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Chapter 1

Introduction

Polarisation is considered as one of the fundamental properties of light. In daily life,

however, this remarkable property is not perceivable at first sight as the polarisation

sensitivity of the human eye is rather poor. Additionally, the polarisation state of light

is subject to a constant change in nature owing to scattering, reflections and refraction at

interfaces. Nevertheless, the polarisation properties of light are commonly made use of in

various everyday applications such as polarising sunglasses which minimise the glare due

to the reflected light from the environment or polarisation filters in cameras which are used

to enhance the contrast of the photographs. Furthermore, polarisation filters for circularly

polarised light are used in 3D-movies to code the different images for the spectators’ eyes in

order to generate a three-dimensional experience.

Actually, polarisation manipulation is not only performed in 3D-cinemas but also in daily

life. Normally, you will never think of polarisation rotation, for instance, when observing

light passing through a glass of red wine. However, if you built a transmittance setup to

detect the emerging polarisation state of linearly polarised incident light that is transmitted

through the wine, you would be astonished to find that the polarisation plane of light is

rotated by about 6◦ in clockwise direction. This optical activity stems from the dextrorotatory

tartaric acid in the wine and the rotatory power originates from the molecular structure of the

tartaric acid. This fascinating effect was already investigated in the early 18th century by

Louis Pasteur who managed to explain why a solution of natural tartaric acid, obtained from

wine indeed, exhibits optical activity while for tartaric acid derived from chemical synthesis

optical activity is completely absent. He therefore separated the sodium-ammonium-tartrate

crystals from the synthesised solution and found that there were equal amounts of two mirror

symmetric forms (enantiomers) of the tartrate crystals. After tediously sorting the crystals

with a magnifying glass and a pair of tweezers, Pasteur demonstrated that the solutions of

the two enantiomers rotated the polarisation plane of light into opposite directions while

the (racemic) mixture of the two solutions of tartrate showed no polarisation change at all.

He was therefore the first to demonstrate that optical activity depends on the handedness or

“chirality” of the molecules in solution [1].

The term “chirality” stems from the greek word “χειρ” meaning “hand” and describes

geometrical structures that cannot be mapped onto their mirror image by any kind of rotation,

1



2 Chapter 1. Introduction

translation or combinations thereof. As a consequence a chiral structure does not exhibit

inversion and/or mirror symmetry. Following this recipe, J. C. Bose demonstrated optical

activity in artificial composite chiral materials in 1898. Bose literally twisted a bundle of

parallel 10-cm-long jute fibres in order to measure the optical rotation power of this chiral

composite material at radio-frequencies [2].

Only shortly afterwards Paul Drude developed a concept to describe optical activity in

helical-shaped conducting materials. The basic idea behind his concept is that coupling of

the electric and the magnetic field components of light provided by circulating ring currents

in the conducting helix leads to a rotation of the polarisation plane of the incident linearly

polarised light [3]. Karl F. Lindman verified Drude’s model of optical activity in 1920 [4]

by measuring the optical rotatory power of 2 × 500 manually bent copper helices at 13-

cm-wavelength (1-MHz to 3-MHz-frequency). His measurement revealed that the optical

rotatory power of the metal helical composite structure reaches that of natural materials just

like tartaric acid, for instance. This magnetoelectric coupling can also be found in chiral

molecules where electric/magnetic moments in the different functional groups within the

molecule give rise to optical activity. Hence, in order to fabricate an optically active medium,

one needs to have control over both the geometry and the magnetoelectric coupling of the

material system.

Recent progress in nanofabrication techniques, in particular electron-beam lithography,

has opened new paths to bring optically active materials to optical operation frequencies.

As a consequence, many groups are interested in fabricating artificial chiral materials that

even outperform optical activity and circular dichroism of natural materials in the optical

spectral range. However, obtaining a magnetic response from natural materials, which is

essential for magnetoelectric coupling, is challenging as the magnetic permeability of all

natural materials is nearly unity for THz-frequencies. The electric permittivity on the other

hand can normally be found to vary to a certain extent particularly at high frequencies above

ω0 = 10THz. Thus, we need to gain control over the electric and magnetic response

at optical frequencies with the use of artificial materials which can be designed to fulfil

our requirements. These manmade materials are named “metamaterials” as they provide

functionalities going “beyond” those of natural materials (from the greek prefix “μετά”

meaning “beyond”). The principle idea behind this concept is that a periodic arrangement

of metal nanostructures with a lattice constant much smaller than the wavelength of light

can be regarded as an effective material since the incident light is not able to resolve the

periodic substructure of the metamaterial. We can then tune the effective response of the

metamaterial by choosing the design of the underlying artificial building blocks. If we make

use of this degree of freedom, many interesting effects that cannot be found in nature can

result: a magnetic response at optical frequencies [5, 6] or even a negative refractive index

[7, 8], just to mention two examples which gained much attention in the past years. The

most prominent artificial building block is the so-called split-ring resonator (SRR), a U-

shaped metal nanoparticle that can be seen as plasmonic analogue of an LC-circuit providing

a magnetic response even at optical frequencies [5]. The SRR enables us to couple electric

and magnetic dipoles with the magnetic and electric component of the incident light field

[9], one prerequisite of obtaining optical activity.
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The second main ingredient for optical activity is chiral symmetry. Since electron-beam

lithography as standard nanofabrication technique sets certain limits to possible metamaterial

designs, most chiral metamaterials at optical frequencies are based on arrays of planar

nanostructures [10, 11] which, strictly speaking, cannot exhibit a chiral optical response as

“planar chirality” does not exist in a three-dimensional world. Hence, structural asymmetries

in propagation direction of light have to be introduced in order to provide three-dimensional

chirality [11]. This requirement implies a construction scheme for three-dimensional

chiral metamaterials specifically designed for electron-beam lithography: we start with an

achiral planar structure and introduce a certain “twist” into the axial-direction in order to

achieve structural chirality of such a composite structure (instead of “molecular” chirality).

Using this method we obtain three-dimensional chiral metamaterials exhibiting large optical

activity and circular dichroism that can even exceed that in tartaric acid (≈ 13◦/dm) or in a

solution of sugar molecules (≈ 66◦/dm), for example.

Outline of this Thesis
Chapter 2 gives an introduction into the basic concepts of optics in general and to the concept

of metamaterials in particular. We describe what effects can be expected when we vary the

permittivity ε and the permeability μ of an isotropic effective medium. We then include

magnetoelectric coupling into our reasoning and classify effective materials with respect to

their effective material parameters. Thereby, particular emphasis is laid on chiral materials.

In Chapter 3 we review the optical response of metal nanoparticles and introduce the split-

ring resonator (SRR) and the cut-wire pairs as fundamental plasmonic building blocks for

magnetic metamaterials. In Chapter 4 we then describe the nanofabrication tools used for

fabrication of the planar and bi-layer metamaterial structures and introduce our experimental

setups for optical characterisation before we present our results on coupling of effective

magnetic moments in nanostructured arrays in Chapter 5. We demonstrate that strong

magnetic coupling between metallic nanostructures can be achieved and even retardation

effects play a major role on the scale of common metamaterial designs.

In the following chapter (Chapter 6) we review the basic properties of chiral structures

and of light propagation in chiral media on the one hand. On the other hand we will have

closer look at the methods how circular polarised transmittance spectra are obtained and how

the polarisation state of the emerging light is analysed. We will then present our results on

optical activity and circular dichroism in double-layer gammadion-shaped metamaterials in

Chapter 7. We demonstrate that optical activity in our double-layer gammadion structures

is based on the structural asymmetry in the axial direction and that the optical response is

compatible with reciprocity. In Chapter 8 we present our results on three-dimensional chiral

metamaterials consisting of chiral dimers of two functional layers which are rotated with

respect to each other. These structures exhibit pure, large optical activity in combination with

circular dichroism that outperforms values of natural materials by orders of magnitudes.

Finally, in the last chapter of this Thesis we summarise our results on magnetic coupling

and chiral metamaterials and conclude with a brief outlook.
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Chapter 2

Fundamentals of Metamaterials

Maxwell’s equations are the fundamental equations describing all electromagnetic phe-

nomena. When an electromagnetic wave propagates in a natural material, which is

characterised by a lattice constant much smaller than the wavelength of light, the light

field effectively averages over the fine atomic substructure and only “sees” an effective

homogeneous medium. In this case, wave propagation can be described by the macroscopic

Maxwell’s equations. Normally it is sufficient to introduce two effective quantities in order

to account for the medium involved – the relative permittivity ε describing the material’s

electric response to an electromagnetic wave and the relative permeability μ describing the

corresponding magnetic response. The refractive index of an isotropic medium, ε and μ

Figure 2.1: Illustration of a (gold) twisted-crosses chiral metamaterial from three different point of views.

The left-hand side illustrates the effective-medium view on an 80× 80 μm2 field of the metamaterial observed

via an optical microscope (scalebar is 25 μm). The incident light field only “sees” the effective metamaterials

response. A coloured SEM image of a 4×4 array of twisted crosses is shown in the middle (scalebar is 500 nm)

representing the “macroscopic” point of view. The metamaterial’s response is given by the response of the pairs

of coupled gold crosses. The artist’s view on the microscopic “kinetic gas theory” proposed by Paul Drude to

describe the optical response of metals [3] is shown on the right-hand side (scalebar is 5 Å). The electrons (in

blue) are “scattered” by the (yellow) gold atoms.

being scalars, follows from the well known relation n2 = εμ. In nature, any magnetic

response from conventional materials vanishes (μ = 1) at infrared and higher frequencies,

as magnetic polarisation in natural materials follows from orbital currents or unpaired

electron spins which are resonant in the GHz-region. In contrast to that, significant electric

polarisation can only be obtained for THz-frequencies owing to the resonant behaviour of

5



6 Chapter 2. Fundamentals of Metamaterials

electric excitation modes. This is why in most textbooks only the permittivity ε is used as

a characteristic material parameter whereas the permeability μ is very often set to unity at

optical frequencies.

In order to tune the electric and magnetic response (ε and μ) of a material we have to

go down to the atomic scale and replace the atoms in the crystal lattice by “artificial atoms”

which exhibit the required optical response. If this artificial material or metamaterial, which

surely cannot be fabricated on an atomic scale, meets the requirement that the lattice constant

is much smaller than the wavelength of the incident light, it can still be regarded as an

effective medium with a specific effective permittivity and permeability based on the design

of the “artificial atom”. For ε and μ being open to discussion, plenty of additional intriguing

effects besides the well-known world of optics result. Probably the most prominent feature is

the negative index of refraction [12–14] that can be achieved when ε and μ both are negative

in the same spectral region. In this case, n = −√|ε||μ| according to Equation (2.32).

Going one step further, we can also imagine materials in which a magnetic polarisation

can be excited by an incident electric field and an electric polarisation by an incident

magnetic field. Now we have to account for an additional material parameter ξ characteristic

of a whole new class of materials, so-called bianisotropic materials. A very interesting

subclass of bianisotropic materials are biisotropic or chiral materials, being able to rotate

the polarisation plane of incident linearly polarised light.

In the following, we start with the macroscopic Maxwell’s equations and motivate the

use of effective material parameters to describe the effective response of isotropic media.

After an introduction to the concept of metamaterials we will motivate the use of the

effective-medium theory formulated by Maxwell-Garnett [15] for metamaterial structures

and present some popular aspects and possible applications of isotropic metamaterial

designs. Finally, the metamaterial term is expanded to include the class of bianisotropic

and biisotropic or chiral materials and we will discuss how (meta-) materials are classified

with respect to the properties of the effective material parameters.

2.1 Maxwell’s Equations for Isotropic Media

The propagation of electromagnetic waves is characterised by the macroscopic Maxwell’s

equations (in SI units) [16]

∇D = ρ (2.1)

∇B = 0 (2.2)

∇× E = −∂B

∂t
(2.3)

∇×H = J+
∂D

∂t
(2.4)

with the following notations and units:

• E electric field, [E] = Vm−1
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• D electric displacement, [D] = Asm−1

• H magnetic induction, [H] = Am−1

• B magnetic field, [B] = Vsm−2

• ρ free electric charge density, [ρ] = Asm−3

• J free electric current density, [J] = Am−2

• ε0 electric permittivity of vacuum: ε0 = 8.8542 · 10−12 AsV−1m−1

• μ0 magnetic permeability of vacuum: μ0 = 4π · 10−7 VsA−1m−1

Strictly speaking, we would have to start with the microscopic Maxwell’s equations taking

microscopic currents and charge distributions into account. Since experimentally we

rather detect the temporal and spatial mean value of the microscopic fields than the actual

microscopic fields of, e.g., electrons and atoms on the atomic scale, we can describe the

optical response of any (macroscopic) object by the macroscopic1 Maxwell’s equations

given by Equations (2.1)-(2.4). Now the effects resulting from the atomic substructure of

the material are described by an effective electric and magnetic polarisation P(E,H) and

M(E,H), respectively. The resulting constitutive material relations between the electric

field and the electric displacement and between the magnetic field and the magnetic induction

are given by:

D = ε0E+P(E,H) (2.5)

B = μ0 (H+M(E,H)) (2.6)

As we want to limit ourselves to linear optics, i.e., we want to deal with weak electric fields

only, we can expand P in a power series and neglect all terms of higher order than the linear

term. If we further neglect coupling of the electric field component to the magnetic field

component M(E,H) ≈ M(H) and vice versa P(E,H) ≈ P(E), we exclude bianisotropic

and chiral media (see Section 2.3) at this point. The linear response function of the electric

polarisation is then given by:

P(r, t) =

∫ ∞

−∞

∫ ∞

−∞
χe(r, r

′, t, t′)E(r′, t′)dtdr′ (2.7)

Here, χe is a second-rank tensor. In isotropic, uniaxial and biaxial crystals we can find a

diagonal representation of χe where the field components Ei (i ∈ x, y, z) decouple. This

results in linearly polarised eigenstates of the wave equation (2.14), (2.15). In this chapter,

we restrict ourselves to effective materials fulfilling the following simplifications:

1The material parameters of the “macroscopic” Maxwell’s equations must not be confused with the effective

material parameters of metamaterial structures obtained by the effective-medium theory. The “macroscopic”

Maxwell’s equations rather relate to systems between the microscopic world and the effective-medium theory

used for the description of metamaterials (see Fig. 2.1)
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• isotropic medium, i.e., P(r, t)||E(r, t) ⇒ χe(r, r
′, t, t′) → χe(r, r

′, t, t′)

• homogeneous medium with local response:⇒ χe(r, r
′, t, t′) → χe(t, t

′)

• no explicit time dependence:⇒ χe(t, t
′) → χe(t− t′)

• causality, i.e., χe(t− t′) ≡ 0 for t < t′

We now obtain

P(r, t) = ε0

∫ t

−∞
χe(t− t′)E(r, t′)dt. (2.8)

Fourier transformation from the time domain into the frequency domain

f(ω) = F {f(t)} =
1√
2π

∫ ∞

−∞
f(t)eiωtdt (2.9)

finally results in

P(ω) = ε0χe(ω)E(ω). (2.10)

Following the same reasoning we deduce for the magnetisation

M(ω) = χm(ω)H(ω) (2.11)

χe(ω) and χm(ω) are the electric and magnetic susceptibilities, which characterise the linear

response of the material to an external field. We therefore obtain the macroscopic material

equations in the following form:

D = ε0 (1 + χe(ω))E

= ε0ε(ω)E (2.12)

B = μ0 (1 + χm(ω))H

= μ0μ(ω)H (2.13)

with the (relative) electric permittivity ε(ω) and the (relative) magnetic permeability μ(ω).

Wave Propagation in Isotropic Materials

The wave equation for an electromagnetic wave in an isotropic linear medium can easily be

obtained from Maxwell’s equations (2.1)-(2.4):(
Δ− μ0ε0

∂2

∂t2
με

)
E = 0 (2.14)(

Δ− μ0ε0
∂2

∂t2
με

)
B = 0 (2.15)

The wave equations can be solved using a plane wave ansatz, i.e.,

E(r, t) = E0e
i(kr−ωt) (2.16)
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and

B(r, t) = B0e
i(kr−ωt) , (2.17)

respectively. We obtain

k2 − μ(ω)ε(ω)μ0ε0ω
2 = 0 (2.18)

and consequently

k2 = n2(ω)k0
2 . (2.19)

Here, c0 =
√
1/μ0ε0 is the vacuum speed of light, k0 is the wave vector in vacuo and

n2(ω) = μ(ω)ε(ω) (2.20)

is the material’s refractive index. We can also identify the dispersion relation for an

electromagnetic wave in an isotropic medium:

k = n(ω)
ω

c0
(2.21)

For real-valued refractive indices the phase velocity vp and group velocity vg are given by

vp =
ω

k
=

c0
n(ω)

= c (2.22)

vg =
∂ω

∂k
=

c0

n(ω) + ω ∂n(ω)
∂ω

(2.23)

Hence, for natural materials the phase velocity normally is parallel to the wavevector (see

Figure 2.2: Electromagnetic wave propagating in vacuum. Wavevector k and Poyntingvector S are in the same

direction perpendicular to E and B.

Fig. 2.2) while in the case of anomalous dispersion
(

∂n(ω)
∂ω

< 0
)

the group velocity may

become antiparallel with respect to the wavevector k in a specific spectral region. Since for
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dielectric materials the group velocity and the energy flow, i.e., the average energy flow per

unit time and unit area

〈S(r, t)〉 = 1

2
Re [E(r, t)×H∗(r, t)] (2.24)

are oriented parallel to each other, this results in so-called backward waves.

Finally we can determine the angle of refraction θt of a plane wave passing through an

interface of two effective media at an arbitrary angle θi using Snell’s law

sin θi
sin θt

=
nt

ni

. (2.25)

We can additionally determine the complex reflection and transmission coefficients of a plane

wave at an interface making use of Fresnel’s equations [17]

rs =

(
E0r

E0i

)
s

=

ni

μi
cos θi − nt

μt
cos θt

ni

μi
cos θi +

nt

μt
cos θt

=
Z−1

i cos θi − Z−1
t cos θt

Z−1
i cos θi + Z−1

t cos θt
(2.26)

ts =

(
E0t

E0i

)
s

=
2ni

μi
cos θi

ni

μi
cos θi +

nt

μt
cos θt

=
2Z−1

i cos θi

Z−1
i cos θi + Z−1

t cos θt
(2.27)

rp =

(
E0r

E0i

)
p

=

nt

μt
cos θi − ni

μi
cos θt

ni

μi
cos θi +

nt

μt
cos θt

=
Z−1

t cos θi − Z−1
i cos θt

Z−1
i cos θi + Z−1

t cos θt
(2.28)

tp =

(
E0t

E0i

)
p

=
2ni

μi
cos θi

ni

μi
cos θt +

nt

μt
cos θi

=
2Z−1

i cos θi

Z−1
i cos θt + Z−1

t cos θi
(2.29)

The impedance of the medium is defined by

Z =

√
μμ0

εε0
= Z0

√
μ

ε
(2.30)

where Z0 is the vacuum impedance. Note that in many optics textbooks (see, e.g., Ref. [17])

the permeability μ is set to unity at optical frequencies. In the case of magnetic (meta-

)materials, however, μ is an essential parameter and must not be neglected.

Negative Refractive Index

Although the refractive index for common materials is always positive, it is possible to obtain

negative values of n under certain conditions. In particular, when calculating the square root

n = ±√
με (2.31)

for complex values for ε and μ one obtains [18]

n =
√
|ε||μ|exp

[
i

2

(
arccot

ε′

ε′′
+ arccot

μ′

μ′′

)]
(2.32)

where

ε = ε′ + iε′′, and μ = μ′ + iμ′′ .
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In order to obtain a negative refractive index, a negative real part of both the permittivity

and the permeability is not necessarily required as the imaginary parts have to be considered

as well. However, the best performance of negative-index materials is achieved when Re[ε]

and Re[μ] both are negative. In either case, the material parameters ε, μ and n have to fulfill

several physical conditions:

1. Passive Medium:

Since we want to limit our discussion to passive media, we have to ensure that the

imaginary part of the refractive index is always positive as otherwise a propagating

wave will grow exponentially. Equation (2.32) already implies that this conditions is

always fulfilled as

0 <
1

2

(
arccot

ε′

ε′′
+ arccot

μ′

μ′′

)
< π. (2.33)

2. Energy Conservation:

The energy density w of the electromagnetic field, which in the case of transparent

dispersive media is given by

w = Re

[
∂ (ε(ω)ω)

∂ω

]
|E|2 + Re

[
∂ (μ(ω)ω)

∂ω

]
|H|2 ≥ 0 (2.34)

has to be positive. If both ε and μ were frequency independent and negative, the energy

density would be negative as well. Due to energy conservation this is not feasible,

hence, for negative values of ε and μ dispersion is absolutely essential.

3. Causality:

The real- and imaginary parts of the material parameters are connected via the

Kramers-Kronig relations [16] as otherwise the material’s response to the electroma-

gnetic field would be preceding the exciting fields, hence, violating causality. As a

consequence, any dispersive medium is always more or less absorbing as well. For the

permittivity ε(ω) the Kramers-Kronig relations read:

Re [ε(ω)] = 1 +
2

π
PV

∫ ∞

0

Im [ε(ω′)]
ω′2 − ω2

dω′ (2.35)

Im [ε(ω)] = −2ω

π
PV

∫ ∞

0

Re [ε(ω′)]− 1

ω′2 − ω2
dω′ (2.36)

PV being the principle value of the integral

PV

∫ ∞

−∞
f(x)dx =

∫ ∞

−∞
PV [f(x)] dx = limε→0

[∫ x0−ε

−∞
f(x)dx+

∫ ∞

x0+ε

f(x)dx

]
.

However, tuning ε and μ alone is not the only route to achieve a negative index of refraction.

An alternative material class presented by Pendry [19] is provided by chiral materials, where

negative values for n can be obtained for circularly polarised light. This class of materials

additionally requires coupling of the electric field to the magnetic field which we explicitly

excluded before as it is subject to Chapter 6.
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2.2 The Metamaterial Concept
In the preceding section we have dealt with wave propagation in a conventional medium.

As we are now interested in engineering the material parameters in order to manipulate

the dispersion and the polarisation properties of an electromagnetic wave in this medium,

we have to find the appropriate materials that fit our requirements. Unfortunately, there

is only a limited choice provided by nature. While the electric permittivity can normally

be found to vary to a certain extent particularly at high frequencies (ω0 > 10THz), the

magnetic permeability of all natural materials is nearly unity [20] for THz-frequencies.

Thus, we need to fabricate artificial materials to tune the electric and magnetic response

at optical frequencies. These manmade materials are named “metamaterials” as they provide

functionalities going “beyond” those of natural materials (from the greek prefix “μετά”

meaning “beyond”). The principle idea behind this concept is to design a fundamental

building block which interacts with the incident light in a fashion that provides the desired

optical response. If the incident light in turn can only “see” an effective response of many

of these artificial building blocks, the metamaterial can be described by effective material

parameters (see Fig. 2.1).

An arrangement of “artificial atoms” whose interparticle spacing is much smaller than

the wavelength of the incident light fulfills this requirement and can thus be seen as an

effective medium. Although a periodic arrangement of the “atoms” in a metamaterial is

generally not necessary, it is often chosen in order to ease the fabrication process. In this

sense metamaterials are often referred to as artificial periodic structures with lattice constants

a well below the wavelength of light

λ � a . (2.37)

Due to the strong coupling of electromagnetic waves to metal particles via plasmonic modes

(see Chapter 3), the functional building blocks of metamaterials are usually made of metallic

nanostructures. By properly designing the shape of those metallic particles we are capable

of manipulating the dispersion and polarisation of an incident plane wave:

• Firstly, we are able to excite not only electric dipoles via small (spherical) metal

inclusions (see Chapter 3.3) but also magnetic dipoles can be excited by properly

designing the shape of the nanoparticles. The most prominent representative is the

so-called split-ring resonator (SRR) introduced in Chapter 3.4. The resulting magnetic

permeability μ 
= 1 is a prerequisite for tailoring the magnetic properties of the

metamaterial. In combination with thin metallic wires which provide a negative

permittivity ε we obtain a negative refractive index metamaterial, for example (see

Section 2.2.1).

• To gain control over the polarisation state of light we have to couple the magnetic and

electric field components to induce optical activity and circular dichroism. This can be

achieved by, e.g., the chiral structure designs introduced in Chapter 7 and 8.

The first theory to deal with the linear optical properties of such composite materials

was developed by Maxwell-Garnett in 1920 [15]. In his work, Maxwell-Garnett derived
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an effective-medium theory for materials composed of (non-periodic) small spherical metal

particles embedded in a dielectric host material (so-called metal glasses or stained glasses).

Assuming that the wavelength of the incident light is much larger than the characteristic

interparticle separation (or lattice constant) a, i.e., λ/a � 1, he deduced an expression

for the effective electric response in the “macroscopic” Maxwell’s equations and therefore

formulated an effective-medium theory. Today, the ratio λ/a is the principle measure for

a structure design to be classified as a metamaterial, a photonic crystal or an ordinary

diffracting material. For natural crystals and visible light the typical ratio of λ/a is about

Figure 2.3: The ratio between incident wavelength λ and lattice constant a classifies the view on the interaction

of light with matter. Starting from geometrical optics, where light is considered as rays undergoing reflection

and refraction processes, we pass the scattering or diffraction regime where the wave aspect of light is crucial.

Entering the effective-medium limit for λ/a > 1, interaction processes of light with matter can be described

by effective material parameters. Almost all natural materials lie in this regime for optical frequencies.

1000, hence visible light cannot resolve the individual atoms. In metamaterials this ratio

is usually lower ( commonly λ/a ≈ 3 − 10) but still the incident light cannot resolve

the fundamental building blocks. If the ratio is reduced to two or less, Wood anomalies

[21, 22] and Bragg scattering occur and the effective-medium approximation becomes highly

questionable. When λ/a is on the order of unity, the spatial dependence of the permittivity

becomes relevant and results in a photonic band structure of a so-called photonic crystal (see

Fig. 2.3).

In this Thesis we use the term metamaterial only for materials which do not exhibit

Bragg scattering in the relevant spectral region as this would clearly contradict the effective-

medium view. Thus, the ratio of resonance wavelength over lattice constant for the fabricated

metamaterial structures is chosen to be λ/a > 2.

2.2.1 Negative-Index Metamaterials
The most prominent metamaterial designs that have been fabricated in the early years of

metamaterials are the negative-index metamaterials. We therefore want to give a short

introduction to this topic.

Typically, a negative-index metamaterial is a metal-dielectric composite that exhibits a

negative refractive index n < 0 within a particular spectral range. This can be achieved

by fulfilling the sufficient condition that Re[ε] < 0 and Re[μ] < 0, or by fulfilling the

more general condition that Re[ε]Im[μ] + Re[μ]Im[ε] < 0. Remarkably, the negative-

index metamaterials with both negative permittivity and negative permeability show the best

performance (lower losses), i.e., the ratio −Re[n]/Im[n] is higher than for metamaterials
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which “only” fulfill Re[ε]Im[μ] +Re[μ]Im[ε] < 0. Hence, it is desirable to achieve negative

permittivity and negative permeability in the same spectral region. We therefore need to

tailor both the electric and the magnetic response of the metamaterial unit cell. While the

desired electric response can simply be obtained by the use of thin metal wires acting as

a “diluted metal” [23], a magnetic response can be achieved by resonantly exciting a ring

current in a U-shaped metallic nanoparticle, for instance. Thus, the first negative-index

metamaterial design is a combination of the split-ring resonator (SRR) which was introduced

as “magnetic atom” by Pendry [5] in 1999 and thin metallic wires as diluted metal with a

plasma frequency at GHz-frequencies [23]. The experimental realisation was performed by

Smith et al [12] in 2000 for wavelengths of about 6 cm (5-GHz-frequency). In the frequency

range where the constituents alone, the SRR or the diluted metal, have a purely imaginary

refractive index n = i
√|ε||μ|| (ε < 0, μ > 0 or ε > 0, μ < 0) no wave propagation

is possible. The transmittance in this region is nearly zero (see Fig. 2.4(c) red and blue

curves). In contrast to that, for the composite structure (ε < 0, μ < 0) wave propagation is

allowed and we find non-zero values for the transmittance (see Fig. 2.4(c) black curve). This

is the spectral region where according to Equation (2.32) the refractive index is negative. A

model calculation following the results of [12] for the transmittance spectra of the composite

structure consisting of a resonant magnetic metamaterial and a diluted metal is presented in

Fig. 2.4.

As the structure dimensions of the combined negative-index metamaterial are on the

order of λ/10 it can be described by effective-medium theory and therefore by the commonly

known textbook material equations

D = ε0ε(ω)E (2.38)

B = μ0μ(ω)H (2.39)

n = ±√
εμ. (2.40)

Now the question arises how one can obtain the actual effective material parameters of a

fabricated metamaterial structure. Since the material parameters cannot be measured directly,

a negative index of refraction was first indirectly demonstrated from the occurence of the

above mentioned pass bands [7, 12, 24] in the transmittance spectra and deduced from

numerical calculations. Later, a negative refractive index was experimentally verified [8, 25]

by measuring the (negative) angle of refraction. However, it is also possible to do it the other

way around.

2.2.2 Effective-Parameter Retrieval

As the effective material parameters are directly connected with the complex-valued reflec-

tion and transmission coefficients via the Fresnel equations (2.26)-(2.29), it is also possible

to retrieve the effective parameters from the normal-incidence reflection and transmission

data of an effective-medium slab [26, 27]. The basic assumption is that if an inhomogeneous

structure of the thickness d can be replaced conceptually by a continuous effective material

of the same thickness, then the scattering characteristics should be identical as well (see
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Figure 2.4: Model calculation for the effective magnetic response of a split-ring resonator array (red curves)

and the effective electric response of an array of metal wires (blue curves). (a) shows the real (solid) and

imaginary (dashed) parts of the modelled effective material parameters ε and μ. The light red area indicates

the region where Re[μ] < 0, the green line marks the relative frequency where Re[ε] = 0. The calculated

real/imaginary part of the refractive index is shown in (b) (black solid/dashed). The gray shaded area indicates

the region of negative Re[n]. (c) shows the calculated transmittance spectra for the split-ring resonators (red)

and metal wires (blue) alone. The transmittance of a 780-nm-slab of the composite negative-index structure

with a pronounced pass band, where Re[ε] and Re[μ] are negative, is plotted in black. The (angular) frequency

is normalised with respect to the resonance frequency of the split-ring resonators.
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Figure 2.5: Schematic illustration of the field components for the Fresnel equations for the retrieval of the

effective refractive index n, impedance Z, permeability μ and permittivity ε of an isotropic metamaterial slab

of thickness d from the complex reflection and transmission coefficients.

Fig. 2.5). In this case analytical expressions for the refractive index n and the impedance

Z can be found based on the complex-valued amplitude transmission coefficient (t) and the

complex-valued amplitude reflection coefficient (r) [27]

Z = ±Zi ·
√ (

1+r
t

− cos (nk0d)
)2

− (Zi/Zt)
2 (1− cos2 (nk0d))

(2.41)

with

cos (nk0d) =

(
1− r2 + Zi/Ztt

2

t (1 + Zi/Zt + r (Zi/Zt − 1))

)
. (2.42)

For the refractive index n we obtain

Re [n] = ±Re

[
1

k0d
arccos

(
1− r2 + Zi/Ztt

2

t (1 + Zi/Zt + r (Zi/Zt − 1))

)]
+

2πm

k0d
, m ∈ Z (2.43)

Im [n] = ±Im

[
1

k0d
arccos

(
1− r2 + Zi/Ztt

2

t (1 + Zi/Zt + r (Zi/Zt − 1))

)]
(2.44)

Zi and Zt are the impedances of the media in front of and behind the metamaterial layer,

respectively. The signs in Equations (2.41)-(2.44) have to be chosen in order to fulfill energy

conservation, meaning Re [Z] ≥ 0 and Im [n] > 0. This results in unambiguous values for

Re [Z], Im [Z] and Im [n]. Re [n] has to be determined by requiring n to be an analytical,

physically reasonable function. Starting with m = 0 for ω → 0 and a positive value for

Re [n] as starting point, this gives us a continuous function for the refractive index. From

these values the effective permittivity ε = n/Z and the effective permeability μ = nZ

are derived [27]. We note that we choose a “physically reasonable” range for Re [n].

Strictly speaking, the choice of the arcus-cosine function still is ambiguous and the effective

parameter retrieval has to be taken with caution.

Validy of the Retrieved Parameters

The interpretation of the effective parameters in the optical regime is difficult especially

for two-dimensional metamaterials consisting of a single functional layer. Since the derived
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values for the material parameters are intrinsic properties of the material, they should not vary

with sample thickness d, i.e., with the number of periods in the z-direction, otherwise the

effective parameters cannot be viewed as effective “bulk” material parameters and the optical

response is rather based on (surface) coupling effects than on wave propagation effects in the

effective medium. Indeed in the optical regime, there is a strong influence of the number

of layers in z-direction on the effective parameters in experiments owing to strong coupling

effects [28, 29]. Therefore it is favourable to fabricate multi-layer metamaterials with a large

number of functional layers in propagation direction in order to minimise surface effects

[25, 28–30].

Furthermore, effective material parameters exhibiting pronounced resonance behaviour

have to be taken with great caution. Large fluctuations in the refractive index may result

in an effective wavelength within the material that is on the order of or even smaller than

the lattice constant in the x-, y- or z-direction. In this case, strictly speaking, the effective-

medium theory is not valid anymore.

2.2.3 Negative Refraction
A second possibility to determine the refractive index of isotropic negative-index metama-

terials is to evaluate the angle of refraction. For oblique incidence with an angle θi we

can measure the angle of refraction θt of the emerging light beam and obtain the refractive

index of the effective medium using Snell’s law (see Ref. [8]). In contrast to positive-

index materials, however, the angle of refraction for a negative-index metamaterial will

be negative (θt < 0) – hence, the light is refracted to the “wrong” side of the surface

normal. To understand this behaviour, we will have a closer look on the field configurations

at an interface of a negative-index medium in comparison to a positive-index medium (see

Fig. 2.6).

