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14 Motion of Multiple Interfaces:
Grain Growth and Coarsening

Britta Nestler

A new diffuse interface model (phase-field model) for non-isothermal solidification in alloy
systems with multiple components and multiple phases is introduced. The model is capable
to describe phase transitions, microstructure formations and interfacial motion in polycrys-
talline grain structures. The model is derived from an entropy functional in a thermodynam-
ically consistent way and is related to classical sharp interface models in the limit of zero
interface thickness. Anisotropic and facetted growth characteristics are included in both the
kinetic coefficients and the surface energies. The set of governing equations is discretized
and implemented. 2D and 3D simulations are performed showing the temporal evolution of
phase fractions combined with the heat and mass diffusion during solidification and melting
processes. To improve the computational efficiency for large domains, two strategies are fol-
lowed. Firstly, a 3D parallel simulator based on a heterogeneous network of workstations is
set up. This network solves the governing equations using a finite difference discretization
on a uniform grid with explicit time update. Secondly, an adaptive finite element differential
equation analysis library is used. Simulation results are presented showing the motion of mul-
tiple interfaces (phase and grain boundaries). In particular, phenomena such as anisotropic
and crystalline curvature flow, grain growth, coarsening, wetting, symmetry properties and
stability conditions of adjacent multiple junctions are described. In order to describe phase
transformations and solidification processes in multi-component alloys, the specific phase dia-
grams are incorporated in the diffuse interface model via the free energies. Within this context,
ternary eutectic structures are simulated. The effect of anisotropy on eutectic structures, such
as the growth of tilted eutectic lamellae, and the formation of eutectic grains at different length
scales: the grain structure on a larger scale and the eutectic substructure on a smaller scale are
investigated. The stability of ternary eutectic growth fronts and the characteristic spacings
depending on process conditions are studied by iterated simulations.

14.1 Introduction

The phase-field method has become a powerful methodology to describe phase transition
phenomena in alloys with reliable qualitative results in comparison with experimental data.
The method has successfully been used to describe solidification processes (e.g. Caginalp et
al. (1989); Penrose and Fife (1990); Karma and Rappel (1998); Karma (2001)) as well as
microstructure evolution in solids (e.g. Fried and Gurtin (1994)) and liquid-liquid interfaces
(e.g. Lowengrub and Truskinovsky (1998)). Diffuse interface models have been formulated
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for pure substances (e.g. Caginalp et al. (1989); Penrose and Fife (1990)), binary alloys (e.g.
Caginalp and Xie (1998); Tiaden et al. (1998)) for eutectic, peritectic and monotectic sys-
tems (e.g. Wheeler et al. (1996); Nestler and Wheeler (2000); Nestler et al. (2003, 2000);
Plapp and Karma (2002)). Furthermore the evolution of grain boundaries can be modelled by
phase-field approaches or order parameter models (e.g. Chen and Yang (1994); Fan and Chen
(1997); Garcke and Nestler (2000); Nestler and Wheeler (1998)). The concept of describing
interface evolution by a phase-field model was originally introduced by Langer (1986) using
ideas of Halperin et al. (1974) who studied critical exponents for transport coefficients. Dif-
fuse interface models such as the phase-field model have the characteristic property that the
interfaces in the system have a non—zero thickness. First approaches of diffuse interfaces were
already used by van der Waals (1893); Cahn and Hilliard (1958) and Landau and Ginzburg
(1965). In papers by Caginalp and Fife (1988); Caginalp et al. (1989), the authors carried
out a formal asymptotic expansion for phase-field models of solidification. By taking the
limit of vanishing interfacial thickness, the diffuse interface profile relates to classical sharp
interface models, also known as Stefan problems where the interface is described by a sharp
step function profile. In these sharp interface models, boundary conditions for the physical
quantities have to be prescribed at the interface between two bulk phases. In recent years,
phase-field models have been derived from thermodynamic principles being now referred to
as thermodynamically consistent (see Penrose and Fife (1990); Wang et al. (1993)).

