4]}

Karlsruher Institut fur Technologie

Karlsruhe Reports in Informatics 2010,13
Edited by Karlsruhe Institute of Technology,

Faculty of Informatics
ISSN 2190-4782

Formal Verification of Object-Oriented
Software

Papers presented at the International Conference,
June 28-30, 2010, Paris, France

Bernhard Beckert « Claude Marché (Eds.)

2010

KIT — University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

=" Fakultat fur Informatik

Please note:

This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Bernhard Beckert « Claude Marché (Eds.)

Formal Verification of
Object-Oriented Software

Papers presented at the International Conference,
June 28-30, 2010, Paris, France

Published as:

Technical Report,

Department of Informatics,
Karlsruhe Institute of Technology,
2010-13

Editors

Bernhard Beckert

Karlsruhe Institute of Technology

Institute for Theoretical Informatics

Am Fasanengarten 5, 76131 Karlsruhe, Germany
Email: beckert@kit.edu

Claude Marché

INRIA Saclay - Ile-de-France

Parc Orsay Université

4, rue Jacques Monod, F-91893 Orsay Cedex, France
Email: Claude.Marche@inria.fr

Preface

This volume contains the invited papers, research papers, system descriptions,
case studies, and position papers presented at the International Conference on
Formal Verification of Object-Oriented Software (FoVeOOS 2010), that was held
June 28-30, 2010 in Paris, France. Post-conference proceedings with revised
versions of selected papers will be published within Springer’s Lecture Notes in
Computer Science series after the conference.

Formal software verification has outgrown the area of academic case studies,
and industry is showing serious interest. The logical next goal is the verification
of industrial software products. Most programming languages used in industrial
practice are object-oriented, e.g. Java, C++, or C#. FoVeOOS 2010 aimed to
foster collaboration and interactions among researchers in this area.

FoVeOOS was organised by COST Action IC0701 (www.cost-ic0701.org),
but it went beyond the framework of this action. The conference was open to
the whole scientific community. All submitted papers were peer-reviewed, and
of the 35 submissions, the Programme Committee selected 23 for presentation
at the conference.

We wish to sincerely thank all the authors who submitted their work for
consideration. And we would like to thank the Program Committee members
as well as additional referees for their great effort and professional work in the
review and selection process. Their names are listed on the following pages.

In addition to the contributed papers, the programme of FoVeOOS 2010 in-
cluded three excellent keynote talks. We are grateful to June Andronick (NICTA,
Sydney, Australia), Kim G. Larsen (Aalborg University, Denmark), Francesco
Logozzo (Microsoft Research, Redmond, USA) for accepting the invitation to
address the conference.

It was a team effort that made the conference so successful. We partic-
ularly thank Sarah Grebing, Vladimir Klebanov, and Emmanuelle Perrot for
their hard work and help in making the conference a success. In addition, we
gratefully acknowledge the generous support of COST Action IC0701, Microsoft
Research Redmond, the Institut National de Recherche en Informatique et Au-
tomatique (INRIA), and the Karlsruhe Institute of Technology

June 2010 Bernhard Beckert
Claude Marché

111 Technical Report, KIT, 2010-13

Formal Verification of Object Oriented Software

Program Committee

Gilles Barthe
Bernhard Beckert
Einar Broch Johnsen
Gabriel Ciobanu
Dave Clarke

Mads Dam

Ferruccio Damiani
Sophia Drossopoulou
Paola Giannini
Dilian Gurov

Reiner Hahnle

Marieke Huisman
Thomas Jensen

Joe Kiniry

Viktor Kuncak

Dorel Lucanu

Maria del Mar Gallardo
Claude Marché

Julio Marino

Marius Minea

Anders Mgller
Rosemary Monahan
Wojciech Mostowski
Peter Miiller

James Noble

Olaf Owe

Ernesto Pimentel Sanchez
Arnd Poetzsch-Heffter
Erik Poll

Anténio Ravara
Wolfgang Reif

René Rydhof Hansen
Peter H. Schmitt
Aleksy Schubert
Gheorghe Stefanescu
Bent Thomsen
Shmuel Tyszberowicz
Tarmo Uustalu
Burkhart Wolff

Elena Zucca

Technical Report, KIT, 2010-13

IMDEA Software, Madrid, Spain

Karlsruhe Institute of Technology, Germany
University of Oslo, Norway

University Alexandru Ioan Cuza, Romania
Katholieke University Leuven, Belgium
KTH Stockholm, Sweden

University of Torino, Italy

Imperial College, UK

University Piemonte Orientale, Italy

KTH Stockholm, Sweden

Chalmers University of Technology, Gothen-
burg, Sweden

University of Twente, The Netherlands
IRISA/CNRS, France

ITU Copenhagen, Denmark

EPF Lausanne, Switzerland

University Alexandru Ioan Cuza, Romania
University of Malaga, Spain

INRIA Saclay-Ile-de-France, France
University Politecnica de Madrid, Spain
Politehnica University of Timisoara, Romania
University Aarhus, Denmark

NUI Maynooth, Ireland

University Nijmegen, The Netherlands
ETH Zrich, Switzerland

Victoria University of Wellington, New Zealand
University of Oslo, Norway

University of Malaga, Spain

University of Kaiserslautern, Germany
University of Nijmegen, The Netherlands
New University of Lisbon, Portugal
University of Augsburg, Germany
University of Aalborg, Denmark

Karlsruhe Institute of Technology, Germany
University of Warsaw, Poland

University of Bucharest, Romania
University of Aalborg, Denmark

University of Tel Aviv, Israel

Institute of Cybernetics, Tallinn, Estonia
University Paris-Sud (Orsay), France
University of Genova, Italy

v

Papers Presented at the Int. Conf., June 2010, Paris, France

Program Co-Chairs

Bernhard Beckert Karlsruhe Institute of Technology, Germany
Claude Marché INRIA Saclay-Ile-de-France, France

Organising Committee

Claude Marché (chair) INRIA Saclay-Ile-de-France, France
Bernhard Beckert Karlsruhe Institute of Technology, Germany
Vladimir Klebanov Karlsruhe Institute of Technology, Germany
Emmanuelle Perrot INRIA Saclay—ile—de—France, France

Sponsoring Institutions

COST Action IC0701 “Formal Verification of Object-Oriented Software”
Institut National de Recherche en Informatique et Automatique (INRIA)

Karlsruhe Institute of Technology
Microsoft Research

Additional Referees

Davide Ancona Christoph Feller
Mohamed Faouzi Atig Pietro Ferrara
Viviana Bono Kathrin Geilmann
Daniel Bruns Christoph Gladisch
Richard Bubel Clément Hurlin
Jacek Chrzaszcz Toannis Kassios
Joao Costa Seco ITham Kurnia
Delphine Demange Laurent Mauborgne
Johan Dovland Keiko Nakata
David Faitelson Mads Chr. Olesen
A%

Gerhard Schellhorn
Martin Steffen
Kurt Stenzel
Volker Stolz

Mark Timmer
Bogdan Tofan
Varmo Vene
Amiram Yehudai
Greta Yorsh

Technical Report, KIT, 2010-13

Formal Verification of Object Oriented Software

Table of Contents

Abstracts of Invited Talks

Timing Analysis of Ebedded Software Systems........................ 1
Kim G. Larsen

The L4.verified Project and its next steps 2
June Andronick

Clousot: Static contract checking with Abstract Interpretation 5
Francesco Logozzo

Contributed Papers

Adapting Components using Interface Automata Enriched by the
Action SemantiCsut ittt 7
Samir Chouali, Sebti Mouelhi, and Hassan Mountassir

CVPP: A Tool Set for Compositional Verification of Control-Flow
Safety Properties (System Description) 22
Marieke Huisman and Dilian Gurov

A Pushdown System Representation for Unbounded Object Creation
(Position Paper/Work in Progress) 38
Jurriaan Rot, Frank de Boer, and Marcello Bonsangue

Validating Timed Models of Deployment Components with Parametric
1070781 1 1 1< 1) P 53
Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte, and Silvia Lizeth
Tapia Tarifa

JMLUnit: The Next Generation (System Description) 68
Daniel M. Zimmerman and Rinkesh Nagmoti

Verification Based Test Case Generation for Scoped Memory in
Safety-Critical Java (Position Paper/Work in Progress) 83
Gabriele Paganelli

Towards Testing a Verifying Compiler (Position Paper/Work in Progress) 98
Markus Wagner and Thorsten Bormer

Dynamic Frames in Java Dynamic Logic 113
Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weifs

Technical Report, KIT, 2010-13 VI

Papers Presented at the Int. Conf., June 2010, Paris, France

A Dynamic Logic for Unstructured Programs with Embedded Assertions 128
Mattias Ulbrich

A Refinement Methodology for Object-Oriented Programs 143
Asma Tafat, Sylvain Boulmé, and Claude Marché

Data refinement based testing il 160
David Faitelson and Shmuel Tyszberowicz

Satisfiability Solving and Model Generation for Quantified First-order
Logic Formulas 176
Christoph Gladisch

An Experience Report on the Verification of Algorithms in the C++
Standard Library using Frama-C (Experience Report/Case Study) 191
Jens Gerlach and Jochen Burghardt

Formal Verification of Industrial C Code using Frama-C: a Case Study
(Experience Report/Case Study) 205
Dillon Pariente and Emmanuel Ledinot

Verification of Variable Software: An Experience Report (Experience
Report/Case Study)o oo 220
Crystal Din, Richard Bubel, and Reiner Hdhnle

Vétail: PR-STV Ballot Counting Software for Irish Elections
(Experience Report/Case Study) 235
Dermot Cochran and Joe Kiniry

SAWJA: Static Analysis Workshop for Java (System Description) 253
Laurent Hubert, Nicolas Barré, Frédéric Besson, Delphine Demange,
Thomas Jensen, Vincent Monfort, David Pichardie, and Tiphaine
Turpin

State-based Object Models are more Abstract than Trace-based
Models: Towards a Unified Specification Framework 268
Ilham W. Kurnia, Arnd Poetzsch-Heffter, and Yannick Welsch

Controlling the Unknown (Position Paper/Work in Progress) 283
Casandra Holotescu

A Formalization of the RT'SJ Scoped Memory Model in Dynamic Logic . 298
Christian Engel and Peter H. Schmitt

Specifying Imperative ML-like programs Using Dynamic Logic.......... 314

Séverine Maingaud, Vincent Balat, Richard Bubel, Reiner Hdhnle,
and Alexandre Miquel

VII Technical Report, KIT, 2010-13

Formal Verification of Object Oriented Software

Abstract compilation of object-oriented languages into coinductive

CLP(X): when type inference meets verification.................... ... 330
Davide Ancona, Andrea Corradi, Giovanni Lagorio, and Ferruccio
Damiani

Verification of Software Product Lines: Reducing the Effort with
Delta-oriented Slicing and Proof Reuse (Position Paper/Work in Progress) 345
Daniel Bruns, Viadimir Klebanov, and Ina Schaefer

Author Index 359

Technical Report, KIT, 2010-13 VIII

Timing Analysis of Embedded Software Systems

Kim G. Larsen

Department of Computer Science,
Aalborg University,
kgl@cs.aau.dk

Embedded software is often applied in safety-criticial systems, e.g. the brak-
ing system of a car or the steering gear of an airplane. Many of these safety-
critical systems are also time-critical, meaning that the calculations performed
by the tasks of the embedded system need not only be functionally correct but
must be carried out in a timely fashion. In this talk we show how real-time model
checking using the verification tool UPPAAL (www.uppaal.com) may be used
to give such timing guarantees.

In particular, real-time model checking may be used for efficient schedula-
bility analysis of tasks providing a less pessimistic and more general analysis
compared with classical scheduling methods for single-processor. We apply the
method to the schedulability analysis of Safety Critical Hard Real-Time Java
programs, based on a translation of programs, written in the Safety Critical Java
profile to timed automata models verifiable by the UPPAAL model checker. The
approach is implemented in the tool SARTS (http://sarts.boegholm.dk/).

However, in order for the schedulability analysis to be reliable and efficient,
safe and tight estimates of the Worst-case execution time (WCET) of tasks
must be provided. We show how real-time model checking and static analy-
sis may be used to obtain safe and tight WCETSs for programs running on
platforms featuring caching and pipelining. The method works by construct-
ing a UPPAAL model of the program being analysed and annotating the model
with information from an inter-procedural value analysis. The program model
is then combined with a model of the hardware platform and model checked for
the WCET. Currently support for the platforms ARM7, ARM9 and ATMEL
AVR 8-bit is available. The approach is implemented in the tool METAMOC
(http://metamoc.martintoft.dk/).

1 Technical Report, KIT, 2010-13

The L4.verified Project and its next steps
Extended abstract

June Andronick

NICTA*, Australia
School of Computer Science and Engineering, UNSW, Sydney, Australia

june.andronick@nicta.com.au

The work presented here aims to tackle the general challenge of building
truly trustworthy systems. This requires starting at the operating system (OS)
level, and the most critical part of the OS is its kernel. The kernel is defined
as the software that executes in the privileged mode of the hardware, meaning
that there can be no protection from faults occurring in the kernel, and every
single bug can potentially cause arbitrary damage. The concept of microkernels
follow the idea [4] of minimizing the system’s trusted computing base (TCB)—the
part of the system that can bypass security. A microkernel, as opposed to the
more traditional monolithic design of contemporary mainstream OS kernels, is
reduced to just the bare minimum of code wrapping hardware mechanisms and
needing to run in privileged mode. All OS services are then implemented as
normal programs, running entirely in (unprivileged) user mode, and therefore
can potentially be excluded from the TCB. A well-designed high-performance
microkernel, such as the various representatives of the L4 microkernel family,
consists of the order of 10 000 lines of code, making the trustworthiness problem
more tractable.

The L4.verified project produced, in August 2009, the world’s first formally
proven correct general-purpose microkernel: sel.4 [2]. As a microkernel, sel.4
provides a minimal number of services to applications: abstractions for virtual
address spaces, threads, inter-process communication (IPC). One of sel4’s key
differentiators is its fine-grained access control. The formal verification, from a
high-level model down to low-level C code, was done using interactive, machine-
assisted and machine-checked proof. Specifically, we used the theorem prover
Isabelle/HOL [3]. Formally, our correctness statement is classic refinement: all
possible behaviours of the C implementation are a subset of the behaviours of the
abstract specification. The main assumptions of the proof are correctness of the
C compiler and linker, assembly code, hardware, and boot code. The verification
target was the ARM11 uniprocessor version of sel.4, with an unverified x86 port.
If the assumptions of the verification hold, we have mathematical proof that,
among other properties, the selL4 kernel is free of buffer overflows, NULL pointer
dereferences, memory leaks, and undefined execution. Another key benefit of
a functional correctness proof is that proofs about the C implementation of

* NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT

Centre of Excellence program

Technical Report, KIT, 2010-13 2

the kernel can now be reduced to proofs about the specification for properties
preserved by refinement.

The L4.verified project has demonstrated that with modern techniques and
careful design, an OS microkernel is entirely within the realm of full formal
verification. The next big step in the challenge of building truly trustworthy
systems is to provide a framework to develop secure systems on top of sel.4.
Formally verifying programs with sizes approaching 10000 lines of code is a
significant improvement in what formal methods was previously able to verify
with reasonable effort. However, 10 000 lines of code is still a significant limit on the
application of formal methods to the verification of contemporary software systems.
Modern software systems, beyond very simple embedded systems, frequently
consist of millions of lines of code.

Our vision again follows the idea of minimizing the TCB and comes from
the observation [1] that not all software in a large system necessarily contributes
to a given property of interest, such as isolation or secure communication. Our
approach is to develop methodologies and tools that enable developers to system-
atically (i) isolate the software parts that are not critical to a targeted property,
and prove that nothing more needs to be verified about them for the specific
property; and (i) formally prove that the remaining critical parts satisfy the
targeted property. This vision builds on, and is enabled by, the formal verification
of the sel.4 microkernel. The access control mechanism enforced by sel.4 is used
to isolate the identified large untrusted components, in a way that prevents them
from violating a defined security property, leaving only the trusted components
to be formally verified. The first steps of this approach have been demonstrated
on a concrete example system, namely a multilevel secure access device aiming to
isolate networked services of different classification levels. The system’s security
architecture has been designed to minimize the TCB to a single trusted compo-
nent (in addition to the underlying kernel) and formalized in Isabelle/HOL. This
formal security architecture has been used to prove that information cannot flow
from one back-end network to another.

This case study illustrates our vision of how large software systems consisting
of millions of lines of code can still have formal guarantees about certain targeted
properties. This is achieved by building upon the access control guarantees
provided by the verified seL.4 microkernel and using it to isolate components such
that their implementation need not be reasoned about.

References

1. J. Alves-Foss, P. W. Oman, C. Taylor, and S. Harrison. The MILS architecture for
high-assurance embedded systems. Int. J. Emb. Syst., 2:239-247, 2006.

2. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel.4:
Formal verification of an OS kernel. In 22nd SOSP, pages 207-220, Big Sky, MT,
USA, Oct 2009. ACM.

3. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

J. Andronick

3 Technical Report, KIT, 2010-13

The L4.verified Project and its next steps

4. J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proc. IEEFE, 63:1278-1308, 1975.

Technical Report, KIT, 2010-13 4

Clousot: Static contract checking with Abstract
Interpretation

Francesco Logozzo!

Microsoft Research, Redmond, WA (USA)
logozzo@microsoft.com

A limiting factor to the adoption of formal methods in the everyday pro-
gramming practice is that tools do not integrate well in the existing program-
ming workflow. The price programmers has to pay to enjoy the benefits of formal
methods include the use non-mainstream languages or non-standard compilers.

The CodeContracts project [2] at Microsoft aims at bridging the gap be-
tween formal specification and verification and a principle of least interference
in the existing programmer’s workflow. The main insight of CodeContracts is
that specifications can be authored as code [1]. Contracts take form of method
calls to a standard library. Therefore CodeContracts enable the programmer to
write down specifications as Boolean expressions in their favorite .NET language
(C#, F#, VB ...). This has several advantages: semantics of contracts is given
by the IL produced by the compiler, no compiler modification is required, con-
tracts are serialized and persisted as code (no need for separate parsing), all
the IDE support (e.g. intellisense) the programmer is used to is automatically
leveraged.

CodeContracts provide a standard and uniform way to describe contracts
which can then be consumed by several tools. At Microsoft Research, we have de-
veloped a tool to automatically generate the documentation (ccdoc), to perform
runtime checking (ccrewrite) and to perform static checking (cccheck/Clousot).

The static contract checker is based on abstract interpretation. It analyzes
every method in isolation. The precondition of the method is turned into an
assumption and the postcondition into an assertion. For public methods, the ob-
ject invariant is assumed at the method entry and asserted at the exit point. For
each method call, its precondition is asserted, and the postcondition assumed.
The first phase of the analysis process resolves the heap (under some optimistic
hypotheses e.g. on parameter aliasing), providing a scalar view of the program.
On the top of that several value analyses are run to discover facts (including
loop invariants) on the program. Value analyses include a non-null analysis, a
numerical analysis [3], a pointer usage analysis and a container analysis. The
value analyses propagate the initial (abstract) state through the method body
performing a fixpoint computation with widening. The inferred facts are used
to discharge proof obligations. Proof obligations are either explicit assertions in
the code or semantic-induced ones such as non-null dereferences or array index-
ing. If a proof obligation cannot be discharged then the analysis is refined. One
refinement is the use of a more expressive (yet expensive) abstract domain. If
even this fails, then a backward analysis is performed to have a precise yet on
demand handling of disjunctions. If the user turns on the opportune switch, then

5 Technical Report, KIT, 2010-13

Clousot: Static contract checking with Abstract Interpretation

Clousot uses the inferred information to extract the method postcondition and
then to push it to all the callers.
CodeContracts can be downloaded at:
http://research.microsoft.com/en-us/projects/contracts/

References

1. Manuel Fahndrich, Michael Barnett, and Francesco Logozzo. Embedded contract
languages. In SAC ’10: Proceedings of the 2010 ACM Symposium on Applied Com-
puting, pages 2103-2110, New York, NY, USA, 2010. ACM.

2. Manuel Fahndrich, Mike Barnett, and Francesco Logozzo. Code Contracts, March
2009.

3. Vincent Laviron and Francesco Logozzo. Subpolyhedra: A (more) scalable approach
to infer linear inequalities. In VMCAI ’09: Proceedings of the 10th International
Conference on Verification, Model Checking, and Abstract Interpretation, pages 229—
244, Berlin, Heidelberg, 2009. Springer-Verlag.

Technical Report, KIT, 2010-13 6

Adapting Components Using Interface
Automata Enriched by the Action Semantics

Samir Chouali, Sebti Mouelhi, and Hassan Mountassir

Computer Sciences Laboratory (LIFC)
University of Franche-Comté
Besangon, FRANCE
{samir.chouali, sebti.mouelhi,hassan.mountassir}
@lifc.univ-fcomte.fr

Abstract. Reusability is one of the principal purposes of Component-
Based Software Engineering (CBSE) and represents an important charac-
teristic of a high-quality software component. It allows the use of compo-
nents in diverse situations without affecting their codes. In this context,
it is necessary to propose approaches to adapt a component with its envi-
ronment when mismatches occur during their interactions. In this paper,
we present a formal approach based on interface automata strengthened
by the semantics of actions to adapt components. The elimination of mis-
matches is made at the signature, the protocol, and the semantic levels
to ensure more flexible interoperability between components. Interface
automata is a formalism intended to schedule between required and of-
fered services of a component. In this work, the model is enriched by pre
and post-conditions on parameters of component actions’.

Keywords: Reusability, Action semantics, Interface automata, Compo-
nent adaptation

1 Introduction

Component-based systems are made up of collection of interacting entities called
components. The outline of component-based software engineering [19, 9] is to
develop software applications not from scratch but by assembling various library
components. This development approach allows software reuse without changing
components codes. Consequently, one saves on development costs and time and
one can extend component-based systems via plug and play components.

A component is a unit of composition with contractually specified interfaces
and explicit dependencies [19]. An interface describes the services offered or
required by a component without disclosing the component implementation. It
is the only access to the information of a component. Interfaces may describe
components at the level of action signatures (method signatures), behaviors or

! This work has received support from the The French National Research Agency,
ANR-06-SETI-017 (TACOS).

7 Technical Report, KIT, 2010-13

Adapting Components using Interface Automata Enriched by the Action Semantics

protocols (scheduling of method calls), action semantics (method semantics),
and the quality of services [12, 20].

Usually interoperability is not guaranteed during the component assembly
and reuse. This is due to possible interface mismatches that may occur, between
components, at the different levels cited above [6]. The reason is that compo-
nents do not match perfectly the requirements of their environment. In this
case, component adaptation should be performed in order to eliminate the re-
sulting interface mismatches and ensure a more flexible interoperability between
components. Software adaptation is the use of software entities, called adaptors,
capable of enabling a correct interaction between components when mismatches
occur at the level of signatures, protocols, and semantics.

Interfaces that expose protocol information of components can be specified
naturally in an automaton-based language like interface automata [1, 2, 3]. Tt
has the ability to model along a temporal order, both the input requirements
(input actions) and the output behavior (output actions) of a component. The
composition of two interfaces is achieved by synchronizing their shared output
and input actions. An interesting verification approach was also proposed to de-
tect interface incompatibilities that may occur when, from some states in the
synchronized product, one automaton issues a shared action as output which is
not accepted as input in the other. We say that those states are illegal. The pro-
posed compatibility check approach of interface automata is optimistic [1]. Two
interface automata A; and A, are compatible if there is an environment pre-
venting their synchronization to enter illegal states. The composition approach
of the other automata-based formalisms describing the interface protocols of
components are considered pessimistic.

In this paper, we focus on adapting components whose behaviors are de-
scribed by interface automata enriched by the semantics of action parameters.
Actions are annotated by pre and post-conditions on parameters. In [8], we
had treated only adaptation at the protocol level. Our purpose was to gener-
ate automatically an adaptor (interface automaton in-the-middle) for exactly
two component interface automata according to a mapping that establishes a
number of rules relating their mismatched input and output actions. The se-
mantic adaptability between mismatched actions is checked before generating
the adaptor by verifying the satisfiability of some implications between pre and
post-conditions of the parameters of the mismatched actions. The automatic
generation of the adaptor takes into account the orderings of actions of both
interfaces and constructs progressively an automaton by consuming output ac-
tions before issuing outputs for their correspondent inputs in the mapping. One
of the aims of this paper and the work in [8] is to bring together the optimistic
composition approach of interface automata and adapting them at the signa-
ture, the protocol and the semantic levels. Therefore, our proposed adaptation
presents a reliable way to interoperate components by verifying the semantics of
their actions besides the elimination of mismatches, its principal role.

The paper is organized as follows. In section 2, we present our extended
formalism based on interface automata approach to verify component interoper-

Technical Report, KIT, 2010-13 8

S. Chouali, S. Mouelhi, H. Mountassir

ability. In section 3, we describe the minimal specification of the action mismatch
between two components. In section 4, we check the semantic adaptability of the
mismatched actions. In section 5, we specify the adaptation of component be-
haviors using interface automata. Related works to our approach, the conclusion,
and future works are presented in section 6 and 7.

2 Interface Automata Enriched by the Semantics of
Action Parameters

Interface automata (IAs) have been defined by L. Alfaro and T. Henzinger [1],
to model the temporal behavior of software component interfaces. These models
are non-input-enabled I/O automata [13] which means that at every state some
input actions may be non-enabled. Every component interface is described by
one interface automaton where input actions are used to model methods that
can be called, and the end of receiving messages from communication channels,
as well as the return values from such calls. Output actions are used to model
method calls, message transmissions via communication channels, and exceptions
that occur during the methods executions. Local operations are called hidden
actions. The alphabet of an interface automaton is built on the actions names
of a component. This means that for each input action (or provided service) a
in the component signature, there is an element a? in the alphabet and for each
output action (or required service) b, there is an element b!. A hidden action h
is represented by the element h; in the alphabet.

Definition 1 (Interface Automata). An interface automaton A = (Sy, I4,
XL, X9, B8 54) consists of

— a finite set Sa of states;

— a subset of initial states Ia C Sa. Its cardinality |I14|>< 1 and A is called
empty if I4 = 0;

— three disjoint sets 2}4,22 and X9 of input, output, and hidden actions
names;

—asetdqg CSqxXaxSa of transitions between states.

The input and output actions of an automaton A are called external actions
uniformly (2$¢= X% U ¥'9) while output actions and internal actions are called
locally-controlled actions (Y= X9 U XH). The set of hidden actions ¥ may
contain a special action epsilon e that symbolizes the no-operation event. The
set X4 refers to the set of all actions of A. We define by X% (s), £9(s), X4 (s),
Yt(s), Xe(s), the input, output, internal, external, and local actions enabled
at the state s. X 4(s) denotes the set of all actions enabled from s.

Our approach extends interface automata by considering the action semantic

to ensure a reliable verification of component interoperability. In [1], the check

2 |S| is the cardinality of some set S.

9 Technical Report, KIT, 2010-13

Adapting Components using Interface Automata Enriched by the Action Semantics

of the component compatibility is made only at the level of signatures and pro-
tocols, which are not sufficient to decide if two interfaces are compatible or not.
Our contribution uses pre and post-conditions over the list of input and output
parameters of components actions. These constraints on actions establish the
semantic level of components interoperability.

The signature of an action « is the action name and the list of its parameters.
An action may have n input parameters (where n > 0) belonging to the set Pl
and at most one output parameter belonging to Py . In the case where an action
a has parameters, its signature is represented by a(iy,...,in) — (0) where iq,...,i,
€ P! and 0 € P°. The absence of parameters (input or output) is denoted by ().
The semantics of external actions is depicted by pre and post-conditions defined
over the list of parameters. Pre and post-conditions are propositional formulae
of the propositional logic® built up from atomic assertions.

Components are black boxes whereof actions store some data and provide
some externally visible behavior. Thus, the pre and post-conditions of action
parameters have to be well-stated in such way no information about the action
implementation are revealed. For example, given an action that computes the
power of a number n and output the result in a parameter p. A legal post-
condition of the action is “p > 0”. The post-condition “p = n x n” is not allowed.
This is why we assume that, for the rest of the paper, arithmetic operators like
addition and multiplication are not allowed in the action semantics.

Definition 2 (Action Semantics). The semantics ¥, of an external action a
is defined by the tuple (Preg,, Posty,) where

— Preg, is defined in terms of input parameters. It is set to true if a has no
input parameters (Pl =));

— Posty, is defined in terms of both input and output parameters. It is set to
true if a has no parameters (PL = P° = ().

For a parameter p, we define a domain D, which is a set of values that p can
take. Atomic assertions used in the prepositions have the form p; * py or p *
v where pi1, pa, and p are parameters of a given action, * € {=,#} and v is
a valuation for the parameter p in D,. For real and integer parameters, the
operator * is in {=,#,<,>,<,>}.

Given an interface automaton A, we assume that for each transition (s,a,s”)
€ d4 where a is external, the valuations of all parameters p € P U P° have to
be defined in D, and they must not be in contradiction with the precondition
Prey, and the post-condition Posty,. We denote by ¥/, the semantics of the
action a in X,

The composition of two interface automata may take effect only if their ac-
tions are disjoint, except for shared input and output ones. Shared input and
output actions must have the same number, the same type, the same order of
input and output parameters. The parameter names of two shared actions may
be different. During the composition of two interface automata, shared actions
synchronize and all other actions are interleaved asynchronously.

3 The operators of the propositional logic are {\,V, <=, -, =}

Technical Report, KIT, 2010-13 10

S. Chouali, S. Mouelhi,

Definition 3 (Composability). Two interface automata Ay and Ay are com-
posable if

LN =33 nEQ =S \{nZa, =ZE \{JnZy =0.

Shared(A1,Az) = (X%, N X9) U (X4, N XY)) is the set of shared input
and output actions of A; and As. Suppose that the signature of an action a €
Shared(A1,As) is given by a(i1,...,in) — (0) in A; and by a(d),...,i},) — (¢') in
Ay then, Dy, C Dy for 1<k<mn and D, C D, in the case where a € X9 and
a < 2114 Othervvlse D;, 2 Dy for 1<k< n and D, 2 D, . This property is
called the domain mcluszon of the parameters of shared actions.

If all of the assumptions cited above are satisfied for the shared actions
signatures of two interface automata A; and A, to be composed, we have to
perform the renaming of parameter names in their pre and post-conditions.