For given effective material parameters we can calculate the complex reflection and

transmission coefficients of an electromagnetic wave passing the interface using Fresnel’s

equations (2.26)-(2.29).

Figure 2.6 illustrates s-polarised and p-polarised incidence of light onto a positive-index

and a negative-index medium, respectively. We clearly observe a negative angle of refraction

θt for light impinging onto a surface to a negative-index medium. Applying the boundary

conditions for the E- and the B-fields at the interface of a positive-index material to a

negative-index material and taking Maxwell’s equations into account we can derive the

orientation of the E- and B-fields as well as the direction of the wavevector and the Poynting

vector inside the negative-index material. From

n (k0 × E) = ωμμ0H and S = E×H

we obtain that the wavevector inside a negative-index medium is antiparallel to the Poynting

vector, hence antiparallel to the direction of energy propagation. Taking the material

equations into account, we obtain the field configuration plotted in Fig. 2.6. Remarkably,

the energy in both vacuum and medium propagates from left to right, while in the negative-

index medium the phase velocity is opposite to the propagation direction. Waves showing
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Figure 2.6: Illustration of the propagation characteristics of an electromagnetic wave impinging from vacuum

onto a halfspace with refractive index n = +1.88 [(a)+(c)] and n = −1.88 [(b)+(d)] for s-polarised incidence

[(a)+(b)] and p-polarised incidence [(c)+(d)], respectively. Remarkably, for the case of a negative refractive

index the light beam is refracted to the “wrong side”. Furthermore, the wavevector kt is antiparallel to the

Poynting vector S as the tripod of k, E and B is left-handed.

this behaviour are also referred to as backward waves. Due to the phase-matching condition

for the parallel component of the wavevector on both sides of the interface, the wave is

refracted to the same side of the surface normal as the incident wave. Thus, a negative angle

of refraction θt < 0 with respect to the surface normal results.

Although negative refraction is a consequence of a negative refractive index, it is no

sufficient condition. In particular, negative refraction can also be observed [27]

• In anisotropic materials for specific angles of incidence [31–33]

• In photonic crystals due to anomalous dispersion [34, 35]

• In thin metallic films as a negative beam displacement [36, 37]

• In thin dielectric films as a negative beam displacement due to interference effects

[27].

Thus, negative refraction must not be mistaken as equivalent to a negative refractive index.

2.2.4 Perfect Lens

One very popular candidate for a future application of negative-index metamaterials is the

so-called perfect lens, introduced by J. B. Pendry in 2000 [19]. He calculated that a slab

of a negative-index material (ε = μ = n = −1) is capable of focussing light emitted from
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a point source S in front of the slab onto an image point I behind the negative-index slab

due to negative refraction (see Fig. 2.7(a)). Pendry also deduced that the evanescent modes

of the source are amplified inside the negative-index slab compensating for the exponential

decay outside. As a consequence the image at the back side of the negative index slab is a

perfect reconstruction of the source at the front. Such a perfect lens allows for subwavelength

or even perfect imaging for the ideal case (see Fig. 2.7(b)). In practice, the restoration of

Figure 2.7: (a) Due to negative refraction, light from a source S in front of a planar negative-index slab (n =

−1) can be mapped to its image I behind the slab. Inside the slab an intermediate image is formed. As

d = a + a′ has to be fulfilled the optical path s = (+1)k0a + (−1)k0d + (+1)k0a
′ is zero. (b) For a perfect

lens the large evanescent Fourier components from the source are amplified inside the negative-index slab. This

results in a perfect reconstruction of all Fourier components in the image plane, hence a perfect image of the

source is obtained [19].

the evanescent fields is unfortunately extremely sensitive to deviations from the ideal case

discussed above. Even small losses result in an image resolution that is comparable to normal

lenses in the near-field [38]. In order to save at least the idea of a superlens, i.e., a lense with

subwavelength resolution in the far-field, Liu et al [39] introduced a grating at the back side

of the slab in order to transform the evanescent waves emerging from a negative-index slab

into propagating modes. An alternative way of breaking the diffraction limit is a magnifying

cylindrical hyperlens which makes use of plasmon coupling between close metallic layers to

transport the high-frequency Fourier modes of an image to produce a magnified image of a

subwavelength object [40, 41].

2.3 Maxwell’s Equations for Biisotropic and Bianisotropic
Media

So far we have limited ourselves to isotropic materials where the electric field components

do not couple to the magnetic field components and vice versa. The resulting metamaterial

designs allow for manipulation of the dispersive behaviour of electromagnetic waves.

In particular, negative refraction and perfect lenses result from this approach. If we

explicitly account for magnetoelectric cross-coupling in our structure designs, we have

to revise the material equations (2.12) and (2.13) and take the polarisation state of light
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into consideration. We therefore modify the expressions for the polarisation and the

magnetisation in Equation (2.5) and (2.6) in the following way:

P(E,H) = ε0χeE+ ξH (2.45)

M(E,H) =
1

μ0

ζE+ χmH (2.46)

and obtain for the constitutive material equations [42]:

D = ε0ε(ω)E+ ξ(ω)H (2.47)

B = ζE+ μ0μ(ω)H. (2.48)

As Maxwell’s equation in general are reciprocal, the coupling coefficient of the electric field

component to the magnetic field component ξ and the coupling coefficient for the magnetic

field component to the electric field component ζ have to be directly connected with each

other via the relation ζ = −ξ
t
. The material equations (2.47) and (2.48) consequently read

[42]:

D = ε0ε(ω)E+ ξ(ω)H (2.49)

B = −ξ
t
E+ μ0μ(ω)H . (2.50)

In the most general case a metamaterial is described by the second-rank tensors ε, μ and ξ.

Depending on the structure of these tensors we can classify the metamaterial with respect to

• Anisotropy:

Only ε and μ are tensors connecting D and E fields and B and H fields, respectively.

No magnetoelectric coupling of E and H fields is present (ξ = 0). In uni- or biaxial

crystals, we can find a diagonal representation of ε and μ. We therefore obtain, e.g.,
birefringent materials.

ε =

⎛
⎝ εxx 0 0

0 εyy 0

0 0 εzz

⎞
⎠ , μ =

⎛
⎝ μxx 0 0

0 μyy 0

0 0 μzz

⎞
⎠ , ξ =

⎛
⎝ 0 0 0

0 0 0

0 0 0

⎞
⎠ (2.51)

• Isotropy:

Isotropic materials are a subclass of anisotropic materials where ε and μ are scalars.

The response of the material in any direction of 3D-space is identical.

ε = ε

⎛
⎝ 1 0 0

0 1 0

0 0 1

⎞
⎠ , μ = μ

⎛
⎝ 1 0 0

0 1 0

0 0 1

⎞
⎠ , ξ =

⎛
⎝ 0 0 0

0 0 0

0 0 0

⎞
⎠ (2.52)

• Bianisotropy:

Bianisotropy is the most general case including magnetoelectric coupling. All material



2.3. Maxwell’s Equations for Biisotropic and Bianisotropic Media 21

parameters are tensors. For simplicity ε and μ are often assumed to be scalars as the

essence of bianisotropic media lies in the parameter ξ.

ε = ε

⎛
⎝ 1 0 0

0 1 0

0 0 1

⎞
⎠ , μ = μ

⎛
⎝ 1 0 0

0 1 0

0 0 1

⎞
⎠ , ξ =

⎛
⎝ ξxx ξyx ξzx

ξxy ξyy ξzy
ξxz ξyz ξzz

⎞
⎠ (2.53)

• Biisotropy:

Biisotropic (reciprocal) media are a subclass of bianisotropic materials. They are

also referred to as Pasteur media or chiral media as they are capable of rotating the

polarisation plane of incident light. Here, all material parameters ε, μ and ξ are scalars

for 3D-biisotropy.

ε = ε

⎛
⎝ 1 0 0

0 1 0

0 0 1

⎞
⎠ , μ = μ

⎛
⎝ 1 0 0

0 1 0

0 0 1

⎞
⎠ , ξ = ξ

⎛
⎝ 1 0 0

0 1 0

0 0 1

⎞
⎠ (2.54)

To determine the propagation behaviour of a plane wave in a specific medium given by the

material parameters above, we insert the corresponding equations into Maxwell’s equations

(2.1)-(2.4) and calculate the corresponding wave equation. For isotropic, uniaxial and

biaxial (anisotropic) natural crystals the corresponding wave equation is characterised by

linear polarisation eigenstates oriented parallel to the crystal axes. In general, however, the

polarisation eigenstates are elliptical.

In this Thesis we will discuss biisotropic or chiral metamaterials like, for example,

an array of chiral twisted-crosses [43] or twisted split-ring resonators [44]. Following

the aforementioned reasoning we want to determine the wave equation, the polarisation

eigenstates and the effective material parameters of the chiral medium. For chiral materials

we consequently have to include magnetoelectric coupling, which we intentionally neglected

so far. Coupling of the electric and magnetic field components can be achieved by coupling

of plasmonic modes in metal nanoparticles. The next chapter therefore focusses on the

optical response of metal nanoparticles – the main ingredient of (chiral) metamaterial

structures.
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Chapter 3

Optics of Metal Nanoparticles

Up to now the raw material for nearly every scientist working in the field of metamaterials

is either gold or silver. Especially gold, being a noble metal standing out by its good

conductivity and general resistance to oxidation and corrosion is a widespread material not

only used for electrical contacts or jewelry. In the vast field of plasmonics gold is used

to a great extend to investigate plasmonic properties of structures like nanospheres, -holes,

-wires, -gratings, perforated thin films, grooves or waveguides, for instance.

Figure 3.1: Picture of the cathedral “Notre Dame de Paris” (left) and its 12-m rose window (middle) fabricated

with stained glasses. The picture on the right-hand side shows a close up of the center of the rose window. The

large variety of colours of stained glasses can be attributed to the different sizes of the metal nanoparticles and

the density of the particles in the glass.

It is therefore of particular interest to understand the optical response of gold films and

of simple gold nanoparticles. This chapter is meant to give a short introduction to plasmonics

with a focus on the optical response of arrays of gold nanoparticles in analogy to arrays of

“artificial atoms” in metamaterials. We start from the analytical modelling of gold as a Drude

metal and go on to the description of the optical response of gold nanoparticles in the scope of

Mie theory, where spherical gold nanoparticles can have several plasmonic excitation modes.

Due to the lack of analytical solutions for more complex particle shapes we will introduce the

electrostatic approximation to derive the (dipole) response of ellipsoidal particles. Finally,

we want to introduce the so-called split-ring resonator (SRR) and the cut-wire pairs, two

basic structure designs for metamaterials exhibiting a resonant behaviour of the magnetic

susceptibility.

23
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3.1 Drude Model
The desire to tailor the optical response of manmade materials (see Fig.3.1) requires effective

coupling of the electromagnetic field to the underlying structures. This goal can be achieved

by the use of highly conductive materials like metals. In typical metals the high electric

conductivity can be attributed to small numbers of electrons located in the outermost atomic

s-orbital. Due to their very low ionisation energy (< 10 eV) the wavefunctions of these

(conduction-band) electrons are extended over the whole (ion) lattice and form a plasma of

delocalised electrons also known as free electron gas.

This concept was first introduced by Paul Drude at the end of the 19th century. The so-

called Drude model is based on his view on metals as a classical gas of electrons performing

a diffusive motion [3]. In this sense, the optical response, i.e., the dielectric function of a

Drude metal can be described as a collective motion of the free electron gas against a fixed

background of positive ion cores.

In the following simple ansatz we assume negligible electron-electron interaction

(independent-electron approximation) and electron-ion interactions (free-electron approxi-

mation). The basic equation of motion for one electron driven by an external electric field is

then given by:

mẍ+mγẋ = −eE (3.1)

where m is the electron’s effective mass and γ is the damping of the system. Here, the

damping owing to the radiation reaction force given by the Abraham-Lorentz formula is

assumed to be small [45]. An oscillating incident light field E (t) = E0e
−iωt then causes an

oscillation of the conduction-band electrons x (t) = x0e
−iωt and consequently results in a

complex amplitude and a complex macroscopic polarisation given by

P = −nex = − ne2

m (ω2 + iγω)
E . (3.2)

We insert this result into

D = ε0E+P = ε0

(
1− ne2

mε0 (ω2 + iγω)

)
E (3.3)

and identify the linear macroscopic permeability of a Drude metal

ε (ω) =

(
1− ω2

pl

ω2 + iγω

)
, (3.4)

where ω2
pl = ne2/ε0m is the plasma frequency. In realistic metals, however, we also have to

take account for the interband transitions of bound electrons which additionally contribute

to the dielectric function. They result in an increase of the imaginary part of the metal’s

dielectric function at the corresponding resonance wavelengths on the one hand. On the

other hand, the real part of the dielectric function is influenced even for wavelengths above

the interband transitions [46]. Hence, for visible or near-infrared light above the interband

resonances, an additional background dielectric constant is used.

ε (ω) =

(
ε∞ − ω2

pl

ω2 + iγω

)
(3.5)
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In 1972 J. B. Johnson an R. W. Christy [47] measured the optical constants for

selective noble metals, namely gold, silver and copper, from transmittance and reflectance

measurements of thin films of 18.5 − 50 nm thickness. They also stated that only for film

thicknesses above 25 nm the values for the refractive indices is independent of the film

thickness. The left-hand side of Fig. 3.2 shows a Drude fit to the experimental data from

Figure 3.2: Experimental data (red crosses) for the dielectric function of gold measured by Johnson and Christy

[47] on the left-hand side and by Bennett and Bennet [48] on the right-hand side. Two exemplary Drude fits

are plotted in green (fit to the Johnson Christy data) and blue (fit to the Bennett data). The Drude parameters

for the VIS/NIR-fit (green) are ε∞ = 9.0685, ωp = 2π · 2163THz, γ = 2π · 19THz and for the far-IR (blue)

ε∞ = 1, ωp = 2π · 2176THz, γ = 2π · 6THz.

the visible (VIS) to near-infrared (NIR) spectral range for gold at λ = 200 − 1800 nm [47].

For comparison, far-infrared data (λ = 3−32 μm) [48] of the permittivity of gold are plotted

on the right-hand side. The data for the VIS/NIR spectral range from Ref. [47] and the

above Drude fit to these data are taken as initial values for the gold’s dielectric function used

in the numerical calculations to the experiments. Nevertheless, this initial parameter set is

a first approximation and may change to some extent as surface roughness and impurities

change the gold quality and influence the damping and the plasma frequency of the Drude

metal. Furthermore, the spectral position of the metamaterial structures has to be taken into

account when modelling the Drude parameters, as for higher frequencies lying closer to

the interband transitions of gold at about 600-nm-wavelength, the experimental data differ

from the far-infrared Drude behaviour. In particular, we have to introduce a background

dielectric constant ε∞ and adapt the plasma frequency to take account for the interband

transitions (see Equation (3.5)). The actual Drude parameters in the numerical calculations

of the metamaterial structures fabricated in this Thesis are chosen to get the best agreement

between numerical and experimental data.

Despite the great problem of oxidation, the most prominent alternative to gold is silver

because of its lower losses and higher conductivity. However, we use gold to avoid the

problem of oxidation in order to preserve the quality of the optical spectra.
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3.2 Mie Theory

When we now go on from closed metal films to arrays or solutions of metal particles, we

enter a colourful world, fascinating the people for ages – starting in the Roman era in the 4th

century AD when the famous Lycurgus cup was fabricated and culminating in the Middle

Ages where stained glass was used for gothic church windows like in the famous 12-m rose

window of the cathedral “Notre Dame de Paris” (built from 1163 to 1345, see Fig.3.1). To

fabricate such an astonishing piece of work, the craftsmen added different metallic salts

during fabrication of the small coloured glass elements. Though, up to the beginning of the

20th century a sound explanation for the occurence of the large variety of colours proved to

be very difficult despite the fact that the fabrication process has been quite well understood

[15]:

“...on the manufacture of gold and copper ruby glasses and of silver glass, the gold or
copper or silver is mixed with the other ingredients of the glass before the first firing. If,
when the glass is formed in a furnace, the whole be quickly cooled, the glass with the metal
in it is colourless and exactly resembles real glass. ... when the glass is re-heated the metal
’crystallises out of solution’ ... and appears in the small particles ... These particles of metal
... account for the colour of the glass.”

The rich variety of coloured stained glasses actually has its foundations in plasmonic

excitations. For a consistent description of this phenomenon, however, it is not sufficient to

account for electric-dipole interactions amongst the metal nanoparticles alone, as Maxwell-

Garnett assumed [15]. The actual dimensions of the metal particles have to be taken into

consideration as well. Hence, one has to solve Maxwell’s equations for the interaction

of a single spherical nanoparticle with an incident electromagnetic field without any

approximation as a first step. This was done by Gustav Mie in 1908 for spherical metal

particles in strongly diluted colloidal metal solutions [49]. The essence of his approach

is that the collective excitation of the electrons at the surface of a particle owing to an

electromagnetic field cannot be assumed to be a mere dipole oscillation for particles larger

than 20 nm anymore. The optical response of a spherical metal nanoparticle is more

accurately described by a multipole expansion including higher-order excitation modes.

For larger particles, the higher-order multipole moments rapidly gain in importance (see

Ref. [20]) and result in a resonance shift with the size of the gold particles.The collective

excitations of the conduction-band electrons (see Fig. 3.3) are named localised surface

plasmons, particle plasmons or Mie resonances.

Combining the two ideas of Maxwell-Garnett and Mie, a great part of the colourful world

of metal glasses could finally be demystified at the beginning of the 20th century.

3.3 Optical Response of Metallic Nanoparticles

In practice, however, especially when talking about metamaterials a spherical metal particle

is rather the exception to the rule. Consequently, the expansion of Mie theory to ellipsoidal

particles would be the next ingredient for the design of metamaterials. Unfortunately, there
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Figure 3.3: The collective displacement of the free electrons against the positive background due to the incident

light field is sketched for an ellipsoid particle at times t = 0, 0.25T, 0.5T, 0.75T . The restoring force of the

depolarisation field points in the opposite direction to the applied field. This results in an oscillation of the free

electrons with respect to the fixed positive background charge.

is no rigorous analytical solution to the problem of an ellipsoidal metal particle interacting

with an electromagnetic field. We therefore have to go one step back again and calculate

the resonance behaviour of a metal ellipsoid neglecting higher excitation modes than the

electric-dipole resonance (see Fig. 3.4). If the particle’s dimensions are much smaller than

the wavelength of light, we can solve the problem of an ellipsoidal metallic particle exposed

to a homogeneous electric field [50]. We consequently discard retardation effects and assume

that the response of the particle to an applied electric field is that of an electric dipole

described by

p = εmαE , α =

⎛
⎝ αx 0 0

0 αy 0

0 0 αz

⎞
⎠ . (3.6)

This approach is also known as the electrostatic approximation. The surface of the ellipsoid

shown in Fig. 3.4 is given by:
x2

r2x
+

y2

r2y
+

z2

r2z
= 1, (3.7)

where rx, ry and rz are the principal axes of the ellipsoid. If an electric field is applied

parallel to one of its principal axes, the polarisability in this direction is given by:

αi =
4

3
πrxryrz

ε(ω)− εm
εm + Li(ε(ω)− εm)

(3.8)

with

Li =
rxryrz

2

∫ ∞

0

1

(r2i + q)
√
(r2x + q)(r2y + q)(r2z + q)

dq (3.9)

where εm is the dielectric constant of the surrounding environment, ε(ω) is the permittivity

of the metal and Li are geometrical factors describing the proportion of one axis with respect

to the other two. Therefore only two axes are independent and∑
i

Li = 1 . (3.10)

In order to make predictions about the spectral positions of the resonances one has to
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Figure 3.4: Illustration of an ellipsoidal gold particle with its minor and major axes in the x-, y- and z-direction,

respectively.

maximise the polarisability, i.e., |εm + Li(ε(ω) − εm)| has to be minimised. For small

imaginary parts of ε(ω) and εm this results in the following condition for ε(ω) for each of the

axes:

ε(ω) = εm

(
1− 1

Li

)
(3.11)

Since Li < 1, Equation (3.11) can only be fulfilled for metals below the plasma frequency.

Finally, the resonance frequency can be derived with the help of the dispersion relation of

gold, for instance (see Fig. 3.2). Furthermore we can deduce a set of very simple “rules

of thumb” for designing and interpreting the optical spectra of metal nanostructures (see

Ref. [20]):

1. An increase of εm, i.e., of the refractive index of the surrounding medium, leads to a

decrease of the resonance frequency and vice versa.

2. If the particle is elongated along the axis parallel to the incident polarisation the

particle’s resonance is red-shifted.

3. If the particle is elongated along the axis perpendicular to the incident polarisation the

resonance is blue-shifted.

This description of the optical response of an ellipsoidal metal nanoparticle can serve as

starting point for qualitative statements on the resonance behaviour of even more complex

metallic nanostructures. Nevertheless, we have to keep in mind that according to Mie theory

[49] the use of the electrostatic approximation for particles larger than about 20 nm has to be

taken with caution. In Chapter 5.2.3 we will see that retardation effects indeed play a crucial

role in metamaterial designs.

3.4 Magnetic Response of Split-Ring Resonators
A solution of small spherical gold nanoparticles that can be described by effective-medium

theory [15] is, in principle, a very simple kind of metamaterial as we are able to influence the

(resonant) absorption and scattering behaviour by varying the particle size and the density of
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the particles, for example. Thus, if we can define the actual shape of a metal nanoparticle,

we will have the tools for manipulating both the dispersive and the polarisation behaviour on

a higher level than “only” absorption and scattering.

Pendry’s design proposal of a cylindrical coil with a single slit [5] was the successful

attempt to influence the effective magnetic response of a metallic structure. The functionality

of this split-ring-resonator (SRR) design is based on the simple idea of a circulating ring

current generating a magnetic-dipole moment perpendicular to the SRR. Provided we have

a closed ring in which the current can flow we are only able to couple to the magnetic-

dipole moment via the magnetic field. In order to efficiently couple to the ring current via

Figure 3.5: The split-ring resonator designs in (a) [12] and (c) [51, 52] can be viewed as a resonant LC-circuit

(b) with a capacitance C, an inductance L and damping R. From this model the magnetic response of a

split-ring resonator (c) can be calculated from Equation (3.15) with the parameters given in (c).

the electric field [53] one has to introduce a capacitance into the structure design. This is

done by the small slit in the cylinder (see Fig. 3.5(a)). According to Ref. [53] this results

in two possibilities to induce a circulating current – one via the incident magnetic field

perpendicular to the SRR (Fig. 3.6(a),(b)) and the other one via an incident electric field

parallel to the gap-bearing side of the SRR (Fig. 3.6(b)+(c)). For both cases, the SRR can be

seen as a small LC-circuit, where the ring represents the inductance and the ends of the ring

form the capacitance (see Fig. 3.5(b)). For an LC-circuit one expects a resonant behaviour

of the underlying currents and consequently an enhanced magnetic moment at the resonance

frequency ωLC . If we use a simplified version of the SRR as shown in Fig. 3.5(c), the standard

formula for the capacitance of a plate condensator

C = ε0ε
wt

d
(3.12)

and for the inductance of a long coil with only one winding

L = μ0
l2

t
(3.13)

can be used to estimate the resonance frequency of the SRR

ωLC =
1√
LC

=
1

l

c0√
ε

√
d

w
. (3.14)

Equation (3.14) implies that any resonance wavelength can be obtained by scaling down
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Figure 3.6: Depending on the orientation of the split-ring resonator with respect to the incident fields the

electromagnetic wave couples to the magnetic oscillation mode via the B- (a) and the E-field (c) only or both

field components can couple to the magnetic mode (b). In (d) only the higher-order electric modes can be

excited.

the structure dimensions. Indeed, the experimental values of the resonance wavelengths of

the SRR have steadily decreased from 30mm [8], via 300 μm [54], 50 μm [55], 3.2 μm [51],

1.5 μm [56, 57], 900 nm [52] down to 500 nm [58]. However, there is a limit to size scaling

when the finite kinetic energy of the electrons, the ohmic losses and the radiative losses in

the metal gain in importance [52, 59, 60]. As a consequence, further feature-size reduction

will hardly reduce the resonance frequency.

The LC-circuit model of an SRR provides a very good estimate for the resonance

frequency condition, as long as the ohmic currents dominate over the displacement currents.

This is fulfilled if the slit width is small. Finally, the magnetic response from the coupled

capacitance and inductance of the SRR can be derived and we get a Lorentz-like behaviour

for the magnetic permeability μ [61]

μ(ω) = 1 +
Fω2

ω2
LC − ω2 − iγω

, (3.15)

where F is the filling fraction of the unit cell (0 < F ≤ 1) and γ is the damping due to

ohmic and radiative losses. Due to the presence of the slit in the SRR, an applied electric

field excites an electric polarisation as well, resulting in an effective permittivity which can

be written as [60]

ε(ω) = 1 +

(
dc0
l2

)2
F

ω2
LC − ω2 − iγω

. (3.16)

The ability to excite a magnetic-dipole moment by an incident electric field is the mani-

festation of magnetoelectric coupling in the SRR (see Fig. 3.7). Consequently, the SRR is,

strictly speaking, a bianisotropic design [62, 63] although this aspect is often assumed to play

a minor role [26] or even not accounted for (see [5, 12, 24], for example). If one accounts

for bianisotropy , the material equations (see Chapter 2.3) are given by Equation (2.49) and

Equation (2.50) and the bianisotropy parameter can be calculated to [61]

ξ(ω) = −
(
dc0
l2

)
Fω

ω2
LC − ω2 − iγω

·
(

0 1

−1 0

)
. (3.17)
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Figure 3.7: Coupling of an electromagnetic wave to the magnetic mode of a split-ring resonator. The induced

current (j) always results in a polarisation (P) and a magnetisation (M) due to the presence of the slit. Hence,

the electric and magnetic field components are coupled via the split-ring resonator.

Plasmonic View on the Split-Ring Resonator

So far we had a look at an analytical model for the excitation of a magnetic resonance in

terms of the LC-circuit model. Actually, when investigating the response of an SRR, there

are additional excitation modes that can only be explained in the plasmonic picture [64].

In the previous section we have investigated the plasmonic properties of ellipsoidal metal

nanoparticles [50]. An incident electromagnetic wave excites a plasmonic mode (particle

plasmon) with a resonance frequency depending on the shape of the particle. If we now

simply bend the two ends of a very long ellipsoidal particle by 90◦, for example, we end up

with the SRR design depicted in Fig. 3.5(c). Indeed, the SRR’s higher modes are similar to

the modes of a straight antenna (see Fig. 3.8):

• The fundamental “magnetic” mode for which half the wavelength fits the length of the

antenna (Fig. 3.8(a)), can be identified as the magnetic mode exhibiting a circulating

current distribution in the SRR.

• The second “vertical electric” mode is obtained when one wavelength fits the length

of the antenna. In the SRR, the currents in the two arms are parallel to each other

(Fig. 3.8(b)).

• The third “horizontal electric” plasmon mode is obtained when three half-wavelengths

of the incident light match the length of the antenna. Here, the currents in the arms

of the SRR are antiparallel (Fig. 3.8(c)) giving rise to a weak magnetic response as

well [57]. In this case, however, no circulating ring current is formed in contrast to the

fundamental mode.

The current patterns for the three modes can all be related to electric-dipole moments, while

only the fundamental mode gives rise to a significant magnetic-dipole moment perpendicular

to the current distribution. The third mode also shows a weak magnetic response, that can

be excited for oblique incidence [57]. Exemplary calculations of the transmittance and

reflectance spectra of an array of split-ring resonators according to Ref. [51] are shown in

Fig. 3.9.
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Figure 3.8: Comparison of the first three excitation modes (a)-(c) of a straight plasmonic antenna (left-hand

side) and of a metallic split-ring resonator (right-hand side). The thin black lines visualise the excitation modes

in the antenna giving rise to the (blue) current distributions (on the left). The equivalent current distributions of

the split-ring resonator are plotted (in blue) on the right. The first excitation mode is the so-called fundamental

“magnetic” mode, the second is the “vertical electric” and the third is the “horizontal electric” mode.

Figure 3.9: Exemplary transmittance (solid) and reflectance (dashed) spectra for an array of split-ring

resonators. Normal-incidence view on the structure is shown in the insets. The scalebar is 500 nm, the

incident E-field vector is indicated as red/blue arrow. The underlying current distributions of the different

resonant plasmon modes is visualised in the spectra. Only for horizontal incidence (lhs in red) the fundamental

(magnetic) resonance of the split-ring resonators can be excited.
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3.5 Magnetic Response of Cut-Wire Pairs
For physical reasons the SRR can hardly be operated at visible frequencies [52, 59]. In

particular, the displacement currents gain more and more importance for the magnetic

properties at high (visible) frequencies [65]. An alternative to the SRR as a “magnetic atom”

is the so called cut-wire pair, proposed Lagarkov et al. [66] and Podolskiy et al. [6, 67].

In the cut-wire pairs, the displacement currents play a major role for the formation of a ring

current. This makes them a more favourable design for operation at visible frequencies.

Furthermore, from the fabricational point of view, smaller feature sizes of the cut-wire pair

design are possible and consequently higher operation frequencies as well.

Coupled Plasmon Resonances

The cut-wire pair can be considered as a coupled system of two electric dipoles, in particular

of the two fundamental particle plasmons of the two wires (see Fig. 3.10). As a result there

are two eigenmodes – a symmetric (high-frequency) mode, where the two particle plasmons

oscillate in phase and an antisymmetric (low-frequency) mode, where both plasmons

oscillate with opposite phase. Owing to the displacement current in the space between the

two wire ends, the antisymmetric mode exhibits a circular current distribution and therefore

produces a magnetic response. It is important to notice that in the case of the cut-wire

Figure 3.10: When combining two single metallic wires (left) to form a cut-wire pair (middle) the particle

plasmons of the individual wires couple and two modes arise – a symmetric electric mode (upper right) and

an antisymmetric magnetic mode (lower right, magnetic moment is plotted in red). Including the displacement

currents between the end of the wires (light blue), the antisymmetric mode shows a ring current (dark and light

blue arrows). The incident plane wave is indicated on the right-hand side of the figure.

pair, retardation effects are of major importance, as for a purely symmetric case (symmetric

geometry in the electrostatic approximation) only the symmetric mode can be excited by

an incident electromagnetic field. In Chapter 5.2.3 we will further investigate the influence

of retardation effects on metamaterials. Exemplary calculations of the transmittance and

reflectance spectra of an array of cut-wire pairs following Ref. [68] are shown in Fig. 3.11.

The ability to excite a magnetisation by an incident electric field and a polarisation by

an incident magnetic field via coupling of particle plasmons makes the SRR and the cut-

wire pairs very interesting and versatile structure designs for metamaterial unit cells. Indeed

the fundamental aspects of the two designs can be identified in all chiral and non-chiral

metamaterials presented in this Thesis.
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Figure 3.11: Exemplary transmittance (solid) and reflectance (dashed) spectra for an array of cut-wire pairs.

Normal-incidence view on the structure is shown in the insets. The scalebar is 500 nm, the incident E-field

vector is indicated as red/blue arrow. The underlying current distributions of the different resonant plasmon

modes is visualised in the spectra.
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Methods

In the following sections we will present the fabrication techniques as well as the optical

characterisation methods for a typical metamaterial sample. In general, there a various ways

for obtaining metamaterial structures. A brief overview can be found in Ref. [69]. The

metamaterials presented in this Thesis, have all been fabricated by electron-beam lithography

(EBL) – a technique that provides the possibility to fabricate nanoscale 2D-mask patterns in

a (positive) photoresist using a scanning-electron microscope (SEM) whose electron-beam

is deflected according to a predefined design pattern. After metallisation by electron-beam

evaporation and a subsequent lift-off process the 2D-photoresist mask is converted into

the desired metallic metamaterial structure (see Section 4.1). The SEM then gives us the

Figure 4.1: SEM images of a planar single-layer cross (left-hand side) fabricated by a standard electron-

beam lithography technique. For the bi-layer twisted crosses shown on the right-hand side a specific two-step

lithography procedure with an intermediate planarisation step was developed (see Section 4.1.3).

opportunity to characterise the geometry of the final metamaterial structures with respect

to structure quality and structure dimensions down to an accuracy of several nanometers.

Electron-beam lithography, however, inherently limits our possibilities to two-dimensional

metamaterial designs like the single-layer cross shown on the left-hand side in Fig. 4.1.

In order to obtain multi-layer chiral metamaterials (right-hand side of Fig. 4.1) a two-step

EBL process with an intermediate planarisation step has to be developed. This procedure is

presented in Section 4.1.3.

For the optical characterisation of our metamaterial samples we use two setups. The

home-built transmittance setup presented in Section 4.2.1 is used to measure the circular-

and linear-transmittance spectra in the spectral range from 500-nm to 2.2-μm-wavelength

(VIS-setup). In addition, this setup offers the possibility to perform angle-resolved

35
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transmittance measurements for angles of up to ±45◦ with respect to the surface normal.

For circular transmittance measurements in the infrared (2.5-μm to 7-μm-wavelength) we

use the commercial Fourier-transform microscope spectrometer (FTIR-setup) described in

Section 4.2.2.

4.1 Fabrication

Electron-beam lithography requires a scanning-electron microscope (SEM) in combination

with a computer-controlled beam-deflection unit to be able to expose a photoresist with

predefined patterns. In the SEM, the electrons emitted from an electron source are

accelerated and focussed onto an image plane by electric and magnetic lenses. With the

help of a beam blanker, inserted at the first image plane, we can switch the electron beam

on and off. Behind the image plane the beam size can be adjusted by several apertures,

which determine the maximum resolution of the image. Then, the beam is focussed onto

the specimen where both the (back) scattered high-energy electrons and the lower-energy

secondary electrons can be detected. An additional beam-deflection unit scans the electron

beam over the sample and provides a grayscale image of the scanned sample area (see, e.g.,
Fig. 4.1).

