defined by a mesh-dependent free energy. Introducing the mesh-dependent bilinear
formon Y, =V, x Qy,

an(Yn, 9y) = (e(vs) — Iy symdev gy, C : (e(vp,) — ITj, symdev F]h))o + (g1, a1)0Q
and the mesh-dependent convex functional j(q,) = j(Il;gq,), we can define the
discrete primal functional

T(n) = 500 us) + in(an) — ((on). (31)
Using [|IIngllo < ||@yllo, we find that the bilinear form ap(-,-) is also elliptic with
the same ellipticity constant as a(-,-). This observation guarantees that the solution
(un,pp) € Vi x Q) of the discrete equilibrium equation with o, = C : (e(uy) — €})
and &} = II; symdev p,

(O'h,E(’Uh))O ={l(vy) , v, € Vi, (3.2a)

and the dissipation inequality for the plastic variable

in(ar) = gn(py) + (dev oy, Mysymdevi(q, —py)), — (Pran —Pr)@, 45 € Qy
(3.2b)

is the unique minimizer of the discrete primal functional J;(-) in V, x Q,,.



As in the continuous setting, we can define a discrete back stress. To do so, we in-
troduce Bj, = E;,, and we define B) = E) = {II, symdevgq,: q, € Q,} C Ej,. From
(3.2b), we observe that (p,,q,)q = 0 for all g, € Q) = {q, € Q,: I, symdev q;, =
0}, and thus there exists a unique solution (us,py,B3,) € Vi x Q) x B of the
discrete primal-dual problem

(on,e(vn)), = lva) , vp € Vi, (3.3a)
Br>an)o = (Pr,an)q > q, €Qy, (3.3b)
j(ny) > j(eh) + (devorn — By,my, — €h)o, n, € Ej . (3-3¢)

REMARK 3.1. In the case E; = E?L, we can use locally constant basis functions
in the discrete dissipation inequality (3.3c) resulting in the following point-wise flow
rule

& — I}, dev oy, — 3y, (3.4)
‘Hh devah — 16h|
with the return parameter vy, = |€h| characterized by the local KKT conditions
|theV0'h7,6h|§K0, ")/hzo, ’yh(|theVUhf,3h‘7K0):0. (35)
Thus, the classical radial return algorithm can be applied.

It is easy to see that Bj, = BY and thus E;, = E' if the pair (Q,,, B},) satisfies
a uniform inf-sup stability, i.e., there exists a constant cgap > 0 independent of the
mesh size such that

5.
qup  Om@o s e, 8ne By (3.6)

q,€Q;,,9,7#0 thHQ

However, the uniform inf-sup stability of the pair (Q,,, B},) is not a necessary condition
for having By, = B,g. For each given Q),, it is easy to construct an enriched space in
terms of locally defined element bubbles by with by > 0, supp br = T, h||Vbr|lor <
Clorllo,r- Adding [[;c7, span{bre;: i = 1,...,5}, where €1, ...,€5 is an orthogonal
basis for s1(3) NSym(3), to Q},, it is easy to see that the enriched space satisfies By, =
B?L. Moreover, these additional degrees of freedom can easily be eliminated locally,
and we have to solve a non-linear system of the original dimension and complexity.
Thus from now on, we always assume without loss of generality that B; = B?L.

4. A priori discretization error estimates for the primal-dual problem.
In this section, we provide a priori estimates for the primal-dual problem. As we
will see, order h results can be only obtained under some additional assumptions.
Here, we discuss two cases separately. The case that @, satisfies an order h? best
approximation property in the L?-norm and the case that the pair (Q,,, Bj) satisfies
a uniform inf-sup stability.

4.1. Error estimates for the primal solutions. The following theorem shows
that the error in the stress and the plastic variable can be bounded by the best
approximation error and the influence of the error in the back stress on the plastic
variable.

THEOREM 4.1. There exists a constant C < oo independent of the mesh size but
possibly depending on the material parameters such that

lo =l +llp—puly < C( inf Ju—valfy+ inf 18- 8ull}

v, EVY dnEBy,

+ inf(lp—anlp + (8~ Br.an —phol))
9,€Q),
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Proof. We start with an upper bound for the error in the stress. Using the
Galerkin orthogonality (0' — oy, s(vh))o =0 for vy, € V,, we find
o — O'h||25 = (o’ —op,e(u— uh))o — (o —op,e? —€b)o
< |lo—onlls inf |Ju—vu|v + (deve —devoy, el —eP)y. (4.1)
CIAS
To bound the second term on the right side, we set n = €} in (2.6¢) and n,, = II,e?
in (3.3c). Adding both inequalities and using j(II,eP) < j(eP), we get