Traditionally, the evolution of interfaces has been modelled by moving free boundary
problems separating the regions of pure phases by a sharp interface contour line. In these
sharp interface models, partial differential equations for e.g. mass and heat diffusion are solved
within the bulk phases. These equations are coupled by boundary conditions on the interface,
such as the Stefan condition demanding energy balance and the Gibbs-Thomson equation.
Across the sharp interface, quantities such as the heat flux, the concentration field and the
energy may show a discontinuous jump profile. The physics at the boundaries is prescribed
by explicit tracking of the interfaces. In diffuse interface models the different bulk phases in
the system are distinguished by a vector of phase-field variables ¢,. The number of compo-
nents of this vector depends on the number of phases or grains of different crystal structure or
orientation in the system. The phase boundaries are modelled by a diffuse interface, where the
phase fields and other physical quantities change smoothly on a thin transition layer. For a sin-
gle solid-liquid phase transition, the phase-field variable ¢ may take values of one in the solid
and zero in the liquid. Across the interface, the phase field varies smoothly from one to zero.
From a computational point of view, it is required that the spatial resolution of the numerical
method must be finer than the thickness of the diffuse phase boundary layer. The interfacial
thickness itself must be less than the characteristic scale of the growing microstructure. In
this case, a nonuniform grid with adaptive refinement can dramatically reduce computational
resources compared with a uniform grid with the same spatial resolution.

In the following sections a non-isothermal phase-field model is derived in a thermodynam-
ically consistent way that allows for an arbitrary number of phases/grains and components and
that is defined solely via the bulk free energies of the individual phases, the surface energy
densities of the interfaces and diffusion and mobility coefficients. Since the diffuse interface
model yields classical moving boundary problems in the sharp interface limit, the full set of
phase-field evolution equations is defined by quantities which can experimentally be mea-
sured. The physical effects occurring during the solidification such as heat and mass transfer,
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the release of latent heat, solute trapping, the Gibbs-Thomson relation and interface kinetics
are obtained on the basis of an entropy functional. Since the bulk free energies determine the
phase diagrams (see e.g. Chalmers (1977); Haasen (1994)), the new model is applied to phase
transitions for arbitrary phase diagrams.

First, the diffuse interface model is introduced in its full generality, the free energy con-
tributions are defined and the equations driving the phase evolution, heat and mass transfers
in the system are derived. Then the numerical method for solving the governing equations is
explained and 2D and 3D simulations of moving grain and phase boundaries are presented. In
particular, simulations of grain growth, coarsening and microstructure formations in ternary
alloys with different surface energy anisotropies are shown.

14.2 The Diffuse Interface Model

The diffuse interface model for a general class of alloy systems is formulated consisting of
K components (Al, Fe,Si,Cu,...) and N different phases and grains of different crystal
structures and orientations in a domain £ C R?®. The concentrations and phase fractions or
grains are represented by a vector ¢(Z,t) = (¢1(F,t),...,cx(Z,t)) and by an order param-
eter ¢(Z,t) = (¢1(F,1),...,¢n(Z,t)), respectively. The phase-field model is based on an
entropy functional of the form

S(e,e, @) = ./Q (s(e,c, @) — (ca(@, V@) + Lw(e))) da. (14.1)

The bulk entropy density s is assumed to depend on the internal energy density e, on the
concentrations of the components ¢;, i = 1,... K, and on the phase-field variable ¢,,a =
1...N. The additional contributions a(¢, V¢p) and w(¢p) of the entropy functional reflect
the thermodynamics of the interfaces (e.g. Visintin (1996)). In diffuse interface models, ¢ is
a small length scale parameter related to the thickness of the diffuse interface. The surface
entropy contributions are expressed by a Ginzburg-Landau type functional of the form

- ]Q (ca(d, V) + Lu(e)) dz,

where a(¢, Vo) is a gradient energy density and w(¢) is an energy of multi-well or multi-
obstacle type. Examples of possible choices will be given in the next section. The variable ¢,
denotes the local fraction of phase « and it is required that the concentrations of the compo-
nents and the phase-field variables fulfill the constraints