Making use of the SEM’s functionality, we can also expose a photoresist which is

sensitive to high-energy electrons in order to literally write arbitrary two-dimensional shapes

with a maximum resolution of several nanometers. For this purpose, the beam deflection

unit and the beam blanker are attached to a high-speed pattern generator controlled by a

CAD software.

Unfortunately, the maximum writing resolution is not simply given by the smallest

achievable spot size of the electron beam. Owing to the generation of secondary electrons the

resist on the substrate is also exposed in the proximity of the scanned pattern and fine features

cannot be resolved anymore. This proximity effect results in a decrease of the maximum

writing resolution to values of approximately 10 − 20 nm. Additionally, aberrations occur

when the beam is focussed and deflected from the optical axis. In particular, the electron

beam becomes astigmatic: the focal spot becomes oval and the exposed areas exhibit an

asymmetry following the shape of the spot. This astigmatism has to be corrected by an

additional lens system which has to be adjusted carefully to achieve optimum structure

quality.

In this Thesis we use two different EBL systems:

• A Zeiss “Supra 55 VP” SEM in combination with an external “ELPHI Plus 6 MHz

high-speed pattern generation hardware” by Raith GmbH which is provided by the

DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology

(KIT).

• A Raith “e LiNE” ultra-high-resolution electron-beam-lithography system with in-

terferometric stage. This system is provided by the Institute for Nanotechnology,

Karlsruhe Institute of Technology (KIT).
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In principle, both systems are capable of precise alignment of a second functional layer above

the first one since the positioning of the electron beam alone can be realised with an accuracy

of below 5 nm for both systems. In practice, however, only the e LiNE-system can be used

for the alignment process, as only the interferometric stage allows for driving to the exact

position of the alignment markers with an accuracy of tens of nanometers. This is essential

for the alignment procedure presented in Section 4.1.3.

4.1.1 Sample Preparation
The starting point of the fabrication process is the preparation of the substrates for EBL.

We use 10 × 10 × 1mm3 Suprasil substrates1 covered with a 5-nm-thin film of conductive

indium-tin-oxide (ITO), processed by electron-beam evaporation in an oxygen environment

at pressures of 1.2 · 10−5 mbar. Afterwards the substrate is post-baked for 5 h at 450◦C.

The ITO layer prevents local charging of the substrate during EBL and additionally serves

as adhesion promoter for gold on the Suprasil substrate. Since thin ITO films are nearly

transparent for ultraviolet to infrared wavelengths, it is a suitable conductive material for our

experiments. Finally a (4%) solution of the standard positive resist polymethyl-methacrylate

(PMMA) in anisole2 is spin-coated onto the ITO-covered Suprasil substrate at 5000 rpm for

90 seconds and post-baked at 165◦C for 30 minutes in a convection oven. The resulting ITO-

Suprasil substrate is covered with an approximately 200-nm-thick film of PMMA, which can

now be structured by EBL.

4.1.2 Single-Exposure Electron-Beam Lithography
For the fabrication of single-layer planar metamaterials only one EBL step is necessary.

During exposure of the substrate with high-energy (30 keV) electrons, the chemical bonds of

the long PMMA chains are broken up where the deposited local charge dose exceeds values

of 175 μC/cm2. As a consequence all areas exposed to a charge dose above this threshold

can be removed by a developer consisting of one part methyl-isobutyl-ketone (MIBK) mixed

with three parts of isopropanol. After 20 seconds of development the 2D-negative mask

of the metamaterial structure design is metallised with a 25-nm to 60-nm-thin gold film

by electron-beam evaporation3 at pressures below 10−6 mbar. As a last step, the gold-

covered negative mask is removed during a lift-off procedure performed in hot acetone in

an ultrasonic bath. The low-symmetry metamaterial structure presented in Chapter 5.2.2

and 5.2.3 and the single-layer gammadion metamaterial in Chapter 7.2 are fabricated in

this manner. An illustration of the standard fabrication process of a single-layer planar

metamaterial is presented in Fig. 4.2.

1Suprasil 1 by B. Halle Nachfl. GmbH, Germany
2NANO™ PMMA 950K A4 by MicroChem. Corp., USA
3Evaporation source e-vap 4000-UHV, MDC Vacuum Products Corp., USA; Deposition controller STC-

200/SQ, Sycon Instruments, USA
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Figure 4.2: Illustration of the typical fabrication steps to produce a single-layer metamaterial. After evaporation

(I) of a conductive ITO layer (dark gray) onto the bare glass substrate (blue), the photoresist (light red) is

processed by spin-coating (II). The photoresist is then patterned by EBL (III) and the exposed areas are removed

in a developer. In the next step a 25-nm to 60-nm-thin layer of gold is deposited on the structured sample by

e-beam evaporation (IV). Finally, the photoresist and the excessive gold is removed in a lift-off procedure (V).

4.1.3 Fabrication of Multi-Layer Metamaterials
Simple multi-layered structures composed of two identical layers on top of each other separa-

ted by a dielectric spacer can easily be fabricated by multiple electron-beam evaporation after

the single-layer-EBL process, for instance. Such structures like the double-layer gammadion

metamaterial (Chapter 7.2) or the double-wire pairs (Chapter 5.2.1) consist of a three-layer-

sandwich: one layer of gold, one layer of MgF2 and another layer of gold which are

subsequently evaporated. This method has already been extended to structures consisting

of up to seven layers [30]. The width of each layer, however, decreases with the number

of deposited layers and poses the limit to the maximum number of layers when the width

of the topmost layer approaches zero [30]. In order to obtain “truly” three-dimensional

metamaterials a single EBL step, however, is not sufficient anymore. Particularly, chiral

metamaterials (see Chapter 8) require at least two functional layers rotated relative to each

other. We have therefore developed a two-step EBL process with intermediate planarisation

following the method of Ref. [70]. The crucial part of the two-step EBL procedure is

an accurate alignment of a second functional metamaterial layer with respect to the first

one. We use alignment markers, i.e., 10 μm large gold crosses centered at fixed coordinate

positions with respect to the internal coordinate system (u/v-coordinate-system) of the so-

called writefield4 (see Fig. 4.4). Those markers and the metamaterial structure have to be

written in the first lithography step as illustrated in Fig. 4.3(a).

In order to minimise alignment errors caused by the drift of the electron beam in the

course of the exposure of the first and, particularly, later, when writing the second functional

4The writefield is the maximum scanning range of the electron beam without moving the sample stage of the

SEM
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layer, we have to minimise the overall exposure time of the metamaterial field. This can

be achieved by using single-line exposures in combination with high dose-factors instead of

low-dose area-mode exposures. Additionally, the high-dose line mode reduces asymmetries

of the single nanostructures arising from stigmation aberrations of the electron beam. The

CAD-design file of the first functional layer of the twisted-crosses metamaterial discussed

in Chapter 8.1 is illustrated in Fig. 4.3(a). We use a magnification5 of 1800×, resulting in a

maximum writefield size of 100× 100 μm2 and a maximum scanning resolution of 1.6 nm.

Figure 4.3: (a) The first layer (red) of the CAD file contains the alignment markers (red crosses) and the

metamaterial’s first functional layer (red square). The maximum writefield size of 100× 100 μm2 is indicated

as black-dashed line. (b) During alignment the outermost marker positions are scanned via line-scans (blue

lines). The deviation of the scanned marker positions to the expected positions is translated into writefield

correction values. (c) As a final step the second functional metamaterial layer (green) is exposed. (d) A zoom

into the two functional layers shows the twisted-crosses metamaterial design investigated in Chapter 8.1.

Planarisation

After processing the first functional metamaterial layer on the substrate the sample is

planarised by a 500-nm to 700-nm-thick layer of commercially available spin-on dielectric6

(SOD). This dielectric spacer layer is processed by three cycles of spin-coating at 3000 rpm

for 60 seconds and a subsequent post-bake on a hotplate at 120◦C for one minute. After

three cycles, the sample is post-baked for 30 minutes in a convection oven at 120◦C. Then

the 500-nm to 700-nm-thick spacer layer is gradually etched down to the desired thickness

by reactive-ion etching7. The film thickness is measured by a thin-film reflectometer8.

Depending on the final thickness of the spacer layer a second conducting ITO layer has

to be deposited since, during EBL, charging effects of the non-conductive spin-on dielectric

increase with the thickness of the spacer layer. This can result in a substantial beam drift.

Owing to the short exposure times for the metamaterial structures investigated in Chapter 8

(spacer thicknesses of s ≈ 50− 150 nm) an additional ITO layer has not been required.

Finally we have to provide the photoresist for the second exposure. We therefore spin-

coat an additional layer of PMMA onto the planarised substrate.

5The magnification of the SEM determines both the maximum scanning resolution and the maximum writefield

size.
6IC1-200, Futurrex Inc., USA
7RIE Plasmalab80Plus, Oxford Instruments Plasma Technology, UK, gas flows are: 40 sccm of SF6 and

10 sccm of Ar; Process parameters are: forward power of 80W and chamber pressure of 100mTorr. This

results in an etching rate of about 1− 1.5 nm/s.
8NanoCalc 2000, Mikropack GmbH, Germany
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Alignment and Second Exposure

In order to position the second functional metamaterial layer right above the first one in the

second EBL step we have to find the positions of the alignment markers written in the first

EBL step without exposing the photoresist in the areas relevant to the second layer. It is

therefore of fundamental importance that the positioning accuracy of the SEM stage is well

below 100 nm even for travel distances of several millimeters. This basic requirement is

fulfilled for the e LiNE system’s interferometric stage.

Figure 4.4: Simplified illustration of the alignment procedure. The global SEM coordinate system (x/y-axes)

is chosen to have its origin at the lower left corner of the substrate (blue). The absolute position of the

metamaterial field has to be found with an accuracy of few tens of nanometers. The zoom in on the right-

hand side shows the markers (yellow crosses) written in the first lithography step which are tilted with respect

to the expected positions (blue squares). The first metamaterial layer is indicated in red. The original writefield

(black/white-dashed line) of the original internal u/v coordinate system (in gray) has to be shifted by Δu and

Δv and rotated by Δα after the alignment scans of the markers on the substrate. The corrected new u′/v′

coordinate system (in red/blue) is used for the exposure of the second metamaterial layer.

Once the approximate position of a specific field is found the exact orientation of the

internal u/v-coordinate system of the electron beam is determined by scanning the (three)

expected positions of the alignment markers of the first layer (see Fig. 4.3(b)) and calculating

the correction values for the scaling, the rotation and the u/v-shifts of the new u′/v′-axes from

the actual positions of the markers (see Fig. 4.4). Normally the corrected position of the new

u′/v′-coordinate system, hence, the size of the area to be written in the second EBL step

still lies within the maximum scanning range of the original u/v-coordinate system. Then

the stage is not moved and the second EBL-step can be started using the corrected u′/v′-
coordinate system. Otherwise the stage position has to be corrected and a new alignment is

necessary until the second layer lies within the maximum writefield. The exposure patterns

of the two layers, the alignment markers and the scan marks for the alignment procedure

are programmed with the CAD software of the e LiNE system (see Fig. 4.3(c) and (d)).

Owing to the underlying first metallic metamaterial layer and the additional spacer layer,

backscattering of the electrons increases. As a consequence, new relative exposure doses for

the second functional layer of the metamaterial have to be chosen.

The alignment procedure presented here can be fully automated. In practice, however,

the best results are achieved by a semi-automated procedure: one has to manually check the

values for the scaling, u/v-shift and -rotation and repeat the alignment procedure if necessary

before starting the exposure. In this way a misalignment between the two functional layers
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of below 10 nm over the entire sample footprint of 100 × 100 μm2 has been achieved. An

overview of the whole fabrication process is presented in Fig. 4.2 and Fig. 4.5.

Figure 4.5: The fabrication steps of a two-layer metamaterial structure are illustrated in this figure. Starting

with the planar metamaterial structure (I) obtained by the standard EBL-process depicted in Fig. 4.2 the sample

is planarised by spin-coating of an about 500-nm-thick layer of spin-on dielectric (II). After etching this spacer

layer (in light green) down to several tens of nanometers (III) the photoresist (light red) is deposited on the

planarised sample by spin-coating (IV). The second functional layer of the metamaterial is then written by

EBL (V). After evaporation of the final gold layer (VI) and the lift-off procedure (VII) the final two-layer

metamaterial is obtained.

4.2 Optical Characterisation

For linear optical characterisation of the metamaterial structures presented in Chapter 5, 7

and 8 we use two dedicated setups, a home-built spectroscopy setup for visible and near-

infrared wavelengths from 0.5 − 2.2 μm and a commercially available FTIR-spectrometer

for the infrared from 2.2-μm to 7-μm-wavelength. Both setups are equipped with polarising

optical components to perform polarisation spectroscopy.

4.2.1 Transmittance Measurements in the Visible/Near-Infrared

The home-built transmittance setup for visible and near-infrared wavelengths (VIS-setup) is

schematically shown in Fig. 4.6. Light from a 100-W-tungsten-halogen lamp is focussed into

a multimode optical fibre and sent into the optical setup where the collimated beam passes
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through a Glan-Thompson polariser9 followed by a superachromatic quarter-wave plate10

(SQWP). The collimated beam passes an aperture and a microscope objective11 focussing

the light onto the substrate with an effective half-opening angle of 5◦ corresponding to a

numerical aperture of NA = 0.088. The substrate is mounted onto a 3D-micrometer stage in

combination with a 360◦ rotation stage and two goniometers (Δα = ±25◦) which enables us

to perform angle-resolved measurements. The emerging light passes a second microscope

objective producing a collimated beam which is sent through a second combination of

a SQWP and a Glan-Thompson polariser. Then the light is imaged onto a rectangular

knife-edge aperture where only the relevant part of the sample is selected for detection.

Finally, the light transmitted through the selected area of the sample can be sent into a

CCD-camera or it can be coupled into a second optical fibre attached to either an optical

spectrum analyser12 (0.5-μm to 1.7-μm-wavelength) or a home-built FTIR spectrometer (a

piezo-controlled Michelson interferometer with a liquid-nitrogen-cooled indium-antimonide

detector from 0.5-μm to 2.2-μm-wavelength). Owing to the polarisation devices behind the

Figure 4.6: Illustration of the VIS-setup for the visible/near-infrared. Light from a tungsten-halogen lamp is

sent through an optical fibre (OF1) into the optical setup. After the collimating lens (L2) a polariser (P1) in

combination with a SQWP generates circular polarisation. The circularly polarised light then is focussed by a

microscope objective (O1) onto the sample (S). A second microscope objective (O2) collimates the emerging

light that passes the analysing SQWP and polariser (P2) afterwards. A focussing lens (L3) produces an

intermediate image on a knife-edge aperture (KN), by which the detectable area of the sample can be selected.

The emerging light is collimated once again (L3) and a kinetic mirror (KM) is used to select one of the detection

devices. Hence, the light is focussed by either L5 onto a CCD-camera or by the microscope objective O3 onto

a second optical multimode fibre (OF2) which feeds an optical spectrum analyser or a home-built Fourier

transform spectrometer, respectively.

sample, this setup not only allows for choosing the incident polarisation but also enables

us to analyse the polarisation state of the emerging light. It is therefore also possible to

measure the intensity conversion of circular- as well as of linear-incident polarisation into

the corresponding orthogonal polarisation state. A detailed description of how circularly-

polarised light is generated and analysed is provided in Chapter 6.5. All transmittance spectra

9Glan-Thompson Polariser 3PTO001, Melles Griot, USA
10Superachromatic λ/4 Plate RSU 2.4.15, 600-nm to 2700-nm-wavelength, B. Halle Nachfl., Germany
11Zeiss Achroplan LD 20x KO, NA = 0.4.
12ANDO AQ-6315B Optical Spectrum Analyzer
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are normalised with respect to the transmittance right beside the metamaterial field, i.e., with

respect to the transmittance of the bare glass substrate with the ITO layer. For linearly

polarised transmittance measurements, the SQWPs are removed from the optical system.

4.2.2 Transmittance Measurements in the Infrared
For experiments in the infrared spectral range (2.5-μm to 7-μm-wavelength), we use a

commercial Fourier-transform spectrometer13 with an attached optical microscope (FTIR-

setup). The light is focussed and collected with ×36 reflective Cassegrain lenses (NA = 0.5).

Hence, the sample is illuminated at oblique incidence at angles from between 15◦−30◦ with

respect to the substrate’s surface normal. In order to achieve normal incidence with small

angles of incidence, we have modified the Cassegrain optics by introducing a small circular

aperture such that the full opening angle of the light incident onto the sample is reduced

to about 5◦. By tilting the sample by 22.5◦ we achieve normal incidence of the emerging

light beam onto the sample (see Fig. 4.7). The detection is realised by a liquid-N2-cooled

InSb-detector. A linear CaF2 “High Extinction Ratio” holographic polariser14 and a custom-

made MgF2-based superachromatic quarter-wave plate15 are mounted in a compact holder

and provide circularly polarised incident light (for details concerning the orientation of the

SQWP and the polariser we refer to Chapter 6.5.4). Unfortunately, our experimental setup

does not allow for analysing the emerging polarisation of light. Again, all transmittance

spectra are referenced to the transmittance of the glass substrate and the ITO layer.

Figure 4.7: Illustration of the FTIR-setup for infrared transmittance measurements. The combination of a

polariser and the SQWP generate circular polarisation. The RCP/LCP light is then focussed onto the sample

by a reflective Cassegrain lens. A small aperture in the Cassegrain objective realises small opening angles of

5◦. The sample is rotated by 22.5◦ to achieve normal incidence.

13Bruker Tensor 27 with Bruker Hyperion 1000, Bruker Optik, Germany
14Bruker Optik GmbH, Germany
15B. Halle Nachfl., Germany
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4.3 Numerical Calculation and Postprocessing
In order to support and interpret our experimental data, we perform numerical calculations

with the commercial finite-element software package COMSOL Multiphysics16. We use

predefined library functions (MKFEM, version 2.0 by M. W. Klein [71]) as a simplified

interface to the COMSOL software package in a MATLAB17 environment. Numerical

calculations are performed with an iterative solver and a multigrid mesh hierarchy, i.e., a

coarse mesh is generated in a first step and in the second step the problem is solved for a

refined mesh containing all edges of the coarse mesh. Alternatively, the coarse mesh can be

issued with vector elements of higher orders instead of the mesh refinement in the second

step. Owing to the lower memory consumption of this method compared to a direct solver

this allows us to calculate larger models. Numerical convergence of the calculated results,

however, has to be checked. We therefore vary the mesh discretisation and check that the

calculated results do not vary systematically by more than 2% for finer meshes than the

original one. We use periodic boundary conditions in the x- and the y-direction (propagation

in negative z-direction) to account for the periodic arrangement of the metamaterial’s unit

cells. We therefore have to restrict ourselves to rectangular metamaterial unit cells in a

rectangular lattice. Nevertheless, this is often only a minor restriction. The functionality

of periodic unit cells in the calculations includes interaction via higher-order multipole

moments as well as interaction beyond the nearest neighbours and retardation effects.

The numerical solution of Maxwell’s equations for the given experimental conditions

provides us with the complex normal-incidence transmission and reflection spectra via the

electric fields at the lower (upper) surface of the simulation volume. We have expanded

the model library of Ref. [71] by a post-evaluation method in order to obtain information

about the polarisation state of the emerging light. We can therefore calculate the linear-x

and the linear-y polarised complex-valued transmission for an arbitrarily polarised incident

plane wave. The actual calculations are performed using linear-x and linear-y polarised

incident light. It is then straightforward to translate the results into the transmittances for,

e.g., diagonal (±45◦) polarisations and circular (RCP and LCP) polarisations of the incident

light.

From these results, the Jones matrix of a metamaterial slab and consequently the

polarisation state of the emerging light, the polarisation eigenstates and the optical rotatory

power of the metamaterial design can be deduced (see Chapter 6.5).

16COMSOL Multiphysics GmbH, Germany
17MATLAB, The MathWorks Inc., USA
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Interaction of Dipoles in Metamaterials

The main task for achieving a desired metamaterial response is a proper design of the

shape and the arrangement of metal nanoparticles within one unit cell. A single ellipsoidal

metal nanoparticle or nanoantenna already provides an electric-dipole response in a first

approximation (see Chapter 3.3). We can also create a magnetic-dipole response by simply

bending the antenna to form an SRR (see Chapter 3.4) or by coupling two antennae to

form a cut-wire pair (see Chapter 3.5). If we neglect higher order (multipole-) coupling,

the optical response of simple configurations of metal nanoparticles can be modelled by

an arrangement of effective electric or magnetic dipoles. This motivates the introduction

of a Lorentz-oscillator model to describe both the response of a single dipole driven by an

incident (electric) field and the response of two coupled dipoles.

Figure 5.1: (a) Illustration of the charge distribution of an ellipsoidal metal nanoparticle driven by an electric

field indicated as red arrow. (b) depicts the simplified view on the collective excitation mode (particle plasmon)

as electric-dipole oscillation, described by the Lorentz-oscillator model.

We will present first experimental results on magnetic coupling of double-wire pairs via
a dielectric waveguide [72] and demonstrate direct coupling of the magnetic dipoles within

one unit cell of a particular low-symmetry metamaterial [73]. Furthermore, we provide

experimental evidence that dipole-dipole coupling cannot be treated as a pure near-field

effect anymore, even on the scale of typical photonic metamaterials. We show that far-

field effects, particularly retardation of the dipoles’ response, are of fundamental importance

[74]. Finally, we will extend this concept from two to three dimensions and show that multi-

layered three-dimensional metamaterials exhibit longitudinal coupling of magnetic dipoles.

45
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5.1 Lorentz-Oscillator Model

In this section we want to introduce the use of a simple electric Lorentz-oscillator model (in

close analogy to the optical response of dielectrics) to describe the dipole-like response of

metal nanoparticles to a driving electromagnetic field (see Fig. 5.1). In this model an electron

is displaced with respect to a fixed positive background charge by an oscillating electric field.

The displacement of the charged particles results in an electric-dipole moment given by

p = e ·X0 .

where e is the elementary charge and X0 is the displacement amplitude. The one-dimensional

equation of motion for the oscillating dipole is that of a driven harmonic oscillator:

ẍ+ 2γẋ+ ω̃2
0x = − e

me

E0e
−iωt (5.1)

Here, me is the electron mass, γ is the (ohmic) damping of the system, ω̃0 is the resonance

frequency of the undamped system and E = E0e
−iωt is the exciting field. The resonance

frequency of the undriven damped system is given by Re [ω0] =
√
ω̃2
0 − γ2. For simplicity,

we neglect radiation damping which typically results in a broadening of the plasmon

resonance and is small for small particle dimensions [45]. Solving Equation (5.1) using

the ansatz x = X0exp(−iωt) provides the time-dependent displacement and, hence, the

amplitude and relative phase of the displacement with respect to the excitation

X0 =
eE0

me (ω̃2
0 − ω2 − 2iγω)

.

We can finally calculate the effective electric response of a metamaterial consisting of

an array of non-interacting electric dipoles, which is given by the macroscopic electric

polarisation P = n0 · p. Here, n0 is the dipole density. The effective permittivity then

is

ε(ω) = 1 +
ω2
pl

(ω̃2
0 − ω2 − 2iγω)

with the plasma frequency ω2
pl = (n0e

2)/(meε0). The dielectric function of this electric

Lorentz-oscillator metamaterial is sketched in Fig. 5.2.

5.1.1 Near-Field Dipole-Dipole Coupling

Now, we want to use this simple Lorentz-oscillator model to calculate the near-field response

of two coupled dipoles. We therefore have to solve the two coupled equations of motion

given by

ẍ1 + 2γẋ1 + ω̃2
0x1 +W (x1 − x2) = 0 (5.2)

ẍ2 + 2γẋ2 + ω̃2
0x2 −W (x1 − x2) = 0 . (5.3)
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Figure 5.2: The real part (red) and the imaginary part (blue) of the dielectric function of an ensemble of non-

interacting Lorentz oscillators is plotted on the left-hand side. The x-axis is normalised with respect to the

resonance frequency ω̃0. Owing to its resonant behaviour the real part of the permittivity exhibits negative

values above the resonance frequency. The corresponding amplitude (red) and the phase (blue) of the electric

polarisation P are depicted on the right-hand side.

For simplicity, we assume identical dipoles which are coupled via the positive coupling

constant W . This results in the homogeneous equation system( −ω2 − 2iγω + ω̃0 +W −W

−W −ω2 − 2iγω + ω̃0 +W

)(
X1

X2

)
=

(
0

0

)
which provides two eigenfrequencies

ωL =
√

ω̃2
0 − γ2 − iγ

ωH =
√

ω̃2
0 + 2|W | − γ2 − iγ .

The ratio of the dipole amplitudes is then given by

ωL :
X2

X1

= +1

ωH :
X2

X1

= −1 .

As a result we obtain a low-frequency symmetric mode ωL and a high-frequency antisymme-

tric mode ωH in the case of positive coupling of the two dipoles (W = +|W |). We note that

the total dipole moment of the antisymmetric mode vanishes and, consequently, coupling

to the antisymmetric mode via an electromagnetic field is only possible if we account for

(far-field) retardation effects.

For negative coupling (W = −|W |) we obtain

ωH =
√

ω̃2
0 − γ2 − iγ

ωL =
√

ω̃2
0 − 2|W | − γ2 − iγ

with a ratio of the amplitudes

ωH :
X2

X1

= +1

ωL :
X2

X1

= −1 .
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For negative coupling, the antisymmetric mode becomes the low-frequency mode and the

symmetric mode becomes the high-frequency mode.

If we now translate the results above to specific arrangements of dipoles, we can

distinguish two situations:

• If two coupled dipoles with their dipole axis in x-direction are displaced in x-direction

(longitudinal coupling) the restoring force of the symmetric configuration is at its

minimum. Hence, the symmetric mode is the low-energy mode and the coupling

constant W is positive (see Fig. 5.3(a)).

• If the dipoles are displaced in y-direction (transverse coupling) the restoring force of

the symmetric configuration is at its maximum and the symmetric mode is the high-

energy mode with a negative coupling constant W (see Fig. 5.3(b)).

Figure 5.3: Coupling of two plasmons gives rise to a splitting or hybridisation of the plasmon resonance. For

longitudinal coupling (a) the symmetric mode is the low-energy mode while for transversal coupling (b) the

symmetric mode is the high-energy mode. The orientation of the E-field vector is indicated as red arrow. This

figure is adapted from Ref. [75].

Magnetic Plasmonic Dipoles

So far, we have described the optical response of individual and coupled metal antennae

in the simple model of (coupled) electric Lorentz oscillators. In Chapter 3.4, however,

we already learned that both the optical response of a bent antenna, i.e., an SRR, and of

two coupled antennae, i.e., a cut-wire pair, exhibits a magnetic-dipole moment. These

two designs therefore act as “isolated magnetic dipoles” and can be regarded as magnetic

counterparts of the electric Lorentz oscillator. As a result, the same reasoning as for electric

Lorentz oscillators can be applied to the magnetic-dipole oscillators as well, including

magnetic dipole-dipole coupling. Actually, the coupling strength of magnetic and electric

dipoles in SRR metamaterials (see, e.g., Refs. [76, 77]) and in negative-index metamaterials

presented in Ref. [78] are of the same order of magnitude, hence, the actual arrangement

of plasmonic nanostructures is crucial for the characteristics of the optical response of the

coupled system.
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5.2 In-Plane Interactions of Magnetic Dipoles

We will now investigate arrays of planar metal nanostructures before introducing multi-

layered metamaterial structures in Section 5.3 and more detailed in Chapter 7 and 8. The

coupling of simple spherical gold nanoparticles arranged on a plane substrate has been

investigated by several groups in the near-field regime so far [75, 79–82]. By positioning the

nanoparticles closely together (with interparticle distances of few tens of nanometers) in long

chains, coherent propagation of energy along the chains can be achieved via electric near-

field coupling. In this fashion, even plasmonic switches and plasmonic splitters are obtained

by designing appropriate particle arrangements [80]. These findings imply that coupling

effects in arrays of metamaterial unit cells should be taken into consideration as well. Since

metamaterials exhibiting a magnetic-dipole moment (μ 
= 1) [5] at optical frequencies have

become available only recently [51, 57, 68, 83–85] it is of particular interest to investigate

magnetic coupling effects in nanostructured arrays composed of those “artificial magnetic

building blocks”. In the following sections we present several experiments demonstrating

coupling of “magnetic atoms” in periodic nanostructures.

5.2.1 Magnetic Coupling via Dielectric Waveguides

We use pairs of long gold wires which are separated by a 50-nm-thick spacer layer of

MgF2 (see Fig.5.4(a)) in order to investigate magnetic coupling of a periodic array of

these “magnetic atoms” via a dielectric slab waveguide [72]. The coupling of the resonant

magnetic dipoles to the Bragg resonance in the underlying dielectric waveguide is expected

to result in a mode splitting, i.e., an anticrossing behaviour of the coupled dipole/waveguide

mode. This effect is similar to the mode splitting of two coupled harmonic oscillators which

was introduced in Section 5.1.1.

Figure 5.4: (a) Scheme of our coupled system composed of gold double-wire pairs on top of a dielectric

waveguide. (b) Top-view electron micrograph of a typical sample with a lattice constant of a = 800 nm.

The dielectric waveguide used in our experiments is formed by a quartz glass substrate

covered with a 5-nm-thin layer of indium-tin-oxide (ITO) and a 200-nm-thick layer of
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hafnium oxide (HfO2) which both are deposited by electron-beam evaporation. It supports

guided transverse magnetic (TM) modes in the entire spectral region of interest. The

lattice constant a of the wire pairs is varied within a set of samples from a = 400 nm

to a = 1050 nm in steps of 25 nm. All other parameters are kept constant. The double-

wire pairs have been fabricated by the standard EBL-process (Chapter 4.1.2) followed by a

sequential evaporation of a sandwich of 20 nm gold, 50 nm MgF2 and 20 nm gold and a lift-

off process. The individual arrays have a footprint of 100 μm× 100 μm. A top-view electron

micrograph of the structure with a lattice constant a = 800 nm is depicted in Fig. 5.4(b).

Owing to the structure’s inherent periodicity in x-direction we can couple to the

dielectric waveguide at normal-incidence and perform normal incidence spectroscopy. This

approach has frequently been used for spectroscopy of leaky modes of dielectric photonic

crystal slabs [86, 87], and is related to a usual grating coupler. For polarisation of the

incident light perpendicular to the double-wire pairs (TM polarisation), two pronounced

resonances result from coupling of the electric-dipole resonances of the two individual wires

[66, 68, 85]. The long-wavelength antisymmetric oscillation mode is associated with the

Figure 5.5: (a) Snapshot of the calculated electric (top) and magnetic (bottom) field distribution in the vicinity

of a gold double-wire pair (a = 400 nm) placed on a substrate without dielectric waveguide (reference

sample). The wavelength λ = 1140 nm of the incident light corresponds to the antisymmetric eigenmode

exhibiting a magnetic-dipole response. The electric fields (hence the ohmic currents) in the two wires point in

opposite directions. (b) Snapshot of the calculated electric (top) and magnetic (bottom) field distribution in the

symmetric eigenmode of the double-wire pair. The wavelength λ = 675 nm of the incident light corresponds

to the electric resonance. Since the electric fields in the wires are almost in phase in this case, the electric

resonance has mainly electric-dipole character.
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magnetic resonance where the magnetic field is concentrated in the MgF2 spacer oriented

along the wires (Fig. 5.5(a)). The short-wavelength symmetric eigenmode results in a purely

electric response (Fig. 5.5(b)). For polarisation of the incident field parallel to the wires

(TE polarisation), the array acts as a diluted metal [23] exhibiting no resonant behaviour.

Since we are interested in the coupling of the magnetic-dipole moments to the (dielectric)

waveguide we will focus on the magnetic resonance obtained in TM polarisation.

The transmittance properties of the coupled system are studied with the VIS-setup

(Chapter 4.2.1) at normal incidence for TM polarisation. Normalisation of the spectra is

accomplished with respect to the transmittance of the glass/ITO/waveguide substrate. Since

the transmittance properties critically depend on the angle of incidence, great care has been

taken to orient the surface of the samples normal to the incident light beam. Additionally,

the effective full opening angle of the incident light beam has been reduced to less than 1.5◦.

Figure 5.6: (a) Experimental transmittance spectra for selected lattice constants (a = 400 nm in blue and a =

800 nm in red) of the double-wire waveguide geometry depicted in Fig. 5.4(a). The corresponding calculated

spectra obtained by a scattering matrix approach are plotted in (b).

Figure 5.6(a) shows measured transmittance spectra for two selected samples with a

lattice constant of a = 400 nm and a = 800 nm. The magnetic resonance of the double-

wire pairs corresponds to the dip in transmittance centered at λ = 1200 nm.

• For a = 400 nm, the Bragg resonance of the periodic arrangement of double-wire pairs

coincides with the electric resonance of the double-wire pairs. An avoided crossing of

the latter two modes [86] leads to two new resonances at λ = 630 nm and λ = 780 nm,

respectively.

• By increasing the lattice constant from a = 400 nm to a = 800 nm, the Bragg

resonance shifts to longer wavelengths (see red dashed curve in Fig. 5.7(a)) while the

magnetic resonance keeps its spectral position for lattice constants smaller than 650 nm

(yellow dashed curve). Small variations of the spectral position of the magnetic

resonance can be attributed to variations of the wire width w for the different arrays

due to fabrication tolerances.
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• For lattice constants around a ≈ 800 nm, we observe an avoided crossing of the Bragg

resonance and the magnetic resonance. It results from the strong coupling of the

periodic arrangement of magnetic dipoles provided by the double-wire pairs to the

quasi-guided waveguide mode. A further increase of the lattice constants beyond

a ≈ 900 nm spectrally detunes the Bragg resonance and the magnetic resonance,

which basically yields an uncoupled system again.

The other spectral features which shift to larger wavelengths with increasing lattice constant

correspond to Rayleigh anomalies or to higher-order waveguide modes. Figure 5.7(a) gives

an overview on the complete set of 27 samples with lattice constants from a = 400−1050 nm

in steps of 25 nm depicted on an intuitive gray-scale plot.