(deve,el —eP)o+ (devop, el —€h)o < (B — By, el —€P)o. (4.2)

In a second step, we consider the error in the plastic variable. Exploiting (2.6b) and
(3.3b), we obtain for all g, € Q,,

lp—pulle < lp —pillollp — anlle + (B = Bu,an — Pro-

Combing the second term on the right side of (4.1) with the second term on the right
side of (4.1), we find in terms of (4.2)
(devo —devan, ey, —€”)o+ (B — Brqn — Pr)o
< (devon,p —Iwplo + (B — Br.an, — P)o + (B 1np, — Py)o -
The first term is bounded for all g;, € @;, by
(devon, p—1IInp)o < 2| dev(e — on)||lBle” — ne?||g < 4o —oullBllp — anllq,
and for the last term, we obtain for all §,, € B,
(B, ppy, — pr)o < 2|8 —dnllellp — Pulle < 218 = dnllBllP — Pille-
In a next step, we add (4.1) and (4.1) and use the last inequality to get
lo —onlls +lp—prlg < llo—onls nf [lu—wfv
vREV

+4llo —oullp inf |[p—qle
9,€Q),

+2|p—prle s inf [|8—dnlB

nEBR

+ inf (lp—pullellp—anle+ (B —Bu an —p) -
q,€Q),

Using ||o — o]l < C|lo — orlls and Young’s inequality, we find the assertion. O

REMARK 4.2. The proof of Theorem 4.1 shows that the only term involving a
constant depending on the parameter Hy stems from (devoyn,p — Ipp)o. In the case
of lowest order elements in V', on tetrahedral meshes, we have dev o, = II}, dev oy,.
As a consequence, we obtain in Theorem J.1 a parameter independent bound.

If we consider the non-standard term (3 — 3}, q;, — p)o in more detail, we find in
terms of the triangle inequality, the KKT conditions (2.8) and (3.5)

(8~ Busan — Pl < 2(Ko /12 + o — llo) 4 — plo - (4.3)
Observing ||lu —up|lv < |l —onlls + C|lp — pill@ and using the best approximation
properties of the spaces V', Q; and Bj, we get the a priori estimate in terms of
Theorem 4.1 and (4.3).

COROLLARY 4.3. Under the regularity assumption (u,p,B3) € H3/?(Q,R3) x
H32(Q,R3*3) x HY2(Q,R?>*3) on the solution, we find the sub-optimal a priori
estimate

lu—wnllv + I~ prlle < € Vi (lullasz + [l + 1812 +1).

We remark that in contrast to Theorem 4.1, the constant in the upper bound
depends for all type of meshes on the parameter and degenerates if Hy tends to zero.



4.2. An order h a priori error estimate. In this subsection, we discuss two
cases such that an order h a priori estimate can be established.
Case 1: Order h approximation property of @, in a mesh dependent norm
inf (llg—anllo +h"la—aullo) < Chlialz, qc HAQR™).

9,€Qp
Case 2: Uniform inf-sup stability of the pair (@), Bp), i.e., (3.6) is satisfied with a

mesh independent constant.

Before we are going to establish our main result, we discuss briefly two examples
of finite element spaces satisfying Case 1 or Case 2.

Unfortunately, Case 1 does not hold for lowest order Nédélec elements. However
Case 1 is satisfied for second order Nédélec elements, cf. [15, Th. 5.41], or for the
lowest order curl conforming elements of the second type [15, Th. 8.15].

As example for Case 2, we start from the standard lowest order Nédélec finite
element space QEE C Q, see, e.g., [15, Chap. 5] and use suitable bubble functions
for an enrichment. To obtain a uniformly stable pair, it is not sufficient to guarantee
I symdev Q;,, = By, and we have also to add face bubbles. Let Fj, be the set of
faces of the triangulation. We denote by by > 0 face bubbles satisfying

IVbsllo < Ch™'2lbgllos  suppby =TUT', f=0TNOT .
In terms of these face and the element bubbles, we define
Q, = QYF +span{bre;: T €Ty, i =1,...,5} +span{V(bse;): f € Fn, j =1,2,3},
where e;, es, e3 is the Euclidean basis in R3.