Definition 4 (Parameter Renaming). Given two composable interface au-
tomata Ay, As where Shared(A1,As) # 0 and an action a in Shared(A;,As), the
signature of a is given by a(i11,...,in1) — (01) in Ay and aliia,...,in2) — (02)
in Ay. The renaming of the parameters names in the semantics WAt and W22 is
defined by the substitution of i12 by i11,...,in2 bY in1, and oo by 01 in Pre A2 and
PostWA2 or the substitution of i11 by i12,...,in1 bY in2, and o1 by o0z in pr@ o
and ﬁost%ql,

We denote by g/ A2 and wite/ A1 the semantics of a shared external action
a after the parameter renaming respectively in A; and As. We can now define
the synchronized product Ay ® A, properly.

Definition 5 (Synchronized Product). Let A; and As be two composable
interface automata. The product Ay ® As is defined by

- SA1®A2 = SA1 X SA2 and IA1®A2 = IA1 X IAQ;
- 2A1®A2 (EI uxy ,) \ Shared(Ay, As);
EA1®A2 (Z‘A1 UZ‘A) \ Shared(Ai, As);
— S oa, = X8 UXH U Shared(A;, As);
- ((51752) (51752)> € 5A1®A2 if
o a¢ Shared(Al,Ag) A (s1,a,8)) €84, Asa = sh
o a & Shared(A1, A2) A (s2,a,85) €04, Ns1=8)
e a € Shared(Ay, Ay) A((s1,a,5)) € 04, Aa € X)N ((s2,a,5) € da,Na €
EAz)/\ Pre oA/ A = Pre A2/A1/\ Post w2/ A1 = Post oA/ A
e ac Shared(Al,Ag) ((51,a s)) € 04, Na € ZUA ((32,a sh) € da,Na €
Zgz)/\ P?”eu./;,z/Al = Preu./:,l/AQ/\ Postgp;xl/AQ =]')OSqu./aAZ,/A1

The incompatibility between A; and A, is due to (i) the existence of some
states (s1,$2) in the product A; ® Ay where one of the two interface automata
outputs a shared action a from the state s; which is not accepted as input from
the state so or vice versa, or (ii) from that states they synchronize on the action
signatures but their semantics do not match according to Definition 5. These
states are called illegal states.

H. Mountassir

11 Technical Report, KIT, 2010-13

Adapting Components using Interface Automata Enriched by the Action Semantics

Definition 6 (Illegal States). Given two composable interface automata A,
and As, the set of illegal states Illegal(A1,A2) C Sa, X Sa, in A1 ® Ag is defined
by {(s1,82) € Sa, X Sa, | 3 a € Shared(A1, Az). the following condition holds}

(a€ X, (s1)ANag X4, (s2)) V(a€ X (s1)Aae XY, (s2)
/\(Pre.pAl/Az 7 Pre‘I,Az/Al v POSt@Az/Al 7 POStq,Al/Az))

Vv

(a€ X9,(s2) Na g X (s1)V(a€ XS, (s2) Na€ Xl (s1)
/\(PTGQAz/A1 s PTeWAl/Az v POSt\I,Al/A2 s POStWA2/A1))

The reachability of states in Illegal(A;, A2) do not implies that A; and A,
are not compatible. The existence of an environment E (an interface automaton)
that produces appropriate inputs for the product A; ® As ensures that illegal
states will not be entered and then A; and Ay can be used together. The com-
patible states, denoted by Comp(A;,As), are states from which the environment
can prevent entering illegal states.

Definition 7 (Compatibility). Given two composable interface automata Ay
and As, A1 and As are compatible if and only if the initial state of their product
A1 ® As is compatible.

The composition A; || As of two compatible interface automata Ay and As is

defined by (i) Sa, Az = Comp(A1,A), (ii) IA1\|A2 =1Ia,04,N Comp(A;,As), (iii)

thAQ = 2% @, Where * € {O, I, H}, and (iv) 04,4, = 64,04, N Comp(A1,A2)
X EA1HA2 X Comp(Al,Ag).

The verification steps in this approach are the same as those detailed in [1]
except that we consider the semantics of actions. The proposed algorithm of
the compatibility decides if two interface automata are compatible by checking
if their composition is non-empty. Our extentions do not increase the linear
complexity of the previous proposed one. Finally, we add that the associative
criterion of the composition operator || holds between three interface automata
and it is undefined when some of them are not composable.

3 Interface Mismatches

The definitions of component interface mismatches [7, 5, 6] are essentially due to
the reuse of components in a system design which is often harmed by mismatch
cases such as: (i) names of exchanged messages between components do not
correspond which may lead to deadlock situations, components regularly interact
on the same action names; (ii) the orderings of messages or actions in both
component protocols do not correspond; (iii) an action in a component that has
no counterpart in the other one, or correspond to more than one action.

For interface automata, the behavioural mismatch cannot be detected by ap-
plying the synchronized product between two composable interface automata as
it was defined in Definition 4, because the case where there is no correspondence

Technical Report, KIT, 2010-13 12

S. Chouali, S. Mouelhi, H. Mountassir

between the action names leads to them being absent from the set of shared
actions. Thus, all of mismatched actions are interleaved asynchronously in the
product. To avoid this constraint, our adaptation specification starts by estab-
lishing an abstract way to denote the composition requirements. We corroborate
the explicit description of interactions between components thanks to rules. They
relate the mismatched actions used in different components which are supposed
to implement some interactions. Rules relate actions even if they do not really
label some transitions in the automaton as required by the optimistic approach
of interface automata.

The minimal adaptor specification of two interface automata A; and As is the
set of rules called a mapping. The mapping does not represent any behavioural
detail about the adaptor.

Definition 8 (Rules and Mappings). A rule « for two composable interface
automata Ay and As, is a couple (Lq,Ls) € (2221 X 2222) u (22}41 x 274)
such that (L1 U Le)NShared(A1, As) = 0 and if |L1]| > 1 (or |La| > 1) then |Lo|
=1 (or|L|=1);

A mapping P(A1, As) for two composable interface automata Ay and Ag is
a set of rules a;, for 1 < i < |®(Aq, Ag)|.

According to Definition 8, a rule in our approach deals with one-to-one,
many-to-one, and one-to-many correspondences between actions. More clearly,
the adaptation may in general relate either an action or a group of actions of
one automaton with one action in the other. For instance, a client authenticates
itself by sending first its user name and then a password while the server accepts
both data in a single login shot. We denote the set of the mismatched actions
by Mismatchg(Ar, As) = {a € Ej'"it U Effzt | Ja € B(A1,As) . a € II1(a) V a
€ Iy (a)}®.

Given two composable interface automata A; and As and a mapping @(A4,
Ag), if $(A1, Ay) = 0, the adaptation of A; and Ay has no sense and their
synchronization is defined by their product 4; ® A, as it was defined in section 2.
Otherwise, we proceed on two steps:

— we check first the semantic adaptability between the mismatched actions in
the mapping @(A;, As);

— if the semantic adaptability check was successfully made without giving rise
to incompatibilities, we generate the adaptor of A; and As according to
the mapping ®(A;, Az). If the generated adaptor is non-empty and it is
compatible with both of A; and As, we say that A; and A, are adaptable.

4 Semantic Adaptability

The semantic adaptability between the mismatched actions of two composable
interface automata has to be made before generating the adaptor. The mis-

4 For some set S, 2° is its power set.
5 IT1({a,b)) = a and IT5({a,b)) = b are respectively the projection on the first element
and the second element of the couple (a,b).

13 Technical Report, KIT, 2010-13

Adapting Components using Interface Automata Enriched by the Action Semantics

matched actions have to respect some constraints at the level of their seman-
tics. Let us consider two interface automata A; and A, and a given mapping
@(Aq, As). To perform the semantic adaptability check between A; and Ay ac-
cording to P(Ay, As), it is required that for each rule o = (L1, L2) € $(A1, A2)
the following conditions hold:

L. ZaeLl |P(; | :Z:be[,2 |Pl; ‘;
20 Y aery | PO 1= 2per, | BV
3. if [L1| = 1 and | Ly| > 1 where L1 = {a}, Ly = {b1, ..., b1, }, and Py = {04}
then there exists exactly one action by, € Ly (1<k< | Lo |) such that Py =
{ov, }, Py = 0 for 1<I< | Ly | and [#Fk, and the two output parameters o,
and op, have to satisfy the domain inclusion condition:
—if L1 C ESN then D,, C D,, ;
k
—else D,, D Dobk;

0. denotes the tuple (a,by). If PO = {}, (a,by) is not defined;

4. the condition is analogous to the previous one with |L1|> 1 and |Ly| = 1
where Ly = {a1,...,ar,|} and Ly = {b};

5. there exists a function ¢!, : Uaer, P — User, P} that associates each input
parameter p of actions in L; with an input parameter ¢ of actions in Ls.
The function ¢}, have to satisfy the domain inclusion condition:

—if L, C Zgl, then D, C Dy () Wher(? P € User, Pus
—else Dyi (,y € Dp where p € ,cp, Pa-

The first and the second conditions state that the number of input (respec-
tively output) parameters of actions in L; is equal to the number of input (re-
spectively output) parameters of actions in Ly. The third condition states the
relations between the output parameter of the action a € L; and the one of the
action by € Ly. We assume that the other actions in Ly \ {bx} have no output
parameters. The intuition behind these conditions is to avoid conflicts between
the pre and post-conditions during the semantic adaptability check by ensuring
the equality between the number of input and output parameters.

The renaming of the input and output parameter in the semantics of actions
in Mismatchg(A1, Ag) is defined as follows.

— For all ¢« € L; and b € Lo, it is defined by the substitution of each input
parameter 7 of a in Prej,, and Post,a, by (i) or the substitution of each
input parameter i’ of b in Pre 4, and Posta, by @L_l(i’)fi if ¢!, is defined.

b

b
— If the tuple 6, = (a,b) exists, it is defined by the substitution of the output
parameter o, in Post 4, by op or the substitution of the output parameter
0p In Postw,q2 by 04.
b

We denote by ¥A1:® and %4 >® respectively the semantics of actions a in
IT1(«) and actions b in II5(«) after the parameter renaming.

S For a function f, we define by f~*! its inverse function.

Technical Report, KIT, 2010-13 14

S. Chouali, S. Mouelhi, H. Mountassir

@ finish A admin-md ¢ connected A oA

finish! @ arg!

login

ok

req!

. 2
terminate error?

terminate?

pass?

m connected!
3

T login! close

ar, .
g terminate

Client Server

Fig. 1. A variant of a client/server system

Definition 9 (Semantic Adaptability). Given two interface automata Ay
and As and a non empty mapping P(A1, As), the semantic adaptability of a
rule o in @(A1, Ag) is defined by the following conditions:

1. if Ii(a) € X9, then

A Preg/;ql,aé A Pre%AWx

a€lly(a) bellz(a)

A
AN Post,aa <= N\ Post as.a
a€ll () @ bellx (o) b

2. if II1 (o) C 2}41, then the condition is analogous to the first one by inversing
the implications.

We say that Ay and As are semantically adaptable according to the mapping
D(Aq, Ag) if the semantic adaptability of each rule o € $(A;1, As) holds.

The semantic adaptability conditions are stated in a similar way as the se-
mantic compatibility of the shared actions defined in Definition 5 except that
for adaptation, we treat sets of mismatched actions associated by the rules of
the mapping.

FEzample 1. Let us consider the two composable interface automata Client and
Server shown in Figure 1 and a mapping @(Client,Server) = {{ {login}, {usr,
pass}), ({finish}, {close}), ({ok}, {connected}) ({req,arg}, {open}) }. The set
Shared(Az, As) = {error,terminate}.

After authentication, Client sends a request req! to open a file in read-only
or write mode. After that, it sends an action arg! containing the name of a file
to be open. Server receives the two actions by executing an action open? that
open the file in readonly or write mode. After using the file, Client sends a signal
finish! indicating to Server that the file is ready to be closed (action close?).
Finally, Server sends a signal terminate! to terminate the session. The action
admin-md? is a super signal received from the administrator of the system to

15 Technical Report, KIT, 2010-13

Adapting Components using Interface Automata Enriched by the Action Semantics

Table 1. The signatures of actions in Mismatcha (Client,Server)

Client Server
a1 |login(uname,passwd,lu,lp) — (exist) |usr(username,lengthu)— ()
pass(password,lengthp)— (exist)

a2 |ok(msg)—() connected (logmsg)—()

as|req(read)—() open(readonly,filename)— (open)
arg(file)— (status)

o |finish()—(status) close()—(closed)

Table 2. The semantics of actions in Mismatcha(Client,Server)

Client Server

Prewlczi‘em =1<1lu<20A8<1p <10[Pregsever =1 < lengthu < 30
0gin usT

Post g cient = exist = 1 V exist =0 Postyserer = true

login

Preggaeg‘;/er = 6 < lengthp < 10
Postlpi?"e;"um =exist =1V exist =0

Pregciient = true Pregsever = true
ok connected

Posty ciient = true Postgserver = true

ok connected

Pregciiens = read = 0 V read = 1 Pregserver = readonly = 0 V readonly = 1
req open

Post = true Postyserver = open = 1 V open = 1
wGlient wServer 9] 9]

Preg ciiens = true
arg

Postyciienn = status = 0 V status =1
arg

Preg ciiens = true Pregserver = true
clos

nish

Postq,fcz;;;n, = status = 0 V status = 1 Post¢slemr = closed = 0 V closed = 1

open a super user session. When a client username is received by the server after
receiving the admin-md! signal from an administrator, then an error is detected.

The mismatched actions are described and classified by the rules in Ta-
ble 1. The function ¢!, is defined by {msg—logmsg}. The function ¢!, is not
defined. The function ¢, is defined by and {uname—username, lu—lengthu,
passwd— password, lleengthp}. The function <pia3 is defined by {read— readonly,
file— filename}. The function ¢y, is empty. 0, = (login,pass), O, is not defined,
0oy = (arg,open), and 0, = (finish,close). The parameters uname, passwd, user-
name, password, msg, logmsg, file, and filename are strings. The parameters lu,
Ip, lengthu, lengthp, read, readonly, status, open, and closed are integers. As the
reader can conclude, the conditions to perform the semantic adaptability check
hold for all v in P(Aq, As):

— forall a € O(A1, A2), 3 err, (o) |1Pal = Xpermy (o) 155l and X oerr, (o) 1P2] =
> versa) B85

Technical Report, KIT, 2010-13 16

S. Chouali, S. Mouelhi, H. Mountassir

— the domain inclusion conditions are satisfied for 6, and % where * € &(Client,
Server).

The semantics of the mismatched actions respectively for Client and Server
are listed in Table 2. After unifying the mismatched actions in Mismatchg (Client,
Server), the reader can easily verify the semantic adaptability for all « in
&(Client, Server) holds. For example, for the rule oy, Prey cientay = (Preﬁ:;w-,al

Y ogin
N Pregserera;) is satisfiable ((1 <Iu <20 A8 <lIp < 10) = (1 <lu < 30 A
ass
6 < Ip < 10)). Also, Posty,cient,a, <= (Postyserver.ar A Postyserer.ar) is satisfiable
login usr pass

((exist = 1 V exist = 0) < (true A (exist = 1 V exist = 0))). We can deduce that
Client and Server are semantically adaptable according to @(Client, Server).

5 Adaptor Specification and Construction

After verifying the semantic adaptability between two composable interface au-
tomata A; and Ay according to a mapping @(A1, As), we treat in this section
the TA specification and construction of their adaptor. The adaptor must be
composable with A; and A and satisfy the event reordering of both A; and As.

Given an interface automaton A, we denote by ©%(s) C S% the set of suc-
cessor finite runs @ = sja;ssas...s, such that s; = s, s, is the initial state or a
state that has no outgoing transitions, and for all 1 < i < n, there is a transition
(8i,ai,8:+1) € 64. We denote by O%(s) C 5% the set of predecessor finite runs
0 = si1a182as...5, is defined exactly as 9%(5) except s1 = i where i € I4 and
S$n = 8. The set © 4 of all finite runs of A equals to @154 (7) where i € 4. We say
that a succession of transitions sjajssas...s, (for n > 2) is included in a run ¢ in
6% (s) or ©F(s) (denoted by the operator C), if all transitions of sya1s2as...5,
are transitions of o.

Definition 10 (Adaptor). Given two composable interface automata Ay, As,
and a mapping P(A1, As), an adaptor for Ay and Az according to the mapping
®(Ay, Ag) is an interface automaton Ad = { Saa, Laa, Xy XSy %y, 04a)
such that

— XN, = {a|a € Mismatchg (A1, A) N(XQ, U X))}

. foralla € XY, wAd=wM jfq € Egl. Otherwise, U4 =gz

— X9, = {a| a € Mismatchg(Ay, As) Ny, U}

. forall a € ng, wAL — gAL jif g € 21141. Otherwise, U4 =pA2;

- E,I;xld C {ehs

— 0aq C Saq X ZLdUESdU {6} X Sad;

— Shared(Ad, A1) = U,ea(a,,45) 1 ();

— Shared(Ad, Ag) = Uagé(AhAQ) I (w);

— For all s € Syq and o € @Ed(s), if there exist riay...rpans C o and a €
B(A1, Ay) such that II;(a) C X9 for i € {1,2} and IIi(a) € Uy {ar}
then for all p € @id(s), there exists sby...bytym T p such that I3_;(a) C
2}43_1 and IT3_;(a) C Ulel..m{bl}'

17 Technical Report, KIT, 2010-13

Adapting Components using Interface Automata Enriched by the Action Semantics

ok T connected l

login? m usrl TN pass! /) connected?
NN 8 5 5 e
_/ N N

close! ok!

. finish? /19\ open! m arg? m req? .
U/ _/ N4

Fig. 2. The adaptor Adaptor for Client and Server

The last condition of Definition 10 states that for all o € G4, if Ja €
&(Aq, As) such that the output actions (enabled as input in Ad) of « are present
in o then they are succeed by there correspondent input actions (enabled as out-
put in Ad).

Property 1. An adaptor Ad for two interface automata A; and A, according to
a mapping ®(A;, As) is composable with A; and A,.

The property can be easily verified according to Definition 10. The composi-
tion of A; and A, is performed by synchronizing first Ad with either A; or As,
computing their composition according to our extended approach, and then by
composing the resulting composition with the remaining automaton. We suppose
that the actions of the adaptor have the same signatures and semantics as actions
in Mismatchg(Aq,Asz). If the composite interface automaton A || Ad || Az is non
empty then A; and As are compatible after their adaptation at the protocol and
the semantic levels.

Our presented algorithm presented in [8] constructs an adaptor for two com-
posable interface automata A;, As, and a given non empty mapping @(A;, As).
The algorithm is basically a loop which reads in parallel A; and A and con-
structs as one goes along the set of states and the set of transitions of the adaptor.
The algorithm is executed by respecting the reordering of events of both inter-
faces A; and As. The algorithm marks and removes from the generated graph
all the fragments of runs that do not respect the last condition of Definition 10.
If the result of the algorithm is non-empty then we check that the generated
adaptor Ad is compatible with both of A; and As. In that case, we say that the
two A; and A, are adaptable. If A; || Ad || As is non empty we say that A; and
A, are compatible after their adaptation by Ad.

The part of the algorithm that constructs the set of states and transitions
has the time complexity O(|Sa, X Sa,|.(|64,] + |64,])). The time complexity of
the part that removes the undesired run fragments is linear in the number of
states of the generated states.

Ezxample 2. As the reader can conclude, Adaptor is composable with both Client
and Server presented in Example 1 and it satisfies all the items of Definition 10.
Our proposed algorithm in [8] generates exactly the same interface automaton

Technical Report, KIT, 2010-13 18

S. Chouali, S. Mouelhi, H. Mountassir

shown in Figure 2. Suppose that the semantic compatibility between the shared
actions error and terminate holds, then Adaptor is compatible with both Client
and Server. The composite interface automaton (Client || Adaptor) || Server is
non empty which makes Client and Server compatible after their adaptation.

6 Related Works

Several techniques of adaptation show how to automatically derive adaptors in
order to eliminate mismatches between components during their interactions. In
[21], the authors propose an interesting approach based on finite state machines
to adapt components specified by interfaces describing component protocol and
action signatures. This approach deals with one-to-one relations between ac-
tions. In [14], the authors propose the Smart Connectors approach which allows
the construction of adaptors using the provided and required interfaces of the
components in order to resolve partial matching problems in COTS component
acquisition.

In [5], the authors have proposed a formal approach based on calculus to
generate automatically adaptors using the Prolog language. In [10], Hemer has
proposed, using template from the CARE language, to define adaptation strate-
gies for modifying and combing components. In [15], the authors have proposed
a model of adaptors expressed in the B formal method, allowing to define the in-
teroperability between components. In [17] the authors introduce the concept of
parameterized contracts and a model for component interfaces, they also present
algorithms and tools for specifying and analyzing component interfaces in or-
der to check interoperability and to generate adapted component interfaces.
Finally, Bosch [4] gives a large overview on adaptation mechanisms including
non-automated approaches can be found in [11, 18].

The approaches described above propose solutions for the component adap-
tation based on different specification formalisms of component interfaces. Our
approach is different from the others, because we propose a solution to adapt
particular components that are specified by interface automata. This formalism
allows to exploit optimistic approach [1] to check to component interoperability.
This adaptation approach deals with the signature, the semantic, and the proto-
col levels, and deals also with possibly complex adaptation scenarios : one-to-one
and one-to-many correspondences between actions.

7 Conclusion and Future Works

In this paper, we propose a formal approach for the automatic development of
component adaptors, allowing the elimination of mismatches between interact-
ing components. Our component interfaces are described by interface automata
enriched by the action semantics. We propose to describe in interface automata
component information at three levels: signature, semantic(signature and seman-
tic of offered and required actions), and component protocol(interactive behavior
that the component follows). We specify a correspondence mapping between the

19 Technical Report, KIT, 2010-13

Adapting Components using Interface Automata Enriched by the Action Semantics

mismatched actions of two components as a first abstract specification of the
adaptor. This mapping deals with one-to-one and one-to-many correspondences
between the actions. A compatibility check after adaptation is made on the set
of mismatched action in a similar way as the set of shared actions. We propose
an algorithm that generates automatically the adaptor for two composable in-
terface automata according to a fixed mapping. The generated adaptor allows
to eliminate mismatches at the signature, semantic and the protocol levels. The
proposed algorithms were implemented in Java in order to validate them, and
we plan to propose a complete tool in the future works.

We are developing a tool that implements a framework checking the compat-
ibility between interface automata at the protocol and the semantic levels [16].
We plan also to implement the proposed adaptation approach in our framework.

References

[1] L. Alfaro and T. A. Henzinger. Interface automata. ACM Press, 9th Annual
Aymposium of FSE (Foundations of Software Engineering), pages 109-120, 2001.

[2] L. Alfaro and T. A. Henzinger. Interface theories of component-based design. In
the proceeding of the First International Workshop of Embedded Software (EM-
SOFT), LNCS, 2211:148-165, 2001.

[3] L. Alfaro and T. A. Henzinger. Interface-based design. NATO Science Series :
Mathematics, Physics, and Chemistry, Engineering Theories of Software Intensive
Systems, 195:83-104, 2005.

[4] J. Bosch. Design and use of software architectures - adopting and evolving a
product-line approach. Addison-Wesley, Reading, MA, USA, 2000.

[5] A. Bracciali, A. Brogi, and C. Canal. A formal approach to component adaptation.
Journal of Systems and Software, 74:45-54, 2005.

[6] C. Canal, J. Murillo, and P. Poizat. Software adaptation. Special Issue on Software
adaptation, 12(1):9-31, 2006.

[7] C. Canal, P. Poizat, and G. Salaiin. Synchronizing behavioural mismatch in
software composition. Proc. of FMOODS’06, LNCS, 6:63-77, 2006.

[8] S. Chouali, S. Mouelhi, and H. Mountassir. Adapting component behaviours using
interface automata. IEEE Computer Society proceedings, Euromicro SEAA 2010
conference, September 2010.

[9] G. T. Heineman and H. M. Ohlenbusch. An evaluation of component adapta-
tion techniques. In The International Workshop on Component-Based Software
Engineering, 1999.

[10] D. Hemer. A formal approach to component adaptation and composition. In
Proceedings of the Twenty-eighth Australasian conference on Computer Science
ACSC ’05 Newcastle, Australia, pages 259-266, 2005.

[11] S. Kent, C. Ho-Stuart, , and P. Roe. Negotiable interfaces for components. Journal
of Object Technology, TOOLS USA proceedings 1, pages 249-265, 2002.

[12] D. Konstantas. Interoperation of object oriented application. In Proceedings of
Object-Oriented Software Composition, Oscar Nierstrasz and Dennis Tsichritzis,
Prentice Hall, pages 69-95, 1995.

[13] N. Lynch and M. Tuttle. Hierarcical correctness proofs for distributed algorithms.
In the proceeding of the 6th ACM Symp. Principles of Distributed Computing,
pages 137-151, 1987.

Technical Report, KIT, 2010-13 20

S. Chouali, S. Mouelhi, H. Mountassir

[14] H. Min, S. Choi, and S. Kim. Using smart connectors to resolve partial matching
problems in cots component acquisition. LNCS, Springer-Verlag, Berlin, Ger-
many, 3054:40-47, 2004.

[15] I. Mouakher, A. Lanoix, and J. Souqui¢res. Component Adaptation: Specifica-
tion and Verification. In 11th International Workshop on Component Oriented
Programming (WCOP 2006), page 8, ECOOP 2006, Nantes, France, 07 2006.

[16] S. Mouelhi, S. Chouali, and H. Mountassir. Refinement of interface automata
strengthened by action semantics. ENTCS, FESCAO09 of the European joint con-
ference on Theory and Practice of Software (ETAPS’09), 253-1:111-126, March
2009.

[17] R. Reussner. Automatic component protocol adaptation with the coconut/j tool
suite. Future Generation Computer Systems, 19(5):627-639, 2003.

[18] H. Schmidt and R. Reussner. Generating adaptors for concurrent component pro-
tocol synchronisation. In the proceeding of the Fifth IFIP International Conference
on Formal Methods for Open Object-Based Distributed Systems, pages 213-229,
2002.

[19] C. Szyperski. Component software: Beyond object oriented programming. Addi-
son Wesley, 1999.

[20] P. Wegner. Interoperability. ACM Computing Survey, 28:285-287, 1996.

[21] D. Yellin and R. Strom. Protocol specifications and components adaptors. ACM
Transactions on Programming Languages and Systems, 19(2):292-333, 1997.

21 Technical Report, KIT, 2010-13

CVPP: A Tool Set for Compositional Verification
of Control-Flow Safety Properties

Marieke Huisman! and Dilian Gurov?*

! University of Twente, Netherlands
2 Royal Institute of Technology, Stockholm, Sweden

Abstract. This paper describes CVPP, a tool set for compositional ver-
ification of control-flow safety properties for programs with procedures.
The compositional verification principle that underlies CVPP is based
on maximal models constructed from component specifications. Max-
imal models replace the actual components when verifying the whole
program, either for the purposes of modularity of verification or due to
unavailability of the component implementations at verification time. A
characteristic feature of the principle and the tool set is the distinction
between program structure and behaviour. While behavioural properties
are more abstract and convenient for specification purposes, structural
ones are easier to manipulate, in particular when it comes to verifica-
tion or the construction of maximal models. Therefore, CVPP also con-
tains the means to characterise a given behavioural formula by a set of
structural formulae. The paper presents the underlying framework for
compositional verification and the components of the tool set. Several
verification scenarios are described, as well as wrapper tools that sup-
port the automatic execution of such scenarios, providing appropriate
pre— and post—processing to interface smoothly with the user and to
encapsulate the inner workings of the tool set.

1 Introduction

To enable verification of realistic software, verification techniques have to be
compositional and algorithmically decidable. Compositionality ensures that the
verification task can be split up in smaller pieces, while algorithmic decidability
ensures that verification can be done automatically, without any user interac-
tion. Moreover, for many application domains, compositionality and algorithmic
decidability are essential.

For example, in a dynamically reconfigurable distributed system, components
can join and leave the system at run—time dynamically. For such an open system,
appropriate verification techniques are necessary to support safe downloading,
i.e., to determine without any user interaction whether a newly arriving compo-
nent will not corrupt the well-functioning of the global system. These techniques
require the relativisation of the correctness of the system on the specifications

* Partially funded by the EU FET project FP7-ICT-2009-3 HATS.

Technical Report, KIT, 2010-13 22

M. Huisman, D. Gurov

and the local correctness of its components. This relativisation can also be used
for the purposes of modularity. Modular verification is a means of controlling
the complexity of verifying large software. It allows an independent local evolu-
tion of the implementations of individual modules without affecting the global
correctness of the program.

The CVPP tool set is designed to tackle exactly this kind of verification
problems by supporting an algorithmic technique for compositional verification.
Its focus is on control-flow safety properties of programs with (possibly recur-
sive) procedures. Such properties typically describe sets of allowed sequences
of method invocations, and are conveniently expressed in temporal logic. The
underlying program model is that of flow graphs, abstracting completely from
program data to allow efficient algorithmic modular verification. However, the
model can be enhanced with exception information or multi-threading. Even
though the tool set is developed with compositionality in mind, it can also be
used for non—compositional control-flow verification problems of programs with
procedures. In particular, it allows to reduce infinite—state verification of be-
havioural properties to finite—state verification of structural properties.

Abstracting away from all data may seem like a severe restriction, but still
many useful properties can be expressed, such as:

— there are no calls to non—atomic methods within atomic transactions;

— in a voting system, candidate selection has to be finished, before the vote
can be confirmed;

— a method that changes sensitive data is only called from within a dedicated
authentication method, i.e., unauthorized access is not possible;

— in a door access control system, the password has to be checked before the
door is unlocked, and it can only be changed if the door is unlocked.

Extending the technique with data over finite domains will allow for a wider
range of properties and possible applications, but needs to be combined with
abstraction techniques to control the complexity of verification. Such an exten-
sion will be investigated in future work.

The present paper describes CVPP, its underlying compositional verification
framework, and its implementation. We describe three important verification
scenarios: (i) open system verification, (ii) modular verification, and (#4) non—
compositional verification. We also discuss the encapsulation of the inner work-
ings of CVPP by means of wrapper tools that automate the various scenarios.

Previous work by the authors on tool support and case studies has been
reported in 2004 [15]. The current version of the tool set, discussed in this pa-
per, includes later extensions: (¢) an inliner to abstract private methods [10],
(it) more general program models concerning exceptions, threads and open
flow graphs [14,12], and (#4) a property translation from behavioural to struc-
tural properties [11,12]. The last extension allowed local assumptions to be be-
havioural, whereas before they had to be structural. Further, we have unified
the inputs and outputs to allow interoperability of the individual tools, and
have started to work on wrapper tools, automating the verification scenarios.