K N
Y a=1, Z@, =1. (14.2)
i=1 a=1

It will be convenient to use the free energy as a thermodynamical potential. Therefore the
Gibbs relation is postulated

df = —sdT + Y pude; + Y radda,
i @
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where T is the temperature, ji; = f,., are the chemical potentials and r,, = f 5 are potentials
due to the appearance of different phases. The notations f., and f; denote the partial
derivatives of the free energy f with respect to ¢; and ¢,,. Using the thermodynamical relation
e = f + sT it follows that

de = Tds + Z,u.,dc + Z TadPq,

=-—de—Z'u’ --Z?“'dqﬁa

Interpreting s as function of (e, e, ¢) one gets

1 o _Te

e T e =

Knowing the free energy densities of the pure phases f,, the total free energy f is obtained as
a suitable interpolation of f,.

Se =

The governing equations for the conserved order parameters e and c;,i = 1,..., K are
derived from the entropy functional in Equation (14.1)
de
5t =-V-J (energy balance), (14.3a)
Bc:
g =-V.J (mass balances, i = 1,..., K) (14.3b)

and they are coupled to the evolution equations of the non-conserved order parameters
Po,x=1,...,N via

0 S
ME%ZM-,\, a=1,...,N, (14.3¢c)
in such a way that the second law of thermodynamics is fulfilled in an appropriate local ver-
sion. For the non-conserved phase-field variables ¢, it is assumed that the system locally
tends to maximize entropy, while, at the same time, concentration and energy is locally con-
served. The variational denvatlve of Equation(14.3c) gives

Py 1 fo.
EW :E(V Q@ Ve, — a,%) = Ew,dgu = T = Av

where a o, w5, , f 4, and a v, denote the derivatives of the energy contributions with re-
spect to ¢, and V¢, respectively. w is a constant kinetic coefficient and A is an appropriate
Lagrange multiplier such that the constraint Za 1 o = 1 in Equation (14.2) is satisfied, i.e.

1
NZ[ (V0,990 = 4,) = S, — f';iﬂ]. (14.4)

The quantities on the right hand sides of the Equations (14.3a) and (14.3b) are the energy
flux Jy and fluxes Ji, ..., Jx of the components ci,...,cx. Appropriate expressions are
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derived from generalized thermodynamic potentials 55 = % and g—fﬁ = (k%) driving the
evolution. Appealing to non-equilibrium thermodynamics it is postulated that the fluxes are

linear functions of the thermodynamic driving forces V3> ‘55 ,V 65(5;1 V —~ to obtain
85 |« 3s
Jo = LUG(T,C=¢)V5 + ;Lm (T,e ‘f’)v—
1 5 N
_ o
= Loo(T' ¢, $)V 5 + ;LOJ(T, &PVt (14.52)
dS 65‘
Ji = Lio(T, ¢, )V =+ ZLU(T ¢, @)V
be;
1 — b
= Lio(T, ¢, )V + Z Ly;(T, ¢, p)V—5" (14.5b)

j=1

with mobility coefficients (L;;); j=o,.. x relating to heat and mass diffusion coefficients.
To fulfill the constraint Ef{ 1 ¢i = 1 in Equation (14.2) during the evolution, is is required

that Y, Li; = 0,5 = 0,..., K implying "5, J; = 0 and hence (Z; lc,) =V-

(Eil Ji) = 0. Further, it is assumed that the L;; are positive semi-definite and symmetric
according to the Onsager relations. In Garcke, Nestler and Stinner (2002) it is shown that
this condition leads to an entropy inequality ensuring positive local entropy production. Cross
effects between mass and energy diffusion can be neglected by setting Lo = 0 and Lg; = 0
foralli,j € {1,..., K}