To verify the inf-sup condition (3.6), we construct a Fortin operator Py: Q — Q,,
satisfying

(Phq —q,01)0 =0, q€Q,d,€ By, (4.4a)
1Pralleq < Clldlle, q€Q. (4.4b)
Note that H'(Q,R3*3) is dense in Q, and thus it is sufficient to construct the
Fortin operator on H'(Q, R3*3) |2, Prop. 2.8]. The construction of P, is based on a
Helmholtz-type decomposition of g € H!(Q, R3*3). Define w € Hi (2, R3) by
(VUMVB)() = (q7V0)0, 0c H&(Q,RB),
and set ¢ = g— Vw. By construction, this gives diveyp = 0, ||[Vwllo+[|¥]lq < 2]lq]q-
Let us assume that on € it holds
lalh < C (llall + | curlql + | dival), e H'(QR>?), (4.5)

see, e.g., [15, Th. 3.50 and Cor. 3.51]. Then v € H'(Q, R3*3).
Now, choose a suitable approximation wy, in the H' conforming lowest order finite
element space

D llw — w5 s < Ch Vw3 (4.6)
feF

[24], and choose a suitable approximation 1, € QI}\LIE such that
1% — ullo < ChIl] - (4.7)

[22, 23]. Observing that Vwy, € Qy,, we define
Pog=Vwy + ), — Y Vibras) = Y brar € Q,,

fej:h TeT,
where ay = Z?:l afje; and ar = 2°_ ar,e; with coefficients given by
oy, = WZwweos (¥ -Ynlor (4.8)
! (brej. es)o.r * o (breseior

Exploiting the orthogonality (e;,e;) = 0 for ¢ # j, we find
(Y, —,€i)o,r = ar,i(brei, €i)or = (brar,€i)o,r



and using integration by parts and the fact that e; is constant on 7', we get

(Vwp, —Vw,g;)or = (wp —w,e;nr)oar
= > (brag,emr)oor =Y (V(bsas),ei)or,
f f

where np denotes the outer normal vector on 9T'. To verify (4.4a), we know that each

0 € By, can be written as 6, = ) 1, 07, x7€; € B, where xr is the characteristic

function on T. Thus it is sufficient to consider

(Png —q.€:)or = (Vw), — Vw — Z V(brag),ei)y  + (¥, — % —brar,ei)or = 0.
fEFh

Next, we show (4.4b). Using the scaling properties of the bubble functions, the

approximation properties (4.6), (4.7) and the definition of the coefficients (4.8), we

get in terms of (4.5)

1Y brarla < C Y larlP|Vorlg s <Ch™2 Y larPllbr|3 1

TET, TET, TeT,
< Ch2 Y W —dulir <Cloli < ClYla,
TeT,
1> Vrapls < C Y lagPIVoglls < Ch7t Y laglPllbglls 4
fEFN fEFN fE€EFn
< ORt Y llw —wilig y < CVwllg,
FE€Fn
(where | - | is the Euclidean norm), which finally gives
1Pralle < [Vwille+1 Y Vsap)le+lenle+ 1 D brareilq < Cldlle-
feFn TeT,

THEOREM 4.4. Under the assumption that Case 1 or Case 2 hold and that the

solution is smooth enough, we find
lu—unllv + Ip — pyllg = OR).
Moreover, in Case 2 we also find ||3 — B, g = O(h).

Proof. The Case 1 follows directly from Theorem 4.1 and (4.3), and we have
to consider only Case 2 in more detail. In Case 2, we use (8 — 8,,,9; — P)o <
1B — Bulle'llp — anlle- In a next step, we bound the error in |3 — B,|/q’ by the
primal error and a best approximation result yielding in terms of (3.6)

- xB8 — B q
1B=Buller < [18—1nBlle +Cst;b sup M

9,€Q},,9,7#0 ||qhHQ
(16_13 ,d )0
< (U4t IB—Blo + gty sup M2
9,€Qy},,q9,7#0 ”qh”Q
< O(h) + cgapllp — prlle-

5. A generalized Newton method for the mixed finite element approx-
imation. In the primal-dual formulation the dissipation inequality (3.3c) is a local
equation which can be directly evaluated with a standard return mapping algorithm,
i.e., we have a nonlinear response function for the plastic strain depending on the trial
stress. This observation can be used to define an efficient nonlinear iterative solver.

As it is well known, the classical radial return algorithm can be interpreted within
the abstract framework of generalized Newton methods. More precisely, we use a
semi-smooth Newton method to solve numerically the variational inequality. Local
variational inequalities can be easily rewritten as non-linear equality constraints in
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terms of NCP-functions. We refer to [4] for a general construction and analysis and
to [10] for some stabilization techniques.

