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Abstract

A privacy-preserving benchmarking platform is practically feasible, i.e. its
performance is tolerable to the user on current (year 2007) hardware while
fulfilling a compromise of functional and security requirements.

Benchmarking is the process of comparing one’s own key performance
indicators (KPI) to statistics of one’s peer group. KPIs are quantitative
measurements of business process performance, e.g. cash flow, machine
lead time, or employee fluctuation rate. A peer group is a group of similar
companies, usually competitors, wanting to compare against each other.

A benchmarking platform is a software service facilitating the bench-
marking process. It is offered by a service provider who provides to its
subscribers the statistics of their peer groups.

Such a platform can work based on the community concept. Everybody
who is retrieving statistics is donating his KPIs as input to their compu-
tation, but most companies would prefer to keep their KPIs confidential
and private. A privacy-preserving benchmarking platform can compute the
statistics of the KPIs without revealing the KPIs to anyone.

This dissertation designs, architects, and evaluates an implementation
of such a privacy-preserving benchmarking platform. First requirements are
gathered and a general outline of the solution space is performed. Then
a privacy-preserving benchmarking protocol that meets all requirements is
designed. This is embedded into an architecture addressing the needs of
a software system. Finally an implementation of the system is evaluated
under real-world requirements and conditions.

In particular, this dissertation contributes:

• a novel (secure computation) benchmarking protocol in the central
communication model

• a novel method for computing peer groups, such that all companies
are assigned and the minimum size requirement of each peer group is
met

• a realistic evaluation of the first ever benchmarking platform

The evaluation shows that the implemented privacy-preserving bench-
marking platform is practically feasible.
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Zusammenfassung

Ein vertraulichkeits-erhaltender Benchmarking Dienst ist praktisch umset-
zbar, d.h. seine Ausführungsgeschwindigkeit ist für den Benutzer auf gegen-
wärtiger Hardware (Jahr 2007) akzeptabel und die funktionalen und Sicher-
heitsanforderungen können abgewogen erfüllt werden.

Benchmarking ist der Vergleich eigener Kennzahlen (KPI) mit Statis-
tiken der Vergleichsgruppe. KPIs sind quantitative Masszahlen für die
Leistung eines Geschäftsprozesses, z.B. Liquidität, Maschinenzyklus oder
Angestelltenwechselrate. Eine Vergleichsgruppe ist eine Gruppe ähnlicher
Unternehmen, häufig Konkurrenten, die sich gegenseitig vergleichen möchten.

Ein Benchmarking Dienst ist ein Dienstplattform, die den Benchmark-
ingprozess ermöglicht. Er wird von einem Dienstleister betrieben, der seinen
Kunden die Statistiken ihrer Vergleichsgruppe zur Verfügung stellt.

Ein solcher Dienst kann nach dem Gegenseitigkeitsprinzip funktionieren.
Jeder, der Statistiken abruft, stellt seine KPIs als Eingabe zur Berechnung
zur Verfügung. Allerdings würden die meisten Unternehmen ihre KPIs
vorzugsweise geheim halten. Ein vertraulichkeits-erhaltender Benchmarking
Dienst berechnet die Statistiken ohne die KPIs irgendjemand offenzulegen.

In dieser Dissertation wird ein solcher vertraulichkeits-erhaltender Bench-
marking Dienst entworfen, entwickelt und evaluiert. Zuerst werden die An-
forderungen gesammelt und eine Übersicht über den Lösungsraumes präsen-
tiert. Dann wird das entsprechende vertraulichkeits-erhaltende Benchmark-
ing Protokoll entwickelt. Dies wird in eine umfassende Software Architektur
eingebettet. Zum Abschluss wird eine Implementierung unter realistischen
Anforderungen und Bedingungen evaluiert.

Die Beiträge dieser Dissertation sind insbesondere

• ein neues Benchmarking Protokoll zur sicheren Mehrparteienberech-
nung in einem zentralisierten Kommunikationsmodell.

• eine neue Methode zur Berechnung von Vergleichsgruppen, so dass alle
Unternehmen einer Gruppe zugewiesen werden und jede Gruppe eine
Mindestgröße erreicht.

• eine realistische Evaluierung des ersten Benchmarking Dienstes

Die Evaluierung zeigt, dass der implementierte vertraulichkeits-erhaltende
Benchmarking Dienst praktisch umsetzbar ist.
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Introduction 1

1 Introduction

Since the Internet economy has been establishing itself, more and more
forms of collaboration over the Internet are emerging. Service providers are
offering novel kinds of services and interest groups are gathering around
them.

This dissertation describes the attempt at building a system for such
a new service. It defines a new form of collaboration, designs a system,
implements and evaluates it. The dissertation spans a wide point of view
on the topic from purely theoretical proofs of security over design aspects
in the system architecture to practical distributed system evaluation.

The topic of investigation and the purpose of collaboration is benchmark-
ing. Benchmarking is the comparison of one company’s key performance
indicators (KPI) to the statistics of the same KPIs of its peer group. A key
performance indicator (KPI) is a statistical quantity measuring the perfor-
mance of a business process. Examples from different company operations
are make cycle time (manufacturing), cash flow (financial) and employee
fluctuation rate (human resources). A peer group is a group of (usually
competing) companies that are interested in comparing their KPIs based on
some similarity of the companies. Examples formed along different charac-
teristics include car manufacturers (industry sector), Fortune 500 companies
in the United States (revenue and location), or airline vs. railway vs. haulage
(sales market).

Benchmarking is an important practice in managing businesses. Of-
ten it is performed by consulting companies which have access to KPIs of
several companies; however new forms of benchmarking are emerging, e.g.
databases for sale with KPI data. The benchmarking platform developed
in this dissertation allows a company to buy a benchmarking service. The
service provider is selling the statistics of the KPIs and in exchange the
companies are supplying their KPIs to the statistics computation.

The benchmarking platform is a system run by the service provider that
provides the statistics of the KPIs and runs a protocol for their computation
from the KPIs with its customers. It is a server that acts as single focus
point of the service, usually placed near the center of the network. From
a customer’s perspective the service provider is the only entity to interact
with. Therefore the service provider can serve as the seller of the service,



2 Introduction

although it is actually a collaboration of all customers.

The benchmarking service works at its full potential if a large number
of companies is actively using it. The more companies supply their KPIs,
the more accurate the statistics get, and the more useful the service is to its
customers.

Another differentiating feature of the benchmarking platform is that it
is designed to serve a variety of customers from very different industrial
sectors. It is not targeting a uniform set of customers that forms one single
peer group, but a diverse variety of them. This strengthens the observation
that the more customers join the platform, the more useful is its service to
its customers.

Privacy is of the utmost importance in benchmarking. Companies are
reluctant to share their business performance data due to the risk of losing
a competitive advantage or being embarrassed. This implies a data sharing
risk and obstacle that opposes the successful establishment of the bench-
marking platform. An important aspect of the benchmarking platform is
therefore that it is privacy-preserving. Privacy-preserving means that the
KPIs of the individual company are kept confidential to that company, i.e.
the company does not suffer any data sharing risk (risk from revelation of
the data), and the associated obstacles are being removed, since the KPIs
are never revealed to anybody.

1.1 The Term “Privacy”

Before elaborating on the advantages of privacy, a short discussion on the
use of the term is necessary. Privacy is a term from the Anglo-Saxon vocab-
ulary. It refers to the protection of personal space and guarantees a freedom
from governmental powers within that space. In particular in the American
culture, privacy is seen as a highly-ranked value.

In contrast in the German culture, privacy is ranked much lower and
many governmental rights may invade privacy. The corresponding German
term is “Privatssphäre” and is often connected to unobservability and se-
crecy.

The term privacy has found extensive use in the electronic society. It has
been used in many different ways and most often refers to the handling of
personal data. Personal data is information that has been gathered about a
person. Protection of such data is necessary to protect privacy as in freedom
from governmental powers in an electronic society. So far, Anglo-Saxon and
American law has established regulations first for data privacy protection,
but these are traditionally less strict.

In contrast in German law a strong data protection act was established.
It regulates “informationelle Selbstbestimmung”: the right to determine how
one’s personal data is handled.
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There are many technical ways to protect personal data, and these tech-
niques have often been termed “privacy-enhancing” technologies. They usu-
ally enhance an established practice with privacy-protecting features, that
improve the gathering and handling of personal data. The simplest and
technically strongest form of data privacy protection is when no personal
data is revealed throughout the process, since then no technical process for
self-determination is required. These technologies have often been termed
“privacy-preserving”, since they do not allow breaches of privacy using per-
sonal data in the first place, i.e. a privacy-preserving technique is a technique
that completes the process without revealing personal data.

This leads to another use of the term privacy (as in data privacy). Pri-
vacy refers to the confidentiality of (personal) data against all other persons
and entities. It is therefore a stronger form of confidentiality, as it includes
the definition of who is kept from that information. In contrast, a confiden-
tial communication (e.g. a secure channel) involves two parties to whom the
data is revealed.

In the context of benchmarking multiple companies collaborate. Compa-
nies are not natural persons and therefore have no personal data and no right
to privacy in either the Anglo-Saxon and American law or in the German
law. However, just as natural persons, companies have data that emerge
within their operational boundaries. Such data also enjoys legal protection
in the form of “business secrets” with the intention of regulating competition
and excluding criminal practices.

KPIs are definitely data that emerge from within the company. They
are unknown to outsiders when measured and deserve protection by the
company. In line with the forms of data privacy protection, the strongest
form of protection does not reveal them. A privacy-preserving technique
therefore protects the confidentiality of this data against all outsiders.

In conclusion, the term “privacy” and “privacy-preserving” in this dis-
sertation are used for the confidentiality (and protection thereof) of secret
business data.

1.2 Hypotheses and Research Methodology

The main thesis of this dissertation is that

• a privacy-preserving benchmarking platform is practically feasible, i.e.
its performance is tolerable to the user on current (year 2007) hardware
while fulfilling a compromise of functional and security requirements.

This involves two distinct aspects of research.
First, the design and analysis of a secure multi-party computation pro-

tocol for privacy-preserving benchmarking is performed. The underlying
hypothesis is that



4 Introduction

• current secure computation protocols do not address the distributed
systems and network requirements of practical systems.

This is for example evidenced by the fact that no protocol for secure
computation in the necessary central communication pattern has been pub-
lished. Other examples include supply chain networks or publish-subscribe
networks. Therefore this dissertation first defines the requirements for a
practical system and compares existing theoretical approaches to it. Then
it proceeds to define a benchmarking protocol meeting all requirements.
This benchmarking protocol improves on the complexity of state-of-the-art
protocols by using a common key among the subscribers of the benchmark-
ing platform. The common key can be replaced by using more complex, less
fit-for-purpose protocols that provide higher theoretical security guarantees.
The research methodology is theoretical analysis and a security proof based
on existing approaches is given. Current security analysis approaches are ex-
tended by matching them to the economic motivation. This yields a better
expected performance of the protocols than purely theoretical approaches
that neglect economics. Chapter 4 reports the results of this development.
Chapter 8 describes related protocols that illustrate the trade-offs in design-
ing protocols for benchmarking.

Second, the protocols have been placed in the greater context of a bench-
marking system. The underlying hypothesis is that

• there is little to no experience in designing and implementing systems
that use secure computation.

This is evidenced by the few publications for implementations of secure
computation and the complete lack of commercial systems. A system ar-
chitecture that accommodates the secure computation protocol is therefore
given. The consequence of using secure computation are shown and special
solutions are developed. The research methodology is software engineer-
ing and information systems research and a careful design analysis of the
problem is given. Consideration is given to the user experience and other
socio-economic factors. Result is a practically useful system that preserves
the privacy of the subscribers. Chapter 3 outlines the solution space. Chap-
ter 6 summarizes the results obtained by this work.

Third, the developed protocol and system is implemented and evaluated
under real-world conditions. The underlying hypothesis is that

• current secure computation protocols are insufficiently evaluated for
practical performance.

This is evidenced by the few publications for evaluations of secure com-
putation. As part of the work for this dissertation, the protocols have been
implemented and thoroughly evaluated as a system. This dissertation breaks
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new ground by developing a protocol and method for high-performance, yet
randomized privacy-preserving comparison. The research methodology is
computer systems research by practical experimentation. Not only its per-
formance, but also its security has been evaluated using practical experi-
mentation which is a new concept for privacy-preserving security evalua-
tion. The entire system has been implemented, evaluated and practically
used. Very few evalutations have been done to estimate the performance
under real-world conditions. This is one of the first secure computation
systems evaluated for practical evaluation. Chapter 5 describes the trade-
off between security and performance in comparison. Chapter 7 shows the
results in greater detail.

1.3 Structure of the Dissertation

This dissertation is divided into nine chapters. The chapters usually build
on top of each other, such that sequential reading is best. The reader knowl-
edgeable in the subject can, of course, skip Chapter 2. Also the main chap-
ters (Chapter 4 and Chapter 6) approach the problem with two different
research methodologies. They can therefore be best understood by experts
in the different areas of computer science theory and systems research and
can be read independently. Chapter 5 bridges the orthogonal goals of se-
curity (Chapter 4) and practical performance (Chapter 7) by developing an
important protocol step that trades performance for security. Nevertheless
both aspect, security and performance, are experimentally evaluated. It
is anticipated that this could open a new research field, since the current
alternative to secure multi-party computation is no protection at all. The
following list gives a short abstract of the subject of each chapter.

Chapter 1 is this introduction. It introduces the motivation behind the
problem and explains the general setting of the problem. It outlines the
structure of the dissertation and lists all contributions including the practical
realization of the work.

Chapter 2 serves two purposes: It reviews existing work, compares it to
the solution developed in this dissertation and describes the building blocks
upon which this solution builds. It describes other benchmarking systems
that have been built, none of which is privacy-preserving. It lists secure com-
putation protocols that can solve the problem of privacy-preserving compu-
tation. A distinction is made between general protocols that can solve any
problem and specific protocols for statistics. No protocol satisfies all the re-
quirements yet. The cryptographic building blocks used in the construction
of the protocol and the concepts of web services used in the implementation
conclude the chapter.

Chapter 3 presents the requirements for the benchmarking platform in
detail. It also contains a first analysis of the solution space and presents
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the first practical limitation on the protocol. Its main conclusion is that a
subscriber can be in one peer group at most. This has an impact on the
protocol design and the system architecture which then requires a special
peer group formation algorithm.

Chapter 4 describes and analyzes the benchmarking protocol. It starts by
describing the setup and key distribution. A practical procedure to reduce
the key distribution to a public key infrastructure is described. It then
describes the protocol in great detail. A textual and a formal description
are given. Then the protocol is proved secure in the semi-honest and a newly
developed constrained malicious model. The constrained malicious model
allows arbitrary protocol deviations, as long as the correct result is delivered
to the subscribers. It fits to the economic motivation of the benchmarking
platform.

Chapter 5 introduces a randomized protocol for comparison. It first
describes the underlying hiding technique in a two-party example. A per-
formance measurements underpins its superior performance. Then the tech-
nique is integrated into the benchmarking protocol. In a series of exper-
iments the leakage of the randomization is evaluated. These experiments
cover the application in the benchmarking protocol. The conclusion is that
the protocol provides practically acceptable leakage at superior performance.

Chapter 6 describes the design and architecture of the entire system.
It starts with a use case analysis for the benchmarking platform. The key
insight is to separate the protocol for statistics computation from the statis-
tics retrieval. This allows the subscriber to retrieve statistics as soon as
he becomes registered. Then it describes the novel peer group formation
algorithm. The peer group formation algorithm builds peer groups, such
that no subscriber is left out and all peer groups satisfy the minimum size
requirement for privacy. The chapter concludes with a comparison of the
notification versus the polling model of implementation. The conclusion is
that a protocol can be completed within one polling interval in the polling
model.

Chapter 7 presents the results of the experiments done with the imple-
mentation. Three main experiments have been conducted. The first mea-
sured the overall performance under different network conditions, the second
measured the network traffic in bytes sent and the third the local perfor-
mance with different key lengths. The conclusion is that the performance
of the benchmarking protocol is sufficient to support practical realization.

Chapter 8 describes three problems which have been solved along the
way. Constant-cost benchmarking is the same problem as the main thesis,
but under stronger network performance constraints. This is the first solu-
tion for this important problem. The proposed benchmarking platform uses
a common, shared key. The security implications of this choice have been
minimized by two additional protocols presented in this chapter. The first
replaces the static common key with a common session key at the expense
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of anonymity. The second, coalition-safe protocol, replaces the common key
entirely with a threshold variant of the encryption scheme at the expense of
higher complexity.

Chapter 9 combines the conclusions from the different chapters and sum-
marizes them to support the main thesis of this dissertation: A privacy-
preserving benchmarking platform is practically feasible. It also discusses
possible future work.

1.4 Contributions

This dissertation contributes an extensive treatment of privacy for bench-
marking systems. In particular it contributes

• a privacy analysis of collaborative benchmarking in the service provider
model

• novel benchmarking protocols in the service provider model

• a new security model matching the economic motivation of the service
provider

• an efficient, randomized comparison technique with verified privacy

• design and system architecture for a benchmarking platform using
privacy-preserving protocols

• novel peer group formation algorithm that addresses privacy needs

• evaluation of the system under real-world non-functional requirements

In summary, this dissertation is the first attempt at building a privacy-
preserving application end-to-end. It does not stop at a theoretic treat-
ment of possible protocols, but investigates the intricacies of building such
a system as a distributed system. The author therefore believes that this
dissertation can provide great insight into the problems of building such
applications even beyond benchmarking.

1.4.1 Publications

Many insights gained have been published throughout the process of writing
this dissertation. In particular, directly related results are

1. Florian Kerschbaum, Daniel Dahlmeier, Axel Schröpfer, and Deb-
malya Biswas.
On the Practical Importance of Communication Complexity for Se-
cure Multi-Party Computation Protocols.
Proceedings of the 24th ACM Symposium on Applied Computing, 2009.
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2. Florian Kerschbaum.
Building A Privacy-Preserving Benchmarking Enterprise System.
Enterprise Information Systems 2 (4), 2008.

3. Florian Kerschbaum.
Practical Privacy-Preserving Benchmarking.
Proceedings of the 23rd IFIP International Information Security Con-
ference, 2008.

4. Florian Kerschbaum.
Building A Privacy-Preserving Benchmarking Enterprise System.
Proceedings of the 11th IEEE International EDOC Conference, 2007.

5. Florian Kerschbaum, and Orestis Terzidis.
Filtering for Private Collaborative Benchmarking.
Proceedings of the International Conference on Emerging Trends in
Information and Communication Security, 2006.

The paper 4 has been awarded the Best Paper Award. Indirectly many
papers have benefited from the results gained. These include:

1. Florian Kerschbaum.
A Verifiable, Centralized, Coercion-Free Reputation System.
Proceedings of the ACM Workshop on Privacy in the Electronic Soci-
ety, 2009.

2. Florian Kerschbaum.
Adapting Privacy-Preserving Computation to the Service Provider
Model.
Proceedings of the 1st IEEE International Conference on Privacy, Se-
curity, Risk and Trust, 2009.

3. Rafael Deitos, and Florian Kerschbaum.
Improving Practical Performance on Secure and Private Collaborative
Linear Programming.
Proceedings of the 1st International Workshop on Business Processes
Security, 2009.

4. Florian Kerschbaum, Debmalya Biswas, and Sebastiaan de Hoogh.
Performance Comparison of Secure Comparison Protocols.
Proceedings of the 1st International Workshop on Business Processes
Security, 2009.

5. Florian Kerschbaum, Andreas Schaad, and Debmalya Biswas.
Practical Privacy-Preserving Protocols for Criminal Investigations.
Proceedings of the 7th IEEE International Conference on Intelligence
and Security Informatics, 2009.
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6. Axel Schröpfer, Florian Kerschbaum, Dagmar Sadkowiak, and Richard
Pibernik.
Risk-Aware Secure Supply Chain Master Planning.
Proceedings of the 7th International Workshop on Security in Infor-
mation Systems, 2009.

7. Florian Kerschbaum, and Alessandro Sorniotti.
RFID-Based Supply Chain Partner Authentication and Key Agree-
ment.
Proceedings of the 2nd ACM Conference on Wireless Network Security,
2009.

8. Rafael Deitos, and Florian Kerschbaum.
Parallelizing Secure Linear Programming.
Concurrency and Computation: Practice and Experience 21 (10), 2009.

9. Florian Kerschbaum, and Philip Robinson.
Security Architecture for Virtual Organizations of Business Web Ser-
vices.
Journal of Systems Architecture 55 (4), 2009.

10. Florian Kerschbaum, and Julien Vayssiere.
Privacy-Preserving Data Analytics as an Outsourced Service.
Proceedings of the ACM Workshop on Secure Web Services, 2008.

11. Florian Kerschbaum, and Andreas Schaad.
Privacy-Preserving Social Network Analysis for Criminal Investiga-
tions.
Proceedings of the ACM Workshop on Privacy in the Electronic Soci-
ety, 2008.

12. Leonardo Weiss Ferreira Chaves, and Florian Kerschbaum.
Industrial Privacy in RFID-based Batch Recalls.
Proceedings of the IEEE International Workshop on Security and Pri-
vacy in Enterprise Computing, 2008.

13. Octavian Catrina, and Florian Kerschbaum.
Fostering the Uptake of Secure Multiparty Computation in E-Commerce.
Proceedings of the International Workshop on Frontiers in Availability,
Reliability and Security, 2008.

14. Florian Kerschbaum, and Julien Vayssiere.
Privacy-Preserving Logical Vector Clocks using Secure Computation
Techniques.
Proceedings of the 13th IEEE International Conference on Parallel and
Distributed Systems, 2007.



10 Introduction

15. Florian Kerschbaum.
Distance-Preserving Pseudonymization for Time-stamps and Spatial
Data.
Proceedings of the ACM Workshop on Privacy in the Electronic Soci-
ety, 2007.

16. Florian Kerschbaum.
Simple Cross-Site Attack Prevention.
Proceedings of the 3rd IEEE International Conference on Security and
Privacy in Communication Networks, 2007.

17. Florian Kerschbaum, Rafael Deitos, and Philip Robinson.
Securing VO Management.
Proceedings of the 4th International Conference on Trust, Privacy &
Security in Digital Business, 2007.

18. Florian Kerschbaum.
A new way to think about Secure Computation: Language-Based Se-
cure Computation.
Proceedings of the 5th International Workshop on Security in Infor-
mation Systems, 2007.

19. Rafael Deitos, Florian Kerschbaum, Philip Robinson, and Jochen Haller.
A Comprehensive Security Architecture for Dynamic, Web Service
Based Virtual Organizations for Businesses.
Proceedings of the ACM Workshop on Secure Web Services (Poster),
2006.

20. Yücel Karabulut, Florian Kerschbaum, Fabio Massacci, Philip Robin-
son, and Artsiom Yautsiukhin.
Security and Trust in IT Business Outsourcing: a Manifesto.
Proceedings of the 2nd International Workshop on Security and Trust
Management, 2006.

21. Philip Robinson, Florian Kerschbaum, and Andreas Schaad.
From Business Process Choreography to Authorization Policies.
Proceedings of the 20th Annual IFIP WG 11.3 Working Conference
on Data and Applications Security, 2006.

22. Florian Kerschbaum, Jochen Haller, Yücel Karabulut, and Philip Robin-
son.
PathTrust: A Trust-Based Reputation Service for Virtual Organiza-
tion Formation.
Proceedings of the 4th International Conference on Trust Management,
2006.
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23. Florian Kerschbaum.
Practical Private Regular Expression Matching.
Proceedings of the IFIP WG 11.4 I-NetSec Workshop, 2006.

An invited talk summarizing some of the results has been given.

1. Florian Kerschbaum, and Rafael Deitos.
Security Against the Business Partner.
Proceedings of the ACM Workshop on Secure Web Services, 2008.

1.4.2 Practical Realization

This dissertation and in particular its implementation part has been de-
veloped while the author was employed at SAP Research. These research
results have been transferred to the solution management (product defini-
tion) department within SAP. In fact, the development and in particular the
requirements gathering were done in close collaboration. The assumptions
made about real-world requirements within this dissertation are therefore
based on real market research and product requirements.

Furthermore, the practicality of the approach and its economic impact
has been validated by a real product definition group. Again assumptions
made about the economics of security and the service provider model are
therefore based on real market requirements.

The capabilities in privacy protection thanks to the protocol definition
and the usability of the client software thanks to the architecture have con-
vinced the solution management group to pursue this approach further. It is
anticipated that a second generation version of SAP’s benchmarking prod-
uct will be privacy-preserving and be based on the work of this dissertation.
While writing this dissertation, a customer pilot is planned with the proto-
type software evaluated in this dissertation. Therefore this work clearly has
a strong impact on future computer systems and the economy.

1.5 Summary

This chapter introduced the necessity for a privacy-preserving benchmarking
platform. It briefly explained the usage of “privacy” in this dissertation
and presented the thesis to be supported by this dissertation: A privacy-
preserving benchmarking platform is practically feasible.

Following this, the chapters of this dissertation are briefly outlined.
Chapter 4 and Chapter 6 contain the main contribution of the disserta-
tion. Chapter 4 is a theoretical development of the protocol and Chapter 5
extends it with an efficient, randomized technique for comparison. Chap-
ter 6 builds the architecture following an information systems approach. The
next section summarized the contributions including a list of publication of
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this dissertation besides acting as a proof the thesis statement. Furthermore
the efforts to turn the benchmarking platform into a product have shortly
been mentioned. The process is quite advanced and it is anticipated that
future (year 2007) versions of SAP’s benchmarking product will be based
on this work.
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2 Related Work

2.1 Internet-Based Benchmarking

Literature on benchmarking in the business community is vastly available.
It views benchmarking as a decision making process and models its effec-
tiveness by the improvements of the decisions’ effects. In general one can
distinguish two forms of benchmarking:

• individual benchmarking where the focus is on the detailed analysis of
single company and its improvement possibilities.

• overall benchmarking where the whole population of companies is an-
alyzed for a common improvement perspective.

The benchmarking platform of this dissertation focuses on individual
benchmarking giving a decision maker in one company the tools to improve
his performance.

The advantage of an Internet-based benchmarking platform has been rec-
ognized by other researchers [9]. Bogetoft and Nielsen describe two bench-
marking methods for such platforms. Neither of them is privacy-preserving,
but both have been implemented. They mention the protection of informa-
tion and anonymity as future work for their platforms [9].

The problem of peer group formation has not been addressed in their
platform. Instead the authors assume that only one homogeneous peer
group, e.g. banks, is using the platform. This is opposed to the privacy-
preserving benchmarking platform which is supposed to cater for a very
large and diverse population of companies.

A particular case study of an Internet-based benchmarking system has
been done for the hospitality industry [18]. They implemented and evaluated
their platform in a practical usage scenario. They reported problems with
technology use as their main obstacle to future adoption, e.g. they mention
the reluctance of personnel to enter data in regular intervals as a major
problem.

They do not report on privacy problems or developments in their appli-
cation. Peer group formation is not an issue for them, since they also have
a very homogeneous user population.
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In summary, one can conclude that currently (year 2007) Internet-based
benchmarking applications are emerging. Two out of two existing implemen-
tations use a central platform or service as their modus of implementation.
One implementation mentions privacy as an important aspect for future
work.

2.1.1 Peer Group Formation

As mentioned in the previous chapter there is no previous work that par-
ticularly considers the problem of peer group formation. The two existing
benchmarking applications both assume a homogeneous peer group with
respect to the characterstics of the companies in the group. As a result
they form one peer group in the entire application. The privacy-preserving
benchmarking platform of this dissertation in contrast is supposed to cater
for a very large and diverse user population.

Then the problem of peer group formation arises. The companies are
mapped to multi-dimensional discrete data points along certain characteris-
tics. The goal is to identify groups of companies with similar characteristics
which are suitable for benchmarking. Section 6.2.1 gives the details about
possible characteristics and an elaborated formulation of the problem.

This peer-group formation problem is seen as a data clustering problem
where similar companies (users) need to be grouped together. Data clus-
tering is defined as the assignment of objects into groups (called clusters)
so that objects from the same cluster are more similar to each other than
objects from different clusters. Usually similarity is assessed according to a
distance measure. Data clustering algorithms can be classified into hierar-
chical and partitional methods. For more information about data clustering
see the survey of [44].

For peer group formation, the requirements for the data clustering al-
gorithm are that the clusters are partitional and the computational effort
must be low. The k-means clustering algorithm is the fastest partitional
data clustering algorithm [44] and also quite popular. The next section will
review the k-means data clustering algorithm which is later modified to be
used for peer group formation.

K-Means Clustering

K-means clustering was introduced in [54]. The algorithm of k-means clus-
tering is iterative and always features grouping into k clusters.

The algorithm follows the following steps:

1. k distinct cluster centers are chosen randomly.

2. Each data point is assigned to its closest cluster center.
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3. Each cluster center is recomputed as the center of its assigned data
points.

4. If the change in location of the cluster centers is above a threshold δ,
then iterate from step 2.

5. Output the clusters.

Several parameters influence the performance of the clustering and need
to be chosen by the user of the algorithm. The number of clusters k influ-
ences running time and resulting cluster size and the convergence threshold
δ influences running time and quality.

The initially chosen cluster centers also influence the resulting clusters
and not each starting set leads to the same result, i.e. not each run of k-
means clustering leads to the same result. K-means clustering reduces the
intra-cluster variance, but does not yield a global minimum in variance. Its
advantage is speed, such that it can be run over very large data sets, such
as a subscriber database.

A variation of k-means clustering is constrained k-means clustering [6].
In constrained k-means clustering the data points are assigned, such that no
cluster is below a certain size. This ensures that in the resulting clustering
all clusters also have a minimum size.

They view the cluster assignment step (step 2 in the above algorithm)
as a linear programming problem. The assignment is a 0, 1 matrix of vari-
ables where 1 indicates that this data point is assigned to this cluster. The
optimization objective of the linear programming problem is to minimize
the element sum of the matrix product of the assignment matrix times the
distance to the cluster centers matrix. The constraints on the assignment
variables are that each data point can be assigned at most once and that no
assignment variable can be negative.

The constraint additionally introduced in constrained k-means cluster-
ing is that each cluster must be of a minimum size. This is just another
constraint on the assignment matrix and can be introduced into the linear
programming problem. Then the cluster assignment step is a solution to
the linear programming problem.

The linear programming problem has size kn variables (the assignment
variables) where k is the number of clusters and n the number of data points.
It has kn+ k+ n constraints: kn constraints that no assignment variable is
negative, k constraints for the minimum cluster size, and n constraints that
no data point is assigned more than once.

In summary, data clustering is an established technique and k-means
clustering works effectively for large data sets. The problem of adding a
minimum cluster size has been considered before in constrained k-means
clustering, but the linear programming problem that must be solved can
grow very large for large data sets.
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2.2 Database Privacy

The privacy-preserving protocol competes with the protection of data at
the database level. The most prominent approach of privacy in databases is
k-anonymity.