23 Technical Report, KIT, 2010-13

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

Related Work Maven is a modular verification tool addressing temporal proper-
ties of procedural languages in the context of aspects [8]. A non—compositional
verification method based on a program model closely related to ours is pre-
sented by Alur and others [3]. It proposes a temporal logic CaRet for nested calls
and returns (generalised to a logic for nested words in [1]) that can be used to
specify regular properties of local paths within a procedure that skips over calls
to other procedures.

Most of the existing work on modular verification of safety properties is based
on Hoare logic. Miiller was the first to propose a sound modular Hoare—style
verification technique for object—oriented languages [17]. A typical verification
tool within this line of work is Spec#t [4].

Recent work by Alur and Chauhuri proposes a unification of Hoare—style
and Manna—Pnueli—style temporal reasoning for procedural programs, presenting
proof rules for procedure-modular temporal reasoning [2].

Organisation Sections 2 and 3 sketch the tool set’s theoretical background and
underlying verification method. Section 4 describes the different tools that make
up CVPP, followed by a description of typical verification scenarios in Section 5.
Section 6 exemplifies some typical verification tasks when using CVPP. We con-
clude with possible extensions that would make CVPP applicable to a larger class
of problems (without changing the underlying methodology).

2 Program Model and Logic

This section summarises the program model and logic that underlies CVPP. For
a more detailed account, the reader is referred to [13].

As mentioned earlier, a characteristic feature of CVPP is the distinction be-
tween structural and behavioural properties. Usually, we are interested in prop-
erties of the behaviour of a program, while its structure is just a means for
accomplishing the desired behaviour. Furthermore, the same behaviour can be
produced by several structures. It is thus more natural and more abstract to
specify programs with behavioural properties than with structural ones.

However, algorithmic techniques for program analysis and verification are
computationally considerably more expensive on the level of program behaviour
than on the level of program structure. Program correctness problems are there-
fore often phrased in terms of the program structure rather than in terms of
its behaviour. Furthermore, many behavioural properties have natural struc-
tural counterparts, e.g., tail recursion, while other behavioural properties can
be characterised through finite sets of structural ones (see Section 3). Therefore,
CVPP is set up in such a way that structural properties can be used whenever
this is possible and meaningful.

2.1 Model and Logic

Our program model is control-flow based and thus over—-approximates actual
program behaviour. It defines two different views on programs: a structural and

Technical Report, KIT, 2010-13 24

M. Huisman, D. Gurov

a behavioural one. Both views are instantiations of the general notions of model,
defined below. Notice in particular that these instantiations yield a structural
and a behavioural version of the logic, and that this enables a uniform treatment
of structure and behaviour whenever possible.

Definition 1. (Model) A model is a structure M = (S,L,—, A, \), where S is
a set of states, L a set of labels, =C S x L x S a labelled transition relation, A
a set of atomic propositions, X\: S — P(A) a valuation, assigning to each state
s the set of atomic propositions that hold in s. An initialised model is a pair
(M, E), with M a model and E C S a set of entry states.

As property specification language we use the fragment of the modal pi-calculus [16]
with boxes and greatest fixed-points only. This temporal logic is capable of char-
acterising simulation (c¢f. [13]) and is thus suitable for expressing safety proper-
ties. Throughout, we fix a set of labels L, a set of atomic propositions A, and a
set of propositional variables V.

Definition 2. (Logic) The formulae of our logic are inductively defined by:

pu=plpl X |1 Aga|d1Valla]d|vX.d
wherep e A, a € L and X € V.

Satisfaction on states (M,s) = ¢ is defined in the standard fashion [16]. For
instance, formula [a] ¢ holds of state s in model M if ¢ holds in all states
accessible from s via an edge labelled a. A model (M, E) satisfies a formula ¢,
denoted (M, E) | ¢, if all its entry states E satisfy ¢. The constant formulae
true (denoted tt) and false (ff) are definable. For convenience, we use p = ¢ to
abbreviate —p V ¢. We assume that formulae have pair—wise distinct fixed—point
binders, and unless stated otherwise, are closed and guarded (cf. [22]).

2.2 Control-Flow Structure and Behaviour

Control-Flow Structure We abstract away from all data, therefore program
structure is defined as a collection of control-flow graphs (or flow graphs), one for
each of the program’s methods. Let Meth be a countably infinite set of method
names. A method graph is an instance of the general notion of model.

Definition 3. (Method graph) A method graph for m € Meth over a finite set
M C Meth of method names is an initialised model (M, Ey,), where M, =
(Vins Lins = my Ams Am) i a finite model and E,, C V,,, a non-empty set of entry
points of m. V,,, is the set of control nodes of m, L,, = M U{e}, A, = {m,r},
and Am: Vi, — P(Ay) is defined so that m € A\, (v) for all v € V,, (i.e., each
node is tagged with its method name). The nodes v € Vy,, with r € Ay (v) are
return points.

Ezxample 1. Figure 1 shows a simple Java class and the (simplified) flow graph
it induces. The flow graph consists of two method graphs - one for method even
and one for method odd. Entry nodes are depicted as edges without source.

25 Technical Report, KIT, 2010-13

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

class Number

public static boolean even(int n) { v0 ® even odd@® v5
if (n ==
return true; € €
else
) return odd(n-1); vl @ even odd@®_ v6
€ €
public static boolean odd(int n) {
if (n == 0)
return false; V2 @ even € € odde v7
else
return even(n-1); odd even
A A
1} v3 @ even,r @ even,r odd, r odd, r@ v9

Fig. 1. A simple Java class and its flow graph

Flow graph interfaces are defined as pairs I = (I7,I7), where IT, I~ C
Meth are finite sets of names of provided and (externally) required methods,
respectively3. A flow graph G with interface I is denoted G : I. The flow graph
of a program is essentially the (disjoint) union W of its method graphs. Flow
graphs can only be composed if their interfaces match. A flow graph is closed if
I~ = @, i.e., it does not require any external methods. Satisfaction, instantiated
to flow graphs, is called structural satisfaction |=;.

Ezxample 2. Consider the flow graph in Example 1. The property “on every path
from a program entry node, the first encountered call edge goes to a return
node” is formalised by the structural formula vX.[even|r A [odd]7 A [e] X, in
effect specifying that the program is tail-recursive.

Control-Flow Behaviour Next, we instantiate models on the behavioural level.
Transition label 7 designates internal transfer of control, m; call my designates
an invocation of method msy by method my, and ms ret m, designates the cor-
responding return.

Definition 4. (Behaviour) Let G = (M, E) : I be a closed flow graph where
M = (V,L,—, A/)\). The behaviour of G is defined as the initialised model
b(G) = (My, Ep), where My = (Sb, Ly, —p, Ap,), such that S, = V x V*,
i.e., states are pairs of control points v and stacks o (also called configurations),
Ly ={my k ma | k € {call,ret}, mi,ms € IT}U{7}, Ap = A, M((v,0)) = A\(v),
and —,C Sy X Ly X Sy is defined by the rules:

[transfer] (v,0) T (V',0) if melt v, v, vE-r

[call] (v1i,0) melms,, (vg, v} - o) if my,mg € It vy 225, vf,
vy Er vy Emg, v €E

mo ret mq
_

return V2,V1 + O b (V1,0) 1L my,mg € , U2 mo AT, U1 mq
if It

3 We only require I~ to contain methods that are not provided by I'*. This is different
from our earlier work (e.g., [13]), but in line with the tool set implementation.

Technical Report, KIT, 2010-13 26

M. Huisman, D. Gurov

The set of initial configurations is defined by E, = E x {€}, where € denotes
the empty sequence over V.

The definition is easily extended to open flow graphs (see [12]). Flow graph
behaviour can alternatively be defined via pushdown automata (PDA) [13, Def.
34] and approximated with the related notion of pushdown systems (PDS). We
exploit this by using PDS model checking for verification of behavioural prop-
erties (see [6]). Currently, our tool set relies on the external tool Moped [19];
however, this requires the properties to be translated in LTL.

Example 3. Consider the flow graph from Example 1. Because of possible un-
bounded recursion, it induces an infinite—state behaviour. One example execution
of the program is represented by the following path (in the branching structure)
from an initial to a final configuration:

1l
(Uo,E) l>b (1)1,6) l>b (UQae) M>b (’U5,’U3) L)b (U65U3) L’b

dd call
(07703) Sanatidi b (11071)9 : US) l’b (U1,119 : U3) L’b

(U4, v - UB) even ret odd b (Ug, UB) odd ret even b (1}37 E)

Also on the behavioural level, we instantiate the definition of satisfaction: we
define G =5 ¢ as b(G) = ¢. The resulting behavioural logic is powerful enough to
express the class of security policies defined by finite state security automata [18].

Ezxample 4. For the flow graph from Example 1, the behavioural formula even =
vX. [even call even] ff A [7] X expresses the property “in every program execution
starting in method even, the first call is not to method even itself”.

Ezxtensions This section presents the basic program model and logic, considering
only normal, sequential control-flow. Extensions with exceptions and with multi—
threaded behaviour (with synchronisation on locks) exist [14], and are supported
in CVPP. The extension to open flow graphs mentioned above is also supported.
In ongoing work we address further extensions to Boolean programs, as well as
to richer fragments of the p—calculus; this is not incorporated in CVPP yet.

3 Framework for Compositional Verification

The compositional verification method underlying our tool set is based on the
computation of maximal models from component specifications and the instan-
tiation of components with these models when model checking global system
properties. For finite—state systems, this approach was introduced in [9] and
since then it has become a standard technique for reducing the verification of
correctness of property decompositions to model checking.

Mazximal Models for Compositional Verification A model is said to be mazimal

for a given property ¢, if it satisfies ¢ and simulates (w.r.t. a suitable property-
preserving simulation relation <) all models satisfying ¢. For models in the sense

27 Technical Report, KIT, 2010-13

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

of Definition 1 and formulae in the logic from Definition 2, maximal models exist
and are unique up to isomorphism (see [13]). To compute a maximal model for a
property ¢, we present the formula as a modal equation system (see [5]), which
is then transformed into a canonical form, the so—called simulation normal form.
A formula ¢ in simulation normal form can be directly mapped into a (finite)
model M that simulates all models that satisfy ¢; i.e., for any model M’: M’ <
M & M’ E ¢. Due to this close connection between simulation and satisfaction,
we obtain the following sound and complete verification principle [13]:

Compositional verification principle for models: to show My W Mgy = 1),
it suffices to show M; | ¢ (i.e., component M; satisfies a suitably
chosen local assumption ¢) and My W Ms = 9 (i.e., component Mo,
when composed with the maximal model Mg for ¢, satisfies the global
guarantee).

Completeness of the principle implies that no false negatives exist: if MW My =
1 fails, then there is indeed a model M such that M |= ¢ but M & My = .

Adaptation of this principle to flow graphs (as models) and structural and
behavioural properties presents us with certain difficulties. Given a structural
or behavioural flow graph property ¢, there is no guarantee that the maximal
model of ¢ is a legal flow graph structure or behaviour.

Mazimal Flow Graphs from Structural Specifications For structural properties
this problem can be solved for a given flow graph interface I, because we can
characterise precisely the flow graphs having interface I as models through a
structural formula 6; in our logic. Let I = {mq,mo} be a closed flow graph
interface. A model is a flow graph with this interface exactly when it satisfies the
formula 0; = (vX.mq A[my, ma,] X))V (vY.ma A[my, ma, e]Y), which essentially
expresses that edges in the flow graph do not cross method boundaries. Then,
for every structural formula ¢, the maximal model of the formula ¢ A 0y is
a flow graph G4 ; that simulates structurally all flow graphs with interface I
that satisfy ¢. We term this flow graph the mazimal flow graph for formula ¢
and interface I, and the compositional verification principle formulated above
still applies for flow graphs and structural properties. The above compositional
verification principle can then be adapted to structural properties of flow graphs,
yielding the following sound and complete compositional verification principle,
presented as a proof rule (see [13] for technical details):

gl ':s ¢ g(b,]gl W g2 ':s 1/1
gl W g2):s 'l/)

(struct — comp)

gl : Ig1

Mazximal Flow Graphs from Behavioural Specifications In the case of behavioural
flow graph properties, however, there is no such way to characterise in our logic
all models that constitute behaviours of flow graphs with a given interface (in-
tuitively, this is because the logic is not capable of expressing context—free prop-
erties). Furthermore, these models are infinite—state and cannot be constructed

Technical Report, KIT, 2010-13 28

M. Huisman, D. Gurov

explicitly; what we actually need is a way to construct the maximal flow graph
for a given behavioural formula ¢ and interface I. It turns out, however, that in
general there is no such single flow graph, but rather a set of flow graphs having
the property that every flow graph satisfying ¢ is simulated by some flow graph in
the set. To compute such a set, we have developed a translation from behavioural
flow graph properties ¢ to equivalent sets of structural properties II7(¢) for a
given interface I. The translation is based on a tableau construction that con-
ceptually amounts to symbolic execution of the behavioural formula, collecting
structural constraints along the way. By keeping track of the subformulae that
have been examined, recursion in the structural constraints is identified and cap-
tured by fixed—point formulae (for details see [11]). Combining this translation
with maximal flow graph generation for structural properties yields the follow-
ing sound and complete compositional verification principle for flow graphs and
behavioural properties, presented as a proof rule:

G b ¢ {Gxte, W92 =0 0 ity)
GlWG = v

(beh — comp) Gy :Ig,

In addition, we have also developed a “mixed” rule [13], where local structural
assumptions are combined with global behavioural guarantees.

The presented proof rules are flexible, so that they allow reasoning about
a combination of concrete components (i.e., given through their implementa-
tion) and abstract components (i.e., given though their specification), both at
the structural and the behavioural levels. Section 5 shows typical verification
scenarios, where these proof rules are applied for open system and modular
verification. A possible instantiation of this approach is to choose individual
methods as components. The proof rules then give rise to a procedure—modular
verification technique for temporal properties, see [20].

4 Tool Support for Compositional Verification

This section describes the different internal data formats and tools within the
CVPP tool set. It also exemplifies the different input formats used. A high-level
overview of CVPP’s architecture is shown in Figure 2 (where rounded boxes
denote data formats, squared boxes tool components, and dashed lines denote
external formats or tools).

As program input format, currently the Java bytecode format is used. Inter-
nally, there are three important data formats:

— Model: the program model representation, containing nodes, edges, a valua-
tion and a set of entry points.

— Formula: the property representation. We support behavioural and struc-
tural formulae in our logic, both in recursive and in equation system form.

29 Technical Report, KIT, 2010-13

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

Graph : ModCheck Formula

— compose | — Moped — simplify

— CCS/PDA |- CwWB — convert

—inline | - CWB/LTL
— beh2struct

ormula
— structure
- behaviour
— eqgsys

Program % Analyser

H Model % MaxMod

Fig. 2. The CVPP tool set architecture

— Interface: the interface representation, containing lists of provided and of

externally required methods. Interfaces are used as auxiliary information by
almost all tool components, and therefore we did not include it explicitly in
Figure 2.

The components of the tool set are the following:

— Analyser: from Java classes to flow graphs. Java bytecode classes are ab-

stracted into flow graphs. The tool is build on top of the Soot framework [21].
Graph: transformations on the program model representations. The main
operations supported are flow graph composition, pretty printing in different
formats (in particular as CCS process terms and as PDS of the induced
behaviour), and inlining of private methods. The use of the latter operation,
called Graph Inliner, is briefly explained in Section 5.1 (see also [10]).
Formula: transformations on the property representations. The main opera-
tions supported are the simplification of formulae, the conversion from one
property format to another (such as the translation of our logic from re-
cursive to equation system form, needed for maximal model construction),
pretty printing as a CWB or LTL formula (as input for Moped), as well as
the characterisation of behavioural formulae by structural ones. The latter
operation is referred to as Beh2Struct. In addition, we allow properties to be
expressed using so—called patterns. Patterns provide abbreviations for com-
monly used specification constructs. They increase readability and make the
property more independent of the interface. The Formula component trans-
lates patterns into our logic.

MaxMod: the maximal model construction as described in Section 3. This
component uses formulae expressed as equation systems.

ModCheck: model checking, using external tools: for structural properties we
use CWB, the Edinburgh Concurrency Workbench [7], while for behavioural
properties we rely on Moped, a PDS model checker for LTL [19].

To conclude this section, we show how the examples from Section 2 are writ-
ten in CVPP’s input formats. Consider again the flow graph from Figure 1. The
method graph of method even is written as follows:

Technical Report, KIT, 2010-13 30

M. Huisman, D. Gurov

interface for Number: provided even, odd
struct. formula Ex. 2: nu X.(([even] r) /\ ([odd] r) /\ ([eps] X))
beh. formula Ex. 4: meth(even) => nu X.(([even call even] ff) /\ ([tau] X))

Fig. 3. Examples in CVPP’s input format

node O meth(even) entry edge 0 1 eps
node 1 meth(even) edge 1 2 eps
node 2 meth(even) edge 1 4 eps
node 3 meth(even) ret edge 2 3 odd

node 4 meth(even) ret

Figure 3 exemplifies how interfaces and structural and behaviour properties are
written in CVPP’s input format.

5 Typical Verification Scenarios

Section 3 presented several compositional verification principles; this section
describes in detail some typical scenarios supported by CVPP and these ver-
ification principles. In addition, we also describe how CVPP can be used for
non—compositional verification. This is in particular interesting for behavioural
properties: by means of the translation of behavioural properties into structural
ones, CVPP provides an effective way to reduce the verification problem for be-
havioural properties to the computationally simpler problem for structural ones.

5.1 Open System Verification

The most general application of the proof rules presented in Section 3 is to open
system verification, where some components are given by an implementation
(referred to here as concrete components), while others are only given by a
specification (abstract components). This can typically happen with dynamically
reconfigurable or evolving software, where some components are either not known
or simply not statically fixed at verification time.

Thus, verification of a global property of an open system has to be rel-
ativised on the local specifications of the abstract components. For instance,
if all specifications are behavioural, this is achieved by consecutively applying
rule (beh — comp) on every abstract component. The implementations of the ab-
stract components, once available, are checked against their local specifications.

An additional complexity stems from the detail of information in the con-
crete components. Often these will contain information about private methods,
that are not visible to other components. In contrast, the abstract components
and global properties are typically described at the level of the public interface.
Therefore, the implementation details in the concrete components are abstracted
away, by using the Graph Inliner, to the publicly visible behaviour, before com-
posing the components.

31 Technical Report, KIT, 2010-13

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

The overall verification task thus divides into two independent tasks, sup-
ported by our tool set as follows:

1. Local correctness: Check whether the implementation, once available, of ev-
ery abstract component meets its local specification as described below in
Section 5.3.

2. Global correctness:

(a) for every concrete component, from its implementation, extract a flow
graph using the Analyser, and use the Graph Inliner to construct its pub-
licly visible behaviour;

(b) for every abstract component, if its local specification is behavioural,
translate the property to an equivalent set of structural ones using Beh-
2Struct;

(c) for every structural property, being either a local specification of an
abstract component itself or resulting from step 2(b), compute a maximal
flow graph using MaxMod;

(d) for all instantiations of abstract components by corresponding constructed
maximal flow graphs, and instantiations of concrete components by their
extracted flow graphs, compose the graphs using Graph to produce a
global flow graph of the system, and model check the latter against the
global specification as described below in Section 5.3.

5.2 Modular Verification

In the modular software design paradigm the goal is to verify the modules of a
software system locally, i.e., independently of each other, and then to combine
the local correctness arguments into a global correctness proof of the whole sys-
tem. In our verification framework, modular verification is simply an instance of
the more general case of open system verification described above, with modules
as components and where all components are abstract. This eliminates task 2(a)
and simplifies conceptually task 2(d).

One can view the notion of module on different levels of granularity. One
(rather extreme) case in procedural programming languages is when every pro-
cedure itself is considered a module and is equipped with a specification. In this
case we obtain procedure-modular verification, similar to many Hoare logic based
verification approaches. We have recently shown on a case study that it is indeed
possible and convenient to reason at this level of granularity about control-flow
safety properties of an application [20].

5.3 Non—compositional Verification

The open system and modular verification scenarios above give rise to several
non-modular verification tasks. In addition, CVPP also can be used to rea-
son in a fully non-compositional setting. This is in particular useful to rea-
son about behavioural properties. Due to unbounded recursion, verification of
behavioural properties for procedural programs is infinite—state, even when all

Technical Report, KIT, 2010-13 32

M. Huisman, D. Gurov

data is abstracted away as in our program model. On the other hand, verifica-
tion of structural properties is finite—state. Thus, by applying our translation
from behavioural to sets of structural properties, one can reduce verification of
behavioural properties to a finite number of finite-state verification tasks.

With our tool set, given a Java application and a property specification (ei-
ther behavioural or structural), perform the following steps:

1. extract the flow graph of the application using the Analyser (and if necessary,
use the Graph Inliner to abstract away from implementation details);

2. if the property is structural, cast the flow graph as a CCS term using Graph,
and model check the term against the property using the CWB;

3. if the property is behavioural, there are two alternatives: either

(a) cast the flow graph as a pushdown system using Graph, and model check
it against the property using Moped; or

(b) translate the property to an equivalent set of structural ones using Beh-
2Struct, and perform step 2 for each one of these.

Step 3(b) is particularly meaningful in settings where the behavioural specifica-
tions are known in advance (such as the security policies of mobile platforms)
and are relatively stable; the property translation can then be applied prior to
the verification task itself.

5.4 Wrapper Tools for Standard Verification Scenarios

The different scenarios described above require the use of several of the tools
of CVPP in a particular pre—defined order. Therefore, to make CVPP easier to
use, and to hide away the internal formats and translations within the tool set,
wrapper tools are being developed that perform the typical verification scenarios
automatically. A wrapper implements a pre— and a post—processor that trans-
lates input and output of the tool set, and performs the different verification
steps automatically. The post—processor appropriately handles feedback from
the model checkers: when a structural property is violated, it is indicated where
in the program this violation occurs; when a behavioural property is violated
the model checking counter example is translated back into a program trace.

The first wrapper tool that we developed is ProMoVer [20]. This automates
procedure—modular verification of Java programs annotated with global and
method—local specifications. ProMoVer is evaluated on a small but realistic case
study: we verified the absence of calls to non—atomic methods within Java Card
transactions for a Java Card electronic purse application?. In the near future,
we plan to develop wrapper tools for the other scenarios.

4 A web-based interface to ProMoVer is available from:
http://www.csc.kth.se/"siavashs/ProMoVer/promover.php.

33 Technical Report, KIT, 2010-13

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

N T NG
v0@® even, r vl.@ € €

€, even, odd

€, even, odd
@®~——————————————@_ even
v3 even, r v2

Fig. 4. Maximal flow graph for “the first call is not to method even itself”

€, even, odd

6 Executing the Verification Scenarios

To illustrate how CVPP is used, this section discusses how parts of the different
verification scenarios described in the previous section are applied on concrete
examples. For a larger example discussing our experiences with ProMoVer for
the verification of the safe use of the Java Card transaction mechanism in an
e-commerce application for smart cards, we again refer the reader to [20].

6.1 Generating Maximal Flow Graphs for a Behavioural Property

One important subtask in the compositional verification scenarios discussed in
the previous section is the construction of maximal flow graphs from a be-
havioural specification of a component; see steps 2(b,c) of the open system
verification scenario. As explained in Section 3, this is achieved by translat-
ing the behavioural property into an equivalent set of structural ones, and by
constructing a maximal flow graph for each of the latter.

For example, consider a component specified by an interface where meth-
ods even and odd are provided and no external methods are required, and
by the behavioural property “in every program execution starting in method
even, the first call is not to method even itself” formalised in Example 4.
Providing this interface and formula to Beh2Struct, and optimising the result
with the simplification facility of Formula, we obtain one structural formula:
even = vX. [even]ff A[e] X. To compute a maximal flow graph, we first apply
the conversion facilities of Formula to transform the formula into a modal equa-
tion system, which is then passed on, together with the original interface, to
MaxMod. The resulting maximal flow graph is shown in Figure 4. Notice that
the method graphs for even and odd are isomorphic, but the graph of method
even has two entry nodes while the graph of method odd has four; as a result,
the former restricts the behaviour in that, once called, method even can only
call method odd as a first method call, while the latter makes no restrictions on
the behaviour whatsoever. This maximal flow graph can now be substituted for
the given component when model checking global system properties.

Technical Report, KIT, 2010-13 34

M. Huisman, D. Gurov

6.2 Closed System Model Checking of a Behavioural Property

Consider again the component of the previous subsection, described by the in-
terface where methods even and odd are provided and no external methods are
required, and by the behavioural property in Example 4. We want to show that
the class Number defined in Example 1 is an appropriate implementation of this
component. This is an instance of the non-compositional verification scenario in
Section 5.3. Thus, using the Analyser, we first extract the flow graph, resulting in
the flow graph as in Figure 1. For this application, there is no difference between
public and private interface, thus there is no need to use the Graph Inliner.

The property is behavioural, thus we have a choice (cf. step 3, Section 5.3).
(a) We can model check the behavioural property directly. We use Graph to
produce the PDS from the flow graph, and Formula to transform the property to
an LTL formula. Then Moped is used to verify that class Number indeed respects
this property. (b) As in the previous subsection, we can compute the structural
formula that characterises the behavioural formula by using Beh2Struct. We use
Graph to pretty print the flow graph as CCS term and Formula to pretty print the
formula in CWB’s input format. Then CWB is used to verify that class Number
indeed respects this structural property.

7 Conclusion

CVPP is a tool set for compositional verification of control-flow safety prop-
erties of procedural programs. It supports a completely automatic verification
method based on maximal models. The underlying general compositional ver-
ification principle instantiates to two important verification scenarios, namely
open system verification and modular verification. By means of an algorithmic
translation of behavioural into structural properties, the tool is also applicable
to non—compositional verification, allowing infinite-state PDA model checking
to be reduced to standard finite-state model checking. The various scenarios can
be supported by wrapper tools, such as ProMoVer, that encapsulate the inner
workings of the tool set and provide a smooth interface to the user.

The largest CVPP case study so far is the verification of absence of illicit
applet interactions in a smart card application [13,6]. This has been redone with
the later extensions of the tool set. It is future work to develop more case stud-
ies, similar in size and complexity, but taking advantage of the different wrapper
tools. For all three verification scenarios appropriate wrappers will be developed.
Further, we plan to provide support for other property specification formalisms,
in particular security automata. Also, support for flow graph extraction from
source code will be improved, developing a modular and extensible tool. Other
extensions concern the program model, where we plan to add data to flow graphs
to represent Boolean programs faithfully, and to develop a solution for multi—
threaded programs. Finally, we plan to extend the logic to include liveness prop-
erties; these become meaningful when the flow graphs model program behaviour
faithfully, or at least provide under—approximations of the guaranteed behaviour.

35 Technical Report, KIT, 2010-13

CVPP: A Tool Set for Compositional Verification of Control-Flow Safety Properties

Acknowledgements We thank everybody who contributed to CVPP: Irem Ak-

tug (Analyser), Christoph Sprenger (MaxMod), Siavash Soleimanifard (ProMoVer),
and Afshin Amighi (property simplification). We are also indebted to Stefan

Schwoon, who extended the input language of Moped to serve our needs.

References

1. R. Alur, M. Arenas, P. Barcelo, K. Etessami, N. Immerman, and L. Libkin. First-
order and temporal logics for nested words. In Logic in Computer Science (LICS
’07), pages 151-160, Washington, DC, USA, 2007. IEEE Computer Society.

2. R. Alur and S. Chaudhuri. Temporal reasoning for procedural programs. In Veri-
fication, Model Checking, and Abstract Interpretation (VMCAI ’10), volume 5944
of LNCS, pages 45-60. Springer, 2010.

3. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic for nested calls and
returns. In Tools and Algorithms for the Analysis and Construction of Software
(TACAS ’04), volume 2998 of LNCS, pages 467-481. Springer, 2004.

4. M. Barnett, K.R.M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. In CASSIS 2004, volume 3362 of LNCS. Springer, 2004.

5. G. Boudol and K. Larsen. Graphical versus logical specifications. Theoretical
Computer Science, 106:3—20, 1992.

6. G. Chugunov, L.-A. Fredlund, and D. Gurov. Model checking of multi-applet Java-
Card applications. In Smart Card Research and Advanced Application Conference
(CARDIS ’02), pages 87-95. USENIX Publications, 2002.

7. R. Cleaveland, J. Parrow, and B. Steffen. A semantics based verification tool for
finite state systems. In International Symposium on Protocol Specification, Testing
and Verification, pages 287-302. North-Holland Publishing Co., 1990.

8. M. Goldman and S. Katz. MAVEN: Modular aspect verification. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS ’07), volume
4424 of LNCS, pages 308-322. Springer, 2007.

9. O. Grumberg and D. Long. Model checking and modular verification. ACM
TOPLAS, 16(3):843-871, 1994.

10. D. Gurov and M. Huisman. Interface abstraction for compositional verification. In
Software Engineering and Formal Methods (SEFM ’05), pages 414-423, 2005.

11. D. Gurov and M. Huisman. Reducing behavioural to structural properties of pro-
grams with procedures. In Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI ’09), volume 5403 of LNCS, pages 136-150. Springer, 2009.

12. D. Gurov and M. Huisman. Reducing behavioural to structural properties of pro-
grams with procedures. 2010. Full version, submitted, available upon request.

13. D. Gurov, M. Huisman, and C. Sprenger. Compositional verification of sequential
programs with procedures. Information and Computation, 206(7):840-868, 2008.

14. M. Huisman, I. Aktug, and D. Gurov. Program models for compositional verifica-
tion. In International Conference on Formal Engineering Methods (ICFEM ’08),
volume 5256 of LNCS, pages 147-166. Springer, 2008.

15. M. Huisman, D. Gurov, C. Sprenger, and G. Chugunov. Checking absence of
illicit applet interactions: a case study. In Fundamental Approaches to Software
Engineering (FASE ’04), volume 2984 of LNCS, pages 84-98. Springer, 2004.

16. D. Kozen. Results on the propositional py-calculus. Theoretical Computer Science,
27:333-354, 1983.

Technical Report, KIT, 2010-13 36

M. Huisman, D. Gurov

17. P. Miiller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of LNCS. Springer, 2002.

18. F. B. Schneider. Enforceable security policies. ACM Trans. Infinite Systems Se-
curity, 3(1):30-50, 2000.

19. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische Univer-
sitdt Miinchen, 2002.