Figure 5.7: (a) Measured and (b) calculated transmittance on an intuitive gray scale versus lattice constant a

and wavelength λ for the coupled system. In the experiment, the data from 27 samples of different lattice

constants are summarised (two examples are shown in Fig. 5.6). A pronounced anticrossing can be observed at

a ≈ 800 nm. (c) Measured and (d) calculated transmittance for the control samples without HfO2 waveguide.

In contrast to (a)+(b) no anticrossing behaviour can be observed for the double-wire pairs without waveguide

(c)+(d). The dashed red and yellow curves are guides to the eye.

In order to support our experimental findings, we perform rigorous numerical calcu-

lations based on a scattering-matrix approach [88]. The calculations nicely reproduce the

anticrossing of the magnetic and the waveguide mode (see Fig. 5.7(b)). For our calculation

we use the permittivity of the ITO film εITO = 3.61, the permittivity of the HfO2 waveguide
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εHfO2 = 3.8, the permittivity of the glass substrate εglass = 2.14 and the permittivity

of the MgF2 layer εMgF2 = 1.9. The permittivity of gold is taken from Ref. [47]. The

geometrical parameters correspond to Fig. 5.4(a). The calculated transmittance spectra for

the two selected lattice constants of a = 400 nm and a = 800 nm are shown in Fig. 5.6(b).

The calculated spectra of the overall set of samples is shown in Fig. 5.7(b). Here, the same

graphical representation is chosen as for the experimental data. A direct comparison between

experimental and calculated spectra reveals excellent agreement. In particular, the spectral

position and the width of the avoided crossing are accurately reproduced by the numerical

calculations.

As a control experiment, we also investigate a second set of arrays of double-wire

pairs directly on top of a substrate (covered with 5-nm-thin ITO layer) without a HfO2

waveguide. The transmittance spectra shown in Fig. 5.7(c)+(d) are normalised with respect

to the transmittance of the bare glass/ITO substrate. In the double-wire pairs without

waveguide, no guided modes are supported and no avoided crossing can be observed (see

Fig. 5.7(c)+(d)). Additionally, owing to the lack of the dielectric waveguide only a system

of weakly coupled “magnetic atoms” remains. Now the magnetic resonance of the double-

wire pairs and the Rayleigh anomalies [22] can be identified in the transmittance spectra.

Rayleigh anomalies occur, whenever an integer multiple of the wavelength of the incident

light in the substrate or vacuum becomes smaller than the actual lattice constant a. Then new

grating orders appear and the energy is redistributed giving rise to a dip in the transmittance

(of the 0th order). Rayleigh anomalies are found to have a strong influence on the lineshape

of other resonances, e.g., electric-dipole resonances [89]. However, an avoided crossing with

the magnetic resonance is not expected because the damping is larger than the anticipated

splitting energy of the weakly coupled system.

The measured transmittance spectra for the control samples are depicted in Fig. 5.7(c).

Owing to the different dielectric environment (no HfO2 waveguide) and a slightly smaller

width w = 200 nm of the double-wire pairs, the magnetic resonance is shifted by

approximately 200 nm to shorter wavelengths compared to the magnetic resonance of the

coupled system (with waveguide) in Fig. 5.7(a). At λ = 600 nm (a = 400 nm) the first

Rayleigh anomaly, which corresponds to the opening of a new diffraction order in the

substrate, occurs. As expected for the situation of weak coupling, this Rayleigh anomaly

simply crosses the magnetic resonance when the lattice constant a is increased (see red and

yellow dotted curve in Fig. 5.7(c)). This observation is also reproduced by the numerical

calculation (see Fig. 5.7(d)) and supports our interpretation that the “magnetic atoms” are

only weakly coupled in our control samples without dielectric waveguide.

Comparing the optical properties for the coupled system and the uncoupled system of

“magnetic atoms”, which obviously are rather different (see Fig. 5.7), we can classify the

response of the two systems in the following way: on the one hand the strongly coupled

system can be seen as a resonant magnetic photonic crystal while on the other hand the

effective magnetic response of the uncoupled system is similar to a photonic metamaterial.

For the first case, i.e., for the double-wire pairs on a dielectric waveguide one gets a

pronounced avoided crossing (Fig. 5.7(a)+(b)) characteristic for strong coupling between

the different building blocks (“magnetic atoms”). Hence, this structure reveals pronounced



54 Chapter 5. Interaction of Dipoles in Metamaterials

signatures of Bloch waves (Bragg scattering), commonly ascribed to “photonic crystals”1.

Hence the coupled system can be seen as a model system for a one-dimensional “magnetic

photonic crystal” in analogy to a (resonant) dielectric photonic crystal (see Fig. 5.8).

Figure 5.8: Illustration of dielectric (a) versus a magnetic (b) photonic crystal.

In the second case without the HfO2 waveguide, the coupling between the fundamental

magnetic building blocks is small. As a consequence the latter type of structure can well

be seen as an effective magnetic medium in close analogy to a metamaterial. Nevertheless

we have to be careful when using the term “metamaterial” for the control samples, as the

characteristic ratio of the operation wavelength λ to the lattice constant a is around unity

(λ/a ≈ 1) depending on the actual sample used. To avoid this ambiguity, we now move on

to the metamaterial regime where λ/a > 2.

Our next goal therefore is to achieve direct coupling of the “artificial magnetic atoms” in

a metamaterial which in turn requires an array of closely spaced functional building blocks.

5.2.2 Magnetic Coupling in Low-Symmetry Split-Ring-Resonator Su-
percells

For common magnetic metamaterial designs built from SRRs or cut-wire pairs [51, 57, 68,

83, 85] it is often assumed that the SRRs in a periodic array experience only little interaction

with their neighbours. In particular, the resonant behaviour of the material’s permeability is

often assumed to be equal to that of a single structural unit. However, previous theoretical

work [90, 91] as well as experiments [29, 76, 78, 92] at optical frequencies have already

shown that the mutual interaction by magneto-inductive coupling among SRRs can be a

significant correction and results in phenomena like magnetisation waves, which are not

covered by the effective-medium theory [90].

In the following section we investigate the influence mutual coupling between neigh-

bouring SRRs on the optical response to an incident linearly polarised plane wave [73].

Figure 5.9(a) shows a periodic square lattice of equally oriented magnetic SRRs [57]. The

unit cell containing a single SRR has no rotational symmetry but one vertical mirror plane.

1Photonic crystals are referred to as periodic (dielectric) structures with lattice periodicity a that is comparable

to the wavelength of light. In photonic crystals, diffraction leads to the formation of a photonic bandstructure,

i.e., Bloch waves in the periodic dielectric structure. This behaviour can be seen in close analogy to electronic

bandstructures in semiconductors resulting from the periodic modulation of the potential of the underlying

crystal lattice.
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Figure 5.9: Scheme of (a) a usual split-ring-resonator array. The particular low-symmetry arrangement shown

in (d) is a combination of two arrays of SRRs one oriented in vertical (b) and the other one oriented in horizontal

(c) direction. The dashed white lines in (d) highlight one unit cell. The decomposition of (d) into the blue and

red parts illustrates that by symmetry – without interactions – the array has identical optical properties for

horizontal and vertical incident polarisations, respectively.

Hence, the corresponding point group is C1v. The fundamental magnetic mode of the

SRR can only be excited for horizontal polarisation of the incident light [57]. In this

configuration electric and magnetic dipole-dipole coupling between the SRRs are on the

same order of magnitude and compete with each other [76, 77, 93], the magnetic coupling

being still weaker, though. In order to obtain a metamaterial, where coupling of magnetic

dipoles is the prominent feature, we have designed a dedicated low-symmetry planar periodic

arrangement of SRRs shown in Fig. 5.9(d). The arrangement consisting of four SRRs in a

square unit cell has no rotational symmetry and no vertical mirror planes. The point group

of the unit cell is C1. In contrast to a conventional array of equally oriented SRRs [57] the

split-ring resonators directly surrounding an arbitrary SRR are all oriented perpendicular.

If we restrict ourselves to pure near-field dipole-dipole interactions, the effective electric

dipoles of the neighbouring SRRs are perpendicular to each other and no electric dipole-

dipole coupling is observed [76, 91, 92]. Hence, the leading order of nearest-neighbour

interactions is given by magnetic dipole-dipole coupling. In the following, we show that the

resulting polarisation behaviour of the low-symmetry metamaterial design specifically stems

from in-plane (magnetic) interactions between the single SRRs in a unit cell. We want to

restrict ourselves to nearest-neighbour interactions only as already next-nearest-neighbour

interactions can be assumed to have only little influence (see [79, 80]).

All samples have been fabricated on a glass substrate coated with a 5-nm-thin film of

ITO using standard EBL, electron-beam evaporation of the gold film, and a subsequent lift-

off procedure. The thickness of the gold layer is 50 nm. The low-symmetry unit cells are

arranged in a square lattice with a lattice constant of a = 480 nm and the sample footprint

is 80 μm × 80 μm. An electron micrograph of a representative part of one of the investigated

samples is shown in Fig. 5.10(a).

If we assume zero coupling between the neighbouring SRRs in Fig. 5.9(d) in a first step,

we can anticipate the corresponding optical response of the metamaterial. In this case, the

square unit cell can be decomposed into two parts with equally oriented single SRRs aligned

in the vertical (Fig. 5.9(b)) and in the horizontal (Fig. 5.9(c)) direction, respectively. By

symmetry, the optical response of the array in Fig. 5.9(b) for horizontal (vertical) incident

polarisation is identical to that of Fig. 5.9(c) for vertical (horizontal) polarisation. As a
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consequence, for the combined structure (Fig. 5.9(d)) with four non-interacting SRRs in

one unit cell, the optical response will be identical for horizontal and vertical polarisation.

Additionally, the linear polarisation will be strictly maintained upon transmission for both

polarisations in the absence of interactions between the SRRs.

Figure 5.10: (a) Electron micrograph of a representative region of one of the samples under investigation. (b)

Measured normal-incidence transmittance spectra. T⊥ (conversion) and T|| refer to detecting the perpendicular

and parallel component of the transmitted field with respect to the incident linear polarisation. Owing to SRR

interactions the transmittance for horizontal (green) and vertical (black) incidence show non-zero conversion

while for ±45◦-incidence no polarisation conversion can be detected.

In the next step, we take nearest-neighbour interactions into account. In this case, we

can induce a circulating current, hence, a magnetic-dipole moment is induced in one SRR

by exciting the neighbouring one. Owing to the specific orientation of the SRRs in the low-

symmetry arrangement coupling of the 90◦-rotated SRRs leads to substantial conversions of

vertical (horizontal) linear incident polarisation into the perpendicular horizontal (vertical)

polarisation state. The Jones matrix of the metamaterial design reads

J =

(
A ±B

±B A

)
.

The polarisation eigenstates of this Jones matrix are given by the diagonal polarisations,

i.e., +45◦- and −45◦-linear polarisation. For the two eigenpolarisations, a symmetric and

an antisymmetric magnetic mode are excited, respectively. Owing to transverse magnetic

coupling the two eigenmodes show different resonance frequencies just like for the two

coupled harmonic oscillators in Section 5.1.1: a high-frequency symmetric mode (+45◦

incidence), where all four SRRs in the unit cell oscillate in phase, and a low-frequency

antisymmetric mode (−45◦ incidence), for which one pair of SRRs oscillates with 180◦

phase shift with respect to the other pair in the unit cell (see Fig. 5.11).

Figure 5.10(b) shows normal-incidence transmittance spectra for four different linear

incident polarisations: along the horizontal, the vertical, and along the two diagonal

directions. An additional polariser behind the sample allows for measuring the components

parallel (T||) and perpendicular (T⊥) to the incident linear polarisation, respectively. It
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Figure 5.11: Snapshots of the axial magnetic component Bz in an xy-plane cutting through the middle of the

split-ring resonators (red=positive, green=zero, blue=negative). Depending on the polarisation of the incident

light (see white arrows) a symmetric (a) or an antisymmetric (b) configuration of the magnetic dipoles (red and

blue arrows) can be observed. If coupling between the magnetic dipoles is present, a splitting of the otherwise

degenerate plasmon resonance occurs. The resulting eigenfrequencies of (a) 240THz and (b) 232THz are

highlighted by the two dashed black vertical lines in Fig. 5.10(b) and Fig. 5.12(b).

becomes obvious that horizontal or vertical linear incident polarisation lead to substantial

polarisation conversions (T⊥ 
= 0). In contrast, no significant conversion is found at all for

incident polarisation along either one of the two diagonals which supports that the diagonal

polarisations are indeed the eigenpolarisations of the low-symmetry SRR metamaterial.

Additionally, we clearly observe two different resonance positions for the perpendicular

diagonal polarisations (see two dashed black vertical lines in Fig 5.10(b), right-hand side)

– the fingerprint of (magnetic) dipole-dipole coupling. The frequency splitting of about

8THz between the antisymmetric and the symmetric magnetic modes is about 3.4% of the

mean center frequency of 236THz and indicates fairly strong coupling between the SRRs.

Hence, this behaviour originates specifically from mutual interactions and is not expected

for non-interacting SRRs. The experimental results suggest that the low-symmetry SRR

metamaterial acts as effective waveplate with its two different principal axes along the two

diagonals.

In order to support our above interpretation of the experimental results presented

in Fig. 5.10(b), we have performed additional numerical calculations using COMSOL

Multiphysics (see Fig. 5.12(b)). The geometrical parameters are chosen according to

Fig. 5.12(a). The gold permittivity is described by the Drude model using a plasma frequency

of ωpl = 2π × 2108THz and a collision frequency ωcoll = 2π × 24THz plus a background

dielectric constant of εb = 9.07. The refractive index of the glass substrate is taken as

nSiO2 = 1.45, the thin ITO film is neglected. We use a square unit cell in a square lattice

consisting of four SRRs. The calculated normal-incidence transmittance spectra depicted

in Fig. 5.12(b) nicely reproduce the experiments shown in Fig. 5.10(b). In particular, both

the spectral resonance positions as well as the conversion behaviour (for horizontal and

vertical incidence) are reproduced. To further support our interpretation in terms of the

eigenmodes of the metamaterial, Fig. 5.11(a)+(b) show snapshots of the calculated axial

component of the magnetic field, Bz, in the plane cutting through the middle of the gold

SRRs as false-colour plots. Clearly, the low-frequency resonance at 232THz corresponds

to the antisymmetric eigenmode of the low-symmetry arrangement while the high-frequency
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resonance at 240THz can be identified as the symmetric mode (see Fig. 5.11). Since we

have omitted the influence of the glass substrate in our interpretation, we have performed

additional calculations without any substrate and found a similar overall behaviour, yet

shifted in frequency due to the different dielectric environment (not shown). This indicates

that the overall behaviour is an intrinsic effect indeed.

Figure 5.12: (a) Definition of the geometry assumed in our numerical calculations (compare with experiment

in Fig. 5.10(a)). The gold thickness is 50 nm. (b) Calculated normal-incidence transmittance spectra that

can directly be compared with the experiment in Fig. 5.10(b). The dashed vertical lines indicate the two

eigenfrequencies of the symmetric and the antisymmetric mode for which Fig. 5.11 shows field distributions.

Thus, we find that (magnetic) interaction effects between the single functional elements

within the unit cell of this metamaterial structure play a major role concerning the

polarisation response of the structure. Since the parameters used for this metamaterial

design are quite typical for photonic metamaterials (see, e.g., [57, 94–96]) – in particular,

the center-to-center SRR spacing in relation to the size – we can conclude that interaction

effects between the functional building blocks are far more than a minor variation and have

to be accounted for. Under these circumstances, the effective response of the metamaterial

cannot be described by the averaged response of a single functional building block anymore.

5.2.3 Far-Field Retarded Magnetic-Dipole Interactions
Taking mutual interaction effects between isolated “magnetic atoms” into account, collective

magnetic excitations [90], i.e., magnetisation waves can occur for magnetic metamaterials.

In particular, for magnetically coupled metamaterials like arrays of SRRs [90, 97–99] or

negative-index “fishnet” structures [78] these magnetisation waves can have transversal or

longitudinal characteristics depending on the relative arrangement of the “magnetic atoms”

[90, 97–99]. However, it has been consistently assumed so far that interactions only take

place in the near-fields and, hence, are inherently of short range. In contrast, recent work

on pairs of spherical gold nanoparticles [100, 101] and gold/silver nanoparticle chains [102]

shows that a quasi-static view on the problem of two or more coupled nanoparticles is not

sufficient to describe the dispersive behaviour of the nanoparticle pairs or chains. Instead,
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retardation effects have to be considered even for sub-wavelength particle spacings down

to λ/5 [102]. In the following section we investigate magnetisation waves in the low-

symmetry SRR arrangement presented in Section 5.2.2. We demonstrate that (far-field)

retardation effects have to be accounted for when modelling the dispersive behaviour of

the magnetisation waves [74].

Figure 5.13: (a) Electron micrograph of the low-symmetry split-ring-resonator array under investigation [73,

74]. The primitive unit cell of the metamaterial structure in solid red and the underlying square lattice with

lattice constant a (dashed white) are depicted in (b). Part (c) of the figure shows a snapshot of the axial

component of the magnetic field for the “antiferromagnetic” mode at oblique incidence (p-polarisation) at an

angle of β = 45◦ where a magnetisation wave can clearly be observed.

Transverse coupling of the effective magnetic dipoles in the low-symmetry metamaterial

design (see, e.g., Fig. 5.13(a)) leads to an antisymmetric low-frequency and a symmetric

high-frequency configuration of the magnetic dipoles closely resembling the configuration

of quantummechanical orbital momenta or spins in antiferromagnetic and ferromagnetic

materials. Despite this obvious analogy there are fundamental differences between magnetic-

dipole and spin interactions:

• For one, the magnetic dipoles are inherently connected with the incident light field

whereas the spins exist on their own. As a consequence, the magnetic moment of

the metamaterial always oscillates in time while a spin-related magnetic moment

can be static. Thus, for magnetic metamaterials, the terms “antiferromagnetic” and

“ferromagnetic” mode refers to snapshots of the magnetic-dipole moments for a given

time.

• Furthermore, the coupling mechanism of the “magnetic atoms” in metamaterials and of

the quantum mechanical spins are quite different. For an SRR, interaction takes place

via the electromagnetic field, which comprises magnetic and electric-dipole moments

as well as higher-order magnetic- and electric-multipole moments. Thus, magnetic-

dipole waves in metamaterials are always connected with electric-dipole waves. In

contrast to that, interactions between spins are mediated by the (indirect) exchange

interaction which is not connected with an electric response.
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• Finally, the interaction of spins can be considered as instantaneous [103] while

information transport via the electromagnetic field is limited by the speed of light and

therefore subject to retardation.

Being aware of these points, we want to use the terms “antiferromagnetic” and “ferromagne-

tic” as an intuitive picture for the collective magnetic excitation modes of the metamaterial

as illustrated in Fig. 5.13(c).

In the following we investigate the dispersion relation of the in-plane “antiferromagne-

tic” and “ferromagnetic” magnetisation waves in a low-symmetry planar SRR arrangement.

We will show that not only the frequency but also the damping of the metamaterial’s magne-

tic excitation modes increases or decreases with the in-plane wavenumber depending on the

propagation direction. This behaviour indicates direction-dependent retardation effects and

shows that the damping of photonic-metamaterial modes is significantly influenced by the

interactions among the SRRs and by their relative oscillation phase. This is not surprising

since, in contrast to spin interactions, the information propagation over a typical lattice

constant a of an SRR array takes on the order of 1 − 2 fs. This is comparable to the

oscillation period of the magnetic dipoles in SRRs, resonant at about 200-THz-frequency

(≈ 5 fs). Hence, retardation effects can be expected to play a major role [101, 102].

We excite the “ferromagnetic” and the “antiferromagnetic” eigenmodes shown in

Fig. 5.11 (a)+(b) by the two orthogonal diagonal linear eigenpolarisations of the low-

symmetry SRR array. Having a closer look at the metamaterial’s unit cell in Fig. 5.9(d)

these diagonals coincide with the primitive translation vectors of a second underlying square

lattice, rotated by 45◦. In the following we will refer to the primitive translation vectors

as the x- and y-direction (see Fig. 5.13(b)). This square lattice has a lattice constant of

a =
√
2a′ = 339 nm, where a′ is the center-to-center spacing of the SRRs – in Section 5.2.2,

on the contrary, we have used a unit cell with lattice constant a = 2a′ which is different from

the primitive unit cell used here and consists of four SRRs (this is owing to limitation of the

COMSOL Multiphysics software package described in Chapter 4.3).

Figure 5.14: Scheme of the four different excitation geometries for oblique incidence of light. In each case,

the in-plane wavevector k|| is parallel to the x- or the y-axis of the underlying lattice, hence, either the

“antiferromagnetic” (I and II) or the “ferromagnetic” (III and IV) mode is excited. The configurations I and

III represent s-polarised incidence while II and IV represent p-polarised incidence.

In order to measure the in-plane dispersion relation ω(k||) of the magnetisation waves in

the low-symmetry metamaterial directly in an optical experiment [104] we have to perform

oblique incidence transmittance measurements [78]. The angle of incidence β together with
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the free-space wavelength λ immediately allows for determination of the parallel component

of the incident wave vector. It is conserved at the air-metamaterial interface and therefore

identical with the in-plane wave vector k||. The four different measurement scenarios are

illustrated in Fig. 5.14. The corresponding angular eigenfrequency ω = 2π·f can be obtained

by measuring the resonance position in the extinction spectrum (negative logarithm of the

transmittance T ). Selected typical measured extinction spectra are depicted in Fig. 5.15(a).

To improve accuracy and reliability of the angular eigenfrequencies, we determine the

resonance position and damping by fitting a Lorentzian to the raw data. Repeating this

procedure for positive and negative angles from −45◦ to +45◦ in steps of 5◦ (with an opening

angle of 5◦) as well as for the different polarisation configurations illustrated in Fig. 5.14

leads to the measured dispersion relation shown in Fig. 5.15(b). Here, we have plotted k||
in the first Brillouin zone of the primitive real-space unit cell. Angles β up to ±45◦ with

respect to the surface normal correspond to |k||| ≈ 0.4 × π/a, hence, a substantial fraction

of the first Brillouin zone can actually be accessed experimentally.

Figure 5.15: (a) Selected measured extinction spectra raw data (gray open circles) together with Lorentz fits in

black for the oblique-incidence geometries depicted in Fig. 5.14 (I)-(II). The maximum and median values of

the Lorentzians are indicated by the vertical black lines. The angle of incidence β varies from 0◦ to 40◦ in steps

of 10◦ (from bottom to top). The spectra are vertically displaced for clarity. The measured extinction spectra

for the configurations in Fig. 5.14 (III)-(IV)(not shown) have been evaluated in the same manner. In (b) the

dispersion relations f(k||) = ω(k||)/(2π) resulting from the raw data for the configurations I-IV illustrated in

Fig. 5.14 are presented. The transverse/longitudinal magnetic modes of the “antiferromagnetic” (blue) and the

“ferromagnetic” (red) mode are represented by the solid/open circles. The configurations I and IV correspond

to k|| along the x-direction, II and III to k|| along the y-direction.

The results shown in Fig. 5.15 are additionally confirmed by numerical calculations

obtained in cooperation with S. Burger at the Zuse Institute in Berlin2. We solve Maxwell’s

equations using JCMwave3, a frequency-domain finite-element solver, and Bloch-periodic

boundary conditions in the x- and y-direction (see Ref. [78]). For achieving converged

results we use higher-order, vectorial finite-elements and adaptive mesh refinement. This

treatment clearly includes SRR interactions via higher-order multipole moments, interaction

2Zuse Institute Berlin, Takustraße 7, D-14195 Berlin, Germany and DFG Forschungszentrum Matheon, Straße

des 17. Juni 136, D-10623 Berlin, Germany
3JCMsuite, JCMwave GmbH, Germany
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effects beyond the nearest neighbours and retardation effects. The sample parameters are

chosen identical to those used for our previous normal-incidence experiments presented in

Section 5.2.2. Figure 5.16(a) shows selected numerically calculated raw data in analogy

to Fig. 5.15(a). The calculated dispersion relation in Fig. 5.16(b) is derived by the same

procedure as described above for the experiments. The numerical calculations nicely agree

with the experiments shown in 5.15(a) and (b), respectively. Importantly, the behaviour

of the four dispersion branches – real parts as well as imaginary parts – evolving out of

the “antiferromagnetic” and “ferromagnetic” eigenmode at k|| = 0 qualitatively and almost

quantitatively agrees with the experiments (compare Fig. 5.15 and 5.16).

Figure 5.16: Selected calculated extinction spectra that can be compared directly with the experiment shown in

Fig. 5.15(a). The angle of incidence β varies from 0◦ − 70◦ degrees in steps of 10◦ (from bottom to top). (b)

The resulting dispersion relation from the calculated raw data in (a).

Starting from the low-frequency “antiferromagnetic” and the high-frequency “ferro-

magnetic” mode at k|| = 0 in Fig. 5.15(b) and 5.16(b), four dispersion branches result.

The branches are labelled with numbers that refer to the geometries depicted in Fig. 5.14.

Although the planar SRR array in Fig. 5.13(b) has no center of inversion, no significant

asymmetry of the four dispersion branches can be observed neither in the experiments nor

in the calculations. For two of the four branches in Fig. 5.15(b) and 5.16(b), the resonance

frequency, i.e., Re(f) decreases with increasing modulus of the in-plane wavevector. Thus,

the wave’s group velocity is antiparallel to its wavevector and therefore antiparallel to its

phase velocity as well. This is the characteristic fingerprint of backward waves (vphase ·
vgroup < 0) and would lead to negative refraction at an interface in the plane of propagation.

The other two dispersion branches exhibit parallel directions of phase and group velocity

(vphase · vgroup > 0). More importantly, all four branches shown in Fig. 5.15(b) and 5.16(b)

exhibit a dependence of the mode damping, Im(f), on the in-plane wavenumber k||.
In order to model this specific dispersion behaviour of magnetisation waves in the present

low-symmetry arrangement, we use a simple classical one-dimensional harmonic oscillator

model. The equation of motion of a (magnetic-) dipole moment (or some higher-order

moment) mn(t) at time t and site n of the lattice reads (in analogy to Section 5.1.1)

m̈n(t) + 2γ ṁn(t) + Ω̃2 mn(t) = WΩ (mn−1(t− t0) +mn+1(t− t0)) . (5.4)
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Here, Ω̃ is the eigenfrequency of the undamped system, Ω =

√
Ω̃2 − γ2 is eigenfrequency

of the damped system with the damping constant γ characteristic for the individual harmonic

oscillators. Coupling between the nearest neighbours of the lattice is accounted for by the

real coupling frequency W . The effect of retardation can be described by the time delay

t0. For time-harmonic behaviour ∝ exp(−iωt), the time delay t0 (t0 ≥ 0 due to causality)

translates into a phase shift ϕ = ωt0 ≈ Ωt0 = const.. The latter approximation is justified

under the condition that the actual frequency ω will turn out to differ from Ω only by a few

percent. This leads to the dispersion relation ω(k) with complex ω at real wavenumber k

given by

Re[ω] = +Ω−W cos(ka) cos(ϕ) , (5.5)

Im[ω] = − γ −W cos(ka) sin(ϕ) . (5.6)

Without retardation, i.e., for ϕ = 0, the usual cosine-shaped magnon dispersion relation

[90, 97, 103] is recovered and Im[ω] = −γ is constant. In contrast, for finite phase

delays, ϕ 
= 0, both the mode damping, Im[ω], and the resonance frequency, Re[ω], become

dependent on the wavenumber k. For the special case of ϕ = π/2 the resonance frequency

is even independent of the wavenumber, Re[ω] = Ω = const., while only the mode

damping, Im[ω], is dispersive. A positive/negative sign of the real interaction frequency W

indicates longitudinal/transversal coupling of the dipoles, respectively. Additionally the sign

of the coupling frequency W determines whether the mode damping increases or decreases

with increasing wavenumber k. As a consequence, the increase/decrease of the mode

damping in the experimental and calculated dispersion curves (see Fig. 5.15(b) and 5.16(b))

clearly confirms the influence of retardation effects in our simple model. Having a closer

look at all four dispersion branches, however, we find that the curvature of the dispersion

branches cannot be explained by direct coupling of the transverse magnetic moments of

the SRRs. Instead, the coupling of the individual magnetic moments is established by

indirect interactions via the effective electric dipoles of the SRRs. This is roughly similar

to the RKKY (Ruderman Kittel Kasuya Yosida) interaction where local magnetic moments

couple via spin interactions of the conduction-band electrons in metals. Let us therefore

assume that electric dipole-dipole interactions are the dominant effect between neighbouring

primitive unit cells. In this case, the retardation effects depend on the direction of in-

plane wave propagation and, furthermore, they are different for the “antiferromagnetic” and

the “ferromagnetic” mode since the total electric-dipole moment of the two SRRs in each

primitive unit cell is oriented parallel to the exciting electric-field vector and, hence, oriented

along the y- (x-) direction (see Fig. 5.13(b)) for the “antiferromagnetic” (“ferromagnetic”)

mode, for normal incidence. The “antiferromagnetic” mode propagating along the x-

direction (y-direction) therefore turns out to be a transverse (longitudinal) electric-dipole

wave. Without retardation (ϕ = 0), it is well known that this leads to a decrease (increase) of

the real part of the resonance frequency for increasing modulus of the in-plane wavenumber

– exactly opposite to the experimental observation in Fig. 5.15(b). Including retardation

effects in our reasoning, we find a retardation phase ϕ in the interval 90◦ < ϕ < 270◦ which

reverses the sign of the curvature of Re[ω] versus wavenumber since cos(ϕ) is negative for
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these values. For the “ferromagnetic” mode, an analogous reasoning applies, but x- and y-

direction have to be interchanged because of the orthogonal orientation of the total electric-

dipole moment compared to that of the “antiferromagnetic” mode. This turns transverse into

longitudinal waves and vice versa. This reasoning also correctly explains the curvature of

the damping, −Im(ω), for all four dispersion branches, provided that the retardation phase

is in the interval 90◦ < ϕ < 180◦. This finally results in an overall agreement of our simple

model with the experimental observations in Fig. 5.15(b) and the numerical calculations in

Fig. 5.16(b).

We now fit our model functions for the frequency-dispersion (Equation (5.5)) and the

dispersion of the damping (Equation (5.6)) to the calculated data and determine both the

frequency-coupling constant W and the retardation phase ϕ for the four different oblique-

incidence configurations I-IV.

For transverse electric-dipole coupling (solid circles) of the “antiferromagnetic” (blue)

and the “ferromagnetic” (red) excitation mode, we obtain coupling frequencies of W ≈
−3.0THz and W ≈ −2.3THz as well as retardation phases of ϕ ≈ 110◦ and ϕ ≈ 109◦,
respectively. For longitudinal electric-dipole coupling (open circles), values of W ≈
+4.2THz and W ≈ +6.2THz as well as retardation phases of ϕ ≈ 146◦ and ϕ ≈ 156◦ can

be derived for the “antiferromagnetic” and the “ferromagnetic” excitation mode, respectively.

The overall agreement of the calculated dispersion relations and our simple model is indeed

Figure 5.17: Comparison of the calculated dispersion relations shown in Fig. 5.16(b) with our simple model.

Fitting of the model dispersion relations given by Equation (5.5) and (5.6) provides values for the coupling

frequency W and the retardation ϕ. The overall behaviour of the four branches of the dispersion relations are

nicely reproduced by our model.

quite convincing (see Fig. 5.17). Particularly, positive values of the coupling frequency W

can be attributed to longitudinal electric-dipole coupling while transverse coupling of the

electric dipoles indeed is characterised by negative values of W . Furthermore, the retardation

phases ϕ turn out to be in the range of 90◦ < ϕ < 180◦, consistent with our previous

expectations. We therefore conclude that electric dipole-dipole interactions are the dominant

effect between neighbouring primitive unit cells. However, the frequency splitting of the

“antiferromagnetic” and the “ferromagnetic” mode at zero in-plane momentum cannot be

explained by electric dipole-dipole interactions. In this case, the frequency splitting of

the “antiferromagnetic” and the “ferromagnetic” mode mainly originates from magnetic

dipole-dipole interactions within each primitive unit cell although interaction via higher-

order multipole moments are likely to play a role as well. Additionally, we can estimate
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the retardation phase ϕ independently from the model fits presented in Fig. 5.17. Since

the lattice constant of a = 339 nm in Fig. 5.13(b) is larger than a quarter of the free-space

resonance wavelength of about 1.25 μm (equivalent to 240-THz-frequency) we can argue that

this indeed leads to a retardation phase exceeding 90◦, perfectly consistent with our above

discussion. Although this estimate assumes wave propagation with the vacuum speed of

light, slower propagation will further increase the estimated retardation phase.

Clearly retardation effects play a crucial role in our low-symmetry metamaterial design

as well. We find a significant dispersion of the mode damping which can only be attributed

to the influence of retardation between neighbouring metamaterial unit cells. Furthermore,

retardation leads to frequency dispersion that cannot be described by the usual cosine-

shaped dispersion curves anymore. Once again we conclude that for a common metamaterial

designs the effective-medium description can only be seen as a merely good description for

metamaterials since interaction and retardation effects between the metamaterial’s unit cells

result in significant contributions to the optical response.

5.3 3D-Coupling of Magnetic Dipoles
In Section 5.2.2 we have already investigated transverse magnetic coupling of the planar SRR

arrangement shown in Fig. 5.9(d). If we now think of a metamaterial unit cell that consists of

two SRRs aligned on top of each other, but separated by a dielectric spacer layer, as depicted

in Fig. 5.18 we should be able to observe a similar frequency splitting or hybridisation to

the one presented in Section 5.2.2 but for longitudinal coupling of the magnetic moments.

With the help of the simple Lorentz-oscillator model introduced in Section 5.1 we conclude

that the symmetric configuration of magnetic dipoles is the low-energy mode while the

antisymmetric oscillation mode is the high-energy mode.

Figure 5.18: Illustration of the calculated design. The geometry dimensions of the split-ring resonators are

l1 = l2 = 240 nm, w1 = 60nm and w2 = 70nm. The lattice constant is a = 400 nm. The thickness of the

gold split-ring resonators is 25 nm.