2.2.1 K-Anonymity

K-anonymity [70, 77] tries to prevent privacy-sensitive inferences between
database tables. Let there be a table of the population under investiga-
tion, e.g. in our case companies subscribed to the benchmarking platform.
This table has a set of quasi-identifiers, i.e. attributes whose combination
uniquely identifies an entry. In the case of benchmarking this could be crite-
ria to identify a company. Then in a k-anonymous table each combination of
these quasi-identifiers must appear at least k times. In the table of all KPIs
gathered by the service provider this would correspond to the peer groups,
i.e. each combination of criteria would form a peer group. The parameter
k then corresponds to the minimum peer groups size.

In the described form k-anonymity could protect benchmarking data,
but updates as necessary for a growing benchmarking platform present an
unsolved challenge. Therefore the secure computation approach is better
suited for continuous protection of the data compared to a one-time release
as assumed in the k-anonymity model.

2.2.2 L-Diversity

Two attacks on k-anonymity have been identified in [53]. First, k-anonymous
groups can leak information due to the lack of diversity in the sensitive
attribute, e.g. if all attributes have the same value. Second, background
knowledge can be used to infer sensitive information even if the data is k-
anonymous. In order to prevent that k-anonymous groups need to be chosen,
such that the sensitive data items are l-diverse. Loosely speaking l-diverse
means that the diversity of the sensitive attributes is sufficiently close to the
distribution of the real data.

A micro-data release is the release of individual, potentially anonymized
tuples of a database. The diversity requirement of l-diversity would apply
to a micro-data release of benchmarking data, but since the benchmarking
platform is releasing only aggregate statistics, it does not apply to it. This
is fortunate, since a diversity requirement for peer groups could negatively
impact its usefulness for benchmarking.
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2.3 Secure Computation

This section describes protocols and implementation of secure computation.
Secure (multi-party) computation is a cryptographic technique that can
compute any function of distributed inputs with finite input and output
length, such that nothing is revealed except the result. Or more precisely,
let f(~x) be an n-ary function (i.e. |~x| = n) with up to n outputs, and denote
the i-th output at party Xi as fi(~x). Then, after the secure computation
protocol execution party Xi knows its input xi, and the result fi(~x) (and
everything that can be inferred from it), but nothing else.

This section presents three aspects of secure computation. First, gen-
eral protocols are introduced, second, some special protocols for statistics
and third, implementations of secure computation protocols are described.
General protocols can realize any functionality f(~x), while special protocols
optimize the protocols for special functions. The idea is that domain-specific
knowledge can be used to create better functions for important problems.
This has been suggested in [38].

Recently (year 2007) several implementations of secure computation pro-
tocols and applications have emerged. Section 2.3.3 reviews them. The
privacy-preserving benchmarking platform is an implementation of a special
protocol for statistics computation.

2.3.1 General Protocols

Secure computation has been introduced and solved for any function with
finite input and output domain in the two-party case by Yao [80]. It in-
troduced the idea of circuit construction to provide completeness for any
functionality. The realized function f(~x) with fixed input length is repre-
sented as a circuit C and then this circuit is emulated in the protocol. A
function f(~x) with variable input length is represented as a (non-uniform)
circuit family, but in this section the focus is on one concrete, implementable
member of that family for one fixed input-length function. Any function f(~x)
(with finite fixed-length input and output domain) can be represented as a
circuit with very few gate types, e.g. only “not-and” gates or only “and” and
“exclusive-or” gates. Given protocols to emulate these few gate types and
a composition theorem that shows that their combination into any circuit
is still secure, the circuit can be emulated as a composition of several gate
protocols. By this circuit construction technique the general protocol has
been reduced to a (composable) gate protocol (or protocols) for a binary
boolean function.

Yao’s seminal paper [80] also introduced Yao’s millionaires’ protocol as
an important problem and solved it. Imagine two millionaires that want
to compare their riches, but do not want to reveal to each other the exact
amount. Yao’s millionaires’ protocols implement the greater-than function-
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ality in a privacy-preserving manner.
Yao’s protocol starts by Alice scrambling the circuit. She chooses a ran-

dom bit for each wire and “exclusive-or”s it with the bit sent over that wire
into a scrambled bit. A key is chosen for each wire and each bit value, such
that the scrambled bit value can be deduced from the key. Each gate entry
is represented as a table of four entries of the key values for the resulting
scrambled bit values. Then each key is encrypted with a combined key of
the two input wires. The scrambled circuit is sent to Bob.

Oblivious Transfer is a cryptographic protocol in which the sender Alice
has n messages mi(i = 1, . . . , n) and the receiver Bob has a selection b(1 ≤
b ≤ n). After the protocol Bob has received mb and nothing about m¬b

and Alice has learnt nothing (about b) at all. An Oblivious Transfer with
n messages is called a 1-out-of-n Oblivious Transfer. A detailed description
of Oblivious Transfer is given in Section 2.4.2. Then for each of Bob’s input
wires, Alice and Bob engage in an Oblivious Transfer protocol, such that
Bob only obtains the key corresponding to his input bit and Alice learns
nothing about Bob’s input.

Bob can then execute the circuit. Since he has only one key for each
wire, he can only decrypt one entry in each gate and only obtain one result.
This result can then be shared with Alice.

The first secure computation protocol in the multi-party setting was
[37]. It provides security in the computational setting where adversaries
are polynomially bound. It used a construction based on permutations of
five elements and was later simplified by Goldreich [34]. In the simplified
version all bits are shared using secret sharing. Circuits are represented only
with addition (“exclusive-or”) and multiplication (“and”) gates. Exclusive-
or gates can be executed locally due to the linearity of the secret sharing
scheme. Multiplication gates are reduced to 1-out-of-4 Oblivious Transfer
protocols between two parties for the four possible values of the two shares
of the receiver.

Secure computation in the multi-party setting with information-theoretic
security was introduced in [7]. In information-theoretic security the adver-
sary is computationally unbounded. The protocol divides each bit into secret
shares as well and addition gates are locally evaluated as well. Multiplica-
tion gates are evaluated by polynomial reduction on the number of variables.
Due to the (t, n)-secret sharing t > n

2 honest parties suffice to execute the
protocol properly.

Yao’s protocol has been extended to the multi-party setting in [4]. This
yields a constant round protocol, but still with communication complexity
linear in the size of the circuit, since the entire circuit needs to be transferred.
In [19] malicious model security is implemented, such that random number
generators can be used as black boxes.

All presented secure multi-party computation protocols and many sub-
sequent improvements rely on a complete mesh communication pattern, i.e.
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each party communicates with each other party during the protocol. This
communication model is ideal if no third party service provider is available,
but in most business applications, e.g. benchmarking, such a platform is
available.

Naor et al. [60] first introduced secure computation of any function in
a server model. Clients only submit their inputs to the servers which then
compute the function among them. In [60] two mutually distrustful, but
honest servers are required. In [45] a fault in the zero-knowledge proofs was
later fixed. The two servers execute Yao’s protocol [80] between them after
receiving the inputs via a special Oblivious Transfer protocol.

The server model was also picked up by other general protocols. The
basic idea is to separate input, computation and output functionality. The
clients split their input into shares or submit their encrypted input to the
computation server which forward the result to the output server. This has
been described for the protocols [15, 16] where [15] is an optimization of [7]
which can operate with multiple servers and (t, n) secret sharing again. In
this case t > n

2 servers must be honest.

In summary, secure computation is possible for any function in the two-
party and in the multi-party setting. In the multi-party setting it can be se-
cure even against computationally unbounded adversaries. Initial protocols
relied on a full mesh communication pattern. While general server-assisted
solutions exist, they require at least two mutually distrustful servers.

2.3.2 Special Protocols for Statistics

The problem of privacy-preserving benchmarking was first mentioned in [2].
They provide special protocols for advanced statistics, such as moving av-
erage, exponential smoothing, and linear regression. Their building blocks
equal the building blocks of the benchmarking platform: homomorphic en-
cryption, secret sharing and Oblivious Transfer. All protocols for the ad-
vanced statistics base on protocols for privately computing division. In their
secure division protocols the players Xi each hold two inputs xi and yi. The

output of the protocol is
∑

i xi
∑

i yi
. Four protocols are given for the multi-party

and the two-party case. Their performance characteristics in relation to the
number of participants n and the number of significant bits l in the solution
are summarized in Table 2.1.

All secure division protocols are computed in a full mesh network archi-
tecture where each participant communicates with each other participant.
Nevertheless in the most practical multi-party protocol DIV1 they achieve
security also only without collusion with a special single party. None of the
protocols has been implemented and been practically evaluated.

The problem of privacy-preserving statistics has been introduced in [24].
They also provide protocols for linear regression and correlation coefficient.
Secure division also plays an important role in [24], but differently from [2]
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Name No. Parties No. Rounds Communication per party

DIV1 n 5 O(n)

DIV2 2 O(log l) O(log l)

DIV3 2 2 O(1)

DIV4 n 5 O(n2)

Table 2.1: Overview of secure division protocols by Atallah et al.

they also provide simplified protocols for the case where data is shared, such
that Alice holds x and Bob holds y and they want to compute x

y
. All given

protocols are for the two-party case only, but multiple data items at each
party are addressed.

The main building block for the protocols is a protocol for privately
computing a two-party dot product of vectors. In this protocol Alice’s vector
~x is divided into several vector shares ~xi, such that

∑

i ~xi = ~x. Then each ~xi

is randomly permuted by Alice with a different permutation Φi. Bob’s vector
~y is permuted by each Φi by Alice and each element of Φi(~y) is blinded by
adding a random variable, such that Bob does not get to know Φi. To hide
~y from Alice during this permutation it is encrypted using homomorphic,
semantically secure encryption. Bob computes the dot product for each
set of permutated vector and adds the results. The final result is the dot
product blinded by a random number chosen by Alice.

The probability that Bob will learn an entry of Alice’s vector is 1
nm

where n is the size of the vector and m is the number vector shares. Bob
would need to guess the element of vector shares that sums to the element
in ~x. The probability of guessing one entry is 1

n
and, since each of the m

permutations is chosen independently, the resulting probability is 1
nm .

This protocol was applied to the problem of privately computing division
as in [2]. Alice has x1 and y1 and Bob has x2 and y2 and they want to
compute x1+x2

y1+y2
. Bob chooses two random number r1 and r2 and sends r = r2

r1

to Alice. Alice and Bob use the scalar dot product protocol twice, but such
that only Alice learns the result: First to compute (x1, 1) · (r1, r1x2) =
r1(x1 + x2) and second to compute (y1, 1) · (r2, r2y2) = r2(y1 + y2). Alice

computes the result as r r1(x1+x2)
r2(y1+y2)

= x1+x2
y1+y2

.

Later a flaw was found in the protocol by [51]. The problem is that r as
sent by Bob is likely to reveal r1 and r2. A floating-point number reveals its
quotient and divisor if they are co-prime which approximately happens with
probability 6

π2 if they are uniformly chosen. [51] provides a very complex
secure two-party protocol that is provably secure for approximating x1+x2

y1+y2
.

Their protocol requires a constant number of rounds and communication
costs cubic in the size of the input (number of bits).

The first protocol to compute the median or more generally the k-th
ranked element was given in [1]. They give protocols for the two-party



Related Work 21

case and the multi-party case and versions secure against semi-honest and
malicious attackers. A precise definition of a semi-honest attacker is given
in Section 4.3.2 and precise defintion of a malicious attacker can be found
in [34]. All protocols use general secure computation as a sub-protocol in
order to compute certain steps of the protocol.

The two-party protocol to compute the median secure against semi-
honest attackers proceeds as follows:

1. Let the median be the k-th ranked element. Both Alice and Bob
prepare a set of their k smallest elements. Let SA denote Alice’s set and
SB Bob’s. Without loss of generality assume that |SA| = |SB| = 2j .

2. Alice and Bob engage in a general secure computation protocol to com-
pute mA < mB where mA and mB are the medians of their respective
sets SA and SB.

3. If mA < mB , then Alice removes all elements less than or equal to
her median mA from SA and Bob removes all elements strictly greater
than his median mB from SB. If mA ≥ mB, they do vice-versa.

4. Steps 2 and 3 are repeated until the sets are of size 1 and then the
smaller element is chosen as the median.

This protocol requires O(log k) rounds and has O(log k) communication
complexity. The advantage compared to general secure computation stems
from the insight that the result of the private comparison can be public,
i.e. known to Alice and Bob, since it can be deduced from the result. None
of the protocols has not been implemented or practically evaluated. The
protocol only guarantees privacy if all elements in the union of SA ∪ SB

are unique. Furthermore no implementations for the protocols necessary for
malicious security have been given in [1], such that one needs to use general
constructions which can be very costly.

The multi-party protocol for computing the median guesses the median
element by binary search in its domain. Let [α, β] be the domain of possible
values in the sets Si, i.e. the values need to be integers or appropriately
scaled.

1. Initialize [a, b] to dom(N) = [α, β].

2. Set m = ⌈a+b
2 ⌉ and let li be the number of values in set Si strictly

smaller than m and gi be the number of values strictly greater than
m.

3. The participants engage in a general secure computation that com-
putes l =

∑

i li and g =
∑

i gi and compares them to k. Again, let the
median be the k-th ranked element. If l ≥ k, then set b = m − 1. If
g ≥ n− k + 1, then set a = m+ 1. Otherwise m is the median.
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4. Repeat steps 2 and 3 until the median has been found.

The protocol requires O(log |dom(N)|) rounds and has communication
complexity O(log |dom(N)|). Again the insight is that the result of the
contained general secure computation can be public (in this case known to
all parties), since it can be inferred from the result of the entire protocol.
The communication pattern of the protocol depends on the communication
pattern of the general secure computation protocol used. The advantage
that this protocol provides is therefore limited to the selected disclosure of
the intermediate protocol results.

A protocol for privately computing the maximum in a centralized com-
munication model is presented in [21]. This protocol is based on number
theoretic assumptions, namely quadratic residuosity. A quadratic residue x
(modulo a constant m) is a number for which there exists a y, such that
y2 mod m = x.

The probabilistic (homomorphic) encryption scheme of [39] is based on
quadratic residues. LetQ(x|m) denote the quadratic residuosity of xmodulo
m, i.e. Q(x|m) = 1 if x is a quadratic residue and 0 if not. The Legendre
symbol (x

p
) for primes p implies Q(x|p).

(
x

p
) = 1⇐⇒ Q(x|p) = 1

(
x

p
) = −1⇐⇒ Q(x|p) = 0

The Legendre symbol can be computed as (x
p
) = x

p−1
2 . For a more efficient

algorithm to compute the Legendre symbol see [3]. Furthermore it holds
that

(
xy

p
) = (

x

p
)(
y

p
)

The Jacobi symbol (x
n
) is the extension of the Legendre symbol to composite

numbers n = pα1
1 pα2

2 . . . pαk

k . It is defined as

(
x

n
) = (

x

p1
)α1(

x

p2
)α2 . . . (

x

pk
)αk

An efficient algorithm for computing the Jacobi symbol without knowing
the factorization of n can be found in [3]. The Jacobi symbol does not
imply quadratic residuosity. There are so-called pseudo-primes for which
there are quadratic non-residues with Jacobi symbol equal to 1, e.g. if
n = pq, (x

p
) = −1, and (x

q
) = −1, then (x

n
) = 1. There is no efficient

algorithm known to compute quadratic residuosity for composite numbers.
Computing the quadratic residuosity is believed to be as hard as factoring
[39]. The encryption system of [39] encodes 0s and 1s as quadratic residues
and quadratic non-residues (with Jacobi symbol 1), respectively.
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The protocol of [21] uses the same bit-wise encoding for the numbers xi

to be compared for maximum. I.e. each party Xi holds a private key of a
factorization of ni = piqi, while the composite ni is a public-key. Each xi

will be represented as a set of vectors ~vij of quadratic (non-) residues vijk

modulo nj.
The protocol starts by defining a two-party subprotocol for Oblivious

Transfer of a bit on the condition of quadratic residuosity. Alice has b0, b1
and y and Bob has nj . After this special Oblivious Transfer Bob has b0 if
y is a quadratic non-residue Q(y|nj) = 0 and b1 if y is a quadratic residue
Q(y|nj) = 1. Details of the protocol can be found in [21].

Let m be the maximal size of any xi in bits. Then the protocol defines
a m×m matrix Mi,j , such that M contains exactly one column with only
quadratic non-residues if xi > xj . This matrix Mi,j is constructed as follows:
Let ~vii be the encoding of xi modulo ni and ~vji

be the encoding of xj modulo
ni. The l-th column of Mi,j contains

1. −vjik
viik

for k = 1, . . . , l − 1.

2. viil

3. −vijl
for l + 1, . . . ,m

This l-th column contains only quadratic non-residues if

1. the first l − 1 bits of xi and xj agree

2. the l-th bit of xi is 1.

3. the l-th bit of xj is 0.

The protocol in [21] also accounts for the case xi = xj which has been
omitted here.

Based on this matrix Mi,j a second special Oblivious Transfer is defined.
Alice has b0, b1 and ~vii and Bob has ~vij . They compute Mi,j and after this
special Oblivious Transfer Bob has b0 if xi > xj and b1 if xi < xj. Details
of the protocol can again be found in [21].

The overall protocol then proceeds as follows. Let n be the number
of clients Xi. In a registration phase the public key of each client Xi is
distributed to each Xj . Then each Xi sends ~vij for j = 1, . . . , n to the server.
The server prepares a message mes, e.g. a signed “maximum”, and splits it
into n shares mesi, such that mes = mes1 ⊕ . . . ⊕mesn (where ⊕ denotes
the exclusive-or operation). He prepares a random message mes′ and mes′i
in the same way. He engages in n second special Oblivious Transfers with
each Xi for mesj, mes

′
j and ~vii , ~vij (j = 1, . . . , n). Only if Xi has the

maximum she will receive all shares mesj and be able to reconstruct mes
which has been signed to distinguish it from random numbers. All others
receive random messages.
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After the protocol the holder of the maximum knows she has the max-
imum and can proof it by revealing the protocol transcript to the server.
The protocol requires a constant number of rounds, but has a communica-
tion complexity per participant of O(nm2) (where m is the maximum size of
the inputs in bits). Furthermore the protocol encodes the inputs xi bit-wise
which causes O(m) modular exponentiations during the encryption.

The protocol is secure against collusion of up to n − 1 clients (without
the server), but only in the semi-honest model. Collusion with the server
are excluded, since it can reveal an encoding ~vij of party Xi’s input xi to
party Xj. Security is only proven in the semi-honest model. Furthermore
the protocol reveals the public keys of each party, such that parties are
identifiable via them as pseudonyms.

A protocol for privately computing the sum in a centralized commu-
nication model has been presented in [22]. This protocol uses El-Gamal
encryption [28] in its construction, but the main summation protocol can be
presented without reference to a specific encryption system.

The setup consists of several parties Xi with input xi and a central server
SP . Each party has a public-, private-key pair Ei(·),Di(·). The public keys
are known to all parties including the central server SP .

Let n be the number of parties. The summation protocol proceeds as
follows:

1. Each party Xi splits her input xi into n shares xi,1, . . . , xi,n, such that
xi =

∑n
j=1 xi,j. She computes Ej(xi,j) for j = 1, . . . , i− 1, i+ 1, . . . , n

and sends them all to the server SP .

2. The server SP sorts the messages and sends Ej(x1,j), . . . , Ej(xj−1,j),
Ej(xj+1,j), . . . , Ej(xn,j) to subscriber Xj .

3. Each party Xi decrypts the received messages and computes si =
∑n

j=1 xj,i and send si to the server SP .

4. The server SP computes the sum

s =
n

∑

i=1

si =
n

∑

i=1

n
∑

j=1

xj,i =
n

∑

j=1

n
∑

i=1

xj,i =
n

∑

j=1

xj

After the protocol the server holds the sum of the inputs xi. The protocol
can be made secure against malicious deviations by the subscribersXi which
is detailed in [22]. The protocol requires a constant number of rounds, but
has a communication complexity per participant of O(n), i.e. linear in the
number of participants.

The protocol is secure against collusion of up to n − 1 clients (without
the server), even in the malicious model. The server is assumed to be semi-
honest and collusion with it are explicitly excluded, although not required
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for the summation protocol by itself. The protocol reveals the public keys
of each party, such that parties are identifiable via them as pseudonyms.

2.3.3 Implementations

The first published implementation of secure computation was the FairPlay
system [55]. It implements the two-party protocol of [80]. It has a simple
programming language to specify the computed function. A program is first
translated into a register-free, feed-forward binary circuit which is then used
in the protocol between the two parties.

The restriction of the circuit to be oblivious also places some restrictions
on the programming language. In an oblivious circuit each gate is executed
exactly once which e.g. forbids the use of registers common in processor ar-
chitectures. It only allows loops with a constant number of iterations which
are unrolled in the circuit. Functions are completely inlined and therefore
recursion is not possible. Both branches of “if” statements are always eval-
uated. Most complex are array accesses with a variable index [55]. The
resulting circuit’s size is of the order of the size of entire array with a large
constant. The constructed circuit is essentially a series of “if” statements
comparing the index to a constant and returning the array element if they
match.

The restrictions on the programming language can lead to difficult pro-
grams for certain functions. Take the following problem: Alice has input a
and Bob has input b and they want to compute ((a + b)!). The resulting
program is depicted in Figure 2.1. It is likely that it is easier to write a
program that outputs this program’s source code than to write the program
itself.

int fac(int a, int b)

s := a + b

if (s == 0)

out := 1

if (s == 1)

out := 1

if (s == 2)

out := 2

if (s == 3)

out := 6

...

if (s == max)

out := max!

return out

Figure 2.1: Factorial function
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The reported performance figures of [55] are disappointing from a practi-
cal perspective, e.g. the reported time for comparing two 32-bit integers (for
maximum) is 1.25 seconds over LAN network conditions and 4.01 seconds
over WAN network conditions.

The first multi-party secure computation implementation is [74]. It im-
plements the protocols of [7], although it contains many tools for efficiently
implementing distributed constraints problems. Unfortunately there is not
much scientific literature about the implementation. The protocols of [7]
uses a full-mesh communication pattern with a number of rounds linear in
the size of the circuit. It calls itself an interpreter as opposed to a compiler
of [55]. No performance figures are reported and the provided examples use
key sizes that prohibit useful performance measures, since they are break-
able using a pocket calculator. No information is available on the security
model used.

Another multi-party secure computation implementation is currently be-
ing developed. It is partly based on the protocols in [15]. These protocols
implement a full-mesh communication pattern with a number of rounds
linear in the circuit size. It also compiles a domain-specific programming
language into a circuit that is being executed. The circuit is arithmetic as
opposed to binary in [55], i.e. it operates on integers. The programming
language is described in [61] and extends the functionality of [55], e.g. it
allows loops on values known to all participants.

Furthermore the system implements a server model, where many clients
submit their input to a fixed number of servers. The privacy of the computa-
tion is maintained as long as only a minority of the server is corrupted. First
performance figures for an auction site are reported in [8]. No overall perfor-
mance figures are reported, but they benchmark individual operations, such
as addition, multiplication, division and comparison. The authors indicate
that they expect a practical implementation of an auction system to be fea-
sible given the performance results. The system currently only implements
the semi-honest security model.

The multi-party secure computation using two servers of [60] was imple-
mented for a survey in [30]. The protocols of [60] use a constant number
of rounds, but have communication cost linear in the size of the circuit.
This system uses two computation servers which are mutually distrustful
and must be (semi-)honest. The clients submit their inputs via a special
Oblivious Transfer protocol to one of the servers. Computing the results
of surveys is very similar to benchmarking in that both compute statistics,
such as average, maximum and median of their input values. No absolute
performance figures are reported, but the authors also expect their system
to be practically feasible, although they anticipate memory to be the main
limiting resource due to the storage of the entire circuit. They currently
only implement the semi-honest security model.

A performance evaluation of computing statistics in a query over a
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database has been conducted in [76]. They send an encrypted query to
the database, essentially a 0 or 1 for each entry, and the server evaluates
this query, such that it does not learn which values are queried, i.e. it mul-
tiplies each entry with either the encrypted 0 or 1 and sums the result using
a homomorphic encryption system. The authors report that this method is
infeasible compared to current database technology. Particularly handicap-
ping is the fact that every element of the database must be evaluated.

In summary, all implementations of secure multi-party computation that
are practically evaluated [8, 30] use a server model. They separate input
clients from servers to simplify communication. [30] uses two servers which
must be (semi-)honest and [8] uses 3, 5, or 7 servers where a minority can
be faulty. All implement the semi-honest security model and none report
figures on overall examples taking network conditions into account.

2.4 Cryptographic Building Blocks

This section describes the cryptographic primitives necessary to understand
the protocol. In particular, the benchmarking protocol uses two advanced
techniques: homomorphic encryption and Oblivious Transfer (OT).

2.4.1 Homomorphic Encryption

In homomorphic encryption one operation on the cipher texts maps into an-
other operation on the plain texts. There are many homomorphic encryption
schemes, including the popular RSA (Rivest-Shamir-Adleman) encryption
scheme [67]. In RSA multiplying two cipher texts (modulo the RSA key
modulus) results in an encryption of the product of the two plain texts
(modulo the RSA key modulus), i.e. in the RSA case multiplication maps
into multiplication.

For the benchmarking protocols the operation on the plain texts must
be addition, i.e. one can secretly add two plain texts. The first encryption
system with this property was by Goldwasser and Micali [39], but worked
only for bit plain texts. Plain text length was at most one bit and addition
was modulo 2, i.e. equal to the exclusive-or operation. The Goldwasser-
Micali encryption system is also the first semantically secure encryption
system. Goldwasser-Micali encryption with X’s public key is denoted as
Eb

X(·) and the corresponding decryption as Db
X(·).

Encryption systems that have the additive homomorphic operation, but
on (small) integers are [5, 20, 56, 62, 63]. In particular, we use Paillier’s [63]
encryption system which was later generalized to a threshold encryption
system by [20]. Let EX(·) denote the encryption with X’s public key and
DX(·) denote the corresponding decryption. Formally the homomorphic
encryption system used needs to have the following property:
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DX(EX(x) · EX(y)) = x+ y

From which the next property can be easily derived:

DX(EX(x)y) = x · y

The modulus of the two operations (on the plain text and on the cipher
text) is different, but omitted here. In Paillier’s encryption systems [63] it
can be chosen large enough, such that it does not affect the calculations
made in the protocol. These operations allow a party, in the case of the
benchmarking protocols the service provider, to operate on the plain texts
without knowing them.

The encryption system used in the benchmarking protocol does not only
need to be homomorphic, but also semantically secure (indistinguishability
against the chosen plaintext attack – IND-CPA [36]) in order to be provably
secure and public-key in order for the service provider to be able to encrypt
values and participate in the protocol. This implies that each plaintext can
be encrypted as many (randomized) ciphertexts and it then becomes com-
putationally hard to distinguish one encryption of the ciphertext from any
other such encryption, since they are not efficiently enumeratable. Public-
key encryption systems were introduced in [23] and have the property that
one can encrypt without being able to decrypt. Since the invention of RSA
[67] public-key encryption systems have become very popular and its details
are not described here.

The security properties of semantic security are explained in more detail
in Section 4.3.1. Semantic security is usually achieved by randomizing the
cipher text, i.e. one plain text has many possible cipher texts. The following
previously cited encryption systems [20, 56, 62, 63] are all public-key and
semantically secure.

Homomorphic, semantically secure encryption schemes have another im-
portant operation: re-randomization. In re-randomization a party is given
a cipher text (possibly without the private decryption key) and its goal is to
find another encryption of the same plain text. In homomorphic encryption
this can be achieved by “adding” the neutral element (0).

EX(x) ·EX(0) = E′
X(x)

However it holds with very high probability that

EX(x) 6= E′
X(x)

For the two cipher texts EX(x) and E′
X(x) the cipher text indistinguishabil-

ity property holds. This operation can be very helpful when cipher texts are
sent in the protocol, but it should not be known that a plain text identical
to a previous one is returned.
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2.4.2 Oblivious Transfer

Oblivious Transfer (OT) is a cryptographic protocol, with which a sender
can transfer one of several messages to a receiver without the sender knowing
which message was sent. OT was introduced in [66] and generalized to 1-
out-of-2 OT in [29] which has been proven equivalent in [17]. In 1-out-of-2
OT Alice (the sender) has two bits a0 and a1 and Bob has one bit b ∈ {0, 1}.
After the execution of the 1-out-of-2 OT protocol Bob knows ab, but nothing
about a¬b and Alice has learnt nothing, in particular not b. The notation
for an OT protocol between Alice as a sender and Bob as a receiver is:

A
OT−→ B

OT is a very powerful protocol and secure computation [34, 37] and
cryptographic primitives [50] can be based on it. Nevertheless it is very
computation-intensive [59], since it requires modular exponentiation, and is
the main reason for the low performance of the practical implementation of
secure computation in [55]. It therefore should be used sparingly.

In 1-out-of-n OT Alice has n messages for Bob to choose from. It can
be implemented using 1-out-of-2 OT [58], but many practical OT protocols
have natural extensions for 1-out-of-n OT, e.g. [59]. The fastest known im-
plementation of OT is described in [59]. Its most efficient version was proven
secure under the (computational and decisional) Diffie-Hellman assumptions
in the random oracle model and the benchmarking protocol implementation
uses it.

2.4.3 Cryptographic Hash Functions

A hash function is a function that is easy to compute and compresses an in-
put x of finite arbitrary length to an output H(x) of fixed finite length [65].
Cryptographic hash functions provide pre-image resistance, i.e. given a cryp-
tographic hash H(x) (with unknown x) it is computationally infeasible to
find a value for x. In collision-resistant hash function it is computationally
infeasible to find any two distinct inputs x and x′, such that H(x) = H(x′).

A message authentication code (MAC) is a cryptographic hash func-
tion parameterized by a secret key k. More importantly, MACs provide
computation-resistance, i.e. given any number of authenticated texts 〈xi,
MAC(xi, k)〉 it is computationally infeasible to compute another authenti-
cated text 〈x,MAC(x, k)〉 (x 6= xi) without knowing the key k. A successful
attempt of producing an authenticated text is called MAC forgery.

2.5 Service Oriented Architecture

Service Oriented Architectures [43] (SOA) are concerned with the composi-
tion and management of services into distributed applications. Services are
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high-level abstractions of application components independent of their im-
plementation details, e.g. programming language. The architecture of the
benchmarking platform is a service oriented architecture that is composed
of several services.

This chapter describes the architecture of the benchmarking platform as
a SOA and its components (services). A specific aspect of the architecture,
the benchmarking protocols, have been described in Chapter 4. The partic-
ipants of the protocol, i.e. subscribers and service provider, suitably map
to services in a SOA. Parties in a cryptographic protocol are autonomous
entities that (distrustfully) interoperate, just as services do in a SOA. The
individual steps performed locally at a party are therefore combined and
their interface is offered as a service.

The composition of those services is guided by the protocol specification
of Section 4.2. The semantics of the service interfaces is also strictly given
by the protocol specification. SOA helps in locating and interoperating the
services. The details of service implementation are described in the next
section.