We generalize the classical radial return algorithm for local plasticity to our non-
local situation, see, e.g., [25, Chap. 3.3.1]. Introducing the deviatoric trial stress
0y, = 2ully, deve(up) — By, we define locally on each cell

max{0, |0 — Ko}
211/64|
LEMMA 5.1. Let (up,3,) € Vi, X By, be given. Then, the discrete dissipation
inequality
i) = Jep) + (devon — By,my —€p)o, My € B
is satisfied for the plastic strain €} = Rp(0) and the stress o, = C: (e(up) — €}).

Ry(0n) = anby, ap =

Proof. For convenience of the reader, we recall the basic steps of the proof. We
find |0,| — max{0, |6, — Ko} < K, and thus

(6n — 2uRK(04)) =y, < Koyl my, € En.

Then, the identity Ko |Ry(04)| — (6 — 2uRi(61)) : Ry(05) = 0 and deve] = &
yields

\%

Ko|nyl > Ko|Ru(0n)| + (0n — 2uRp(61)) : (my, — Ba(0n))
Kolep| + (devay — By) : (ny, — ), n, € Ey.

0

Inserting the radial return in (3.3c) rewrites (3.3) as a nonlinear variational equal-
ity: find (up,pp,B;) € Vi X Q;, X By, such that

(C:e(up) — 2uRp(2udeve(uy) — ,Bh),e(vh))o = {(vy) , v, €V, (5.1a)
(Bhr>ar)o = (Pr,an)q - a, € Qy, (5.1b)
(Rh(2udevs(uh) — ﬂh),éh)o = (ph,(sh)o , ép € By. (5.1¢)

This defines €} = Ry, (2udeve(uy) — 8;,) = Il symdev py,.
For a consistent linearization, we select a realization Ry, (0;,) € ORy(0y). For
|01 # 0 the sub-differential is given by

0 0,|0n| — K
(max{ " h| O})ﬂ ﬁ+ah(id,ﬂ®ﬂ>.
21 O0n] ~164] CARCA
The mixed system (5.1) is solved with a generalized Newton method (see Algo-

rithm 1). The method is well defined since the Newton linearization is always regular.

ORp(0n) =

LEMMA 5.2. A unique solution of the linearized problem in step S2) of Algo-
rithm 1 exists.

Proof. We have to show that the equation Bf[(vs,q;,d1), (-, )] = 0 only has

the trivial solution. For all r;, € Q;, holds
0 = Bﬁ[(vthhvéh)’(07rha0)] = (qharh)Q - (6harh)0- (52)
Next, we observe on all elements where v = max{0,|05| — K¢} >0
1 (0 :6,)° ; 0 : 5,)°
7(hkh) 4 th (5h:5 _(hkh))
N CHE 20163, |01
h Ko (0),:80)°
2p

= 6h L Op
21/6}] 1612

6h:R§:6h =
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S0) Choose start iterates (uf),p?,35) € Vi, x Q) x By,. Set k = 0.
S1) Compute the deviatoric trial stress 8 = 2jdeve(uf) — BF and the residual
Fylvn, g, 6] = (C:e(up)o—2uRn(0%),e(vp)), — £(vn)
+(Ph,an)q — (Bh an)o
+(Rh(0k) - P}, 5h)0 .
If the residual norm pj = ||F}¥|| is small enough, STOP.
S2) Compute the solution (Auf, Apk, ABY) € V1, xQ,, x By, of the linear problem

Bﬁ[(Aufw Ap;Cm A/BZ)v (vhv qp, (Sh)] = _Filf[vhv qp, (sh]

for (v, qy,,0n) € Vi, x Qy, X By, where the symmetric bilinear form is given
by
BZ[(Auhv Apha A/gh)v (vha qp, 5’1)] = (C : E(Auh)7 s(vh))o
—4p% (R}, : deve(Auy), deve(vy)), + 2u(R); : ABy, deve(vy)),
+(App.an)q  —  (ABn,an)o
+2u (R, : deve(Aun), 84), — (Apy, 0r), — (R} : ABy, r),

1 6r  oF oy or 0% _K
with RF = ——h®—h+ah(id—7h®7h) if o = {003 =Ko} o
" 200} 105 051 165 183
and R’fL =0 else;
S3) Choose a suitable damping parameter s* € (0, 1] and set
(ui+1,p§+1, Z+1) = (U’Z,pﬁ, ,32) + Sk(A’u,ﬁ’, Apf” A/@ﬁ) :
Set k:=k+ 1 and go to S1).