Such metamaterials consisting of the same fundamental building block like, e.g., an

SRR but differing in the actual spacial arrangement of the constituents have recently been

named “stereometamaterials” in analogy to stereoisomers in chemistry [76]. In the case of

the “twisted” SRRs the relative in-plane rotation angle α indeed determines the coupling
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mechanism and therefore the optical response of the SRR dimers – for α = 0◦ and α = 180◦

the (transverse) dipole-dipole interactions of the effective electric-dipole moments of the

single SRRs dominate, while for α = ±90◦ the longitudinal magnetic dipole-dipole coupling

is of fundamental importance. Both arrangements give rise to a plasmon hybridisation, i.e.,
to a symmetric and an antisymmetric arrangement of the effective dipoles [76] which is

caused by electric or magnetic coupling mechanisms, respectively. In order to investigate

longitudinal coupling of magnetic dipoles we therefore choose an SRR dimer characterised

by a relative in-plane rotation angle of α = 90◦ (see Fig. 5.18).

We calculate the transmittance spectra for an ideal twisted-SRR structure embedded in

vacuum and determine the eigenpolarisations of the twisted-SRR metamaterial design using

COMSOL Multiphysics. The gold is modeled by a Drude model with plasma frequency

ωpl = 2π × 2155THz and collision frequency ωcoll = 2π × 30THz plus a background

dielectric constant of εb = 9.0685. The lateral geometrical parameters are shown in Fig. 5.18,

the gold thickness is 25 nm. We varied the interparticle spacing from s = 100 nm down to

s = 25 nm in steps of 25 nm. For the ideal case, we indeed observe a splitting of the magnetic

resonance at an interparticle spacing below s = 50 nm (see Fig. 5.19). The transmittance dip

at lower/higher wavelengths corresponds to the antisymmetric/symmetric magnetic mode

(see also Ref. [76]). Owing to the lack of rotational symmetry around the SRR-dimer

axis, however, linear birefringence occurs even for the ideal structure, i.e., linear-x/linear-y

incident light shows significant intensity conversion into linear-y/linear-x polarisation. This

results in elliptically polarised eigenstates (not shown).

Figure 5.19: Calculated transmittance spectra of an ideal twisted split-ring-resonator structure embedded

in vacuum are shown for linear-x (left-hand side) and linear-y (right-hand side) incident polarisation. The

transmittance for four different interparticle spacings s between the split-ring resonators are plotted: s = 25nm

(red), s = 50nm (blue), s = 75nm (green) and s = 100 nm (black). The corresponding linear conversion

spectra are shown in magenta, cyan, dark green and gray. They exhibit strong linear birefringence.

In principle the twisted-SRR design presented here is a blueprint for a so-called chiral

metamaterial. For this material class the coupling of the electric and the magnetic field

components is of fundamental importance. Owing to the strong linear birefringence,

however, the twisted-SRR design has to be modified to obtain a truly chiral optical response.

The resulting chiral twisted-SRR metamaterial design introduced in Chapter 8.2 shows

indeed pronounced longitudinal magnetic coupling between the SRRs in the two layers,

hence, large frequency splitting of the high-energy antisymmetric and the low-energy
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symmetric mode (see Chapter 8.2). Furthermore, the modified design does not show any

linear birefringence thus it exhibits a purely chiral optical response.
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Chapter 6

An Introduction to Chirality

The principle motivation for investigating chiral metamaterials is their potential for manipu-

lating the polarisation state of light. Historically, chirality is indeed inherently connected

with optical activity, i.e., the ability of a variety of substances to rotate the polarisation

plane of incident linearly polarised light. Hence, it is not surprising that the investigation

of optically active materials finally resulted in the discovery of the influence of a substance’s

handedness on the direction of polarisation rotation of light. Louis Pasteur was the first

to attribute the sign of polarisation rotation to the different mirror symmetric forms of the

substance under observation, namely tartaric acid, in 1849 [1]. Despite previous work on the

Figure 6.1: Artist’s view of a right-handed helix (left) and a right-handed twisted-crosses design (right) and

their mirror images. The five-layer twisted-crosses design is the one-pitch equivalent to the two-layer twisted-

crosses metamaterial design introduced in Chapter 8.1.

optical rotatory power (optical activity) of, e.g., quartz (by Arago in 1811) and turpentine

(by Biot in 1812-15), Pasteur realised the importance of dissymmetry, i.e., the relationship

between the two forms of handedness of tartaric acid crystals (tartrate) and optical activity.

69
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In particular, a solution of a purely right-handed (left-handed) tartrate led to a clockwise

(anticlockwise) rotation of linear polarisation in contrast to a solution with equal amounts

of both varieties (also known as racemic mixture) which left the initial polarisation state of

light unchanged.

In general, optical activity is observed for two types of chiral media. For one, the effect

of optical rotation in fluids can only result from the intrinsic chiral properties of the single

molecules (molecular chirality). This is the case for a solution of sugar, for tartaric acid or in

turpentine gas, for example. Secondly, chiral effects can also be produced by the crystalline

structure of a material like a quartz crystal, for example (structural chirality). In this case,

however, the effect of optical activity is restricted to the propagation parallel to the crystal’s

symmetry axis (c-axis). Consequently, for an isotropic optically active medium molecular

chirality is a fundamental prerequisite.

The idea of combining the concepts of chirality and metamaterials gives us the

opportunity to change the polarisation state of light. This chapter aims at giving the reader

a basic understanding of how a chiral metamaterial should look like in terms of symmetry

properties and how these properties transfer to the material parameters in the Maxwell’s

equations. We will have a look on the transmittance and reflectance spectra of a model system

of a chiral material slab at normal incidence and introduce a procedure to derive the effective

material parameters from the transmittance and reflectance spectra of a chiral medium. Then

we will have a short look at the reflection and refraction behaviour of circularly polarised

light at oblique incidence on an interface between a chiral and an achiral medium before we

finally conclude with a detailed description of how circularly polarised light is generated and

analysed in experiments.

6.1 A Geometrical View on Chirality
It was not before 1894 until the term “chirality” (from the greek word “χειρ” meaning

“hand”) was introduced by Lord Kelvin in a footnote of his lectures on “The Molecular

Tactics of a Crystal” at the Oxford University Junior Science Club [105]. In the lectures

Lord Kelvin stated:

“I call any geometrical figure, or group of points, chiral, and say that it has chirality, if its
image in a mirror, ideally realised, cannot be brought to coincide with itself ”

An object as described by Lord Kelvin has no mirror planes, no center of inversion and no

rotation-reflection axes. Two representatives of chiral structures in the sense of Lord Kelvins

definition are illustrated in Fig. 6.1. Following this recipe, the first artificial composite chiral

medium was fabricated in 1898 by J. C. Bose [2] who literally twisted bundles of parallel

jute fibres to measure the optical rotatory power of this chiral composite material in the

radio-frequency spectral range.

Later, at the beginning of the 20th century, Paul Drude introduced a new concept to

describe optical activity. Based on his previous model for the optical response of metals, he

claimed, that “vibrations of charged particles” moving along a helix-shaped trajectory [3]
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show optical rotatory power and deduced an analytical expression for the rotation angle of

a linearly-polarised incident light beam which was verified by K. F. Lindman [4] in 1920.

Presumably, Lindman fabricated the first chiral metamaterial at 13-cm-wavelength (1-MHz

to 3-MHz-frequency) when he manually bent 2×500 copper helices with a diameter of 1 cm

and a height of about 2 cm and wrapped them in cotton balls to measure the optical rotatory

power. His measurement revealed that the optical rotatory power of the helical composite

structure reaches that of natural materials like in a sugar solution. Lindman verified Drudes

prediction which can be summarised in the following four points:

• Optical activity can be described by a difference in the refractive indices for right-

handed circularly polarised (RCP) light and left-handed circularly polarised (LCP)

light for negligible differences in the absorption.

• The rotation angle is then given by δ = z · π
λ0

(nRCP − nLCP), where z is the

propagation length in the chiral medium.

• The wavelength dependency of the rotation shows a resonant behaviour given by

δ(λ) ∝ 1
λ2−λ2

h
, where λh is the resonance wavelength of the “vibration”.

• A helix shaped “vibration of charged particles” is connected to a magnetic moment.

Consequently there is a coupling of the electric and the magnetic field components

(“magnetoelectric coupling”).

Paul Drude suggested that optically active (chiral) media can be described by constitutive

material relations accounting for magnetoelectric coupling. He formulated a set of

constitutive material equations equivalent to the equations presented in the next section. In

the following, we will derive an explicit form of the constitutive material equations for chiral

(and bianisotropic) media.

6.2 Effective Chiral Media
According to Drude, the main ingredient for obtaining a chiral response is the possibility to

excite a magnetisation by an incident electric field and to excite an electric polarisation by

an incident magnetic field. This magnetoelectric coupling generally results in bianisotropic

materials which can be described by modified effective material equations in which the

coupling of the electric and the magnetic response is included.

D = ε0εE+
ξ

c0
H (6.1)

B =
ζ

c0
E+ μ0μH (6.2)

The material equations show the general linear effective parameter relations for bianisotropic

media, where ε, μ, ξ and ζ are tensors. For simplicity, we assume ε and μ being scalars in

the following.
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Due to the strong constraint of reciprocity of Maxwell’s equations, the coupling

coefficient of the electric field component to the magnetic field component ξ and the coupling

coefficient for the magnetic field component to the electric field component ζ have to be

directly connected to each other. Hence, the relation ζ = −ξ
t

has to be fulfilled (see

Ref. [42]), leading to

D = ε0εE− ξ

c0
H (6.3)

B =
ξ
t

c0
E+ μ0μH . (6.4)

Now equations (6.3) and (6.4) describe a bianisotropic reciprocal effective material with

scalar permittivity ε and permeability μ. If one further assumes that the magnetic/electric

dipoles excited by the incident electric/magnetic field are oriented parallel to the incident

electric/magnetic field vector, a diagonal form of ξ results and one ends up with a reciprocal

biisotropic material also referred to as isotropic chiral or Pasteur medium.

It is therefore of particular interest to compare chiral and bianisotropic media. This

comparison is highlighted in the next section.

6.2.1 Symmetry Constraints
In this section we want to derive a set of constraints that have to be fulfilled for the effective

material parameters of a medium exhibiting specific symmetry properties. In the course of

this discussion, we neglect mutual interactions between different unit cells of the medium.

Afterwards we will make use of these constraints when we derive and compare the effective

material parameters for a chiral and a bianisotropic metamaterial design.

In order to make a statement on the effective material parameters of a given metamaterial

it is essential to classify its electromagnetic response when illuminated by a plane wave.

Assuming that the field response of the fundamental building blocks reflects the geometrical

symmetry properties of the metal nanostructures we can derive specific selection rules for

the tensor components of the effective parameter ξ in the Maxwell’s equations. However,

this assumption has to be taken with great caution, as in practice (see Chapter 7.1 and 7.4)

the apparent geometrical characteristics can be different from the actual field distributions

excited by the incident plane wave – the latter being the relevant basis for the effective

parameter evaluation. Keeping this in mind we derive the selection rules for the tensor

components of ξ for some basic symmetry properties, namely:

• Center of inversion

• Mirror planes

• Rotations.

As we assume the permittivity ε and permeability μ to be scalar, we are only interested in

the magnetoelectric properties and restrict ourselves to the class of bianisotropic materials.

From there we will go on to the subclass of biisotropic (chiral) materials.
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The starting point of the following discussion is the general form of ξ with initially nine

independent entries:

ξ =

⎛
⎝ ξxx ξyx ξzx

ξxy ξyy ξzy
ξxz ξyz ξzz

⎞
⎠ (6.5)

Taking into account that for each transformation the constitutive equations (6.3) and (6.4)

have to be fulfilled, we finally end up with a distinct set of selection rules for this

specific transformation. This provides the entries of ξ. In the following we assume an

electromagnetic wave propagating in the z-direction:

E =

⎛
⎝ Ex

Ey

0

⎞
⎠ ei(kzz−ωt) (6.6)

B =

⎛
⎝ Bx

By

0

⎞
⎠ ei(kzz−ωt) =

kz
ω

⎛
⎝ −Ey

Ex

0

⎞
⎠ ei(kzz−ωt) (6.7)

Due to Faraday’s induction law (2.3) k, E and B form a right-handed coordinate system.

Center of Inversion

Applying the symmetry operation of space inversion to an electromagnetic wave and

fulfilling Equation (2.3) gives us the transformations:

k → −k E → −E B → B (6.8)

After space inversion the material equations (6.3) and (6.4) still have to be valid:

Bx = 1
c0
(ξxxEx + ξyxEy) + μμ0Hx

↓
Bx = 1

c0
(−ξxxEx − ξyxEy) + μμ0Hx

and

By =
1
c0
(ξxyEx + ξyyEy) + μμ0Hy

↓
By =

1
c0
(−ξxyEx − ξyyEy) + μμ0Hy

This yields the conditions ξxx = −ξxx, ξxy = −ξxy, ξyx = −ξyx and ξyy = −ξyy which can

only be fulfilled for ξ = 0. Thus, neither chiral nor bianisotropic materials with inversion

symmetry exist.

Mirror Planes

For a plane wave with E = (Ex, Ey, 0) and B = kz/ω(−Ey, Ex, 0) we have to consider

three possible mirror planes.
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• The xz-plane as mirror plane transforms

kz → kz Ex → Ex Bx → −Bx Ey → −Ey By → By (6.9)

implying:

Bx = 1
c0
(ξxxEx + ξyxEy) + μμ0Hx

↓
Bx = 1

c0
(−ξxxEx + ξyxEy) + μμ0Hx

and

By =
1
c0
(ξxyEx + ξyyEy) + μμ0Hy

↓
By =

1
c0
(ξxyEx − ξyyEy) + μμ0Hy

Altogether we obtain ξxx = ξyy = 0 while ξxy and ξyx can be nonzero.

• The yz-plane. Following the same reasoning as above for the xz-plane we get the

same results for the entries of ξ namely ξxx = ξyy = 0, ξxy and ξyx can be nonzero –

as expected from symmetry.

• The xy-plane is different from the xz- and the yz-plane as it is oriented perpendicular

to the wave vector of the incident wave. We obtain the following transformations:

kz → −kz Ex → Ex Bx → −Bx Ey → Ey By → −By (6.10)

Consequently:

Bx = 1
c0
(ξxxEx + ξyxEy) + μμ0Hx

↓
Bx = − 1

c0
(ξxxEx + ξyxEy) + μμ0Hx

and

By =
1
c0
(ξxyEx + ξyyEy) + μμ0Hy

↓
By = − 1

c0
(ξxyEx + ξyyEy) + μμ0Hy

This can only be fulfilled provided that ξxx = ξyy = ξxy = ξyx = 0. Once again neither

chirality nor bianisotropy are observable for propagation in z-direction.
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Rotations

Rotations around one axis leave the orientation of an object unchanged. They can be

described by a specific unitary rotation matrix Ui for each of the rotation axes (x-, y-, and

z-axis). Again we assume that the geometrical symmetry of a structure is reflected in the

optical response. Consequently, if an object is invariant under a specific rotation U , the

electric and magnetic fields have to be invariant as well. Applying this condition to the

general material equation (6.4) leads us to the condition

B = 1
c0
ξE+ μ0μH

↓
B′ = 1

c0
ξ′E′ + μ0μH

′

↓
UB = 1

c0
U ξU

−1
UE+ μ0μUH

where B′ = UB, E′ = UE and ξ′ = U ξU
−1

are the respective quantities B, E and ξ

after rotation. Hence an object’s property of invariance under the rotation U is expressed by

the constraint

ξ′ = U ξU
−1

= ξ (6.11)

For a three-dimensional isotropic medium Equation (6.11) has to be fulfilled for all rotations

around the x-, y- and z-axis. This finally results in:

(a) purely bianisotropic materials characterised by:

ξ = ξ′

⎛
⎝ 0 1 −1

−1 0 1

1 −1 0

⎞
⎠ (6.12)

(b) purely biisotropic chiral materials characterised by:

ξ = ξ

⎛
⎝ 1 0 0

0 1 0

0 0 1

⎞
⎠ (6.13)

As a final result we obtain two scalar values ξ′ and ξ specific for bianisotropic and biisotropic

chiral media, respectively. In contrast to bianisotropic media, which are characterised by the

off-diagonal elements of ξ, chiral media can be distinguished by the diagonal (in 2D) or even

scalar form (in 3D) of ξ. It is important to notice that the effective material parameters ε,

μ and ξ (ε, μ and ξ′) for chiral (bianisotropic) media are not independent of each other but

connected via energy conservation required for passive media (see Chapter 2.2).

6.2.2 Bianisotropy vs. Chirality
After the preceding general treatment of symmetry properties and their influence on the

effective material parameters, we now want to discuss two examples of metamaterial designs
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that have already been published – a chiral twisted-crosses design from Ref. [43] and a

bianisotropic design similar to Ref. [106]. Starting from the symmetry properties of the

two structure designs, we want to derive an explicit form for the material parameter ξ for

both cases. Both structures are assumed to be arranged in a periodic lattice in the xy-plane.

Figure 6.2: (a) Bianisotropic split-ring-resonator design with C4v-symmetry [106]. (b) Chiral twisted-crosses

design with C4-symmetry [43].

The incident plane wave propagates in the z-direction. It is therefore sufficient to analyse

the coupling of the electric and magnetic field components in the xy-plane. Consequently ξ

reduces to

ξ =

(
ξxx ξyx
ξxy ξyy

)
(6.14)

For an arbitrary rotation (φz) around the z-axis we use

U z =

(
cos(φz) − sin(φz)

sin(φz) cos(φz)

)
(6.15)

Following our reasoning of the last section we derive the effective material parameters ξ for

a bianisotropic (a) and a biisotropic chiral (b) metamaterial.

Symmetry

First, the symmetry properties of the two designs (a) and (b) shown in Fig. 6.2 have to be

identified.

(a) bianisotropic SRR design:
– 4-fold rotational symmetry in the xy-plane

– 2 mirror planes (xz- and yz-plane)

– no rotational symmetry in the xz- and yz-plane

→ Symmetry group C4v, D4
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(b) chiral twisted-crosses design:
– 4-fold rotational symmetry in the xy-plane

– no mirror planes

– 2-fold rotational symmetry in the xz- and yz-plane

→ Symmetry group C4

Applying Equation (6.11) to a structure with 4-fold rotational symmetry in the xy-plane

yields

ξ =

(
ξxx ξyx
ξxy ξyy

)
→ ξ =

(
ξxx ξyx
−ξyx ξxx

)
= ξ′ . (6.16)

This result is valid for both, the bianisotropic (a) and the chiral (b) design. Differences

occur when having a closer look at the out-of-plane rotation axes (like, e.g., the x-axis) and

the mirror planes.

(a) bianisotropic SRR design:
The two mirror planes (xz- and yz-plane) result in the additional requirement that

ξxx = ξyy = 0, hence,

ξ = ξ′
(

0 1

−1 0

)
. (6.17)

(b) chiral twisted-crosses design:
The two-fold rotational symmetry in the xz- and yz-plane results in the additional

condition ξyx = ξxy = 0, hence,

ξ = ξ

(
1 0

0 1

)
. (6.18)

Obviously, the 2D-uniaxial variants of the material parameters for the bianisotropic (a) and

the biisotropic chiral design (b) are consistent with the three-dimensional counterparts given

by Equation (6.12) and (6.13) for normal incidence.

6.3 Wave Propagation in Chiral Media
Having found the general form of the effective material equations for a chiral medium,

D = εε0E− ξ

c0
H (6.19)

B =
ξ

c0
E+ μμ0H , (6.20)

we can further investigate the properties of a plane wave propagating in this medium. The

basic equation for this process is the chiral wave equation, that can be derived directly from

Maxwell’s equations (2.1)-(2.4) (see Appendix A.1).

∇2E+ 2i
ωξ

c0
∇× E+

ω2

c20

(
με+ ξ2

)
E = 0 (6.21)
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Obviously in a chiral medium there is a coupling of the x-, y-, and z-components of

the electric/magnetic field vector. Thus, linearly polarised light cannot be a polarisation

eigenstate of the wave equation anymore. As Equation (6.21) is an eigenvalue problem for

the electric/magnetic field vector, we can determine the eigenvalues of Equation (6.21) to

calculate the polarisation eigenstates and to find an expression for the refractive index in a

chiral medium. For a plane wave propagating in z-direction

E =

⎛
⎝ Ex

Ey

0

⎞
⎠ · ei(kzz−ωt) (6.22)

the solution of the eigenvalue problem yields two eigenvalues, i.e., two dispersion relations

kz(ω) for a chiral medium.

k2
z = k2

1,2 =
ω2

c20
(
√
με∓ iξ)2 =

ω2

c20
· n2

1,2 (6.23)

Hence the two refractive indices are

n1,2 =
√
με∓ iξ . (6.24)

For the field components Ex and Ey we obtain two solutions

Ey = ∓iEx (6.25)

corresponding to right-handed circular polarisation (RCP) and left-handed circular polarisa-

tion (LCP). For a detailed derivation of the preceding results, we refer to Appendix A.1.

If we further substitute ξ = iκ, we can summarise the results for the propagation

properties of a plane wave in a chiral medium as we can find it in many textbooks, e.g.,
Ref. [42].

Plane Wave Properties in Chiral Media

• The constitutive material equations for a chiral medium are:

D = εε0E− i
κ

c0
H (6.26)

B = i
κ

c0
E+ μμ0H (6.27)

where κ is the so-called chirality parameter.

• The polarisation eigenstates of plane wave propagation are circular polarisations,

E+ = ERCP =
1√
2

⎛
⎝ 1

−i

0

⎞
⎠ · ei(k+z−ωt) (6.28)
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and

E− = ELCP =
1√
2

⎛
⎝ 1

i

0

⎞
⎠ · ei(k−z−ωt) (6.29)

namely right-handed circular polarisation (RCP, “+”) and left-handed circular polari-

sation (LCP, “–”).

• The impedance of circularly polarised light in a chiral medium is given by (see

Appendix A.1)

Z+ = Z− =

√
μ

ε
· Z0 (6.30)

Remarkably, the impedances (Z+ and Z−) for RCP and LCP light are identical and do

not depend on the chirality parameter.

• The refractive index for circularly polarised incident light is then given by:

n1,2 = nRCP,LCP = n± =
√
με± κ (6.31)

Apparently, chiral media open up an alternative route to a negative refractive index. In

particular, by varying only κ, we can obtain a negative refractive index for one circular

polarisation even if ε and μ are both positive.

6.4 Reflection and Transmission of Chiral Media
In the preceding sections we found that circularly polarised light is the eigenpolarisation of

the wave equation for chiral media. Thus, we can describe the transmission and reflection

properties for RCP and LCP incidence in a circular polarisation basis using the corresponding

refractive index (n+ and n−) and impedance (Z+ and Z−) of the polarisation state under

consideration. Only in this basis, the use of a refractive index for chiral media is justified.

In the first part of this section, we deal with normal incidence of circular polarisation onto

a chiral slab. Here, the handedness of the incident circularly polarised light is conserved for

the transmitted wave and flipped for the reflected light beam1. Hence, intensity conversion

from RCP to LCP light and vice versa is absent in transmission. For oblique incidence, the

situation is more complicated. In the second part of this section we therefore investigate the

influence of a chiral interface on the polarisation state of an incident circularly polarised light

beam impinging at an arbitrary angle.

1Although in reflection RCP/LCP incident light emerges as LCP/RCP light this must not be confused with

polarisation conversion. To understand this point, let us decompose circularly polarised light into s-polarised

field components and p-polarised field components. Upon reflection there is a change of sign for the s-

polarised field component while the p-polarised component remains unaffected. This phaseshift of one linear

component of the circular polarisation leads to a change of handedness – circularly polarised light therefore

changes its handedness when reflected from an interface.
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6.4.1 Normal Incidence on a Chiral slab

In order to obtain the normal incidence transmittance and reflectance spectra we use an

analytical model of an SRR [61] to account for the magnetoelectric coupling and calculate

the reflectance and transmittance spectra through such a chiral slab by inserting the complex

effective material parameters, namely the refractive indices into a plane wave ansatz. The

chiral material parameter values ε, μ and κ (see Fig. 6.3) are given as:

ε(ω) = 1 +

(
dc0
l2

)2
F

ω2
LC − ω2 − iγω

(6.32)

μ(ω) = 1 +
Fω2

ω2
LC − ω2 − iγω

(6.33)

κ(ω) = −
(
dc0
l2

)
Fω

ω2
LC − ω2 − iγω

(6.34)

Figure 6.3: The parameters of the analytical model are given by the slab thickness d = c0π/ωLC , dc0/l
2 =

0.75 · ωLC , F = 0.3 and γ/ωLC = 0.05. The calculated effective material parameters ε, μ, κ (for a chiral

medium) and ξ (for a bianisotropic medium) are shown in (a)-(c). The material slab is situated on a glass

substrate (ε = 2.25).

This results in the refractive index curves and in the transmittance/reflectance spectra

shown in Fig. 6.4. Indeed the spectra reflect the chiral properties of the medium:

• RCP and LCP are indeed eigenpolarisations in a chiral medium. Hence, incident

RCP/LCP light emerges as RCP/LCP light in transmittance – no polarisation conver-

sion from RCP to LCP and vice versa is present (not shown).

• The two refractive indices n± =
√
με ± κ result in different transmittance spectra for

RCP and LCP, respectively. This difference is due to the chirality parameter κ only.

• As for a purely chiral medium the impedances for RCP and LCP are identical, the

reflectance spectra are identical as well.

• Due to symmetry (a right-handed helix remains right-handed when observed from the

backside), the spectra for forward and backward propagation are the same for a chiral

medium (not shown).



6.4. Reflection and Transmission of Chiral Media 81

Figure 6.4: Model calculation of a chiral design with the model parameters shown in Fig. 6.3(a)-(c). The

transmittance spectra (b) show a polarisation dependence owing to different refractive indices (a) for RCP

(“+”, red) and LCP (“–”, blue) light. As a result, strong circular dichroism (ΔT = T+ − T−) occurs. The

reflectance spectra (b) for RCP and LCP are identical as the impedances for the two circular polarisations are

identical (Z+ = Z− = Z).

Using the equivalent material parameters as for the chiral medium, we can also calculate

the spectra for a purely bianisotropic material and compare them with the spectra for

the chiral medium. This is indeed of particular interest as for a bianisotropic material

linear polarisation is conserved on transmission despite magnetoelectric coupling. From

Equation (2.49) and (2.50) we obtain (see also Fig. 6.5) [61]:

• Two values for the impedance of a bianisotropic medium, one for propagation

in forward direction Zf and one for propagation in backward direction Zb. We

consequently obtain two different reflectance spectra Rf 
= Rb.

• The refractive index n =
√
εμ− ξ2 of a bianisotropic medium is identical in forward

and backward direction. Therefore the transmittances Tf = Tb = T are identical.

Obviously, the optical properties of chiral and bianisotropic materials strongly differ from

each other although the material equations seem to be very similar at first sight.

Chiral Parameter Retrieval

To determine the effective material parameters of chiral metamaterials from experiments, we

have to follow the same approach as for normal isotropic metamaterials (see Chapter 2.2.2).

As one often has access to the transmittance spectra only, the complex-valued transmission

has to be obtained from numerical calculations in order to retrieve the effective material

parameters. However, in contrast to the retrieval procedure for isotropic media introduced

in Chapter 2.2.2 we are now dealing with a different class of materials. In the case of chiral

media, we have to determine the additional material parameter κ. It is therefore necessary

to take both RCP and LCP transmission and reflection spectra into account (see Fig. 6.6).
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Figure 6.5: Model calculation of a bianisotropic design with the model parameters depicted in Fig. 6.3(a)-(c).

The real (solid) and imaginary (dashed) parts of the refractive index for bianisotropic media (a) is independent

of the propagation direction. Hence, the transmittances in forward- Tf and backward Tb direction are equal

(Tf = Tb = T ) while the reflectances Rf and Rb differ owing to the different impedances Zf 
= Zb (not

shown).

As a result we obtain different expressions for the impedance Z and the refractive indices

n± [107] (for details we refer to Appendix A.2). For reciprocal chiral media we deduce (see

Appendix A.2):

0 =
[
(1 + r)2 − t+t−

]( 1

Z

)2

+
t+t−
Z2

t

− (1− r)2

Z2
i

(6.35)

and

cos (n±k0d) =
1

2

⎡
⎣(1 + r) /Z + (1− r) /Zi

t±
(

1
Zt

+ 1
Z

) +
(1− r) /Zi − (1 + r) /Z

t∓
(

1
Zt

− 1
Z

)
⎤
⎦ , (6.36)

where r = r+ = r− is the complex-valued reflection coefficient, t± are the transmission

coefficients for RCP/LCP light and Zi (Zt) is the impedance of the front (back) side dielectric

medium. Once again, energy conservation and the demand of a passive material resolves the

ambiguities for Re [Z], Im [Z], Im [n] and Re [n]. Then the effective parameter values can

be calculated by:

n =
1

2
(n+ + n−), κ =

1

2
(n+ − n−), μ = Zn, ε =

n

Z
. (6.37)

However, the effective parameter retrieval for chiral media is subject to the same physical

restrictions as the isotropic retrieval in Chapter 2.2.2. Particularly, for resonant structures,

effective parameters gained from the retrieval procedure have to be taken with caution.

6.4.2 Oblique Incidence on Chiral Interfaces
In contrast to normal incidence of circularly polarised light onto a chiral slab, the situation

for oblique incidence is more subtle since the interface “mixes” circular polarisations. In
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Figure 6.6: Schematic illustration of the field components for the generalised version of the Fresnel equations

for the retrieval of the effective material parameters of a chiral material slab of thickness d from the complex

reflection and transmission coefficients. For the chiral retrieval procedure, the different polarisation states have

to be taken into account for the determination of the refractive indices n±, impedances Z±, permeability μ,

permittivity ε and chirality parameter κ. Note that the backward propagating light changes handedness.

the following we want to put our focus on the behaviour of circularly polarised light when it

passes an interface from an achiral to a chiral halfspace and vice versa.

In general, we will observe two refracted or reflected circularly polarised light beams

emerging from the interface. Hence, the transmitted and reflected light is a superposition

of RCP and LCP partial waves [108, 109] and will generally be elliptically polarised. The

different refractive indices for RCP and LCP light result in different angles of refraction or

reflection [109]. Thus the emerging (refracted or reflected) light splits up again into two

circularly polarised beams. Keeping this in mind we can now have a look at the angles of the

reflected and transmitted light beams for two basic configurations:

Birefraction

When a circularly polarised plane wave impinges at an angle θi from an isotropic dielectric

halfspace onto a chiral halfspace, we get two partial waves for the refracted beam and two

partial waves for the reflected beam. The reflected RCP and LCP partial wave both are

reflected at the same angle (θr± = θi) as the refractive index of the dielectric is independent

of the polarisation state of light. The transmitted RCP and LCP partial waves in the chiral

medium on the contrary are refracted differently as n+ 
= n−. We therefore get two

angles of refraction (birefraction), θt+ for the RCP and θt− for the LCP partial wave. This

configuration is illustrated in Fig. 6.7(a).

Bireflection

If we now send RCP (LCP) light from the opposite direction onto the interface (from the

chiral medium into the achiral medium) we obtain once again two partial waves for the

reflected and for the refracted beam. The RCP and LCP partial waves now are reflected at

different angles θr+ 
= θr− as n+ 
= n−. For the two transmitted partial waves we obtain the

same angle of refraction (θt+ = θt− = θt) as the refractive index of the dielectric medium

is insensitive to the polarisation state of the partial waves. We therefore obtain bireflection
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(see Fig. 6.7(b)). In both cases total internal reflection can be observed when one (or both)

circularly polarised partial wave becomes evanescent [108, 110].

Figure 6.7: The effect of birefraction (a) and bireflection (b) for an RCP (red) light beam has its origin in the

different behaviour of the two reflected and refracted partial waves. Due to the different refractive indices for

the RCP (red) and the LCP (blue) partial wave in the chiral medium two different angles of refraction (a) and

reflection (b) result, respectively.

Another remarkable special case is the reflection of circularly polarised light at the

interface of a strongly chiral medium and a perfectly conducting plane. In this configuration,

when the refractive index of one circular polarisation becomes negative, even negative

reflection occurs which allows for focussing one circular polarisation (see Fig. 6.8) [109]

just like a flat reflecting lens.

Figure 6.8: Negative reflection can occur if circularly polarised light is reflected at the interface of a strongly

chiral medium and a mirror. This effect can be used to focus one circular polarisation on an image plane in

front of the mirror.
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6.5 Polarisation Spectroscopy

For experiments at normal incidence, chiral metamaterials are characterised by circular

polarisation eigenstates of the chiral wave equation 6.21. As a consequence, any change

in the phase delay, resulting from Re[n+] 
= Re[n−] of one circular polarisation with respect

to the other, leads to a rotation of the polarisation axis, i.e., to optical activity (see Fig. 6.9(a)).

Additionally, Im[n+] 
= Im[n−] causes circular dichroism (see Fig. 6.9(b)) that corresponds

to different absorption coefficients for the two circular polarisations. Hence, the different

dispersive behaviour of RCP and LCP light in chiral media always translates into a change

of the polarisation state of non-circularly polarised incident light.

Figure 6.9: (a) Optical activity caused by propagation through an optically active medium. Owing to Re[n+] 
=
Re[n−] the polarisation plane of the incident light is rotated by an angle ϕ (ϕ = 90◦ in this case). The emerging

plane wave is still linearly polarised. (b) Circular dichroism ( Im[n+] 
= Im[n−] ) causes higher absorption

losses for one circular polarisation (RCP in red) with respect to the perpendicular circular polarisation (LCP in

blue). The emerging polarisation state of light is elliptical polarisation, in general.