Due to the cryptographic requirements of the benchmarking application,
services are rather tightly coupled. SOAs call for loose coupling [43], but
cryptographic services cannot simply be replaced by another service unless
that service implements the same protocol. Although individual services as
they are deployed at different locations (companies) are loosely coupled in
the SOA, the semantics of the service are rather fixed. The architecture of
the benchmarking application does not use advanced service composition of
SOAs.

2.5.1 Web Services

Web services are an implementation of the service concept over Internet
protocols and standards. A web service is an application component iden-
tified by a Universal Resource Identifier (URI) and capable of exchanging
messages via Extensible Markup Language (XML).

XML is a standardized document description format that can be used to
structure data and message exchanges. It groups the document’s contents
into hierarchical elements by markups. Figure 2.2 shows an example of an
XML element with an attribute, value pair.

<element attribute="value">data</element>

Figure 2.2: XML data element

XML is extensible, because it allows the creation of customized markups.
More details of XML are contained in its specification [10].

Web service interfaces are described using the Web Service Definition
Language (WSDL), an XML extension. A WSDL description contains the
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methods (operations) a web service offers and their parameters (messages).
It also describes the bindings, i.e. names the protocols over which the service
can be contacted, e.g. SOAP. The details of WSDL can be found in its
specification [12].

Simple Object Access Protocol

The Simple Object Access Protocol or Service Oriented Architecture Pro-
tocol (SOAP) is the protocol for encoding messages for web services. It
is usually a layer on top of the Hypertext Transfer Protocol (HTTP) and
is therefore an extension to the network stacks with application as the top
layer (HTTP). It is XML-based. SOAP messages are divided into header and
body. The body contains the encoded parameters of the message and the
header contains meta information about the message. Detailed information
about SOAP can be found in [41].

2.5.2 Web Service Security

Web Service Security [57] (WS-Security) is a standard for establishing se-
cure, i.e. confidential, and authenticated channels via SOAP. It specifies the
encryption and signatures methods and procedures for web service calls. It
is the main means of communication in the benchmarking protocol imple-
mentation.

WS-Security uses XML Encryption to encrypt the message contents and
achieve confidentiality. Only the SOAP body (or even only a part of it) is en-
crypted and the SOAP header is left in plain text for message handling, e.g.
routing. Authenticity and integrity of the message are achieved using XML
Signature. By default the entire SOAP body is signed and the signature
is stored in the header as a detached signature. Furthermore, WS-Security
specifies how to include cryptographic tokens, e.g. certificates, in the SOAP
message. These are included in the header as well.

XML Encryption

XML Encryption can be used to encrypt entire XML documents, selected
elements (and their descendants), or the data contents of an XML element.
XML Encryption replaces the encrypted content with an <EncryptedData>

element. Figure 2.3 shows the minimal structure of such an element.
The <CipherValue> element contains the cipher text. It may be replaced

with a reference to the cipher text in the XML document. Further optional
elements indicate the encryption method, i.e. the encryption algorithm, and
the key used. XML Encryption allows for several key management methods,
e.g. encrypting the contents with a symmetric key and then encrypting
the symmetric key with a public key. This speeds up encryption, since
symmetric encryption is considerably faster than public key encryption.
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<EncryptedData>

<CipherData>

<CipherValue>...</CipherValue>

</CipherData>

</EncryptedData>

Figure 2.3: XML encryption

All details of XML Encryption can be found in its specification [26].

XML Signature

XML Signature can be used to sign entire XML documents, selected ele-
ments (and their descendants), or even external objects. Signatures in XML
therefore are a two-step process: first the to-be-signed contents is hashed
and these hashes (along with some meta information) are hashed again. The
final hash is then signed.

The signed contents is referenced from the signature by an URI. URIs
can reference outside the document of the signature or elements inside that
document. For elements inside the document those elements are furnished
with an identifier. An example is depicted in Figure 2.4.

<element id="123">data</element>

Figure 2.4: XML identifier

Such an element is later referenced via an <Reference> element. Fig-
ure 2.5 shows a reference to the element from Figure 2.4.

<Reference URI="#123">...</Reference>

Figure 2.5: XML reference

The minimal structure of an XML Signature is depicted in Figure 2.6.
The reference contains the hash (digest) of its contents, such that as de-
scribed above all hashes can be hashed again. The signature is then stored
in the <SignatureValue> element.

Since XML separates contents from structure, the exact format, e.g.
white spaces, line breaks, etc., of an XML document are arbitrary and do
not contribute to its contents. XML Signature therefore enforces a strict
format, called Canonicalized XML, before signing the contents. More details
on XML Signature can be found in its specification [27].
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<Signature>

<SignedInfo>

<Reference>

<DigestValue>...</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>...</SignatureValue>

</Signature>

Figure 2.6: XML signature

2.6 Summary

This section has described the related work for the privacy-preserving bench-
marking platform.

First, similar applications have been considered. There are a few systems
for Internet-based benchmarking for special groups. None of the systems
implements privacy protection for the KPIs, although some mention privacy
as important.

All systems have been implemented for specialized group, such that the
problem of peer group formation has not been considered yet. The closest
related data clustering algorithm (k-means clustering) has been explained.

Second, literature on secure computation has been reviewed. There is
a large number of general protocols that can implement any function. In
particular, protocols that can be implemented in a centralized client-server
model have been considered. There is no general protocol which currently
works with only one central server as economically required by a single
service provider. General protocols tend to be slow and [38] suggests that
special protocols should be built for important problems.

The next section has reviewed special protocols for statistics computa-
tion. There are protocols for sophisticated statistics, in particular division
has been considered in many papers. Of these protocols none implements a
central server model. For the central server models protocols for maximum
and sum have been discovered. These protocols require linear communica-
tion cost per participant. No central server protocols for median has been
described yet. Anonymity of the subscribers as facilitated by the central
communication pattern has not been considered in any publication yet.

Third, some building blocks used in the protocols have been described.
Important building blocks are homomorphic encryption, Oblivious Transfer,
and cryptographic hash functions. Homomorphic encryption maps multipli-
cation of cipher texts E(x) and E(y) to addition of plain texts x and y:
E(x) ·E(y) = E(x+ y). The homomorphic encryption systems used (EX(·)
and Eb

X(·)) are public-key and semantically secure. EX(·) operates on in-
tegers while Eb

X(·) operates on bits. Oblivious Transfer is a protocol for
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transmitting one out of n bits, such that the sender does not know which
bit has been transmitted and the receiver only learns the selected bit. The
communication complexity of oblivious transfer is O(n). Cryptographic hash
functions map arbitrary-length inputs to fixed-length outputs, such that the
process cannot be reversed, i.e. given a hash H(x) it is impossible with very
probability to find a valid pre-image x.

Fourth, the architecture components of the implementation have been
described. The implementation is realized as a service-oriented architecture
based on web services. Web services are implementations of services over
Internet protocols and standards. The encoding protocol for web service
calls is the Simple Object Access Protocol (SOAP).

Web services offer the establishment of secure, authenticated channels
using the WS-Security standard. WS-Security uses XML encryption and
signature to modify the elements of the SOAP message, such that its confi-
dentiality and integrity are protected.
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3 Problem Outline

This chapter describes the problem of a privacy-preserving benchmarking
platform in detail. It covers functional and non-functional requirements,
the service provider model, privacy requirements and their implications. It
also outlines the limitations of practically feasible privacy in benchmarking
protocols.

3.1 Non-Functional Requirements

The benchmarking platform should be designed for practical, real-world
application. It needs to support a realistic number of customers, KPIs and
peer groups. It should support 100, 000 customers and 200 KPIs. These
numbers are based on current (year 2007) market conditions and business
applications.

Communication and computation cost should be aligned to today’s (year
2007) network conditions and computer hardware. The entire communica-
tion cost for one customer should not exceed 10 MB and the entire protocol
should be able to finish in less than 24 hours, if it does not interact with a
user. These numbers are no fixed requirements, but rather a guideline. The
lower communication and computation cost can be kept, the more realistic
is the use of the protocol in real-world applications.

3.2 Statistics

A KPI is a floating-point number computed according to a common basis,
such that their inter-company comparison is useful. Such KPIs can be read-
ily extracted from modern Enterprise Resource Planning (ERP) systems.
Let

vi denote the i-th element of vector ~v, e.g. γj,ki
the i-th

element of ~γj,k.
Xi (i = 1, . . . , n) denote one of n customers.

SP denote the service provider.
xi,k be customer Xi’s value of the k − th KPI.
~βk = (x1,k, . . . , xn,k).
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Recall that a peer group is the group of companies that wants to bench-
mark against each other. Let
Qj ⊂ {1, . . . , n} denote the participants of the j − th peer group.

qj = |Qj | denote the size of the j − th peer group.

~γj,k be the subsequence (as a vector) of ~βk.
~γj,k = (xi,k|i ∈ Qj).

~γj,k have the same elements as ~γj,k and be sorted in ascending
order.

Each customer Xi provides his KPIs xi,k as input. The benchmarking
platform should provide the following statistics of each KPI to its customers
to compare to their KPIs. That means the benchmarking platform provides
the statistics mean, variance, maximum, median and best-in-class for each
~γj,k to all Xi ∈ Qj as output. The benchmarking platform also receives the
statistics for each peer group as output. A description of the model of the
subcomponent benchmarking protocol can be found in Section 4.2.1. The
formulas for the statistics are given below:

1. Mean: µj,k =
∑qj

i=1 γj,ki

qj

2. Variance: σ2
j,k =

∑qj
i=1(γj,ki

−µj,k)2

qj−1

3. Maximum: maxj,k = max(~γj,k)

4. Median: medianj,k = γj,k⌈
qj

2
⌉

5. Best-In-Class: bicj,k =

∑qj

i=⌈ 3
4 qj⌉

γj,ki

⌈ 1
4
qj⌉

The mean is the arithmetic average of the KPIs ~γj,k. The variance is
a statistical measure for the deviations in the KPIs ~γj,k. The maximum is
the maximum value of the KPIs ~γj,k. The median is the middle element in
a sorted list, i.e. half of the elements are larger and half of the elements
are smaller. Then, medianj,k = ~γj,k⌈

qj

2
⌉
. Best-in-class is the mean of the

top 25%. Best-in-class computation has elements from mean and median
computation.

3.3 Service Provider Model

A service provider is an organization offering a benchmarking service to his
customers. The service provider may control several servers running the
service or parts of it, but all of them form one administrative domain. The
characteristic property of an administrative domain is that one (legal) per-
son has access to all data and computations made in that domain. Privacy-
preserving computation in multiple administrative domains can be addressed
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using existing secure multi-party computation protocols. Customers are or-
ganizations in a different administrative domain that are interested in us-
ing the benchmarking service. A set of protocols describe the interactions
and messages sent between customers and service provider. Customers re-
ceive only the messages specified in the protocols and vice versa the service
provider only receives messages as specified in the protocols.

The benchmarking service includes providing the subscriber Xi statistics
of the KPIs of the peer group or peer groups she is a member of (i.e. Xi ∈
Qj), such that she is able to perform the benchmarking process by comparing
these statistics to their KPIs. The service provider initiates a statistics
computation protocol at his discretion, such that customers can retrieve the
statistics, i.e. result of the computation protocols, from the platform in a
separate retrieval protocol.

The service provider model is characterized by two restrictions that are
placed on the protocols and their communication between the participants.

First, the customers are only to communicate with the service provider.
The only communication supported is point-to-point, i.e. between two par-
ticipants, and one of the participants must be the service provider. This
leads to a centralized communication pattern.

Second, the customers are to remain anonymous amongst each other.
Two notions of anonymity can be distinguished: strong and weak anonymity.
The requirement for strong anonymity is that customers do not know or refer
to any static identifier of other customers. Such an identifier can be the name
of the organization, a (static) IP address, a (static) pseudonym or similar
information that uniquely identifies the organization. Using the terminology
for anonymous communication from [64] unobservability is defined as not be-
ing able to determine whether a customer participates in the benchmarking
platform or not. The unobservability set is the set of all customers and the
attacker is a (subset of) customer(s). The service provider and parties with
direct network access to other parties’ communication links are excluded
from the set of possible attackers. This definition is most closely related to
our definition of strong anonymity. [64] defines anonymity as the state of
being not identifiable within a set of subjects. This definition is not strong
enough for the benchmarking platform’s purposes, since it only protects the
identity of the subjects. In [64] unlinkability of two or more items means
that within a system, these items are no more and no less related than they
are related concerning the a-priori knowledge. A particular concern for the
benchmarking platform is the unlinkability of two customers after two runs
of the benchmarking protocol. This is only included in the unobservability
definition of [64] and not its anonymity definition. For weak anonymity a
customer may know and refer to each with a (static) pseudonym that is not
linkable to any other identifying information except by a trusted third party.
It is most similar to a role pseudonym in [64], which is initially unlinkable
(except by the service provider). According to [64] pseudonymity provides
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some anonymity, but to a varying degree. If the pseudonyms remain unlink-
able to the identity of the subscribers, it at least protects the anonymity (as
in the definition of [64]) of the customers.

Strong anonymity implies weak anonymity, but not vice versa. Given the
need for anonymity a strongly anonymous system is therefore preferable.

Figure 3.1: Service provider model

Figure 3.1 provides a visualization of the service provider model in an
example with five companies (A-E) and the service provider.

3.4 Privacy Requirements

A feature of the benchmarking service is that it protects the privacy of
the customers. Not only do they remain (strongly) anonymous amongst
each other, but also their (individual) KPIs are not leaked to either the
service provider or another customer. All participants only learn what can
be inferred from their input and the output. More formal definitions follow
in Section 4.3.2.

Let protocol Π denote a protocol for computing benchmarking statistics
in the service provider model. Without loss of generality assume there is only
one peer group. The definition of privacy follows standard cryptographic
techniques. For reference see [34, 36]. The privacy obtained when using
protocol Π is compared to the privacy in the ideal model. Xi’s input (KPI)
is denoted by xi,k and let ~βk = (x1,k, . . . , xn,k) be the inputs for the k-th
KPI. The service provider has no input. In the ideal model there exists
a trusted third party TTP and all Xi send xi,k to TTP which sends the
statistics to the service provider SP . The customers may then retrieve the
statistics in a separate protocol. An attacker may subvert any number of
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parties in the real model of protocol execution or in the ideal model (except
TTP ). We compare the abilities of an attacker when he subverts the same
set of parties in the real and ideal model.

Definition 3.1 Protocol Π privately computes the benchmarking statistics
if an attacker in the real execution of Π can compute the same information
as in the ideal model.

3.4.1 Database View

The inputs and outputs of the ideal model can be viewed as database ta-
bles. The customers each have one tuple of a horizontally partitioned,
distributed database table of individual KPIs. Such a tuple consists of
〈idcustomer, idpeergroup, idKPI ,KPIvalue〉. Let stat1, stat2, stat3, . . . de-
note the statistics computed. After the statistics computation protocol the
service provider has a database table with the following tuples: 〈idpeergroup,
idKPI , stat1, stat2, stat3, . . .〉. This database table can be considered pub-
lic, while the distributed table of KPIs is considered sensitive and private.
The achievable privacy properties of peer group participation is discussed in
Section 3.5. Figure 3.2 shows an overview of the databases in the system.

Figure 3.2: Database view

Recall that micro-data release is the release of individual, potentially
anonymized tuples of a database. One can compare the privacy-preserving
benchmarking statistics computation approach of revealing the peer group
identifier (idpeergroup) to a k-anonymous [70, 77] micro-data release where
the quasi-identifiers characterize the customer (idcustomer). Both provide
at least the same degree of anonymity and privacy protection where k is
equal to the size of the smallest peer group, since the peer group identifier
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is equivalent to the anonymized quasi-identifiers. Furthermore our privacy-
preserving benchmarking statistics computation replaces the values of the
individual KPIs with aggregated statistics, such that at least the same degree
of privacy is achieved.

3.4.2 Economic Motivation

The privacy requirement of the benchmarking platform is designed for the
economic advantage of the service provider. Two advantages can be sepa-
rated: customer acceptance and competitive advantage.

Privacy is anticipated to increase customer acceptance. The intuition is
that customers are reluctant to disclose business critical data and private
benchmarking can alleviate the risk. This in turn leads to a larger market
size and in the last consequence to larger revenue.

Privacy can also provide a competitive advantage. The risk and cost of
sharing KPIs to engage in benchmarking can be lowered by privacy, thereby
offering a higher benefit to customers, and justifying a higher price or in-
creasing market share.

The difference between increased customer acceptance and competitive
advantage is that increased customer acceptance increases the overall market
while the competitive advantage increases market share.

Also given the possibility of privacy-preserving benchmarking with sim-
ilar results to and the same price as non-privacy-preserving benchmarking,
there is no reason to engage in non-privacy-preserving benchmarking [46].

3.4.3 Privacy against Service Provider

The participants of the benchmarking platform are the customers and the
service provider. Privacy as a competitive advantage between service providers
requires privacy against the service provider in the statistics computation
protocol, since the customers are to retrieve only the statistics (and not the
individual) KPIs anyway. In relation to definition 3.1 the service provider
is a potential attacker.

The service provider model’s central communication pattern complicates
resistance against a faulty or malicious service provider. If the service
provider stops the protocol before it completes, there is no way for the
customers to recover, since they are not to communicate with each other
directly.

Service Provider as an Attacker

Privacy against the service provider implies that the service provider can be
subverted by an attacker. At the very low level of the protocol this means
that message security must be ensured in the presence of an attacking service
provider.
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The central communication pattern also implies that a service provider
subverted by an attacker controls the entire network. The attacker can read,
write, alter or forge any message. This setup corresponds to the setup in
the cryptographic problem of establishing secure channels over an insecure
network. Such a secure channel can be used to exchange messages between
customers which cannot be read or altered by the service provider (or any
other customers).

If the customers are to remain strongly anonymous, they cannot establish
such a channel, since they would not know where to send the message to.
This rules out any existing solution that requires pair-wise secure channels
between the participants for a strongly anonymous system. In a system
with weak anonymity, cryptography still provides no tools or protocols with
which two customers could establish a secure channel without a third party
trusted by both of them. This implies that every solution that requires pair-
wise secure channels for a weak anonymous system requires another trusted
third party besides the service provider.

3.5 Peer Group Models

Peer group formation is the process of computing the peer groups from the
set of customers at a given point in time. Peer group formation creates a
mapping between customers and peer groups. A peer group has a minimum
size for its statistics to be meaningful in the benchmarking process. This
minimum size is larger than one, since a customer wants to compare to
its competition and not just itself. Therefore a peer group always maps
to multiple customers. A customer can be a member of one or more peer
groups. Two peer group models can be distinguished: single and multiple.

In the single peer group model the customer is part of exactly one peer
group. In the multiple peer group model the customer can be part of one or
more peer groups. The peer group model has implications on the commu-
nication pattern and the privacy of the KPIs.

3.5.1 Single Peer Group Model

In the single peer group model the customer maps to one and only one peer
group. The privacy of the KPI after statistics computation is protected
by the size of the peer group. If the statistics computation is private, no
individual KPI is being leaked during computation.

As in every privacy-preserving system there is a trade-off between utility
and privacy. In Section 3.4 the privacy requirements according to the def-
inition of [34] have been outlined, but what can be inferred by the output
of the system cannot be protected. Given the five statistics computed over
~γj,k one can build a system of five equations. If the size of the peer group is
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at least six, there always remains one degree of freedom for an attacker (in-
cluding the service provider) to determine ~γj,k, such that the inputs always
remain private. Some elements of ~γj,k are leaked by the output, such as the
maximum and the median, but not the party that provided them as input.
This implies that the output of a benchmarking protocol does not breach
privacy.

It remains to show that the output of the entire system does not breach
privacy in the single peer group model. In the single peer group model
the service provider who is the only participant given the output of all
peer groups is also only given those five equations for each peer group. No
additional information about any KPI xi,k of any participant Xi can be
inferred by the output of the system. Therefore no one including the service
provider can determine ~γj,k in the single peer group model. The conclusion is
that the single peer group model is sufficient for privacy. The privacy of the
benchmarking platform reduces to privacy of the benchmarking protocol,
i.e. the computation of the statistics.

The service provider may know the peer group of a customer without
a privacy breach. The service provider only needs to contact the customer
of a peer group to compute its statistics, since the non-inclusion does not
reveal information the service provider does not have already.

Let o be the number of KPIs, p the number of peer groups, n the number
of customers and qj the number of customers in the j-th peer group. In the
single peer group model, it holds that

n =

p
∑

j=1

qj

The single peer group model’s statistics computation protocol communica-
tion cost is lower bounded by Ω(no), since every customer needs to send its
KPIs (or a value computed with it) to the service provider.

3.5.2 Multiple Peer Group Model

In the multiple peer group model the customer can be a member of more
than one peer group. The privacy of the customer’s KPI is at risk, if the
service provider knows which customer participates in which peer group.

Denote customer’s Xi participation in peer group j by λj,i = 1, else
λj,i = 0. Let Λ denote the matrix of λ1,1, . . . , λp,n. Figure 3.3 shows an
example of such a peer group participation matrix.

Let xi,k be customer Xi’s value of the k−th KPI and Qj be the members

of the j-th peer group. Recall ~βk = (x1,k, . . . , xn,k). The computation of the
sum of a KPI per peer group can be written as

~sumk = Λ~βk
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Figure 3.3: Peer group participation matrix

The computation of the sums ~sumk for all peer groups for the k − th KPI
is equivalent to the computation of average, if the values in Λ are divided
by the peer group size or the peer group size is known and the results of
the matrix multiplication are later divided by the peer group size locally by
each subscriber.

If Λ (or a subset of rows of Λ) are invertible, then

Λ−1 ~sumk = ~βk

Since ~sumk is public, an invertible Λ must remain private for ~βk to
remain private. The communication pattern of the statistics computation
protocol then must also not reveal an invertible Λ. In the service provider
model with one service provider during statistics computation every cus-
tomer therefore has to participate in the protocol for computation of every
peer group. The multiple peer group model’s statistics computation protocol
communication complexity is thus lower-bounded by Ω(nop).

Other methods to prevent inversion of Λ may have lower communica-
tion complexity. Also other methods to maintain privacy of the peer group
participation matrix may have lower communication complexity. E.g. [52]
suggests two service providers during statistics computation, one which com-
putes the statistics and one which maintains the peer group participation.

3.5.3 Conclusion

A necessary condition for Λ to be invertible (or pseudo-invertible) is p ≥ n.
This never holds in the single peer group model, but may hold in the multiple
peer group model. The output of the multiple peer group model therefore
may violate privacy, while the output of the single peer group is private. In
summary, the possibility of invertability is sufficient for non-privacy, while
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the single peer group model is sufficient for privacy. Peer group forma-
tion uses non-sensitive criteria that might even already be public, as input.
A regular, non privacy-preserving computation of peer groups is therefore
preferable, since its computation and communication cost is lower.

For the statistics computation the single peer group model offers a bet-
ter lower bound on the communication cost. Considering the non-functional
requirement for the number of customers and p = o(n), the multiple peer
group model places high burdens on the practicality of the protocols. As-
sume that only one encrypted value of size 256 bytes needs to be transferred
per KPI, peer group and customer. For 200 KPIs and 100, 000 customers,
one customer must transfer over 4 GB per peer group. This can be con-
sidered impractical under current network conditions. In this dissertation
the single peer group model is chosen in order to maintain the single ser-
vice provider during statistics computation and to avoid more complicated
restrictions on the inversion of the peer group participation matrix.

3.6 Summary

This chapter explained the functional and non-functional requirements for
the benchmarking platform. It described what is referred to as a benchmark-
ing platform. A benchmarking platform is a benchmarking service offered in
the service provider model, i.e. central communication pattern. The bench-
marking platform requires a statistics computation protocol. The statistics
for benchmarking included in this protocol should be mean, variance, max-
imum, median, and best-in-class.

The benchmarking platform is characterized by two features: practi-
cal and privacy-preserving. The parameters for the benchmarking platform
to be practical in a real-world setting have been defined. It should sup-
port 100, 000 customers for 200 KPIs with limited available bandwidth and
computation power. Privacy for benchmarking has been defined by com-
parison to the ideal model where parameters are sent to a trusted third
party. Loosely speaking, privacy means keeping the individual KPIs secret
from service provider and other customers. The implications of privacy on
peer group formation have been shown and evaluated against the practical-
ity requirement. In conclusion, in order to keep the platform practical and
private, a customer may participate in only one peer group (referred to as
the single peer group model).
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4 Protocols

This chapter describes the protocols run by the service provider and sub-
scribers to implement the privacy-preserving benchmarking service. At its
core there is the benchmarking protocol in Section 4.2. The benchmarking
protocol computes the required statistics in a privacy-preserving manner, i.e.
without revealing the subscribers’ inputs. It is the benchmarking protocol
that provides the platform its privacy-preserving property. The benchmark-
ing protocol’s prerequisites in terms of key distribution and security model
are described in Section 4.1. The key distribution can be achieved using a
trusted third party, e.g. in the form of an enhanced certificate authority.
Section 4.1.2 describes the protocols involved.

The theoretical analysis of the benchmarking protocol is conducted as
security proofs in Section 4.3. The security models for the proofs and the
proof techniques are aligned with the work of [34]. Clarification of the
security assumptions necessary to prove the security has been emphasized.
Section 4.3.1 lists the assumptions made in the proofs.

4.1 Security Model

The security model covers the result and process of key distribution and
its implications. It describes the entities involved, the protocols between
them to setup the system and the restrictions on allowed collusion. It builds
the basis for the security analysis and proofs of the protocols in the later
sections.

4.1.1 Key Distribution

Three keys play a central role in the benchmarking platform. First, the
public and private key pairs corresponding to the operations 〈Ecommon(·),
Dcommon(·)〉 and 〈Eb

common(·), Db
common(·)〉 in the homomorphic encryption

schemes where the first operates on integers and the second on bits and
second, the symmetric key scommon for the message authentication code.
All subscribers know Dcommon(·) and Db

common(·), but the service provider
does not, i.e. the service provider cannot decrypt values encrypted with
Ecommon(·) or Eb

common(·). Similarly, all subscribers know scommon, but the
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Figure 4.1: Key distribution

service provider does not, i.e. the service provider cannot compute message
authentication codes. The common public keys for encryption Ecommon(·)
and Eb

common(·) are known to all participants, i.e. the service provider can
encrypt values. The key distribution is depicted for an example of five
subscribers in Figure 4.1.

Attacks where the service provider and a subscriber collude are excluded,
since it breaks the basic security assumption that the service provider does
not have access to the common decryption keys Dcommon(·) or Db

common(·).
In case of such an attack the benchmarking platform provides no security.
On the one hand, the intention of the service provider to collude can be
excluded economically, since if it is detected, the harm may exceed all ben-
efits of the benchmarking platform and spread to other areas of the service
provider’s business. On the other hand, the service provider may not in-
tentionally be involved and a malicious subscriber or attacker may simply
publish the key. In order to make key extraction harder some methods
proposed in the literature may be used [13, 14]. Furthermore an effective
re-keying procedure should be in place. Recall that all subscribers remain
(strongly) anonymous amongst each other, i.e. they do not even refer to
each other by an unique public key. Anonymity additionally raises the bar
for collusion attacks of subscribers, such that such attacks do not neces-
sarily need to be prevented. For those cases where the economics would
favor a stronger secure solution we provide coalition-safe benchmarking in
Chapter 8.

The communication between the service provider and the subscriber
may contain values that are encrypted under the common encryption keys
Ecommon(·) or Eb

common(·). Another subscriber wiretapping this communica-
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tion could break the encryption and infer values she is not supposed to know.
Therefore we assume secure, authenticated channels between all subscribers
and the service provider.

These channels are established using standard techniques for secure com-
munication over insecure networks. The session key establishment is per-
formed using trusted public keys. Recall that the subscribers do not remain
anonymous to the service provider for billing purposes. Trusted public keys
are established using a public key infrastructure (PKI) [72, 75]. The stan-
dards used have been described in Chapter 2.

4.1.2 Registration

Figure 4.2: Registration with certificate authority

Registration is the process to be completed before the subscription to the
benchmarking platform is completed. It involves establishing the trusted
public keys EXi

(·) and ESP (·) between a subscriber Xi and the service
provider SP . They use a certificate authority (CA) in the PKI to sign their
public keys. The subscriber Xi needs to obtain his certificate during reg-
istration and therefore the subscriber and the CA need to communicate.
This communication is limited to the registration phase only and no com-
munication with the CA is necessary during the benchmarking process after
registration.

Since the subscriber needs to contact the CA, the CA is also used to
act as a dealer and distribute the common keys Dcommon(·), Db

common(·) and
scommon to the subscribers. Note that Ecommon(·) and Eb

common(·) are public
parameters that can be posted on the service provider’s web site. The CA
has access to these keys and is therefore assumed not to collude with the
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service provider. Fortunately many independent CAs currently offer their
services, although their standard functionality needs to be extended.

Let ECA(·), DCA(·), SCA(·) be encryption, decryption and signature with
the CA’s public or private key, respectively. Let E(·) and D(·) denote the
encrpytion and decryption capability, i.e. in transport they denote the public
or private keys. Let CertCA(Xi, EXi

(·)) be a public-key certificate issued
by the CA to subscriber Xi. Figure 4.2 shows the one-time communication
pattern for a registration with the CA.

Protocol

Xi −→ SP ESP (Xi, EXi
(·))

SP −→ Xi EXi
(SSP (timestamp,Xi))

Xi −→ CA ECA(SSP (timestamp,Xi), EXi
(·))

CA −→ Xi CertCA(Xi, EXi
(·)),

SCA(EXi
(Dcommon(·),Db

common(·), scommon))

Figure 4.3: Registration protocol

The subscriber Xi sends his identity Xi along with his public key to
the service provider SP . The service provider returns a signature with his
public key of a fresh timestamp timestamp and the identity encrypted under
Xi’s public key. The subscriber then contacts the certificate authority CA
transmitting the above signature (and its message contents) plus its public
key EXi

(·). The CA will now distribute a certificate to Xi. In order to
do that the identity of Xi (and implicitly the authenticity of the message)
is usually verified via second channel, e.g. e-mail. If this check has been
successful, the CA sends the certificate (including identity Xi and public key
EXi

(·)) and the signed and encrypted common keys Dcommon(·),Db
common(·)

and scommon back to Xi.

The distribution protocol of the CA follows its regular distribution pro-
tocol of the generated certificate after verification of the identity of the sub-
ject (subscriber). Its only addition is that the CA also sends Dcommon(·),
Db

common(·) and scommon to the subscriber Xi. This message part can be
encrypted with EXi

(·) which has just been verified or alternatively a session
key generated from it.

