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A Phase-field Model for the Solidification
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Abstract. Our aim is to describe phase transitions in a system of an arbitrary
number of components and phases. Based on a gradient flow for the entropy (in-
cluding surface anisotropy) we propose a phase field model that can be regarded
as an extension of the Penrose-Fife model and that is thermodynamically consis-
tent. By formal asymptotic expansions we see that the considered domain splits
into several phases. We define the surface entropies on the phase boundaries and
then we can show that in the limit the model satisfies the Gibbs—Thomson relation
and other conditions known from classical sharp interface models. Finally, some
possibilities to linearize the equations are outlined.

1 Solidification Effects and Length Scales

The solidification process in multicomponent alloys is charactarized by effects
that occur on several length and time scales and that influence each other. On
a large length scale castings reveal a separation into several grains involving
various kinds of grain boundaries. This separation into grains is combined
with a complex microstructure. Examples are given in Fig. 1.

Fig. 1. Examples for microstructures occuring during the solidification process of
alloys

On the first image we can see a dendrite combined with lamellar eutec-
tic structures growing into a liquid melt. The second image shows growing
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eutectic grains/cells, so called eutectic colonies. The effective growth laws of
the solid-liquid front which is influenced by “macroscopic” variables (as e.g.
the temperature) are of interest as well as the influence of the microstructure
formation on such macroscopic variables. Modelling a solidification process
means therefore that one has to take into consideration the different scales
as well as their interactions.

Mathematically, phase field models can be used to avoid topological diffi-
culties with the motion of free boundaries in sharp interface models; by the
technique of matched asymptotic expansions such a diffuse interface model
can be related to sharp interface models. Our goal is to develop a phase
field model for alloy systems with multiple components and phases with the
following properties:

— consistency with the second law of thermodynamics, i.e. there is an en-
tropy inequality and the total entropy grows,

— the model is related to classical sharp interface models for systems with
multiple components and phases,

— only the knowledge of the bulk free energies of the occuring phases, the
surface free energies of the phase transitions and some mobility and dif-
fusion coefficients is necessary to derive the governing equations,

— earlier results obtained for phase field models are generalized, e.g.

e by Caginalp ([2] and [3]) for the limiting free boundary problem,

e by Penrose, Fife [14], Alt, Pawlow [1] and Wang, Sekerka, Wheeler,
Murray, Coriell, Braun, McFadden [17] for thermodynamically con-
sistent models,

e by Wheeler, Boettinger, McFadden [18] and Caginalp, Xie [4] for
binary alloys,

e by Steinbach, Pezolla, Nestler, Seefelberg, Prieler, Schmitz, Rezende
[15] and Garcke, Nestler, Stoth [7] for systems with multiple phases,

® by Wheeler, Boettinger, McFadden [19] for eutectic systems, by Lo,
Karma, Plapp [10] for peritectic systems and by Nestler, Wheeler [11]
for both.

In the following section we present the model in its general form. The
corresponding sharp interface model is described in the third section. In the
last section we will present some linearized models.

2 Description of the Model
The model is based on an entropy functional of the form
1
Ste.cid) = [ (s(erci8) - (ca(6,76) + Tu(@))) do. )

The unknown variables are the internal energy density e, the concentrations
of the N components ¢;, 1 < i < N, and the phase field variables ¢ = (¢q )M,
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(¢ gives the fraction of phase «). For the concentrations and the phase field
variables the following constraints have to be fulfilled:

N M
Yoa=1""Y "¢, =1, 2)
=1

a=1

ie.c € TN and ¢ € ZM where X := {de R* : TK  a =1}

The entropy density and the internal energy density are given in terms
of the free energy density f by the fundamental thermodynamic relations
s =—fr and e = f + T's respectively where T is the temperature. Knowing
the free energies f*(T, c) of the pure phases we obtain the total free energy as
a suitable interpolation, i.e. f(T,¢,e,) = f*(T,c) where e, is the a’th unit
coordinate vector. As an example we obtain the ideal solution free energy

density
T2 hige)

f(T,e,0) = ZJZ L‘*(
+3 (kT > (eiln(c;)) — ¢, T(In(T) — 1)) ba.

