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Abstract. A phase-field model for a general class of multi-phase metallic alloys
is proposed which describes both, multi-phase solidification phenomena as well as
polycrystalline grain structures. The model serves as a computational method to
simulate the motion and kinetics of multiple phase boundaries and enables the vi-
sualization of the diffusion processes and of the phase transitions in multi-phase
systems. Numerical simulations are presented which illustrate the capability of the
phase-field model to recover a variety of complex experimental growth structures.
In particular, the phase-field model can be used to simulate microstructure evolu-
tions in eutectic, peritectic and monotectic alloys. In addition, polyerystalline grain
structures with effects such as wetting, grain growth, symmetry properties of adja-
cent triple junctions in thin film samples and stability criteria at multiple junctions
are described by phase-field simulations.

1 Introduction

The microstructure formation in metallic alloys involves several different
phases and phase transformations. The process is influenced by a great variety
of external conditions and physical quantities, e.g. mass and heat diffusion,
convection, anisotropy, elasticity etc. and takes place on different time and
length scales, see Fig. 1.

Therefore the solidification process of materials vields complex interfa-
cial growth structures and changes in growth topology. The characteristics of
the grown microstructure such as the fineness, type of morphology and the
spacings themselves determine the physical and mechanical properties of the
casting and are hence of great importance with respect to a continuous im-
provement and optimization of experimental and industrial procedure aiming
to produce materials with specific properties. Since solidification in metallic
alloys can not in-situ be observed, either experiments on transparent organic
substances or modelling methods and numerical simulations are used in order
to systematically investigate the influence of the process conditions and of
the material properties on the microstructure characteristics.

Traditionally, phase transitions have been expressed mathematically by
free boundary problems, where the interface is represented by a sharp surface
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Fig.1. Examples of the microstructure in a binary Al-Si alloy showing primary
Al-dendrites and interdendrititic eutectic regions. Due to the facetted nature of the
silicon, the eutectic occurs in an irregular needle-like growth mode

of zero thickness. In these sharp interface formulations the position of the in-
terface has to be caleulated explicitly, which leads to great difficulties in the
computational treatment of the free boundary problem. In order to handle
the moving free boundary numerically, diffuse interface models, e.g. phase-
field models have been developed, where the interface is expressed implicitly
by a time and space dependent function indicating the phase state and be-
ing defined on the whole region. In the last decade, phase-field models have
attracted considerable importance as a means of describing and numerically
simulating a range of phase transitions and the temporal evolution of com-
plex growth structures that occur during solidification in alloys. Besides the
investigation of phenomena on individual length scales, an important chal-
lenge for future work on phase-field modelling will be to extend the method
so that it can be applied to multiscale problems.

In the standard phase-field description for solid/liquid phase systems, a
variable ¢(x, t), called the phase field is introduced whose value characterises
the phase of the system in time and space. The interfaces are represented by
thin regions in which ¢ varies smoothly between the values of ¢ associated
with the adjoining bulk phases. The mathematical model is based on a free
energy functional

F(d.¢) = [‘ (éq?rwﬁ + f(o, c)) dv,

where f(¢,¢;T) is typically of the form of a double well potential. A set of
governing partial differential equations for the appropriate thermodynamic
quantities (e.g. composition c(x,t)) with an additional reaction-diffusion
equation for the phase field ¢(x, 1), often called the phase-field equation can
be derived by variational derivatives

0o dF(p, ) de ‘ 0F (o, ¢)
B -M(¢)——— and i V- {'D(O) {r(l - o)V (T)] }

0¢
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This ansatz ensures that the total free energy decreases in time and that
the concentration in the system is conserved. The derivation of the governing
equations, although originally ad hoc [1], was subsequently placed in the more
rigorous framework of irreversible thermodynamics [2,3]. The relationship of
the phase-field formulation and the corresponding free-boundary problem (or
sharp interface description) may be established by taking the sharp interface
limit of the phase-field model, whereby the interface thickness tends to zero
and is replaced by interfacial boundary conditions (see e.g. [4] and in the
presence of surface energy anisotropy [5]). In [6] Karma and Rappel have
developed a framework for second order sharp interface asymptotics which is
more appropriate to the simulation of dendritic growth at low undercoolings
by the phase-field model. In the field of solidification, phase-field models
have been developed to describe both, the solidification of pure materials
and binary alloys [7].