Before the CA issues a certificate for the use in the benchmarking pro-
tocol and reveals the associated secrets it should verify that the subscriber
is indeed in the process of registration with the service provider. The sub-
scriber presents a proof that the service provider agrees to the participation
of the subscriber, i.e. she has paid the necessary subscription fee. The service
provider, after completing the necessary verification and credit checks, issues
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the signed token to the subscriberXi. The token is the signed concatenation
of the timestamp and the name of the subscriber Xi: SSP (timestamp,Xi).
At this point of time, the service provider cannot rely on authenticated chan-
nels for the verification, but may perform the verification independently, e.g.
based on credit card data. The subscriber Xi forwards the token to the CA
when applying for a certificate. The CA verifies the subscriber Xi’s identity
and the freshness of the token and upon successful verification continues
with its regular verification protocol and amended distribution from above.
A summary of the interactions without details of the verifications by the
individual parties is depicted in Figure 4.3.

4.2 Benchmarking Protocol

The benchmarking protocol is run to compute the statistics of the KPIs of
the subscribers in the peer group, i.e. a protocol run is made for each KPI
and each peer group. The protocol fulfills the functional requirements from
Chapter 3 and the evaluation of non-functional requirements is described in
Chapter 7.

4.2.1 Model

As stated before a benchmarking protocol is run for each peer group j and
each KPI k. The benchmarking protocol is run between qj + 1 parties:
the service provider SP and the subscribers Xi(i ∈ Qj). The only allowed
communication links are between each Xi and SP , i.e. no communication
between any Xi and Xi′ (i′ ∈ Qj) is allowed. Subscribers must remain
strongly anonymous amongst each other, i.e. each message received by a
subscriber should be free of identifiers of other subscribers.

The service provider SP initiates each protocol and determines the peer
group j and the KPI k for which statistics are to be computed. The peer
group formation, i.e. the fact that i ∈ Qj , is discussed in Section 6.2. Also
the size of the peer group qj is determined by peer group formation. All this
information is sent by the service provider SP to the subscribers Xi before
the benchmarking protocol.

In the remainder of the exposition the index k is dropped for clarity,
i.e. the KPI of Xi is xi. Also the vector of all inputs is denoted as ~x (~γj,k

in Section 3.2) and its sorted version as ~x. Each subscriber Xi provides
his KPIs xi as input to the protocol. The service provider SP provides
no input. Both the service provider SP and each subscriber Xi obtain the
output. The outputs are the mean of ~x times qj, the variance of ~x times qj,
the maximum of ~x, the median of ~x and the best-in-class of ~x times ⌈

qj

4 ⌉.
All statistics are computed according to the formulas in Section 3.2.

The security model of the computation is semi-honest. For a definition
of semi-honest security see Section 4.3.2. It is later extended to constrained
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malicious security which is described in Section 4.3.3.

4.2.2 Notation

This section reviews the notation used throughout the dissertation and, in
particular, in the formal descriptions of the protocols. The benchmarking
protocol is specified formally in Figure 4.4. The notation for cryptographic
operations is similar to the symbolic notation of Dolev, Yao [25], although
[25] does not provide notations for all necessary operations.

An indexed sequence or vector of values is written as ~x = (x1, . . . , x|~x|)
where xi is the i-th element of the vector. Matrices are written as M,N, . . .
and individual elements as mi,j, ni,j, . . .. Unordered sets are written as
S,T, . . .. The length of vectors and the size of sets is written as |~x| and
|S|, respectively. Unless otherwise noted values are indexed as seen from a
system-wide perspective throughout the dissertation, i.e. there are n sub-
scribers, p peer groups, and o KPIs. Some protocol variables, e.g. the
validation bit bi,j,k, exist independently for each dimension.

The concatenation of strings a and b is written as a|b. No special notation
is used when a numeric variable or symbol is referenced as a string. Instead
standard conversion techniques are assumed.

Table 4.1 gives an overview of the variables names and their usage.

4.2.3 Protocol Description

The benchmarking protocol is a composition of several techniques that com-
bined achieve the computation of the five statistics: average, variance, max-
imum, median, best-in-class. These techniques are summation, rank com-
putation, selection, best-in-class and decryption. This section explains each
technique separately in order to decrease the level of complexity for the
reader. The description is rather informal focusing on the protocol mecha-
nisms while a formal description is given in Figure 4.4.

Nevertheless, references to the line numbers of Figure 4.4 are given, such
that the two can be easily related. The description of the techniques is
followed by two sections: one on computing with floating-point numbers
and one on the protocol composition.

The final protocol is composed from the techniques described next. The
way of composition and the resulting properties are described in one section.

All values referenced in the protocols are integers or bits, since homo-
morphic encryption can only deal with integers and bits. Nevertheless, the
statistics need to be computed as floating-point numbers. How this is real-
ized is described in Paragraph “Computing with Floating-Point Numbers”.
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b validation bit

c condition variable for comparison

f function

g function

i index

j index into peer groups

k index into KPIs

~m messages in the protocol φ = |~m|

n number of subscribers: n = | ~X|

o number of KPIs

p number of peer groups

~q sizes of peer groups: qj = |Qj|

r uniformly chosen random number

s secret key

t size of the attacker set

x KPI value

name named variable, e.g. sum

A,B attackers (as polynomial-time circuits)

C polynomial-time circuit

D(·) decryption function

D domain of hidden values

E(·) encryption function

Ename named encrypted value

H(·) cryptographic hash function

I set of attacker (indices)

MAC(·, s) message authentication code function

P any party in the protocol
~Q peer group members (subsets of {1, . . . , n})

SP service provider
~X subscribers
~βk k-th column of x, i.e. k − th KPI of all subscribers

~γj,k k − th KPI of all members of the j − th peer group

φ number of messages

Λ peer group participation: λi,j ∈ 0, 1

Φ (random) permutation: Φ(i) is the permuted element for i

Table 4.1: Variables
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Round 1:
1 Xi −→ SP Ecommon(xi)

2 Eb
common(xi)

Round 2:
3 SP −→ Xi Ecommon(sum + r1) = Ecommon(

∑qj

i=1 xi) · Ecommon(r1)

4 Eb
common( ~cΦ(i)) = (. . . ,

Eb
common(cΦ(i)Φ′(l)

) = Eb
common(xΦ(i) < xΦ′(l)), . . .)

5 SP
OT−→ Xi Emedian

i =

{

Ecommon(xΦ(i) + r4i
) if pos(~cΦ(i)) = ⌈

qj

2
⌉

Ecommon(r4i
) otherwise

6 Ebic
i =

{

Ecommon(xΦ(i) + r5i
) if pos(~cΦ(i)) ≥ ⌈ 3

4
qj⌉

Ecommon(r5i
) otherwise

7 Emax
i =

{

Ecommon(xΦ(i) + r6i
) if pos(~cΦ(i)) = qj

Ecommon(r6i
) otherwise

8 Xi −→ SP sum + r1

9 MAC(sum + r1|i, scommon)
10 SP −→ Xi sum

11 Xi −→ SP Emedian
i · Ecommon(0)

12 Ebic
i · Ecommon(0)

13 Emax
i · Ecommon(0)

14 Ecommon((xi −
sum
qj

)2)

Round 3:
15 SP −→ Xi Ecommon(sum′ + r7) = Ecommon(

∑qj

i=1(xi − avg)2) · Ecommon(r7)
16 Ecommon(median + r8) = (

∏qj

i=1 Emedian
i · Ecommon(−r4i

))·
Ecommon(r8)

17 Ecommon(bic + r9) = (
∏qj

i=1 Ebic
i · Ecommon(−r5i

)) · Ecommon(r9)
18 Ecommon(max + r10) = (

∏qj

i=1 Emax
i · Ecommon(−r6i

)) · Ecommon(r10)
19 H(MAC(sum + r1|1, scommon), . . . , MAC(sum + r1|qj , scommon))
20 Xi −→ SP sum′ + r7

21 MAC(sum′ + r7|i, scommon)
22 median + r8

23 MAC(median + r8|i, scommon)
24 bic + r9

25 MAC(bic + r9|i, scommon)
26 max + r10

27 MAC(max + r10|i, scommon)
28 SP −→ Xi sum′

29 median

30 bic

31 max

Round 4:

32 SP −→ Xi H(MAC(sum′ + r7|1, scommon), . . . , MAC(sum′ + r7|qj , scommon))
33 H(MAC(median + r8|1, scommon), . . . , MAC(median + r8|qj , scommon))
34 H(MAC(bic + r9|1, scommon), . . . , MAC(bic + r9|qj , scommon))
35 H(MAC(max + r10|1, scommon), . . . , MAC(max + r10|qj , scommon))

Figure 4.4: Benchmarking protocol
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Summation

Xi −→ SP Ecommon(xi)

SP −→ Xi Ecommon(sum) = Ecommon(
∑qj

l=1 xl)

Figure 4.5: Summation

Each subscriber Xi sends his KPI value xi encrypted under the shared
homomorphic encryption key, i.e. Ecommon(xi) for this protocol run to
the service provider (SP ). Recall that qj is the number of subscribers in
the j-th peer group. The service provider computes

∏qj

i=1Ecommon(xi) =
Ecommon(

∑qj

i=1 xi). He now holds the encrypted sum Ecommon(sum). Fig-
ure 4.5 shows the protocol steps for a summation.

The size qj of the peer group is a result of peer group formation and
distributed by the service provider SP . Summation is equivalent to average,
since every participants then knows the number of subscribers qj and can
compute avg = sum

qj
(and its inverse, such that there is no privacy violation).

In the protocol of Figure 4.4 this technique is used to compute the aver-
age (lines 1, 3). The same technique is repeated for the variance sum′ which
is the average (sum) of (xi,k−avg)

2 (lines 14, 15). In the composed protocol
the summation is already combined with the blinding for decryption.

Rank Computation

Xi −→ SP Eb
common(xi)

SP Eb
common( ~cΦ(i)) = (. . . ,

Eb
common(cΦ(i)Φ′(l)

) = Eb
common(xΦ(i) < xΦ′(l)), . . .)

Figure 4.6: Rank computation

The rank ranki of a KPI xi is its position in the descending-sorted list of
all KPIs (from all subscribers). Recall, as in the last section, that qj is the
number of subscribers in the j-th peer group, i.e. the highest KPI has rank
1 and the lowest KPI has rank qj . The rank of each element is computed
as follows from the comparison of xi and each other KPI xi′ (i′ = 1, . . . , qj):
The service provider computes a matrix C with

Eb
common(ci,i′) = Eb

commom(xi < xi′)

where ci,i′ = 1, if xi ≤ xi′ and ci,i′ = 0 otherwise.
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The comparison bit ci,i′ is computed following the protocol from [32].
The following description briefly reviews the protocol. For security proofs
the reader is referred to [32].

Recall, that Eb
common(xi) denotes the bit-wise encryption of xi in the

homomorphic encryption system of [39]. All homomorphic operations are
performed on bits, i.e. addition becomes exclusive-or and multiplication
becomes logical and. Let xi,h denote the h-th bit of xh. If xi > xi′ , then
there exists h, such that

c′i,i′,h = xi,h · (xi′,h + 1) ·

|xi|
∏

g=h+1

(xi,g · xi′,g · 1) = 1

Note that there exists at most one such h, and therefore the service provider
can send the (bit-wise encrypted) randomly permuted vector ~c′i,i′ to the

subscriber Xi. The subscriber then computes ci,i′ =
∏|xi|

g=1(c
′
i,i′,g + 1). Note

that due to the random permutation the subscriber Xi will not learn the
index h, even if it exists. Let Eb

common(xΦ(i) < xΦ′(l)) denote the (element-

wise) encryption of the vector ~c′i,i′ .
The computation of c′i,i′,h involves one, multiple fan-in logical and oper-

ation on cipher texts. This can be achieved using the technique of [71]. It
is directly linked to the homomorphic encryption scheme of [34]. Given two
ciphertexts Eb(a) and Eb(b) one can compute their logical and as follows:
Choose a parameter ǫ. For each g (1 ≤ g ≤ ǫ) flip a random coin rg ∈ {0, 1}.
Compute a′g = Eb(a)rg , i.e. a′g = Eb(a) if rg = 1 and a′g = Eb(0) if rg = 0.
Note that ∀g.a′g = 0 if a = 0 and that ∃g.a′g = 1 if a = 1 (with high prob-

ability). Repeat the same procedure for Eb(b) resulting in b′g. Compute

abg = a′g · b
′
g = Eb(a · rg + b · r′g). Note that ∀g.abg = 0 if a · b = 0 and

that ∃g.abg = 1 if a · b = 1 (again with high probability). The decoding of
~ab corresponds to this observation, i.e. if there is at least one 1 decode to
1. Note that there is an error probability of incorrectly decoding a 1 as a 0.
This probability is exactly 2−ǫ. Cipher texts after applying the technique
of [71] are still denoted as Eb(ab), since the decryption procedure remains
and only the decoding step has been added. The encoding can be inferred
from the context.

Furthermore the service provider chooses two random permutations Φ
and Φ′ of the subscribers [1, qj ]. Note that Φ′ is chosen fresh for each sub-
scriber Xi in one run of the benchmarking protocol while Φ is chosen once
for each run of the benchmarking protocol. Let Φ(i) and Φ′(i) denote the
assigned element of i in the permutation Φ or Φ′(i), respectively.

The service provider SP sends a vector ~cΦ(i) = (cΦ(i),Φ′(1), . . . , cΦ(i),Φ′(qj))
to the subscriber Xi. Let pos( ~cΦ(i)) denote the number of positive elements
in ~cΦ(i). It holds that

rankΦ(i) = qj − pos( ~cΦ(i)) + 1
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Each subscriber Xi now holds the rank of a KPI from a randomly chosen
subscriber XΦ(i).

The rank computation technique is used once within the benchmarking
protocol (lines 2, 4). It builds the basis for median, maximum and best-in-
class computation.

Median and maximum are elements with a specific rank of ⌈
qj

2 ⌉ and 1,
respectively. For best-in-class computation all elements with ranks lower
than or equal to ⌈

qj

4 ⌉ are summed up.

This rank computation protocol computes O(q2j ) comparisons while an
efficient non-secure, sequential sorting algorithm requires only O(qj log gj)
comparisons. A secure sorting algorithm could be based on sorting net-
works whose control flow is oblivious to the result of the comparisons and
requires also O(qj log gj) comparisons (O(qj log2 gj) in practice). The sort-
ing performance can be significantly improved by exploiting the distributed
nature of the computation. Each subscriberXi interacts independently with
the service provider SP in order to compute qj comparisons. That way all
comparisons can be computed in 1 round of the benchmarking protocol.

Unfortunately, not all multisets contain an element with the required
rank, but all multisets do have a median, a maximum and best-in-class ele-
ments. The problem can arise when the multiset contains duplicate values,
because then these values have the same rank and some ranks ([1, qj ]) re-
main unassigned. If each value is unique within the multiset, each rank
will be assigned to an element and the median can be computed as element
with rank ⌈

qj

2 ⌉. Therefore the service provider appends an unique constant
from a random permutation Φs to each bit-wise encrypted KPI value xi. He
can do so using the cipher texts Eb

common(xi) and the public key Eb
common().

As a result all ties between KPIs are broken. This does not influence the
computation of the other statistics.

Selection

Xi −→ SP Ecommon(xi)

SP
OT−→ Xi Ei =

{

Ecommon(xΦ(i) + ri) if rankΦ(i) is selected

Ecommon(ri) otherwise
Xi −→ SP E′

i = Ei ·Ecommon(0)
SP Ecommon(x) =

∏qj

i=1E
′
i · Ecommon(−ri)

Figure 4.7: Selection

Selection is the process of computing the encrypted value (cipher text) of
a KPI xi with a selected rank (or the sum of KPIs with selected ranks) at the
service provider SP ’s side. For each subscriber the service provider chooses
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a random number ri and prepares θ0 = Ecommon(xΦ(i)) · Ecommon(ri) =
Ecommon(xΦ(i) + ri) and θ1 = Ecommon(ri). The subscriber Xi and the
service provider engage in an 1-out-of-2 Oblivious Transfer protocol where
Xi receives Ei = θ0, if her rank is the selected one, and Ei = θ1 otherwise,
i.e. only the subscriber whose assigned KPI has been selected by its rank,
receives the KPI’s value (blinded by ri). All other receive a blinded 0.
Each subscriber rerandomizes the received value Ei, e.g. by multiplying it
with a neutral element Ecommon(0), and returns it to the service provider.
Note that due to the rerandomization the service provider SP cannot decide
which cipher text he received.

As in the last section, qj is the number of subscribers in the j-th peer
group. The service provider computes

∏qj

i=1(Ei·Ecommon(−ri)) = Ecommon(x)
where x is the element with the selected rank. Afterwards the service
provider holds Ecommon(x).

In the benchmarking protocol selection is repeated for median, maximum
and all best-in-class elements and the service provider obtains encryptions of
median (median), maximum (max) and best-in-class (bic). Note, that in the
case of the best-in-class elements, multiple elements are selected at once, but
due to the subsequent summation the computation is correct. The Obliv-
ious Transfer protocols are executed first (lines 5, 6, 7), then the selected
values are returned (lines 11, 12, 13) and finally the result is computed (lines
16, 17, 18).

Decryption

SP −→ Xi Ecommon(v + r) = Ecommon(v) · Ecommon(r)
Xi −→ SP v + r

MAC(v + r|i, scommon)
SP −→ Xi v

H(MAC(v+ r|1, scommon), . . . ,MAC(v+ r|qj, scommon))

Figure 4.8: Decryption

So far, the service provider only holds encrypted results and this tech-
nique helps him to have them decrypted by the subscribers. The service
provider SP should be the first to learn the decrypted result in order to
round it to insensitive values. He blinds the result by adding a random value
r and sends the blinded cipher text Ecommon(v + r) to each subscriber Xi.
Let | denote string concatenation, i.e. a|b is the concatenation of a and b. Xi

responds with its plain text v+ r and its message authentication MAC(v+
r|i, scommon). The service provider delivers in the next round the clear result
v and confirms with the (aggregated) hash of all concatenated message au-
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thentication codes H(MAC(v+r|1, scommon), . . . ,MAC(v+r|qj, scommon)).
The subscriber Xi computes a validation bit bi,j,k as the comparison of the
received aggregated hash and its locally computed value. This validation bit
bi,j,k indicates whether the service provider SP submitted the same cipher
text to all subscribers. In a later section it is proven that a match of the
received and computed validation bit is only possible if all subscribers have
received the same cipher text. A subscriber Xi can therefore verify using
the validation bit, if the service provider adhered to this particular proto-
col step. This comparison prevents the service provider from mounting a
specific attack by which he could gain additional knowledge about the KPIs.

In the benchmarking protocol the decryption is used five times. v is
substituted with sum, sum′,median,max, bic. The individual decryption
operations are interleaved: the hidden and encrypted values are sent (lines
3, 15 − 18), returned (lines 8, 9, 20 − 27), plain-text delivered (lines 10,
28− 31) and their aggregates verified (lines 19, 32 − 35).

Combined Protocol

The previous sections presented techniques used in the benchmarking pro-
tocol. The combination of all techniques in order to compute the statistics
forms the benchmarking protocol. All protocols steps have been placed in
the latest round possible to balance the communication cost between rounds
and in the earliest round necessary in order to minimize the number of re-
quired rounds. The result is depicted in Figure 4.4.

The benchmarking protocol operates in rounds. This section gives a
formal definition of round in the central communication pattern.

Definition 4.1 A round is a step or sequence of steps in the protocol that
needs to be completed by every subscriber before any subscriber can take the
next step.

Rounds are the main synchronization mode in the benchmarking proto-
col. A subscriber cannot initiate the steps of the next round before every
other subscriber has completed this round. The order of subscribers in each
round is arbitrary and can vary between any two rounds. Two subscribers
can even engage in one round of the protocol with the service provider in
parallel, i.e. the service provider can be multi-threaded.

The benchmarking protocol requires four rounds, i.e. a constant number
of rounds independent of the number of participants or the input. Also the
steps in each round are constant and do not depend on the number of par-
ticipants or the input. Round complexity is one measure of communication
complexity. The round complexity of the benchmarking protocol is constant
(O(1)) and therefore asymptotically optimal.
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Computing with Floating-Point Numbers

Homomorphic encryption operates on integers and all KPIs are submitted
in encrypted form using homomorphic encryption. Fortunately all multipli-
cations in the protocol on the encrypted values are with integers (or bits).
Therefore floating point numbers can be represented by multiplying them
with a large constant, e.g. 106. Then addition and multiplication with inte-
gers carry along this scaling factor. The results are divided by the constant
before being presented to the subscriber. The solution offers less accuracy
than regular floating-point numbers and operations, but due to the restricted
domain of the input KPIs this is acceptable. Our protocols therefore allow
operations on floating point numbers.

When computing using homomorphic encryption it is also important to
prevent wrap-around (the modulus) of the computed results. The according
modulus needs to be chosen with a large enough size. In the implementation
using Paillier’s encryption choosing a large enough domain is not a problem,
since the domain of the plain text is almost equal to the key length. Key
lengths in Paillier’s encryption system are equal to key lengths in the popular
RSA system [67], i.e. 512 to 2048 bits.

4.3 Security Proof

This section describes the security proof of the benchmarking protocol from
Figure 4.4. It contains two proofs: first in the semi-honest security model
as defined in [34] and second in the constrained malicious security model
extended from Goldreich’s malicious security also in [34].

First this section lists the security assumption in Section 4.3.1. Then
Section 4.3.2 starts with the semi-honest model. It first reviews Goldreich’s
definitions in slightly simplified form adapted for the benchmarking protocol
and its proof. It repeats the composition theorem from [34] used in the
construction. In Section “Proof Outline” Goldreich’s proof technique is
described which is then filled with the details of the benchmarking protocol
in the next sections. The security is proven by a comparison of the views
(Section “Views”) and the simulators (Section “Simulator”) which are given
in the next sections. The comparison is given in Section “Comparison”.

Next Section 4.3.3 starts the definitions for security in the constrained
malicious model. Section “Proof Outline” reviews the proof technique again.
The protocol is decomposed into two sub-protocols which are analyzed sepa-
rately (Sections “Message Computation” and “Decryption”). Section “Com-
bination of the Sub-Protocols” completes the proof for composed protocol
by combining the individual results.
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4.3.1 Security Assumptions

Semantic Security

Semantic security means it must be unfeasible for a probabilistic polynomial-
time adversary to derive information about a plain text when given its ci-
pher text and the public key. A more formal definition can be found in [36].
The property of semantic security has been proven equivalent to cipher text
indistinguishability. If an encryption scheme possesses the property of in-
distinguishability, then an adversary will be unable to distinguish pairs of
cipher texts based on the message they encrypt. Paillier’s encryption sys-
tem has been proven semantically secure against chosen plain text attacks
under the Decisional Composite Residuosity Assumption [63]. Goldwasser,
Micali encryption has been proven secure under the intractability assump-
tion of deciding Quadratic Residuosity modulo composite numbers whose
factorization is unknown [39].

Secret Sharing

A (t, t) secret sharing scheme divides a secret s into a number t (t ≥ 2)
of shares. Given t − 1 shares one cannot reconstruct s or even infer any
information about s. Such a secret sharing scheme is called a perfect secret
sharing scheme. An example is sharing with “addition modulo a constant
c” where t− 1 shares are random numbers r1, . . . , rt−1(0 ≤ ri < c) and the
last share is rt = s−

∑t−1
i=1 ri mod c [47, 75].

Cryptographic Hash Functions

A hash function is a function that is easy to compute and compresses an in-
put x of finite arbitrary length to an output H(x) of fixed finite length [65].
Cryptographic hash functions provide pre-image resistance, i.e. given a cryp-
tographic hash H(x) (with unknown x) it is computationally infeasible to
find a value for x. In collision-resistant hash function it is computationally
infeasible to find any two distinct inputs x and x′, such that H(x) = H(x′).

A message authentication code (MAC) is a cryptographic hash func-
tion parameterized by a secret key k. More importantly, MACs provide
computation-resistance, i.e. given any number of authenticated texts 〈xi,
MAC(xi, k)〉 it is computationally infeasible to compute another authenti-
cated text 〈x,MAC(x, k)〉 (x 6= xi) without knowing the key k. A successful
attempt of producing an authenticated text is called MAC forgery.

4.3.2 The Semi-Honest Model

The semi-honest model is based on comparing the real protocol execution
or real model with an ideal model. In the ideal model all participants send
their input to a trusted third party which responds with the correct answer.
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For a protocol to be secure any attack in the real model must be feasible
in the ideal model. For semi-honest security this means that what can be
computed in the real model must not be more than what can be computed
in the ideal model where only input and output are available.

An attacker in the semi-honest model follows the protocol as it is de-
scribed, but keeps a record of all messages received and tries to infer as
much information as possible from it. Such an attacker would in a real com-
puter system monitor the communication interfaces and APIs or even the
network wire to his computer. He would not modify the data content or
use a self-written simulation program. Preventing attackers from modifying
program variables and the program itself has been described in the litera-
ture [11, 42, 79]. Semi-honest security and these security mechanisms are
therefore complementary.

Loosely speaking, the definition of semi-honest security states that what
an attacker can learn from the protocol he can learn from his input and
output. The view of an attacker defines what he can learn from a protocol.

Definition 4.2 The view of the i-th party during an execution of the bench-
marking protocol on (x1, . . . , xn) is denoted

V IEWi(x1, . . . , xn) = {xi, ri,m1, . . . ,mφ}

where ri represents the outcome of the i-th party’s internal coin tosses, and
mi represents the i-th message it has received.

The result and everything the attacker can compute after a protocol run
are implicit in the view. For the definition of security it therefore suffices to
show that the view itself can be computed (simulated) from the input and
output. Security against a semi-honest attacker (for deterministic functions)
is defined according to Goldreich as follows:

Definition 4.3 Let

f(x1, . . . , xn) : ({0, 1}∗)n 7→ ({0, 1}∗)

be the benchmarking functionality. For

I = {i1, . . . , it} ⊂ {1, . . . , n}

let
V IEWI(x1, . . . , xn) = (I, V IEWi1(~x), . . . , V IEWit(~x))

The protocol t-privately computes f if there exists a polynomial-time simu-
lator, denoted S, such that for every I of size t, S(I, (xi1 , . . . , xit), f(~x)) is
computationally indistinguishable from V IEWI(x1, . . . , xn):

S(I, (xi1 , . . . , xit), f(~x))
c
= V IEWI(x1, . . . , xn)
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Composition Theorem

Often protocols are composed of sub-protocols whose security has been
proven independently. The composition theorem from [34] described in this
section helps proving the security of the composed protocol. Loosely speak-
ing, the composition theorem states that given a proven sub-protocol, it
is only necessary to prove the security of the composed protocol using the
sub-protocol as a black box (oracle).

More formally, an oracle-aided protocol is one where all participants
submit their input to an oracle which replies with the answer (or answers)
according to a function f . An oracle-aided protocol (with oracle function-
ality f) is said to privately compute g, if there exists a polynomial-time
algorithm (simulator) S satisfying definition 4.3. An oracle-aided protocol
is said to privately reduce g to f , if it privately computes g while using
oracle functionality f : g privately reduces to f .

Theorem 4.4 If g privately reduces to f and there exists a protocol for
privately computing f , then there exists a protocol for privately computing
g.

For a proof of this theorem, see [34]. In the benchmarking protocol the
OT [29, 66] functionality will be replaced with an oracle for the purpose of
the proof. Proofs for the specific OT implementation used in the implemen-
tation can be found in [59]. Our proof also abstracts from the cipher text
details of the comparison in [32], although no messages are omitted in this
case.

Proof Outline

This section states the security theorem to be proven and relates it to def-
inition 4.3. Then it outlines the construction of the proof and its parts
before they are described precisely for the benchmarking function in the
next sections.

The following theorem will be proven

Theorem 4.5 The benchmarking protocol 1-privately computes the func-
tions average, maximum, variance, median, best-in-class and a validation
bit in the semi-honest model.

The validation bit ensures that the service provider has submitted the same
cipher text to each subscriber and thereby prevents that the service provider
has gained knowledge of KPIs by deviating from the protocol in this step.
Its details are part of the next section. This section will prove that inclusion
of the validation bit does not leak additional information in the semi-honest
model.
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The proof starts by constructing a simulator that is given the attacker’s
input (xi1) and output (f(~x)). The simulator computes a sequence of mes-
sages m1, . . . ,mφ. Then for each message mi an argument based on a secu-
rity assumption is given that this message mi is computationally indistin-
guishable from the message received in the real model, i.e. the real execution
of the protocol.

Before arguing for computational indistinguishability, consider the fol-
lowing example of an insecure protocol. If two probability distributions
are computationally indistinguishable, then there exists no (probabilistic)
polynomial-time distinguisher.

A distinguisher runs the protocol in the real model (i.e. it determines the
input ~x) and is handed either the view V IEWI(~x) in the real model or the
output of the simulator. The distinguisher is successful if it can determine
with probability p non-negligibly larger than p > 1

2 +ǫ, which one it received.
The following example constructs a polynomial-time distinguisher for the
two ensembles.

Assume the following insecure protocol where all parties send their inputs
unencrypted, i.e. in plain text, to the service provider. Obviously the service
provider can compute the correct result, but the following polynomial-time
distinguisher for any simulator of the service provider exists. The distin-
guisher receives a view either from a real protocol run or from the simulator
and outputs a decision which of these the view is from. The distinguisher
proceeds as follows:

1. Choose and record random numbers ri and use them as input xi,k for
the real protocol run.

2. Receive message m1, . . . ,mn (either from the protocol run or the sim-
ulator).

3. If all mi = ri, decide for real protocol execution, otherwise decide for
the simulator.

The distinguisher succeeds, since the service provider has no input and
the simulator has only the results as input. Therefore the simulator cannot
do better than randomly guess the inputs and the distinguisher is successful
in most cases. The central party can compute more about the subscribers’
input in the real model than it can in the ideal model which is obvious, since
it is sent the inputs of each party.

Security in the semi-honest model proves that no such distinguisher can
exist.

Both types of participants are potential attackers: subscribers and the
service provider. The benchmarking protocol cannot be privately computed
in presence of a set of two or more attacking participants, since the set
can be composed of a subscriber and the service provider. If they collude
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and use the private key known to the subscriber to decrypt all incoming
messages at the service provider, security has been violated. Theorem 4.5
therefore refers only to 1-private computation. This also implies that secure
and authenticated channels are required for the execution of the protocol.

The next sections will show a simulator for each of the two possible views
(again, subscriber and service provider). Two parts of the view – input and
internal coin tosses – are not handled explicitly, because they can be simu-
lated by copying the input and by using the same random number generator
the implementation of the protocol uses in executing the real protocol. It re-
mains to show that the received messages can be simulated computationally
indistinguishably.

Therefore a simplified version of the view is presented which only shows
the messages received. Afterwards a simulator for each view is given that
has a corresponding entry for each message received. Then for each entry an
argument based on the security assumptions is given as to why the output of
the simulator is computationally indistinguishable from the message entry.

Statistical closeness implies computational indistinguishability [35]. Iden-
tically distributed functions are also statistically close. Therefore, if the
probability distribution of a message is known, a function generating this
probability distribution (i.e. an identically distributed function) can be used
as a simulator. An example are a random share in the t, t perfectly secure
“modular addition” secret sharing scheme and a uniformly chosen random
value. Both are uniformly distributed in [0, c[.