20. S. Soleimanifard, D. Gurov, and M. Huisman. Procedure-modular verification
of control flow safety properties. In Workshop on Formal Techniques for Java
Programs (FTfJP ’10), 2010.

21. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -
a Java Optimization Framework. In CASCON ’99, pages 125-135, 1999.

22. 1. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional mu-
calculus. In Logic in Computer Science (LICS ’95), pages 14-24. IEEE, 1995.

37 Technical Report, KIT, 2010-13

A Pushdown System Representation
for Unbounded Object Creation

Jurriaan Rot!, Frank de Boer!:2, Marcello Bonsangue!-2
! LIACS - Leiden University

2 Centrum voor Wiskunde en Informatica (CWT)

jrot@liacs.nl, frb@cwi.nl,marcello@liacs.nl

Abstract. We introduce a block-structured programming language which
supports object creation, global variables, static scope and recursive pro-
cedures with local variables. Because of the combination of recursion,
local variables and object creation, the number of objects stored dur-
ing a computation is potentially unbounded. However, we show that a
program can be viewed as a type of pushdown automata, for which the
halting problem as well as LTL and CTL model checking are decidable.

Key words: object creation, model checking, pushdown systems, push-
down automata

1 Introduction

From the 1960s onwards imperative programming has evolved with the intro-
duction of high-level programming constructs for mastering the complexity of
software by abstraction, encapsulation and modularity. The initial description
of computation in terms of assignment statements to change a program state,
sequential and conditional composition, and conditional looping [10] has been
extended with procedures in combination with block structures which enable the
construction and declaration of complex state changes abstracting from the con-
crete implementation [19]. Pointers are a very flexible programming mechanism,
allowing manipulation of dynamically growing and potentially unbounded data
structures. In the eighties mainstream imperative programming languages added
the support of objects [23], a collection of procedures acting on an encapsulated
state, having an identity that can be referred to by other objects. Other powerful
programming techniques like inheritance and polymorphism enable code reuse,
and are crucial for programming-in-the-large [22].

The increasing flexibility in programming comes, however, with an increasing
complexity in reasoning about programs. Model checking is a technique for ex-
haustively checking a (model of a) program for possible errors [4]. Traditionally,
in order to guarantee termination of a model checking procedure, finite-state
models are required, and thus only programs over finite data domains are con-
sidered. But to program with dynamical data structures, objects may need to
be created, removed and modified when moving from a state to another in a

Technical Report, KIT, 2010-13 38

J. Rot, F. de Boer, M. Bonsangue

computation. Thus, by their very nature, objects are unbounded: for example,
during a recursive computation new objects can be created infinitely often. In
order to achieve finite-state models for object-oriented programs, different types
of abstraction and restrictions of programs have been considered (see related
work below). Typically one disallows object creation and considers only a finite
number of objects already existing before the computation starts, or allows for
object creation only within restricted forms of recursion. However, the neces-
sity to restrict programs before their analysis limits the applicability of model
checking techniques to modern imperative programming languages.

In this paper we introduce a simple block-structured programming language
which supports object creation, global variables, static scope and recursive pro-
cedures with local variables. In order to focus on the main issues, we restrict to
a single but unbounded data structure, namely that of object identities. Other
finite data domains could have been added without problem, but would have
increased the complexity of the model without strengthening our main result.
Although very simple, the language is powerful enough to encode the control
flow of high-level imperative programming languages including closed class-based
object-oriented programs, like Java. Because of the combination of recursion with
local variables, a program may have infinitely many different states. Since we
allow to store object references into local variables, the number of objects stored
during a computation is potentially unbounded.

For our language we define two semantics: a concrete one that is infinite state,
and a symbolic one that is also infinite state but is based on an enhanced version
of the model of recursive procedures with local variables via a suitable pushdown
system [12]. A pushdown system is a simple type of pushdown automaton used
to generate behavior rather than to accept languages [5]. It provides a finite rep-
resentation generating infinite state systems, where a state consists of a control
part and a stack. In our model of a pushdown system global variables and the
current local variables form the control states, whereas the current executing
statement is on top of the stack. Actually it is more common to model only the
global variables in the control state, while the local variables and the control
point are (part of) the top of the stack (see e.g. [21]). We chose our approach
for convenience in the proofs, but it can easily be modified to the more common
approach. In our model, when a procedure is called, a copy of the current local
variables is stored on the stack to recover the original values after the procedure
returns, and the local variables in the control state are initialized again. In order
to achieve finitely many control states, we abstract from the concrete identities
of the objects, but maintain their symmetries, i.e. the equality relation among
object identities [13]. Our main result is that the concrete and the symbolic
semantics are strongly bisimilar.

Reachability for an infinite state system is generally undecidable. However,
for a pushdown system it turns out that both the halting problem and reach-
ability are decidable [16]. In fact, it is possible to model check pushdown sys-
tems against linear-time or branching-time temporal formulas. For linear-time

39 Technical Report, KIT, 2010-13

A Pushdown System Representation for Unbounded Object Creation

temporal formulas the complexity is even of the same order as for finite state
systems [5].

This paper is organized as follows. In Section 2, we introduce the syntax
of our language and give an informal description of its semantics. Section 3
provides a concrete execution model using a transition system on infinite states,
and in Section 4 we describe the construction for the symbolic semantics based
on pushdown systems. The relationship between these two models is studied in
Section 5. Finally, the last section discusses some relevant consequences of our
result, and possible future steps.

Related work. Currently there are several model checkers for object oriented
languages. Java Path Finder [14] is basically a Java Virtual Machine that exe-
cutes a Java program not just once but in all possible ways, using backtracking
and restoring the state during the state-space exploration. Even if Java Path
Finder is capable of checking every Java program, the number of states stored
during the exploration is a limit on what can be effectively checked. As with
JCAT 9], Java source code can be translated into Promela, the input language
of SPIN [15]. Since Promela does not support dynamic data structures, they
have to allocate fixed-size heaps and stacks.

Bandera [8] is an integrated collection of tools for model-checking concur-
rent Java software using state-of-the art abstraction, partial order reductions
and slicing techniques to reduce the state space. It compiles Java source code
into a reduced program model expressed in the input language of other exist-
ing verification tools. For example, it can be combined with the SAL (Symbolic
Analysis Laboratory) model checker [18] that uses unbounded arrays whose sizes
vary dynamically to store objects. In order to explore all reachable states model
checking is restricted to Java programs with a bounded (but not fixed a priori)
number of objects.

Model checking of a possibly unbounded number of objects but for a language
with a restricted form of recursion (tail recursion) and no block structure has
been studied using high level allocation Biichi automata [11], a generalization of
history dependent automata [17] that enables for a finite state symbolic seman-
tics very similar to ours. Full recursion, but with a fixed-size number of objects
is instead considered in jMoped [12], using a pushdown structure to generate an
infinite state system.

The current state of the art of model checking approaches for languages
with object creation and full recursion in terms of concrete memory addresses,
require an a priori bound on the size of the heap for reachability analysis (e.g.
[6]). In order to overcome this problem, the main contribution of this paper is
the precise abstraction of the heap in terms of equivalence classes of program
variables which refer to the same memory address.

2 A simple imperative language with object creation

This section introduces a simple programming language that supports object
creation, global and local variables, and recursive procedures. To simplify the

Technical Report, KIT, 2010-13 40

J. Rot, F. de Boer, M. Bonsangue

presentation it is restricted to a single data structure, that of object identities.
A program consists of a finite set of procedures, each acting on some global and
local state. Procedures can store identities in global or local variables, compare
them, and call other procedures.

We assume a finite set of program variables V ranged over by x,vy,... such
that V = G U L, where G is a set of global variables {g1,g2,...,9n} and L is a
set of local variables {l1,la, ... 1}, with G and L disjoint. For P a finite set of
procedure names {po, ...,k }, a program is a set of procedure declarations of the
form p; :: B;, where B;, denoting the body of the procedure p;, is a statement
defined by the following grammar

B = gxz:=y|xz:=new | B;B|[zx=y|B|[x#y|B|B+B|p.

Here x and y are program (local or global) variables in V, and p is a procedure
name in P. The procedure pg € P is called the initial procedure of a program.

The language is statically scoped. The assignment statement x := y assigns
the identity stored in y (if any) to x. If was already referring to an object
identity, this gets lost. In particular, if z is the only variable of the program
referring to an object o, then after an assignment x := y, the object o cannot be
referenced anymore and gets lost forever. The statement = := new creates a new
object that will be referred to by the program variable z. As for the ordinary
assignment, the old value of x is lost. In a program execution, a program variable
x is said to be defined if there was an assignment or object creation statement
earlier in the execution with the variable x at left—hand side. Sequential composi-
tion By; Ba, conditional statements [z = y]B and [z # y] B and nondeterministic
choice B1 + By have the standard interpretation. A procedure call p means that
the body B associated with p is executed next on the same global state but on
a new fresh local state. After the procedure body terminates, its local state is
destroyed forever and the previous local state (from which the procedure has
been called) is restored. Changes to the global state, however, remain.

More general boolean expressions in conditional statements can be obtained
by using sequential composition and nondeterministic choice. In fact (by A b2)B
can be written as (by)boB, whereas (by V by)B as (b1 B) + (b2B). Negation of
a boolean expression b can be obtained by transforming b into an equivalent
boolean expression in conjunctive disjunctive normal form, for which negation
of the simple expression [z = y] and [z # y] is defined as expected.

Ordinary while, skip, and if-then-else statements can be expressed easily in
the language, using recursive procedures, conditional statements and nondeter-
ministic choice. For the sake of simplicity, we allow creation and assignment of a
single object identity only; generalizations to simultaneous assignments and ob-
ject creation can be added in a straightforward manner. We assume automatic
garbage collection of object identities that are not referenced anymore by any
global variables or instances of local variables in a program execution.

The language does not directly support parameter passing. However, it is
worthwhile to note that we can model procedures with call-by-value parame-
ters by means of global variables. Let p(vy,...,v,) be a procedure with formal

41 Technical Report, KIT, 2010-13

A Pushdown System Representation for Unbounded Object Creation

parameters vy, ..., v,. We see the formal parameters as local variables and in-
troduce for each parameter v; a corresponding global variable g; (which does not
appear in the given program). Every procedure call p(z1, ..., x,) can be modeled
by the statement g1 := x1;...;gn := @,;p whereas the body B of p(vy,...,v,)
can be modeled by vy := g1;...;v, := gpn; B. A similar approach can be taken to
model procedures with return values. Finally, method calls z.m(x1,...,x,) then
can be modeled by introducing the called object x as an additional ’parameter’
of the procedure m.

3 Transition System Semantics

In this section, we introduce a semantics of the programming language which
is defined in terms of an explicit representation of objects by natural numbers.
This representation allows a simple implementation of object creation. A program
state of a program is a function

s:V—N|,

where N = NU{ L} (L is used to denote “undefined”). To model object creation
we distinguish a global “system” variable ¢ which is used as a counter, and is
not used by programs. We implicitly assume that s(c) # L, for every state s.

A configuration of a program is a pair (s, S) where s is a program state and
S is a stack of statements and local states. An execution step of a program is a
transition from a configuration C to a configuration C’, denoted by C — C'.
The possible execution steps are given below. For modeling state updates we
use multiple assignments of the form s[z1,...,2, = v1,...,v,], where x; and
x; are distinct, for ¢ # j. The head of a stack is separated from the tail with
the right-associative operator e; for example, S’ = e @ S is the stack consisting
of head e and tail S.

(s,B1;ByeS) — (s,B1 e ByeS) (1)

s(y) # L
(5,2 :=yeS) — (sl :=s(y)],5)

(s, :=neweS) — (s[x,c:=c,c+1],5) (3)

s(@) =s(y) s(a) £ L
(5.t =yBs S) — (s,Be5)

s(x) #s(y) s(@)#L sy #L
(s,[x £y|BeS) — (s,BeS)

(s,B1+ByeS) — (s,B;eS) (ie{l,2}) (6)

Technical Report, KIT, 2010-13 42

J. Rot, F. de Boer, M. Bonsangue

(s,pie8) — (s',Bieses) (7)

where s'(I) = L, for every local variable [and s'(g) = s(g), for every global
variable g.

(5,5 8) — (s[l:= (1)),) (8)
where [denotes the sequence of local variables [1,...,l,, and s'(I) denotes the
sequence of values s'(l1),...,s (I;m).

For technical convenience only, a procedure call pushes onto the stack as local
environment the entire state. Further, we assume a distinguished global variable
'nil’ such that s(nil) = L, for every state s. The following corollary states some
basic properties of the semantic rule 8.

Corollary 1. If (s,s" e S) — (s”,S) then for every z,y € V:
1. x and y are both global implies s"(x) = s (y) iff s(x) = s(y),

2. x and y are both local implies s (x) = s"(y) iff s'(x) = s'(y),
3. x is global and y is local implies 8" (x) = s"(y) iff s(z) = ' (y).

Proof. Tt suffices to observe that by definition of the rule 8 we have s”(g) = s(g)
and s”(l) = §(1), for every global g and every local [. O

Further, we have the following invariance property about the flow of infor-
mation between the current state and the stacked states.

Lemma 1. For every computation (so,po) —* (s,.S), variable z, local variable
1 and local state s' appearing in S, we have s(z) = s'(1) iff there exists a global
variable g such that s(z) = s'(g) and s'(1) = s'(g).

Proof. The proof is by induction on the length of the computation. The basis of
the induction is trivial because the stack of the initial configuration only contains
the statement pyg.

It suffices to show that every production respects the property. First note that
for any rule except 7, no new states are added to the stack so we only need show
that the resulting state still satisfies the equivalence. In rule 1, 4, 5 and 6 we have
s = s’ so the equivalence holds by the induction hypothesis. In the assignment
rule 2, the resulting state is s[z := s(y)]. Now if z = = (= denotes syntactic
identity) then s[z := s(y)](z) = s(y) and if z #Z z then s[z := s(y)](z) = s(2).
In both cases, the result follows from the induction hypothesis. In rule 3, the
resulting state is s[x,c := ¢,c + 1]. It follows that s[x,c := ¢, ¢+ 1](y) = s(y)
and s[x,c:= ¢,c+ 1](z) # s(y), for all y #Z x. The result then follows from the
induction hypothesis. Rule 7, the procedure call, adds the state s to the top of the
stack. Since the values of the locals are L in the resulting state, and the values
of globals in the resulting state are equal to their value in s, by the induction
hypothesis the equivalence holds for every state in the resulting stack including
s. Lastly for rule 8 does not alter the globals. For the locals, the result follows
from the induction hypothesis for the popped abstract state. Note that there
exists a computation (sg,pg) — (s’,S), where s’ denotes the popped abstract
state. O

43 Technical Report, KIT, 2010-13

A Pushdown System Representation for Unbounded Object Creation

4 Pushdown System Semantics

The above semantics gives rise to an infinite state system because of unbounded
recursion, and because of the representation of objects by natural numbers used
to model unbounded object creation. Since we can only test objects for equal-
ity we can reduce this state-space by the introduction of equivalence classes of
variables, that is, two variables belong to the same equivalence class if they de-
note the same object. However local variables can generate again an unbounded
number of equivalence classes. We show in this section how we can restrict to
an apriort finite number of equivalence classes of variables by the introduction
of so-called “freeze” variables, which will be used to compare the partitions of
variables before and after executing a procedure call. This will allows for a real-
location of the global variables with respect to the local variables of the caller.
To do this, we associate with each global variable g a fresh and unique local
variable g’ (which we assume does not appear in the given program).

An abstract program state now consists of a partition of global and local
variables (including the freeze variables). To facilitate easy treatment of such a
partition, we represent it as a function

o:V—|V|+1

where |V is the cardinality of the set of variables V, and |V| + 1 is identified
with the set {0,...,|V]}. Thus two (distinct) variables « and y belong to the
same equivalence class iff o(x) = o(y). We use zero for the equivalence class of
variables which are undefined, e.g., o(nil) = 0, for every abstract state o.

A configuration of a program now is a pair (o, X') where o is an abstract state
as defined above and X' is a stack of statements and abstract states. Because
of the way we model partitions of the set of variables V', rules 1, 2, 4, 5 and 6
directly apply in this model and are therefore not repeated here. The rule for
object creation is modified as follows.

(0,2 :=newe X) — (¢/, X) 9)

where ¢’ = o, if all indices except zero are used in o, else ¢/ = o[z := i], where
1 # 0 is the smallest index not already used by o.

This new rule for object creation describes it in terms of an update of the
current partition of the variables V' by isolating the variable x. This is achieved
by assigning to the variable x an index different from zero not in use. Note that
in case such an index does not exist the partition represented by o consists of
singleton sets only and therefore is not affected by object creation, i.e., we do
not need to assign a new index to x because it is already isolated.

The rule for procedure calls is modified as follows.

(0,pi 8 5) — (o, By o %) (10)
where o/ = o[l := 0][¢/ := o(g)], ¢ denotes the sequence ¢},...,g!, of freeze
variables and o(g) denotes the sequence of indices o(g1),...,0(g,). Note that

o[l :=0](I) = 0, for every local variable | € L.

Technical Report, KIT, 2010-13 44

J. Rot, F. de Boer, M. Bonsangue

A procedure call now additionally initializes the freeze variables by the values
of their corresponding global variables and stores the old abstract state onto the
stack. Note that execution of B; does not affect the freeze variables.

Finally, the rule for returns from a procedure call is modified as follows.

(0.0" 0 £) — (0., 5) (11)

where 0p = ¢’ and for 0 < i < n (where n is the number of globals) we define
o; by the following cascade of if-then-else statements:

— if 0(g;) = 0 then o; = 0;_1[g; := 0] else

— if 0(g;) = o(g;), for some j < i, then o; = 0;_1[g; := 0;-1(g,)] €lse

— if 0(g;) = o(g’), for some freeze variable ¢’, then o; = 0;_1[g; := 0'(g)] else

— if in 0;_1 all indices except 0 are used then o; = 0;_1 else

— 0; = 04-1[gi := k'], where k’ # 0 is the smallest index not already used by
O;—1.

Upon return, which consitutes the ’heart of the matter’, we need to update
the stored partition o’ by reallocating the global variables according to the new
partition described by o. We do so by means of the freeze variables which rep-
resent in o the partitioning of the global variables in ¢’ and as such form a
reference point for comparison with the local variables in ¢’. In other words,
a partition in ¢’ containing global variables is represented in o by the corre-
sponding freeze variables. Therefore, in case in o a global variable g; is identified
with a freeze variable ¢’ we have to identify it with all the local variables which
belong to the partition of g in ¢’. This is simply obtained by setting the index
of g; to o’(g). Note that in fact 0'(g) = o(g’). However, o/(g) = 0'(¢’) does not
hold in general because the freeze variable g’ represents the initial value of its
global variable g which may have been affected by the computation which led to
o'. Further, we observe that the choice of a particular freeze variable does not
affect the reallocation because if two distinct freeze variables are identified in
o, then so are their corresponding global variables in ¢’. Finally, we note that
global variables which are “drifted away“ from these freeze variables can only
denote objects which are different from those denoted by the local variables in
o’. Therefore for these variables new partitions have to be created. In order to
obtain suitable indices for these global variables we have defined the overall up-
date of ¢’ incrementally by processing the global variables one by one. For each
global variable g; its reallocation is defined by o; as follows: if g; is undefined
in o then so it is in oy, else if g; is identified by o with some already processed
gj (j < i) then we set its index to that of g; in ¢;_1, else if g; is identified by
o with some freeze variable then we set its index to that of the corresponding
global variable in ¢’. In case none of the above holds then we have to create a
new partition for g; as in the new rule for object creation.

Ezample 1. We give an example of a derivation which illustrates the procedure
call and return. The state is represented as a partition. We assume p is a pro-
cedure name with body p :: B = gy := new. Furthermore ¢;, go are global
variables, l1, I3 are local variabes.

45 Technical Report, KIT, 2010-13

A Pushdown System Representation for Unbounded Object Creation

<{{gl7ll}7 {925 lZ}}ap hd 2> -
(call) ({{91,91}: {92,952}, {l1,12}}, 92 := mew o {{g1, 11}, {92, l2}} ¢) —
(creation) ({{g1,91}, {92}, {92}, {11, 12}}, {{g1. 11}, {92, lo}} @ &) —
(return) ({{g1,01}, {g2},{l2}}, X)

The first transition step pushes the current state unto the stack. The new
state separates all the local variables 1 and Iy (this set is indexed by zero which
indicates ”undefinedness“) and introduces the freeze variables. The execution
of g5 := new in the next transition step isolates the variable go. Finally, upon
returning, g, is still identified with [; but both l5 and go are now isolated. It is
important to note that in the above computation we can also replace [; and [o
by freeze variables of earlier procedure calls.

Each set of variables identified by an abstract state defines an object. Further,
as explained above, two sets of variables V; and V;; identified by the respective
abstract states o; and 0,41, which are stored consecutively (from bottom to top)
on a given stack Y, define the same object if and only if there exists a global
variable g € V; for which its freeze variable ¢’ is in V;11. The equivalence relation
induced by this relation between the sets of variables stored on a given a stack
X represents the objects generated by Y. Figure 1 depicts a chain of sets of
variables which denote the same object.

The following corollary states some basic properties of the semantic rule 8.

Corollary 2. If (0,0’ ¢ X) — (0", X) then for every z,y € V:

1. = and y are both global implies o' (x) = o' (y) iff o(z) = o(y)

2. x and y are both local implies o (z) = o (y) iff o'(x) = o’ (y)

3. x is global and y is local implies o”(x) = o"(y) iff there exists a global
variable g such that o' (y) = o'(g) and o(z) = o(g’)

Proof. The equivalences follow immediately from the construction of o”, stated
in rule 8. a

Clearly the above semantics can be represented as a pushdown system (PDS).
A pushdown system is a triplet P = (Q, I, A) where @ is a finite set of control
locations, I is a finite stack alphabet, and A C (Q x I') x (Q x I'*) is a finite set
of productions. A transition (q,~,q’,7) is enabled if control is at location ¢ and
~ is at the top of the stack then control can move to location ¢’ by replacing -y
by the possible empty work of stack symbols 7.

In our case, for a given program p; :: By,...,p, = By, the set of control
locations is defined by the finite abstract state space V. — |V| + 1. In order
to define the stack alphabet we introduce the finite set Ule cl(B;) of possible
reachable statements where the closure of a statement B, denoted as cl(B), is
defined as follows.

— d(z=y) = {z =)

— d(z :=new) = {z := new}
— c(B;B) =cl(B)Ucd(B)

Technical Report, KIT, 2010-13 46

J. Rot, F. de Boer, M. Bonsangue

Vn

Vir1={...,g'...}

Vi = {nGo)

Vi

Fig. 1. Chain in a Stack

= d([z = y|B) = {[z = y|B} U cl(B)
= c([z # y|B) = {[z # y| B} U cl(B)
— cd(B+ B)=cl(B)Ucl(B)

— cl(p) = {p}

The stack alphabet I' is then defined by the union of the abstract state space
and the above set of possible reachable statements. Finally, it is straightforward
to transform the rules of the above semantics into rules of a pushdown system,
simply by removing the common stack tail from the left- and righthand sides.

5 Equivalence between the two models

In this section the behavioural equivalence between the two models is shown
by establishing bisimilarity, which is widely accepted as the finest behavioural
equivalence one would want to impose. A (binary) symmetric relation R on the
states of a transition system which satisfies

if P — P’ then there is a Q" such that Q — Q" and (P’,Q’) € R,

is called a bisimulation relation [20].

This definition applies to a single transition system — in our case, we use it
to establish equivalence between the two models. The states of the transition
system are pairs of configurations, and the transitions are execution steps of the
respective models.

We first define the following relation between abstract and concrete states.

47 Technical Report, KIT, 2010-13

A Pushdown System Representation for Unbounded Object Creation

Definition 1. We define s ~ o by s(z) = s(y) iff o(z) = o(y), for every pair
of variables x and y.

Next we extend this relation to stacks and configurations as follows.
Definition 2. We define S ~ X inductively by

— if S and X are both empty then S ~ X
— if S~ X then Be S ~ BeJX for any statement B
—ifs~oand S~ X then seS~cgelX

We define (s,S) ~ (0,X) by s~ and S ~ X.

In order to prove equivalence of the concrete and abstract semantics, we intro-
duce the freeze variables also as auziliary variables into the concrete semantics.
We do so by implicitly assuming that the rule for procedure calls additionally
initializes each freeze variable to the value of its corresponding global variable.
Note that this does not affect the behaviour of the program (which is assumed
not to contain freeze variables). It therefore suffices to relate this concrete se-
mantics extended with freeze variables and the abstract semantics.

Theorem 1. The above relation (s,S) ~ (0,X) is a bisimulation relation for
reachable configurations (s,S) for which there exists an initial configuration
(s0,p0) such that (sg,po) —* (s,5).

Proof. Let (s,S) ~ (0,X), where (s,S) is a reachable configuration. We must
show that for every execution step applicable to one configuration, there is an
execution step for the other configuration such that the resulting configurations
are again related by ~.

If the top of the stack is any statement except S + .9, it uniquely determines
the next step for both models. We choose the same step for both models for
the case S 4 5, so we can consider the resulting configurations of applying an
execution step to both configurations. If the execution steps have preconditions
(rules 2, 4, 5) then satisfaction of these preconditions must be equivalent in s
and o. It is easy to see this follows from the definition of the relation ~ on states.
Now we can establish execution steps (s, S) — (¢, 5’) and (0, X) — (o’, 2").
It rests to prove that the resulting configurations are again equivalent —

<SI7SI> ~ <O_/7E/>

must hold.

We prove the equivalence by considering all semantic rules. We consider the
main rules for object creation, procedure calls and returns.

Rule 3 (z := new). For variables x and y distinct from z, we have s'(z) = s(x),
o'(y) = o(y), §'(x) # §'(2) and o’(x) # o' (z). This proves s’ ~ ¢’. Next observe
that S’ and X’ equals S and X, respectively. So we obtain the desired result.

Rule 7 (call p). By definition we have s'(I) = L and o’(l) = 0, for every local
variable [, and s(g) = s'(g9) and o(g) = o'(g), for every global variable g. It

Technical Report, KIT, 2010-13 48

J. Rot, F. de Boer, M. Bonsangue

follows that s ~ ¢ implies s’ ~ ¢’. Further, by definition S’ and X’ equals s e S
and o e X, respectively. By assumption, s ~ ¢ and S ~ X, and so by definition
seS~gel.

Rule 8. By definition S and X' equals s’ @ S’ and ¢” e X', respectively, for
some states s” and ¢”. From the assumption S ~ X' it thus follows that s” ~ o
and S’ ~ X’. Remains to prove that s’ ~ o’. We distinguish the following three
cases:

1. z and y are both global variables:
(@) =o(y) T s(2) = s(y)
(Assumption) (

(Corollary 2.1)

2. x and y are both local variables:

s(x)=s'(y) "

Corollary 1.2)

N
I
—~
8
~
I
N
I
—~
—

(ASS@”O“) o’ (z) = " (y)
(CON@' 22) o' (z) =o' (y)
3. z is global and y is local:
S(@) =) Y s(@) = 5" ()

(Lemma 1)
—

s(x) = s"(g) and s”(g) = s”(y), for some global variable g

(Freeze var.)
<~

s(x) = s(¢’') and s”(g) = s”(y), for some global variable g

(Assymption) o(x) =0(g¢") and ¢”(g9) = 0" (y) for some global variable g

o'(x) = a'(y)

Note that because of the introduction of freeze variables in the concrete se-
mantics we indeed have s”(g) = s(g’) (this can be proved in a straightforward
manner by induction on the length of the computation).

(Corolhry 2.3)
S

This concludes the proof of Theorem 1. O

6 Conclusions

Pushdown systems naturally model the control flow of sequential computation
in programming languages with local variables and recursive procedures. In this
paper we provided a generalization of this model by adding unbounded object
creation. We have shown that imperative programs with object creation, re-
cursive procedures, and local variables without any restriction can be given a
symbolic semantics through a finite pushdown system such that the infinite state
system generated is strongly bisimilar to the ordinary operational semantics of
the program.

49 Technical Report, KIT, 2010-13

A Pushdown System Representation for Unbounded Object Creation

Applications to static analysis. Starting from an initial stack containing the
initial procedure pg, a program P is executed and eventually terminates when
the stack is empty. If we consider a singleton alphabet symbol labeling all tran-
sitions of our pushdown system, we obtain an ordinary pushdown automaton
(with acceptance by empty stack). Clearly, the language accepted by this push-
down automaton is non-empty if and only if there exists an execution of the
program P that terminates. Since the emptiness problem is decidable for push-
down automata [16], we have an algorithm for deciding termination of programs
in our language. Similarly, because the halting problem for pushdown automata
is decidable, we have an algorithm for deciding if a program blocks, for example
because of an assignment with an undefined variable at the right-hand side.

Applications to model checking. More recently, the problem of checking w-regular
properties (like those expressible in linear-time temporal logics or linear-time
p-calculus) or properties expressed as formulas of the alternation-free modal
p-calculus (including CTL properties) of pushdown systems have been shown
to be decidable, leading to efficient model checkers for the generated infinite
state systems (see e.g. [5,12]). For instance, to verify whether a program P
in our language satisfies a linear time temporal formula ¢, we first derive a
symbolic pushdown system for P with finitely many control states and stack
symbols, then construct the finite state Biichi automaton for the negation of
¢, and finally use the algorithm of [5] to check if there is no execution of the
program P that satisfies the negation of ¢. Interestingly, the complexity of this
model checking problem for a fixed LTL formula is polynomial in the size of
the pushdown system, a complexity that is not much worse than that for finite
transition systems [5].

In the future we plan to investigate the integration of our technique with
jMoped, a Java model checker based on pushdown systems [12]. As for the model
checking, there are at least two directions that could be explored. On the one
hand we intend to look for extension of temporal logic with support for a prim-
itive for object creation (and destruction) [11,3]. On the other hand, we would
like to investigate model checking of some non w-regular properties, allowing,
for example, matching of procedure calls and returns. While the problem is in
general undecidable, it seems possible to turn our pushdown systems into visi-
bly pushdown automata, a class of pushdown automata with desirable closure
properties and interesting tractable decision problems [1].

Language considerations. We have presented a language that supports unbounded
object creation by using recursive procedures with global and local variables. The
language can not be extended with higher-order features like passing procedures
and internal procedures as parameters of procedure calls, as well as it cannot
include features like call-by-name parameter passing because the halting prob-
lem for these two class of programs is known to be undecidable [7]. It would be
interesting, however, to see what happens if we change static scope to dynamic
scope or if we disallow internal procedures as parameters.