14.3 Free Energies

The diffuse interface model is capable of describing alloy systems with a very general class
of multiphase multicomponent phase diagrams by specifying the free energies f, (T, ¢). The
model allows for systems with concave entropies s, (e, ¢) in the pure phases corresponding
to free energies f. (7T, ¢) being convex in ¢ and concave in T. If f(T,e, ) is not convex
in the variable ¢, the free energy needs to contain gradients of the concentrations as e.g. in
a Cahn-Hilliard type model. Choosing the liquid phase to be the last component ¢y of the
phase-field vector ¢, the bulk free energies are defined for the individual phases by

K

a(T,0) = Y (e T + kaTeiIn(e)) — e T(In(T) - 1)

i=1

with LY =0and L¥,i=1,...,K,a=1,...,N — 1, being the latent heat per unit volume
of the phase transition from phase « to the liquid phase and pure component i. Furthermore,
T, i=1,...,K,a=1,...,N — 1is the melting temperature of the i-th component in the
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phase «, ¢, is the specific heat which is for simplicity assumed to be independent of ¢ and ¢;
kg is the Boltzmann constant. Then the total free energy density follows:

[(T,e,¢): Zz(cz L2 T h(0a))

a=1 i=1
N
+ 3 (ksTeiln(ei)) — ¢, T(In(T) - 1).
i=1
With a suitable choice of the function h(¢) satisfying 2(0) = 0 and h(1) = 1, e.g. h(¢a) =
da Of h(¢a) = 92(3 — 2¢,,), the free energy density [ is an interpolation of the individual
free energy densities f,. The entropy density s(e, ¢, ¢), the inner energy density e as well as
the chemical potentials y; follow from the free energy density in Equation (14.6):

(14.6)

K

=—fp= ZZ (ci%h (¢a) ) - Z(kgci In(c;)) + ¢, In(T),
a= IA:—IK i=1
e=f+Ts=— Z Z (c;L§h(a)) + T (14.7a)

a=l1 i=1

N
(T ,0) = fo(Tre,0) = 3 (LEZFEh(6a)) + kT(n(c) +1).  (14.7b)

a=1

Next, the terms modelling interfacial contributions to the free energy will be defined. In Gar-
cke, Nestler and Stoth (1998, 1999b); Steinbach et al. (1996) it has been shown that gradient
energies of the form

a((f), v(b) = Z Aaﬁ(‘i’avd’[s‘ = (bﬁv(ba)

a,f=1,a<f

have very good properties with respect to calibrating parameters in the phase-field model to
the surface terms in the sharp interface model. A choice that leads to isotropic surface terms
is

a($,V$) = 3 222(0aV63 — 95V oa| (14.8)

a<g o

with constants ¥, and 771, that can be related to surface entropy densities .4 and kinetic
coefficients m, . In the case of surface energy anisotropy, the 7,5 parameters depend on the
orientation of the interface. The antisymmetric formulation ¢, V¢z — ¢3V ¢, allows to treat
the physics of each interface individually.

Expressions for the potential w(¢) can be formulated as direct extensions of the standard
double well or double obstacle potential for solid-liquid phase-field models to a multi well
wet(¢p) or multi obstacle potential w,(¢) for the multi phase model:

Wst (¢’) =9 Z Thuﬂ;)'u,(ﬂ(ﬁiqb?j and wob(¢) Z muﬁ"?‘aﬁﬁbacbﬂ (14.9)

a<f 0!<[3
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By numerical experiments comparing different choices for the potential w(g), it is found that
the multi obstacle potential with additional higher order variants

Wob(P) = Wob(P) + Y Vapsdadsds

a<fB<b

yields the best calibration properties. It is generally difficult in multi phase-field models to
compute the surface free energy densities (or surface entropy densities). In studies by Garcke,
Nestler and Stoth (1999a) free energies for phase-field methods with good calibration proper-
ties have been developed. This means that for experimentally given surface free energies one
can calibrate the parameters in the free energies of the phase-field model in such a way that
the sharp interface limit is defined via the given surface tensions. Another advantage of using
an obstacle type potential for numerical simulations is that the potentials we(¢) or Ws(¢)
are defined to be infinity whenever ¢ is'not on the Gibbs-Simplex. Therefore, the equations
for the phase-fields ¢,,a = 1,..., N only need to be solved in the region of the diffuse in-
terface layer. It is referred to Garcke, Nestler and Stoth (1999a,b) for a further discussion of
the properties of the surface terms.