Computational indistinguishability can also be based on already existing
proven computational indistinguishability results, e.g. cipher text indistin-
guishability implies that two cipher texts are computationally indistinguish-
able, even if the distribution of the plain texts is different and known to the
distinguisher.

Views

Recall from definition 4.2 that the view of a party is its input, its internal
coin tosses and the messages it receives. Both input and coin tosses are cho-
sen by the party itself and can be simulated as described in Section “Proof
Outline”. Therefore the focus is on the messages a party receives. This
section restates from Figure 4.4 the messages a subscriber and the service
provider receive during a run of the benchmarking protocol. This helps to
illustrate the construction of the simulator which produces a computation-
ally indistinguishable message for each message in the view from just the
input and output of that party.

Subscribers’ Messages Subscriber Xi receives the following messages
during the benchmarking protocol. For simplicity the message have been
numbered according to Figure 4.4. Recall that the subscriber has possession
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of the common decryption keys Dcommon and Db
common and can consequently

decrypt the corresponding messages as indicated by → below. Also due to
the composition theorem, OT has been replaced with its ideal functionality
where the subscriber receives one of two items according to this choice bit.
The messages exchanged during the implementation of the OT protocol
([59]) are left out.

1. Round 1:

2. Round 2:

(3) Ecommon(sum+ r1)→ sum+ r1

(4) Eb
common( ~cΦ(i))→ (. . . , cΦ(i)Φ′(l)

, . . .)

(5) Emedian
i → median′ + r4i

(6) Ebic
i → bic′ + r5i

(7) Emax
i → max′ + r6i

(10) sum

3. Round 3:

(15) Ecommon(sum′ + r7)→ sum′ + r7

(16) Ecommon(median + r8)→ median + r8

(17) Ecommon(bic+ r9)→ bic+ r9

(18) Ecommon(max+ r10)→ max+ r10

(19) H(MAC(sum+ r1|1, scommon), . . . ,MAC(sum+ r1|qj , scommon))

(28) sum′

(29) median

(30) bic

(31) max

4. Round 4:

(32) H(MAC(sum′+r7|1, scommon), . . . ,MAC(sum′+r7|qj , scommon))

(33) H(MAC(median+r8|1, scommon), . . . ,MAC(median+r8|qj, scommon))

(34) H(MAC(bic + r9|1, scommon), . . . ,MAC(bic + r9|qj, scommon))

(35) H(MAC(max+r10|1, scommon), . . . ,MAC(max+r10|qj , scommon))
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Service Provider’s Messages The service provider does not have ac-
cess to the common decryption key and therefore cannot decrypt messages
encrypted with Ecommon(·) or Eb

common(·). He also acts as the sender in
OT sub-protocols, so all messages regarding OT are left out. The messages
the service provider receives during the benchmarking protocol are then as
follows:

1. Round 1:

(1) Ecommon(xi)

(2) Eb
common(xi)

2. Round 2:

(8) sum+ r1

(9) MAC(sum+ r1|i, scommon)

(11) Emedian
i · Ecommon(0)

(12) Ebic
i · Ebic(0)

(13) Emax
i · Ecommon(0)

(14) Ecommon((xi −
sum
qj

)2)

3. Round 3:

(20) sum′ + r7

(21) MAC(sum′ + r7|i, scommon)

(22) median + r8

(23) MAC(median + r8|i, scommon)

(24) bic+ r9

(25) MAC(bic+ r9|i, scommon)

(26) max+ r10

(27) MAC(max+ r10|i, scommon)

4. Round 4:

Simulators

Given the messages as the main part of the view, the simulators can be
constructed starting with the simulator for the subscriber’s view.
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Subscribers’ Simulator

Lemma 4.6 The view V IEWXi
(x1, . . . , xn) of subscriber Xi during the

benchmarking protocol can be simulated computationally indistinguishably
by a simulator SXi

(xi, sum, sum
′,max,median, bic).

Lemma 4.6 is proven in the following by specifying simulator SXi
(xi,

sum, sum′,max,median, bic).

The input of a subscriber is his input KPI value xi. The outputs of a sub-
scriber are the result values sum, sum′, max, median, bic and the validation
bit bi,j,k which indicates that the service provider has not gained knowledge
of KPIs by deviating from the protocol. The simulation of input and in-
ternal coin tosses is left out and performed as described in Section “Proof
Outline”. The decrypted messages are simulated instead of the encrypted
received ones. The subscriber (and the distinguisher) can decrypt with the
common keys Dcommon(·) and Db

common(·) and furthermore, if the decrypted
messages can be simulated computationally indistinguishably, then the en-
crypted ones can be as well, since encryption is a deterministic mapping
of probability distributions. The domain of the homomorphic operation
in the homomorphic encryption scheme Ecommon(·) is denoted by the do-
main operator on Dcommon(·): dom(Dcommon(·)). Random variables that
are reused during the simulator are denoted as r′, r′′, . . ., while random vari-
ables that are used only during one step are denoted as r. The simulator
SXi

(xi, sum, sum
′,max,median, bic) for the subscribers’ view is:

1. Round 1:

2. Round 2:

(3) a uniformly chosen random value r′ (0 ≤ r′ < dom(Dcommon(·)))

(4) qj uniformly chosen random bits r (0 ≤ r ≤ 1)

(5) a uniformly chosen random value r (0 ≤ r < dom(Dcommon(·)))

(6) a uniformly chosen random value r (0 ≤ r < dom(Dcommon(·)))

(7) a uniformly chosen random value r (0 ≤ r < dom(Dcommon(·)))

(10) sum

3. Round 3:

(15) a uniformly chosen random value r′′ (0 ≤ r′′ < dom(Dcommon(·)))

(16) a uniformly chosen random value r′′′ (0 ≤ r′′′ < dom(Dcommon(·)))

(17) a uniformly chosen random value r′′′′ (0 ≤ r′′′′ < dom(Dcommon(·)))

(18) a uniformly chosen random value r′′′′′ (0 ≤ r′′′′′ < dom(Dcommon(·)))
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(19) if bi,j,k is true, then the validation hash H(MAC(r′|1, scommon),
. . . ,MAC(r′|qj , scommon)), else a random number r (0 ≤ r <
dom(H(·)))

(28) sum′

(29) median

(30) bic

(31) max

4. Round 4:

(32) if bi,j,k is true, then the validation hash H(MAC(r′′|1, scommon),
. . . ,MAC(r′′|qj, scommon)), else a random number r (0 ≤ r <
dom(H(·)))

(33) if bi,j,k is true, then the validation hash H(MAC(r′′′|1, scommon),
. . . ,MAC(r′′′|qj, scommon)), else a random number r (0 ≤ r <
dom(H(·)))

(34) if bi,j,k is true, then the validation hash H(MAC(r′′′′|1, scommon),
. . . ,MAC(r′′′′|qj, scommon)), else a random number r (0 ≤ r <
dom(H(·)))

(35) if bi,j,k is true, then the validation hash H(MAC(r′′′′′|1, scommon),
. . . ,MAC(r′′′′′|qj, scommon)), else a random number r (0 ≤ r <
dom(H(·)))

Service Provider’s Simulator

Lemma 4.7 The view V IEWSP (x1, . . . , xn) of the service provider SP dur-
ing the benchmarking protocol can be simulated computationally indistin-
guishably by a simulator SSP (sum, sum′,max,median, bic).

Lemma 4.7 is proven in the following by specifying simulator SSP (sum,
sum′,max,median, bic).

The service provider has no input and his outputs are the result values
sum, sum′,max,median and bic (no validation bit). The simulation of in-
put and internal coin tosses is left out again. The service provider does not
have access to the common decryption keys Dcommon(·) and Db

common(·) and
all encrypted message he receives cannot be decrypted by him. The domains
of the homomorphic encryption schemes are denoted by the domain opera-
tor on Ecommon(·) and Eb

common(·): dom(Ecommon(·)) and dom(Eb
common(·)),

respectively. The domain of the message authentication code is denoted
by dom(MAC(·)). The simulator SSP (sum, sum′,max,median, bic) for the
service provider’s view is:

1. Round 1:
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(1) a uniformly chosen random value r (0 ≤ r < dom(Ecommon(·)))

(1) a uniformly chosen random value r (0 ≤ r < dom(Eb
common(·)))

2. Round 2:

(8) sum+ r1 (where r1 is an internal coin toss)

(9) a uniformly chosen random value r (0 ≤ r < dom(MAC(·)))

(11) a uniformly chosen random value r (0 ≤ r < dom(Ecommon(·)))

(12) a uniformly chosen random value r (0 ≤ r < dom(Ecommon(·)))

(13) a uniformly chosen random value r (0 ≤ r < dom(Ecommon(·)))

(14) a uniformly chosen random value r (0 ≤ r < dom(Ecommon(·)))

3. Round 3:

(20) sum′ + r7 (where r7 is an internal coin toss)

(21) a uniformly chosen random value r (0 ≤ r < dom(MAC(·)))

(22) median + r8 (where r8 is an internal coin toss)

(23) a uniformly chosen random value r (0 ≤ r < dom(MAC(·)))

(24) bic+ r9 (where r9 is an internal coin toss)

(25) a uniformly chosen random value r (0 ≤ r < dom(MAC(·)))

(26) max+ r10 (where r10 is an internal coin toss)

(27) a uniformly chosen random value r (0 ≤ r < dom(MAC(·)))

4. Round 4:

Comparison

This section shows why the simulators produce a computationally indistin-
guishable output. In the case of the subscribers’ simulator, output values
(steps 10, 28 to 31) can be simulated by simply copying the actual outputs
of the protocol and are therefore identically distributed. The argument is
shown at the example of step 10 of the protocol.

1. (10) SP −→ Xi sum

2. (10) sum

3. (10) sum



Protocols 69

The first line is taken from Figure 4.4 and corresponds to the message
sent to subscriber Xi. The second line is taken from the view of Xi from
Section “Subscribers’ Messages” and the third is the output of the simulator
from Section “Subscribers’ Simulator”. Clearly the second and third line are
identical and the second line is derived from the first line. The arguments
for steps 28 to 31 of the benchmarking protocol are identical.

In step 4 of the subscriber’s view the comparison bits are simulated using
qj random bits.

1. (4) SP −→ Xi E
b
common( ~cΦ(i)) = (. . . , Eb

common(cΦ(i)Φ′(l)
) = Eb

common(xΦ(i) <

xΦ′(l)), . . .)

2. (4) Eb
common( ~cΦ(i))→ (. . . , cΦ(i)Φ′(l)

, . . .)

3. (4) qj uniformly chosen random bits r (0 ≤ r ≤ 1)

The three lines are formed from Figure 4.4 and Sections “Subscribers’
Messages” and “Subscribers’ Simulator” again. The second line includes the
decryption operation in the view of the subscriber Xi who is in possession
of the key Db

common(·) denoted by → and the first line shows the message
sent. The number of positive bits is uniformly distributed between 1 and qj
(inclusive) due to random permutation Φ of the KPIs (subscribers), i.e. an
input with a random rank is assigned to the participant Xi. Furthermore
the order of the comparison bits is randomly chosen, such that as a result
each bit cΦ(i)Φ′(l)

is uniformly randomly chosen.

Values hidden by adding a random number (modulo a constant) are
secret shares and therefore identically distributed to and computationally
indistinguishable from uniform random numbers (steps 3, 5 to 7 and 15 to
18). The compressed overview for example step 3 is given in the following:

1. (3) SP −→ Xi Ecommon(sum+ r1) = Ecommon(
∑qj

i=1 xi) ·Ecommon(r1)

2. (3) Ecommon(sum+ r1)→ sum+ r1

3. (3) a uniformly chosen random value r′ (0 ≤ r′ < dom(Dcommon(·)))

The assumption for indistinguishability is given in Section “Secret Shar-
ing” and the decryption operation in the view (→) is equal to the other
steps, e.g. step 4.

Finally the validation hashes in steps 19, and 32 to 35 appear as ran-
dom numbers if they do not match the correct validation hash, since the
subscriber cannot compute a pre-image and are therefore identically dis-
tributed to (and computationally indistinguishable from) a cryptographic
hash of a random number. If they match the correct validation hash, the
verification bit is set to true in the protocol and in the simulator they are
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set to the correct validation hash keeping the identical distribution. The
following gives a compressed overview of the three aspects message, view
and simulator output for the example step 19.

1. (19) SP −→ Xi H(MAC(sum + r1|1, scommon), . . . ,MAC(sum + r1|
qj , scommon))

2. (19) H(MAC(sum+ r1|1, scommon), . . . ,MAC(sum+ r1|qj , scommon))

3. (19) if bi,j,k is true, then the validation hash H(MAC(r′|1, scommon),
. . . ,MAC(r′|qj, scommon)), else a random number r (0 ≤ r < dom(
H(·)))

In the case of the service provider’s simulator the output values are
identically distributed and computationally indistinguishable, since they are
copied from the output of the protocol in the ideal model (steps 8, 20,
22, 24 and 26). They are blinded by internal coin tosses by the service
provider which are obviously known to him and chosen by the simulator. The
compressed overview for step 8 is therefore very similar to the compressed
view of step 10 of the subscribers’ view from above.

1. (8) Xi −→ SP sum+ r1

2. (8) sum+ r1

3. (8) sum+ r1 (where r1 is an internal coin toss)

The encrypted values are computationally indistinguishable from ran-
dom numbers in steps 1, 2, and 11 to 14 which is a result of the proof of
semantic security of the homomorphic encryption schemes.

1. (1) Xi −→ SP Ecommon(xi)

2. (1) Ecommon(xi)

3. (1) a uniformly chosen random value r (0 ≤ r < dom(Ecommon(·)))

The security assumption for indistinguishability of the second and third
line has been stated in Section “Semantic Security”. The service provider
cannot decrypt received values in his view, since he is not in possession of
the common keys Dcommon(·) or Db

common(·).

The following shows a compressed overview for step 9 of the benchmark-
ing protocol.

1. (9) Xi −→ SP MAC(sum+ r1|i, scommon)

2. (9) MAC(sum+ r1|i, scommon)
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3. (9) a uniformly chosen random value r (0 ≤ r < dom(MAC(·)))

Since the service provider does not know the secret key for the MAC
function, MACs are computationally indistinguishable from random num-
bers or otherwise the service provider would have a non-negligible advantage
in MAC forgery. This argument applies to steps 9, 21, 23, 25, and 27.

This completes the proof of semi-honest security. Simulators for both
views – subscriber and service provider – have been given and it has been
shown that these simulators produce computationally indistinguishable out-
put. Therefore it has been shown that the protocols (1-)privately compute
the benchmarking function in the semi-honest security model according to
definition 4.3.

4.3.3 Constrained Malicious Model

The constrained malicious model is stricter than the semi-honest model, but
less strict than the malicious model as defined by Goldreich [34]. It allows a
party to behave in arbitrary ways just as the malicious model does, but only
under the constraint that the correct result is delivered to the other party.
Its motivation is economical, since the service provider is assumed to sell
his service, he is assumed to deliver the correct result to build a sustainable
business. The service provider (and the subscribers) therefore have a vested
interest in obtaining (and delivering) the correct result. The motivation to
participate in the protocol is required even in the malicious model, since a
party can abort the protocol at its discretion or submit incorrect input in
order to mount a denial-of-service attack. In particular, a malicious sub-
scriber can submit the maximum possible KPI value and thereby falsify the
result of the maximum computation. Differently from an auction, where the
maximum value or at least its submitter (Vickrey auctions [78]) are revealed,
this is not case for benchmarking. Such attacks are not excluded by security
in the malicious model, but the effect of correctly and willingly participat-
ing in the protocol is not taken into account in the malicious model. In the
constrained malicious model this effect materializes as the delivery of the
correct result.

The malicious model construction [34] reduces secrecy to secrecy in the
semi-honest model, which in consequence also prevents someone from gain-
ing additional knowledge by deviating from the protocol. This is also pre-
vented in the constrained malicious model where one can deviate arbitrarily,
but is not allowed to gain additional knowledge.

Security in the constrained malicious model is also defined by comparing
the real protocol execution to an ideal model. The difference is that the
attackers allowed in the constrained malicious model are more powerful than
those allowed in the semi-honest model. The ideal model again consists of a
third party that receives the inputs from all parties and delivers the output
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to all parties. Since, we assume that the correct result is delivered to all
subscribers, any attacker (as a service provider) in the constrained malicious
model is admissible. Early aborting of the protocol by a service provider
is ruled out. In case of the benchmarking protocol the service provider
provides no input, but even if he would (e.g. in case of other centralized
protocols), he could not substitute it, since it is assumed that the correct
result is delivered including his potential input. Definition 4.8 defines an
attacker in the ideal (constrained malicious) model. It is identical to the
definition of an ideal attacker in the semi-honest model [34].

Definition 4.8 Let

f(x1, . . . , xn) : ({0, 1}∗)n 7→ ({0, 1}∗)

be the benchmarking functionality and let

I = {i1, . . . , it} ⊂ {1, . . . , n},¬I = {1, . . . , n} \ I

Let
~xI = (x1, . . . , xn)I = (xi1 , . . . , xit)

denote the subsequence of ~x under I. A pair (I, C), where C is a polynomial-
size circuit family, represents an adversary A in the ideal (constrained ma-
licious) model. The joint execution of the benchmarking protocols under C
(and the other protocol participants ¬C adhering to the protocol specifica-
tion), denoted as IDEALC(~xI),¬C(~x¬I ), is defined as:

IDEALC(~xI ),¬C(~x¬I)
def
= (C(~xI , f(~x)), f(~x))

The means to protect against a constrained malicious service provider is
the verification bit bi,j,k. This section will clarify its purpose and prove that
it protects against a constrained malicious service provider.

Before describing the countermeasure this paragraph describes a feasible
attack by a malicious service provider that gains additional knowledge by
deviating from the protocol without being detected. This attacker is allowed
in the constrained malicious model, but not the semi-honest model. Imagine
the following service provider: In the second round he submits to each sub-
scriber Xi an encryption of his KPI value xi,k (Ecommon(xi,k)) instead of the
encryption of the sum Ecommon(sum+ r1) to all subscribers. According to
the protocol description subscriber Xi will respond with xi,k. If the service
provider gathers all KPIs ~xk he can compute the benchmarking function
locally and deliver the correct results to all subscribers in the next steps
when sending the clear plain texts sum, sum′, median, max and bic. Nev-
ertheless, he has learnt all KPI values and thus gained additional knowledge
he should not be able to. Preventing this form of attack is the goal of the
constrained malicious model.

Formally, an attacker in the constrained malicious model is defined as:
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Definition 4.9 Let

f(x1, . . . , xn) : ({0, 1}∗)n 7→ ({0, 1}∗)

be the benchmarking functionality and let

I = {i1, . . . , it} ⊂ {1, . . . , n},¬I = {1, . . . , n} \ I

Let

~xI = (x1, . . . , xn)I = (xi1 , . . . , xit)

denote the subsequence of ~x under I. A pair (I, C), where C is a polynomial-
size circuit family, represents an adversary A in the real model. The joint
execution of our protocols under C and ¬C where ¬C coincides with the
strategies defined by our protocols, denoted as REALC(~xI),¬C(~x¬I), is defined
as the output resulting from the interaction between C(~xI) and ¬C(~x¬I).
Let REALC be the output of I. An adversary A is admissible (for the
constrained malicious model) if each party ¬I outputs f(~x).

REALC(~xI),¬C(~x¬I) = (REALC , f(~x))

Security in the constrained malicious model means that an attacker can
only do what he can do in the ideal model. If that is the case, then there is
a (polynomial-time) transformation of an attacker in the real (constrained
malicious) model into an attacker in the ideal model. The formal definition
of security in the constrained malicious model is

Definition 4.10 Let

f(x1, . . . , xn) : ({0, 1}∗)n 7→ ({0, 1}∗)

be the benchmarking functionality and let

I = {i1, . . . , it} ⊂ {1, . . . , n},¬I = {1, . . . , n} \ I

Let

~xI = (x1, . . . , xn)I = (xi1 , . . . , xit)

denote the subsequence of ~x under I. A protocol is said to t-securely and
privately compute f in the constrained malicious model, if there exists a
polynomial-time computable transformation of admissible attackers A for the
real model into admissible attackers B for the ideal model, such that for every
I of size t the output in the ideal model IDEALB(~xI ),¬B(~x¬I ) is computation-
ally indistinguishable from the output in the real model REALA(~xI),¬A(~x¬I):

IDEALB(~xI ),¬B(~x¬I )
c
= REALA(~xI ),¬A(~x¬I)
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Proof Outline

This section states the theorem to be proven for security in the constrained
malicious model and relates it to definition 4.10. Then it outlines the con-
struction of the proof and its parts before they are stated in the next sections.

The claim of the proof is the following theorem

Theorem 4.11 The benchmarking protocol 1-securely and privately com-
putes the functions average, maximum, variance, median and best-in-class in
the presence of a constrained malicious service provider as in definition 4.10.

Recall that | denotes string concatenation. The validation bit

bi,j,k : msgSP
?
= H(MAC(result|1, scommon)| . . . |MAC(result|qj, scommon))

provides this guarantee, if it is true, i.e. the service provider has sent msgSP

equal to the (computed) hash for each result value result ∈ {sum, sum′,
median,max, bic}. A true validation bit bi,j,k guarantees that the service
provider has submitted the same message to all subscribers and that is
sufficient for the proof of theorem 4.11.

For the proof the benchmarking protocol is divided into three sections or
sub-protocols. First, all steps of the benchmarking protocol are performed
except the cipher texts sent to the subscribers for decryption. The main
insight is that all of these messages received are computationally indistin-
guishable from independently chosen random numbers. This implies that the
view of an attacker can be simulated no matter how he behaves (if abortion
is excluded). Second, the cipher texts are decrypted by the subscribers and
returned to the service provider. The ideal functionality for this decryption
sub-protocol corresponds to a decryption oracle, that decrypts exactly one
value each for the service provider. It is proven that the above validation bit
bi,j,k ensures that the same value is decrypted (or it will be false) by all sub-
scribers, such that the real protocol corresponds to the ideal functionality.
Third, the correct result is delivered to the subscribers. The proof argues
that if the correct benchmarking results are delivered, then they must have
been decrypted in the decryption sub-protocols, since the other messages
can be simulated by random numbers.

The validation bit approach still allows the service provider to gain ad-
ditional knowledge by deviating from the protocol, but not without being
detected. Once more this corresponds to the economic motivation, where the
service provider wants to deliver the benchmarking service and only cheats
to gain additional knowledge. If he cheats, the validation bit bi,j,k will show
this and details can be investigated from the logs of the execution.

Message Computation

Lemma 4.12 Let V IEW ⋆
SP (x1, . . . , xn) be the view of the service provider

SP in the benchmarking protocol without decryption (protocol steps 1, 2, 9,
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11-14, 21, 23, 25 and 27 in Figure 4.4). No polynomial-time attacker A
(without abortion) can implement party SP in benchmarking protocol with-
out decryption, such that the resulting view V IEW ⋆

A(x1, . . . , xn) is compu-
tationally distinguishable from V IEW ⋆

SP (x1, . . . , xn).

Corollary 4.13 In the benchmarking protocol without decryption there ex-
ists a polynomial-time computable transformation of admissible attackers A
for the real model into admissible attackers B for the ideal model.

Lemma 4.12 follows from the construction of the view of party SP (see
Section “Service Provider’s Simulator”). The benchmarking protocol with-
out decryption encompasses all steps of the benchmarking protocol in Fig-
ure 4.4 except decryption, as detailed in the next section. Excluding the
plain texts each message can be simulated using an independently chosen
random number. Therefore the view V IEW ⋆

A(x1, . . . , xn) is independent of
A and computationally indistinguishable from V IEW ⋆

SP (x1, . . . , xn).
A (polynomial-time) transformation from an attacker A in the real model

as the service provider to an attacker B in the ideal model emulates the
execution of A on the output available in the ideal model (which is compu-
tationally indistinguishable from the messages in the real model) and uses
that as the output of the attacker B. Let SV IEWSP

be simulator for the
view V IEW SP of SP in the ideal model. The transformed attacker B in
the ideal model executes the protocol in the ideal model and runs the circuit
A on the output of the simulator SV IEWSP

and outputs that as the output of
the transformation. This output must be computationally indistinguishable,
since the circuit A is a deterministic mapping of probability distributions
and the inputs are computationally indistinguishable. If the outputs were
computationally distinguishable, A would be the distinguisher for the in-
puts which contradicts the computationally indistinguishability assumption
of the inputs.

Furthermore since the attacker in the ideal model has no input (as the
service provider SP ) it holds that the output REALA(~x) of the attacker A
alone can be simulated by an attacker B without input in the ideal model.

REALA(~x)
c
= IDEALB()

Decryption

Lemma 4.14 The decryption sub-protocol implements the decryption oracle
functionality. For every attacker A that can implement SP in the decryp-
tion sub-protocol (without abortion) there is an attacker B in the ideal model,
such that the output IDEALB,¬B in the ideal model is computationally in-
distinguishable from the output REALA,¬A in the real model.

The decryption sub-protocol is used to decrypt the result held as cipher
text by the service provider. It is invoked five times by the main protocol;
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once for each result value. In the real protocol the service provider SP sends
the encrypted and blinded result Ecommon(result+ r) to each subscriber Xi

who replies with the decrypted result result+ r and an authentication code
MAC(result+ r|i, scommon). Finally, the service provider has to produce

msgSP = H(MAC(result+r|1, scommon)| . . . |MAC(result+r|qj, scommon))

Each subscriber Xi compares msgSP to his computed hash and outputs the
result as the verification bit bi,j,k. In the ideal model the service provider
has access to an oracle that outputs one decryption per invocation. Note
that in the ideal protocol it does not matter whether the oracle learns the
plain text or not, i.e. whether the result is sent blinded or in clear, while in
the real protocol it ensures that the service provider learns the result first.

Therefore the proof needs to show that in the real protocol the service
provider can obtain at most one decryption, if the validation bit bi,j,k is
true. First note that the service provider can only produce the correct
message msgSP , if he has all authentication codes from all subscribers. If he
can produce the correct authentication code with another pre-image, he has
produced a hash collision which contradicts the security of the cryptographic
hash function.

Secondly note that the service provider must have submitted the same
encrypted result to all subscribers, if he obtained all authentication codes.
If he has an authentication code, but submitted a different encrypted result,
he has successfully forged an authentication code, which contradicts the
security of the message authentication code.

In conclusion, the service provider has submitted the same encrypted
and blinded result to all subscribers, if the validation bit bi,j,k is true. If
he can submit only one encrypted result, he can obtain only one decryption
per invocation of the real protocol. Therefore the real protocol produces the
same output as the ideal protocol (if the validation bit bi,j,k is true).

The transformation of an attacker A as a service provider in the real
protocol to an attacker B in the ideal model constructs an attacker A′ in
the ideal model based on the first messages m1 sent by A to X1. B takes
the message m1 of A′ and submits it to the oracle. The output of the
transformation to B is the output of the oracle.

Combination of the Sub-Protocols

Lemma 4.15 If the number of decryption sub-protocols equals the num-
ber of benchmarking results and attacker A is admissible in the constrained
malicious model, i.e. REALA(),¬A(~x¬SP ) = (REALA, f(~x)), then for a com-
position of benchmarking protocol without decryption and decryption sub-
protocols there is an attacker B in the ideal model for any attacker A in the
real model that produces computationally distinguishable output IDEALB,¬B

from REALA,¬A.
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Since the constrained malicious model postulates that the correct bench-
marking results are delivered to the subscribers, the proof of Lemma 4.15 can
focus on the indistinguishability of the outputs of the attackers. Let P be the
benchmarking protocol, P ⋆ the benchmarking protocol without decryption
and Dn n invocations of the decryption sub-protocol. Let REALProtocol

A (~x)
be the output of an attacker A in the real model posing as service provider
SP in protocol Protocol ∈ {P,P ⋆,D5}.

If the attacker is admissible in the constrained malicious model, then
there must exist a circuit C that extracts the correct benchmarking results
from its output and delivers them to the subscribers.

C(REALP
A(~x)) = f(~x)

The benchmarking protocol is composed of the benchmarking protocol with-
out decryption and five decryption sub-protocols. Let A′ be the part of the
attacker in the benchmarking protocol without decryption and A′′ be the at-
tacker in the five decryption sub-protocols. A′ is also used for the notation of
a polynomial-time circuit that extracts the five cipher texts for the decryp-
tion sub-protocols from the output of the attacker A′ in the benchmarking
protocol without decryption.

C(REALP ⋆

A′ (~x), REAL
D5
A′′(A

′(REALP ⋆

A′ (~x)))) = f(~x)

From Lemma 4.12 it follows that the output of the attacker in the bench-
marking protocol without decryption can be simulated.

C(IDEALP ⋆

B (), REALD5
A′′(A

′(REALP ⋆

A′ (~x)))) = f(~x)

Since the ideal attacker in the benchmarking protocol without decryption
does not need any input, there exists a circuit C ′ emulating its output.

C ′(REALD5
A′′(A

′(REALP ⋆

A′ (~x)))) = f(~x)

From Lemma 4.14 it follows that the real attacker in the decryption sub-
protocols can be simulated.

C ′(IDEALD5
B′ (A

′(REALP ⋆

A′ (~x)))) = f(~x)

Since the domain of the benchmarking function (dom(f)) equals the domain
of the plain texts (dom(Dcommon(·))) and the number of decryption sub-
protocols equals the number of benchmarking results, the circuit C ′ must
be invertible.

IDEALD5
B′ (A

′(REALP ⋆

A′ (~x))) = C ′−1(f(~x))

The ideal attacker in the benchmarking protocol has no input and only the
output f(~x). Therefore there exists an attacker B′′, such that its output (at
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the attackers’ site) equals the output of the circuit C ′−1 on the benchmarking
results.

IDEALD5
B′ (A

′(REALP ⋆

A′ (~x))) = IDEALP
B′′(~x)

From Lemma 4.14 it follows that there is an attacker in the real model whose
output is computationally indistinguishable from the attacker in the ideal
model.

REALD5
A′′′(A

′(REALP ⋆

A′ (~x)))
c
= IDEALP

B′′(~x)

From the composition theorem it follows that

REALP ⋆

A′ (~x), REALD5
A′′′(A

′(REALP ⋆

A′ (~x)))
c
= IDEALP ⋆

B′′′(), IDEALP
B′′(~x)

Since the output of the ideal attacker in the benchmarking protocol without
decryption can be simulated, it follows that there exist an attacker B′′′′,
such that

REALP
A′′′′(~x)

c
= IDEALP

B′′′′(~x)

This completes the proof of Lemma 4.15, i.e. for any polynomial time circuit
A′′′′ representing an attacker in the real model, there is an attacker B′′′′ in
the ideal model, such that its output is computationally indistinguishable.
Theorem 4.11 is a corollary of Lemma 4.15, since the constrained malicious
model requires an admissible attacker and the number of benchmarking
results equals the number of decryption sub-protocols.