For pure materials, phase-field models have been used extensively to simu-
late numerically dendritic growth into an undercooled liquid, e.g. [6,8,9,10].
These computations exhibit a wide range of realistic phenomena associated
with dendritic growth, including side arm production and coarsening. Accu-
rate computations have been conducted at lower undercoolings closer to those
encountered in experiments of dendritic growth and have also been used as
a means of assessing theories of dendritic growth.

In recent years, the phase-field methodology has been extended to describe
the evolution of multiple interfaces, grain boundaries and phase transitions
in three phase systems. Grains in a pure material have also been modelled
by multi-phase-field models using a vector valued phase field that I denote
with ¢(z,t) = (¢1(z,t),...,¢n(z,t)), [11,12,13,14]. The multi-phase-field
model discussed in this paper is based on an ad hoc model formulation in
which a phase field is associated with each of the different phases, [12]. This
model was further developed in [15] to include surface energy anisotropy,
to describe and simulate grain structure formation and its sharp interface
asymptotic limit was studied. In this limit the classical laws at interfaces (the
Gibbs-Thomson condition) and at multi-junetions (the Young's force balance
law) were recovered. Based on the same roots, the notion of a generalised
&-vector formulation was used in order to incorporate anisotropy and the
phase-field concept was extended to model the solidification in binary three
phase alloy systems including a formulation of convection in the (monotectic)
liquid phases, [16].

In this paper a thermodynamically consistent multi-phase-field model is
presented which can be used to model and numerically simulate complex mi-
crostructure evolution in both, binary three phase alloy systems as well as
solid/liquid phase systems with multiple crystals of different crystallographic
orientation. The only difference of these two applications is that the com-
ponents of the phase-field vector either represent the different phases in the
alloy system or the different orientational variants of a grain configuration.
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The multi-phase-field model discussed here provides a solution of how the oc-
curance of a third/foreign phase contribution at two phase interfaces can be
avoided. We present a selection of simulations showing polycrystalline grain
structures as well as phase transitions in eutectic, peritectic and monotectic
alloy systems.

2 Multi-Phase-Field Model

The vectorial multi-phase-field model is formulated in terms of a genera-
lized Ginzburg-Landau free energy F(¢,c;T) which is a functional of the
multi-phase-field vector ¢(x,t) = (¢4 (a,t),..., o5 (@, t)) and the concentra-
tion variable c(z, t)

F($6;T) = /V 9(6,Y9) + f(9,,T) da.

For convenience, the temperature T in this integral expression is treated as
an external parameter, so that we discuss isothermal situations. The free
energies may be given by
NN
9(, Vo) = Z %[Rk(ﬁbivék — o Vi)
i<k
NN N
HeT) =3 —Fbidw + D mi(e;T)éi + h(c)
i<k i
with e.g. the following choices
mi(;T) =mEB(T)e+ mH(T)(1—¢c) and h(c) = H(c— c*)>.

Here, m?(T') and mZ(T) are bulk free energies of the pure A and pure B
states, respectively. We assume that they have the form
T-TA T-TP
mMT) = LATA’— +muy(T) and mZ(T)=L" TBl +mE(T).

i i

The parameters L4 and 7;* are the latent heat of fusion per unit volume and
the melting temperature of the phases i of pure component A, respectively. A
similar interpretation applies to LZ and T/P for pure B. The constants €;;. are
gradient energy coefficients and I (¢; Vor — 0, V¢;) are homogeneous degree
one functions of their argument. As shown in [16], the quantity €;; is related
to the interface thickness and to the surface energy of the interface between
the bulk phases labelled ¢ and k. In particular, the surface energy anisotropy
of this interface is described by the dependence of I} on the orientation of
its argument. If the interfaces in the system are isotropic I simplifies to