Technical Report, KIT, 2010-13 50

J. Rot, F. de Boer, M. Bonsangue

Our language does not have any concrete data but for object identities, and
does not support object fields. Data can be added but in order to model com-
putations by a finite pushdown system, we need to consider only finite data
domains. The language can be extended with object fields fi,..., fn, by sim-
ply adding expressions of the form x.f as variables, and as such they will be
included in the partitions. More general navigation expressions can be reduced
to the above in the obvious way.

The language does not have a syntactic construct to destroy object identi-
ties. We can give a concrete semantic for it without the needs of inspecting the
call-stack (for example by storing in extra variables the names of the objects
destroyed and assuming they will not be reused, so that local variables in the
stack can be reset when a procedure returns). This observation can be combined
with the concept of chains in the stack of variables referring to the same object
to allow deletion within the pushdown system representation, by simply keeping
track of the chains which refer to deleted objects. This way of deletion would
work also for encoded object fields, which implies on-the-fly garbage collection.
We plan to work out the details in a future work.

Finally, our language is sequential. It is not a problem to add bounded con-
currency within the body of a procedure by using, e.g. a parallel operator of the
form By || B2, as we can give an interleaving semantic to it using rules of the form

(s,B1885) — (s,Be)S) and (s,B20S5) — (s,BeS)
(s,B1||B2 ® Sy — (s, B||B2 ® S) (s,Bi||Bz e S) — (s,B1||BeS)

However for more global notions of concurrency, like threads, we need to store
the local variables of the program for each thread. Therefore, to keep the stack
alphabet and the number of control states finite in our pushdown system, we have
to restrict to a bounded number of threads [2]. It can be interesting to combine
our results with those of [6], so to allow reachability analysis of multithreaded
programs.

We leave these considerations for future work.

References

1. R. Alur, P. Madhusudan. Visibly pushdown languages. In Proc. of Annual ACM
Symposium on Theory of Computing (STOC 2004), pages 202-211, ACM, 2004.

2. F.S. de Boer and I. Grabe. Automated Deadlock Detection in Synchronized Reen-
trant Multithreaded Call-Graphs. In Proc. of 36th Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 2010), volume 5901 of Lecture
Notes in Computer Science, pages 200-211, Springer, 2010.

3. M.M. Bonsangue, A.Kurz. Pi-Calculus in Logical Form, In Proc 22nd Annual IEEE
Symposium on Logic in Computer Science (LICS 2007), pp. 303-312, IEEE, 2007.

4. C. Baier and J.-P. Katoen. Principles of Model Checking The MIT press, 2008.

5. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking In Proceedings Concur 97, volume 1243 of
Lecture Notes in Computer Science, pp. 135—-150, Springer, 1997.

51 Technical Report, KIT, 2010-13

A Pushdown System Representation for Unbounded Object Creation

6. A. Bouajjani, S. Fratani, S. Qadeer. Context-Bounded Analysis of Multithreaded
Programs with Dynamic Linked Structures. In Proc. Intern. Conf. on Computer
Aided Verification (CAV’07 volume 4590 of Lecture Notes in Computer Science,
Springer 2007.

7. E.M. Clarke. Programming language constructs for which it is impossible to obtain
good Hoare-like axioms. Journal of the ACM 26:126-147, 1979.

8. J. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting finite-state models from Java source code. In Pro-
ceedings 22nd International Conference on Software Engineering, pp. 439-448. IEEE
Computer Society, 2000.

9. C. Demartini, R. losif, and R. Sisto. A deadlock detection tool for concurrent Java
programs. Software - Practice and Experience, 29(7):577-603, 1999.

10. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall Series in Automatic
Computation, 1976.

11. D. Distefano, J.-P. Katoen, A. Rensink. Who is Pointing When to Whom? In
Proceedings of 24th Int. Conf. on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS 2004) volume 3328 of Lecture Notes in Computer
Science, pp. 250-262, Springer 2004.

12. J. Esparza and S. Schwoon. A BDD-based model checker for recursive programs.
In Proceedings of CAV 2001, volume 2102 of Lecture Notes in Computer Science, pp.
324-336, Springer, 2001.

13. M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In
Proceedings of 14th LICS, pp. 214-224, IEEE Computer Society Press, 1999.

14. K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366-381, 2000.

15. G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279-94, 1997.

16. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 3rd edition, 2006.

17. U. Montanari and M. Pistore. An Introduction to History Dependent Automata.
In Proceeding 2nd Workshop on Higher-Order Operational Techniques in Semantics,
volume 10 of Electonic Notes in Theoretical Computer Science, pp. 170-188, Elsevier,
1998.

18. D. Park, U. Stern, J. Skakkebaek, and D. Dill. Java Model Checking In Proceedings
of the 15th IEEE International Conference on Automated Software Engineering. pp.
253-256. IEEE, 2000.

19. B. Randell and L.J. Russell. ALGOL 60 Implementation: The Translation and Use
of ALGOL 60 Programs on a Computer. Academic Press, 1964.

20. D. Sangiorgi. On the bisimulation proof method. Mathematical Structures in
Computer Science 8(5):447-479, 1998.

21. S. Schwoon. Model-checking pushdown systems. PhD thesis, Technische Univer-
sitat Miinchen, 2002.

22. R. Sebesta. Concepts of Programming Languages. Addison-Wesley, 9th edition,
2009.

23. B. Stroustrup The C++ Programming Language.

Technical Report, KIT, 2010-13 52

Validating Timed Models of Deployment
Components with Parametric Concurrency *

Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte, and S. Lizeth Tapia Tarifa

Department of Informatics, University of Oslo, Norway
{einarj,olaf,rudi, sltarifa}@ifi.uio.no

Abstract. The concurrent object model has advantages to thread-based
concurrency with respect to compositionality and verification. In the con-
current object model, each object conceptually encapsulates a processor.
When concurrent objects are deployed, the available processing resources
are naturally more restricted. This paper proposes an abstract model of
deployment components in terms of concurrent object groups with a re-
stricted number of concurrent processing resources. Deployment compo-
nents are parametric in the amount of concurrency they provide; i.e., they
vary in the number of processor resources. We give a formal semantics
of deployment components in rewriting logic, extending the semantics
of Creol, and characterize equivalence between deployment components
which differ in concurrent resources in terms of test suites. Our semantics
is executable on Maude, which allows simulations and test suites to be
applied to a deployment component with different concurrency resources.

1 Introduction

Software systems today are increasingly developed to be highly configurable. A
development method which attempts to systematize this variability, is software
product line engineering [23]; in a product line, different software systems (or
products) may be instantiated with different features. To illustrate this approach
to software development, consider software for cell phones. Products for different
cell phones and service subscriptions are produced by selecting among features
such as call forwarding, answering machine, text messaging, etc. In addition to
this software variability, products often need to be adapted to different hardware
or deployment scenarios. Examples of such variability are found in operating
systems, which can be adapted to specific hardware and even to the different
numbers of available kernels; web shops, which are deployed on a varying num-
ber of servers and may even dynamically perform load balancing between these
servers; and information systems within, e.g., healthcare or finance, which may
run on a single computer, in a distributed set-up, or even on the cloud. Software
product lines raise new challenges for the performance analysis of component-
based applications [27]. In this paper, we apply performance analysis to models

* Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Methods (http://www.hats—project.eu).

53 Technical Report, KIT, 2010-13

Validating Timed Models of Deployment Components with Parametric Concurrency

of object-oriented components or systems in deployment scenarios which vary in
the amount of concurrent resources they can provide to the given component.

This work is based on Creol [10,18], a modeling language for distributed con-
current objects which communicate by asynchronous method calls and futures.
Creol’s operational semantics is given in rewriting logic [20] and is executable on
Maude [9]. Concurrent objects are reminiscent of Actors [2] and Erlang [4]: Ob-
jects are inherently concurrent, conceptually each object has a dedicated proces-
sor, and there is at most one activity in an object at any time. This concurrency
model has attracted attention as an alternative to multi-thread concurrency
in object-orientation (e.g., [6]), and been integrated with, e.g., Java [26] and
Scala [13]. Concurrent objects support compositional verification of concurrent
software [3,10], in contrast to multi-threading [1]. A particular feature of Creol is
its cooperative scheduling of method activations inside concurrent objects. Re-
cently, Creol’s notion of cooperative scheduling and asynchronous method calls
has been integrated in Java by means of concurrent object groups [24].

This paper generalizes the idea of concurrent object groups to deployment
components which are parametric in the amount of concurrent activity they al-
low within a time interval. Creol is extended with notions of timed execution and
deployment components, which are integrated into Creol’s operational seman-
tics. This integration is non-trivial in that it must capture parametric concur-
rent activities within time frames in terms of an interleaving semantics in order
to execute the models in Maude. We characterize the equivalence of different
deployment scenarios, varying in the concurrency resources of the deployment
components, in terms of test suites of timed observable behavior and use Maude
to run tests for our models. This allows the timed behavior of concurrent object
models under restricted concurrency assumptions to be validated and compared.

Paper overview. Sect. 2 presents a timed version of Creol, and Sect. 3 the
deployment components with parametric concurrency. Sect. 4 illustrates the lan-
guage by an example. Sect. 5 explains the operational semantics of timed Creol
in terms of rewriting logic. Sect. 6 presents testing and simulation results in the
context of the example, Sect. 7 discusses related work, and Sect. 8 concludes.

2 Concurrent Objects in Creol

Creol is an abstract behavioral modeling language for distributed active objects,
based on asynchronous method calls and processor release points. In Creol, ob-
jects conceptually have dedicated processors and live in a distributed environ-
ment with asynchronous and unordered communication between objects. Com-
munication is between named objects by means of asynchronous method calls;
these may be seen as triggers of concurrent activity, resulting in new activi-
ties (processes) in the called object. This section briefly introduces Creol (for
further details see, e.g., [10,18]). Objects are dynamically created instances of
classes, declared attributes are initialized to some arbitrary type-correct values.
An optional init method may be used to redefine the attributes. Active behav-
ior, triggered by an optional run method, is interleaved with passive behavior,

Technical Report, KIT, 2010-13 54

E. Broch Johnsen et al.

Syntactic categories. Definitions.

C,1I,m in Names IF ::= interface I {[Sg]}
g in Guard CL ::= class C[(I x)][implements [|{[I x;] M}
s in Stmt Sg =1 m ([z])
 in Var M= Sg— [T i) {s)
& in Expr gu=bla?|gnglgVy
b in BoolExpr su=s;s|x:=e| release | await g | z.get | return e
| if b then{s}[else{s}]|while b{s} | skip
ex=x|b|new C(e) | [e]!m(€) | z.get | this | null | now

Fig. 1. The syntax of core Timed Creol. Terms such as € and T denote lists over the
corresponding syntactic categories and square brackets denote optional elements.

triggered by method calls. Thus, an object has a set of processes to be executed,
which stem from method activations. Among these, at most one process is active
and the others are suspended on a process queue. The scheduling of processes
is by default non-deterministic, but controlled by processor release points in a
cooperative way. Creol is strongly typed: for well-typed programs, invoked meth-
ods are supported by the called object (when not null), such that formal and
actual parameters match. This paper assumes that programs are well-typed.

Figure 1 gives the syntax for a core subset of Timed Creol (omitting, e.g.,
inheritance). A program consists of interface and class definitions and a main
method to configure the initial state. IF' defines an interface with name I and
method signatures Sg. A class implements a list I of interfaces, specifying types
for its instances. C'L defines a class with name C, interfaces I, class parameters
and state variables x (of type I), and methods M. (The attributes of the class
are both its parameters and state variables.) A method signature Sg¢ declares
the return type I of a method with name m and formal parameters T of types 1.
M defines a method with signature Sg and a list of local variable declarations
T of types I and a statement s. Statements may access class attributes, locally
defined variables, and the method’s formal parameters.

Statements. Assignment x := e, sequential composition si;s2, skip, if,
while, and return e constructs are standard. The statement release un-
conditionally release the processor by suspending the active process. In contrast,
the guard g controls processor release in the statement await g, and consists of
Boolean conditions that may contain attributes and return tests x? (see below).
If g evaluates to false, the current process is suspended and the execution thread
becomes idle. In this case, any enabled process may be chosen from the pool of
suspended processes. The scheduling of processes is cooperative in the sense that
processes explicitly yield control and execution in one process may enable the
further execution in another. Explicit signaling is redundant.

Ezxpressions e include declared variables x, Boolean expressions b, and object
creation new C'(€). The specially reserved read-only variable this refers to the
identifier of the object and now refers to the current clock value (explained
below). Note that remote access to attributes is not allowed. (The full language
includes a functional expression language with standard operators for data types

55 Technical Report, KIT, 2010-13

Validating Timed Models of Deployment Components with Parametric Concurrency

such as strings, integers, lists, sets, maps, and tuples. These are omitted in the
core syntax, and explained when used in the examples.)

Communication in Creol is based on asynchronous method calls, denoted
e!m(e), and future variables. (Local calls are written !m(€).) After making an
asynchronous call x := e!lm(€), the caller may proceed with its execution without
blocking on the method reply. Here = is a future variable, and e and € are
expressions. Thus, a future variable = refers to a return value which has yet
to be computed. There are two operations on future variables, which control
synchronization in Creol. First, the guard await x7 suspends the active process
unless a return to the call associated with = has arrived. This blocks execution in
the process, but allows other processes to be executed. Second, the return value
is retrieved by the expression x.get, which blocks all execution in the object
until the return value is available. The statement sequence z := olm(e); v :=
x.get encodes a blocking call, abbreviated v := o.m(€) (often referred to as a
synchronous call), whereas the statement sequence z := olm(e); await z?; v :=
x.get encodes a non-blocking, preemptable call, abbreviated await v := 0.m(e).

Time. We consider a discrete time model, comparable to a system clock
which updates every n milliseconds. With this granularity of time, an object
which executes a statement may, but need not observe that time has advanced.
The expression now returns the present time, i.e., the global clock’s value in the
current state. Time values are totally ordered by the less-than operator; com-
paring two time values result in a Boolean value suitable for guards in await
statements. In the model, the passage of time is implicitly observable via such
await statements. From an object’s local perspective, time can advance by ei-
ther evaluating statements or by awaiting the passage of time. This model of time
combined with Creol’s blocking and non-blocking synchronization semantics, is
powerful enough to express both process- and object-wide progress statements.

3 Deployment Components with Parametric Concurrency

Creol’s object model is inherently concurrent, which means that for the actual
deployment of a program it is necessary to map the logical concurrency of the
model to physical computing resources. For this purpose, we introduce a notion
of deployment component into the modelling language, which abstracts from the
number and speed of the physical processors available to the component by a
notion of concurrent resource. The granularity of the global time model defines
the points in time when the executing system is observable. Concurrent resources
may be consumed in parallel or in sequential order, which reflects the number
of processors and their speeds relative to the granularity of the time intervals
of the model. Thus, the logical concurrency model of the concurrent objects is
controlled by their associated deployment component. A deployment component
is parametric in the computational resources it offers to a group of dynamically
created objects, which allows easy configuration of concurrent resources.

The execution inside a deployment component can be understood as follows.
Let n be a natural number. Resources are modelled by a data type Resource

Technical Report, KIT, 2010-13 56

E. Broch Johnsen et al.

which extends the natural numbers with an “unlimited resource” w, such that
resource consumption is captured by subtraction, where w—n = w. Within a time
slot, a deployment component with r concurrent resources is able to execute up
to n execution steps in parallel, where n < r. Consider a deployment component
D instantiated with r resources and let G be the set of concurrent objects which
currently reside in the deployment component. Let A C G be a subset of the
concurrent objects on the component, such that objects in A are able to perform
an execution step in their current state. Provided |A| < r, every object in A may
consume a resource, leaving 1’ = r — | A| resources available on the component.
If there are remaining resources (' > 0) , another cycle of execution steps may
be performed for r’ within the time slot by repeating this procedure.

In the modelling language, a deployment component D is declared by as-
sociating a name to a given quantity of concurrent resources r, capturing the
actual processing capacity of D. For simplicity in this paper, a deployment com-
ponent is a static entity, in contrast to class declarations which act as tem-
plates for dynamic generation of objects. A component is introduced by the
syntax component D(r), where D is the name of the component and r, of sort
Resource, represents the concurrent resources of the component. The set of
concurrent objects residing on the components, representing the logically con-
current activities, may grow dynamically. Thus, when objects are created, we
require that they reside inside a deployment component. The syntax for object
creation is extended with an optional clause to specify the targeted deployment
component: new C(€) in D. This expresses that C will reside in the component
D. Objects generated by a parent object residing in a component D will also re-
side in D unless otherwise specified by an in clause. Thus the behavior of a Creol
model which does not statically declare additional deployment components, can
be captured by a main deployment component with w resources.

4 Example: A Distributed Shopping Service

We consider a simple model of a web shop (see Fig. 2). Clients connect to the
shop by calling the get Session method of an Agent object. An Agent hands
out Session objects from a dynamically growing pool. Clients call the order
method of their Session instance, which in turn calls the makeOrder method
of a Database object that is shared across all sessions. After completing the
order, the session object is added to the agent’s pool again. This scenario models
the architecture and control flow of a database-backed website, while abstracting
from many details (load-balancing thread pools, data model, sessions spanning
multiple requests, etc.), which can be added to the model should the need arise.

In the implementation of the Database class, an order takes a minimum
amount of time, and should be completed within a maximum amount of time.
The timing behavior of the database is configurable via the class parameters
min and max. Line 8 implements the delay while processing the order, Line 9
calculates and returns the success status of the order (i.e., whether a timeout
occurred). Note that a component with unlimited resources, will complete all

57 Technical Report, KIT, 2010-13

Validating Timed Models of Deployment Components with Parametric Concurrency

1 interface Agent { Session getSession(); Void free(Session session);}
2 interface Session { Bool order(); }

3 interface Database { Bool makeOrder(); }

4

5 class Database (Nat min, Nat max) implements Database {

6 Bool makeOrder () {

7 Time t:=now;

8 await now >= t + min;

9 return now <= t + max; }

10}

11 class Agent (Database db, Set[Session] available) implements Agent {
12 Session getSession() {

13 if isempty(available) {

14 return new Session(this, db); }

15 else { session:=choose (available);

16 available:=remove (session,available) ; return session;}}
17 Void free(Session session) {available:=add(available, session);}

18 }
19 class Session(Agent agent, Database db) implements Session {
20 Bool order () {return db.makeOrder(); agent.free(this); }
21 }

Fig. 2. A web shop model in Creol.

orders in the minimum amount of time, just as expected. In the Agent class, the
attribute available stores a set of Session objects. (Creol has a datatype for
sets, with operations isempty to check for the empty set, denoted {}, choose
to select an element of a non-empty set, and remove and add to remove or add
an element to a set.) When a customer requests a Session, the Agent takes
a session from the available sessions if possible (Line 15), otherwise it creates a
new session (Line 14). The method free inserts a session in the available
sessions of the Agent, and is called by the session itself upon completion of an
order. Section 6 shows how to run this example on a deployment component.

5 Operational Semantics

The semantics of Creol is defined in rewriting logic (RL) [20], and Creol models
can be analyzed using the rewrite tool Maude [9]. In a rewrite theory (X, E, L, R),
the signature X' defines the ground terms, E defines equations between terms, L
is a set of labels, and R a set of labeled rewrite rules. Rewrite rules apply to terms
of given sorts, specified in (membership) equational logic (X, E'). When modeling
computational systems, different system components are typically modeled by
terms of suitable sorts and the global state configuration is a set of these terms.
RL extends algebraic specification techniques with transition rules: The dynamic
behavior of a system is captured by rewrite rules supplementing the equations
defining the term language. A conditional rewrite rule cxl [name] : t — t' if c
may be understood as a local transition rule allowing an instance of the pattern
t to evolve into the corresponding instance of the pattern ¢, where the condition
¢ is a conjunction of rewrites and equations that must hold for the main rule
to apply (the name identifies the rule). When auxiliary functions are needed,

Technical Report, KIT, 2010-13 58

E. Broch Johnsen et al.

these can be defined in equational logic, and thus evaluated in between the state
transitions [20]. In a conditional equation ceqt =t if c the condition ¢ must
similarly hold for the equation to apply. Both rewrite rules and equations may be
unconditional, denoted by the keywords rl and eq, respectively. Given an ini-
tial configuration, Maude supports simulation and breadth-first search through
reachable states and model checking of finite reachable states for desired prop-
erties. In this paper, Maude is used as an interpreter for Creol’s operational
semantics in order to simulate and test Creol models.

The States. Following Maude conventions runtime objects are represented by
terms of the form (o : C| ..., Att: z,...), where o is the identifier, C' the
class, and the object contains a set of attributes such that Att is the name and
x the current value of an attribute. Variables are slanted, whereas constant parts
of a term’s syntax are in t ypewriter style. As before, ¢ denotes a collection of
terms ¢, either a list or a set depending on the context. Let Emp be the empty
list and @ the empty set. In the rules below, all numbers are natural numbers
(e.g., in counters and time) except resources which are of sort Resource.

A state configuration is a set which consists of a global clock, deployment
components, objects, classes, invocation messages, and futures. The associative
and commutative union operator on configurations is denoted by whitespace
and the empty configuration by none. The entire configuration lives inside curly
brackets; thus, in the term {cn} the variable cn captures the entire configuration.
The global clock is a term (t: clock | 1imit:) where ¢ is the current time and
[the time limit we consider in an execution of the semantics. A deployment
component is a term (dc: Comp | Free: r, 1imit: [) where dc is the identifier of the
component, r the (non-negative) number of available computing resources, and
[the maximum number of resources which can be consumed before the clock
advances.

An object is a term (o: C |att: @, Pr: (I|5)},PrQ: @, Lent: f, Comp: de) where o is
the object’s identifier and C' its class, the object’s state is given by the attribute
mapping @ (i.e., a single binding a associates a value with a declared variable),
a process {l |5} consists of a mapping [of local variable bindings and a list 3
of statements. The set W of (suspended) processes represents the process queue.
The counter f is used to ensure that futures created by the object have unique
identifiers, and dc is the deployment component associated with the object.

A class is a term (C': Class |Prm: T, Att: @, Mtds: M,Ocnt: y), where C' is the
identifier, T the list of formal parameters, @ maps declared attributes to initial
(default) values, and M the set of method definitions of the form (m: mtd |
Prm: ZF, Att:l, Code:s). Here, m is the method name, T formal parameter list,
I the mapping of local variables to initial (default) values, and 3 a sequence of
statements. The counter y will ensure that created objects get unique identifiers.

An invocation message is a term invoc (o, n, m,d) where o is the callee, n the a
future to which the call’s result shall be returned, m the method name, and d lists
the call’s actual parameter values. A future is a term (n: Fut | Done: b, Value: d)
where n is the identifier, b a Boolean flag indicating whether the future’s reply
value has been received, and d the reply value.

59 Technical Report, KIT, 2010-13

Validating Timed Models of Deployment Components with Parametric Concurrency

rl [skipl:(o:C|Pr: {I|skip;3}, Comp:dc) (dc: Comp |Free: r)
—(0:C|Pr: (1|3}, Comp:dc) (dc: Comp |Free:r—1).

rl [assign]: {(o:C |Att: @, Pr:{l|z:=e;3},Comp: dc) (t:Clock|) (dc:Comp |Free:r)

—— if x €dom(l) then (o:C |Att:a,Pr: {i[xi—»[[e}]zaoj) nnne] |'s}, Comp: dc)
else (o:C|att:alz s [e]t 1,Pr: {l|3},Comp: dc) £i

(@ol),none

(t: Clock|) (dc: Comp|Free:r—1).

rl [if-then-else]: (o:C\Att:E,Pr:{ﬂif e th 351 el S2 £i;5}) (t: Clock]|)
— if [e]? then (o0:C|Att: @, Pr: {l|351;5})

(@ol),none

else (o:C|Att:@, Pr: (I|32;8)) £i (t: Clock]|)

crl [return]:{o:C|Att:a, Pr: {i|return(e) 7S}, Comp:dc) (t: Clock|)
(n: Fut | Done: false, Value: L) (dc: Comp |Free:r)
— (0:C|att:a, Pr: {l|s}, Comp:dc) (n: Fut |Done: true, Value: [e]¢)

(@ol),none

(t: Clock|) (dc: Comp|Free:r—1)if n =1(destiny)

rl [releasel: (o: C|Pr:{2| release;S},PrQ: w)
— (0:C|Pr:idle,PrQ: W U{{l|3}}) .

crl [awaitl]: {(o:C|Att:@, Pr: {ﬂawait €;S}) cn (t: Clock]) }
— {{0:C|att:@, Pr:{l|3})cn (t:Clock|)} if [[e]]?aoi) .
crl [await2]: {{o:C|Att:@, Pr: {l|await e;8}) cn (t: Clock|))

— {(0:C'|att: @, Pr: {l|release;await e;5}) cn (t:Clock|)} if ﬁ[[e}]zaoj) o
erl [activatel: {{o:C |Att:@, Pr:idle, PrQ: wU{{l|3}})cn (t:Clock|)}
— {(0:C|Att:@,Pr: {I|3},PrQ: W) cn (t:Clock|) } if ready (3, (@ol),cn,t)

crl [async-calll:{o:C|Att:a, Pr: {Z\x::e!m(é);@}, Lent: f, Comp: de)
(t: Clock|) (dc: Comp|Free:r)
— (0:C|Att:@,Pr: {I[z+ n] |5}, Lent: f+1,Comp: de) (de: Comp |Free: r —1)

- t St
invoc ([[e]](aci),none,n,m, [[e]](ﬁoi),none) (n: Fut |Done: false,Value: L) (¢t: Clock|)

if n:=label (o, f) AN o # [[e]]zaoi) none
rl [bind-method]: invoc (o,n,m,d) (o:C|PrQ: w)
(C': Cclass |Mtds: (M U{(m: Mtd|Prm: T, Att: 1, Code: 3)H)
— (0:C|Pro:wU{{l[destiny— n, T+ d][5})}

(C :Class |Mtds: (M U{{m: Mtd|Prm: F,Att: [, Code: 3)})

crl [receive-compl: (o:C |Att: a,Pr:{l | z:=e.get;3}, Comp: dc)

(n :Fut | Done: true,Value: d) (dc:Comp | Free: 1)

— (0:C|Att: a,Pr:{l|x:=d; 3}, Comp: dc) (n: Fut |Done: true,Value: d)

(dc: Comp |Free: 7 —1)if n= [[e]]’éﬁoi),nonﬁ

rl [object-creation]: (o:C |Att:@,Pr: {l|z:=new B (€);5},Comp: dc)

(t: Clock|) (dec: Comp |Free: r) (B: Class |Prm: T,Att: ai,

Mtds: M U{(init:Mtd|Prm: Emp,Att: (), Code: 51) },Ocnt: g)

—(0:C|Att: @, Pr: {l|x:=newId(B,g);5},Comp: dc) (B: Class |Prm: T, Att: a1,
Mtds: M U{(init:Mtd|Prm: Emp,Att: (), Code: 51) },Ocnt: g+1)

(newId(B,g): B|Att:aj[this— newId(B,g),T— [[a]taof,none] , Pr: {031},

PrQ:), Lent: 0, Comp:dc) (t: Clock|) (de: Comp |Free:r—1) .

Fig. 3. A timed rewriting logic semantics for Creol. In the rewrite rules, the variable r
ranges over non-zero natural numbers to ensure that resource values are non-negative.

Technical Report, KIT, 2010-13 60

E. Broch Johnsen et al.

FEvaluating Expressions. Given a substitution s, a time ¢, and a configuration cn,
denote by [e]? ., a confluent and terminating reduction system which reduces an

s,cn

expression e to a data value. Let [now]’, ., = t. Let [¢7], ., = trueif [z]} ., =n
and there is a future (n: Fut|Done: true,value:d) in cn (for some value d),
otherwise [z?] ., = false. The remaining cases are fairly straightforward,

looking up values for declared variables in s. The reduction of an expression
always happens in the context of a given process, object state, and configuration.
Thus, s = @ o [, the composition of the object state @ and the local variable
bindings [, the time ¢ is the current global time, and the configuration cn is the
current global configuration of the system (ignoring the object itself).

The Rules. The rewrite rules of the operational semantics transform state con-
figurations into new configurations, and are given in Fig. 3. In the presentation of
a rule, we follow the convention of Full Maude [9] and hide attributes in runtime
objects unless they are needed for that specific rule.

Rule skip consumes a skip in the active process and a resource in its deploy-
ment component. Rule assign evaluates an expression e and assigns the value to
a variable z in the local state [or in the attributes @, as appropriate, consuming
a resource in its deployment component. Rules if-then-else branches the execu-
tion depending on the value obtained by evaluating the expression e. (We omit
the rule for while, which unfolds the while loop using an if-expression.)

Process suspension and activation. Rule return puts the return value into
the future associated with the call (via the destiny-variable which refers to the
appropriate future) and marks the flag done as true in that future. This operation
consumes a resource. Rule release suspends the active process by placing it on
the process queue. We denote by idle the idle active process. Rule awaiti
consumes the await statement in the case where the guard evaluates to true in
the current state of the object, rule await2 adds a release statement to the
process in order to suspend the process in the case where the guard evaluates to
false. Rule activate selects a process from the process queue if the statement list
of this process is ready to execute. A process is ready if it would not directly be
suspended again or block the processor (the formal definition is given in [18]).