To complete the explicit definitions of quantities in the diffuse interface model, an example
for the mobility matrix (L;;); j=o,...,~ is given defining heat and mass diffusion as well as
cross effects between them. By assuming that the mobilities of the pure components are linear
in ¢; and by referring to Garcke, Nestler and Stinner (2002) the following expressions are
obtained

Lij = D(T,c, ¢)ci(d:; — &) (14.10)
Loj = — Y D(T,c, )c;(8ij — ci)h(da) LT, (14.11)

Loo = k(T, ¢, 0)T2+ Y D(T, ¢, $)h(¢a)Li¢;(8i; — ci)h(¢p) L], (14.12)

i,7,0,08

where D(T, e, ¢) and k(T ¢, ¢p) contain mass and heat diffusion coefficients and ;; denotes
the Kronecker delta.

14.4 Numerical Simulations

Inserting the relations for A, Jo, J; in Equations (14.4,14.5a,14.5b), the free energies f,a,w
in Equations (14.6,14.8,14.9), the mobility matrix (L;;) in Equations (14.10,14.11,14.12) and
the resulting derivatives for e, y1; in Equations (14.7a, 14.7b) into the governing equations in
Equations (14.3a,14.3b,14.3c), a full set of evolution equations for the inner energy, the con-
centrations and the phase-fields is set up and discretized. Numerical simulations of the motion
of multiple interfaces in grain structures, of solidification processes anfphase transitions in
multi component alloy systems are performed. For simulating microstructure evolutions in
large domains at acceptable computation times, two different strategies are used: A 3D paral-
lel simulator based on a heterogeneous network and on a server-client mechanism is set up for
parallel solving of the partial differential equations with a finite difference discretization and
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an explicit time scheme. Alternatively, an adaptive finite element method with a semi-implicit
time discretization is applied to solve the equations. Diffuse interface simulations require that
the spatial resolution of the numerical method is greater than the thickness of the diffusive
phase boundary layer. The interfacial thickness itself must be less than the characteristic scale
of the growing microstructure. In this case, a nonuniform grid with adaptive refinement can
dramatically reduce the use of computational resources compared to a uniform grid with the
same spatial resolution. Both approaches may converge to a hybrid solution at some future
stage.

14.4.1 Grain Growth and Coarsening

The first simulation in Figure 14.1 is motivated by an experiment of heteroepitaxial thin film
growth of a cubic tricrystalline aluminum grain structure on a silicon substrate, described
in Dahmen and Thangaraj (1993). According to the experimental setup, the focus lies on
a tricrystalline grain formation with three allowed orientational variants. The variants are ro-
tated about a common <001> axis by 30° with respect to each other. Two superimposed cubic
grains with a relative rotation of 30° between their crystallographic orientation exhibit eight
symmetry/mirror axes. The symmetry/mirror axes are preferred directions for grain bound-
aries to be formed, because in these directions the boundaries are in states of minimal energy.
This can be explained using the criterion of symmetry dictated-extrema, Cahn and Kalonji
(1994). Therefore, an eightfold convex and crystalline (facetted) surface energy anisotropy is
formulated having a typical cusp-like structure at the eight preferred directions (see Garcke,
Nestler and Stoth (1999b) for the anisotropy formulation).

As in experimental observations, the grain boundaries in polycrystalline structures are
forced by a minimization of energy criterion to evolve at certain symmetry conditions. Force
balance laws lead to grain configurations with adjacent triple junctions which must always
belong to different symmetry classes and hence adjust at different angle conditions. The
evolution of the triple junctions is driven by the classical Young's law. This law relates the
surface energies meeting at the junctions to the angles formed at the junction. In the case
of anisotropic surface energies, in particular crystalline (facetted) energies, additional shear
forces in tangential direction to the grain boundaries occur in the Young’s equation. A more
detailed description of the crystalline modification of Young’s law was first derived in Garcke
and Nestler (2000).