Lik(0iVor — ox V) = |0iVdr — 6 Vil.
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In real physical systems, the surface energies of the individual interfaces
are in general not equal. In this case, the above phase-field model and also
other diffuse multi-order parameter models cited in literature suffer from the
difficulty that a third or - more generally - foreign phase contribution oc-
curs at a two phase interface, Fig. 2 a). This effect is to date interpreted
to be non-physical and leads to a violation of physical laws of equilibrium
thermodynamics such as the Young’s force balance law at multiple junctions.
Due to this disability, one does e.g. not obtain the correct angle condition
at triplejunctions for a system with different surface energies. An explana-
tion in terms of the model formulation is that the surface energies relate
to the model parameters according to 7;x ~ €irv/ Wik, so that for different
values of 7;, the model in general involves different values of the W’s. As a
result the shape of the hyperplane of the multi-obstacle/multi-well potential
S ick Wik/4¢ipr changes compared to the symmetric case of equal surface
energies. The consequence is that the connecting trajectories of two minima,
representing stable phase states, do no longer ly along the edges of the Gibbs
simplex, but do now have a contribution towards the center involving foreign
phases. An interpretation in terms of minimizing energy is that the energy of
a pure two phase interface is higher than the energy of an interface involving
small amounts of other foreign phases. A possible solution of this difficulty
is the introduction of higher order potentials of the form ~ ¢;¢;¢ (see [15])
which increase the energy of the center of the Gibbs simplex and which force
the third/foreign phase to vanish at a two phase interface, Fig. 2 b). These
higher order potentials have no physical meaning and enhance the complexity
of the model formulation.
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Fig. 2. a) Contour lines of three phase-field variables at a two phase boundary in a
three phase system for different surface energies and by using a) the multi-obstacle
potential %’L&c,b,-qbk and b) the multi-obstacle potential with additional higher order
correction terms ~ ¢;¢;¢x. The plot in a) illustrates the presence of a third /foreign
phase whereas in b) only the two appropriate phases participate in forming the
boundary
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In the following an alternative solution avoiding the third/foreign phase
contribution at two phase interfaces is proposed. We use the notation

Vik := ¢iVor — oV and Ay = V¢ — ¢ V2.

Next we consider a two phase interface of phases labelled 1 and 2 with ¢5 = 0
in a three phase system. At this interface the evolution equations are

€30 (G212 + 2V 15 - Vo) + % (Wiz2¢2) + mi(e,T)—A =0 (1)
6%2 (_¢IA12 + 2V o - V¢1) + i (W12¢1) -+ THQ(C, T) —-A=0 (2)
7 Wish + Wasd) -2 =0, (3)

where A is a Lagrangian multiplier. From the third equation, the equality
Wis = Wag follows as a necessary condition for A to be constant. For an N
phase system, we obtain Wj; =: W for all i,k = 1,..., N. Subsequently, the
solution to overcome the difficulties of the third/foreign phase contribution
at two phase interfaces is to keep the multi-obstacle potential ik ﬂ;hq&iqﬁk
fixed and independent of the surface energies. As a result, the shape of the
hyperplane of ), _, %kqbiqbk is not influenced by any system parameters
and does not change. Therefore, the above expression for the free energy
contribution f(¢,c,T) of the multi-phase-field model is replaced by

NN N
f@eT) = D T oide+ ) mile;T)i + h(e).
i<k i
Furthermore, the model still consists of enough degrees of freedom to
realize the complete set of parameters of a real physical system.
In the following, the relation between the model parameters and the phys-
ical parameters will be discussed. From substracting (1) and (2) the evolution

of a single two phase interface in one dimension reads ¢ () + Sm_:;;ml =
12

4—‘:‘%(1 —2¢(z)). The solution of this equation is ¢(z) = 1(1+sinai2z) where

g = @ Hence, the interface thickness l;; and the surface energy vi2
relate to €12

T TE12 1 T |W
= — = = - 1 — —_ — !
HLR o, . o 8 0 i f,m W1 -9)do =gy Fas

The interface mobility 115 is

~Mig [, m(e;T)dgp ~ —8C

= M
T # @)z 2 12h12,

Hiz2 =

with m(e;T) = ma(¢;T) = mP (T)e + mi (T)(1 — ¢) and ma(e;T) = 0 for
the two phase interface in equilibrium and where Mj, is the mobility matrix.
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The constant C' is derived from the equilibrium concentration equation at
the interface
0f(¢,c;T -
@:5T) _ (mP (1) — mf (1)) + 2H(c — ) — Ac = 0,
where A. is a Lagrange multiplier. It follows that

1 *
o= E[AC— (ml‘B —mf)qb] 4+c¢* and

m(e;T) = (mP —mM)e+ mf
1 1 2
= “2—5("1? -m{')’¢+ (GgAte )(m{ —mi') +mi
=: C19 + Ca.