Communication and object creation. Rule async-call sends an invocation mes-
sage to the callee with the actual method parameters and the identity of a future
in which to place the method’s return value. The caller creates the future asso-
ciated with the call, with a unique identity label(o, f) constructed from the
caller’s own identity o and a local counter f. The future’s Done attribute is
initially false and the return value is undefined (i.e., 1). This operation con-
sumes a resource. Rule bind-method consumes an invocation method and places
the process corresponding to the method call in the process queue of the callee.
Note that we use a reserved local variable destiny to store the identity of
the future associated with the call. Rule receive-comp dereferences the future
variable n in the case where the future’s Done attribute is true. Note that if
this attribute is false the reduction in this object is blocked. This operation
consumes a resource. Finally, object-creation creates a new object with a unique
identifier newId(B, g) constructed from the class identifier B and a local counter

61 Technical Report, KIT, 2010-13

Validating Timed Models of Deployment Components with Parametric Concurrency

eq canAdv (cn’,t) = true . //cn’ contains no objects or messages

eq canAdv (msg cn,t) = false . //messages are instantaneous

eq canAdv ((o:C|) (dc: Comp |Free: 0) cn,t) //no more resources
= canAdv ((dc: Comp |Free: 0) cn,t) .

eq canAdv ({o: C |Pr:{l|n.get;3)) //o is blocked, value not available
(n: Fut |Done: false) cn,t) = canAdv ({n: Fut | Done: false) cn,t) .

ceq canAdv ((o:C|Att:@,Pr: idle,PrQ: W) cn,t) //no ready processes
= canAdv (cn,t) if noneready (w,a,cn,t).

eq canAdv((o:C |)cn, t) = false [owise]

eq Adv ({dc: Comp | Free: r,limit: max) cn)
= (dc: Comp | Free: maz, limit: max) Adv (cn) .
eq Adv(cn) = cn [owise]

crl [progress]: {cn (t:Clock|limit: 1imit) }

— {Adv (cn) (t+1:Clock|limit: 1imit) } if canAdv(cn,t)At < limit

Fig. 4. Advancing the clock. Here, msg denotes a message, r ranges over non-zero nat-
ural numbers (as before), and cn’ ranges over message- and object-free configurations.

g. The object’s state is generated from default values for state attributes, ex-
tended with the actual values for this and the class parameters. In order to
instantiate the remaining attributes, the init method is loaded (we assume
that this method reduces to skip if unspecified in the class definition, and that
it asynchronously calls run if the latter is specified.) This operation consumes a
resource. Note that the new object inherits the deployment component of its cre-
ator. The rule for object creation in a named deployment component differs from
object—-creation only on this point, and is omitted from the presentation.

Advancing time. We capture a run-to-completion semantics for concurrent exe-
cution within the resource bounds of deployment components: all objects must
finish their actions as soon as possible if resources are available. In order to
capture timed concurrent execution with an interleaving semantics, time cannot
advance freely. Time advance is regulated by a predicate canAdv, ranging over
configurations and time (see Fig. 4), which can be explained as follows:

— For simplicity, we here assume that invocation messages do not take time.
Therefore, time may not advance when a message is on its way. (A timed
model of communication may be obtained by introducing explicit delays in
the model, associated with specific method calls, see Sect. 4.)

— If a deployment component has remaining resources and one of the compo-
nent’s objects o may perform an action, then time may not advance. There
are three cases:

1. the active process in o is blocked on a value that has become available,

2. the active process in o is idle, but a suspended process of o can be
activated. (The predicate noneready in the equation expresses that for
all processes {l[5} € W, we have ~ready(5,a@ol,cn,t).)

3. the active process in o is not blocked.

— If a deployment component has run out of resources, none of its objects can
proceed, and hence time can advance.

Technical Report, KIT, 2010-13 62

E. Broch Johnsen et al.

class SyncClient (Agent a,Nat c) { class PeriodicClient (Agent a,Nat c) {
Void run { Void run {
Time t := now; Time t := now;
Session s := a.getsession(); Session s := a.getsession();
Bool result := s.order(); Fut (Bool) rc:= s!order();
await now >= t + c¢; !run(); } } await now >= t + c;
'run () ;
await rc?; Bool r := rc.get; } }

component shop (10)
Void main() {

Database db := new Database (5, 10) in shop;
Agent a := new Agent (db, {}) in shop;
PeriodicClient ¢ := new PeriodicClient(a, 5); }

Fig. 5. Deployment environment and client models of the web shop example.

If there can be no activity in any object and no messages are in transit, then
time may advance. Time advance is captured by the rewrite rule progress in
Fig. 4, which updates the global clock. Once time has advanced, the deployment
components get their resources refreshed for the next cycle of computation. This
is done by an auxiliary function Adv defined in Fig. 4, which updates a con-
figuration by resetting the free resources of each deployment component to the
specified limit. Observe that for simplicity we here advance time with a single
unit. It is of course straightforward to add an attribute delta which allows larger
increments. However, this may lead to incompleteness for search in the timed
models [21]. Furthermore, we add a limit to the global clock and only consider
execution sequences up to this limit in time in order to ensure termination of
model execution.

6 Simulating and Testing the Example

The web shop example of Section 4 is now extended by specifying a deploy-
ment component and an environment in order to obtain testing and simulation
results. Figure 5 shows how the web shop may be deployed: a deployment com-
ponent shop is declared with 10 resources available for objects executing inside
shop. The initial system state is given by the main method, which creates
a single database, with 5 and 10 as its minimum and maximum time for or-
ders, an Agent instance, and (in this example) one client outside of shop.
The classes SyncClient and PeriodicClient model customers of the shop.
PeriodicClient initiates a session and periodically calls order every c time
units; SyncClient sends an order c time units after the last call returned.
Figure 6 displays the results of two sets of simulation runs over 100 clock
cycles. For synchronous clients, 5 to 25 clients and 10 to 50 resources on the shop
deployment unit were used. From about 15 clients, the number of requests scales
linearly with the resources, indicating that the system is running at full capacity
even at 50 resources. With larger numbers of clients, the number of successful
requests decreases since communication costs also increase with the client load.
For the periodic case, the system gets overloaded much more quickly since clients
will have several pending requests; hence, only up to ten periodic clients were

63 Technical Report, KIT, 2010-13

Validating Timed Models of Deployment Components with Parametric Concurrency

Synchronous Clients Periodic Clients
Successes Successes
Requests ——

Requests ——

e

B B0 B BT
#Resources 20 ""':I‘U—‘J‘g””&ﬁ #Clients #Resources 20 10l24 #Clients

Fig. 6. Number of total and successful requests, depending on the number of clients
and resources, for synchronous (left) and periodic (right) clients.

simulated. It can be seen that the system becomes completely unresponsive
quickly when flooded with requests.

Testing Timed Observable Behavior. In software testing, a formal model can
be used both for test case generation and as a test oracle to judge test out-
comes [16]. For example, test case generation from formal models of communi-
cation protocols can ensure that all possible sequences of interactions specified
by the protocol are actually exercised while testing a real system. Using formal
models for testing is most widely used in functionality testing (as opposed to
e.g. load testing, where stability and timing performance of the system under
test is evaluated), but the approaches from that area are applicable to formally
specifying and testing timing behavior of software systems as well [15].

In this paper, we model and investigate the effects of specific deployment
component configurations on the timing behavior of timed software models. The
test purpose in this scenario is to reach a conclusion on whether redeployment
on a different configuration leads to an observable difference in timing behavior.
Both model and system under test are Creol models of the same system, but
running under different deployment configurations. In our example, the client
object(s) model the expected usage scenario; results about test success or failure
are relative to the expected usage. As conformance relation we use trace equiv-
alence. This simple relation is sufficient since model and system under test have
the same internal structure, hence we do not need to test for input enabled-
ness, invalid responses etc. In our case, traces are sequences of communication
events, i.e. method invocations and responses annotated with the time of occur-
rence, which are recorded on both the model and the system under test and then
compared after the fact (off-line testing).

Running the model with five SyncClients (see Figure 5) but with an infi-
nite number of resources in the deployment unit results in a trace (10,t), (15,),
(20,t), ... (where each tuple contains (response time, success)). Deploying with
50 resources results in the same trace, whereas running with 20 units results in a
trace (12,¢), (17,t), (22,t), ... Assuming that model and system under test have
identical untimed behavior, we conclude that a system without resource limits

Technical Report, KIT, 2010-13 64

E. Broch Johnsen et al.

and a deployment unit of 50 units behave equivalently under the assumed work-
load, whereas deploying with 20 units will lead to observably different behavior.

7 Related Work

The concurrency model provided by concurrent objects and Actor-based com-
putation, in which software units with encapsulated processors communicate
asynchronously, is increasingly attracting attention due to its intuitive and com-
positional nature (e.g., [2-4, 6, 10,13, 26]). A distinguishing feature of Creol is
the cooperative scheduling between asynchronously called methods [18], which
allows active and reactive behavior to be combined within objects as well as
compositional verification of partial correctness properties [3,10]. Creol’s model
of cooperative scheduling has recently been generalized to concurrent object
groups in Java [24] by restricting to a single activity within the group. In this
paper, we further generalize the notion of concurrent object groups to a resource-
constrained deployment component, where the allowed activity in a group per
time interval is parametric in terms of concurrent resources, using a time model
which simplifies the one presented in [19]. This allows us to abstractly model the
effect of deploying concurrent object groups on deployment components with
different amounts of processing capacity.

Techniques and methodologies for predictions or analysis of non-functional
properties are based on either measurement and modelling. Measurement-based
approaches apply to existing implementations, using dedicated profiling or trac-
ing tools like, e.g., JMeter or LoadRunner. Model-based approaches allow ab-
straction from specific system intricacies, but depend on parameters provided by
domain experts [11]. A survey of model-based performance analysis techniques
is given in [5]. Formal systems using process algebra, Petri Nets, game theory,
and timed automata (e.g., [7,8,12,14]) have been applied in the embedded soft-
ware domain, but also to the schedulability of tasks in concurrent objects [17].
That work complements ours as it does not consider resource restrictions on the
concurrency model, but associates deadlines with method calls.

Work on modelling object-oriented systems with resource constraints is more
scarce. Using the UML SPT profile for schedulability, performance and time,
Petriu and Woodside [22] informally define the Core Scenario Model (CSM) to
solve questions that arise in performance model building. CSM has a notion of
resource context, which reflects the set of resources used by an operation. CSM
aims to bridge the gap between UML specifications and techniques to gener-
ate performance models [5]. Closer to our work is M. Verhoef’s extension of
VDM++ for simulation of embedded real-time systems [25], in which architec-
tures are explicitly modelled using CPUs and buses, and resources are bound
to the CPUs. However, the underlying object models and operational semantics
are very different. VDM++ is based on multithread concurrency, preemptive
scheduling, and a strict separation between synchronous method calls and asyn-
chronous signals, in contrast to our work with concurrent objects, cooperative
scheduling, and caller decisions about synchronization. In contrast to our fairly

65 Technical Report, KIT, 2010-13

Validating Timed Models of Deployment Components with Parametric Concurrency

succinct rewriting logic semantics, the extension to VDM++ is embedded into
VDM-++ itself and defined in terms of 100 pages of VDM-+ specifications [25].

8 Conclusions and Future Work

This paper reports initial work on resource requirements and timing for the
deployment of object-oriented components. We extend Creol with a notion of
deployment component which is parametric in its concurrent resources per time
unit and formalize the operational semantics of object execution on deployment
components in rewriting logic. Based on this formalization, we use the Maude
rewrite engine to validate resource requirements that are needed to maintain the
behavior of the concurrent objects when deployed with restricted resources.

The proposed model of deployment components is simple and flexible. The
time granularity is defined implicitly by the use of time outs, allowing several
statements to be executed in one time interval. In contrast, the execution cost
of basic statements is fixed (abstracting from the evaluation of expressions).
With a single resource, at most one basic statement can be executed inside a
deployment component in a time interval. With multiple resources, all resources
are used within the time interval if possible. This proposed resource model does
not describe component scheduling policies, and abstracts from processor swap-
ping costs. The model may be refined by associating deadlines to method calls
and by defining explicit scheduling policies [17]. Furthermore, the model may
be extended with the dynamic creation of deployment components as well as
reconfiguration in terms of object mobility and resource adjustments, as well as
stronger analysis methods such as, e.g., bisimulation techniques.

The abstract notion of resource proposed in this paper reflects computational
limitations of concurrent or interleaved activity. Combined with the flexible time
model, the proposed resource model can express interesting non-functional sys-
tem properties, as illustrated by the example. Whereas most work on perfor-
mance analysis assumes a fixed underlying architecture, we believe approaches
such as the one presented in this paper address a need in software product lines
which may vary in the underlying architecture of products.

References

1. E. Abraham-Mumm, F. S. de Boer, W.-P. de Roever, and M. Steffen. Verification
for Java’s reentrant multithreading concept. In Proc. FOSSACS’02, LNCS 2303,
pages 5—20. Springer, Apr. 2002.

2. G. A. Agha. ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press, Cambridge, Mass., 1986.

3. W. Ahrendt and M. Dylla. A verification system for distributed objects with
asynchronous method calls. In Proc. Intl. Conf. on Formal Engineering Methods
(ICFEM’09), LNCS 5885, pages 387—406. Springer, 2009.

4. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

Technical Report, KIT, 2010-13 66

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

E. Broch Johnsen et al.

S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-based performance
prediction in software development: A survey. IFEE Transactions on Software
Engineering, 30(5):295-310, 2004.

D. Caromel and L. Henrio. A Theory of Distributed Object. Springer, 2005.

A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Resource inter-
faces. In Proc. 8rd Intl. Conf. on Embedded Software (EMSOFT’03), LNCS 2855,
pages 117-133. Springer, 2003.

X. Chen, H. Hsieh, and F. Balarin. Verification approach of metropolis design
framework for embedded systems. Intl. J. of Parallel Prog., 34(1):3-27, 2006.

M. Clavel et al. Maude: Specification and programming in rewriting logic. Theo-
retical Computer Science, 285:187-243, Aug. 2002.

F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
Proc. ESOP’07, LNCS 4421, pages 316-330. Springer, Mar. 2007.

1. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model evolution by run-
time parameter adaptation. In Proc. ICSE’09, pages 111-121. IEEE, 2009.

E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task automata: Schedulability,
decidability and undecidability. Inf. and Comp., 205(8):1149-1172, 2007.

P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2-3):202-220, 2009.

M. Hennessy and J. Riely. Information flow vs. resource access in the asynchronous
pi-calculus. ACM TOPLAS, 24(5):566-591, 2002.

A. Hessel, et al. Testing real-time systems using UPPAAL. In Formal Methods
and Testing, LNCS 4949, pages 77-117. Springer, 2008.

R. M. Hierons, et al. Using formal specifications to support testing. ACM Com-
puting Surveys, 41(2), 2009.

M. M. Jaghoori, F. S. de Boer, T. Chothia, and M. Sirjani. Schedulability of
asynchronous real-time concurrent objects. Journal of Logic and Algebraic Pro-
gramming, 78(5):402-416, 2009.

E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35-58, Mar. 2007.

E. B. Johnsen, O. Owe, J. Bjgrk and M. Kyas. An Object-Oriented Component
Model for Heterogeneous Nets. LNCS 5382, pages 257-279. Springer, 2008.

J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73-155, 1992.

P. C. Olveczky and J. Meseguer. Abstraction and completeness for Real-Time
Maude. In Proc. 6th Intl. Workshop on Rewriting Logic and its Applications
(WRLA’06), ENTCS 176: 5-27. Elsevier, 2007.

D. B. Petriu and C. M. Woodside. An intermediate metamodel with scenarios
and resources for generating performance models from UML designs. Software and
System Modeling, 6(2):163-184, 2007.

K. Pohl, G. Béckle, and F. Van Der Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, 2005.

J. Schéfer and A. Poetzsch-Heffter. JCoBox: Generalizing active objects to con-
current components. In Proc. ECOOP 2010. To appear in LNCS,; Springer, 2010.
M. Verhoef, P. G. Larsen, and J. Hooman. Modeling and validating distributed
embedded real-time systems with VDM++. In Proc. 14th Intl. Symposium on
Formal Methods (FM’06), LNCS 4085, pages 147-162. Springer, 2006.

A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In Proc. OOP-
SLA’05, pages 439-453. ACM Press, 2005.

S. M. Yacoub. Performance analysis of component-based applications. In Proc.
Software Product Lines (SPLC’02), LNCS 2379, pages 299-315. Springer, 2002.

67 Technical Report, KIT, 2010-13

JMLUnit: The Next Generation

Daniel M. Zimmerman and Rinkesh Nagmoti

Institute of Technology
University of Washington Tacoma
Tacoma, Washington 98402, USA

dmz@acm.org, rinkeshn@u.washington.edu

Abstract. Designing unit test suites for object-oriented systems is a
painstaking, repetitive, and error-prone task, and significant research has
been devoted to the automatic generation of test suites. One method for
generating unit tests is to use formal class and method specifications as
test oracles and automatically run them with developer-provided data
values; for Java code with formal specifications written in the Java Mod-
eling Language, this method is embodied in the JMLUnit tool. While
JMLUnit can provide reasonable test coverage when used by a skilled
developer, it suffers from several shortcomings including excessive mem-
ory utilization during testing and the need to manually write significant
amounts of code to generate non-primitive test data objects. In this pa-
per, we describe a successor to JMLUnit that can rapidly generate and
execute millions of tests, using supplied test data of only primitive types,
without consuming unreasonable amounts of memory. We also present
results from initial test runs and comparisons with the original JMLUnit.

1 Introduction

Unit testing has been an important validation technique in software development
processes for many years. In a typical unit testing process, a developer designs
a set (or suite) of unit tests and runs them on the system under test. Each
individual unit test is designed to demonstrate that some subset of the software
(the unit being tested) performs appropriate actions and generates appropriate
outputs given particular inputs and a particular starting state. The existence
of a comprehensive unit test suite provides evidence for the stability, reliability,
and security of the system, though it cannot guarantee the system’s correctness.

Unfortunately, designing test suites is a painstaking, repetitive, and error-
prone task, especially for large, complex software systems. Test developers can
easily overlook critical situations that need testing or develop a test suite with
poor coverage—that is, one that tests an insufficient fraction of a system’s code
or functionality. Moreover, the manual development and maintenance of test
suites (regardless of quality) represents a significant portion of the development
and maintenance costs for a complex software project.

To address both the coverage and cost issues, there has been significant re-
search effort devoted to the automatic generation of high-coverage unit test suites

Technical Report, KIT, 2010-13 68

D. M. Zimmerman, R. Nagmoti

using techniques ranging from purely random test generation to the use of sym-
bolic execution to find critical execution paths. While some of these techniques
can provide reasonable test coverage at low cost, they all have various limitations
and have seen little adoption by software developers.

This work focuses on improving one particular unit test generation technique
that has been adopted by developers who use the Java Modeling Language (JML)
to specify their software systems, namely the specification-based test generation
embodied in the JMLUnit tool. After providing some background information
about unit testing, JML, and the JMLUnit tool, we describe the limitations of
JMLUnit for testing complex systems. We then explain how we improve upon the
existing tool and present coverage results from tests generated by both the old
and new tools to demonstrate our improvements. The goals of this work are to
make the JMLUnit tool more effective and easier to use and, more importantly,
to provide a platform upon which to conduct experiments with new test data
generation techniques that are currently under development.

2 Background

2.1 Unit Testing

Unit testing is, essentially, the execution of individual components of a system
(the units) in specific contexts to see whether they generate expected results. A
single unit test has two main parts: the test data, which are the actual values
for software entities such as method parameters that will be used to set up
the state of the unit under test, and the test oracle, which is a piece of code
that determines whether the behavior of the unit is “correct” when it is set up
with the test data and executed. A system under test (hereafter, SUT) typically
requires many unit tests, which are collectively called a test suite. The quality,
or coverage, of a particular test suite can be measured in several ways [16]; for
example, code coverage is the percentage of the executable code in the SUT that
is actually executed when running the test suite.

The simplest way to create unit tests is to rely on human judgment: a devel-
oper sits down with a piece of software, decides what test data should be used
and how to determine whether each test has passed or failed, and encodes this
information manually. Despite the fact that many techniques for automated test
data and test oracle generation have been developed over the last several years,
most unit test generation is still done by hand, even in large systems. For exam-
ple, the open-source Eclipse Development Platform® contains several thousand
hand-written unit tests.

There are several ways to generate both test data and test oracles automat-
ically. One such way, the focus of this work, is embodied in the JMLUnit tool
(described in Section 2.3); we will briefly describe some others in Section 6.

! http://www.eclipse.org/

69 Technical Report, KIT, 2010-13

JMLUnit: The Next Generation

2.2 The Java Modeling Language

The Java Modeling Language (JML) [13] is a specification language for Java
programs. It supports class and method contracts in a Design by Contract [14]
style, as well as more sophisticated properties up to and including full math-
ematical models of program behavior. Several tools work with JML, including
compilers, static checkers, test generators, and specification generators [6].

The Common JML tool suite is the original, and still most widely used, set
of JML tools. It supports Java language versions up to 1.4 and includes a type
checker (jml), a compiler (jmlc) that compiles JML annotations into runtime
checks, a runtime assertion checker (jmlrac), a version of Javadoc (jmldoc)
that generates documentation including JML specifications, and a unit testing
framework (JMLUnit, described below).

Support for modern Java (1.5 and later) syntax in JML—including generic
types, enhanced for loops, and annotations—is currently being developed in
OpenJML,? based on the current OpenJDK? codebase, and JMLEclipse,* based
on the Eclipse Development Platform.

2.3 JMLUnit

JMLUnit [7] is a unit testing framework for JML-annotated code. It takes ad-
vantage of JML runtime assertion checking (hereafter, RAC) to enable the au-
tomatic construction of test oracles that classify tests into three categories: suc-
cessful (or passed), unsuccessful (or failed), and meaningless. Successful and un-
successful tests are familiar concepts to developers experienced in unit testing.
In the JMLUnit context, a successful test is one where a method is called and no
RAC errors occur; this means that the method conforms to its specification with
respect to that call. An unsuccessful test is one where a method is called with its
precondition satisfied and a RAC error occurs during the method’s execution;
this means that the method does not conform to its specification, because once
its precondition has been satisfied it must execute correctly without violating
any assertions.

Meaningless tests, on the other hand, are not likely to be familiar to most
unit testing practitioners. In the context of JMLUnit, a meaningless test is one
where a method is called without its precondition satisfied, causing a RAC error
before the method is executed. In JML (and other Design by Contract-based
specification techniques), a method call is explicitly permitted to generate any
result whatsoever when it is called without its precondition satisfied, ranging
from an unchanged system state to a catastrophic system failure. Since any
result of such a test must be acceptable by definition, there is no way for such
a test to fail; a test that cannot fail gives no useful information and is therefore
meaningless.

2 http://jmlspecs.svn.sourceforge.net /viewve/jmlspecs/OpenJML/

% http://openjdk.java.net/
4 http://jmlspecs.svn.sourceforge.net /viewve/jmlspecs/JmlEclipse/

Technical Report, KIT, 2010-13 70

D. M. Zimmerman, R. Nagmoti

Of course, test oracles generated from the JML specifications present in the
SUT are necessarily limited by the scope of those specifications. Some JML spec-
ifications are not executable, so the runtime checker cannot catch all possible
specification violations (though the range of violations it can catch is extensive).
The more detailed and precise executable specifications exist for a method, the
better the ability of the generated test oracles to discern the correctness of that
method. Methods or classes with no executable specifications—that is, with only
informal specifications or with formal specifications that cannot be checked at
runtime—cannot be effectively tested using such test oracles. However, the prob-
lem of writing good executable class and method specifications, while extremely
important, is beyond the scope of this work; we proceed under the assumption
that good executable specifications are present in at least a reasonable fraction
of any system we intend to test.

In addition to constructing a test oracle for every method in the SUT, JML-
Unit also constructs a limited set of test data for each method. It uses a default
set of values for each primitive type in the Java language as well as the String
type, which it treats as a primitive type for testing purposes. For example, the
default set of values for the int type is {-1, 0, 1} and the default set of values
for the String type is {null, ""} ("" is the empty string). JMLUnit allows the
developer to augment these default sets with additional values; the test code it
generates has a clearly delineated “test data supply section” where the devel-
oper can specify data values to be used in addition to the defaults. Typically,
JMLUnit generates two test classes (one containing the test oracles and one con-
taining the test data) per class under test; however, there is also an option to
relegate the test data for all classes under test to a single “test data generator”
class. JMLUnit does no automatic test data generation for non-primitive types,
relying solely on the developer to write the code that generates such test data.

The tests generated by JMLUnit are executable by JUnit,? one of the first and
most widely used automated test execution frameworks for Java-based systems.
They exhaustively use all combinations of the generated test data as parameters
to each method under test. For example, consider method m in Figure 1, which
takes one int parameter and one String parameter. JMLUnit has 3 default int
values and 2 default String values, so m will be called 6 times during testing if
only default values are used. If the default values are augmented with ¢ additional
int values and s additional String values, m will be called (3 4 ¢)(2 + s) times.

JMLUnit includes a custom JUnit test runner (jml-junit) that provides
detailed reporting of test results and correctly handles meaningless tests; JUnit
itself has no integrated concept of meaningless tests. The JUnit framework is
also integrated into the Eclipse IDE and JMLUnit tests can be run directly from
inside Eclipse, though doing so causes meaningless tests to be reported as passed
tests and the test results to be reported with less detail.

® http://www.junit.org/

71 Technical Report, KIT, 2010-13

JMLUnit: The Next Generation

public class Exemplar {
public Exemplar(String sO, String sl, String s2, String s3,
byte b, char c, Other o, Thing t) {
// constructor body omitted
}

public int m(int one, String two) {
// method body omitted
}
}

Fig. 1. An exemplar of a Java class skeleton.

3 Shortcomings of JMLUnit

In the hands of a skilled developer, JMLUnit can generate tests with good cov-
erage; however, it has several limitations that make it somewhat impractical to
use for large, complex systems. One of these is that it does not attempt to au-
tomatically generate non-primitive test data, leaving that task entirely to the
developer. This requires the developer to manually write methods that return
specific test objects in response to specific requests. In its generated test classes,
JMLUnit provides skeletons for these methods, which are intended to return
specific test data objects indexed by integers.

Consider class Exemplar in Figure 1, which has a constructor with the same
signature as one we used in our experiments. When JMLUnit generates tests
for the Exemplar constructor, it creates a method to provide objects of class
Thing for the last constructor parameter. The developer must fill in the body of
that method so that, whenever JMLUnit requests the Thing with index n, the
method returns whatever the developer has decided the nth Thing should be. In
most cases, it is important that the test object be a fresh copy, because the order
in which tests are run is not known a priori and reuse of test objects can cause
test results to unintentionally depend on the order in which the tests are run.
Similarly, it is important that the test objects be constructed deterministically,
because otherwise the test results might vary across test runs even if nothing
in the SUT has changed. This leads to an implementation style where data
generation methods are large switch statements, with the developer writing
code in each case of the switch statement to generate a single test object; in
fact, the skeleton code generated by JMLUnit is exactly such a switch statement
with a default case that generates no test data. Such code requires considerable
developer effort both to write and to maintain.

In addition to requiring data generation methods as above, JMLUnit does not
provide a reasonable way to specify distinct test data sets for distinct contexts.
For the Exemplar above, JMLUnit generates and provides extension points for
String, char and byte data sets, as well as providing extension points for the
developer to generate data for Other and Thing; however, it only provides one
such data set and extension point for each type. Thus, if the 4 String parame-

Technical Report, KIT, 2010-13 72

D. M. Zimmerman, R. Nagmoti

ters s0 ...s3 have significantly different requirements (e.g., sO must be parsable
as a number while s2 must be a capitalized last name with certain length re-
strictions), the developer must add test data to the single String data set that
satisfies all these requirements. This results in many meaningless tests where
numeric strings are used as names and vice-versa.

The most critical shortcoming of JMLUnit, however, is its memory utiliza-
tion. Since it relies on JUnit as its execution engine, JMLUnit must construct an
entire JUnit test suite in memory, including all the test data to be used, before
a single test is run. As described above, JMLUnit exhaustively tests all com-
binations of the generated test data for each method under test; thus, a single
method that takes multiple parameters can result in extremely large numbers of
tests. For the Exemplar constructor, if the developer gives no additional values
beyond the default sets for the primitive types and String and generates 2 test
objects for each of the Other and Thing types, JMLUnit generates a total of
384 tests. However, in a more realistic scenario where the developer adds, e.g., 3
char values, 2 byte values, and 2 String values to the default sets and generates
4 test objects for each of the object types, JMLUnit generates 102,400 tests.

The combinatorial explosion caused by adding additional test values is not
problematic in itself; each of those 102,400 tests would execute quite quickly on
any modern machine. However, the fact that JMLUnit is forced to construct
the entire test suite in memory before executing the tests is a serious problem,
because it makes such test suites completely impractical to execute even on
extremely capable hardware. We attempted to run such a test suite for a case
study (described in Section 5) on our test machine, an Apple Xserve with two
3.0GHz quad-core Xeon processors and 18GB of memory; even allowing the Java
virtual machine to use 16GB of heap space, we found that it exhausted available
memory before giving the results of a single test.

4 JMLUnitNG: Improvements to JMLUnit

In order to test more complex systems with less developer intervention, we have
created a new tool called JMLUnitNG. The new tool addresses the shortcomings
described in the previous section while preserving most of the basic operating
principles of the original JMLUnit.

4.1 Test Data Generation

The first shortcoming we address is the lack of non-primitive test data gener-
ation. To test Exemplar, we need test data of class Thing. Thing has at least
one constructor, either the default no-argument constructor provided by Java in
the absence of any constructor code or an explicit constructor that takes zero or
more parameters.

If Thing has a default constructor, we can construct Things by using that
default constructor. If Thing has explicit constructors, tests will be generated for
each of them when we generate tests for class Thing itself; thus, construction of a

73 Technical Report, KIT, 2010-13

JMLUnit: The Next Generation

number of Things will necessarily be attempted as part of the testing process. We
can use the Thing constructors and their test data to generate Things for use as
test data in other contexts; if there are k tests generated for Thing constructors,
that gives us at most k Things for testing other (non-constructor) methods of
Thing and methods of other classes under test that take Thing parameters. We
have at most k instances, rather than exactly k instances, because some of the
constructor tests may be meaningless or may fail; such tests do not result in the
creation of Things suitable for further testing.

We use Java reflection to generate these instances. Like JMLUnit, JML-
UnitNG generates two classes—one containing test oracles and another contain-
ing test data—per class under test. In each test data class, JMLUnitNG creates
an inner class that iterates over the instances that are successfully created during
constructor tests. When we run JMLUnitNG on class Exemplar, which takes a
Thing as a constructor parameter, JMLUnitNG inserts code into the test data
class for Exemplar that uses Java reflection to search for the test data class
for Thing. Later, when running the tests on Exemplar, JMLUnitNG can then
find the test data class for Thing (if it exists on the classpath) and use it to
obtain Things for testing. The developer can also directly specify Things, as in
the original JMLUnit. If JMLUnitNG finds the test data class for Thing when
the tests are run, and reflective test object generation is enabled, the generated
Things are used in addition to the developer-specified Things; if not, only the
developer-specified Things are used.

There are three main issues that arise when using reflection and constructor
test cases to generate test data. The first issue is that it is possible to have cyclic
dependencies; for example, a constructor (not necessarily the only constructor) of
class X takes a parameter of class Y and a constructor (again, not necessarily the
only one) of class Y takes a parameter of class X. This issue can be addressed in a
straightforward, though perhaps not optimal, way: use cycle detection flags when
instantiating objects, such that if an instance of X is requested when another
instance of X is already in the process of being generated, the cycle is detected
and stopped by providing a default (that is, generated by a default constructor)
or developer-specified instance of X instead of dynamically constructing one from
test data.