Algorithm 1: Generalized Newton algorithm for the solution of the primal-dual sys-
tem (5.1).

and
4p* deve(vy) : RE - deve(vy)

9 (02 : €(vh))2 2:“7}13 (| devs(v )|2 _ (alfi : 6(’0h))2)

1652 65| 16512
(05 : e(vy))? . (00 :e(vy))?
< ———— +2ul (v -
T u(le(wn)| i )

< e(vp): C:e(vy).
Then,
0 = Byl(vn,qp:8n), (Vn an, —0n)]
(C: e(vh),e(vh))o — 4p* (Rﬁ :deve(vy),dev €(’Uh))0
+(qn,qn)q + (Rﬁ : 5h»5h)0

> (an.9n)q
gives g, = 0, and (5.2) yields 5, = 0 due to our assumption Bg = Bj,. Now, testing
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with (0,0,deve(vy)) gives deve(vy) = 0 and finally testing with (vp,0,0) yields
v, =0.0
The Lemma guarantees that our solver is well-defined and—since the nonlinearity
in (5.1) is strongly semi-smooth—local super-linear convergence is guaranteed.
REMARK 5.3. We note that there exists always a solution (Auﬁ,Api,A,@ﬁ) n
S2) assuming that our start iterate satisfies (8%, q,)o = (P, ax)q for all @, € Q,,.

6. Numerical example. We apply our solver for a test configuration defined
in [18], cf. Fig. 6.1. In our example we use the Lamé parameters pu = 80193.80
[N/mm?], A = 110743.82 [N/mm?], the yield stress Ko = 367.42 [N/mm?], a very
small hardening modulus Hy = 0.0001x and the length scale parameter Ly = 0.1. The
bottom of the configuration is fixed (homogeneous Dirichlet boundary conditions), on
the top a traction load of 70 [N/mm?] is applied.

The computation is realized in the parallel finite element code M++ [29]. For
simplicity, we use standard finite element spaces on hexahedral meshes: trilinear
elements V7, for the displacements, lowest order hexahedral Nédélec elements Q);, for
the plastic variable, and element-wise constant tensors B)j for the back stress. In
contrast to our theoretical results, we do not enrich our space. In our example we
observe that the bilinear form By|-, ] is regular which holds if and only if BY, # Bj.

The linearized problems are solved with the BiCGStab method. As precondi-
tioner, we apply a fully parallel multigrid method using overlapping block Gauf-Seidel
smoothing and exact coarse problem solver, cf. [30] for details on the parallel data
structure and the solution method. In order to obtain a robust method, very large
blocks in the smoother and multiple smoothing is used, so that in all steps and on
all levels less than 10 BiCGStab iterations are sufficient to reduce the residual norm
by the factor 107¢. The semi-smooth Newton method show super-linear convergence
(see Tab. 6.1). However, our numerical results indicate a linear dependency on the
refinement level.

Y T

Fic. 6.1. Final norm distribution of the stress o, and the plastic variable p;,. On the left a
2D cut is shown whereas on the right the 3D solution is visualized.

The numerical results in Tab. 6.2 show the convergence of the computed values
with respect to the refinement level. The plastic region (i.e., all cells where €% is not
zero) is identified correctly already on very coarse meshes, but a precise computation
of displacements requires the finest level; by extrapolation of the computed data
an accuracy of approx. 5% can be estimated. Due to the reentrant corners of the
computational domain we do not expect full regularity and thus no convergence of
oy in Ly. The resulting distribution of the stress and the plastic variable on level 4
are illustrated in Fig. 6.1 (the background mesh is plotted on level 0).
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[14]

J Po 1 P2 p3 P4 Ps Pe p7 P8 P9
0| 160.3 | 16.4 0.06 | 0.000001 €

1 89.6 | 46.2 | 17.24 | 0.970748 | 0.0024 €

2 47.1 | 39.5 | 13.11 | 2.842823 | 0.0726 | 0.000023 €

3 24.1 | 12.4 | 11.68 | 8.649902 | 7.7275 | 1.572126 | 0.190 | 0.0011 €

4 12.2 6.7 6.13 | 4.661071 | 4.5857 | 1.235850 | 0.156 | 0.0016 | 0.000002 €

TaBLE 6.1

Convergence history (up to € < 107°) of the semi-smooth Newton method. For the first two
steps on level j = 4 a line search was required in order to reduce the residual.

j d.o.f. # cells | # plastic cells | [u"(2)| | [|6"]lc

0 1426 50 8 0.0167 581.64

1 8903 400 7 0.0158 | 879.08

2 62419 3200 836 0.0192 | 1161.38

3| 466499 | 25600 7122 0.0214 | 1506.84

4 | 3605251 | 204800 60622 0.0228 | 1941.87
TABLE 6.2

Convergence for successive uniform refinements of the displacement at a test point z = (0,0,7)
and for the stress maximum. In every refinement step each cell is divided into 8 cells.
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