The definition for C' is C := %Cl + Ch.

Starting from a real system, the recepy for choosing the model parameters
is; first, take suitable values for €; to represent the surface energies ~;x. This
choice of ¢;;, then adjusts certain interface thicknesses [;x. To realize physical
mobilities 4z, it is now necessary to choose the values of the mobility matrix
M;y, in an appropriate way.

The presented phase-field model is capable to describe both, binary three
phase alloy systems such as eutectics, peritectics and monotectics as well as
solid/liquid phase systems with an arbitrary number of crystals of different
crystallographic orientation. We postulate the set of evolution equations for
the phase fields ¢;(@,t) and for the concentration ¢(x,t) from the gradient
flow of the energy functional

o¢i SF(¢,;T) .
Bt = M@ g, i=1..,N

r_v. {D(cb) [c(l — o)V (%)] }

with diffusion coeffictions D(¢p) = F& Z:h;l D;¢;.

In the binary alloy case N' = 3 and the functions m, (¢; T'), mz(c; T') are de-
termined by the specific form of the phase diagram choosing m3(c,T) = 0 as
a reference frame. Examples can be found in [16]. In the crystal growth case,
the number of phase fields is N and the functions m;(c; T) are my(c;T) =

ma(c;T) = ... = my—_1(c) with mpy(c;T) = 0 representing a lense shape
phase diagram of a solid/liquid phase system. In addition the diffusion co-
efficients of all solid crystals are equal Dy = ... = Dy_;. They are approx-

imately three orders of magnitude less than in the liquid phase labelled N;
D; << Dpn,i=1,...,N—1.

3 Numerical Simulations

The objective of this section is to demonstrate the general utility of the
multi-phase-field model as a computational vehicle to simulate a wide va-
riety of grain growth structures and realistic solidification morphologies in
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peritectic, eutectic and monotectic alloy systems. Pursuing this aim, a se-
lection of numerical solutions of the set of partial differential equations for
the phase-field vector ¢(x,t) and for the concentration c(w,t) is presented.
A finite difference discretisation on a uniform rectangular mesh allied to an
explicit time marching scheme is used for the three phase-fields and for the
solute concentration. Effects of fluid flow have not been taken into account.
Further details concerning the numerical setup and the system parameters
are given in [15].

3.1 Grain Structures

First, we apply the multi-phase-field model to grain growth phenomena. In
this context, the components of ¢(x,t) represent grains of the same phase,
but of different crystallographic orientations. The simulation depicted in
Fig. 3 is performed for a microstructure with four orientational variants and
with a sixfold convex crystalline surface energy anisotropy. The incorporation
of surface energy anisotropy and explicit expressions for crystalline anisotropy
with a typical cusp-like structure are explained in [15]. The evolution of the
grain boundaries in Fig. 3 shows the coarsening of the grain structure and
the formation of facets in the six preferred directions of the Wulff shape.
The anisotropy of the surface energies induces shear forces which change the
equilibrium angle condition of 120°.

In isotropic systems, wetting occurs if the surface energies violate the
stability condition 7;; < vix + 7, - Fig. 4 illustrates computations of wetting
for a system of four different phase fields. The time sequence in Fig. 4 a)
and b) shows the break down of 123 and 234 grain boundary triple junctions
accompanied by the building of channels of the grains 1 and 4 between grain

t=0.00045 t=0.00675 t=0,01350

t=0.02025 £=0.02700 t=0.04725

Fig. 3. Growth of grains with a six-fold anisotropy and with relative angles: ¢12 =
30°, p13 = 45°, 014 = 90°, 23 = 15°, 24 = 60°, paq = 45°
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{b) =

Fig.4. Wetting in an isotropic system with surface energies v12 = V13 = Y14 =
VY24 = Y34 = 0.7 and Y23 = 1.8

2 and grain 3. As a result, the grains remaining last in the coarsening process
of Fig. 4 a) are the grains 1 and 4.

3.2 Multiphase Alloy Systems

Next, the phase-field method is used to numerically simulate phase tran-
sitions in binary metallic alloys. The following computations of multiphase
solidification are carried out under the condition of an isothermally under-
cooled melt and for isotropic surface energies. Further details concerning the
numerical setup and the system parameters are provided in [16].