The second issue is that constructing test data reflectively does not take
polymorphism into account. For example, given a method on a chessboard class
that takes a Piece as a parameter, JMLUnitNG will attempt to generate Piece
objects but will not attempt to generate, e.g., Bishop or Knight objects even if
those classes extend Piece and have test data generators. This issue is difficult to
address in the general case, such as when determining what types to generate for
a method that takes an Object as a parameter. It can be addressed for certain
classes, e.g., the Java Collections Framework, with simple test data generation
rules (such as “generate an ArrayList where a List is required”). It can also be
addressed for specific test scenarios by analyzing the inheritance relationships
during test generation for only the classes under test; then, given a method with
a parameter of type Piece, the subtypes of Piece that are explicitly under test

Technical Report, KIT, 2010-13 74

D. M. Zimmerman, R. Nagmoti

would be generated as test data for the method while the subtypes of Piece
that are not under test would not be.

The third issue is that constructing test data reflectively does not account
for interrelationships among classes under test. For example, Exemplar takes
instances of Other and Thing as parameters; suppose it requires that the Other
and Thing passed to it be related to each other in a specific way (such as shar-
ing an identification number or other such attribute). In that case, reflectively
constructing the Other and Thing to pass to the Exemplar constructor will not
establish that relationship. However, this is an issue that is also encountered in
developer-designed test data, where complicated setup operations may be neces-
sary; therefore, we accept it as a limitation of the reflective test data generation
approach.

We will show in Section 5 that, despite these issues, the use of reflection to
generate test data objects from primitive types provides a significant improve-
ment in automatic test coverage over the original JMLUnit.

4.2 Context-Dependent Test Data

The second shortcoming we address is the lack of context-dependent test data.
As previously mentioned, JMLUnit provides default sets of data for primitive
types, and extension points for the developer to specify additional data values
for primitive types as well as data for non-primitive types. However, it only
provides one such extension point per type, per class under test. Though the
extension points do allow some flexibility—they take a parameter to designate
how far nested a loop is in which a type is being used, for example—they do not
allow a developer to specify specific sets of data to be used in specific contexts.

The main reason to specify sets of data for specific contexts is to help contain
the combinatorial explosion of tests. If two of the String parameters to the
Exemplar constructor are names, and the other two must be parsed as numbers
or other reference codes, using the same set of Strings for all 4 parameters will
result in many meaningless tests. Specifying a set of Strings for the names and
another set of Strings for the numbers/reference codes allows the developer to
reduce the number of meaningless tests, and thus reduce the time it takes to run
the test suite.

JMLUnitNG provides extension points for the developer to specify an indi-
vidual set of test data for each parameter of each method under test. These ex-
tension points have data types and method signatures embedded in their names
to uniquely associate each with a context; for example, method Exemplar.m(),
declared as int m(int one, String two), would have extension points with
names like int_one m_int _String (int data to be used for the one parameter
of the method with signature m(int, String)) in the generated test class. For
non-primitive types, these extension points invoke the reflective data generation
code described earlier by default.

In addition to these extension points, JMLUnitNG also provides “global”
extension points that allow the developer to add test data for all occurrences
of a given type, as in the original JMLUnit; such global extension points have

75 Technical Report, KIT, 2010-13

JMLUnit: The Next Generation

names like char_for_all. The test data that is actually used at runtime for
a given method parameter consists of the default test data set generated by
JMLUnitNG, the global test data set associated with the data type, and the
test data set associated specifically with that method parameter.

The addition of custom test data sets for individual method parameters al-
lows developers to fine-tune their test suites and to easily integrate data from
external test data generators into the system.

4.3 Iterators and Lazy Test Generation

The third shortcoming we address is JMLUnit’s excessive memory utilization.
There are two main causes of memory utilization when running automated tests:
the need to generate all the tests in a test suite before executing the suite, and the
recording of information about executed tests using in-memory data structures.

Since the tests generated by JMLUnit are extremely repetitive—each method
is called many times, with parameter lists generated by taking the cross product
of the test data sets for its parameter types—an ideal way to execute them
would be to lazily generate the parameter lists as they are needed, rather than
marshaling the parameter lists for all the individual method calls in memory
as part of setting up the test suite. Unfortunately, the JUnit test execution
engine does not support lazy parameter list generation; while it does have the
ability to run parameterized tests, where a single test method is run repeatedly
with multiple parameter lists, it requires the parameter lists to be stored in
a two-dimensional array in memory, making it impossible to save memory by
parameterizing the tests.

In order to enable lazy parameter list generation, we replaced JUnit with
TestNG,5 a Java-based test execution engine that is similar in concept to JUnit
but has a different feature set. Like JUnit, TestNG supports the use of arrays
as data sources for parameterized test methods; however, it also supports the
use of iterators for this purpose. When it encounters a test method that uses
an iterator as a data source, it executes the test method with parameter lists
provided by the iterator until the iterator is empty. This allows us to implement
lazy parameter list generation; by using iterators over primitive test data sets
and the previously-discussed iterators that generate test objects of non-primitive
types, we can create combined iterators that generate parameter lists for test
methods while only keeping a single parameter list in memory at a time.

TestNG also supports another critical feature that helps to avoid excessive
memory utilization: it allows the use of custom test listeners to record detailed
information about executed tests, including the parameters used for testing and
the exception, if any, that caused the test to fail or be skipped. Thus, instead of
recording every test result in memory and processing that information at the end
of a test suite’s execution, as the previous version of JMLUnit does, we can record
test results to disk in a streaming fashion as the tests are executed, with as much
detail as we choose. As distributed, TestNG does record every test execution in

6 http://www.testng.org/

Technical Report, KIT, 2010-13 76

D. M. Zimmerman, R. Nagmoti

memory—even if the default test listeners are disabled—in order to present a
basic test report at the end of execution. However, with only minor changes to
the TestNG source code, we were able to eliminate this in-memory recording
while maintaining the ability to use other desirable TestNG features. With our
modified version of TestNG, we can run test suites of essentially arbitrary size
in a reasonable amount of memory, provided that there is sufficient disk space
to log their results; we have successfully run hundreds of millions of tests using
less than 1 GB of Java heap space.

The switch from JUnit to TestNG as a test execution environment therefore
allows us to eliminate all the memory issues associated with JMLUnit. It also
removes the need for a custom test runner that understands meaningless tests,
because TestNG natively supports the concept of a skipped test; we simply record
the meaningless tests as skipped, by intercepting the appropriate JML assertion
errors and wrapping them in TestNG SkipExceptions. In addition, because
TestNG supports functionality such as dependencies among tests and multiple
forms of parallel testing, it provides a robust platform upon which to perform
future automated test generation experiments.

5 Results

We have run our current version of JMLUnitNG on two different sets of Java
classes. Both are relatively small; one is a small set of classes that implements
chess pieces, and the other is a set of core classes from the Kiezen op Afstand
(KOA) Internet-based remote voting system [12] constructed for the Dutch gov-
ernment by the Security of Software group at Radboud University Nijmegen.

The chess piece classes are largely testable in isolation, though they have
a dependency on a Team class’ that is used to indicate whether each piece is
black or white and to enable the pieces to determine their legal directions of
movement. The piece classes, which are named for the pieces whose movements
they model, have methods that take no more than 3 parameters; the majority of
their methods take fewer than 2 parameters. The piece classes tested here share
a common interface (Piece) but do not take advantage of inheritance to factor
out the common functionality of chess pieces into a shared parent class; thus,
they all have similar structure.

The KOA classes, by contrast, are highly interrelated, with some taking in-
stances of multiple others as constructor and method parameters. They also
have a significantly greater number of method parameters on average, making
the combinatorial explosion of test method calls more pronounced. The classes
in the KOA system model components of the Dutch election system: District
represents a voting district; KiesKring represents a kieskring, which is a region
containing a collection of voting districts that are counted together for the pur-
pose of proportional representation in the lower house of the Dutch parliament;
Candidate stores information about a single candidate for office; KiesLijst

" This is a class in the chess code tested here, because we are working with a version
of JML that only handles Java 1.4 constructs; it would be an enum in modern Java.

7 Technical Report, KIT, 2010-13

JMLUnit: The Next Generation

Covered Blocks % Covered

Class Total Blocks Orig New Orig New
Candidate 197 0 0 0 0
CandidatelList 659 0 0 0 0
District 98 13 74 13.3 75.5
KiesKring 299 29 207 9.7 69.2
KiesLijst 431 45 173 10.4 40.1
VoteSet 745 0 0 0 0
Total 2429 87 454 3.6 18.7

Table 1. Results for KOA classes with JMLUnit (Orig) and JMLUnitNG (New)

Covered Blocks % Covered

Class Total Blocks Orig New Orig New
Bishop 367 0 247 0 67.3
King 390 0 270 0 69.2
Knight 362 0 242 0 66.9
Pawn 403 0 273 0 67.7
Queen 368 0 248 0 67.4
Rook 360 0 240 0 66.7
Team 10 1 8 9.1 80

Total 2260 1 1528 0 67.6

Table 2. Results for Chess classes with JMLUnit (Orig) and JMLUnitNG (New)

stores a list of candidates for a particular kieskring; and CandidateList stores
information about the entire set of candidates, across all regions, for a single
election.

We use EMMA,® a code coverage tool for Java, to measure the coverage of
the tests generated by JMLUnit and JMLUnitNG. EMMA measures coverage
in terms of basic blocks, which are sequences of bytecode instructions without
any jumps or jump targets, rather than in terms of lines of source code. When a
Java program is run under EMMA, it generates a report that lists all the classes
loaded by the virtual machine, their methods, the number of basic blocks in each
method, and the number of those blocks that were executed during the run.

Tables 1 and 2 show the block coverage provided by JMLUnit and JML-
UnitNG, based on the data in the EMMA reports. Both sets of generated tests
were run with default settings and without modifying the generated code. For
the chess classes, 165 tests were automatically generated by JMLUnit and 7,108
were automatically generated by JMLUnitNG; for the KOA classes, 686 tests
were automatically generated by JMLUnit and 3,017 were automatically gener-
ated by JMLUnitNG. The disparity—JMLUnitNG generates fewer tests for the
KOA classes than for the chess classes, while JMLUnit does the opposite—is
due to the fact that the constructors for the chess classes have significantly less

8 http://emma.sourceforge.net

Technical Report, KIT, 2010-13 78

D. M. Zimmerman, R. Nagmoti

Class Total Blocks Covered Blocks % Covered
Candidate 197 118 59.9
CandidateList 659 74 11.23
District 98 75 76.5
KiesKring 299 239 79.9
KiesLijst 431 266 61.7
VoteSet 745 167 22.4
Total 2429 939 38.7

Table 3. Results for KOA classes with JMLUnitNG and provided primitive data values

restrictive preconditions; while the default test data generate many possible pa-
rameter lists for constructing test objects, significantly fewer of those satisfy the
constructor preconditions for the KOA tests than for the chess tests.

Since JMLUnit has no way to construct objects on which to call test methods,
it fails to provide any test coverage other than for object constructors that take
only primitive values (or accept null, which JMLUnit uses as a default). By
contrast, JMLUnitNG covers significant fractions of the systems under test with
no developer intervention.

Adding primitive and String data to the JMLUnit tests, for either set of
classes, does not improve their coverage because JMLUnit still does not con-
struct test objects. Adding primitive and String data to the JMLUnitNG chess
tests does not improve the coverage significantly, because the default values for
the primitive types are sufficient to test nearly everything that can be tested by
JMLUnitNG; the polymorphism limitation mentioned in Section 4.1 prevents
JMLUnitNG from automatically generating useful tests for the methods that
handle capturing of pieces, which take parameters of type Piece (an interface
shared by all the pieces), or for methods like equals. However, adding primitive
and String data for the JMLUnitNG KOA tests has a significant impact, as the
added data can be chosen to satisfy constructor preconditions that are not sat-
isfied by the default data. Table 3 shows that block coverage more than doubled
when a few carefully-selected primitive and String data values were added to
the test data set; JMLUnitNG generated 1,351,351 tests for that run.

The test runs with default data ran in less than 10 seconds each; however,
the JMLUnitNG test run with added data required approximately 3 hours to
complete the 1,351,351 tests. We believe that the execution time can be dra-
matically improved through optimization of the reflective test data generation
process, as well as by parallelizing the test executions. However, the completion
of a million-test run is itself a dramatic improvement over the original JMLUnit
tool; it would have exhausted the available 16 GB of Java heap space during the
attempt and generated no results, while JMLUnitNG used less than 768 MB of
heap space and reported that all the tests passed.

79 Technical Report, KIT, 2010-13

JMLUnit: The Next Generation

6 Related Work

As previously mentioned, considerable research has been (and continues to be)
devoted to automatic test generation, most of it to the generation of test data
rather than test oracles. We have insufficient space here to give even a complete
overview of the current state of the art. We thus describe only the most closely
related of the existing automated test generation systems.

Test oracles can be derived from a behavioral specification of the SUT, such
as structured documentation [15], a formal model [9], or inline specification state-
ments written in languages such as JML (as we have used here). Regardless of
the type of behavioral specification, the basic idea is the same as we have em-
ployed: a test oracle is generated for each unit based on the specification of that
unit; tests that are run with data that would violate the unit’s requirements
(preconditions, assumptions) are ignored, and a test is considered to pass if the
unit’s specification is not violated by the test execution.

Most automated test data generation falls into one or more of the following
categories: randomness-based, where test data are generated randomly; optimi-
zation-based, where test data are optimized over multiple test runs based on
coverage observations; code-driven symbolic execution-based, where symbolic ex-
ecution [11] is used to compute test data that will exercise particular execution
paths of the SUT; specification- or model-based, where constraint solving is used
to generate test data based on a logical analysis of a specification or model of
the SUT; and wverification-based, where test cases are generated from attempts to
formally verify the SUT. The latter two are most closely related to our approach.

Specification- and model-based test data generation methods, implemented
in tools such as BZ-TT [1], JML-Testing-Tools [3] and UniTesK [4], use a log-
ical analysis to compute partitions of the variables that fulfill the explicit case
distinctions present in a formal specification or model of the SUT. Once the
partitions have been computed, constraint solving or model finding is used to
find concrete test data in each partition.

Verification-based test data generation (hereafter, VBT) is a recent develop-
ment, based on the idea of generating test cases from attempts to verify systems
with formal specifications [10]. VBT uses symbolic execution, with termination
being enforced by a bound on the number of times loops and recursions are
unwound; it differs from code-driven symbolic execution-based methods by gen-
erating test data from path condition formulae encountered at termination nodes
in the symbolic execution tree. The VBT approach works well for code with sim-
ple branching statements (if...then, switch/case, constant-bounded loops) but
not as well for code with generalized loops or recursion, because only a lim-
ited number of loop iterations and only a limited recursion depth can be dealt
with. VBT has been implemented in the KeY verification system [2] and in
Kiasan/KUnit [8]. A uniform framework for verification and testing has been
formalized in HOL/Isabelle for a small target language [5].

JMLUnitNG is complementary to, not competitive with, the test generation
methods and tools described above. While these methods and tools are relatively
heavyweight, using automated theorem provers, constraint solvers and symbolic

Technical Report, KIT, 2010-13 80

D. M. Zimmerman, R. Nagmoti

execution engines, JMLUnitNG is extremely lightweight, using only the TestNG
framework and Java’s reflection mechanism. It is an instant replacement (and
improvement) for developers who already use JMLUnit, and a one-step addi-
tion to the software build process for developers who use JML but have not yet
adopted JMLUnit. It is easy to use, and the principles underlying its operation
are easy for typical software developers and students to understand regardless of
their level of experience with JML specifications and tools. For more advanced
developers, it can also be used in conjunction with more heavyweight methods;
rather than manually creating context-dependent test data sets for the JML-
UnitNG test oracles, or relying solely on the default data sets and reflective
data generation, developers can create their data sets using one or more other
test data generation tools.

7 Conclusion

We have presented JMLUnitNG, a new unit test generation and execution frame-
work inspired by the original JMLUnit tool and based on a modified version of
the TestNG unit testing framework for Java. The current implementation has
some shortcomings; as a proof of concept, it was directly evolved from the origi-
nal JMLUnit and is based on the Common JML tool suite, so it cannot be used
on code that contains modern Java constructs such as generic types. It does not
contain solutions for two of the issues—cyclic dependencies and polymorphism—
discussed in Section 4.1. When generating test data, it cannot reflectively con-
struct instances of classes that have no public constructors, such as those that
rely on factory methods. We have already designed and partially implemented a
new version of the tool, independent of the Common JML tool suite, to address
all these issues.

Despite these shortcomings, we consider our initial experiments with JML-
UnitNG to be quite successful; the ability to generate and rapidly execute mil-
lions of tests and the automatic generation of test data of non-primitive types
are substantial improvements over the functionality provided by the original
JMLUnit, and the resulting benefits can be easily realized in any project that
currently uses JMLUnit for specification-based testing. Moreover, JMLUnitNG
provides significant new developer flexibility, including the ability to specify
context-dependent test data. As such, it is not only an improvement over the
original JMLUnit, but also a sound foundation for future test data generation
experiments.

Acknowledgements

A portion of this work was funded by a 2008-09 award from the University of
Washington Tacoma Chancellor’s Fund for Research & Scholarship. In addition,
the authors would like to thank Dr. Joseph R. Kiniry for his role in initial discus-
sions about JMLUnitNG and his useful comments during both its development
and the writing of this paper.

81 Technical Report, KIT, 2010-13

JMLUnit: The Next Generation

References

1.

10.

11.

12.

13.

14.

15.

16.

Ambert, F., Bouquet, F., Chemin, S., Guenaud, S., Legeard, B., Peureux, F.,
Vacelet, N.: BZ-TT: A tool-set for test generation from Z and B using constraint
logic programming. In: Formal Approaches to Testing of Software (FATES) 2002,
Workshop of CONCUR’02. Brno, Czech Republic (Aug 2002)
Beckert, B., Hiahnle, R., Schmitt, P.H.: Verification of Object-Oriented Software:
The KeY Approach. No. 4334 in Lecture Notes in Computer Science, Springer-
Verlag (2007)
Bouquet, F., Dadeau, F., Legeard, B., Utting, M.: JML-Testing-Tools: A symbolic
animator for JML specifications using CLP. In: 11th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Edinburgh, U.K. (Apr 2005)
Bourdonov, I.B., Kossatchev, A., Kuliamin, V.V., Petrenko, A.: UniTesK test suite
architecture. In: International Symposium of Formal Methods Europe (FME).
Copenhagen, Denmark (Jul 2002)
Brucker, A.D., Wolff, B.: Interactive testing with HOL-TestGen. In: Fifth Inter-
national Workshop on Formal Approaches to Testing of Software (FATES). Edin-
burgh, U.K. (Jul 2005)
Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K., Poll,
E.: An overview of JML tools and applications. International Journal on Software
Tools for Technology Transfer (Feb 2005)
Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The
JML and JUnit way. In: Proceedings of the European Conference on Object-
Oriented Programming (ECOOP) 2002. Lecture Notes in Computer Science, vol.
2374, pp. 231-255. Springer-Verlag (2002)
Deng, X., Robby, Hatcliff, J.: Kiasan/KUnit: Automatic test case generation and
analysis feedback for open object-oriented systems. In: Testing: Academic and
Industrial Conference Practice and Research Techniques (TAICPART). pp. 3-12.
Windsor, UK (September 2007)
El-Far, LK., Whittaker, J.A.: Model-based software testing. Encyclopedia on Soft-
ware Engineering (2001)
Engel, C., Hahnle, R.: Generating unit tests from formal proofs. In: Tests and
Proofs, First International Conference (TAP). Ziirich, Switzerland (Feb 2007)
King, J.C.: Symbolic execution and program testing. Communications of the ACM
19(7), 385-394 (July 1976)
Kiniry, J., Morkan, A., Cochran, D., Fairmichael, F., Chalin, P., Oostdijk, M.,
Hubbers, E.: The KOA remote voting system: A summary of work to date. In: 2nd
International Symposium on Trustworthy Global Computing (TGC). Lucca, Italy
2006
ieawe)ns7 G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of
JML accommodates both runtime assertion checking and formal verification. In:
Proceedings of the International Symposium on Formal Methods for Components
and Objects (FMCO) 2002. Lecture Notes in Computer Science, vol. 2852, pp.
262-284. Springer-Verlag (2003)
Meyer, B.: Object-Oriented Software Construction, 2nd Edition. Prentice-Hall
1988
%’eterg, D.K., Parnas, D.L.: Using test oracles generated from program documen-
tation. IEEE Transactions on Software Engineering 24(3), 161-173 (March 1998)
Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Computing Surveys 29(4), 366-427 (Dec 1997)

Technical Report, KIT, 2010-13 82

Verification Based Test Case Generation for
Scoped Memory in Safety-Critical Java

Gabriele Paganelli

Department of Computer Science and Engineering
Chalmers University of Technology, Gothenburg, Sweden
gabriele.paganelli@chalmers.se

Abstract. Applications in Safety Critical Java can make use of scoped
memory areas. Objects residing in different scoped memory areas can-
not refer to each other arbitrarily. A unit’s specification has therefore an
added dimension, i.e. the description of the relation that holds among the
caller object and the reference type arguments via a set of constraints.
A method is proposed to extend verification-based test generation for
applications following certain programming guidelines. The information
resulting from running the procedure on the application can then be used
by a verification-based test generation tool to generate test cases for the
selected units. The analysis provides a criterion to select a subset of all
the possible configurations satisfying the precondition of the unit under
test that are likely to appear in the application it is used in.
Keywords: Safety-Critical Java, Verification-based testing, Unit test-
ing, Test case generation, Constraint solving on finite domains

1 Introduction

This paper proposes a method to help derive a reasonable set of initial states
for unit tests in a program that uses scoped memory areas, one of the features
of the Real-Time Specification for Java (RTSJ) [2]. The motivation for this is
essentially to filter out a potentially infinite set of test cases, by analyizing the
entire program via static analysis.

The main issue with memory management in RTSJ is the concept of scope.
Since garbage collection is a dangerous source of unpredictability (the garbage
collector can preempt a thread with hard real-time deadlines causing it to miss
them), in RTSJ a set of classes representing memory areas has been provided to
programmers in order to manage and allocate memory chunks (scopes, or scoped
memory areas) that then are reclaimed by the JVM, and threads executing in
these areas are never interrupted by garbage collection. Objects can be allocated
in different parts of memory. The relations that different objects can have accord-
ing to their position in memory affects the testing effort: in principle all possible
configurations of allocation should be taken into account. The memory model
from the thread’s point of view is a stack holding the scopes entered but not yet
left. Every thread maintains a stack that keeps track of its memory usage. The
model encodes the scoped behavior of the memory allocation: as a scope is en-
tered, it is stacked in the thread’s scope stack; in order to leave a certain scope

83 Technical Report, KIT, 2010-13

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

s, all the scopes above it (inner scopes) in the stack (that were entered after
entering s) must have been left by the thread (which does not necessarily mean
that the memory has been reclaimed, though). When a thread is executing in a
scoped memory area s, all object allocations happen in s; so the created objects
reside in s. A scoped area keeps track of how many threads are executing in it;
when the counter goes to zero, the area is deallocated by the compliant JVM.
The code to be executed in a scoped memory area s must be contained in the
run() method of an object implementing the Runnable interface, passed to the
object o_s representing s and executed by invoking o_s.enter (). The access to
the memory cannot happen in an arbitrary way to prevent dangling references,
e.g. an object in a scope out cannot reference an object in a scope inn that
is more inner than out, because its life span is shorter. This introduces a new
dimension in the specification of the behaviour of a unit which reflects itself on
the way a unit should be tested. The following snippet shows a typical usage of
scoped memory:

String outermost;
ScopedMemory outerScoped = new LTMemory(1000);
outerScoped.enter(new Runnable(){
public void run(){
String s = new String("String residing in outerScoped area.");
System.out.println(s);
}
B

An LTMemory object represents a scoped memory area with allocation time linear
in its size (that is 1000 bytes in this case). In the above code, the object s resides
in the memory area represented by outerScoped.

Let u be a method of class D along with its JML specification! and signature
(Fig.1): The specification tells the client of u that if a resides in a more outer

Class D{
/%@
@ public normal_behavior
@ requires \inOuterScope(a,b);

@ ensures \result == 3;
ex/
public int u(A a,B b){...}

}

Fig. 1. Example specification and signature of method u.

scope than b when u is invoked, then the return value of u will be 3. If it is not

! Note that the \inOuterScope construct is not standard JML. See later in the paper,
or [9].

Technical Report, KIT, 2010-13 84

G. Paganelli

the case, nothing can be said about the state after the unit returns. In the least
constrained situation, where one is using RTSJ without any restriction, there
are plenty of configurations that would be candidates for testing this unit. The
only constraint is that the object a must be in a more outer scope than the one
in which b is allocated. this is not constrained at all, or it can be assumed to
reside in an outer scope than the active one by default. If for instance the depth
of the scope stack is constrained to be 3, this allows at least 18 test cases as
shown in Fig.2. The following snippet is a possible corresponding test case for

the configuration shown in Fig.3.

scoped2 |[b,a b b

scopedl a

immortal |r1,r2 rl,r2 rl,r2,a
scoped?2

scopedl |a,b b

immortal |r1,r2 rl,r2,a rl,r2,a,b

Fig. 2. Resulting test configurations for stacks of length 3. Note that here the
Runnable objects that run inside the two scoped memory areas are assumed to
be allocated in immortal memory, and it is assumed that the invocation happens
always in the topmost scope. this can be allocated in all three memory areas,
therefore giving 6 x 3 = 18 test contexts.

scoped2
scopedl
immortal

this

rl,r2,a,b

Fig. 3. Test case for the proposed configuration in JUnit format.

Runnable rl,r2;

LTMemory scopedl,scoped2;

A a;

B b;

@Begin

public void fixture(){
scopedl = new LTMemory(1000);
scoped2 = new LTMemory(1000) ;
rl = new Runneri();
r2 = new Runner2();
B b =newB(...);
A a=new A(...);

85

Technical Report, KIT, 2010-13

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

}

class Runnerl implements Runnable{
public void run(){
scoped2.enter(r2);
}
}

class Runner2 implements Runnable{
public void run(){
int ret = d.u(a,b);
Assert.assertEquals(ret,3);
}
}

Q@Test
public void test(){
scopedl.enter(r2);

}

This situation, besides being impractical, is also rather unrealistic. In the
case in which one would derive test cases picking some of the many possible, one
should come out with a set of criteria that would have little meaning if not related
with the context in which the unit is going to work. Very often in fact real-time
applications, and especially safety-critical applications, are strongly constrained
by coding guidelines [7,16]. On one side this can reduce the expressivity of the
language along with the portability and extendibility of the application. On the
other side it ensures that the program can be easily understood by developers.
This also frames the testing attempt, providing criteria to select the possible
test inputs.

The rest of the paper is organized as follows. Section 2 gives the needed
background to understand the rest of this work. Section 3 deals with the restric-
tions on coding that are assumed. Section 4 illustrates how the proposed method
works, providing an example to show how effective it can be for selecting test
cases. Conclusions are in Section 5.

2 Background

This section provides the needed background knowledge. It does not have any
ambition of completeness on the topics presented.

2.1 Real-Time Java Scoped Memory Model

The Real-Time Java specification (RTSJ) [2] (started with JSR-1) represents
the effort to bring Java in the real-time world. It does not extend the syntax
of the language, but provides a set of new classes. Safety-Critical Java (SCJ)
(JSR-302) is a profile for safety-critical applications that allows certification for

Technical Report, KIT, 2010-13 86

the DO-178B Level A standard [20]. The specification for the SCJ profile is still
under definition, but several proposals exist [6,21] and they all agree on the
fact that garbage collection should be avoided. For this paper’s sake, the only
important part is the way memory is managed. Normal heap memory, being
subject to garbage collection, is not used in a safety-critical environment. There
are two other kinds of memory areas: immortal and scoped. They all have a
corresponding class representing them in the specification. Both are not garbage
collected. Class ImmortalMemoryArea has a single object, representing immortal
memory. Immortal memory is never reclaimed, therefore introducing the risk of
memory leaks. Scoped memory areas are represented by ScopedMemory and its
subclasses. A scoped memory area can be allocated at runtime, and reclaimed
by a compliant JVM when the last thread executing in it leaves it, after running
any finalization code associated with the allocated objects within it. This new
feature allows the programmer to manage in a flexible way the used memory. A
thread maintains a cactus stack (i.e. a stack with branches, or a tree that grows
or shrink by adding or deleting leaves) of the memory areas it entered and not
left yet. There are two ways to enter a memory area; with the enter () method
or the executeInArea() method. The former stacks a new scope on the area in
which the invoking thread is executing making the new scope the active one; the
latter allows to move the active scope down the current scope stack.

As scoped memory areas can be reclaimed, there is the risk of dangling
references. This can happen if a reference to an object residing in an inner
scope in the memory stack is stored in a more outer scope, as for instance could
happen in the following example:

String outermost;
ScopedMemory outerScoped = new LTMemory(1000) ;
outerScoped.enter(new Runnable(){
public void run(){
String s = new String("String residing in outerScoped area.");
outermost = s; // throws IllegalScopeException
1
b

or if a memory area is entered twice from the same thread while it is still active
in its scope stack, which means that the single parent rule? has been broken
[23]. A strict complying JVM should perform runtime checks each time an ob-
ject reference is stored. This introduces an overhead. Previous works presented
programming models and tools to process programs written according to such
models to ensure that no scoped memory related exception will be thrown, there-
fore allowing to turn off runtime checks [6,11,17,18,22,24].

2 The single parent rule states that any scoped memory area s must have a unique
parent, where the parent is either:

— if there are scoped memory areas below s in the stack, the closest below s,or
— if there are no scoped memory areas below s, the memory area termed primordial.

G. Paganelli

87 Technical Report, KIT, 2010-13

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

2.2 JML

JML is a behavioral interface specification language that can be used to specify
the behavior of Java modules [13]. It can be embedded in Java source files to
annotate Java code, or in separate . jml files in the form of formatted comments.
It allows to define the behavior in a precondition-postcondition fashion, also
with class invariants and other features like ghost and model fields to support
automated verification. The following snippet is a simple example of JML usage.