a=1 1._1
a=1 =1
The terms a and w are introduced to model surface contribution to the
entropy; possible choices are:

a(6,ve) = Y 1ot 2 16a V5 — 4Vl 3)
a<,8

wee($) =9 M 50,8 D2t (4)
a<f

In [8], an obstacle potential was introduced which allows for a simple calibra-
tion between coefficients in the phase field model on the one hand and the
surface free energies and mobility coefficients of the sharp interface model on
the other hand.

The governing set of equations consists of energy balance, mass balance
and a diffuse Gibbs—Thomson equation:

e =—V - Jo, (5)
Gei=-V:-J; 1<i<N, (6)

5S
w83¢¢a=3¢——)\, 1<a<M, (7).

where w is a constant and A is an appropriate Lagrange multiplier such that
the constraint (2) for the phase field variable is satisfied. The variation of the
entropy with respect to ¢ is

28 (7 -0x(6,99) ~04(8,70) - Luylp) - 220D
oo € 7
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and the fluxes Jy,. ..,y for the conserved quantities are given by the phe-
nomenological equations (see [9])
=1 1« —Hj
0= M(T’ci¢)v'f +;Loj(T,C,¢)V'-*T—, (9)
1« —Hj
Ji = Lio(T, ¢, ) Vo + ,2_‘; Lij(T,c,4) V—*. (10)

Observe that there is the thermodynamic relation
_1 P —f b
ds = Tde+; = dc.+za: 7dda

where p; = f., is the chemical potential of the component j € {1,...,N}.
By Onsager’s postulate (see [12] and [13]) every thermodynamic flux is given
by a linear combination of the thermodynamic forces which are here given
by V4, VAL, ... VX, _

The matrix of mobility coefficients L = (Ll-j)f;:O is assumed to positiv
semi—definite and symmetric (Onsager relations). For the first constraint of
(2) to be satisfied we assume

N
D> Lij=0, 0<j<N. (11)

i=1

In [5] we derive an entropy inequality for this model, hence it is consistent
with the second law of thermodynamics. For closed systems we show that the
total entropy cannot decrease in time.

3 The Related Sharp Interface Model

By formally matched asymptotic expansions it is shown in [5] that the above
set of equations is related to the following sharp interface model:

In every phase g € {1, ..., M} there are the evolution equations for energy
and mass:
¥ & —pd
Bhet = V- (Lgo(Tq,C")Vf +JZ;LSJ-(T",<:“)V?5)= (12)
1, S AN
el = -V - (LEO(T",CQ) VT + J_ZILE"(T?’CQ)VT_‘IJ) Vi; (13)

we obtain the terms with the upper index g by setting ¢ = e,, the ¢’th
prinzipal coordinate vector, in the correspondings terms of the phase field
model.
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On a (smooth) boundary I' between two phases a and f the tempera-
ture and the generalized chemical potential differences are continuous, there
are jump conditions for the energy and the mass, and the Gibbs—Thomson
relation must be satisfied:

T =TF =T, (14)
B =00 = By ¥, (15)
[l v = [Jo]5 - v, (16)
Gl v=[LS v Vi (17)

B _ ii: [e:18
[f]a ZI::'I": [cl]a_ (18)

My, V= Ya,pk +

Here, v = v, g is the unit normal pointing into 8, v is the speed of I" in this
direction, x the mean curvature and

N N

3 1 1

B=ui-% Y u = N > (uf — uj) where pf = 2 (T, ¢) (19)
j=1 i=1

are the generalized chemical potential differences. v, g is the surface entropy;
as observed in [16] in the isotripic case and later more generally in [7] the
relation between the surface entropy and the phase field model is given by

vea =t {2 [ VobIvapren) (20)

where the infimum is taken over all Lipschitz continuous functions p connect-
ing the mimima. of w which correspond to the phases adjacent to the interface,
i.e. p(—1) = e, and p(1) = eg. A function 5 : R — M is a solution of the
(suitably reparametrized) Euler-Lagrange equation of (20) if and only if