In the following, we want to give a short introduction to the different polarisation states

that can be obtained for a plane wave emerging from a chiral material slab. We want to

provide some simple tools used in this Thesis to transform from a linear to a circular basis

and to determine the actual polarisation state of light from numerical calculations. We also

want to give a short summary of the different conventions used for plane-wave propagation,

the polarisation state of circularly polarised light and the observer’s point of view on the

handedness of the field vectors (in space and time).

Having introduced these tools, we will finally put our focus on the manifestation of

optical activity and circular dichroism in optical transmittance spectra.

6.5.1 Calculation of the Polarisation State of Light

A transverse electromagnetic wave is always characterised by a polarisation vector for the

electric field component and the corresponding perpendicular polarisation vector for the

magnetic field component. For linear polarisation the orientation of the polarisation vector

does not depend on time, hence the direction of the E-field vector and the B-field vector
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is conserved. Owing to the superposition principle, we can obtain linear polarisation with

an arbitrary angle ϕ with respect to the x-axis by a superposition of two linearly polarised

waves with the same frequency ω and wavevector k:

Ex(z, t) = E0xe
i(kzz−ωt) · êx (6.38)

Ey(z, t) = E0ye
i(kzz−ωt) · êy (6.39)

When the ratio of the field amplitudes is changed (see Fig. 6.10(a)), e.g., by introducing

different absorption coefficients, an inclination angle of the E-field vector results. This angle

is given by

tan(ϕ) =
E0y

E0x

. (6.40)

Figure 6.10: (a) By in-phase superposition of two linear polarisations Ex, Ey an arbitrary angle ϕ of the

polarisation plane with respect to the coordinate axes can be obtained. (b) After transmission through an

arbitrary medium an emerging plane wave is elliptically polarised, in general. The resulting polarisation ellipse

is given by the inclination ϕ between the major axis and the x-axis and the ellipticity e = tan(η) = s2/s1
(−1 ≤ e ≤ +1) which is the ratio of the minor to the major axis of the polarisation ellipse.

Such a change of polarisation via selective absorption is obtained in dichroic crystals

like tourmaline and even in a simple linear polariser. Note that this is not an isotropic effect

since the rotation angle ϕ depends on the orientation of the field components with respect to

the crystal axis.

If we now introduce a relative phase difference θ = θy − θx between the two

(perpendicular) linear polarisations

Ex(z, t) = E0xe
i(kz−ωt+θx) · êx = E0xe

i(kz−ωt) · êx (6.41)

Ey(z, t) = E0ye
i(kz−ωt+θy) · êy = E0ye

i(kz−ωt+θy−θx) · êy (6.42)

the resulting polarisation state of light turns out to be elliptical, in general. The orientation

of the polarisation plane therefore varies in time and, for a fixed position in space, the tip of

the electric (magnetic) field component moves on an elliptical trajectory (see Fig. 6.10(b))

that can be described by [17](
Ex

Ex0

)2

+

(
Ey

Ey0

)2

− 2

(
Ex

Ex0

)(
Ey

Ey0

)
cos(θ) = sin2(θ) . (6.43)
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The actual polarisation state of light can be derived from the complex (electric) field

components in the x- and the y-direction (see Appendix A.3 and [111]) given by

E(t)
z=0
= E0e

−iωt . (6.44)

We therefore define the real-valued quantities:

p ≡ Re [E0] (6.45)

q ≡ Im [E0] (6.46)

For a snapshot of the electric field component at a fixed position see Fig. 6.11.

Figure 6.11: The polarisation ellipse is characterised by the major axis s1 and the minor axis s2 as well as

by the inclination ϕ of the major axis with respect to the x-axis. To calculate the ratio of the axes e and the

inclination ϕ a transformation into a coordinate system parallel to the axes of the ellipse (a and b) is necessary.

Ellipticity

Following Appendix A.3 we derive an expression for the length of the minor an the major

axis of the polarisation ellipse:

s21 =
1

2

(
p2 − q2 +

√
(p2 − q2)2 + 4 (p · q)2

)
(6.47)

and

s22 =
1

2

(
p2 − q2 −

√
(p2 − q2)2 + 4 (p · q)2

)
(6.48)

The ellipticity is given by the ratio of the minor to the major axis

e = s2/s1 . (6.49)

The sign of the relative phase difference θ = θy − θx of the x- and the y-component of

the electric field determines the sense of rotation (θ < 0 for RCP and θ > 0 for LCP). As

a consequence, e = +1 corresponds to RCP light and e = −1 corresponds to LCP light

(−1 ≤ e ≤ +1).
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Rotation Angle

The inclination ϕ can be calculated (see Appendix A.3) with the help of the angle χ between

the x-axis and the complex E-field vector at a given time (t = 0)

cosχ =
px
|p| (6.50)

and the angle ψ between the major axis and the E-field vector at the same point in time

tanψ = −s2
s1

tan θ , (6.51)

where

tan (2θ) =
2p · q
p2 + q2

. (6.52)

With the help of Fig. 6.11 we find the inclination of the major axis with respect to the x-axis

to be

ϕ = χ− ψ . (6.53)

The calculation of the polarisation state of light from the complex field vector according to

Appendix A.3 was implemented in MATLAB and used to evaluate the numerical calculations

of the transmission data of the structures fabricated in this Thesis.

6.5.2 Circular Polarisation
If in Equation (6.43) we set Ex0 = Ey0 = E0 and choose the relative phase difference to be

ϕ = π/2 we obtain

E2
x + E2

y = E0 . (6.54)

Obviously, the tip of the electric field moves on a circle (for a fixed position in space)

resulting in a circular polarisation state. We can find two circular polarisations:

• for right-handed circular polarisation (RCP) the y-component of the E-field is delayed

by θ = −π/2 with respect to the x-component.

• for left-handed circular polarisation (RCP) the y-component of the E-field is delayed

by θ = +π/2 with respect to the x-component.

Hence for a circularly polarised plane wave propagating in z-direction this results in:

E+ = ERCP =
1√
2

(
1

−i

)
· ei(k+z−ωt) (6.55)

and

E− = ELCP =
1√
2

(
1

i

)
· ei(k−z−ωt) (6.56)
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In order to determine the spatial behaviour of the E-field vector for a given time (t = 0) and

to compare it with the time dependent behaviour at a fixed position (z = 0) we have to look

at the real parts of the field components

Re [E±] = Re

[
1√
2

(
1

∓i

)
· ei(k±z−ωt)

]

=
1√
2

(
cos(k±z − ωt)

cos(k±z − ωt∓ π/2)

)
. (6.57)

Figure 6.12: Left-handed circular polarisation (LCP) is a superposition of a linear-x polarised wave with a

linear-y polarised wave of the same amplitude which is delayed by a relative phase factor of θ = +π/2. From

a detector’s point of view the electric field vector rotates counterclockwise at a fixed position. For a given time,

the field vector describes a left-handed helix in space.

Now we can investigate the time dependency (z = 0) and the space dependency (t = 0)

separately (see Table 6.1). As a result we find that the field vectors of an RCP wave move on

a right-handed helix (in space) for a given time and rotate clockwise (in time) in a plane at a

fixed position in space while an LCP wave moves on a left-handed helix in space and rotates

counterclockwise in time when propagating in positive z-direction.

Circular Polarisation in Physics and Engineering

So far when we talked about circular polarisation we tacitly made some assumptions

concerning the observer’s point of view and the definition of a plane wave, namely:

• The plane wave is given by E(z, t) = Re [E0exp(i(kzz − ωt))] and

• The observer sees the plane wave from a detectors point of view. Hence, the plane

wave propagates towards the observer.
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z = 0 t = 0

+/RCP −/LCP

Re [E+ (z = 0)] Re [E− (z = 0)]

∝
(

cos(ωt)

− sin(ωt)

)
∝

(
cos(ωt)

sin(ωt)

)
+/RCP −/LCP

Re [E+ (t = 0)] Re [E− (t = 0)]

∝
(

cos(k+z)

sin(k+z)

)
∝

(
cos(k−z)
− sin(k−z)

)

Table 6.1: Time-dependent and spacial behaviour of the E-field vector of an RCP and an LCP plane wave.

This is the convention used in many physics textbooks as in Ref. [17], for example. However,

there is a second way of defining a plane wave from the observer’s point of view that is

equivalent to the latter one and often used in an engineering context:

• The plane wave is given by E(z, t) = Re [E0exp(j(ωt− kzz))] and

• The observer looks in propagation direction of the plane wave (source view).

For the time varying behaviour (z = 0) and the spatial behaviour (t = 0) of circular

polarisation, we obtain from this second point of view (see Table 6.2):

Re [E±(z, t)] =
1√
2

(
cos(ωt− k±z)

cos(ωt− k±z ∓ π/2)

)
(6.58)

Obviously, “for an engineer” the E-field vector of RCP (LCP) light moves clockwise

(counterclockwise) on a circle at fixed position in space (in source view) while for a given

time the E-field vector describes a left-handed (right-handed) helix in space, in contrast to

the “physicist’s point of view”.

If the wave additionally propagates in the opposite z-direction (kz → −kz) the

handedness of the helix changes once again. It is therefore important to pay attention when

dealing with numerical tools like COMSOL Multiphysics and CST Microwave Studio, which

follow the “engineering conventions”. We use the “physics convention” in the following.

6.5.3 Jones Calculus

If we now send a linear-x polarised plane wave onto a metamaterial slab or an optical device,

the polarisation state of the incident plane wave is generally not conserved after transmission.

Generally, a linear-x polarised plane wave is composed of two partial waves after propagation

through the metamaterial slab/optical device (see Fig. 6.13). The first partial wave is the
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z = 0 t = 0

+/RCP −/LCP

Re [E+ (z = 0)] Re [E− (z = 0)]

∝
(

cos(ωt)

sin(ωt)

)
∝

(
cos(ωt)

− sin(ωt)

)
+/RCP −/LCP

Re [E+ (t = 0)] Re [E− (t = 0)]

∝
(

cos(k+z)

− sin(k+z)

)
∝

(
cos(k−z)
sin(k−z)

)

Table 6.2: Time-dependent and spacial behaviour of the E-field vector of an RCP and an LCP plane wave from

an “engineer’s point of view”.

linear-x polarised transmitted wave characterised by its complex transmission coefficient

txx – the polarisation state of the incident and the transmitted wave is the same in this

case. The second partial wave is a linear-y polarised wave – here, a conversion of the

linear-x polarised incident wave into the perpendicular polarisation state takes place. This

polarisation conversion is characterised by the complex coefficient txy. In analogy, we

can define the transmission tyy and the conversion tyx for a linear-y polarised incident

plane wave. Using the superposition principle, we can now determine the transmission

characteristics of our metamaterial slab/optical device for arbitrarily polarised incident light.

The transmission characteristics of an arbitrary (non-depolarising) material can therefore

be described by four complex transmission coefficients (txx, txy, tyx, tyy) in form of the so-

called Jones matrix of the system.

J =

(
txx tyx
txy tyy

)
(6.59)

For optical components introducing only a phase shift, the Jones matrix is unitary, i.e.,
J = J

†
. One intuitive example is a conventional (non-absorbing) wave plate (quarter-wave

plate or half-wave plate). For absorbing devices like a linear polariser, for example, the

Jones matrix is not unitary. In the Jones calculus, introduced by Robert Clark Jones, an

arbitrary state of polarisation is represented by a 2× 1 vector and each optical component is

represented by a 2× 2 matrix [112]. By simply multiplying the Jones matrices for different

optical components one can calculate the Jones matrix of the resulting system. Hence the

output polarisation vector is connected via the Jones matrix of the system with the input

polarisation state. (
x′

y′

)
out

=

j∏
i=1

J i ·
(

x

y

)
in

(6.60)
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Figure 6.13: After propagation through an arbitrary material, linear-x (linear-y) polarised light in red (blue)

emerges with an additional linear-y (linear-x) polarised component, in general. The transformation of the

incident field components into the emerging field components is described by the coefficients txx, txy , tyx and

tyy of the Jones matrix J .

Although the Jones calculus fails for partially polarised light and doesn’t account for multiple

reflections it is a very straightforward tool to describe the transformation of polarised light

by an optical system. Some basic Jones vectors and matrices are given in Table 6.3. In the

following the method for obtaining the eigenvectors and the circular transmission coefficients

from the Jones matrix used in this Thesis are presented. They are applied to evaluate

the complex field-transmission spectra gained from numerical calculations by COMSOL

Multiphysics and were implemented in MATLAB.

Polarisation State Jones Vector Optical Component Jones Matrix

Linear-x

(
1

0

)
Linear-x Polariser

(
1 0

0 0

)
Linear-y

(
0

1

)
Linear-y Polariser

(
0 0

0 1

)

RCP 1√
2

(
1

−i

)
Retarder C(θ)

(fast axis in x-direction)

(
e−i θ

2 0

0 ei
θ
2

)

LCP 1√
2

(
1

i

)
Rotator R(φ)

(
cosφ − sinφ

sinφ cosφ

)
Table 6.3: The basic polarisation states of light and a selection of optical devices are presented in form of Jones

vectors on the left-hand side and Jones matrices on the right-hand side.
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Eigenvectors of the Jones Matrix

The Jones matrix can not only be used to determine the emerging polarisation state of light

but also to calculate the polarisation eigenvectors of an optical system. We can write the

eigenvalue problem of an E-field vector passing an optical system as follows:

J s ·
(

x

y

)
= jev

(
x

y

)
(6.61)

Where J s is the Jones matrix of the optical system. From here, we deduce the polarisation

eigenvectors of the Jones matrix, i.e., the complex field vectors for which the polarisation

state of light is conserved. The eigenvalues jev represent the absorption and phase delay of

the eigenpolarisation induced by the optical system.

Transformation from Linear to Circular Basis

In the case of chiral media, the eigenpolarisations of the Jones matrix turn out to be RCP

and LCP light. We therefore transform the Jones vector from a linear polarisation basis to a

circular polarisation basis: (
E−
E+

)
out

= M lin2circ ·
(

Ex

Ey

)
in

(6.62)

M lin2circ =
1√
2

(
1 −i

1 i

)
(6.63)

RCP and LCP consequently transform to

RCP: M lin2circ · 1√
2

(
1

−i

)
in

=

(
0

1

)
out

(6.64)

LCP: M lin2circ · 1√
2

(
1

i

)
in

=

(
1

0

)
out

(6.65)

The transmittance Jones matrix in the circular basis J circ is obtained from the Jones matrix

in the linear basis J lin by:

J circ = M
†
lin2circJ linM lin2circ . (6.66)

Hence, for the special case of a chiral component at normal incidence, we are now

able to calculate the change of the polarisation state for linearly polarised incident light

(Section 6.5.1) and the transmittance spectra of RCP and LCP incident light in a circular basis

(Section 6.5.3) from the complex-valued Jones matrix obtained by numerical calculations.

6.5.4 Generation of Circular Polarisation
Let us now have a closer look at the part of the polarisation-spectroscopy setups for the

visible/near-infrared (VIS-setup) and the infrared (FTIR-setup) that generates the circular
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Figure 6.14: Illustration of the polarising part of the optical system of the FTIR-setup (a) and the VIS-setup

(b). In contrast to (a) where the linear polariser is rotated by 0◦ (90◦) to produce RCP (LCP) light, the SQWP

in (b) is rotated by +45◦ (−45◦) to produce RCP (LCP) light. Propagation direction of light is in +z-direction

(green arrows).

polarisation. In particular the relative orientation of the linear polariser and the superachro-

matic quarter-wave plate (SQWP) has to be chosen appropriately to end up with the desired

circular polarisation – either RCP or LCP. The optical components under consideration have

the following specifications with regard to their polarisation properties.

• Polariser: The orientation of the polarisation plane of the emerging light is indicated

by a mark (white line on the mount)

• SQWP: The orientation of the fast axis is indicated by a white line on the mount.

The polarisation devices in the VIS-setup and the FTIR-setup are mounted as illustrated in

Fig. 6.14.

• FTIR-setup: Here, the polariser is rotated by 0◦/90◦ with respect to the horizontally

aligned x-direction to produce RCP/LCP light after the SQWP (fixed) which is

mounted at +45◦ with respect to the x-direction (see Fig. 6.14(a)). In this setup the

total intensity is measured without an analysing optical system between sample and

detector. Thus, the polarisation state of the emerging light is not analysed.

• VIS-setup: The polariser is fixed in vertical direction at 0◦ (x-direction), thus, the

emerging light is vertically polarised. The following SQWP is oriented with the

fast axis in x-direction (0◦). To produce RCP/LCP light the SQWP is rotated by

+45◦/−45◦ (see Fig. 6.14(b)). The light transmitted through the sample passes a

second SQWP rotated by −45◦/+45◦ with respect to the x-direction and finally an

analyser at 0◦ (90◦) selects the circular transmittance (conversion) of the metamaterial

structure for detection (see Fig. 6.16).

Note that we use the detector view for our reasoning, hence, light propagates towards the

observer. In order to check the relative orientation of the polariser and the SQWP to obtain

RCP and LCP light, respectively, we assume a plane wave given by:

E(z, t) = E0 cos(kzz − ωt) · êx . (6.67)
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If linearly polarised light is oriented perpendicular to the fast axis of the SQWP it is delayed

by θ = +π/2 = λ/4 with respect to light polarised parallel to the fast axis. Consequently,

Efast = E0 cos(kzz − ωt) (6.68)

Eslow = E0 cos
(
kzz − ωt+

π

2

)
(6.69)

If the SQWP is rotated by +45◦ with respect to the polarisation plane of light (see lhs of

Fig. 6.15(a)) the light field is decomposed into field components parallel to the fast axis and

parallel to the slow axis (middle parts of Fig. 6.15(a)). In this configuration the emerging

light is RCP as:

Efast =
1√
2
E0 cos(kzz − ωt)

z=0→ Efast ∝ cos(ωt) (6.70)

Eslow = − 1√
2
E0 cos

(
kzz − ωt+

π

2

)
z=0→ Eslow ∝ − sin(ωt) (6.71)

For the configuration presented in Fig. 6.15(b) we obtain LCP emerging light. Finally, we

Figure 6.15: The relative orientation of a polariser in x-direction and a rotated SQWP (first part of (a) and

(b)) determines the polarisation state of light. The incident light is decomposed into components parallel and

perpendicular to the fast (x′, fast) and the slow (y′, slow) axis of the SQWP (second part of (a) and (b)). Due to

retardation of the y′-component of the incident light field by λ/4 (third part of (a) and (b)), the emerging wave

is (a) RCP and (b) LCP if the SQWP is rotated by +45◦ and −45◦, respectively (part four (a) and (b)).

want to do a last check of the overall polarisation part of the optical system of the VIS-

setup (see Fig.6.16) using the Jones matrices in Table 6.3. The equation system for the
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conversion of linear-x polarisation to RCP and the analysis of the back-converted RCP to

linear polarisation therefore reads:

(
1

0

)
out

=

R(−45◦)︷ ︸︸ ︷
1√
2

(
1 1

−1 1

) SQWP 2=C(π
2 )︷ ︸︸ ︷

e−iπ
4

(
1 0

0 i

) R(+45◦)︷ ︸︸ ︷
1√
2

(
1 −1

1 1

)
︸ ︷︷ ︸

−45◦ rotated SQWP 2

·

R(+45◦)︷ ︸︸ ︷
1√
2

(
1 −1

1 1

) SQWP 1=C(π
2 )︷ ︸︸ ︷

e−iπ
4

(
1 0

0 i

) R(−45◦)︷ ︸︸ ︷
1√
2

(
1 1

−1 1

)
︸ ︷︷ ︸

+45◦ rotated SQWP 1

(
1

0

)
in

(6.72)

Consequently, for measurements of the pure polarisation transmittance (RCP→RCP) the

polarisers at the beginning and the end of the VIS-setup have to be aligned parallel to each

other if we rotate the SQWPs by +45◦ in opposite directions (see Fig. 6.16). The pure

polarisation conversion (RCP→LCP) is then measured in a crossed-polariser configuration.

The corresponding reasoning is also valid for the detection of LCP light if the SQWPs are

rotated by −45◦ in opposite directions.

Figure 6.16: Illustration of the polarising part of the VIS-setup. The first polariser/SQWP-pair (lhs) produces

RCP light from unpolarised incident light. The second SQWP/polariser-pair acts as analyser. For parallel

orientation of the polarisers the circular transmittance RCP→RCP is detected, for crossed polarisers the circular

conversion RCP→LCP is detected.

6.6 Optical Activity and Circular Dichroism
With the use of the circular-polarisation setups for visible/near-infrared (VIS-setup) and

infrared (FTIR-setup) frequencies we can measure the circular transmittance for the metama-

terial structures presented in Chapter 7 and 8, respectively. Owing to the circular eigenstates

of the chiral material, no circular polarisation conversion occurs and it is sufficient to

detect the circular-polarisation transmittance only, i.e., the RCP→RCP and LCP→LCP

transmittances, respectively. Typical circular-transmittance spectra of a chiral material are

shown in Fig. 6.17(a) [43]. They show two resonances (see Fig. 6.17(a) dashed blue/red
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Figure 6.17: (a) The calculated circular transmittance spectra for RCP (red) and LCP (blue) incident light of

a twisted-crosses chiral metamaterial (see Chapter 8.1) show two pronounced resonances (dashed red and blue

lines) where strong circular dichroism occurs. (b) The deduced curves for the rotation angle ϕ (in black) and

the ellipticity e (in gray) also exhibit a resonant behaviour. Maximum absolute values for the ellipticity are

achieved in the resonance where ϕ changes sign. Only between the two absorption bands pure optical activity

(e = 0) can be observed (green dashed line). Here, the RCP and the LCP transmittances are identical.

line) with strong circular dichroism, i.e., the resonance of one circular polarisation is more

pronounced than the resonance of the complementary circular polarisation. Furthermore,

the rotation angle of the polarisation plane ϕ of linearly polarised incident light shows a

resonant behaviour and the emerging wave nearly becomes circularly polarised (e → ±1,

see Fig. 6.17(b) dashed blue/red line) at the same time. In the spectral region between the

two resonances the ellipticity becomes nearly zero leading to pure optical activity (e = 0, see

Fig. 6.17(b) dashed green line). The combination of circular dichroism and optical rotatory

dispersion in the absorption region are known as the Cotton effect and can be explained by

the Kuhn-Kirkwood mechanism which states that coupling of two (identical) non-parallel

oscillators gives rise to the optical activity and the circular dichroism of chiral molecules

[113].

As chiral materials can be described by an effective index of refraction n± for either of

the two circular polarisations we can now calculate the angle of rotation ϕ and the ellipticity

e of a linear-x polarised plane wave after transmission through a chiral slab of thickness d.

Eout =
1

2

((
1

−i

)
ein+k0d +

(
1

i

)
ein−k0d

)
e−iωt

= ei
n++n−

2
k0d

(
cos

(
n+−n−

2
k0d

)
sin

(
n+−n−

2
k0d

) )
e−iωt (6.73)

As a consequence we find

tan (ϕ) =
Ey

Ex

= tan

(
n+ − n−

2
k0d

)
(6.74)



98 Chapter 6. An Introduction to Chirality

which is equivalent to

ϕ =
πd

λ
(n+ − n−) (6.75)

for real-valued refractive indices n+ and n−. Thus, the rotation angle is a function of the real

parts of the refractive indices of the chiral medium. If n+ and n− are purely imaginary, we

can calculate the ellipticity e from

Eout =

(
cosh

(
n+−n−

2
k0d

)
i sinh

(
n+−n−

2
k0d

) )
ei(−ωt) (6.76)

Now we can deduce the ellipticity

e = tan (η) = tanh

(
n+ − n−

2
k0d

)
(6.77)

For small arguments of the hyperbolic tangent we can conclude

e ≈ πd

λ
(n+ − n−) . (6.78)

The ellipticity e therefore is a function of the circular dichroism of the chiral medium.

Since the real and the imaginary parts of the refractive indices of the chiral medium are

closely related via the Kramers-Kronig relations, an optically active medium always exhibits

circular dichroism as well. Therefore it is in principle possible to measure the circular

dichroism spectrum only and deduce the optical rotatory dispersion spectrum if all spectral

features of the structure are within the measurement range.

6.6.1 Derivation of the Polarisation State of Light from Experiments
In experiments we obtain the transmitted intensity spectra for incident RCP and LCP light.

As a consequence, we have to do some post-processing in order to calculate the rotation

angle ϕ and the ellipticity e. The main goal is to obtain the complex transmission spectra

which can be used to deduce the rotation angle and ellipticity according to Section 6.5.1.

This can be achieved in two different ways:

1. Calculation of the complex transmission spectra via numerical calculations.

2. Calculation of the transmission phases θ(ω) of circular dichroism spectra T (ω) using

the Kramers-Kronig relations (KKR) [114].

For the latter approach we first have to rewrite the complex field transmission:

t(ω) =
√
T (ω)eiθ(ω)

⇓
log (t(ω)) = log

(√
T (ω)

)
+ iθ(ω) .
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Due to causality, the real part and the imaginary part have to be related to each other via the

Kramers-Kronig relations (Equation (2.36)) and the phases θ(ω) of the circular dichroism

spectra can be derived from [114]

θ(ω) = −2ω

π
PV

∫ ∞

0

log (t(ω))

ω′2 − ω2
dω′ ≈ −2ω

π
PV

∫ ω2

ω1

log (t(ω))

ω′2 − ω2
dω′ .

Fig. 6.18 shows a comparison of the calculated rotation angle ϕ and ellipticity e (Fig. 6.17(b))

obtained from numerical calculations shown in Fig. 6.17(a) in contrast to the derived values

via the Kramers-Kronig relations from the transmittance amplitudes shown in Fig. 6.17(a).

Although the curves in Fig. 6.18 calculated from the KKR-method fit very well to the

Figure 6.18: Comparison of the rotation angle ϕ (solid) and ellipticity e (dashed) deduced from numerical

calculations plotted in red in contrast to the method using the Kramers-Kronig relations plotted in blue.

curves obtained from numerical calculations, one has to be careful when calculating the

transmission phases with the Kramers-Kronig relations since we can only integrate over

the finite frequency interval given by the measured or calculated spectra, in practice. As

a consequence, log
(√

T (ω)
)

has to be negligible above and below the boundaries of the

(measured) frequency interval. In the case of the spectra shown in Fig. 6.17(a) this is fulfilled

to a great extend owing to the resonance behaviour of the transmittance spectra.

In this Thesis, however, we use numerical calculations with COMSOL Multiphysics and

calculate the rotation angle ϕ and the ellipticity e from the complex-valued transmission

Jones matrix of a chiral metamaterial slab (see Section 6.5.1).
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Chapter 7

“Planar” Chiral Photonic Metamaterials

In order to obtain a metamaterial structure exhibiting optical activity and circular dichroism,

we want to design a chiral unit cell, i.e., a unit cell made of metallic nanostructures

whose “...image in a mirror, ideally realised, cannot be brought to coincide with itself.”,

speaking with the words of Lord Kelvin [105]. This simple definition, however, is not

the only condition that a “chiral atom” has to fulfill if we want to obtain a “purely” chiral

optical response in the sense that, as described in Chapter 6, circular polarisations are the

polarisation eigenstates of the chiral metamaterial. In order to achieve this goal, we first have

to eliminate linear birefringence as otherwise the polarisation eigenstates of such structures

are generally elliptical polarisations (see, e.g., Refs. [115, 116]). As a result, the chiral

unit cell requires a four-fold rotational symmetry – the twisted-crosses metamaterial design,

presented in Chapter 8.1 is one example that exhibits circularly polarised eigenstates, the

main ingredient for pure optical activity.

Figure 7.1: (a) The mirror image of an S-shaped cross cannot be mapped onto the original structure in a two-

dimensional world. As a result the planar S-shaped cross is chiral in two dimensions. (b) In three dimensions

a mirror can always be placed in the plane of any planar structure design mapping the structure onto itself. In

this sense no planar chirality can exist in three dimensions. (c) If the planar structure is placed on a substrate,

however, the mirror symmetry is broken and the structure can only be mapped onto its mirror image when it is

lifted off the substrate.

Fabrication of this particular metamaterial design using a standard EBL-process (see

Chapter 4.1.2), however, is experimentally challenging since EBL is inherently connected

with planar or stacked structure designs. As a consequence, the question arises if “planar

101
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chiral” metamaterial designs have the capability to exhibit optical activity and circular

dichroism.

7.1 Chiral Symmetry in Two Dimensions
To address this question, we investigate the properties of the planar S-shaped cross design

shown in Fig. 7.1. If we have a look at the symmetry properties of the structure in a

purely two-dimensional world we realise that it is indeed impossible to superimpose its

mirror image onto the original (see Fig. 7.1(a)). In two dimensions this design is therefore

characterised by a four-fold rotation axis and the absence of mirror-symmetry. Thus, it is

“truly chiral”.

In optical experiments, however, the term “planar chirality” loses its meaning, since

in three dimensions the plane in which any “planar chiral” structure is positioned always

maps the two-dimensional structure onto itself (see Fig. 7.1(b)). As a consequence, no

chiral response, i.e., no optical activity and no circular dichroism is observable for an

ideal planar structure embedded in a homogeneous medium at normal incidence. Only

structural asymmetry or the presence of a substrate break this mirror symmetry (Fig. 7.1(c))

and therefore can lead to a significant chiral optical response of the planar metamaterial.

Remarkably, the handedness of a “planar chiral” structure positioned in the xy-plane

changes when the sample is illuminated from the negative z-direction in contrast to

illumination from the positive z-direction. This behaviour is in sharp contrast to a three-

dimensional helix which keeps its handedness when looked at from the other side. If

this change of handedness of the “planar chiral” structure also translated into the optical

response of the metamaterial slab this would lead to an overall non-reciprocal response of

the planar “chiral” metamaterial, i.e., the transmittance spectra measured in forward direction

would be different from the spectra measured in backward direction. Recent work, however,

[11, 117] has shown that the polarisation behaviour of planar “chiral” metamaterials neither

violates reciprocity nor time-reversal symmetry. A more detailed analysis of this aspect is

provided in Section 7.4 using the double-layer gammadion metamaterial design presented in

the following section.

7.2 Chiral Double-Layer Gammadions
In order to investigate the polarisation properties of quasi-planar chiral metamaterials, we use

the double-layer gammadion1-shaped structure design illustrated in Fig. 7.2 which closely

resembles the S-shaped cross depicted in Fig. 7.1 [118]. Two-dimensional arrays of single-

layer gammadion-shaped nanostructures have been investigated by several groups, so far:

1The name gammadion reflects that the structure itself consists of four greek “gamma”- (Γ-) letters. Using

this term, we refrain from attributing any symbolic meaning to the actual shape of the structure or its mirror

structure.
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• On the one hand Refs. [10, 119–121] have mainly investigated the dependence of the

optical rotation on the handedness of the gammadions in the first diffraction order.

Owing to the asymmetry in the measurement setup, the observed polarisation change

can be attributed both to the molecular “chirality” of the single-layer gammadion

structures and to structural chirality introduced by the oblique angle detection configu-

ration. For the detection of the polarisation change in the diffraction orders, however,

the two different contributions to the polarisation change cannot be distinguished, in

general [122]. In this context, it is therefore not clear if the polarisation change stems

from the “planar chiral” gammadions or their “chiral arrangement” in the measurement

setup. In particular, no polarisation effects were observed in the 0th diffraction order

[120, 123].

• Refs. [11, 124–126] on the other hand have focussed on single-layer gammadion-

shaped metamaterials exhibiting no Bragg scattering in the relevant spectral region

and measured the emerging polarisation state of linearly polarised incident light.

The polarisation properties of the gammadion-shaped metamaterials were found to

originate from symmetry breaking, i.e., from the missing of the in-plane mirror

symmetry of the planar gammadions. This symmetry breach originates from plasmon

coupling between the non-identical top and bottom surface of the metal nanoparticles

[11, 124] and leads to a chiral response in the (0th order) transmittance spectra.

Thus, changes of the polarisation state of light is a purely three-dimensional effect

[11, 124, 126]. In this case, the term “planar chiral” metamaterial cannot be used for

the metamaterial structures under investigation.

In order to demonstrate optical activity and circular dichroism that arise from the

chiral symmetry of gammadion-shaped unit cells, we discuss a quasi three-dimensional

metamaterial design consisting of two functional layers of metal gammadions which are

separated by a dielectric spacer (see Fig. 7.2(a)+(c) and Fig. 7.4(a)) [118]. As a result,

strong magnetic-dipole moments in analogy to the magnetic moments in cut-wire pairs

(see Chapter 3.5) are expected in the double-layer gammadion structure. We show that the

resulting polarisation effects, i.e., circular dichroism and optical activity are stronger than

for the corresponding planar single-layer gammadion metamaterial and specifically arise

from the structural asymmetry introduced by the different sizes of the two stacked metal

gammadions.

In our samples, the chiral “photonic atoms” are arranged in a square lattice with lattice

constant a = 340 nm (Fig. 7.2). We emphasise that in contrast to previous work [10, 11, 119]

the operation wavelength λ for our metamaterial structure is large with respect to the lattice

constant a such that our structures can be described as effective materials in the same spirit as,

e.g., magnetic [64, 68] or negative-index photonic metamaterials [85, 127, 128]. Precisely,

we have λ/a > 2 (λ/a = 2 is the fundamental Bragg condition), whereas previous work had

λ/a ≈ 0.16 [10, 119] and λ/a ≈ 1 [11], respectively.

Our stacked gammadion metamaterial structures are fabricated by standard single-layer

EBL followed by a three-step electron-beam evaporation process. The photonic atoms (see

Fig. 7.2(a)+(c) and Fig. 7.4(a)) consist of a sandwich of 25 nm gold, 25 nm magnesium
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Figure 7.2: SEM-images of the right-handed (rh) and left-handed (lh) double-layer gammadion metamaterial

are shown in (a) and (c), respectively. The corresponding single-layer structures are presented in (b) for the rh-

and in (d) for the lh-structure. The lattice constant of a = 340 nm is significantly smaller than the wavelength

of the incident light (λ/a > 2).

fluoride (MgF2) and 25 nm gold on a glass substrate, which is coated with a 5-nm-thin

film of ITO. The footprint of all samples is 100 μm × 100 μm. Typical SEM images of

a right-handed (lh) and a left-handed (rh) metamaterial are shown in Fig. 7.2(a)+(c). The

minimum feature sizes of the gammadions are on the order of 50 nm. Owing to the three-

step evaporation process, the upper gammadion in a unit cell is slightly smaller than the

lower one (see Fig. 7.4(a), tDiff = 15 nm). This introduces an obvious structural asymmetry

of the double-layer gammadions in the z-direction, thus breaking in-plane mirror symmetry.