In numerical computations, triple junctions and the influence of surface energy anisotropy
on the angle condition at the triple junction are investigated. In accordance with the classical
equilibrium force balance law by Young with shear forces due to surface energy anisotropy,
angle conditions differing from the equal 120° case are obtained as a result of additional torque
terms in this anisotropic force balance equation. Wetting behavior that occurs in physical
systems, if the surface energies violate the stability condition 7;; < 7ix + i; can also be
recovered.

The simulation in Figure 14.2 shows the process of two-dimensional grain growth and
coarsening in a system of multiple grains. In this context, the components ¢,, of the multiple
order parameter model describe different orientational variants in a crystalline material. In
a system where all the surface energies are equal as in Figure 14.2, all triple junctions have
a 120° angle condition. Characteristic features of the von Neumann law can be observed
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‘Figure 14.1:  Simulation (a,b,d) and
experiment (c) of a tricrystalline mi-
crostructure with three grains (shown
in different gray tones) rotated by 30°
about a common <001> axis with re-
spect to each other, a), b), d) computed
grain growth, c¢) grain boundaries re-
constructed from experimental observa-
tions by Dahmen and Thangaraj (1993),
¢) schematic drawing of a cubic tricrys-
talline grain structure.

postulating that grains with less than six neighbors shrink, grains with more than six neighbors
grow and six—sided grains keep their area in time. A region which shrinks is marked by a cross
whereas a region which keeps the area is marked by a circle.

Next, the phase-field model is applied to three-dimensional grain growth phenomena in an
isotropic and anisotropic grain system in Figures 14.3 and 14.4, respectively. The simulations
are performed with five order parameters. For the computation in Figure 14.4, a crystalline
hexagonal anisotropy with grains of different crystallographic orientations is chosen. The evo-
lution of the grain boundaries support the fact that facets form in certain preferred directions
and that anisotropy changes the equilibrium angle condition of 120° at triple junctions.

Figure 14.2: Two-dimensional grain growth and coarsening in a system of four grains (shown
in different gray tones) with equal surface energies illustrating characteristic features of the von
Neumann law: The grain marked by a circle has six corners and remains stable in size, the grain
indicated by a cross has five corners and the tendency to shrink.

14.4.2 Multicomponent Multiphase Solidification

The objective of this section is to show the utility of the diffuse interface model to simulate
a wide variety of realistic growth structures and morphologies in multicomponent multiphase
systems as reported in Kurz and Fisher (1992); Sahm and Kurz (1975); Akamatsu and Faivre
(2000). To describe the phase transitions and solidification processes in metallic alloys, the
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Figure 14.3: Phase-field simulation of three-dimensional grain growth with equal and isotropic
surface energies. The grains are colored by different gray scales.

Figure 14.4: Phase-field simulation of three-dimensional grain growth with crystalline
(facetted) hexagonal surface energies and grains of different orientation.

specific physical parameters and the phase diagram are taken into account via the free energies
in the model. A collection of binary peritectic, eutectic and monotectic microstructures is
presented in the snapshots, Figure 14.5.

Figure 14.5: Snapshots of a simulated binary alloy solidification of a peritectic (left), a eutectic
(middle) and monotectic system (right). The growing bulk phases are illustrated in white and
black. The concentration profile in the undercooled melt with depleted and enriched regions is
shown in continuously varying gray scale.

Examples for three-dimensional binary eutectic alloy structures are displayed in Figures
14.6 and 14.7. Once the parent liquid phase (metallic melt) is cooled below the eutectic
temperature, the liquid phase L transforms into two new solid phases « and 3 via a eutectic
reaction: L. — « + /3. The phase-field simulations were carried out taking a symmetric phase
diagram and periodic boundary conditions.
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Figure 14.6: Three-dimensional simulation of a binary eutectic alloy establishing a regular rod-
like structure of the alternating two solid phases growing into the undercooled melt (transparent
gray).

Figure 14.7: Irregular three-dimensional growth mode of a binary eutectic due to the antisym-

metric initial phase configuration differing from the symmetric eutectic phase diagram chosen
for the simulation.