0= —PM (3,(a,x (5, 0:5 ® )V + a,4(5, 0.5 ® v) +,4(5) . (21)

Here, PM is the projection of R™ onto the tangential space TEM = {d' €
RM : 11, d}, = 0} of £M. The boundary conditions for { are

#(z) = e, B(z) == eq- (22)

The above Euler-Lagrange equation is exactly the equation to lowest order
obtained from the ¢-equation of the phase field system after expanding in
the (diffuse) phase transition, and the boundary conditions are the matching
conditions with the outer expansion in the adjacent bulk phases. Another
representation of the surface entropy is

Tos = [ (@lp0:5® ) +w(@)d=. (23)
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™

Finally, m, g is a mobility coefficient which is also given in terms of that
mimimizer p respectivly p:

o0
mas= [ 10:5Pdz. (24)
—00
4 Examples

It can easily be verified that the above model reduces to the Penrose-Fife
model [14] if there is only a pure substance (i.e. N = 1) and if there are two
phases (i.e. M = 2). In this case the system for (T', @) := (T, ¢2 — ¢1) consists
of the equations derived by Penrose and Fife.

Various simplifications of the model are possible by partially linearizing
the full set of equations. We will give an example for a binary alloy with three
phases (i.e. M = 3, N = 2). We set ¢ = ¢1, then ¢; = 1 — ¢ holds.

By a suitable choice of the diffusion coefficients it is possible to linearize
the balance equations. Set

Lo := (e,c)zD—T— +kT%, Loy = Lig:= e,cD-T—, Ly := Dl-
f,cc .f.cc f,cc
This yields the equations
Se=V- (kVT +e,.DVe+ e,cDMqu) ) (25)
i e
8c=V-(DVe+DL%vy4) . (26)
yCcC

If e, and ¢, = e are constant then in a pure phase (i.e. V¢ = 0) we
obtain the simple equations
¢y T = kAT  (Fourier’s law),
8ic = DAc (Fick’s law).
We remark that (26) becomes linear even across a phase transition (where
V¢ # 0) if we choose f such that f.4/f cc is constant.

Finally let us consider a case in which the internal energy does not depend
on ¢. More precisely we set

N U
f(T,c,9) -—;L (CT—f’+(l_c) o )¢a
+kT(cln(e) + (1 — ¢)In(1 — ¢)) — ¢, T (In(T") — 1).

In addition we take the gradient term a(¢, V¢) := 2 3, |[Va|?, we choose
w to be the standard multi well potential, and let w = 1, Lgg := T2, Lig =
Loy :=0, L1; := De(l — ¢). Approximating the nonlinear term % by
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the governing equations become

Bie = By(coT — Y _ L*¢a) = AT,

Sic=kDAc 4V -De(l = )V (Z (% = %) L%a) :
a2 2

Oua = A0 — 1,4, (4)

& A ol iy
UTo M W liiclos i e i+ o i@t oy _
L C(T{’ T{.’) L (T‘?) (T-T5) - A
This set of equations can be interpreted as a generalization of the phase model

studied by Caginalp in [3] which can be obtained from the Penrose-Fife model
by a similar linearization as already done.

5 Further Generalizations

Observe that in this paper the internal energy contains no constributions by
surface terms. The surface entropy density of an interface is independent of
the temperature, hence its surface free energy density is linear in T so that
the internal energy density of the interface vanishes. In a forthcoming paper
we will study more general dependences of the surface free energy density on
the temperature.

Furthermore, the influence of the components will be taken into consider-
ation. This will be done via a dependence of the surface free energy density
on the generalized chemical potential differences fi; which are continuous and
hence well defined on an interface.
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