4.4 Summary

This section described the benchmarking protocol in detail. The required
centralized communication pattern is augmented by the key distribution
where all subscribers have access to three common keys for decryption and
signing (message authentication codes). The key distribution is performed
via a trusted dealer in the form of an extended certificate authority.

The benchmarking protocol is described formally in Figure 4.4 and infor-
mally in the text. The protocol requires linear communication and computa-
tion cost per participant O(qj), i.e. the overall cost is O(q2j ). It furthermore
requires only a constant number of rounds (4) and computes the statistics
average, variance, maximum, median and best-in-class. The chapter contin-
ues with a proof of security following the security definitions from [34].

It begins with a proof of security in the semi-honest model. In the semi-
honest model, the participants are expected to follow the protocol, but keep
a record of all messages and try to infer as much information as possible from
them. Protocols secure in the semi-honest model protect the confidentiality
of the messages.

The section continues to proof the security in the constrained malicious
model. In the constrained malicious model, the participants may behave
arbitrarily, but under the constraint that they deliver the correct result
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to the other parties, i.e. the other parties learn the correct result. The
motivation is that if the service provider behaves economically rational, i.e.
he delivers the correct result for a long lasting business relationship, he
cannot obtain additional information even if he deviates maliciously from
the protocol. The proof that the protocol is secure against a constrained
malicious service provider is given in Section 4.3.3.

Security against a constrained malicious party is a stronger notion of se-
curity than semi-honest security. It is shown that the benchmarking protocol
secure in the semi-honest setting is attackable in the constrained malicious
model. The protocols have been augmented with the message authentication
codes and their aggregation in order to thwart attacks in the constrained
malicious model.



80 Protocols



Comparison 81

5 Comparison

Performance of secure computation remains critical. This dissertation shows
how to build a practically feasible, privacy-preserving benchmarking plat-
form. Practical performance is therefore a key component.

This chapter presents a very efficient, yet randomization-based method
for privacy-preserving comparison. Our experiments show that its perfor-
mance is significantly better than the most efficient cryptographic method.
Comparison is important for privacy-preserving benchmarking, since it dom-
inates its O(|q2j |) communication and computation complexity.

In the next section the comparison method is introduced in the two-
party setting solving Yao’s millionaire’s problem. This includes a perfor-
mance evaluation in comparison to the method used for comparison in the
benchmarking protocol in Chapter 4. The algorithms for choosing the ran-
domization parameters follow next. Then the modifications to the bench-
marking protocol are presented. The security of the randomization approach
is assessed in a number of experiments and it is shown that the leakage is
acceptable in practice.

5.1 Yao’s Millionaires’ Protocol

A −→ B EA(a)
B r, r′(0 ≤ r′ < r), r′′ ∈ {0, 1}

A ←− B EA(c) = ((EA(a) · EA(−b))r ·EA(r′))−1r′′

=

EA(−1r′′ · (r · (a− b) + r′))
A B (c ≥ 0)⊕ r′′ ⇐⇒ a ≥ b

Figure 5.1: Yao’s millionaires’ protocol

Yao’s millionaires’ problem has been introduced in [80]. Imagine two
millionaires wanting to compare their riches, but not wanting to exchange
the exact amount. They can use a protocol for privately computing the
“greater-than” (or a similar) function.

Alice has an integer value a and Bob has an integer value b and they
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want to compute a ≥ b. EA(·) denotes the encryption in a homomorphic,
public key encryption system, where the private key is known only to Alice.
Bob chooses three random values r, r′ (0 ≤ r′ < r) and r′′ (r′′ ∈ {0, 1}).
These three values multiplicatively blind Alice from obtaining the difference
or any information about a. Bob computes

EA(c) = ((EA(a) · EA(−b))r ·EA(r′))−1r′′

= EA(−1r′′ · (r · (a− b) + r′))

It holds that

a < b⇐⇒ (c < 0 ∧ r′′ = 0) ∨ (c ≥ 0 ∧ r′′ = 1)

Using the exclusive-or operator (⊕) one can also write

a < b⇐⇒ c < 0⊕ r′′

Since Bob sends EA(c) to Alice, she obtains her share of the result by de-
cryption. In order to have Alice learn the result first, Bob can always choose
r′′ = 0.

The protocol presented in Figure 5.1 is faster than the fastest known
privacy-preserving protocol from [32]. The implementation results presented
in [49] shown in Figure 5.2 compare the performance of the randomized pro-
tocol to different parameters of [32]. The protocol from [32] has a slight
error probability of obtaining the incorrect result resulting from the use of
the technique in [71]. The parameter ǫ that control the error probability
of 2−ǫ is set to 24, 40 and 56. The results show that even for low error
probabilities and input bit length, the randomized Yao’s millionaires’ proto-
col outperforms the protocol from [32]. Already for 32 bit the randomized
protocol shown above is always faster. For the proposed error parameter of
ǫ = 56 [32], the randomized protocol is 1.46 times faster for 16 bits and 2.68
times faster for 32 bits.

Note that this comparison was performed on a single computer, such that
communication cost is neglected. The randomized protocol from Figure 5.1
transmits only two cipher texts while the protocol from [32] transmits (ǫ+1)l
cipher texts where l is the bit length. Therefore a further advantage of the
randomized protocol can be expected when considering communication cost.

Contrary to the protocol of [32] the randomized protocol shown in Fig-
ure 5.1 has another feature: it allows split Yao’s millionaires’ computation.
In split Yao’s millionaires’ protocol the result is not obtained by a single
party, but shared between the two parties. In this case, Alice determines
a bit by comparing the received value c to 0 and Bob has r′′. The result
is the exclusive-or of the two bits, i.e. a perfect secret sharing. Split Yao’s
millionaires’ protocols have applications as building blocks in many other
protocols, e.g. [2, 33, 49].
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Figure 5.2: Yao’s protocol performance

5.2 Choosing The Parameters

In order to hide the difference a − b Bob chooses two random numbers r
and r′. This section describes an algorithm to choose these numbers, such
that they hide the difference effectively. First, one can abstract from the
difference a− b to a single random variable x. We assume that x 6= 0 which
is true in the benchmarking protocol due to the KPIs made unique by the
service provider.

Let |x| denote the bit length of variable x. Note that, the bit length of
the product rx is bounded by the bit lengths of the factors:

|r|+ |x| − 1 ≤ |rx| ≤ |r|+ |x|

Therefore choosing r uniformly in a range [1, 2k − 1] is counter-productive,
since its expected bit length has very low variance (bit length k occurs with
probability 1

2). As a consequence the bit length of x is leaked with very high
probability. This corresponds to a leakage of log |x| bits.

The idea is to choose the bit length of r independently first and then
choose the remaining bits. This reduces the entropy of r, such that one
needs to choose larger r, but it hides the bit length of x. If one chooses |r|
uniformly in [1, k], then the bit length of x is almost optimally hidden, but
very small values of r are very likely compared to large values of r. Very
small or very large values of r reveal significantly more information about x
than medium values, such that there is an increased probability of relatively
large leakage.

In order to reduce the probability of small values of r occurring one
can choose the bit length of r using a binomial distribution which can be
approximated by a normal distribution with mean µ = k

2 and standard

variance σ = k
c

(where c is a constant). The probability of small values
occurring can be significantly reduced choosing the appropriate parameter
c. Of course, choosing c too small will increase the leakage due to the bit
length again. These parameters are investigated in Section 5.4.
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The remaining bits of r can be chosen uniformly. The second randomiza-
tion parameter r′ needs to be chosen, such that r′ < r. In the experiments
r′ is chosen uniformly in [0, 2|r|−1 − 1], i.e. such that it has at least one bit
less than r, but this is only a necessary simplification in order to make the
experiments computationally tractable. Choosing r′ uniformly in [0, r − 1]
will only increase entropy and reduce leakage.

5.3 Modified Benchmarking Protocol

In order to take advantage of the improved randomized comparison method
the benchmarking protocol needs to be modified. In particular the protocol
step of rank computation needs to be adapted. There is another, in practice
quite important, advantage that the second homomorphic encryption system
Eb(·) is no longer necessary. Instead the subscribers can send one cipher text
each of their KPIs which can be used in the comparison and summation
protocols. The next section presents the updated rank computation.

5.3.1 Rank Computation

Xi −→ SP Ecommon(xi)
SP Ecommon( ~cΦ(i)) = (. . . ,

Ecommon(cΦ(i)l
) = Ecommon(r1l

· (xΦ(i) − xΦ(l)) + r2l
), . . .)

Figure 5.3: Rank computation

The rank ranki of a KPI xi is its position in the descending-sorted list of
all KPIs (from all subscribers). Recall that qj is the number of subscribers
in the j-th peer group, i.e. the highest KPI has rank 1 and the lowest KPI
has rank qj. The rank of each element is computed as follows from the
difference of xi and each other KPI xi′ (i′ = 1, . . . , qj): The service provider
computes a matrix C with

Ecommon(ci,i′) = (Ecommon(xi) ·Ecommon(xi′)
−1)

r1
i,i′ · Ecommon(r2i,i′

)

= Ecommon(r1i,i′
· (xi − xi′) + r2i,i′

)

where 1 ≤ r1i,i′
and 0 ≤ r2i,i′

< r1i,i′
are random numbers (r1i,i′

, r2i,i′
∈ N).

Furthermore he chooses two random permutation Φ and Φ′ of the sub-
scribers [1, qj ]. Let Φ(i) and Φ′(i) denote the assigned element of i in the
permutation Φ and Φ′, respectively.

The service provider sends a vector ~cΦ(i) = (cΦ(i),Φ′(1), . . . , cΦ(i),Φ′(qj))
to the subscriber Xi. Let pos( ~cΦ(i)) denote the number of non-negative
elements in ~cΦ(i). Since ci,i′ ≥ 0⇐⇒ xi ≥ xi′ , it holds that

rankΦ(i) = qj − pos( ~cΦ(i)) + 1
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Round 1:

1 Xi −→ SP Ecommon(xi)

Round 2:
2 SP −→ Xi Ecommon(sum + r1) = Ecommon(

∑qj

i=1 xi) · Ecommon(r1)
3 Ecommon( ~cΦ(i)) = (. . . ,

Ecommon(cΦ(i)Φ′(l)
) = Ecommon(r2l

· (xΦ(i) − xΦ′(l)) + r3l
), . . .)

4 SP
OT−→ Xi Emedian

i =

{

Ecommon(xΦ(i) + r4i
) if pos(~cΦ(i)) = ⌈

qj

2
⌉

Ecommon(r4i
) otherwise

5 Ebic
i =

{

Ecommon(xΦ(i) + r5i
) if pos(~cΦ(i)) ≥ ⌈ 3

4
qj⌉

Ecommon(r5i
) otherwise

6 Emax
i =

{

Ecommon(xΦ(i) + r6i
) if pos(~cΦ(i)) = qj

Ecommon(r6i
) otherwise

7 Xi −→ SP sum + r1

8 MAC(sum + r1|i, scommon)
9 SP −→ Xi sum

10 Emedian
i · Ecommon(0)

11 Ebic
i · Ecommon(0)

12 Emax
i · Ecommon(0)

13 Ecommon((xi −
sum
qj

)2)

Round 3:
14 SP −→ Xi Ecommon(sum′ + r7) = Ecommon(

∑qj

i=1(xi − avg)2) · Ecommon(r7)

15 Ecommon(median + r8) = (
∏qj

i=1 Emedian
i · Ecommon(−r4i

))·
Ecommon(r8)

16 Ecommon(bic + r9) = (
∏qj

i=1 Ebic
i · Ecommon(−r5i

)) · Ecommon(r9)
17 Ecommon(max + r10) = (

∏qj

i=1 Emax
i · Ecommon(−r6i

)) · Ecommon(r10)
18 H(MAC(sum + r1|1, scommon), . . . , MAC(sum + r1|qj , scommon))
19 Xi −→ SP sum′ + r7

20 MAC(sum′ + r7|i, scommon)
21 median + r8

22 MAC(median + r8|i, scommon)
23 bic + r9

24 MAC(bic + r9|i, scommon)
25 max + r10

26 MAC(max + r10|i, scommon)
27 SP −→ Xi sum′

28 median

29 bic

30 max

Round 4:

31 SP −→ Xi H(MAC(sum′ + r7|1, scommon), . . . , MAC(sum′ + r7|qj , scommon))
32 H(MAC(median + r8|1, scommon), . . . , MAC(median + r8|qj , scommon))
33 H(MAC(bic + r9|1, scommon), . . . , MAC(bic + r9|qj , scommon))
34 H(MAC(max + r10|1, scommon), . . . , MAC(max + r10|qj , scommon))

Figure 5.4: Modified Benchmarking protocol
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Each subscriber Xi now holds the rank of a KPI from a randomly chosen
subscriber XΦ(i).

The rank computation technique is used once within the modified bench-
marking protocol (line 3). It builds the basis for median, maximum and
best-in-class computation.

Median and maximum are elements with a specific rank of ⌈
qj

2 ⌉ and 1,
respectively. For best-in-class the elements with ranks greater or equal to
⌈

qj

4 ⌉ are included in the computation.

In order to make the KPIs unique and break eventual ties, such that all
ranks between 1 and qj occur once, the service provider SP can still modify
the cipher texts. This is only necessary for the comparison and does not
affect other arithmetic computations. The service provider SP is given an
encrypted KPI Ecommon(xi) and computes

Ecommon(yi) = Ecommon(xi)
qj · Ecommon(i) = Ecommon(xi · qj + i)

The order of KPIs is preserved, i.e. xi < xi′ =⇒ yi < yi′ and xi > xi′ =⇒
yi > yi′ . The values of yi can be computed blindly by the service provider
and used in the comparison just as the KPIs xi.

5.3.2 Combined Protocol

The composed protocol is formally depicted in Figure 5.4.

5.4 Assessment

In this section the leakage of the randomized protocol is determined. Let
R, R′ and X denote the random variables with instances r, r′ and x. The
hiding is achieved as Y = RX +R′.

In the experiments the bit length of R is 512 bits and the bit length of
X is 16 bits. The limitation to 16 is due to the computational feasibility
and can be extended in practice. Nevertheless even 16 bits offer ample
width for the comparison of real-world sized KPIs. Many KPIs fit into 16
bit or can be rounded to 16 significant bits and in the worst case one can
compare the logarithm of the KPIs. Very precise results are unnecessary for
benchmarking, since there always is a certain error in the measurements of
the KPIs. Given these bit lengths one randomized hiding can be encoded in
one cipher text with 768 bits plain text space.

The measure for leakage is the lost entropy. The entropy H(X) of a (dis-
crete) random variable X is an information theoretical concept measuring
its uncertainty. It is defined as

H(X) = −
∑

i

p(X = xi) log p(X = xi)
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Assuming a uniform distribution of X the entropy of the plain text is
H(X) = 16. The leakage of the randomized hiding is H(X) − H(X|Y )
where H(X|Y ) is the conditional entropy of the plain text X given a ran-
domized cipher text Y .

The lost entropy is a probabilistic quantity measuring the expected loss
over a number of samples. It does not bound the maximum loss for a
single sample, but even in cryptographic approaches the maximum loss is a
full disclosure. In order to estimate the skew of the loss distribution when
possible the probability of occurrence of a loss is given.

The conditional entropy is defined as

H(X|Y ) = −
∑

j

p(Y = yj)
∑

i

p(X = xi|Y = yj) log p(X = xi|Y = yj)

The critical factor of the conditional entropy is p(X = x|Y = y). Let
α ∼ β denote that α and β are proportional to each other, i.e. c = α

β
.

Assuming a fixed y and uniform X it holds that

p(X = x|Y = y) =
p(Y = y|X = x)p(X = x)

p(Y = y)

∼ p(Y = y|X = x)

The conditional probability p(Y = y|X = x) can be computed as

p(Y = y|X = x) =
∑

y = rx+ r′

0 ≤ r′ ≤ 2|r|−1 − 1
1 ≤ r ≤ 2k − 1

p(R = r)p(R′ = r′|R = r)

Recall that r is chosen by first choosing its bit length from a normal distri-
bution and then the remaining bits uniformly. Given a cipher text y and
a plain text x one can enumerate all possible r and r′ in order to compute
p(Y = y|X = x). With the bit lengths used in the experiments this enu-
meration quickly becomes intractable. The solution is to enumerate all bit
lengths of r. The bit length is chosen from a normal distribution and there-
fore one can easily compute the probability that a certain bit length has
been chosen. Let N(k, µ, σ) denote the probability that k is chosen from a
normal distribution with mean µ and standard deviation σ.

First, the upper and lower bounds of r and r′ are computed. Let r and
r′ denote the values corresponding to the upper bound of r and r and r′ the
values corresponding to the lower bound of r. They are computed as

r = ⌊
y

x
⌋

r′ = y − rx

r = ⌊
y

x+ 1
⌋+ 1

r′ = y − rx



88 Comparison

An adjustment of r and r′ is necessary if |r| = |r′|, since it violates the
domain [0, 2|r|−1 − 1] of r′. Note that this only reduces the conditional
entropy and increases the leakage as already noted above. Recall that this
adjustment is only necessary in order to make the computation tractable.

Then the bit lengths k of numbers between r and r are enumerated.
Let rk = max(2k−1, r) be the minimum element of bit length k. Let rk =
min(2k−1, r) denote the maximum element of bit length k. The conditional
probability is then computed as the sum for all bit lengths k for the product
of the number of elements φk = rk − rk + 1 for bit length k, the probability
χk = N(k, µ, σ) of choosing bit length k, the probability ψk = 1

2k−1 of

choosing an element r given bit length k and the probability ωk = 1
2k−1 of

choosing an element r′ given bit length k:

p(Y = y|X = x) =

|r|
∑

k=|r|

φkχkψkωk

=

|r|
∑

k=|r|

(rk − rk + 1)N(k, µ, σ)
1

2k−1

1

2k−1

In the experiments µ = 256 and σ = 32 were chosen, but the possible
bit lengths were cut off at 1 and 512. The next sections continue to describe
the estimations of the leakage in the benchmarking protocol.

5.4.1 Single Sample

Computing the conditional entropy H(X|Y ) for all possible x and all possi-
ble y is intractable for the used bit lengths. Therefore H(X|Y ) is estimated
using the following experiment:

1. Choose random y as follows:

(a) Choose a random x uniform in [1, 2l] (where l = 16)

(b) Choose a random r by

• choosing a bit length k from a normal distribution with µ =
256 and σ = 32 with cutoffs 1 and 512.

• choosing a random s uniform in [0, 2k−1 − 1]

• computing r = 2k−1 + s

(c) Choose a random r′ uniform in [0, 2k−1 − 1]

(d) Compute y = rx+ r′

2. For all X = x compute p(Y = y|X = x)

3. Compute p(X = x|Y = y) = p(Y =y|X=x)
∑

x p(Y =y|X=x) .
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4. Compute H(X|Y = y)1.

To compute H(X|Y ) this experiment is repeated n = 100000 times and
the average over all H(X|Y = y) is the estimation of H(X|Y ). Since the
samples of Y are chosen according to the distribution when X is uniformly
chosen, this approximation’s expected value equals the unknown p(Y = y).
Another interesting parameter is the probability that a given leakage occurs.
For example, if the average leakage is low and acceptable, but a high or very
high leakage occurs with even a low probability, this might be unacceptable
in practice.

Estimating the probability that a certain leakage occurs is very difficult.
The assumption is that random blinding factors r leak more information the
closer they are to the boundaries of R. The underlying intuition is that very
small r combined with small x leak almost all information about x, since the
bit length will be revealed again and many possible values of x are excluded.
As well, very large r combined with large x leak much information about
x due to the same reasons. The estimation for the occurrence of a leak is
therefore estimated as the probability that r is not smaller than y which
is the maximum r for a given y and x = 1 and that r is not larger than
2k − 1 − y (where k = 512). This probability can be computed similarly
to p(Y = y|X = x) by enumeration of the bit lengths. The probability of
occurrence of a leakage h is then computed as the maximum of all samples
with leakage greater or equal to h.

Figure 5.5: Probability of leakage of a single sample

The results of this experiment are depicted in Figure 5.5. The average
leakage is 0.11 bits from a single sample. This leakage occurs almost always,
as the estimated probability of occurrence is 1, while a leakage of 0.2 bits or

1For Y = y this does not require p(Y = y)
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above occurs with probability 0 in the experiment. This probability distri-
bution of leakages would be acceptable in practice, but in the benchmarking
protocol a subscriber is given qj samples albeit from different plain texts.
The resulting leakage is estimated in the next sections.

5.4.2 Multiple Samples

In the benchmarking protocol from Figure 5.4 a subscriber is sent qj samples
for comparison. A collusion of qj−1 subscribers can submit each KPI xi = 0,
such that the difference with the honest subscriber Xi′ is (almost) xi′ . Then
it is likely that one attacker will receive qj samples of one X = xi′ . This
section estimates the leakage of n samples of Y for one X = x.

Clearly the expected leakage is upper bound by n times the leakage of
one sample, i.e. 0.11n bits. Nevertheless it is not clear whether this leakage
is also the expected average. In order to compute the probability of X = x
given multiple samples y1, . . . , yn the formula can be extended as follows

p(X = x|Y = y1, Y = y2) ∼ p(Y = y1, Y = y2|X = x)

= p(Y = y1|X = x)p(Y = y2|X = x)

The probabilities p(Y = y1|X = x) and p(Y = y2|X = x) can be computed
as before. The computation of the entropy follows.

The experiment can be modified as follows:

1. Choose a random x uniform in [1, 2l] (where l = 16)

2. Choose two random y1 and y2 as follows:

(a) Choose a random r by

• choosing a bit length k from a normal distribution with µ =
256 and σ = 32 with cutoffs 1 and 512.

• choosing a random s uniform in [0, 2k−1 − 1]

• computing r = 2k−1 + s

(b) Choose a random r′ uniform in [0, 2k−1 − 1]

(c) Compute y{1,2} = rx+ r′

3. For all X = x compute p(Y = y1|X = x) and p(Y = y2|X = x)

4. Compute H(X|Y = y1, Y = y2)

The experiment is performed for number of samples n = 1, . . . , 50 and
repeated 2000 times each. The results are depicted in Figure 5.6. The curve
is flattening and appears to be logarithmic, such that with 45 samples (the
maximum in the performance evaluation in Chapter 7) the leakage is only
2.39 bits; less than one half of the upper bound.
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Figure 5.6: Leakage of multiple samples

Although the leakage still is low, the estimation is likely to be an over-
estimation, since it is unlikely that an attacker controls all other subscribers.
This is particularly unlikely, since the subscribers remain anonymous and
the benchmarking platform chooses the peer group participants. In the
next section estimations are given for limited attackers – an assumption
commonly made in secure computation.

5.4.3 Multiple Samples With Noise

As noted above in the benchmarking protocol from Figure 5.4 a subscriber is
sent qj samples for comparison, but in this section the assumption is that the
attacker controls only a fraction of the subscribers. Let there be t samples
of Y out of which s have a common X = x which corresponds to the number
of compromised subscribers. The other t− s samples introduce noise in the
attacker’s correct estimation of x.

The attacker is given t samples and needs to pick s samples in order to
infer x. Due to the random permutation by the service provider the attacker
has no advantage in picking the subset where X = x, besides possible exclu-
sions where no possible x remain. The resulting leakage is then estimated
as the average of the leakages due multiple samples as in Section 5.4.2 of all
possible subsets of size s. The new experiment is as follows

1. Choose a random x uniform in [1, 2l] (where l = 16)

2. Choose s random y{1,...,s} as follows:

(a) Choose a random r by

• choosing a bit length k from a normal distribution with µ =
256 and σ = 32 with cutoffs 1 and 512.
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• choosing a random s uniform in [0, 2k−1 − 1]

• computing r = 2k−1 + s

(b) Choose a random r′ uniform in [0, 2k−1 − 1]

(c) Compute y{1,...,s} = rx+ r′

3. Choose t− s random y{1,...,t−s} as follows:

(a) Choose a random x′ uniform in [1, 2l] (where l = 16)

(b) Choose a random r by

• choosing a bit length k from a normal distribution with µ =
256 and σ = 32 with cutoffs 1 and 512.

• choosing a random s uniform in [0, 2k−1 − 1]

• computing r = 2k−1 + s

(c) Choose a random r′ uniform in [0, 2k−1 − 1]

(d) Compute y{1,...,t−s} = rx′ + r′

4. For all possible subsets Sg = h1, . . . , hs of 1, . . . , t

(a) For all X = x compute p(Y = yh1|X = x), . . . , p(Y = yhs
|X = x)

(b) Compute HSg = H(X|Y = yh1, . . . , Y = yhs
)

5. Let m be the number of subsets with a real-valued entropy HSg . Com-
pute H⋆(X|Y ) = 1

m

∑m
g=1HSg .

Figure 5.7: Leakage of multiple samples with noise

In the experiment s was chosen as a fixed ratio of t (s = t
2 ) and iter-

ated over s = 1, . . . , 8. The experiment was repeated n = 200 times and
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averaged. Unfortunately the subset selection is exponential in the sample
size, such that the number of repetitions needs to be lower than in previous
experiments. The result is depicted in Figure 5.7. The line with noise has
a significantly smaller slope. The ratio of samples with noise and without
noise is also depicted and almost flat at 0.5. One can conclude that the
leakage is restricted by the ratio of compromised subscribers.

Figure 5.8: Leakage of single sample with noise

In most cases the attacker does not even control a fraction of the sub-
scribers, but has compromised only a single subscriber. This corresponds
to the assumption made in the security proof of the benchmarking protocol.
The additional samples then only act as noise in identifying the value of a
single KPI. Given the setup above the leakage with s = 1 and t = 1, . . . , 50
is estimated. The result is depicted in Figure 5.8. The leakage with 6 sub-
scribers (the minimum peer group size) is on average 0.02 bits. This leakage
is very acceptable in practice.

5.5 Summary

In this chapter a randomized protocol to privately compare values was intro-
duced. Its performance is a factor of 2.7 better than the best cryptographic
method. It has been successfully included in the benchmarking protocol
and resulted in another simplification by removing the need for the second
homomorphic encryption scheme. Its leakage has been assessed in a number
of well documented experiments. Given a single sample its leakage is ap-
proximately 0.11 bits and in the application in the benchmarking protocol
its leakage depends on the power of the attacker. If the attacker has com-
promised all subscribers except one the leakage is on average 2.4 bits. If the
attacker has compromised half of the subscribers the leakage is half of the
expected average. In the most realistic case of an attacker acting on its own,
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the expected leakage is limited to 0.02 bits. Note that an attacker does not
know the identity of honest subscribers due to the anonymity property of the
protocols and that peer groups are formed by the benchmarking platform.
In summary, this section presented a practically secure and extraordinarily
efficient protocol for privacy-preserving comparison. It enables the practical
performance of the benchmarking protocol.



Software Architecture 95

6 Software Architecture

In building a privacy-preserving benchmarking platform secure computation
protocols are only one aspect. This chapters covers the architecture of the
entire benchmarking system. It starts by describing an analysis of the use
cases of the benchmarking platform in Section 6.1. Three use cases are
identified and described in detail.

An important prerequisite for the benchmarking protocol is peer group
formation. In peer group formation subscribers are assigned a peer group.
An automatic, i.e. service provider performed, peer group formation is a
novel feature for the benchmarking platform. A special modification to the
k-means data clustering algorithm is presented and evaluated.

The chapter concludes with the comparison of the notification and the
polling model for executing the benchmarking protocol. A simulation of the
more complex polling model is done to evaluate its running time.

6.1 Use Case Analysis

Use case analysis is a commonly used technique to capture features in sys-
tem development. Additionally it can be used as a guide for design and
development. The use cases for the benchmarking platform have been de-
veloped from an end user’s perspective covering all phases of a customer
acquiring a benchmark report. The following three use cases comprise the
benchmarking platform:

• Registration

• Statistics Retrieval

• Statistics Computation

6.1.1 Registration

Figure 6.1 shows the use case diagram for registration. Registration is the
process of a customer becoming a subscriber. As described in Section 4.1.2
registration is a protocol between the customer, the service provider and a
trusted third party. A certificate authority (CA) is envisioned as the trusted



96 Software Architecture

Figure 6.1: Use case: Registration

third party, since a certificate is issued to the subscriber. Registration occurs
only once for each subscriber when she signs up for the benchmarking service.
The pre-conditions for registration is a setup of the system parameters by
the service provider and the CA. The details of the setup are described in
Section 4.1.2. After registration the subscriber is able to engage in the other
two use cases (statistics retrieval and computation).

6.1.2 Statistics Retrieval

Figure 6.2: Use case: Statistics retrieval

Figure 6.2 shows the use case diagram for statistics retrieval. In statistics
retrieval the subscriber obtains the statistics for her peer group. The service
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provider has obtained the results in a benchmarking protocol and can store
these for retrieval by the subscriber.

It is an important design decision to decouple the statistics retrieval from
the statistics computation, i.e. the benchmarking protocol. Compared to
other privacy-preserving systems [2, 30] this separation is a major deviation.
However it provides clear advantages:

• A subscriber can retrieve her relevant statistics right after registration.
There is no delay between service payment and delivery. This increases
the benefit to the subscriber.

• Statistics do not need to be computed any time a demand arises. This
allows subscribers to interact loosely with the service provider. Statis-
tics computation can be done in the background.

In order to retrieve the statistics the subscriber needs to be assigned to a
peer group. The process of identifying a peer group is not listed as a separate
use case, but is a prerequisite for statistics retrieval (and computation).
It is nevertheless important and in Section 6.2 an automatic algorithm is
described.

Pre-condition for statistics retrieval is successful registration and peer
group assignment. The peer group must have completed at least one statis-
tics computation.

6.1.3 Statistics Computation

Figure 6.3 shows the use case diagram for statistics computation. Statistics
computation runs the benchmarking protocol. It involves all members of
the peer group and the service provider. Privacy preservation is the main
constraint around which the protocol has been designed.

The statistics computation can be initiated by the service provider or a
dedicated peer group member. The benchmarking protocol dictates that the
service provider starts the protocol run and in case a peer group member
initiates the protocol the service provider acts as an intermediary.

The peer group must have a minimum size for the statistics computation
to be secure and each subscriber must have successfully registered.

6.1.4 Service Summary

The benchmarking platform must support the three use cases. Therefore the
service provider has at least three services: a registration service offering a
“subscribe” operation, a retrieval service offering an “assign” (peer group)
and a “retrieve” (statistics) operation, and the services for implementing
the benchmarking protocol. The subscriber does not need to offer services
derived from the use cases. In Section 6.3 the orchestration of the bench-
marking protocol is discussed in more detail. Depending on the model of
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Figure 6.3: Use case: Statistics computation

protocol orchestration the subscriber may need to offer a service for protocol
synchronization.