An application of the diffuse interface modelling technique to the multi-scale phenome-
na of competitive evolution of eutectic grains is illustrated in Figure 14.8. The two involved
length scales are the grain structure on a large scale and the finer lamellar eutectic substructure.
The simulation was set up with different anisotropies for the two eutectic grains.

Figure 14.8: Two eutectic grains (white/black and light/dark-gray) of a binary alloy with differ-
ent crystal orientations growing into the melt (continuous gray scale). The images visualize the
phase evolution and concentration profiles of the alloy composition in the liquid ahead of the
growing solid phases at different time steps.
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Ternary alloy solidification involves phase changes of four different phases and diffusion
of three components. A ternary eutectic phase diagram is constructed by common tangents
and the according free energies are used for the following simulations. Aiming to investigate
the stability of ternary lamellar fronts, different permutations of the three solid phases o, 3,
are considered in Figure 14.9 and Figure 14.10.

The effect of crystalline surface energy anisotropy on ternary eutectic microstructures is
studied in the phase-field simulations of Figures 14.11 and 14.12. The anisotropy leads to
tilted growth typically observed in experiments. A phase shift within the lamellae occurs for
crystal orientations aligned in the growth direction.

Figure 14.9: Ternary eutectic lamellae with a configuration « (gray), 5 (black), v (white),
showing the concentration of one of the components in the melt (continuous gray scale) at three
different times.

Figure 14.10: Ternary eutectic lamellae with a configuration « (gray), 3 (black), « (gray), v
(white). The three pictures illuminate the concentration fields (continuous gray scale) ahead of
the solid front for all three components of the A — B — C alloy at a medium time step.

Figure 14.11: Tilted solidification front in a ternary eutectic alloy with three solidifying solids
(gray, black, white) as a result of the influence of surface energy anisotropy.
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Finally, ternary alloy solidification is computed in three space dimensions. Regular lamel-

lae of the a, (3, solids in diagonal space direction are formed for the initial condition in
Figure 14.13.

Figure 14.12: Phase shifts in ternary eutectic solid phases with a fourfold crystalline anisotropy.

Figure 14.13: Three-dimensional computation of a ternary eutectic alloy with three different
solid phases (gray, black, white) evolving with steady state lamellar growth behavior in diagonal
space direction.

All three solid phases grow from the liquid phase. While simultaneously growing, the solid
phases mutually enhance each other’s growth conditions as they reject opposite components
of the alloy into the liquid. This leads to the establishment of a steady regular hexagonal shape
in Fig 14.14 with phase boundaries having isotropic surface energies.

Figure 14.14: The dynamic solidification process of ternary eutectic hexagonal rods corres-
ponding to three different times.
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In a subsequent computation the phase evolution was simulated taking crystal anisotropy
and differently rotated solid particles into account, Figure 14.15.

Figure 14.15: The influence of crystalline surface energies on the evolution of phase bounda-
ries in a phase-field simulation of ternary eutectic phase transitions forming strong facets in the
preferred growth directions.

14.5 Outlook

A thermodynamically consistent diffuse interface model (phase-field model) has been devel-
oped describing non-isothermal solidification in alloy systems with multiple components and
phases. The new model was discretized and two- and three-dimensional simulations of phase
transitions, of solidification processes, of complex microstructure formations and of interfa-
cial motion in polycrystalline grain structures are performed. Based on these results, it is
intended to apply the phase-field simulations to model complex multiscale growth phenom-
ena involving different length (and time) scales. Examples are the growth of eutectic colonies
resulting from small amounts of ternary impurities and dendritic networks with interdendritic
eutectic substructures. In order to quantitatively describe phase transformations and solidifica-
tion processes in multi-component alloys, it is planned to incorporate specific phase diagrams
into the phase-field model via the free energies by linking the governing equations to a ther-
modynamics data base. Another challenge for future work is to include convection into the
phase-field model, to investigate the interaction of different physical fields and their effect on
the microstructure evolution.
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