The optical characterisation of the double-layer gammadions is performed with the VIS-

setup described in Chapter 4.2.1. For detection we use the optical-spectrum analyser for the

spectral region from 500-nm to 1.7-μm-wavelength and the home-built Fourier-transform

spectrometer for the spectral region from 1.7-μm to 2.3-μm-wavelength. We then perform

circular polarisation spectroscopy on the rh- and the lh-gammadion structures. In this

fashion, we essentially measure the circular dichroism of the samples, i.e., effects resulting

from the imaginary parts of the refractive indices for the two circular polarisation eigenstates,

while previous work has focussed on differences in the real part of the refractive index

by measuring the rotation angle ϕ and/or ellipticity angle η [10, 11, 119]. The circular

transmittance spectra of the double-layer structures are shown in the left column of Fig. 7.3.

The transmittances T+ and T− are different for RCP and LCP incident light. Notably, the

measurement of the circular conversion spectra reveals no detectable conversion from RCP



7.2. Chiral Double-Layer Gammadions 105

Figure 7.3: The measured circular transmittances of rh and lh double-layer gammadions are presented in

(a)+(c), respectively. Transmittance spectra are shown for RCP (red) as well as for LCP (blue). Both structures

exhibit significant circular dichroism ΔT = T+−T− (green curve). In contrast, the corresponding single-layer

structures exhibit no circular dichroism at all, neither for the rh (b) nor for the lh (d) structures. The circular

dichroism spectra are multiplied by a factor of ten, for clarity.

to LCP and vice versa (not shown). Hence, RCP and LCP are polarisation eigenstates of the

double-layer gammadion metamaterial. The differences in transmittances ΔT = T+ − T−
of the double-layer structures, multiplied by a factor of ten, are shown as green curves in

Fig. 7.3(a)+(c). Remarkably, the spectra for the rh structures and the lh structures reveal a

reversed sign of the transmittance difference – as expected from symmetry. This observation

rules out a major influence of unintentional linear birefringence.

The physical origin of the circular dichroism observed in Fig. 7.3(a)+(c) lies in the fact

that the coupling in the double-layer structure allows for symmetric and antisymmetric

charge-oscillation eigenmodes equivalent to the modes occuring in the cut-wire pairs

introduced in Chapter 3.5. Thus, the low-energy antisymmetric mode can be interpreted

as part of a ring current, leading to a local magnetic-dipole moment (see Fig. 7.4(b)). This

aspect has also been the key for realising magnetic [68] and negative-index metamaterials

[85, 127, 128].

The magnetic-dipole oscillation mode provides coupling of the electric field component

with the magnetic field component, a basic requirement for chiral structures (see Chapter 6).

Furthermore, the structural asymmetry of the two gammadion layers gives the combined

plasmon mode a certain “twist” into the propagation direction of light which makes the

metamaterial structure a quasi three-dimensional chiral metamaterial, hence a chiral optical

response, i.e., circular dichroism is observable. The long and short arms of the gammadions

give rise to two pairs of resonances. These four resonances are visible as transmittance

minima in Fig. 7.3(a)+(c). Qualitatively, the experimental results can be understood using

the Kuhn-Kirkwood mechanism [11] which ascribes the optical activity to the coupling of

two non-parallel dipole oscillators [113] and results in a resonance behaviour of the optical
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rotation ϕ and the ellipticity e described by the Cotton effect (see Chapter 6.6). To allow

for a direct comparison we have also fabricated corresponding single-layer structures with

identical lateral dimensions but with a single 50-nm-thin gold layer. Obviously, the circular

dichroism spectra in Fig. 7.3(b)+(d), which are arranged just as in (a)+(c), show strongly

reduced effects, if any. Also, owing to the missing plasmon coupling, only two plasmon

resonances occur for the single-layer structures. This comparison between double-layer

(Fig. 7.3(a)+(c)) and single-layer (Fig. 7.3(b)+(d)) samples shows that the differences are

due to design rather than the amount of metal. Finally, we have also fabricated gammadion

structures with angles other than 90◦ between the long and the short arms (e.g., 45◦).
These structures show smaller polarisation effects and are not discussed here. Indeed, from

symmetry it is obvious that structures with 0◦ and 180◦ angles would not exhibit any circular

dichroism at all.

Figure 7.4: (a) Scheme of the double-layer magnetic metamaterial. The geometrical parameters are indicated

and given by L = 274 nm, ti = 90nm, lo = 135 nm, to = 50nm, and tDiff = 15nm. (b) Snapshot of the

E-field at 0.86-μm-wavelength for LCP incident light. The cutting plane is indicated in (a).

To support our interpretation, we have additionally performed numerical calculations

with the COMSOL Multiphysics software package. The geometrical parameters are taken

from the experiment and given in Fig. 7.4, the refractive index of the glass substrate is taken

as 1.5, that of magnesium fluoride as 1.38, the gold is described as a Drude metal with

plasma frequency ωpl = 2π × 2081THz and collision frequency ωcoll = 2π × 35THz.

The calculated spectra are shown in Fig. 7.5 for the double-layer (Fig. 7.5(a)+(c)) and the

single-layer (Fig. 7.5(b)+(d)) gammadion samples, respectively. A snapshot of the electric-

field distribution of the antisymmetric mode of the short arms of the double-layer structures

is shown in Fig. 7.4(b). The overall qualitative agreement is very good. In particular, four

resonances occur for the double-layer structures, whereas only two resonances occur for the

single-layer structures. Furthermore, the spectral positions of all resonances agree very well

with experiment and finally, the magnitude of the circular dichroism is nicely reproduced

and supports our reasoning. Specifically, we find no circular dichroism for the single-

layer gammadion metamaterial. Hence, we verified that planar “chiral” behaviour indeed

cannot be observed for single-layer gammadion metamaterials at normal incidence. Only

for double-layer chiral metamaterials, the antisymmetric magnetic plasmon mode shows

significant circular dichroism of up to ±6%. Hence, the magnetic oscillation mode gives
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the double-layer gammadion metamaterial a certain “twist” into the propagation direction -

very similar to three-dimensional chirality.

Figure 7.5: Calculated circular transmittance and circular dichroism spectra for the rh (a) and the lh (c) double-

layer gammadion design as well as for the rh (b) and lh (d) single-layer design. The sample dimensions are

given in Fig. 7.4(a).

7.3 Influence of Symmetry Breaking

Since the presence of the substrate and the structural asymmetry of the double-layer

gammadions in z-direction is responsible for the symmetry breaking in the otherwise two-

dimensional metamaterial design (see Section 7.1) we now want to clarify, to what extend the

polarisation response of the metamaterial is influenced by these two aspects. We therefore

performed numerical calculations, using COMSOL Multiphysics, for a symmetric double-

layer gammadion design, i.e., tDiff = 0. The comparison of the circular dichroism spectra

(multiplied by a factor of 10) of the asymmetric double-layer structure and the symmetric

double-layer is presented in Fig. 7.6(a)+(b) for an rh and Fig. 7.6(c)+(d) for an lh structure

design. Obviously the circular dichroism of the symmetric structure design is nearly zero.

As a result, we can identify the structural asymmetry introduced by the different sizes of the

upper and the lower gammadions in each metamaterial unit cell as main origin for the chiral

response of the double-layer gammadion metamaterial presented in this chapter.

7.4 Forward and Backward Propagation

At the beginning of this chapter (Section 7.1), we stated that a planar chiral structure

changes handedness when observed from the back side meaning that rh gammadions

become lh gammadions when we flip the sample upside-down. It is therefore of particular
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Figure 7.6: Comparison of the calculated circular transmittance spectra of the asymmetric rh (a) and lh (c)

design and the symmetric rh (b) and lh (d) design. The RCP and LCP transmittances are plotted in red and

blue, respectively. The circular dichroism spectra (in green) are multiplied by a factor of 10.

interest, if the optical response, i.e., the circular dichroism and the optical activity of

the double-layer asymmetric gammadion metamaterial also switches sign if we illuminate

the structure from the back side. We consequently calculated the circular transmittance

spectra of the asymmetric double-layer gammadions using the geometry parameters in

Fig. 7.4. The substrate has been neglected in order to exclusively investigate the response

of the chiral gammadion design. The circular dichroism spectra are presented in Fig. 7.7

for circularly polarised incident light, propagating in the forward and in the backward

direction. Remarkably, the RCP and LCP transmittance spectra do not change for backward

propagation with respect to the RCP and LCP spectra for forward propagation although the

handedness of the geometrical shape changes. In order to investigate optical activity we have

additionally deduced the angle of rotation ϕ and the ellipticity e of the emerging polarisation

state of a linear-x polarised incident plane wave from the calculated Jones matrix obtained

from COMSOL Multiphysics. The optical rotatory dispersion spectra for the calculated

spectra of the asymmetric double-layer gammadions are presented in Fig. 7.8. We clearly

observe pronounced resonances of both the rotation angle ϕ and the ellipticity e which

closely resemble the Cotton effect. The results presented in Fig. 7.8 confirm our above

finding that the change of the polarisation state of the incident linear polarisation is (nearly)

identical for forward and backward propagation (see also [11]).

This overall behaviour is also consistent with reciprocity [11, 117], which means, simply

speaking, that the optical response of a (reciprocal) scatterer illuminated by a plane wave is

identical if we switch the position of the source and the detector (see Ref. [111]).

Hence, the optical response of the quasi-planar chiral gammadion metamaterial under

investigation is rather similar to the optical response of a three-dimensional chiral structure

like a helix.
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Figure 7.7: Calculated circular transmittances for the asymmetric rh-double-layer gammadions in forward

(a) and backward (b) direction. The corresponding spectra for the lh gammadions are plotted in (c) and (d),

respectively. The circular dichroism spectra are multiplied by a factor of 5, the substrate is neglected.

Figure 7.8: (a) The calculated optical rotation ϕ and (b) the ellipticity e of the rh/lh double-layer gammadions

are qualitatively the same for illumination from the frontside (in red/blue) and from the backside (in

magenta/cyan) of the sample. The inset shows a close-up of the gray shaded area.
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Chapter 8

3D-Chiral Photonic Metamaterials

Having investigated the optical properties of double-layer and single-layer gammadion-

shaped metamaterials in Chapter 7, we can state that chiral optical effects are only present

for structures with a structural asymmetry in the z-direction. As a consequence, the

polarisation response can rather be compared with that of a three-dimensional helix, for

instance. We therefore want to investigate the polarisation response of metamaterials with

a unit cell consisting of two identical nanostructures where one structure is translated in

z-direction and rotated by a twist angle α with respect to the lower one (see Fig. 8.1). In

Chapter 5.3 we have already investigated the twisted-SRR metamaterial as a blueprint of

such a 3D-chiral structure design that indeed exhibits a chiral response. The lack of four-fold

rotational symmetry and the resulting linear birefringence, however, clearly distinguishes

this design from the “purely” chiral structures presented in this section. Multi-layered chiral

Figure 8.1: (a) Illustration of the bi-layer twisted-crosses chiral unit cell presented in Section 8.1. The upper

cross is rotated by 22.5◦ with respect to the lower one. (b) Construction scheme of the chiral twisted-SRR unit

cell presented in Section 8.2. The unit cell consists of four SRR dimers rotated by 0◦, 90◦, 180◦ and 270◦ with

respect to the stacking axis. Both structures exhibit four-fold rotational symmetry and no mirror symmetry.

structures with four-fold rotational symmetry have already been published [125, 129, 130].

Those structures, consisting of multiple layers of twisted gammadions, exhibit pronounced

optical activity [129] or even a negative refractive index for circular polarisations at 5-GHz-

frequency [130]. Since the chirality of multi-layer twisted structures is rather based on

the “twist into the third dimension” (structural chirality) than to the “planar” chirality of

111
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the structured metal layers (molecular chirality) even achiral planar structure designs can

be used as a starting point. This allows much simpler designs than gammadion-shaped

nanostructures, for instance.

In the following we want to discuss the polarisation properties of chiral twisted-crosses

in Section 8.1 [43] and of chiral twisted-SRR metamaterials in Section 8.2 [44] (see Fig. 8.1).

For fabrication of the two-layer metamaterial structures a specific two-step EBL process with

an intermediate planarisation step has been developed (see Chapter 4.1.3). Great care has

been taken during the alignment of the second functional layer above the first one in order

to minimise alignment shifts, since these structural asymmetries lead to the excitation of

unwanted higher-order plasmon modes in nanostructures as stated by Refs. [131, 132].

8.1 Twisted-Crosses Photonic Metamaterial

Optical activity and circular dichroism in natural molecules can be attributed to the inter-

action of magnetic and electric dipole moments within a molecule [113]. This interaction

can be explained by coupling of two (identical) non-parallel electric/magnetic dipoles and

is commonly known as Kuhn-Kirkwood mechanism [113]. Translating this mechanism to

plasmonics, we find that a cut-wire pair [68, 85] where the upper wire is rotated with respect

to the lower one is the plasmonic analogue of the non-parallel coupled electric dipoles in

molecules. Here, magnetoelectric coupling, i.e., the interplay between the electric/magnetic

dipoles present in twisted cut-wires and the magnetic/electric component of the incident light

field [95] leads to large chiral optical effects [133] even exceeding that of natural substances.

We therefore choose this design to demonstrate optical activity in three-dimensional chiral

metamaterials. In order to avoid undesired linear birefringence we use twisted crosses instead

of cut-wire pairs and obtain four-fold rotational symmetry (see Fig. 8.1(a)).

Figure 8.2: (a) Scheme of a chiral twisted-crosses metamaterial composed of right-handed (rh) twisted gold

crosses at oblique view. (b) SEM image of the fabricated rh structure and (c) top-view large-area SEM image

of an rh structure. The insets in (c) show top-view close-ups of the chiral unit cell.
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Here, we investigate a chiral double-layer design at optical frequencies consisting of

individual layers of twisted gold crosses [43, 134] arranged on a simple square lattice with a

lattice constant of 500 nm. Electron micrographs of structures we have fabricated are shown

in Fig. 8.2. The arms of the gold double crosses have a thickness of 25 nm, a full width of

56 nm, and a length of 315 nm. The center of the crosses is slightly overexposed owing to

the proximity effect. The two gold layers are separated by an approximately 37.5-nm-thin

spacer layer of SOD. From Fig. 8.2(c) and the insets therein, it becomes obvious that the

sample quality is very high. Particularly, the alignment mismatch between the two crosses in

each pair is smaller than 10 nm over the entire sample footprint of 100 μm×100 μm (see inset

in Fig. 8.2). Both, left-handed (lh) and right-handed (rh) twisted-crosses structures have been

fabricated and characterised optically. We used a twist angle of 22.5◦ between the crosses

shown in Fig. 8.2 as neither 0◦ [135] nor 45◦ lead to a chiral unit cell and consequently no

optical activity or circular dichroism can be expected.

For optical characterisation, we have used the VIS-setup described in Chapter 4.2.1. In

order to provide circular polarisation we use Glan-Thompson polarisers in combination with

superachromatic quarter-wave plates (SQWPs, see Chapter 6.5.4). This additionally allows

for analysing the emerging polarisation state of light, especially the conversion of circular as

well as of linear incident polarisation into the corresponding orthogonal polarisation state.

The experimental spectra for lh and rh twisted-crosses reveal two distinct resonances as

presented in Fig. 8.3. In close analogy to the cut-wire pairs [68, 85], these two resonances

correspond to the two effective (electric and magnetic) modes of the otherwise degenerate

fundamental electric-dipole Mie resonances of the two coupled crosses. Furthermore, we

have verified that RCP and LCP are polarisation eigenstates of the twisted-crosses chiral

metamaterial by measuring the circular conversion spectra (RCP→LCP, LCP→RCP). If we

now compare the two resonances of the rh-twisted-crosses structure (see Fig. 8.3(b)), for

example, we observe strong coupling of RCP light to the short-wavelength resonance and

strong coupling of LCP light to the long wavelength resonance at the same time. Hence,

the twisted-crosses chiral metamaterial exhibits ambichiral [136] behaviour meaning that

the twisted-crosses chiral metamaterial responds like a left-handed structure for the short-

wavelength resonance and like a right-handed structure for the long-wavelength resonance.

Further comparison of the results for incident LCP and RCP light on lh and rh structures in

Fig. 8.3(a)+(b), reveals that reproducibility is excellent and that fundamental symmetries are

obeyed since the spectra for the rh structures and the lh structures show a complementary

behaviour of the RCP and LCP transmittances. Indeed, intensity conversion of incident LCP

and RCP light is smaller than 10−3, a value corresponding to our experimental measurement

limit. Hence, LCP and RCP are the eigenpolarisations of our structures throughout the

entire spectral range shown, in contrast to other recently presented 3D-chiral metamaterials

[76] which exhibited wavelength-dependent elliptical eigenpolarisations. Furthermore, the

measured circular transmittance spectra are identical for forward and backward propagation,

as expected from symmetry. As a result, the optical response of the twisted-crosses fulfills

reciprocity. Finally, as desired for a chiral material, coupling to the two effective resonances

is strongly dependent on the handedness of the incident light resulting in huge circular

dichroism. Note that, in between the two resonances (see gray areas in Figs. 8.3-8.5), the
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Figure 8.3: Measured normal-incidence transmittance and conversion spectra (on a logarithmic scale) of the

twisted-crosses metamaterial shown in Fig. 8.2. Transmittance of an lh (a) and an rh (b) structure for LCP

and RCP light (top row) is plotted in blue and red, respectively. The conversion from LCP to RCP and vice
versa is extremely small and plotted in the same colour. In contrast to circularly polarised incident light, we

do find significant conversion for linearly polarised incident light (bottom row) in between the two resonances,

where the intensity transmittances for the two incident circular polarisations are almost identical. This regime

(highlighted in gray) delivers pure, large optical activity.

amplitudes of the two circular transmittances are very nearly identical. Thus, incident

linearly polarised light is expected to remain linearly polarised, but rotated due to the

different refractive indices n+ and n− for circular polarisation. This is the fingerprint of

pure optical activity. Indeed, as a result of optical activity, the spectra for linear polarisation

of the incident light in Fig. 8.3 (bottom row) show significant conversion in this regime. From

the values for the linear-x polarised transmittance and the linear-y polarised conversion the

optical rotatory power can be calculated. The measured conversion of 3× 10−3 at 1.36-μm-

wavelength results in a rotation of the linear polarisation axis of ϕ ≈ 4.3◦ that is compatible

with the rotation angle of ϕ = 4.0◦ obtained from Fig. 8.5. This value is achieved for a total

thickness of the metamaterial of only l = 87.5 nm. The polarisation rotation angle ϕ after

propagation over length l at free-space wavelength λ is connected with the difference of the

refractive indices by

ϕ = (n+ − n−)
π

λ
l , (8.1)

and provides an estimate of |n+ − n−| ≈ 0.35.

To support our experimental findings, we compare the experimental spectra with

numerical calculations using COMSOL Multiphysics. As before, the gold dispersion is

described by the free-electron Drude model with plasma frequency ωpl = 2π×2159THz and

collision frequency ωcoll = 2π× 25THz plus a background dielectric constant of εb = 9.07.

The refractive indices of the glass substrate and the spin-on dielectric are taken as 1.45 and

1.41, respectively, the thin ITO film is neglected. The lateral geometrical parameters are

shown in the insets of Fig. 8.2(c), the gold thickness is 25 nm, that of the spacer layer
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Figure 8.4: Calculated normal-incidence transmittance and conversion spectra of the lh (a) and rh (b) twisted-

crosses structure on a logarithmic scale. The conversions for LCP and RCP are below 5 · 10−5 (not shown).

37.5 nm. The calculated results in Fig. 8.4 are presented like the experiments shown in

Fig. 8.3. Obviously, the overall agreement is very good in all aspects discussed above. In

particular, we find very little conversion of circular polarisation and significant conversion

of linear polarisation corresponding to optical activity. From the calculations we deduce a

maximum rotation angle ϕ = 4.0◦ at λ = 1.36-μm-wavelength (see Fig. 8.5) as described in

Chapter 6.5.1. The ellipticity [112], e, is smaller than 1% in this spectral region.

Figure 8.5: Calculated rotation angle ϕ (solid) and ellipticity, e = tan η, (dashed) of the lh (a) and rh (b)

structures for linearly polarised incident light.

A chiral effective-parameter retrieval as discussed in Appendix A.2 and in Ref. [107]

leads to a refractive index difference of |n+ − n−| = 0.34 for our twisted-crosses

metamaterial structures. This is consistent with our above estimates. Note that the (real

parts of the) refractive indices stay positive throughout the entire spectral range, unlike their

microwave counterparts [134]. However, the effective-parameter retrieval for metamaterial

structures with less than one lattice constant in z-direction should be taken with caution (see

Chapter 2.2.2).
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In summary, the three-dimensional twisted-crosses metamaterial presented in this

section exhibits circular polarisation eigenstates and, hence, pure, large optical activity of

up to 4◦ at 1.36-μm-wavelength. This rotation for a total metamaterial thickness of only

87.5 nm corresponds to an angle of 45, 714◦/mm and clearly exceeds values for natural

chiral substances. The optical rotation can be translated into a difference of the refractive

indices for the two circular polarisations as large as |n+ − n−| ≈ 0.35 in a spectral region

around 1.36-μm-wavelength.

8.2 Chiral Twisted-Split-Ring-Resonator Metamaterial
Optical activity of the twisted gold crosses presented in the last section arises specifically

from interactions of the Mie-like electric-dipole resonances which result in a coupling of the

electric and the magnetic field components of the incident light [9, 130, 137]. For pairs of

twisted SRRs even stronger coupling effects have been reported [76]. However, they do not

only exhibit strong optical activity but also strong linear birefringence owing to the obvious

asymmetry between the x and the y-direction (see Chapter 5.3). In order to avoid linear

birefringence, we design a square unit cell which is formed by four of these SRR pairs or

dimers [44], whereby the pairs are rotated by 0◦, 90◦, 180◦, and 270◦ with respect to the

stacking axis (see Fig. 8.1(b)). The resulting overall crystal structure has four-fold rotational

symmetry, no center of inversion, and no mirror planes. Hence, it is truly chiral.

Figure 8.6: Top- (a) and oblique- (b) view SEM-images of a typical fabricated structure. The insets show

zoom-ins, the scale bars are 200 nm.

We emphasise that the detailed arrangement of the SRR dimers within the unit cell

does matter. For example, Ref. [138] uses a different arrangement of SRRs in order

to eliminate circular dichroism and focusses on investigating the polarisation-dependent

magnetic/electric optical response of the achiral arrangement of twisted SRRs. This

highlights that the relative arrangement (symmetry) of the SRR pairs is of fundamental

importance for the effective optical response of the metamaterial structure.

In contrast to Ref. [138] we investigate the polarisation response of a chiral lateral arran-

gement of twisted SRRs that, by symmetry, exhibits vanishing linear optical birefringence.

This structure has been mentioned theoretically by Ref. [91] and is discussed in another paper
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[139] at much larger wavelengths. In contrast to Ref. [139], however, we characterise our

chiral twisted-SRR metamaterial using the “natural” optical polarisations, namely LCP and

RCP light, the eigenpolarisations of the chiral structure. This allows us to unambiguously

identify the eigenmodes from the experiment.

Fabrication of the two-layer chiral medium shown in Fig. 8.6 requires a two-step EBL

process with intermediate planarisation as introduced in Chapter 4.1.3. The SRR dimensions

are given by L1 = 380 nm, L2 = 350 nm, and w = 115 nm (see Fig. 8.1(b)). The

gold thickness in each layer is 60 nm, that of the spacer layer roughly 85 nm. The unit

cell is arranged in a square lattice with an in-plane lattice constant of a = 885 nm. In

order to obtain large coupling effects between the two SRR layers we performed numerical

calculations beforehand. The optimum separation of the two SRR layers results from a

trade-off: for too large SRR layer separation, the SRR coupling in each pair vanishes and

no optical activity can be expected. If, on the contrary, the two SRR layers lie in the same

plane, the structure itself is clearly not chiral and optical activity vanishes once again. We

have found the optimum SRR separation to be at about 85 nm leading to maximum optical

activity. Figure 8.6 shows SEM-images of the fabricated sample. Obviously, the sample

quality is very high. In particular, no misalignment between the two SRRs in each pair is

detectable (see inset in Fig. 8.6(a)). The in-plane lattice constant of the set of four SRR pairs

of a = 885 nm is significantly smaller than the resonance wavelength at about 3 μm. Thus,

the structure can safely be regarded as metamaterial (λ/a > 3).

Figure 8.7: Measured (a) and calculated (b) normal-incidence intensity transmittance spectra for LCP and RCP

light incident onto the sample shown in Fig. 8.6. The calculated intensity conversion (not shown) is below 10−5

for the entire spectral range.

For optical characterisation, we use the FTIR-setup presented in Chapter 4.2.2 [140].

Normalisation of the transmittance spectra is with respect to the transmittance of the glass

substrate, the ITO- and the spacer layer. The measured transmittance spectra in Fig. 8.7(a)

for LCP and RCP light indeed show much stronger circular dichroism compared to those of

our “planar chiral” metamaterial structure [118] presented in Chapter 7 as well as compared

to those of our twisted-crosses metamaterial structure [43] presented in the previous section

(Section 8.1). Precisely, the circular dichroism reaches values as large as 33% for the present

two-layer chiral twisted-SRR metamaterial. Here, once again, an ambichiral [136] optical

response can be observed. Remarkably, the measured circular transmittance spectra are

identical for forward and backward propagation (not shown), as expected from symmetry.

Hence the twisted-SRR metamaterial shows an overall reciprocal behaviour.
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Figure 8.8: (a) Calculated rotation angle ϕ and ellipticity e of the transmitted light for linearly polarised incident

light. (b) Difference of refractive indices Δn = n+ − n− retrieved from the complex transmittance (and

reflectance) spectra shown in Fig. 8.7(b).

To investigate the nature of the observed resonances, we perform additional numerical

modelling using COMSOL Multiphysics in cooperation with R. Zhao1 and C. M. Soukoulis2

using CST Microwave Studio. The lateral geometrical parameters of the SRRs are taken

as L1 = 380 nm, L2 = 350 nm, w = 115 nm and a = 885 nm. The gold thickness is

60 nm and that of the spacer layer is 85 nm. The gold optical properties are modelled by

the Drude model with plasma frequency ωpl = 2π × 2133THz and collision frequency

ωcoll = 2π × 33THz. The refractive indices of the glass substrate and the spin-on dielectric

are 1.45 and 1.41, respectively. The calculated results in Fig. 8.7(b) nicely agree with

our experimental findings in Fig. 8.7(a). Remarkably, the intensity conversion of circular

polarisation is below 10−5 throughout the entire spectral range, which means that LCP and

RCP are the eigenpolarisations of the Jones matrix of this chiral twisted-SRR metamaterial.

Fig. 8.8 shows the corresponding calculated rotation angle ϕ of linearly polarised incident

light as well as the calculated ellipticity, e = tan(η). We find that the rotation angle and

the ellipticity e exhibit a resonance behaviour as described by the Cotton effect. In order to

obtain pure optical activity, e = 0 is required. At this zero crossing, marked by the dashed

line in Fig. 8.8(a), we find a rotation angle of about 30◦ for a metamaterial thickness of only

205 nm. Employing the usual parameter retrieval [107] accounting for the glass substrate

leads to the difference between RCP and LCP refractive indices |Δn| = |n+ − n−| ≈ 2

at around 3-μm-wavelength, as shown in Fig. 8.8(b). As expected, the spectral shape of the

retrieved index difference Δn (Fig. 8.8(b)) closely resembles the rotation angle (Fig. 8.8(a))

directly obtained from the calculated transmission phases. Finally, we calculated the axial

component of the local magnetic field in the resonance positions of the spectra shown in

Fig. 8.7. The corresponding field and current distributions in the cutting plane through the

two SRR layers at resonance wavelengths of 3.2 μm and 2.5μm are shown in Fig. 8.9. For the

long-wavelength LCP resonance, the longitudinally coupled magnetic moments within each

SRR dimer are obviously parallel in contrast to the short-wavelength RCP resonance, where

the magnetic moments are antiparallel. This is in perfect agreement with our reasoning that

1Ames Laboratory and Department of Physics and Astronomy, Iowa State University, USA and Applied Optics

Beijing Area Major Laboratory, Department of Physics, Beijing Normal University, China.
2Ames Laboratory and Department of Physics and Astronomy, Iowa State University, USA and IESL-FORTH

and Department of Materials Science and Technology, University of Crete, Greece.
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Figure 8.9: False-colour plots of the axial component of the local magnetic field in two planes cutting

through the SRR layers for (a) LCP incidence at 3.2-μm-wavelength and (b) for RCP incidence at 2.5-μm-

wavelength. Schemes of the corresponding underlying electric currents within the SRRs are shown in (c) and

(d), respectively.

interaction effects in (90◦-) twisted-SRR dimers are based on the coupling of longitudinally

arranged magnetic dipoles, as introduced in Chapter 5.3.

As a result, we obtain rotation angles (optical activity) as large as 30◦ and circular

dichroism of about 33% at around 3-μm-wavelength that translates to values of |Δn| ≈ 2

that outperform our previous best results on twisted crosses (see Section 8.1) by about a

factor of six.

8.3 Three-Dimensional Metallic Helices

In the last two sections, we have investigated two-layer 3D-chiral metamaterials that

exhibit three-dimensional chirality. Now the question arises how magnetoelectric coupling

takes place in the most evident three-dimensional chiral structure – a circular metal helix.

Consequently, we theoretically investigate the polarisation behaviour of the gold helices

[140] shown in Fig. 8.10(b)+(c) using CST MicroWave Studio and calculate the circular

transmittance spectra of the helical structure. Indeed we observe pronounced circular

dichroism for one-pitch and two-pitch gold helices as illustrated on the right-hand side

of Fig. 8.10(b)+(c). In order to explain the remarkable polarisation behaviour of the gold

helices, we take a step back to a single SRR on a plane substrate (see Fig. 8.10(a)). This

structure already provides magnetoelectric coupling, a fundamental prerequisite for chiral

metamaterials. The circular transmittance spectra for the single SRR on the substrate exhibits

two pronounced sharp resonances corresponding to the plasmonic modes of the SRR (right-

hand side of Fig. 8.10(a)). Owing to the presence of mirror symmetry (no chirality), the

transmittance spectra for both LCP and RCP light are identical. If we now “pull” one

end of the SRR (positioned in the xy-plane) in the z-direction we elongate the SRR and
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Figure 8.10: (a) Calculated circular transmittance spectra of the achiral split-ring resonator illustrated on the

left. RCP and LCP transmittance are identical exhibiting two pronounced resonances. The gold is modelled by

the standard Drude model with ωpl = 2π × 2181THz and ωpl = 2π × 19.1THz. The dimensions of the unit

cell is given by 2 μm × 2 μm. (b) ’Pulling” one arm of the SRR in (a) in z-direction results in the left-handed

one-pitch helix with a pitch height of 2 μm (illustrated on the left). The circular transmittance spectra show a

strong chiral response of the helix. (c) For a left-handed two-pitch helix a broad stopband is formed for LCP

light while RCP is nearly completely transmitted. The broad stop band can be seen as superposition of three

(coupled) plasmonic modes indicated by the (green) roman numbers. The current distributions of these three

modes are depicted in (d).

a one-pitch helix is formed (Fig. 8.10(b)). In this case, the circular transmittance spectra

still exhibit two pronounced resonances just like it is the case for the single SRR but for

one circular polarisation (LCP) only (right-hand side of Fig. 8.10(b)). Hence, the one-pitch

helix already shows a chiral optical response. The intensity conversion of the incident RCP

light is slightly below 5% in the spectral range from 3.75 − 7.5 μm. This value is actually

larger than that for our previous chiral structures and can be attributed to linear birefringence

that is introduced by the symmetry breaking (no rotational symmetry is present in the axial

direction) introduced by the termination of the helix at the top and the bottom end of the

helix. As a consequence the polarisation eigenstates of helices with a finite number of

pitches are expected to be elliptical polarisations, in general [141]. Note that even an infinite

helix “only” exhibits rotational symmetry in a wider sense, namely direct isometry. Hence a

rotation in combination with a translation along the helix’ axis, or a translation alone, maps

an infinite helix onto itself. However, this helix will show an isotropic response at normal
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incidence and circular polarisation eigenstates result. Hence, it is favourable to increase the

number of pitches.

We have therefore calculated the circular transmittance spectra for two-pitch helices and

obtained a broad stop band consisting of three plasmonic excitation modes (Fig. 8.10(c)).

The current distributions within the two-pitch helix are depicted in Fig. 8.10(d) for each of

the three plasmonic modes. Owing to the coupling of the two helix pitches (two elongated

SRRs) the single sharp resonances form a broad stop band for one circular polarisation (LCP

in this case) very similar to the formation of electronic bands in natural crystal lattices. The

broadband polarisation behaviour consequently has its origins in the coupling of the helix

pitches, i.e., the single “split-ring-resonator modes” within the helix. A detailed investigation

of the influence of the helix dimensions on the polarisation response is performed in

Ref. [141].