6.2 Peer Group Formation

Peer group formation is the process of computing the peer groups from the
set of subscribers at a given point in time. Peer group formation creates a
mapping between subscribers and peer groups. A peer group has a minimum
size for its statistics to be meaningful in the benchmarking process. This
minimum size is larger than one, since a subscriber wants to compare to
its competition and not just itself. Therefore a peer group always maps to
multiple subscribers.

6.2.1 Automatic Peer Group Formation

Automatic peer group formation is peer group formation performed by the
service provider. It can be performed much like data clustering, i.e. group-
ing of related subscribers. For this every subscriber needs to map into a
multi-dimensional data point. These data points are formed along several
axis (criteria). The next section describes the criteria useful for subscriber
classification.
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Classification Criteria

Each company is classified by a number of criteria. These criteria refer to
characteristics of the company, that are rather stable for the company but
vary widely between companies. They should be relevant to the business
model of the company, such that they group companies that have an interest
in benchmarking against each other. Their combination should be almost
identifying, i.e. unique. Examples include

• revenue

• profit

• net worth

• number of employees

• main company location (e.g. headquarters)

• main market region

• industry type

• industry sector

• legal form

• age

These characteristics are supposed to be public or at least the subscriber is
willing to share them with the service provider. Each criterion is divided
into a fixed number of discrete subclasses. These subclasses can be concrete
instances, e.g. for industry type: resources, manufacturing, services, and
administration, or intervals on a linear or logarithmic scale. Let m be the
number of criteria, then each subscriber forms a data point in m-dimensional
space.

K,L-Means Clustering

Automatic peer group formation on classified subscribers can be seen as a
data clustering problem. A data clustering algorithm groups similar data
points, such that the average distance to the cluster center is minimized.

A commonly used data clustering algorithm is the k-means algorithm
[54]. It starts by randomly selecting k cluster centers. Each data point
is assigned to the nearest cluster center and then the cluster center is re-
computed as the center of its assigned data points. The algorithm iterates
this process until the cluster centers stabilize, i.e. the distance between two
iterations is below a threshold.
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1 means[] := random datapoint[k]
2 do
3 size[] := 0[k]
4 flag[] := false[n]
5 for i := 1 to n
6 cluster[i] := index of closest means[]
7 size[cluster[i]] := size[cluster[i]] + 1
8 do
9 reassign := false
10 for i := 1 to k
11 if size[i] < l
12 min := index of closest datapoints[] with
13 cluster[min] != i
14 flag[min] == false)
15 size[i] := size[i] + 1
16 size[cluster[min]] := size[cluster[min]] - 1
17 flag[min] := true
18 cluster[min] := i
19 reassign := true
20 while reassign
21 for i := 1 to k
22 recompute means[]
23 until means[] stabilize

Table 6.1: K,l-means clustering algorithm

The k-means clustering algorithm [54] needs to be adapted to support
a minimum cluster size. The minimum cluster size is necessary to protect
the privacy of the individual subscribers and to create useful peer groups.
Too-small peer groups (e.g. just two subscribers) reveal the parties’ KPI
values and are not particularly useful for benchmarking.

A solution called constrained k-means clustering using linear program-
ming has been proposed in [6]. This solution does not scale to our require-
ments. The test case of 104 companies and 103 clusters leads to a linear
programming model with 107 variables (and even more constraints). Such
a large problem can only be solved using special hardware and the problem
size increases by a factor of 102 using real-world requirements. Therefore a
different algorithm is required.

A small extension to the cluster center assignment in the form of a greedy
algorithm for cluster reassignment can fix the minimum size. Let l be the
minimum cluster size. After the cluster center assignment, each cluster is
processed again to ensure a minimum size l. If a cluster does not have l data
points assigned to it, it is assigned the closest data points that

1. are not yet assigned to it

2. have not been reassigned in this iteration

This reassignment is continued until no more reassignments are necessary,
i.e. all cluster have at least size l.
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The condition that data points that have been reassigned in this iteration
are not reassigned again, prevents two cluster centers competing for a certain
data point, thus reassigning it alternatively and resulting in an infinite loop.
Once the reassignment is complete, the algorithm proceeds as a regular k-
means algorithm and recomputes the cluster centers. The final algorithm,
called k,l-means clustering, is depicted in table 6.1 as pseudocode. The
addition to the regular k-means algorithm is confined to the lines 8-20 and
described in greater detail than the remaining algorithm.

6.2.2 Incremental Peer Group Formation

K,l-means clustering operates on all data points potentially assigning all
subscribers new peer groups. This worst case would put a huge recomputa-
tion burden on the platform, since after a clustering algorithm run, all peer
groups that had a change in membership need to be recomputed. Instead,
it is advisable to limit the recomputation to a small set of affected peer
groups. As well a customer wishes to retrieve a benchmarking result right
after she becomes a subscriber and not wait for a clustering operation and
recomputation to complete.

The solution is to compute the peer groups incrementally. When a new
subscriber arrives, she is assigned to an existing peer group (and can there-
fore immediately retrieve statistics) by finding the closest cluster center of
an existing peer group. When an upper limit on the peer group size has
been reached, the peer group is split into two.

Subsequently the k,l-means clustering algorithm is used with k = 2, l =
upper limit

2 on the previous peer group (including the new subscriber). At
most these two resulting peer groups need to be recomputed when a new
customer subscribes. The previous cluster mean is removed and the two
new ones are added to the set of cluster means, incrementing the number of
clusters by one.

Splitting a peer group and assigning each previous subscriber to one of
the new ones contradicts the assignment invariant of the single peer group
model. The subscriber can now be seen as belonging to two (different)
peer groups with different membership. In order not to affect the privacy
considerations of the platform, a time limit between recomputations of peer
groups can be set. The assumption is that after that time period, KPIs have
sufficiently changed to be statistically independent of previous values. The
reverse calculation of KPIs from the statistics (see Section 3.5.2) does not
hold in case of independent variables.

Evaluation

Without loss of generality assume 10 criteria each divided into 5 subclasses,
i.e. n data points in a 10-dimensional space. Data points (customer) are



102 Software Architecture

Figure 6.4: Quality for L1 distance

Figure 6.5: Quality for L2 distance

Figure 6.6: Quality for L∞ distance
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chosen according to a probability distribution. K,l-means clustering algo-
rithm is evaluated for benchmarking on two distributions. First, each data
point is chosen independently and uniformly. Second, in the pre-clustered
distribution k cluster centers are chosen and then n

k
data points with a fixed

distance of 1 are chosen for each cluster. The second distribution implies
that there exists a clustering with an average distance of 1 from the cluster
center and a variance of 1.

Before evaluating the performance of the peer group formation, a mea-
sure for the quality of a peer group formation must be defined. The purpose
of a peer group is benchmarking, i.e. the more competition among the peer
group the better. One can expect that the more coherent the peer group,
i.e. the more similar the peer group members, the more competition exists
among them. Therefore we define the quality of a peer group as the sum
of the spreads of the classification criteria. Let αi,l be the value of the l-th
criteria (l ∈ [1,m]) of peer group member Xi ∈ Qj. Recall that Qj is the set
of members of the j-th peer group and that p is the number of peer groups.
Then the quality measure qm of a successful peer group formation is:

qm =
1

p

p
∑

j=1

n
∑

l=1

max
i∈Qj

(αi,l)−min
i∈Qj

(αi,l)

Figure 6.7: Quality metric in the 2-dimensional case

Figure 6.7 depicts an example for the two dimensional case. One can
imagine a bounding box around a peer group. The sum of its edge lengths
is the quality metric for that peer group. The average for all peer groups is
the quality metric of the peer group formation.

The quality guides the selection of the best distance metric. Three com-
mon distance metric where compared: the L1 or Taxicab distance, the L2

or Euclidean distance, the L∞ or maximum distance. Let ~x and ~y be two
n-dimensional vectors and let xi and yi denote the i-th coordinate of ~x and
~y, respectively. Then the distance δ(~x, ~y) from ~x to ~y in each metric are
defined as follows:
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Figure 6.8: Quality for peer group size of 30

L1:

δ(~x, ~y) =

n
∑

i=1

|xi − yi|

L2:

δ(~x, ~y) =

√

√

√

√

n
∑

i=1

(xi − yi)2

L∞:

δ(~x, ~y) = max
i∈[1,n]

|xi − yi|

Figures 6.4, 6.5, and 6.6 depict the average quality for peer group forma-
tions using k,l-means clustering. On the left side the uniform distribution
for data points is depicted and on the right side the pre-clustered distribu-
tion. The quality measure is shown in two dimensions for the variables of l
as a fraction of µ = n

k
on the x-axis and the average cluster size µ (i.e. peer

group size) on the y-axis. The figures are drawn from 3 experiments for 104

data points.
The conclusion is that for the uniform distribution the maximum dis-

tance performs best and while the Taxicab distance performs worst, while
for the pre-clustered distribution no clear distinction can be made. Fig-
ure 6.8 shows this comparison more clearly in two diagrams for the average
cluster size of 30. On the left side in the uniform distribution case a clear
distinction can be made, while on the right in the pre-clustered distribution
case no clear distinction is possible. Therefore for the remainder of the ex-
periments the maximum distance has been chosen as the best for peer group
formation.

The results of the peer group formation experiments for 104 data points
are depicted in Figures 6.9, 6.10 and 6.11. The result of the uniform distribu-
tion are shown on the left side and the result of the pre-clustered distribution
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Figure 6.9: Average distance from cluster center

Figure 6.10: Variance of distance from cluster center

Figure 6.11: Number of iterations of algorithm
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on the right. For each graph we show l as a fraction of µ = n
k

on the x-axis

from 0 to 0.8 in 0.2 steps: x = l
y

= kl
n

. On the y-axis the average cluster
size µ is arranged from 10 to 50 in steps of 10, e.g. then a graph point at
0.6, 20 means a value of k = 500 and l = 12.

In Figure 6.9 the average distance from the cluster center is depicted
on the z-axis. By comparing the graph to the quality measure graph of
Figure 6.6 one can see that the average of the distance is also a reasonable
quality measure. Furthermore, one should note that the found clustering
improves on the pre-clustering, as the average decreases below 1.

Figure 6.10 shows the variance of the distance from the cluster center
and Figure 6.11 shows the number of iterations until the cluster centers
stabilized on the z-axis. An increasing threshold for the stabilizing criterion
is used in the experiment when the number of iterations increases, since in
some situations the algorithm does not converge otherwise, e.g. when l is
chosen to be equal to µ then the algorithm does not converge for large data
point sets.

From the graphs one can conclude that given an uniform distribution, the
l parameter has almost no impact on the quality of the result. On the other
hand, given a clustered distribution it provides a significant advantage in
quality even at low factors at the cost of slightly destabilizing the algorithm
(i.e. increasing the number of iterations). Summarizing, the modified k,l-
means algorithm performs at least as well as k-means algorithm and may
even perform better for benchmarking applications.

Figure 6.12: Incremental vs. regular k,l-means clustering

The next experiment compared the performance of our incremental al-
gorithm with the regular k,l-means algorithm. The size of the data sets
(data points) was increased from 0 to 104 and the average distance of both
algorithms was measured in intervals of 103. The lower limits were 10, 20,
and 30 which corresponds to average cluster sizes of 13, 27, and 40, and high
limits of 20, 40, and 60 respectively. The results are shown in Figure 6.12
and one can conclude that the performance difference is negligible. Incre-
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mental peer group formation is favorable to regular k,l-means clustering due
to the limited recomputation effort when a new customer subscribes.

6.3 Protocol Orchestration

The benchmarking protocol operates in a central communication model, but
it also operates as every other secure computation protocol in several (4)
rounds. Each subscriber needs to execute a sub-protocol with the service
provider in each round. The order of the subscribers in each round is arbi-
trary, but each subscriber’s turn needs to happen before the next round can
be started. The open question is how do subscribers know that it is their
turn, since the protocol is started by the platform provider (or some other
party). There are two options: notification and polling.

6.3.1 Notification Model

In the notification model, each client runs a little server that when notified
(contacted) triggers the execution of the sub-protocol for that step. The
platform can fully coordinate the notifications, and the execution time of
the entire protocol is limited only by communication and computation cost
(i.e. there is no idle time).

6.3.2 Poll Model

In the polling model, the subscribers poll the platform at intervals and if the
subscribers can execute a sub-protocol, they do so. This model carries with
it some idle time before the protocol can be completed, since the subscribers
are only loosely synchronized. The great advantage of this model is that it
does not require a server on the subscriber’s side which eases deployment.
The subscriber software can be a client deployed behind a corporate firewall
that does not allow inbound connections. Therefore this model is preferred.

This paragraph describes a randomized algorithm to determine the in-
terval between polls by the subscriber to the platform. The arrival of new
subscribers is modeled with an exponential distribution with a fixed arrival
rate λ. The average interval between two arrivals tλ = 1

λ
. The incremental

peer group formation algorithm is used, such that a new arrival is mapped
to an existing peer group and if its size reaches a high limit, the peer group
is split into two equal-sized groups that are then recomputed. Every time
the subscriber polls the platform it receives two values: the current round
s ∈ {0, 1, 2, 3, 4} and the number of subscribers that have completed that
round q (including the subscriber itself). She receives the pair 〈s = 0, q = 1〉
if the protocol has not been started or is about to finish (i.e. round 4 has
been completed by this subscriber). Let qj be the number of members of
the peer group (i.e. l in the k,l-means algorithm) and f be a scaling factor.
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The time ts for the subscriber to sleep until the next poll is set to a random
number in the interval between 1 and f · tλ2s ·

qj−q

qj−1 . The rationale behind this

formula is that if the subscriber is the first to poll in a round, her expected
waiting time until all subscribers have polled in that round is half their in-
terval. If she is the last in the round, she can execute the next round right
away. Between those two events the interval is linearly decreasing.

6.3.3 Comparison

Figure 6.13: Average completion time in polling mode

The polling algorithm has been simulated in an experiment and its ex-
pected waiting time has been evaluated. The time to execute the protocol
was neglected. Assume one new customer per day, such that fixing a num-
ber for λ determines the granularity of our simulation. In the experiment
1440 = 24 · 60 was used, fixing the granularity at one minute. The aver-
age time to completion for the protocol (which is the waiting time in our
simulation) is depicted in Figure 6.13. The scaling factor f is depicted on
the x-axis and the minimum peer group size l on the y-axis. The average

Figure 6.14: Completion time as a fraction of average arrival time and av-
erage number of requests per participant per arrival time
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time to completion is linear in f (note the logarithmic scale) and the effect
of the minimum peer group size is shown in greater detail on the left side
of Figure 6.14. The graph is the average of the sections parallel to the y-
axis where each have been divided by the scaling factor f . The completion
time as a fraction of tλ slowly increases with the minimum peer group size
l, but generally stays below 1.0, i.e. the protocol can be completed within
one polling interval. On the other hand the number of polling requests per
time unit (one hour with our assumptions) linearly decreases with the scal-
ing factor f as shown on the right side of figure 6.14. One has to pick an
appropriate scaling factor f given the requirements and capabilities of a real
platform balancing the load by the requests against the time to complete
the protocol.

6.4 Summary

This chapter has shown the basis of the architecture of the privacy-preserving
benchmarking platform. The first section presented a use case analysis.
Three use cases have been identified: registration, statistics retrieval and
statistics computation. Separating statistics retrieval from statistics com-
putation allows the subscriber to retrieve statistics immediately following
successful registration. This clearly increases the perceived benefit of the
subscriber and allows for a more flexible use of the service. The platform
offers services for registration and statistics retrieval. Depending on the
protocol orchestration model, either both the platform and the subscribers
offer services for statistics computation, or only the platform provider does
and the subscribers are only clients.

Before one can retrieve (or compute) statistics, subscribers need to be
assigned to peer groups. The assignment is called peer group formation.
The second section presented a data clustering algorithm that can be used
for automatic peer group formation. This data clustering algorithm called
k,l-means data clustering is based on k-means data clustering. Its novel
extensions is that it allows to specify a minimum cluster size for large prob-
lem sizes. Specifying a minimum cluster size is necessary for peer group
formation, since peer groups need to remain above a minimum threshold to
guarantee privacy and every subscriber should be served. The evaluation re-
sults show the applicability of the data clustering algorithm. Furthermore,
the data clustering algorithm can be run incrementally, i.e. every time a
subscriber registers. Evaluation showed that this can be done without a
significant performance decrease.

The third and last section compares the two protocol orchestration mod-
els. Protocol orchestration is concerned with the client and server of all
necessary communications. In the notification model the subscriber runs a
server that can be contacted to initiate the protocol’s rounds. In the polling
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model the subscriber runs only clients and polls the server when to start the
rounds. Evaluation using a specific polling algorithm has shown that with
polling, the protocol can be completed in (slightly less than) one polling
interval, i.e. practical protocols can be developed in both models.
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7 Evaluation

This chapter describes the results of the performance evaluation of the im-
plementation of the benchmarking protocols. In addition to the core imple-
mentation of the protocols, an implementation of an entire benchmarking
system including a GUI was completed. The system (including the GUI)
was demonstrated to several product groups within SAP to create aware-
ness how secure computation protocols can be realized and improve business
applications. This chapter focuses on a series of measurements performed
to evaluate the protocols as the most critical component under conditions
close to real-world deployment. In the first section the test setup and some
implementations details are discussed. The second section describes the re-
sult for network performance in terms of time. The third section describes
the result for network performance in terms of traffic volume. The fourth
section shows the result for computational performance depending on the
cryptographic parameters. The last section summarizes the results of the
evaluation.

7.1 Test Setup

The benchmarking platform software is implemented as web services as de-
scribed in Section 2.5.1. The secure and authenticated channels are realized
with WS-Security as described in Section 2.5.2. Each subscriber client soft-
ware is installed as a separate web application with its own web service
container. To be able to scale the number of subscribers to real-world sizes
for peer groups, all such web applications (including the web service con-
tainers) are installed in one web application server on one machine. The
machine is a “state-of-the-art” (year 2007) server machine with 2 processors
and 8 GB of RAM.

As a web application server Tomcat 5.51 is used and as a web service
container Axis2 1.22 is used. For WS-Security Rampart 1.23 is used. All
implementations are done in Java and are run on the virtual machine of

1http://tomcat.apache.org/
2http://ws.apache.org/axis2/
3http://ws.apache.org/axis2/modules/rampart/1 2/security-module.html
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Sun’s Java SE 64. Since Tomcat, Axis2 and our protocols are written in
Java they are all operating system neutral.

The benchmarking platform itself is run on a separate machine than
the clients. This machine has 2 GB of RAM. Separating only the service
provider from all clients still requires all communication to cross physical
networks. Therefore the network connectivity in the test setup matches real
setups very well.

Figure 7.1: Test setup

In order to be able to simulate wide area network (WAN) conditions,
a WAN emulator is placed between the two machines. It acts as an IP
router and can delay packets. It has the dummynet [68] software installed
that can be configured to introduce arbitrary delays. Other than the WAN
emulator the machines are connected via a non-dedicated Gigabit Ethernet.
Figure 7.1 depicts the test setup in schematic form.

7.2 Network Performance

The goal of this test is to measure the practical performance of the proto-
col as it would be in a real deployment. The benchmarking platform was
implemented and tests were automated, such that it was possible to run
the benchmarking protocol without user interference. This implementation
was then run with different settings and the actual absolute running time in
seconds from starting the protocol until the output of the statistics at the
server was measured. Two parameters were modified independently: peer

4http://java.sun.com/javase/
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group size and network delay.

The peer group size is modified in increments of 5 from 5 to 45. This tests
the scalability of the benchmarking protocol. We expect a quadratically in-
creasing running time with increasing peer group size, since communication
and computation complexity are O(q2j ) where qj is the number of members
in the peer group.

The network delay is a parameter of the WAN emulator and simulates
real WAN conditions. The delay is increased in increments of 50 ms from 0
ms to 200 ms. The setting of 0 ms corresponds to a network setup where the
WAN emulator is not present, i.e. local area network (LAN) conditions, and
200 ms approximately corresponds to the round trip time (RTT) between
Germany and Japan over the Internet. Therefore the conditions range from
local to distant wide area networks and capture many realistic scenarios.
This test evaluates the impact of the network on the overall performance
and the proportion of time spent due to network communication. Theory
predicts a linear increase of the time with increasing delay, since we use a
linear number of connections.

Figure 7.2: Network performance for different peer group sizes

Figure 7.2 depicts the absolute running time in seconds for different
group sizes. The graph shows the predicted quadratic increase, although
constants are low. The different network conditions are depicted as lines
and increasing delay leads to increasing overall running time.

For 5 clients the benchmarking protocol can always be completed in
a few minutes: 43 seconds for LAN conditions and 125 seconds for WAN
conditions with 200 ms delay. The proportional network overhead for 5
clients is therefore 125s−43s

43s
= 191%.

With 45 clients a benchmarking protocol run requires several minutes:
1024s = 17 minutes for LAN conditions and 1800s = 30 minutes for WAN
conditions with 200 ms delay. The proportional network overhead for 45
clients is therefore 1800s−1024s

1024s
= 76%. The conclusion is that the computa-

tional effort increases faster than the network communication overhead.
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Figure 7.3: Network performance for different delays

Figure 7.3 shows the running time in seconds for different network con-
ditions, i.e. delays. Each peer group size is depicted as a line and, as in
Figure 7.2, increasing peer group size leads to an increase in overall per-
formance. The lines show a linear increase as predicted from the theoretic
model.

For 5 clients the benchmarking protocol’s performance decreases from
43 seconds to 125 seconds: an 82 seconds decrease. For 45 clients the bench-
marking protocol’s performance decreases from 1024 seconds to 1800 sec-
onds: a 776 seconds decrease. The proportional increase per peer group
member is 16.4 seconds for 5 clients and 17.2 seconds for 45 clients. These
increases remain fairly constant for all peer group sizes. A summary of the
average increases per participant for the different delays is given in Table 7.1.

50 ms 100 ms 150 ms 200 ms

3.9 s 8.0 s 12.2 s 16.3 s

Table 7.1: Running time increase per participant

Figure 7.4: Network performance
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Figure 7.4 combines Figure 7.2 and Figure 7.3 into one two-dimensional
graph. The graph shows the linear increase along its y-axis for the network
delay and the super-linear increase along its x-axis for the peer group size.

In conclusion the practical performance of the benchmarking protocol is
satisfactory for peer group sizes up to 45. Even over WAN network condi-
tions, the protocol can be completed in minutes, although an off-line com-
putation seems warranted for a 30 minute computation. Peer group sizes of
around 45 (or smaller) are acceptable for real-world benchmarking although
larger peer groups might sometimes be desirable.

The obstacle to further increases in peer group size is memory. Although
in the test setup the benchmarking platform had 2 GB RAM (and 1.5 GB
Java heap space) available, it could not complete the test with larger peer
group sizes. This is mostly due to the memory consumption of the WS-
Security module and the web service stack which are 3rd party tools used
in the implementation. A local computation of the benchmarking protocol
could easily cope with 200 clients on the same machine, a number beyond
practical expectations for peer group size. Therefore it is advisable to im-
prove the resource consumption of the web service stack and in particular
the WS-Security module first.

7.3 Network Traffic

The goal of this test is to measure the absolute amount of network traffic in
bytes sent over the network between a subscriber and the service provider.
The actual amount of traffic gives an indication of the network performance.
In the second round of the benchmarking protocol qj (the number of sub-
scribers in the peer group) data items are sent for rank computation. There-
fore the communication complexity between one subscriber and the service
provider is expected to scale linearly with the number of subscribers in the
protocol.

Figure 7.5, Figure 7.6, and Figure 7.7 depict the network traffic per round
for one client in case of 2, 4, and 8 subscribers, respectively. Clearly the com-
munication cost for round 2 dominates the overall computation cost, since
more than half of the network traffic is accumulated in round 2. Round 2
not only includes the rank computation, but also the selection via Oblivious
Transfer.

The graphs depict the traffic in both directions (from subscriber to ser-
vice provider and vice-versa) as additive bars for each round with the direc-
tion from the service provider to the subscriber on top. All the measurements
are in bytes. The setup round informs all clients that the protocol is about
to start via a web service method call and contains no other information.
The other rounds correspond to the rounds in the benchmarking protocol.

The network traffic measured has been obtained by a self-written TCP
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Figure 7.5: Network traffic for 2 subscribers

Figure 7.6: Network traffic for 4 subscribers

monitor that intercepts the calls. Therefore the measurement includes all
traffic at TCP level including SOAP (see Section 2.5.1) XML markups. Only
a fraction of the traffic actually contains data values. Furthermore, all en-
crypted data values have been encoded as decimal strings and therefore have
another expansion in the encoding.

Nevertheless we can conclude that similar amounts of traffic are trans-
ported from subscriber to service provider (approx. 25.5 kBytes) as from
service provider to subscriber (between 34 kBytes and 37 kBytes). This
balance holds throughout all rounds. The traffic from service provider to
subscriber increases in round 2 from 19 kBytes to 22 kBytes. We can con-
clude that one encoded encrypted value therefore requires about 500 bytes
of traffic compared to 192 bytes in memory. The traffic for all other rounds
remains constant.

Figure 7.8 compares the traffic of the sum of both directions for the
different number of clients. The linear increase in round 2 clearly stands
out, while all other rounds stay constant.

In summary, the traffic for the benchmarking protocol is reasonable with
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Figure 7.7: Network traffic for 8 subscribers

Figure 7.8: Network traffic per round

low amounts of kBytes. A significant overhead for the web service protocols
must be included (192 bytes to 500 for an encrypted value). Nevertheless
compared to the simple plain-text submission of KPI values, network traffic
is significantly larger.

7.4 Key Length

This experiment evaluates the impact of the key length of the homomorphic
encryption system on the overall performance. All experiments are run lo-
cally, i.e. there are no web service invocations and WS-Security encryptions.
The performance was measured for multiple runs (10) and then averaged.

The encryption system used is Paillier’s encryption system [63]. There
is only one key pair Dcommon(·)/Ecommon(·) in the modified benchmarking
protocol and the key length of this key pair is varied throughout the experi-
ments: starting with a key size of 512 bit up to a key size of 2048 bit in 256
bit increments.

Figure 7.9 shows the local performance over the peer group size for dif-
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Figure 7.9: Local performance over peer group size

ferent key length. Each line depicts a different key length. The graph shows
a super linear increase as can be expected from the O(n2) computation
complexity of the benchmarking protocol. A strong increase between the
different key lengths is already visible.

Figure 7.10: Local performance over key length

Figure 7.10 shows the performance over the key length for different peer
group sizes. To simplify the graph only peer group sizes of 10, 20, 30, 40
and 50 are depicted as separate lines. There is clearly a super linear increase
for each peer group size. This can be expected due to the O(k3) complexity
of modular exponentiation used in the encryption system throughout the
protocol.

The impact is nevertheless quite significant. The running time increases
from 189 seconds to 8932 seconds for a peer group of size 50. Running times
spanning several hours (2.5 in this case) are at the borderline of practical
feasibility.

Figure 7.11 depicts the two-dimensional combination of the graphs. A
super linear increase in the direction of both axes is visible. Given an upper
threshold one can determine the acceptable key length using this graph.
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Figure 7.11: Local performance over key length and peer group size

In summary, key length has a significant impact on the performance. A
careful choice between the security of the system and the performance needs
to be made. The key of Paillier’s encryption system is equal to a key of the
popular RSA encryption system [67]. In the implementation, a key length of
768 bits has been chosen which provides still-reasonable performance. This
key length has been used throughout all other experiments. It will probably
be necessary to adapt this key length over time.

7.5 Summary

This section described the quantitative experiments with the benchmark-
ing platform. Three main experiments were run to evaluate the impact of
network characteristics and security parameters. The measured quantities
were:

• absolute and local running time (in seconds)

• network traffic volume (in bytes)

From the experiments the following conclusions can be drawn:

• The benchmarking platform is practically feasible over WAN condi-
tions for reasonable peer group sizes (up to 45).

• Memory consumption of the web service stack on the benchmarking
platform system is a key bottleneck.

• Key size has a major impact on performance and needs to be chosen
carefully and adapted over time.

The experiments therefore proved the system’s practical feasibility although
certain bottlenecks and trade-offs have been identified.
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8 Related Problems

Several variations of the techniques used for the benchmarking protocols ex-
ist which solve related, independently important problems. The composed
protocols may be used as general purpose protocols, such as the Yao’s mil-
lionaires’ protocol as seen in Chapter 5 or also for benchmarking, but with
improved asymptotic performance. The protocols are only described briefly
and without proofs, since the explanation and proof arguments were previ-
ously provided for the more elaborate benchmarking protocol in Chapter 4.

8.1 Constant Cost Benchmarking

The constant cost benchmarking protocol serves the same purpose as the
benchmarking protocol, except that it only implements:

• average

• variance

• maximum

i.e. it does not implement median and best-in-class. It follows the same
centralized communication pattern and has the same security guarantees.
Its advantage is that compared to benchmarking protocol it has a bet-
ter asymptotic performance. While the benchmarking protocol has com-
munication cost O(q2j ) square in the number of participants, the constant
cost benchmarking protocol is linear O(qj), i.e. constant per participant.
The constant-cost benchmarking protocol trades functionality against per-
formance and offers an alternative for very large peer groups or high-latency
networks.

Figure 8.1 describes the constant cost benchmarking protocol in the same
formal notation as the benchmarking protocol from Chapter 4. The constant
cost benchmarking protocol uses the same techniques and follows the same
pattern as the benchmarking protocol. A detailed description of the steps
of the constant cost benchmarking protocol follows.

First the subscriber Xi sends the encrypted KPI Ecommon(xi) to the ser-
vice provider. Compared to the benchmarking protocol of Figure 5.4 the
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Round 1:

Xi −→ SP Ecommon(xi)
SP −→ Xi Ecommon(c) = Ecommon(−1r3 · (r1 · (xi −max) + r2))

SP
OT−→ Xi Ec =

{

Ecommon(xi + r4) if c ≥ 0⊕ (r3 = 0)
Ecommon(max+ r4) if c < 0⊕ (r3 = 0)

Xi −→ SP Ecommon(max′) = Ec ·Ecommon(0)
SP Ecommon(max) = Ecommon(max′ − r4)

Round 2:

SP −→ Xi Ecommon(sum) = Ecommon(
∑n

i=1 xi)
Ecommon(max)

Xi −→ SP sum
MAC(sum|i, scommon)
max
MAC(max|i, scommon)
Ecommon′((xi −

sum
n

)2)

Round 3:

SP −→ Xi Ecommon′(sum′) = Ecommon′(
∑n

i=1(xi −
sum

n
)2)

H(MAC(sum|1, scommon), . . . ,MAC(sum|n, scommon))
H(MAC(max|1, scommon), . . . ,MAC(max|n, scommon))

Xi −→ SP sum′

MAC(sum′|i, scommon)

Round 4:

SP −→ Xi H(MAC(sum′|1, scommon), . . . ,MAC(sum′|n, scommon))

Figure 8.1: Constant cost benchmarking protocol

rank computation which requires O(n) communication cost per participant
has been replaced by a maximum computation based on the Yao’s million-
aires’ protocol from Section 5.1. The service provider chooses three random
values r1, r2 (0 ≤ r2 < r1) and r3 (0 ≤ r3 ≤ 1) and computes a multi-
plicatively hidden comparison value c = −1r3 · (r1 · (xi −max) + r2) for the
KPI xi and a stored maximum value max. This step is still performed in
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the first round of the protocol. The computation can entirely be performed
on cipher texts as ((Ecommon(xi) · Ecommon(max)−1)r1 · Ecommon(r2))

−1r3

and even the maximum value max is stored encrypted as Ecommon(max).
The random bit r3 selected by SP flips the sign of c and he correspondingly
flips the positions of the inputs to the subsequent OT protocol if r3 = 1.
After Xi has received c the service provider SP and Xi engage in an OT
protocol where Xi selects the maximum of max and xi (with secret share r4
and encrypted under Ecommon(·)). Xi re-randomizes the chosen cipher text
and returns it to SP . The service provider can now set the new maximum
value by adding the secret share r4.