First, we present a numerical simulation corresponding to peritectic so-
lidification. In a peritectic system, cooled beneath its peritectic temperature,
a new solid phase 3 nucleates, i.e., L+ a — (3. It grows from the undercooled
liquid L and the parent solid phase . By heterogeneous nucleation, the /3
phase often occurs at the @ — L interface. The 3 phase then grows around
the a phase until, either the a phase is completely melted or it is entirely
engulfed within the new 3 phase. For the computation in Fig. 5, we initially
placed circular o solid phase particles of different radii in the liquid region
and within the vicinity of a 8 phase planar front. The solidification velocity
of the growing 3 phase is locally higher in regions close to the melting a
particles due to locally different concentration gradients in the liquid phase.
As a result, the initially planar 3 front deformes due to preferential growth
towards the solid particles. Triplejunctions of all three phases lead the growth
direction, because the « phase provides the supply of solute needed for the
growth of the # phase. Depending on the size of the o particles and on the
solidification velocity of the 3 phase, the a particles either dissolve in the
liquid or become engulfed in the 3 phase. Since we assume stoichiometric
solid phases, the solid diffusivity is zero and the a particles remain stable in
size after engulfment in the 4 matrix.
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03540
03470
03400
0.5330
0.3260
03180
03120

0.3080,

Fig. 5. Engulfment of properitectic « solid particles into a growing [ solid front
following a peritectic phase transition L + a — 3. The plots show the temporal
evolution of the phase configuration and the concentration profile in the liquid phase
in the left and right column, respectively. In this calculation, diffusion in the solid
phases is suppressed, Dy = Dy =0

Next, the result of a numerical simulation corresponding to eutectic so-
lidification is reported. In particular, the specific data of the Al — Si phase
diagram are used for the computation in Fig. 6. Once the metallic melt in
a eutectic system is cooled down below a critical temperature, the liquid
phase L transforms into two new solid phases o and 3 via a eutectic re-
action: L — a + . The black and white regions in the images of Fig. 6
represent the Al- and Si- rich eutectic solid phases a and 3 of the binary
Al — Si alloy system, respectively. The snapshots show the concentration
field of Si in the liquid during the growth of a eutectic grain at different time
steps. We observe zones of depleted solute ahead of the Si-rich solid phase
and concentration enriched regions ahead of the Al-rich solid phase. Due to
an increase of the lamellar spacing during growth, deep concave hollows are
formed at the solid-liquid interfaces and the phase boundaries of the eutectic
microstructure evolve in a disordered manner. The subsequent nucleation of
solid particles of the opposite phase within the concave portion of the inter-
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faces stabilizes the growth behaviour and re-establishes lamellar growth. The
simulated structure is compared with an experimental photograph in the last
image of Fig. 6.

e

0.0003mm 0.04mm

Fig. 6. Phase-field simulation of a eutectic Al — Si grain in comparison with exper-
imental photographs. The snapshots of the calculation display the concentration of
silicon and the evolution of the phase boundaries propagating in time

4 Conclusion

The multi-phase-field model discussed here has been derived in a thermo-
dynamically consistent way and shows a way of how a third/foreign phase
contribution along a two phase interface can be avoided. Numerical simu-
lations of grain boundary motion and binary three phase solidification are
presented which illustrate the general capability of the model to describe
realistic microstructure evolutions.

As a next step of progress, we are recently working on an extension of
the above multi-phase-field model to multicomponent (ternary) multiphase
alloys. To treat the phase transformations in an M-component alloy system
with M + 1 different phases, a vector ¢ = (¢;,...,cp) of M concentration
fields ¢;,i = 1,..., M is introduced, so that the energy functional F(¢,c,T)
now also depends on ¢. The governing equations are complemented by a set of
M differential equations for the diffusion fields. This model extension will be
used to describe the growth of eutectic colonies in ternary eutectic systems.
Another important objective is the investigation of multiscale solidification
phenomena such as primary dendrites with interdendritic eutectic regions.



218 Britta Nestler

Within this context, the aim is to derive new growth laws on larger length
scales by homogenization and averaging the temporal evolution of the struc-
ture on finer scales. Furthermore, it is intended to incorporate convection and
elasticity into the phase-field model. Based on the promising numerical results
in 2 dimensions, simulations in three dimensions using an improved numer-
ical algorithm combined with acceptable computation times are planned in
our future work. These developments will allow to reflect and describe effects
due to three spatial dimensions.
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