In order to fabricate three-dimensional metal helices, however, EBL is not applicable and

new fabrication techniques have to be developed. The approach chosen by Gansel et al [140]

uses direct laser writing to fabricate three-dimensional polymer templates which are finally

filled with gold by electrochemical deposition (for details see Ref. [140]). The experimental

results are in very good qualitative agreement with the theoretical predictions [140]. In fact,

a two-pitch gold helix metamaterial as depicted in Fig. 8.10(c) can be regarded as prototype

for a broadband circular polariser at infrared wavelengths and is a promising candidate for

future applications.
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Chapter 9

Conclusions

In this Thesis we have designed, fabricated and characterised three-dimensional chiral

metamaterials exhibiting pure, large optical activity and circular dichroism at optical

frequencies. In order to provide magnetoelectric coupling – a fundamental prerequisite

for a chiral optical response – we have also investigated magnetic coupling phenomena in

periodic nanostructured arrays in the optical spectral range using standard electron-beam

lithography (EBL) techniques for fabrication of these planar structures. However, since

a chiral response requires metallic nanostructures exhibiting chiral symmetry (molecular

chirality) which cannot be achieved by planar structure designs, EBL is not applicable

without modifications in this case. We have therefore developed a dedicated fabrication

procedure combining standard electron-beam lithography and a planarisation step in order

to fabricate bi-layered chiral metamaterial structures where the second functional layer

within a unit cell is rotated with respect to the first one. Using a special alignment

technique to position the two functional layers above each other during the second EBL

step we have achieved an alignment accuracy better than 10 nm over the whole extend of a

100 μm×100 μm-large chiral metamaterial field. The resulting “twisted” chiral metamaterial

structures with four-fold rotational symmetry exhibit circular polarisation eigenstates and,

thus, pure, large optical activity and circular dichroism at optical frequencies exceeding that

of natural materials by orders of magnitude.

In order to make use of magnetoelectric coupling for chiral metamaterial designs we

have investigated coupling effects of magnetic photonic nanostructures in the first part of this

Thesis. One possibility to couple magnetic moments in the optical regime has been realised

by positioning a periodic array of gold double-wire pairs on top of a dielectric waveguide

(Chapter 5.2.1). The magnetic plasmon resonance of the double-wire pairs is then coupled to

a photonic Bragg resonance via the underlying dielectric waveguide. The periodic lattice of

the double-wire pairs works as a grating coupler and only allows light of specific wavelengths

to propagate in the dielectric waveguide. When finally the field distributions of the two

resonances overlap, a frequency splitting or avoided crossing is observed. Hence, strong

coupling of the magnetic plasmonic resonance and the Bragg or waveguide resonance is

present in our coupled system when the lattice constant of the array of double-wire pairs
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is on the order of the magnetic resonance wavelength. This structure design can therefore

be regarded as a model of a “magnetic photonic crystal” in analogy to (resonant) dielectric

photonic crystals.

Furthermore, when proceeding to metamaterials, i.e., to arrays of magnetic nanostruc-

tures with sub-wavelength lattice constant, we have observed direct coupling of effective

magnetic-dipole moments in a low-symmetry arrangement of gold split-ring resonators,

where the neighbouring SRRs are oriented perpendicular to the centered one (Chapter 5.2.2).

In this configuration, the neighbouring effective electric dipoles of the SRRs are all

perpendicular to each other and, thus, no electric-dipole coupling takes place. The optical

response of the metamaterial is then dominated by transverse magnetic coupling effects

leading to linear polarisation eigenstates oriented in the ±45◦-direction with respect to

horizontal polarisation. This is similar to the behaviour of a wave plate with its principle axes

in ±45◦-direction. For the two eigenpolarisations we have observed a frequency splitting of

the magnetic plasmon mode into a symmetric and an antisymmetric mode. Thus, direct near-

field coupling of in-plane magnetic dipoles within a metamaterial’s unit cell already allows

for manipulation of the polarisation state of light.

In practice, however, metamaterial unit cells are separated by a finite distance. We should

therefore also ask if near-field interactions between metamaterial unit cells are sufficient to

explain the optical response of metamaterials. Indeed, when having a closer look, we leave

the regime of near-field interactions and observe (far-field) retardation effects. For oblique

incidence of light on the above mentioned low-symmetry structure, for instance, we have

measured the dispersion relation of magnetisation waves which are a direct consequence of

the coupling of neighbouring magnetic dipoles (Chapter 5.2.3). Applying a simple Lorentz-

oscillator model including retardation effects to the experimental data, we have demonstrated

that this model describes the dispersion curves for ±45◦ incidence at s- and p-polarisation

in contrast to a corresponding model without retardation. Specifically, we have found a

significant dispersion in the mode damping of this planar low-symmetry metamaterial that is

beyond the quasistatic picture commonly used in literature to describe the optical response

of metamaterials.

Apart from transverse coupling of effective magnetic dipoles in planar metamaterials,

also longitudinal coupling can be expected using a three-dimensional structure design. In a

3D-SRR dimer which consists of two stacked SRRs oriented perpendicular to the stacking

axis and rotated by 90◦ with respect to each other (Chapter 5.3), the effective electric dipoles

of the single SRRs are, once again, perpendicular to each other and magnetic-dipole coupling

dominates. For a layer separation below 50 nm significant coupling of the two SRRs is

obtained, leading to a low-energy symmetric and a high-energy antisymmetric magnetic

mode, as expected for longitudinal coupling. The twisted-SRR metamaterial additionally

exhibits chiral symmetry which, in combination with magnetoelectric coupling, leads to

a chiral response. Owing to the missing four-fold rotational symmetry and the resulting

linear birefringence, however, we obtain elliptical eigenpolarisations and no pure optical

activity is observable. Hence, in order to obtain pure optical activity both chiral symmetry

and four-fold rotational symmetry have to be present for a chiral structure design. Only

then right-handed circular polarisation (RCP) and left-handed circular polarisation (LCP)
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are polarisation eigenstates of the metamaterial leading to pure optical activity. Such chiral

metamaterials have been investigated in the second part of this Thesis.

While four-fold structural symmetry is a very defined property, which is clearly visible

in the structure design, the requirement of chiral symmetry is somewhat more tricky when

dealing with planar structures. Specifically, “planar chirality” does not exist in three

dimensions as there is always a mirror plane that maps an ideal “planar chiral” structure like

gammadion-shaped nanostructures onto itself. Only by introducing structural asymmetry in

the axial direction or by introducing a substrate this mirror symmetry vanishes and a chiral

structure is obtained.

In practice, we have identified the structural asymmetry to be the key ingredient for

obtaining a chiral response of “planar” gammadion metamaterials and we have found that

the influence of the substrate is negligible. Specifically, we have observed coupling of

the particle plasmons in a bi-layer gammadion sandwich which results in optical activity

and circular dichroism, only if the dimensions of the top layer are different from the

dimensions of the bottom layer (Chapter 7). A corresponding symmetric structure design

or a single-layer gammadion structure has not shown any chiral response at all. Here

again, magnetoelectric coupling comes into play since the coupled top-layer and bottom-

layer particle plasmons give rise to a magnetic moment equivalent to that in a cut-wire pair.

Additional peculiarities arise when we illuminate a gammadion metamaterial from the back

side. When we change our transmittance setup from front-side illumination to back-side

illumination, the handedness of a gammadion changes, while the circular transmittances and,

thus, the optical activity remain unchanged. This implies that, for such “planar” structures,

chirality can rather be compared to three-dimensional chirality like in metallic helices, for

instance. As a result, we have found that the chiral response of multi-layer sandwiches

of gammadions is compatible with reciprocity, i.e., the circular transmittance spectra are

identical for forward and backward illumination, and that optical activity originates from

“twisting” the planar gammadion into the third dimension. Consequently, the chiral response

is not necessarily connected to a “planar chiral” structure design like the gammadions.

We can therefore also start with simpler achiral two-dimensional structure designs with

four-fold rotational symmetry and introduce a second functional layer that is rotated with

respect to the first one. We have fabricated such twisted-chiral metamaterial structures

by positioning two gold crosses, only separated by a dielectric spacer, above each other

and rotating the top cross by a specific angle α with respect to the bottom cross. This

twisted-crosses metamaterial structure provides a “purely” chiral response, namely circular

polarisation eigenstates leading to optical activity without exhibiting linear birefringence

(Chapter 8.1). Naturally, optical activity in chiral (meta-)materials is always connected to

circular dichroism via the Kramers-Kronig relations – optical activity is based on a difference

in the real parts of the refractive indices for RCP and LCP light while circular dichroism

results from different imaginary parts of the RCP and LCP refractive indices. Hence, we have

observed a specific resonance behaviour of the chiral twisted-crosses metamaterials both

in the optical rotatory dispersion spectrum (optical activity) and in the circular dichroism

spectrum. This is commonly known as Cotton effect. The observed Cotton effect can
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be explained by the Kuhn-Kirkwood mechanism used in molecular biology to describe

the optical response of chiral molecules. This means, in our case, that two coupled non-

parallel gold wires (cut-wire pairs) give rise to an antisymmetric magnetic mode and a

symmetric electric excitation mode which results in two resonances both in the optical

rotatory dispersion spectrum and the circular dichroism spectrum. Since the optical rotatory

dispersion spectrum and the difference of the real parts of the refractive indices for circular

polarisations are directly connected with each other, the measured rotation angle of ϕ ≈ 4◦

for a total thickness of 87.5 nm of our twisted-crosses chiral metamaterial corresponds to a

refractive index difference of |n+ − n−| ≈ 0.35 in the spectral regime where pure optical

activity occurs. The polarisation properties of right-handed and left-handed twisted-crosses

have shown a complementary behaviour, as expected from symmetry, and are compatible

with reciprocity.

In order to obtain even stronger optical activity from bi-layer chiral metamaterials one

has to increase magnetoelectric coupling within the chiral unit cell. We have achieved this

by coupling the effective magnetic dipoles of split-ring resonators (SRRs) in a chiral twisted-

SRR arrangement (Chapter 8.2). Now, the chiral symmetry of the unit cell is not so obvious

anymore, even if all requirements to obtain a “purely” chiral response are fulfilled: four-fold

rotational symmetry on the one hand and the absence of mirror planes on the other hand. As

a result we have achieved rotation angles of up to 30◦ and circular dichroism of about 33%

that outperform our previous results on twisted-crosses and double-layer gammadions by a

factor of six for a metamaterial thickness of only 205 nm. Equivalent to our previous findings

in Chapter 5.3, the chiral optical response arises from the symmetric and the antisymmetric

magnetic modes. In the case of the chiral twisted-SRR arrangement (Chapter 8.2), however,

we found that circular polarisations are eigenpolarisations of the structure, as expected.

Indeed, the intensity conversion of circular polarisation has been well below 10−5.

This is not quite the case for gold helices with two windings (pitches), the intuitive

representative of 3D-chiral structures (Chapter 8.3). Owing to the surface termination of

the helix linear birefringence occurs and, as a result, circular polarisation conversion of up to

5% has been observed for the two-pitch gold helices. Nevertheless, the circular transmittance

spectra have shown a pronounced stop band for one circular polarisation with a spectral width

of up to one octave. We have attributed the broadband behaviour of the gold helices to strong

coupling between the excitation modes of the two individual windings within the two-pitch

helix. This is very similar to the formation of electronic bands in natural crystal lattices.

Chiral metamaterials allow for large chiral optical effects, namely large optical activity

that is orders of magnitude larger than in tartaric acid or in a solution of chiral sugar

molecules, for instance. The pronounced circular dichroism also opens new possibilities

for using chiral metamaterials as compact broadband circular polarisers – a promising

candidate for future applications. But there is even more to explore – chiral metamaterials

with a negative refractive index, for example. In principle, we can obtain a negative

index of refraction for circular polarisations even without requiring negative values for the

permittivity ε and permeability μ. As a result, we can also achieve, e.g., negative refraction

and super-resolution imaging by using chiral metamaterials, instead. Another fascinating
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effect predicted for chiral metamaterials is bireflection and birefraction that occurs at an

interface between a chiral and an achiral halfspace. If we replace the achiral halfspace by

a metallic mirror, negative reflection can result for a selected circular polarisation. Using

this effect, one can think of building a flat reflecting “lens” that is capable of producing

an image of an object that is placed in the chiral medium in front of the mirror. Since

the latter effects are normally related to bulk material properties it is desirable to fabricate

isotropic three-dimensional chiral metamaterials. This is one of the major challenges in

the field of metamaterials and subject to current research. One possible fabrication scheme

employs a combination of 3D-direct-laser writing and a subsequent metallisation procedure.

Alternatively, the synthesis of solutions composed of chiral metal nanoparticles may be

another way to obtain isotropic 3D-chiral metamaterial.
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Appendix A

Plane Wave Properties in Chiral Media

A.1 Wave Propagation in Chiral Media
Starting from Maxwell’s equations (2.1)-(2.4) we can derive the wave equation for an

electromagnetic wave propagating in an effective medium described by the scalar material

parameters ε, μ and ξ. With Faraday’s law (2.3) we can further calculate
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This leads us to the wave equation for chiral media given by:
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)
E = 0 (A.1)

Now we have to solve the wave equation and calculate the polarisation eigenstates to find an

expression for the refractive index in a chiral medium. For a plane wave E = E0 · eikzz, i.e.,
propagating in z-direction, we get for the x-component
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and for the y-component
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Solving this two dimensional eigenvalue problem⎛
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finally provides us two eigenvalues, i.e., two dispersion relations kz(ω) for a chiral medium:
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Inserting Equation (A.5) into (A.4) we end up with the two eigenpolarisation states of the

system described by Equation (A.4):[
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This corresponds to right-handed circular polarisation (RCP, “+”) and left-handed circular

polarisation (LCP, “–”)

E+ = ERCP = 1√
2

(
1

−i

)
· ei(k+z−ωt) and E− = ELCP = 1√

2

(
1

i

)
· ei(k−z−ωt) .

Impedance of Circularly Polarised Light in Chiral Media

To complete the set of material equations of a chiral medium, we have to find an expression

for the impedance of the two circular polarisations. If we consider the chiral medium to be

an isotropic medium [42] with the respective material parameters ε± and μ±, we can write

D± = εε0︸︷︷︸
εm

E± − iκ

c0︸︷︷︸
η

H±

= ε±E± (A.7)

B± =
iκ

c0︸︷︷︸
η

E± + μμ0︸︷︷︸
μm

H±

= μ±H± (A.8)



A.1. Wave Propagation in Chiral Media 131

resulting in

E± =
η

εm − ε±
H± (A.9)

E± =
μ± − μm

η
H± . (A.10)

As both equations have to be fulfilled, we can eliminate the field vectors. This yields the

condition

(εm − ε±) (μm − μ±) + η2 = 0 . (A.11)

Reformulating Maxwell’s equations (2.3) and (2.4) for a chiral isotropic medium with the

above isotropic parameters yields

∇× E± − iωμ±H± = 0 (A.12)

∇×H± + iωε±E± = 0 . (A.13)

Now we can solve Equation (A.12) for the two circular polarisations RCP and LCP:⎛
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E± = ∓i
ω
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Z± is the (isotropic chiral) impedance for RCP and LCP. Comparing equation (A.15) with

(A.10) provides the impedances dependent on the actual material parameters εm, μm and η

as well as on the isotropic parameters ε± and μ±.

Z± = ±i
η

εm − ε±
= ±i

μ± − μm

η
(A.16)

Furthermore (A.12) and (A.13) both have to be fulfilled for the field components (A.15) of

the two circular polarisations, hence

∇×H± + iωε±E± = ∓ 1

iZ±

(∇× E± − iωε±Z2
±H±

)
= 0 (A.17)

implies that

Z± =

√
μ±
ε±

(A.18)

The isotropic chiral parameters μ± and ε± can be derived from the original material

parameters μ, ε and κ using (A.11), (A.16) and (A.18):

Z2
± = −(μ± − μm)

2

η2
=

μ±
ε±

=
μ±

εm − η2

μ±−μm

(A.19)
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resulting in

μ± = μm ∓ iη

√
μm

εm
(A.20)

and likewise

ε± = εm ∓ iη

√
εm
μm

. (A.21)

Importantly, the refractive index calculated from (A.20) and (A.21) is consistent with (6.31):

n± = c0
√
ε±μ±

= c0

√(
εm ∓ iη

√
εm
μm

)(
μm ∓ iη

√
μm

εm

)

= c0

√
εmμm ∓ 2iη

√
εmμm − η2

= c0 (
√
εmμm ∓ iη)

=
√
εμ± κ (A.22)

Finally we insert (A.20) and (A.21) in (A.16) and obtain the isotropic chiral impedance Z±
for RCP and LCP.

Z± = ±i
μm ∓ iη

√
μm

εm
− μm

η
= ±i

η

εm − εm ± iη
√

εm
μm

=

√
μm

εm
=

√
μμ0

εε0
(A.23)

Hence, the impedance of circularly polarised light in a chiral medium is given by

Z+ = Z− =

√
μ

ε
· Z0 . (A.24)

A.2 Chiral Retrieval Procedure
In order to derive the effective material parameters for chiral media, we have define the

scattering matrix problem as scetched in Fig. A.1. Starting with the normal incidence

of a circularly polarised plane wave given by E = E±exp (i(k±z − ωt)) and H =

H±exp (i(k±z − ωt)), we now have to take account for the boundary conditions at the

interfaces. Generally, the transmission/reflection coefficients between incident and trans-

mitted/reflected field components1 are given by:

EI
r = r±EI

i (A.25)

EII
t = t±EI

i (A.26)

H I
r = r±H I

i (A.27)

H II
t = t±H I

i (A.28)

1Note that r+ (r−) is associated with the reflection coefficient for RCP (LCP) incident light that is reflected as

LCP (RCP) light.
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Figure A.1: Schematic illustration of the field components for the generalised version of the Fresnel equations

for the retrieval of the effective material parameters from the complex reflection and transmission coefficients

of a chiral material slab of thickness d. For the chiral retrieval procedure, the different polarisationstates have

to be taken into account for the determination of the refractive indices n±, impedances Z±, permeability μ,

permittivity ε and chirality parameter κ. Note that the backward propagating light changes handedness.

The field components of the first and the second surface inside the chiral slab are related via
the propagation relations:

EII
i = eik±dEI

t (A.29)

EI
ri = ei(−k∓)(−d)EII

r (A.30)

H II
i = eik±dH I

t (A.31)

H I
ri = ei(−k∓)(−d)H II

r (A.32)

Now, we apply the boundary conditions for the (tangential) field components of E and H at

the two interfaces “I” and “II”.

EI
i + EI

r = EI
t + EI

ri (A.33)

EII
i + EII

r = EII
t (A.34)

H I
i +H I

r = H I
t +H I

ri (A.35)

H II
i +H II

r = H II
t (A.36)

The impedances in the corresponding media for waves propagating in the forward direction

(“f”) and in the backward direction (“b”)

Zi = +

(
EI

i

H I
i

)
f

= −
(
EI

r

H I
r

)
b

(A.37)

Zt = +

(
EII

t

H II
t

)
f

(A.38)

Z± = +

(
EI

t

H I
t

)
f

= +

(
EII

i

H II
i

)
f

(A.39)

Z∓ = −
(
EI

ri

H I
ri

)
b

= −
(
EII

r

H II
r

)
b

(A.40)
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can then be inserted into the boundary conditions for the H-fields and we obtain:(
EI

i

Zi

− EI
r

Zi

)
=

(
EI

t

Z±
− EI

ri

Z∓

)
(A.41)(

EII
i

Z±
− EII

r

Z∓

)
=

EII
t

Zt

(A.42)

If we further include the transmission/reflection coefficients and the boundary conditions for

the E-fields we get:(
1

Zi

+
1

Z∓

)
EI

i +

(
1

Z∓
− 1

Zi

)
r±EI

i =

(
1

Z±
+

1

Z∓

)
EI

t (A.43)(
1

Zi

− 1

Z±

)
EI

i −
(

1

Zi

+
1

Z±

)
r±EI

i = −
(

1

Z∓
+

1

Z±

)
EI

ri (A.44)

−
(

1

Z∓
+

1

Z±

)
EII

r =

(
1

Zt

− 1

Z±

)
t±EI

i (A.45)(
1

Z±
+

1

Z∓

)
EII

i =

(
1

Zt

+
1

Z±

)
t±EI

i (A.46)

The use of the propagation relations leads us to:

EI
ri = eik∓d

1
Z±

− 1
Zt

1
Z±

+ 1
Z∓

t±EI
i (A.47)

EI
t = e−ik±d

1
Zt

+ 1
Z∓

1
Z±

+ 1
Z∓

t±EI
i (A.48)

Now we are able to eliminate the unknown field components and finally obtain

eik∓d =
(1− r±) /Zi − (1 + r±) /Z±

t±
(

1
Zt

− 1
Z±

) (A.49)

e−ik±d =
(1− r±) /Zi + (1 + r±) /Z∓

t±
(

1
Zt

− 1
Z∓

) (A.50)

From these two expressions we can derive in a last step a transcendental equation for the

impedances Z± and an inverse cosine expression for the refractive indices n±

0 = [(1 + r+) (1 + r−)− t+t−]
(

1

Z∓

)2

+
2 (r∓ − r±)

Zi

(
1

Z∓

)

+
t+t−
Z2

t

− (1− r+) (1− r−)
Z2

i

.

(A.51)

n±k0d =arccos

⎛
⎝1

2

⎡
⎣(1 + r±) /Z∓ + (1− r±) /Zi

t±
(

1
Zt

+ 1
Z∓

) +
(1− r∓) /Zi − (1 + r∓) /Z∓

t∓
(

1
Zt

− 1
Z∓

)
⎤
⎦
⎞
⎠

+ 2πm

(A.52)
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Equations (A.51) and (A.52) (see also [107]) are used in our own retrieval code adapted from

[61]. As the impedances (and consequently the reflection coefficients) for RCP and LCP are

identical, Z+ = Z− = Z and r+ = r− = r (see Equation (A.24)), one can further simplify

Equation (A.51) and (A.52) and we finally end with.

0 =
[
(1 + r)2 − t+t−

]( 1

Z

)2

+
t+t−
Z2

t

− (1− r)2

Z2
i

(A.53)

n±k0d =arccos

⎛
⎝1

2

⎡
⎣(1 + r) /Z + (1− r) /Zi

t±
(

1
Zt

+ 1
Z

) +
(1− r) /Zi − (1 + r) /Z

t∓
(

1
Zt

− 1
Z

)
⎤
⎦
⎞
⎠

+ 2πm

(A.54)

A.3 Polarisation State of Complex-Valued Fields

The following method is adapted from [111] and used to calculate the polarisation state

of light of the complex-valued E-field transmission coefficients obtained from numerical

calculations by COMSOL Multiphysics. The polarisation ellipse and the underlying

variables are illustrated in Fig. 6.11. To investigate the time-varying behaviour of the E-

field vector at a fixed position (z = 0) we derive the actual polarisation state of light

via the complex (electric) field components in the x- and the y-direction for a plane wave

propagating in z-direction

E(t) = Re
[
E0e

−iωt
]

(A.55)

and introduce

E0 = p+ iq , (A.56)

the (two-component, real valued) real part and imaginary part of the complex E-field p and

q, respectively. As

E(t) = p cos(ωt) + qsin(ωt) (A.57)

the resulting E-field vector is an addition of p and q which in general are not perpendicular to

each other. We therefore transform into a coordinate system with perpendicular base vectors

a and b via
p+ iq = (a+ ib) eiθ . (A.58)

The scalar product of a and b has to vanish, thus,

a · b = (p cos θ + q sin θ) · (−p sin θ + q cos θ) = 0 . (A.59)

This leads us to a condition for θ:

tan (2θ) =
2p · q
p2 + q2

(A.60)
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Now the E-field is given by

E(t) = Re
(
(a+ ib) e−i(ωt−θ)

)
= a cos(ωt− θ) + b sin(ωt− θ) . (A.61)

If we place the coordinate axes a and b (axes of the polarisation ellipse) in the directions of

a and b respectively the E-field vector transforms to(
Ea

Eb

)
=

(
s1 cos(ωt− θ)

s2 sin(ωt− θ)

)
(A.62)

s1 = |a| and s2 = |b|

As
E2

a

s21
+

E2
b

s22
= 1 (A.63)

The field moves on an ellipse with the axes a and b. From (A.58) follows that

a = p cos θ + q sin θ (A.64)

b = −p sin θ + q cos θ (A.65)

and subsequently

s21 = p2 cos2 θ + q2 sin2 θ + 2p · q sin θ cos θ

=
1

2

(
p2 + q2

)
+

1

2

(
p2 − q2

)
cos (2θ) + p · q sin (2θ) (A.66)

From (A.60) we get

sin (2θ) =
2p · q√

(p2 − q2)2 + 4 (p · q)2
(A.67)

cos (2θ) =
p2 − q2√

(p2 − q2)2 + 4 (p · q)2
(A.68)

which leads us to an expression for the length of the axis a

s21 =
1

2

(
p2 − q2 +

√
(p2 − q2)2 + 4 (p · q)2

)
(A.69)

and similar for the length of b

s22 =
1

2

(
p2 − q2 −

√
(p2 − q2)2 + 4 (p · q)2

)
. (A.70)

The ellipticity is then given by the ratio of the two axes of the polarisation ellipse e = s2/s1
(−1 ≤ e ≤ +1). The sense of rotation of the electric field vector E0 on the polarisation
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ellipse (clockwise or counterclockwise) can be derived from the relative phase difference of

its x- and y-components:

E0 =

(
px + iqx
py + iqy

)
=

(
E0xe

iθx

E0ye
iθy

)
(A.71)

= E0xe
iθx

(
1

E0y

E0x
ei(θy−θx)

)
(A.72)

∝
(

1

Ceiθ

)
(A.73)

The sign of the relative phase difference θ = θy − θx therefore determines the sense of

rotation (θ < 0 for RCP and θ > 0 for LCP).

From equation (A.61) we can deduce the angle ψ between the E-field vector for t = 0

and the axis a by

tanψ = −s2
s1

tan θ (A.74)

The angle χ between the E-field vector E0 for t = 0 and the original x-axis can be obtained

by Equation (A.57)

cosχ =
px
|p| (A.75)

Finally the inclination of the polarisation ellipse ϕ results from Equation (A.74) and (A.75):

ϕ = χ− ψ (A.76)
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[78] G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, Observation of magnetization
waves in negative-index photonic metamaterials, Appl. Phys. Lett. 89, 231118 (2006).

[79] M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Electromagnetic energy transfer and
switching in nanoparticle chain arrays below the diffraction limit, Phys. Rev. B 62, R16356

(2000).

[80] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater,

Plasmonics - A Route to Nanoscale Optical Devices, Adv. Mater. 13, 1501 (2001).



144 BIBLIOGRAPHY

[81] S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, Observation of near-field
coupling in metal nanoparticle chains using far-field polarization spectroscopy, Phys. Rev.

B 65, 193408 (2002).

[82] K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, Interparticle Coupling
Effects on Plasmon Resonances of Nanogold Particles, Nano Lett. 3, 1087 (2003).

[83] S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Experimental
Demonstration of Near-Infrared Negative-Index Metamaterials, Phys. Rev. Lett. 95, 137404

(2005).

[84] A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and

J. Petrovic, Nanofabricated media with negative permeability at visible frequencies, Nature

438, 335 (2005).

[85] V. A. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V.

Kildishev, Negative index of refraction in optical metamaterials, Opt. Lett. 30, 3356 (2005).

[86] A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, Waveguide-Plasmon
Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic
Crystal Slab, Phys. Rev. Lett. 91, 183901 (2003).

[87] V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F.

Krauss, and R. M. De La Rue, Photonic band-structure effects in the reflectivity of periodically
patterned waveguides, Phys. Rev. B 60, R16255 (1999).

[88] D. M. Whittaker and I. S. Culshaw, Scattering-matrix treatment of patterned multilayer
photonic structures, Phys. Rev. B 60, 2610 (1999).

[89] B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R.

Aussenegg, Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the
Plasmon Resonance, Phys. Rev. Lett. 84, 4721 (2000).

[90] E. Shamonina and L. Solymar, Properties of magnetically coupled metamaterial elements, J.

Magn. Magn. Mater. 300, 38 (2006).

[91] N. Liu and H. Giessen, Three-dimensional optical metamaterials as model systems for
longitudinal and transverse magnetic coupling, Opt. Express 16, 21233 (2008).

[92] N. Liu, S. Kaiser, and H. Giessen, Magnetoinductive and Electroinductive Coupling in
Plasmonic Metamaterial Molecules, Adv. Mater. 20, 4521 (2008).

[93] F. Hesmer, E. Tatartschuk, O. Zhuromskyy, A. A. Radkovskaya, M. Shamonin, T. Hao, C. J.

Stevens, G. Faulkner, D. J. Edwards, and E. Shamonina, Coupling mechanisms for split ring
resonators: Theory and experiment, Phys. Status Solidi B 244, 1170 (2007).

[94] V. M. Shalaev, Optical negative-index metamaterials, Nat. Photonics 1, 41 (2007).

[95] C. M. Soukoulis, S. Linden, and M. Wegener, Negative Refractive Index at Optical Wave-
lengths, Science 315, 47 (2007).



BIBLIOGRAPHY 145

[96] K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener,

Periodic nanostructures for photonics, Phys. Rep. 444, 101 (2007).

[97] O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, Phonon-like dispersion curves of
magnetoinductive waves, Appl. Phys. Lett. 87, 72501 (2005).

[98] I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, Magnetoinductive waves in arrays of split-
ring resonators, Physica B 394, 180 (2007).

[99] T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, Structural-
configurated magnetic plasmon bands in connected ring chains, Opt. Express 17, 11486

(2009).

[100] C. Dahmen, B. Schmidt, and G. von Plessen, Radiation Damping in Metal Nanoparticle Pairs,

Nano Lett. 7, 318 (2007).

[101] P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, Distance Dependent Spectral Tuning of Two
Coupled Metal Nanoparticles, Nano Lett. 8, 1174 (2008).

[102] A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, Experimental evidence
for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle
waveguides, Phys. Rev. B 76, 201403(R) (2007).

[103] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, 1976).

[104] M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, Dispersion characteristics of
magneto-inductive waves: comparison between theory and experiment, Electron. Lett. 39, 215

(2003).

[105] Lord Kelvin, The Molecular Tactics of a Crystal, in Oxford University Junior Science Club
Lectures (1894).

[106] M. S. Rill, C. E. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, Negative-
index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow
evaporation, Opt. Lett. 34, 19 (2009).

[107] D. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, Material parameter retrieval
procedure for general bi-isotropic metamaterials and its application to optical chiral negative-
index metamaterial design, Opt. Express 16, 11822 (2008).

[108] A. Lakhtakia, V. V. Varadan, and V. K. Varadan, A Parametric Study of Microwave Reflection
Characteristics of a Planar Achiral-Chiral Interface, IEEE Trans. Electromag. Compat. 28, 90

(1986).

[109] C. Zhang and T. J. Cui, Negative reflections of electromagnetic waves in a strong chiral
medium, Appl. Phys. Lett. 91, 194101 (2007).

[110] S. Bassiri, Electromagnetic Wave Propagation and Radiation in Chiral Media, Ph.D. thesis,

California Institute of Technology (1987).

[111] M. Born and E. Wolf, Principles of Optics (Camebridge University Press, 1999).



146 BIBLIOGRAPHY

[112] C. Brosseau, Fundamentals of Polarized Light (John Wiley & Sons, Inc., 1998).

[113] J. A. Schellmann, Symmetry Rules for Optical Rotation, Acc. Chem. Res. 1, 144 (1968).

[114] C. F. Klingshirn, Semiconductor Optics (Springer, 2007).

[115] V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev,

Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure, Phys.

Rev. Lett. 97, 167401 (2006).

[116] B. K. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, and J. Turunen, Remarkable
polarization sensitivity of gold nanoparticle arrays, Appl. Phys. Lett. 86, 183109 (2005).

[117] M. Reichelt, S. W. Koch, A. V. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken,

E. M. Wright, and N. I. Zheludev, Broken enantiomeric symmetry for electromagnetic waves
interacting with planar chiral nanostructures, Appl. Phys. B 84, 97 (2006).

[118] M. Decker, M. W. Klein, M. Wegener, and S. Linden, Circular dichroism of planar chiral
magnetic metamaterials, Opt. Lett. 32, 856 (2007).

[119] A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev,

Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures, Phys. Rev. Lett.

91, 247404 (2003).

[120] A. Potts, A. Papakostas, D. M. Bagnall, and N. I. Zheludev, Planar chiral meta-materials for
optical applications, Microelectron. Eng. 73-74, 367 (2004).

[121] Y. Chen, J. Tao, X. Zhao, Z. Cui, A. S. Schwanecke, and N. I. Zheludev, Nanoimprint
lithography for planar chiral photonic meta-materials, Microelectron. Eng. 78-79, 612 (2005).

[122] S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield,

and M. Kauranen, Optical activity in diffraction from a planar array of achiral nanoparticles,

Phys. Rev. A 79, 43819 (2009).

[123] S. L. Prosvirnin and N. I. Zheludev, Polarization effects in the diffraction of light by a planar
chiral structure, Phys. Rev. E. 71, 37603 (2005).

[124] K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, Effect of surface
plasmon resonance on the optical activity of chiral metal nanogratings, Opt. Express 15, 9575

(2007).

[125] A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Giant Gyrotropy due to
Electromagnetic-Field Coupling in a Bilayered Chiral Structure, Phys. Rev. Lett. 97, 177401

(2006).

[126] T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, Optical activity in
subwavelength-period arrays of chiral metallic particles, Appl. Phys. Lett. 83, 234 (2003).

[127] S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, Midinfrared
Resonant Magnetic Nanostructures Exhibiting a Negative Permeability, Phys. Rev. Lett. 94,

37402 (2005).



BIBLIOGRAPHY 147

[128] G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Simultaneous Negative
Phase and Group Velocity of Light in a Metamaterial, Science 312, 892 (2006).

[129] E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, Giant optical
gyrotropy due to electromagnetic coupling, Appl. Phys. Lett. 90, 223113 (2007).

[130] E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev,

Metamaterial with negative index due to chirality, Phys. Rev. B. 79, 35407 (2009).

[131] A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, Symmetry Breaking
in a Plasmonic Metamaterial at Optical Wavelength, Nano Lett. 8, 2171 (2008).

[132] D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, Metamaterial
tuning by manipulation of near-field interaction, arXiv , 0912.1152v2 (2010).

[133] J. B. Pendry, A Chiral Route to Negative Refraction, Science 306, 1353 (2004).

[134] J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Negative refractive
index due to chirality, Phys. Rev. B 79, 121104(R) (2009).

[135] C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline,
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