The second round of the protocol is a combination of the second step
of a summation protocol (see Section 4.2.3) for sum, the first three steps
of simplified decryption protocols for sum and max and the first step for
the summation protocol for sum′. The simplified decryption protocol does
not add a secret share before sending the cipher text to the subscribers.
This can be done, since the result does not need to be rounded by SP
before publishing, because there is no requirement for unique KPIs with-
out rank computation and no unique summands are required. In Figure 8.1
above, the service provider SP sends Ecommon(sum) to subscriberXi (equiv-
alent steps are done for max in round 2 and later for sum′). Xi responds
with sum and a message authentication code MAC(sum|i, scommon) in the
same round. In round 3 after receiving all MACs the aggregated hash value
H(MAC(sum|1, scommon), . . . ,MAC(sum|n, scommon)) is returned to Xi.

Round 3 combines the second step of the summation protocol for sum′,
the last steps for decryption of sum and max and the first three steps
for decryption of sum′. The last round finishes the (simplified) decryption
protocol for sum′.

The protocol steps for median and best in class (based on the rank
computation) have been omitted, such that the overall communication cost
is constant per participant.

Figure 8.2: Constant cost benchmarking protocol performance
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The performance results of Figure 8.2 show that over local area networks
(LAN) the performance is computation-bound, but linearly increasing. Over
wide area network (WAN) conditions the performance is network-bound,
i.e. communication cost becomes the dominating cost factor. The WAN
was simulated [68] with a 200 millisecond round trip time (RTT), which ap-
proximately corresponds to an Internet connection from Germany to Japan.
Implementation was done in Java [40] using web services in the Tomcat/Axis
framework and a 768 bit Paillier key length. More details on the implemen-
tation are given in Chapter 7. Nevertheless, performance is practical even
for large peer groups (75 members) over WAN conditions with less than 13
minutes for one KPI computation.

8.2 Short-lived Common Key

One drawback of the benchmarking protocol is that it uses a common key
among all participants Xi that must remain unknown to the service provider
SP . This key must be stored in a safe place at each subscriber, since its
public revelation would break the security of the benchmarking protocol.
A break-in at any subscriber’s site is therefore a risk to the security of
the benchmarking platform. This section presents a modification of the key
setup procedure that chooses a fresh, unique common key for each invocation
of the benchmarking protocol. This key is only sensitive during the run of the
benchmarking protocol and its revelation afterwards, e.g. due to a break-in,
does not affect other protocol runs.

The subscribers run a key agreement protocol using common coin-flipping
before each run of the benchmarking protocol. The common coin-flipping
protocol is safe against malicious attackers controlling the network, and
therefore safe against a malicious service provider. There is a trade-off
necessary for the common coin-flipping benchmarking protocol. The bench-
marking protocol as described in Chapter 4 and the benchmarking protocol
with a short-lived common key differ in two properties.

• Key lifetime

• Anonymity

While the benchmarking protocol with a short-lived common key clearly
achieves that each common key is only live for the duration of one proto-
col run, the common key in the benchmarking protocol lives forever, i.e.
until it has been compromised. The other property in which they differ is
anonymity. The subscribers in the benchmarking protocol remain strictly
anonymous amongst each, i.e. no subscriber is ever referred to with a static
(live beyond the run-time of the protocol) identifier. In the benchmarking
protocol with a short-lived key every subscriber Xi has a public-, private
key-pair and every other subscriber can perform EXi

(), i.e. the encryption
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with Xi’s public key. The benchmarking protocol with a short-lived com-
mon key matches the regular benchmarking protocol in all other properties,
e.g. security and complexity. The benchmarking protocol with a short-lived
common key is secure against a constrained malicious service provider, but
not against collusion with the service provider. It has a communication com-
plexity of O(q2j ) that is already met by the common coin-flipping protocol
itself.

Let EXi
() denote the semantically secure encryption with the public key

of participant Xi. El-Gamal encryption [28] would be a suitable widely
used encryption system. Assume that all subscribers Xi know the public
keys of all other subscribers Xi′ at the beginning of the protocol. This
can be achieved if each subscribers is given a global pseudonym σi. The
certificate authority can then issue a certificate on this pseudonym σi during
registration. The service provider reveals the composition, i.e. Qj , to all
subscribers before the beginning of the protocol. The service provider can
then safely distribute the certificates to the subscribers as well, such that
they do not need to permanently store them. The certificate authority is
necessary to still achieve security against a constrained malicious service
provider. A semi-honest service provider could simply distribute the keys
as in [21, 22].

The subscribers Xi can now channel a common coin-flipping protocol of
[72] through the service provider. Let commit(r) denote the commitment
to a value r. A commitment is a cryptographic function that binds the
committer to the value r, but reveals nothing about r. If the committer
later reveals r to the verifier, the verifier can verify that r matches the
commitment, i.e. the committer has not changed its value r. This is used
in the coin-flipping protocol to ensure that all parties independently chose
random values before they reveal them to each other.

Round 1:
Xi −→ SP commit(ri)

Round 2:
SP −→ Xi commit(r1), . . . , commit(rqj

)
Xi −→ SP EX1(ri), . . . , EXi−1(ri), EXi+1(ri), . . . , EXqj

(ri)

Round 3:
SP −→ Xi EXi

(r1), . . . , EXi
(ri−1), EXi

(ri+1), . . . , EXi
(rqj

)

Xi r =
∑qj

i=1 ri

Figure 8.3: Common Coin-Flipping Protocol through Service Provider

The commonly chosen random number r can now be used as a seed
to choose a fresh common key for homomorphic encryption Ecommon() for
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this run of the protocol. If a subscriber gets compromised, it is no longer
necessary to re-issue a new common key to all subscribers, but only the key
of the compromised subscriber needs to be updated.

8.3 Coalition-Safe Benchmarking

As mentioned in Section 8.2, one drawback of the benchmarking protocol is
that it uses a common key among all participants Xi that must remain un-
known to the service provider SP . This section presents a protocol version
that uses a threshold variant of this key and is secure against coalitions of up
to t−1 parties including the service provider SP . Note that the benchmark-
ing protocol is not secure against collusion with the service provider. Such
security against collusion with the service provider provides the guarantee
that if t− 1 parties (including the service provider) get (passively) compro-
mised, the benchmarking platform can continue to operate, although with a
reduced security level. It is not necessary to restart the entire system includ-
ing key distribution, if one subscriber gets compromised. The benchmarking
platform can continue to run, although with a reduced security level.

The following security goal for coalition-safe benchmarking can be stated:

Definition 8.1 A coalition-safe benchmarking protocol can tolerate collu-
sion of up t− 1 parties including the service provider without sacrificing its
security.

The protocol is secure if at most t − 1 parties (including the service
provider) are compromised, where t is the threshold for security against
coalitions. The threshold t should be chosen, such that it is O(qj), but in
our case t < qj . The guidelines for picking t are described in Section 8.3.3.

8.3.1 Trade-Offs

The coalition-safe benchmarking protocol, the regular benchmarking proto-
col and the state-of-the-art from the literature differ in several properties.

• Anonymity

• Security

• Function Definition (Leakage)

• Complexity

The coalition-safe benchmarking protocol requires global identifiers for
each participant in order to reconstruct the plain text during distributed
decryption. The protocol is therefore at best pseudonymous and no longer
anonymous, i.e. each party is statically identified by a pseudonym (to all



Related Problems 127

subscribers) and no longer anonymous (among all subscribers). No pro-
tocol for secure statistics computation besides the benchmarking protocol
or general secure multi-party computation currently considers anonymity.
They all either require secure, authenticated channels between all parties or
have unique keys for each subscriber in a centralized communication model
[21, 22].

The loss of anonymity implies that subscribers are now able to track the
composition of a peer group. The impossibility of multi-group benchmarking
now does not only apply to the privacy against the service provider, but also
to the privacy against other subscribers. This additional information for
the subscribers compared to the anonymous benchmarking protocol might
reduce the willingness of a customer to join the benchmarking platform.

The coalition-safe benchmarking protocol is only secure in the semi-
honest setting and no longer in the constrained malicious setting, but the
coalition-safe benchmarking protocol is secure against coalitions with the
service provider, while the regular benchmarking protocol only provides
security against coalitions without the service provider. Security in the
semi-honest model can be motivated by a systems perspective (attackers
cannot modify the software), whereas the constrained malicious model has
an economic motivation. The main obstacle to constrained malicious secu-
rity is that each subscriber decrypts qj intermediate cipher texts during the
benchmarking protocol. Without guarantees that these values have been
computed according to the protocol specification, a coalition of a subscriber
and the service provider can cheat by decrypting all input values. It is im-
portant to note that each protocol secure in the semi-honest model can be
transferred into a protocol secure in the malicious model by following the
compiler of [34]. Security in the malicious model implies security in the
constrained malicious model.

Centralized statistics computations [21, 22] so far only consider collusion
of subscribers and require a semi-honest service provider. While security
against collusion of malicious subscribers is provided, no such security guar-
antee exists for collusion with the service provider. The protocols [21, 22]
are not secure against coalitions with the service provider for any number of
subscribers even in the semi-honest model. A semi-honest service provider
does not match the economic requirements of the application, since distrust
in the service provider can be assumed and security is used a differentiating
sales argument.

The coalition-safe benchmarking protocol sightly leaks information in
addition to the benchmarking functionality. It leaks information about iden-
tical input values. This can be tolerated in practice, but must be taken into
account in the function definition of the security proof.

The computation and communication complexity of the coalition-safe
benchmarking protocol is cubic (O(q3j )) as opposed to square (O(q2j )) as
in the regular benchmarking protocol. As the regular benchmarking pro-
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tocol can already be considered borderline in terms of practical complex-
ity, coalition-safe benchmarking cannot be considered practical anymore. It
therefore does not support the main thesis of this dissertation that a prac-
tical benchmarking platform is practically feasible. In particular this would
apply for protocols secure in the malicious model, where general (and com-
plex) guarantees for adherence to protocol specification must be given. The
communication complexity of the coalition-safe benchmarking protocol is
O(q3j ).

The complexity of the benchmarking protocol stems from the median
computation, as can be seen from the constant cost benchmarking proto-
col of Section 8.1. The only other secure multi-party computation pro-
tocol for computing the median [1] has a communication complexity of
O(q2j log dom(x)). The logarithm of the domain of the input values log dom(x)
is roughly equal to the number of subscriber qj in our practical cases. There-
fore there is no more efficient protocol than ours available to compute the
median. No additional complexity is required for the central communication
pattern, since [1] requires point-to-point communication. No complexity fig-
ures for security in the malicious model are given in [1].

In summary, the coalition-safe benchmarking protocol and the bench-
marking protocol combine different trade-offs in the described properties
for anonymity, security and complexity in the centralized communication
model. The coalition-safe benchmarking protocol offers safety against the
collusion with the service provider at state-of-the-art complexity, while the
benchmarking protocol improves complexity at the loss of security against
collusion.

8.3.2 Threshold Encryption

In order to improve the security of the benchmarking protocol and transform
it into a coalition-safe protocol threshold encryption is used. In threshold
encryption the decryption function is distributed among n parties. No single
party can decrypt a cipher text, but only if t or more parties cooperate they
can decrypt the cipher text. It may be that t < n, such that any subset of
size t of the parties can decrypt a cipher text.

In [20] a threshold variant of Paillier’s encryption scheme [63] is de-
scribed. It inherits all other properties of Paillier’s scheme, i.e. it is public-
key, semantically secure and homomorphic in the addition operation. The
private key is shared using Shamir’s threshold secret sharing scheme [73]
and any subset of t parties can decrypt a cipher text. Each share si of the
private key given to Xi reveals nothing about the entire private key or the
share of any other party.

The decryption function is distributed as follows: Let di(c, si) denote
the local decryption step at party Xi using as input the cipher text c and
Xi’s share si of the private key. The computed share di(c, si) of the plain-
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text reveals nothing about the plaintext. Even t− 1 computed shares of the
plaintext reveal nothing about the plaintext. Let d(i1, . . . , it, di1(c, si1), . . .,
di1(c, si1)) denote the combination function for all shares. After exchanging
the shares di(c, si) of the plaintext (and the identifier i) this function can be
performed locally to compute the plaintextm, i.e. m = d(i1, . . . , it, di1(c, si1),
. . . , di1(c, si1)). Both di(·) and d(·) can be performed locally, only the result
of di(·) needs to be transferred.

Let Et
common(·) denote encryption in t-threshold homomorphic, public-

key, semantically secure encryption scheme using a common (shared) key
among all subscribers and unknown to the service provider. Let Di

common(·)
denote Xi’s share of the plaintext computed using its share of the key, i.e.
Di

common(·) = di(·) for Et
common(·).

8.3.3 Key Distribution

The goal of the coalition-safe protocol is to protect against collusion of up
t − 1 parties including the service provider. Each subscriber Xi is given a
share of the common private key, such that she can perform Di

common(·).
There are several options for distributing these keys (key shares) to the
subscribers. According to [20] key distribution requires a dealer that can
only theoretically be replaced by a secure multi-party computation protocol.

The first option is similar to the key distribution in the benchmarking
protocol. The certificate authority distributes long-living key shares during
registration to all subscribers. Each subscriber is given a pseudonym σi as in
the intermediate solution and the service provider reveals the composition
of the peer group to the subscribers at the beginning of the protocol. The
parameter t in this solution must be chosen smaller than the minimum peer
group size, which should in practice still be O(qj). For larger peer group
sizes t is significantly smaller than qj, since t is a system-wide constant.

The second option is similar to the intermediate solution and fresh shares
are distributed for each run of the protocol. Then t = n−1 and the security
of the coalition-safe protocol matches the state-of-the-art in the semi-honest
model. The drawback is that in practice a trusted dealer is necessary to
distribute the shares. Using the certificate authority to play this role involves
it in every protocol run degenerating the protocol to a two-server protocol
for which more elegant solutions exist (see [60]). Therefore this solution is
practically infeasible, since the economic motivation of the service provider
is no longer met and he must involve a second, mutually distrustful service
provider.

In summary the shares of the common key can be distributed similarly
to the key distribution of the benchmarking protocol while not deviating
from the originally set goals except in the anonymity property, i.e. the
single service provider can remain while anonymity must be given up. This
solution makes the threshold parameter t a system-wide constant.
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Round 1:

1 Xi −→ SP Et
common(xi)

Round 2:
2 SP −→ Xi Et

common(C) = (. . . ,
Et

common(cl,l′) = Et
common(r1

l,l′
· (xl − xl′) + r2

l,l′
), . . .)

3 Et
common(~x)

4 Xi −→ SP Et
common(CΦi

) = (. . . , Et
common(r3l,l′

· cΦi(l),Φi(l
′) + r4l,l′

), . . .)

5 Et
common(~xΦi

) = (. . . , Et
common(xΦi(l)) · E

t
common(0), . . .)

6 SP Et
common(C) = Et

common(CΦi
)

7 Et
common(~x) = Et

common(~xΦi
)

Round 3:
8 SP −→ Xi Et

common(sum) = Et
common(

∑qj

i=1 xi)
9 Et

common(C)
10 Xi −→ SP Di

common(Et
common(sum))

11 Di
common(Et

common(C))

Round 4:

12 SP −→ Xi Et
common(median) = Et

common(xl) where pos(~cl) = ⌈
qj

2
⌉

13 Et
common(bic) =

∏

Et
common(xl) where pos(~cl) ≤ ⌈ 3

4
qj⌉

14 Et
common(max) = Et

common(xl) where pos(~cl) = qj

15 sum

16 Xi −→ SP Di
common(Et

common(median))
17 Di

common(Et
common(bic))

18 Di
common(Et

common(max))
19 Et

common((xi −
sum
qj

)2)

Round 5:
20 SP −→ Xi Et

common(sum′) = Et
common(

∑qj

i=1(xi − avg)2)
21 median

22 bic

23 max

24 Xi −→ SP Di
common(Et

common(sum′))

Round 6:

25 sum′

Figure 8.4: Coalition-Safe Benchmarking protocol

8.3.4 Protocol

This section describes the coalition-safe variation of the benchmarking pro-
tocol. The design principle of the coalition-safe protocol is that no party
including the service provider shall obtain any additional share of a plain-
text that is not decrypted later. This ensures that any coalition of up to
t− 1 parties has at most t− 1 shares which still ensures the confidentiality
of the plaintext.

During the benchmarking protocol many intermediate values get de-
crypted in order to compute the rankings of the values. To prevent parties
from obtaining shares for these plain texts, the intermediate values must
be decrypted commonly. Although a single value does not reveal any infor-
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mation, their entirety reveals the ranks of the input values. In the bench-
marking protocol the service provider chooses a permutation to separate
the ranks from the input values and blinds the comparison values, such that
they reveal no information, but since coalitions with the service provider
are allowed, this permutation and blinding must be chosen commonly. The
service provider sends all comparison values of the qj × qj matrix C to all
subscribers. Each subscriber (in turn) chooses a permutation Φi(·) of the
rows. Each comparison value is multiplicatively hidden again, i.e. each sub-
scriber Xi chooses two random numbers r and r′ (r′ < r) for each cipher
text. He computes Ecommon(r · c+ r′) which does not change the sign of the
comparison value. The final permutation and hiding, i.e. the combination
of all individual permutations and hidings, is unknown to each participant
or even a coalition of qj − 1 subscribers (plus the service provider). Then
these values are decrypted and from an identically (to the row permutation)
permuted vector of all inputs the corresponding cipher text for each rank is
chosen. These are decrypted similarly to the intermediate values. The struc-
ture of the remainder of the protocol remains. The complete coalition-safe
protocol is depicted in Figure 8.4.

The steps of the coalition-safe benchmarking protocol are described in
detail in the following paragraphs. Recall, that no party can decrypt any
cipher text of Et

common(·) by himself. The coalition-safe benchmarking pro-
tocol is composed of the same building blocks, summation, rank computa-
tion, and decryption, as the benchmarking protocol. Selection is no longer
necessary, since it can be done locally at the service provider who has now
access to the comparison values. Most building block protocols are modified
substantially to fit threshold encryption.

Summation

Summation is not modified to fit threshold encryption. The subscriber Xi

still sends the encrypted KPI Et
common(xi) to the service provider SP . SP

sums by multiplying the cipher texts, i.e.

Et
common(

qj
∑

i=1

xi) =

qj
∏

i=1

Et
common(xi)

There are two summation sub-protocols in the coalition-safe benchmark-
ing protocol (steps 1, 8, 19, and 20).

Rank Computation

After having received all encrypted KPIsEt
common(~x) from all subscribersXi,

the service provider SP computes a matrix Et
common(C). This Et

common(C)
contains at position l, l′ an entry for the KPI pair xl, xl′ where
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Et
common(cl,l′) = Et

common(r1l,l′
· (xl − xl′) + r2l,l′

)

= (Et
common(xl)− E

t
common(xl′)

−1)
r1

l,l′ ·Et
common(r2l,l′

)

is computed as the comparison value as before. This can be completed
before any communication in round 2 is taking place.

This matrix Et
common(C) is then sent along with Et

common(~x) to sub-
scriber Xi (steps 2 and 3). Each subscriber Xi chooses uniformly a random
permutation Φi(·) of [1, qj ] and random numbers r3l,l′

and r4l,l′
(0 ≤ r4l,l′

≤

r3l,l′
) for each pair l, l′. He permutes Et

common(C) according to Φi(·) and
multiplicatively hides each comparison value cl,l′ (again). The plain text
size of the homomorphic, threshold encryption scheme must be chosen ac-
cordingly and the leakage is limited to qj samples as in Section 5.4.3, but
only in coalitions with the service provider. He also permutes the vector
of KPIs Et

common(~x) by the same permutation Φi(·) and re-randomizes each
cipher text by homomorphically adding 0. The result is returned to the
service provider SP (steps 4 and 5).

The service provider now updates his local storage of Et
common(C) and

Et
common(~x) (steps 6 and 7). He then forwards the already permuted and

additionally multiplicatively hidden values in matrix Et
common(C) to the

next subscriber Xi, such that the multiplicative hidings add up and the
permutations form a joint permutation. This sub-protocol step requires the
subscribers to sequentially communicate with the service provider SP . This
is repeated until all subscribers have permuted and multiplicative hidden
the comparison values. The matrix Et

common(C) needs to be decrypted for
selection, but this is done using a regular decryption protocol described
later.

Decryption

The most common sub-protocol in the coalition-safe benchmarking proto-
col is threshold decryption. For threshold decryption all subscribers must
collaborate. Recall that each subscriber Xi holds a share of the private
decryption key with which he can perform Di

common(·).
The service provider holds a cipher text, e.g. Et

common(x) of plain text x.
He distributes the cipher text to all subscribers Xi and collects their plain
text shares as the decryption Di

common(Et
common(x)). He then combines the

shares and sends the result x to each subscriber Xi in the next round. This
completes the decryption sub-protocol. As in the decryption sub-protocol
of the benchmarking protocol the service provider obtains the plain text
first and then publishes it. An assurance that he submitted the same cipher
text to all subscribers is not necessary in the semi-honest model only in
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the constrained malicious model. The coalition-safe benchmarking protocol
provides guarantees against coalitions, but only in the semi-honest model.

The decryption protocol is performed for all outputs sum (steps 8, 10 and
15), median (steps 12, 16, and 21), bic (steps 13, 17, and 22), max (steps 14,
18, and 23), sum′ (steps 20, 24, and 25) and as well as intermediate values
such as Et

common(C) (steps 9 and 11). The difference is that for intermediate
values the last step of distributing the plain text is omitted.

Combined Protocol

This completes the sub-protocols of the coalition-safe benchmarking proto-
col. Each step of the protocol has been explained and is carefully crafted
within the composed protocol in order to minimize the overall rounds and
balance the computational load between rounds if possible. The final pro-
tocol is depicted in Figure 8.4.

8.3.5 Proof Sketch

The main security theorem for the coalition-safe protocol can be stated as:

Theorem 8.2 The coalition-safe protocol t − 1-privately computes the ex-
tended benchmarking functionality in the semi-honest model.

The extended benchmarking functionality is defined as:

Definition 8.3 The extended benchmarking functionality comprises

• the statistics average, maximum, variance, median and best-in-class of
the input values and

• the ranks and number of any duplicate (identical) input values.

The proof follows the same arguments as the security proof in the semi-
honest model of the benchmarking protocol, i.e. a simulator for each of
the views of the subscriber and the service provider are given. These are
standard and are omitted here, since they follow the same principle as the
simulators in the benchmarking protocol.

To prove security against coalition it needs to be shown that the view of
each coalition can be simulated. Therefore the following lemma is stated

Lemma 8.4 All simulated values except the shares of plaintext are chosen
independently.

Lemma 8.4 follows directly from the view and can be proven by inspec-
tion of the distribution of the simulated values. It implies that no combi-
nation of such random value can be used to derive additional information,
i.e. each combination can be simulated computationally indistinguishably
by another random number.

For the shares another lemma is required.



134 Related Problems

Lemma 8.5 To each party Xi or SP only shares from other parties Xj of
plain texts that are later decrypted in the protocol are revealed.

Lemma 8.5 also follows directly from inspection of the simulator and the
protocol. It implies that no coalition of t− 1 parties can obtain t shares of
a plaintext and decrypt it.

It follows from Lemma 8.5 that the shares of the view of up t− 1 parties
can be simulated using a simulator for the shares from the plaintext and
no additional information can be obtained. It follows from Lemma 8.4 that
other values can be simulated using random numbers. Theorem 8.2 follows
from the combination of Lemma 8.4 and 8.5, since then all values can still
be simulated just providing input and output to the simulator.

8.4 Summary

The chapter describes two variations of the benchmarking protocol: con-
stant cost benchmarking and coalition-safe benchmarking. Constant cost
benchmarking trades median and best-in-class against constant communi-
cation cost per subscriber, i.e. the constant cost benchmarking protocols do
not compute median and best-in-class, but only require constant communi-
cation cost per subscriber and therefore scale to larger peer group sizes. The
problem of a common-key is addressed by a short-lived common key vari-
ation and the coalition-safe benchmarking protocol. The short-lived com-
mon key ensures security against off-line break-ins at the cost of anonymity.
Coalition-safe benchmarking significantly improves security by replacing the
common keys with a threshold encryption system, but trades this gain in
security against collusion with the service provider for a quadratic commu-
nication cost per subscriber, i.e. it is not likely to be practical any more.
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9 Conclusions

This chapter concludes this dissertation and summarizes its accomplish-
ments in order to support the main thesis. It provides an outlook on future
topics giving a critical discussion of the generalization of the accomplish-
ments.

9.1 Thesis Summary

Chapter 3 introduces the problem of a privacy-preserving benchmarking
platform. It describes the statistics necessary and introduces the central
communication model. The first conclusion presented is that a privacy-
preserving protocol for the five statistics average, variance, maximum, me-
dian and best-in-class in the central communication model is required to
realize a privacy-preserving benchmarking platform.

In addition, a first outline of the problem is given and it is shown that
in order to keep the KPIs private (from the service provider), a single peer
group model is the only feasible one.

In Chapter 4 such a benchmarking protocol is given. The protocol is the
first that satisfies all the requirements and is asymptotically more efficient
than comparable previous work. The necessary key distribution is reduced
to the common public-key infrastructure model.

The protocol is proven secure in the semi-honest security model, such
that it is comparable to related work. Furthermore, it is proven secure in
the constrained malicious model that supports the economic assumptions of
the service provider model.

In conclusion, Chapter 4 shows that a privacy-preserving benchmark-
ing platform can exist in theory and provides building instructions for the
concrete realization of one. The fact that such a benchmarking platform is
feasible in theory is not surprising given previous work, yet the protocol also
contributes its most efficient solution.

Chapter 5 extends the construction of the benchmarking protocol with
an efficient technique for privacy-preserving comparison. Its practical per-
formance is measured and clearly superior to related work, but it is based
on randomization and as such its practical leakage needs to be evaluated.
This dissertation introduces practical assessment of leakage by experimen-



136 Conclusions

tation. Its measured leakage is very acceptable in practice and it is therefore
adopted in the remaining benchmarking protocols.

Chapter 6 analyzed how the benchmarking protocol can be built into a
software system. It first identified the need to separate statistics retrieval
from statistics computation. This allows for a more flexible design and
immediate customer interaction after registration.

Then it solved the problem of peer group formation under the constraints
arising from the need for a single peer group model. Each subscriber needs
to be assigned a peer group before the benchmarking protocol can start.
This peer group assignment needs to be complete and satisfy the minimum
size requirement for each peer group. An appropriate algorithm based on
data clustering is given.

Furthermore, it analyzed the deployment of the benchmarking platform
and the corresponding orchestration models. It is shown that the bench-
marking protocol can be expected to complete within one polling interval in
a polling model where all subscribers act as clients only.

In conclusion, Chapter 6 shows that it is possible to build a privacy-
preserving benchmarking platform around a privacy-preserving benchmark-
ing protocol.

In cooperation with the solution management at SAP, such a platform
has been implemented. The results of the evaluation with the system are
presented in Chapter 7. It is shown that the completion time of the bench-
marking protocol is acceptable under realistic peer group sizes and network
conditions. Dependence on the security parameter is also analyzed.

This dissertation demonstrates that a privacy-preserving benchmarking
platform is feasible in theory and in practice under real-world requirements
and conditions. Not only theoretic results are developed, but an implemen-
tation of the platform is also evaluated. One can therefore conclude that a
privacy-preserving benchmarking is practically feasible.

9.2 Outlook

This dissertation explores the procedure for building a specific privacy-
preserving business application (i.e. benchmarking). Although the applica-
tion was anticipated in theory, it led to a novel computer systems application
and implementation. This dissertation makes few attempts at generalizing
the experience gained by building a benchmarking application to other busi-
ness applications.

It is nevertheless a strong belief of the author that this experience is very
valuable in building other privacy-preserving business applications. First of
all, the methodology can be applied to other business applications as well.
This statement can be supported by the fact that a significant research
grant application by the author has been approved which follows the same
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methodology for privacy-preserving supply chain management.
In supply chain management (SCM) one can plan the optimal supply

chain for a collaboration of companies. It is well-known that a globally
optimized supply chain reduces costs compared to local decision making.
Despite this, collaborative supply chain planning requires the revelation of
sensitive data, such as costs and capacities, and is therefore not adopted
in practice. Privacy-preserving SCM avoids this problem by computing the
optimization using a secure computation protocol.

This paragraph will summarize the methodology used throughout this
dissertation and outline how it could be applied to privacy-preserving SCM.

1. Define the computations necessary and gather all non-functional re-
quirements.

Supply chain master planning (SCMP) is the most general form of
global optimization and it requires a multi-party computation of linear
programming problems. The number of participants in supply chain
planning is usually low and a service provider model using a central
server can be adopted for a 4th party logistics provider.

2. Analyze state-of-the-art and build novel secure computation protocols.

Existing SCM protocols are two-party and existing linear program-
ming protocols as well. A novel solution is therefore needed.

3. Design and architect a system using the secure computation protocol.

SCMP requires certain planning periods. These need to be chosen
in correspondence to the security requirements. As well, it needs to
be shown that the solution does not reveal the inputs. An incentive-
compatible distribution of the gains also needs to be identified, such
that everybody is inclined to provide the correct inputs.

4. Implement and evaluate the system using a prototype.

Practical performance is not guaranteed for a complex problem such
as linear programming. A practical evaluation is therefore required.

In summary, in case of success one could then conclude that the thesis
is true that a practical privacy-preserving SCM is feasible.

Second, one can expect that when applying this dissertation’s method-
ology, similar or related questions will arise, e.g. a low number of constant
rounds will probably be required for practical performance. Quadratic com-
munication cost seems to be acceptable, especially in problem with a low
number of participants, such as privacy-preserving SCM. Supply chain plan-
ning systems can fortunately be built off-line, such that a decoupling of user
interaction and protocol execution is already foreseen.
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9.3 Summary

This chapter shows that the dissertation supports the thesis that a privacy-
preserving benchmarking platform is practically feasible. Then an outlook
on how to apply this dissertation’s methodology to other privacy-preserving
business applications is given.
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