/*@
@ public normal_behavior
@ requires b>=0;
@ ensures \result == a+b;
Qx/

public int sum(int a, int b){
while (b>0){

return a;

}

The implementor has to fulfill the property that if the precondition (requires)
is met by a client when it invokes the unit, then the postcondition (ensures)
must hold when the method returns. On the client’s side, the specification is
a guarantee that if the precondition holds when the method is invoked, then
when the method returns the postcondition will be true. Otherwise, nothing
can be said about the behavior of the unit. \result here is a JML built-in
expression referring to the return value of a method (if it is not void). For a
slightly deeper, but still very easy introduction to the topic, refer to [14,15]. For
a deeper understanding, refer to the language specification [13].

2.3 JML Extensions for Scoped Memory

In [9] a formalization of the stacking relation between scoped memory arcas has
been proposed. In the same work, an extension to allow JML to predicate about
this relation is also developed. Two constructs of the latter are presented:

— \inOuterScope(i,j) indicates that the object i evaluates to is stored in the
same or in a more outer scope than the object j evaluates to in the memory
stack of the thread invoking the method.

— \inImmortalMemory (i) indicates that object i evaluates to is stored in im-
mortal memory.

In the proposed extension, there is also the pointer \currentMemoryArea. This
expression evaluates to the currently active memory area in which the state is
evaluated. It will not be used in the following, but some remarks are given in
Section 5.

Technical Report, KIT, 2010-13 88

G. Paganelli

2.4 Testing, Verification-Based Testing and KeYVBT

In this paper unit testing is taken into account, which is the test of single Java
methods. A popular tool to execute and develop unit tests is JUnit [3].
Verification-based testing has been described in [8,10]. It is a testing ap-
proach that joins white box testing (by means of symbolic execution) and black
box testing (because it uses the specification of a method). KeYVBT [5] is a
verification-based testing tool that allows to automatically generate test cases
for a subset of the Java language that includes the Java Card specification [1]. In
it, the JML-annotated code is symbolically executed within the KeY system [4]
in order to get the feasible execution paths and the associated path condition.
Every feasible path then corresponds to a test case, generated in JUnit format.

3 Structure of the Program Under Test

As development of hard real-time programs poses stringent requirements, guide-
lines were proposed [17] to make SCJ applications safer, more reliable and easier
to maintain. Program-wide analysis approaches to certify the properties of a
program exist [11,22]. The JamaicaVM [7] manual also suggests several coding
practices for hard real-time programming. In the following a series of assump-
tions are made. The application is a two-phase process: initialization and mission
phase, the latter having to respect hard real-time constraints. Mission phase runs
only in scoped memory areas of type LTMemory, whereas initialization runs in
ImmortalMemoryArea. The use of just immortal and scoped memory areas en-
sures that the computation will never be interrupted by the garbage collector’s
activity. All the LTMemory objects are created during initialization. Dynamic
loading of classes is not allowed in mission phase, so any application should load
all classes needed during initialization. This limitations are consistent with the
ones listed in [7,11,17], where the rationale behind them is discussed. Additional
simplifications are added. Only single threaded applications with no invocations
to executeInArea() are allowed, which means that the execution happens al-
ways in the memory scope at the top of the memory stack. Furthermore, the
number of LTMemory used is known at compile time, and there is a one-to-one
associations from LTMemory objects to Runnable classes (defined for simplicity
in separate files).

In the following, P = {p1, ..., pn} and M = {u1, ..., pt, } will denote the set of
classes implementing Runnable and the instances of LTMemory in an application,
respectively. The instances of p; will run in p;, for all i € {1,...,n}. Imm is the
immortal memory. Let also M* = M U {Imm} be the set of all memory areas
used in the application.

Executions of such programs can therefore be represented, from the scoped
memory point of view, as a sequence over time of linear stacks growing and
shrinking continuously (in the sense that the previous stack is the next stack
with or without a memory area stacked on top) in which the topmost memory
is the active one (the one in which the thread is executing). Figure 4 shows a

89 Technical Report, KIT, 2010-13

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

possible stack development. Invoking enter () on a scoped memory area object
mem representing memory area p stacks the memory area; returning from that
invocation unstacks it.

In the following, given a Java method u, the expression o} will indicate the
specification of such a method. Furthermore, the expression & will indicate
the subset of the specification dealing with memory constraints. The index b
indicates multiple behavior specifications. Such a fragment of specification '
shall contain only sequences of constraints

\inOuterScope(i,j)
\inImmortalMemory (i)

where i, j are reference type JML expressions, referring to formal parameters
in the argument list or this (if the unit is not a static Java method) or more
generally to any visible field mentioned in the specification (including class in-
variants).

The subset of the specification s that corresponds to the precondition (post-
condition) will be denoted Pre(o}') (Post(c}')). The structure of such a con-
strained program is therefore the following: the finite sets P, M* represent re-
spectively the Runnable implementations and the memory areas. A set of classes
I' O P contains the classes used by the program. In the initialization phase, the
program runs in immortal memory and instantiates the static fields, executes
the static blocks, and performs other possible object creations: all the LTMemory
objects in set M are created, and at least the Runnable(s) that will be entered
to start mission phase. It also must force any dynamic loading of classes. Every
stack during mission phase is rooted in immortal memory.

»

X~
1)
i)
(7]
2
o
€
[
=
Scoped2
Scopedl Scopedl Scopedl
Immortal Immortal Immortal Immortal
| I B |
Time

Fig. 4. Evolution over time of the described restricted program. The time ticks
correspond to invoking (or returning from) the enter () method on the stacked
memory area.

Technical Report, KIT, 2010-13 90

4 The Method

In the following it is assumed that the program has been already proved to not
throw any runtime memory-related errors. Static analysis, and more precisely
data-flow analysis, has been already used [22] to investigate the properties of SCJ
programs, especially for verifying the absence of memory-related runtime errors.
The aim is to produce initial states for a set of test cases. What is proposed here
is a way to find mappings (“contexts”) from objects to memory areas in all the
memory stacks in which the method under test is invoked (the actual instantia-
tion of these objects is not addressed here). These mappings, for the restriction
imposed to the programs, can be found by static analysis. The problem is basi-
cally a constraint satisfaction problem: given certain constraints (Pre(d})) the
goal is to find all satisfiable assignments (that correspond to valid initial states)
of the objects expressed in the specification and signature to memory areas in a
certain memory stack. However, the method generates contexts that might not
occur in the program, because of the coarse analysis; however, all contexts do
respect the precondition and therefore can be used to build valid test cases.

4.1 Static Analysis

Let U be the set of Java methods u to test. For simplicity, three data structures
are defined to name these three different views:

1. A tree T whose root is labeled with I'mm and its subtrees have their roots
labeled with the memory scopes entered from the parent context?.

2. A table ©4 : I' — p(M™*) that holds, for each class v € I', the set of
memory areas in which instances of v are created.

3. A table O7 : U — o(M™*) that holds, for each Java method u to test, the
set of memory areas in which it is invoked.

4.1.1 Example. A possible triple (T,04,0;) obtained by static analysis,
when I' = {R1,R2,R3,A,B,D}, P = {R1,R2,R3}, M = {M1,M2,M3}:

T = (Tmm, {(M1, {(M2, { (M3,0)})})})
A=A

R1 — {Imm},

R2 — {Imm},

R3 — {Imm},

A — {M1, M3},

B — {M2, M3}

D — {M2},

}

I={u— {M2, M3}}

3 This induces a partial order among the memory areas, if the program has been
already proved to not throw any runtime memory-related errors.

G. Paganelli

91 Technical Report, KIT, 2010-13

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

where Imm is the immortal memory, and a tree node is represented as the pair
(label, set_of _children).

4.2 Generation of the Contexts

Let u € U a unit to test. The possible contexts in which the unit could be run
are then inferred from the triple (T, ©4,©0r) and Pre(6}'). The memory areas in
which w is invoked are given by the set @(u). The occurrences of these memory
areas are then searched in T'. Note that this might happen in more than one place
in T. The occurrences are described as a set of paths § = (Imm, up, ..., ;) each
representing a memory stack. Let S = {31, 82, ..., §;} denote this set. Let s be
the (unordered) set containing all elements appearing in a sequence §. Note
that for the finiteness of M™*, and the restrictions that prevent entering scopes
more than once (see Subsec. 2.1), all the above mentioned sets and sequences

are finite. Pre(6}') contains the constraints that the allocation of object must
fulfill.

4.2.1 Translation to Constraint Solving over Finite Domains. A con-
straint satisfaction problem (CSP) is defined as a triple P = (X, D,C) where X
is an n-tuple of variables X = (1,9, ...,2,) and their domains are described
by the tuple D = (D1, Ds, ..., D,,) such that z; € D;. The constraints are given
by C = (Cy,Cy, ...,Ct), where each C; is a pair (Rg,,S;). S; is a set containing
the variables constrained by C;, and Rg, is a relation among these variables that
defines the valid combinations of values [19].

Given a method u, Pre(6y') and (T,04,0r), one can see the problem of
satisfying Pre(&}') as a constraint solving over finite domains. Considering every
path §; in T" that describe where u is invoked, define for every

— reference-type formal parameter in u’s signature

— reference-type visible field mentioned in the specification (including class
invariants)

— Runnable p; associated with memory scope u; occurring on 3;

a variable taking values over a domain D, € M* in which the corresponding
object can be created. Note that this information is related with the information
held in table © 4. Let I” C I' be the subset containing the types of the first two
items described above, together with the the p;s of the last one. The total order
induced by a path §; on s; allows to identify each of the memory areas with the
position they have in 8;%. Let t5, : M* — N be defined as follows:

15, (k) = n, if k£ is the nth element of §;
") undefined, otherwise.

4 Qnly if the program has been already proved to not throw any runtime memory-
related errors.

Technical Report, KIT, 2010-13 92

G. Paganelli

tg, (k) is a labeling function for memory areas accessed in §; that identifies every
memory area with the position it has in the sequence. Depending on the path §;
taken in consideration, the domains from which the variables draw their values
must be adjusted, to rule out values that do not appear in §;.

The constraints are given by Pre(6;') which are unary and binary relations.
Consider then the sets J;,, where K € p(M*) and defined as

Js,(K) ={w € N | 3k € K.15,(k) is defined A w = 15, (k)}

i

The above set is the extension of ¢z, to subsets of M*.

4.2.2 Example. Let (T, 0 4,0);) as defined in Example 4.1.1 above. There are
two possible paths from invocations to u. Consider the path § = (Imm, M1, M2).
The vector of variables X = (this,a,b,r1,72) is obtained from the specification
and the method signature of u (see Fig.1, the formal parameters A a and B b and
the instance on which the method is invoked) and the correspondence between
memory areas and Runnables (r; and 72). The domains of such variables are
obtained from the ordering induced by §:

D,, = J;(©4(R1)) = {0}
D, = J;(04(R2)) = {0}
Do, = Ji(0a(8)) = {1}
Dy = J,(64(B)) = {2}
Dinis = Js(©a(D)) = {2}

With the structure (T',©4,O;), a unit u to test and a path §; it is then possible
to translate the problem of finding possible test memory contexts in a CSP
problem P = (X, D,C) as follows:

— Define variables X = (x1QCy,22QCs, ..., 2,@QC,,), each z; with j € {1..n}
corresponding to:

e formal parameters in u’s signature

e visible reference types mentioned in Pre(o})

e Runnables associated with all pj € s;

each of them of class C;.
— Define domains D = (J;,(04(C1)), J5,(©4(C2)), ..., J5,(©4(Cr)))
— Define constraints set C:

e for each expression in Pre(y') of the form \inOuterScope(c,d) add
the constraint z° < z¢, where x¢, 2% appear in X and are the variables
associated with arguments or field ¢, d evaluate to;

e for each expression in Pre(d}') of the form \inImmortalMemory(c) add
the constraint z¢ = 0 (since immortal memory always has identifier 0,
as it labels the root of T').

93 Technical Report, KIT, 2010-13

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

4.2.3 Algorithm. The iterative process is as follows, given (T,04,0;) and
a method u such that ©;(u) = K, and one specification case Pre(c}).

— For all m in K:
e For each occurrence o of m in T
1. let §; the sequence describing the path from o to the root of T'
2. Translate the problem from the triple ((I, ©4, ©r),u, Pre(o}), 5;)as
in 4.2.2
3. Solve the problem and generate a context for all the possible solu-
tions.

4.3 Test Case Generation

The result of the analysis will yield the information on how to build the initial
state in which the tests have to be executed, thanks to the invertibility of ¢z,
(where it is defined). This can be factored away in the code since several test
cases will share the same code. A context given by a resulting tuple is part of
the test input of the unit under test u, but it is not local (in the sense that it
cannot be inferred by the specification and implementation of u) since it has been
obtained by a program-wise analysis. The generated context will then have to be
connected with the test cases produced by the automated test case generation
tool.

4.3.1 Example. Let u be a method of class D along with its JML specification
and signature:

Class D{
/%@
@ public normal_behavior
@ requires \inOuterScope(a,b);

@ ensures \result == 3;
@ex/
public int u(A a,B b){...}

}

Continuing from Example 4.2.2, the CSP problem (X, D,C) is given by

X = (this,a,b,r1,72)
D - <Dthis;Da,Db7Dr1;Dr2>
C={a<b}
The corresponding resulting configuration obtained by the solution of the above

problem is X = (0,0,1,2,2). A pictorial representation is given in Fig.5, along
with a snippet of a possible test implementation.

Technical Report, KIT, 2010-13 94

scoped?2
scopedl
immortal

this,b

a

rl,r2

G. Paganelli

Fig. 5. Resulting test configuration for path s = (Imm, M1,M2) of length 3.

Runnable ri1,r2;
LTMemory scopedl,scoped2;
@Begin
public void fixture(){
scopedl = new LTMemory(1000) ;
scoped2 = new LTMemory(1000) ;
rl = new Runneri();
r2 = new Runner2();

}

class Runnerl implements Runnable{
public void run(){
A a =new A(...);
scoped2.enter(r2);
}
}

class Runner2 implements Runnable{
public void run(){
B b =new B(...);
D d = new D(...);
int ret = d.u(a,b);
Assert.assertEquals(ret,3);

QTest
public void test(){
scopedl.enter(r2);

}

5 Conclusions, Remarks and Future Work

This paper presented a method to help generate assignments that augment the
test generation capabilities of a verification-based test case generator for a re-
stricted class of Safety-Critical applications. It uses a step of static analysis and
uses a translation to a CSP instance to generate all the memory stacks and al-
location scenarios possible in the program for each stack, knowing the mapping
from created objects to memory areas. In principle there can be programs in

95

Technical Report, KIT, 2010-13

Verification Based Test Case Generation for Scoped Memory in Safety-Critical Java

which the generation would not result in a narrowing of all the possible sce-
narios. By the way, from the guidelines in [7,17] and the only (to the author’s
knowledge) RT'SJ benchmarks [12], it seems hard to have a real-time Java ap-
plication with such a level of complexity. The presented work does not cover
what is not mentioned in the specification and in the signature of a method.
Namely, if object o has a field o.f of a certain reference type, and there is no
information of the position o.f should have in the scope stack, then nothing can
be said when creating the initial state besides just assuming by default that it
has to be in a more inner scope than o. One possible solution might be to add
as much variables as needed, or otherwise to signal this as a lack of detail in
the specification — with the risk of causing overspecification, or simply lots of
ignored warnings.

The major drawback of this approach is that modifications to the program
might lead to repeat the whole context generation process, as a test suite would
be at least partially invalidated if the underlying program changes (if for instance
the modifications will yield a new result for the static analysis phase).

An extension to the presented work might be to allow in Pre(G;') also con-
straints of the type \currentMemoryArea == memoryArea_N, or (in the op-
posite direction, from code to specification) to derive, based on the the static
analysis performed, a refinement to the specification in a separate .jml file, to
reflect the information found. This would make the specification less modular
and dirty because of the ways the scoped memory area objects of interest might
be mentioned in the specification; but it would also be a clean way to communi-
cate the results of the proposed procedure to the KeYVBT tool. In the author’s
opinion it is advisable to present together with this extension a better defined
set of guidelines and patterns [18] or even a library to develop safety critical ap-
plications, in order to normalize such constraints among all possible applications
of the same family. Another issue that needs to be investigated is how to connect
the generated test cases with known testing criteria. An implementation of the
proposed method will come shortly.

References

Java card, http://java.sun.com/javacard

Real-Time Specification for Java, http://www.rtsj.org

The JUnit tool, http://www.junit.org

The KeY-Project, http://www.key-project.org

The KeYVBT tool, http://www.key-project.org/download /#key-test

HIJA Safety-Critical Java Proposal (2006),

Available at http://www.aicas.com/papers/scj.pdf.

aicas GmbH: JamaicaVM 3.4 User Documentation

8. Engel, C.: Verification Based Test Case Generation. Master’s thesis, Universitit
Karlsruhe (aug 2006)

9. Engel, C.: Deductive Verification of Safety-Critical Java Programs . Ph.D. the-

sis, Fakultdt fiir Informatik, Institut fiir Theoretische Informatik (ITI), Karlsruhe,

Germany (2009)

RN S e

=

Technical Report, KIT, 2010-13 96

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

Engel, C., Hahnle, R.: Generating Unit Tests from Formal Proofs. In: Gurevich, Y.,
Meyer, B. (eds.) Proceedings, 1st International Conference on Tests And Proofs
(TAP), Zurich, Switzerland. LNCS, vol. 4454. Springer (2007)

Hu, E.Y.S., Jenn, E., Valot, N., Alonso, A.: Safety critical applications and hard
real-time profile for Java: a case study in avionics. In: JTRES ’06: Proceedings of
the 4th international workshop on Java technologies for real-time and embedded
systems. pp. 125-134. ACM, New York, NY, USA (2006)

Kalibera, T., Hagelberg, J., Pizlo, F., Plsek, A., Titzer, B., Vitek, J.: Cdx: a family
of real-time java benchmarks. In: JTRES ’'09: Proceedings of the 7th International
Workshop on Java Technologies for Real-Time and Embedded Systems. pp. 41-50.
ACM, New York, NY, USA (2009)

Leavens, G.T.: JML Reference Manual, available at http://www.eecs.ucf.edu/ leav-
ens/JML/jmlrefman/

Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1-38
(2006)

Leavens, G.T., Cheon, Y.: Design by Contract with JML (2004)

Nilsen, K.: A Type System to Assure Scope Safety Within Safety-Critical Java
Modules. In: JTRES ’06: Proceedings of the 4th international workshop on Java
technologies for real-time and embedded systems. pp. 97-106. ACM, New York,
NY, USA (2006)

Nilsen, K.: Guidelines for Scalable Java Development of Real-Time Systems. Aonix
(2006), available at http://research.aonix.com/jsc

Pizlo, F., Fox, J.M., Holmes, D., Vitek, J.: Real-Time Java Scoped Memory: De-
sign Patterns and Semantics. Object-Oriented Real-Time Distributed Computing,
IEEE International Symposium on 0, 101-110 (2004)

Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier (2006)

RTCA: Software Considerations in Airborne Systems and Equipment Certification
(1992)

Schoeberl, M., Sondergaard, H., Thomsen, B., Ravn, A.P.: A Profile for Safety Crit-
ical Java. Object-Oriented Real-Time Distributed Computing, IEEE International
Symposium on 0, 94-101 (2007)

Siebert, F.: Proving the Absence of RT'SJ Related Runtime Errors through Data
Flow Analysis. In: JTRES ’06: Proceedings of the 4th international workshop on
Java technologies for real-time and embedded systems. pp. 152-161. ACM, New
York, NY, USA (2006)

Wellings, A.: Concurrent and Real-Time Programming in Java. John Wiley & Sons
(2004)

Zhao, T., Noble, J., Vitek, J.: Scoped Types for Real-Time Java. In: RTSS ’04:
Proceedings of the 25th IEEE International Real-Time Systems Symposium. pp.
241-251. IEEE Computer Society, Washington, DC, USA (2004)

G. Paganelli

97 Technical Report, KIT, 2010-13

Towards Testing a Verifying Compiler*

Thorsten Bormer' and Markus Wagner?

! Institute for Theoretical Computer Science,
Karlsruhe Institute of Technology, Germany
bormer@kit.edu
2 Department 1: Algorithms and Complexity,
Max Planck Institute for Informatics, Germany
mwagner@mpi-inf.mpg.de

Abstract. In this paper, we present our approach on testing a particular veri-
fication system that is industrially used to generate mathematical proofs of the
correctness of C programs.

Normally, the tools used in such a verification process are seldomly verified nor
thoroughly tested, and their correctness is taken for granted. Our approach to
obtain assurance in such tools does not rely on the knowledge of their internal
details and enables regular users of these tools to write test cases for them. Those
tests are then assessed using our domain-specific axiomatization coverage that
measures the impact of the axiomatization, which is an integral component of the
verification process. Furthermore, we explore several sources of test cases, as the
risk of constructing buggy test cases is high due to the input domain’s complexity.

Keywords: Software validation, black-box testing, large software system

1 Introduction

Employing formal methods in the software development process is a viable, if some-
times deemed as costly, way to enhance the quality of the resulting product. One of the
possibilities to use formal methods is in the verification phase of software development,
supplementing the testing effort by formal software verification. Through formal verifi-
cation, one obtains a mathematical proof that the program is correct with respect to its
given specification.

The benefit of such a correctness proof is most apparent with safety-critical soft-
ware. Additionally, in a certification process with high requirements on software qual-
ity and associated evidence of former (for example, in CC EAL 7+ or the upcoming
DO178-C standard), these correctness proofs would be a valuable resource. To use the
correctness proof in some certification process, the tool that was employed to generate
the proof has itself to be validated in some cases.

Unfortunately, this is often not the case with existing software verification tools. As
a user of these tools, internal details or even the source code of the tools are often not

* Work partially funded by the German Federal Ministry of Education and Research (BMBF) in
the framework of the Verisoft XT project under grant 01 IS 07 008. The responsibility for this
article lies with the authors.

Technical Report, KIT, 2010-13 98

M. Wagner, T. Bormer

available to be able to verify that the tool is working correctly—even if access to the
source code is possible, lack of resources impede the application of formal methods to
the tools themselves, due to the complexity of the tools.

In this paper we propose a different approach to obtain assurance in the correctness
of the software verification tools, namely by testing. Our method does not rely on the
knowledge of internal details of the verification tool and enables regular users of these
tools to write test cases for them.

This paper is structured as follows. First, our subject under test, the verification
system VCC, is presented in Section 2 with details on the toolchain and verification
methodology. Then, in Section 3, the theoretical aspects of testing verifying compil-
ers are investigated. In the subsequent sections, the theoretical results are applied to
the subject under test. For this, a suitable technique for testing VCC is chosen in Sec-
tion 4, where we define the domain-specific axiomatization coverage as our test metric,
and explore several sources for test cases. Finally, the results of the testing process are
presented and assessed in Section 5.

2 A Typical Verifying Compiler

For the rest of this paper, we have chosen the VCC tool [9,10], developed by Microsoft
Research, as the verification system to be tested. This tool is developed in the context
of the Verisoft XT project where it is successfully used within two subprojects to verify
functional properties of system software.

VCC is chosen here as a particular instance of formal software verification tools that
follow the “verifying compiler” paradigm. While the tool description in the following
is concerned with the details of VCC, the design and architecture of VCC is similar to
other tools in this area, for example Caduceus or Krakatoa, so the testing methodology
of our paper is not restricted to this particular setup. VCC is being developed as an
industrial-oriented verification environment for low-level concurrent system code writ-
ten in C. It takes a program that is annotated with function contracts, state assertions,
and type invariants, and attempts to prove the correctness of these annotations.

In the following we will give a short overview on the verification workflow and
give a description of the internal architecture of the VCC tool. The particular elements
of the VCC specification language and methodology are not contained in this section,
but described together with the examples presented later on, as far as needed. For a
thorough introduction into the VCC methodology, see [9].

2.1 The VCC Workflow

To verify whether a program fulfills certain functional properties using VCC, the in-
tended properties are first formulated with the help of the VCC specification language,
such as method contracts or invariants on data types. This specification language is sim-
ilar to those found in ESC/Java2 [11], Spec#, and HAVOC [8]. As in all these systems,
the program’s specification is stored as inline source code annotations. These annota-
tions are invisible to a normal C compiler (making use of the C preprocessor features)
but are analyzed by VCC within the verification process.

99 Technical Report, KIT, 2010-13

Towards Testing a Verifying Compiler

Invoking VCC on an annotated C source file has one of the following outcomes: (a)
VCC reports that the program fulfills its specification as given by the annotations or (b)
VCC could not prove that the program meets the specification. The latter case may have
several reasons (for example, not enough system resources for the prover, a bug in the
software or specification)—for each of the error sources, there are appropriate tools in
the VCC package to inspect and debug these errors.

2.2 Architecture of the VCC-Toolchain

To prove that a program meets its specification, the VCC tool internally makes use of a
toolchain of three tools: from the annotated C code, with the help of VCC’s compiler,
a representation in an intermediate, imperative programming language with embedded
specification constructs (called BoogiePL [17]) is generated. This BoogiePL represen-
tation is then further processed by the Boogie tool into proof obligations. These are
then proven or refuted by the Z3 theorem prover—Ileading to either the statement that
the original program meets its specification, or, if the proof obligations are refuted, to a
counterexample.

In the following, we will give a short overview on each of these steps and compo-
nents in the toolchain.

VCC'’s compiler The VCC compiler is build by using the Common Compiler Infras-
tructure (CCI). Annotated C programs are read and turned into CCI’s internal repre-
sentation to perform typical tasks of a regular C compiler, such as name resolution, and
type and error checks. Next, the fully resolved input program is subject to several trans-
formations: (1) simplifying the source, (2) adding proof obligations that result from the
methodology, and (3) finally generating Boogie code.

Boogie When a C program is analyzed and found to be valid, it is translated into a Boo-
gie program that encodes the input program according to the employed formalization
of C. Boogie is an intermediate verification language and a verification system that acts
as a layer on which program verifiers for other languages can be built upon. It is used
by a number of software verification tools including Spec# and Havoc.

Before the Boogie program is fed to the Boogie program verifier, which translates
it into a sequence of verification conditions, the prelude is added, which is an axiom-
atization of the C intrinsic memory model, object ownership, type state and arithmetic
operations. Then, the verification conditions are passed to an automated theorem prover
to be proven or refuted.

Z3 73 [12] is a first-order theorem prover that checks whether a set of formulae is satis-
fiable in the built-in theories. Those cover, for example, the equality over free function
and predicate symbols, real and integer arithmetic, and bit-vectors.

3 Validation of Verification Environments
3.1 Software Validation

To check whether a software system meets its specification and fulfills its intended
purpose, a plethora of techniques (for example, deductive verification, static analysis,

3 Microsoft Research: CCI. 3 May 2010 http://ccimetadata.codeplex.com/

Technical Report, KIT, 2010-13 100

M. Wagner, T. Bormer

and white-/black-box testing) can be applied. In this work, we have chosen to use black-
box testing as a cost-effective procedure to establish assurance that our target, VCC,
works correctly.

In general, functional conformance testing is classified as a black-box approach
when an external tester can only observe the outputs generated by the implementa-
tion upon the receipt of inputs, without any information about the internal design of an
implementation. Conformance is the relation between a specification and an implemen-
tation, and the relation is valid if the implementation does not present behaviors that
are not allowed by the specification. If the implementation is given as a black box, only
its observable behavior would be able to be tested against the required behaviors by the
specification.

Towards black-box testing of verification systems, we considered the following ap-
proaches to be applicable. Error guessing is an ad-hoc approach mostly based on experi-
ence. Equivalence Partitioning can be applied when the domain of each input parameter
of a function is structured into equivalence classes. Boundary Value Analysis assumes
that errors tend to occur near extreme values because typical programming errors—for
example, wrong termination conditions for loops—are often related to these boundaries.
Model-driven testing [2] was not considered applicable because of the very costly pro-
cess of constructing a model for large systems. This is the case for verification systems,
where the input and output data is tightly coupled to the behavior specifications of the
verification system.

3.2 Validation Techniques for Verification Systems

When it comes to identifying the components of the verification system that are to be
validated, we identified two major obstacles. The first one was the complexity of the
toolchain. Verification systems are usually large software systems: they are composed
of complex parsers for the input languages, mechanisms to rewrite the input into proof
obligations, and possibly problem solvers and other tools. The second obstacle was the
complexity of the supported languages. Automatic verification systems usually support
a programming language that is annotated with elements from a specification language.
This results in the complex interaction of elements from both languages.

The complexity of the toolchain can be countered by testing the components indi-
vidually, if possible. A structured divide-and-conquer approach towards the interaction
of language elements cannot be defined as straightforward. This is due to the rather un-
structured input domain of a verification system; each test is not simply a combination
of some values for a function to be tested, but an entire C program including annota-
tions. Some structures within the domain can be achieved by defining some orders over
the individual language elements, or by aggregating elements, such as “arithmetic op-
erators” and “memory model specific operators”, to domains. Based on these domains,
test cases can be created systematically by using the combinatorial testing approach.
Once a thorough test is performed, combinatorial testing offers an easy and intuitive
evaluation of the testing process itself: based on the structured approach, the coverage
on n-wise coverage combinations can be computed, and these numbers can help to build
trust in the tool.

101 Technical Report, KIT, 2010-13

Towards Testing a Verifying Compiler

Related Work In principle, instead of using our testing approach, parts of the verifi-
cation tools available could be formally verified by using either the verification tools
themselves or others. There have been several efforts to develop completely certified
program verifiers, e.g., in the Bali project [21], the LOOP project [15], and in the Mo-
bius project [4]. Several times, tricky verification examples were proposed to test verifi-
cation tools ([14]), and furthermore, components of Java verification tools were verified
([1]). One example of such a soundness proof conducted is the verification of the rewrite
rules of Caveat’s* integrated theorem prover by using PVS®. In addition, though, also
all combinations of C’s syntactic constructs were tested. Due to our limited resources,
a comparable approach could not be realized in our scenario.

In their discussion on whether verification systems and calculi have to be verified
in general, Beckert and Klebanov [6] argued that in practice, a more powerful and suf-
ficiently correct system may be used in favor of a less powerful but correct system.
Although they considered the verification of the tools or its components as important,
they advised the developers of verification systems to test more frequently.

A less labor-intensive method than (cross-)verifying parts of the verification sys-
tems would be conducting (cross-)validation of the components by comparative testing.
However, the question is whether such a comparable (verification) system exists. For
the part of programming language, regular compilers may be used as sources for com-
parative statements on the parsability of source code, but finding several verification
systems with similar features that are able to produce comparable outputs from the
same source code is a problem.

Regarding the annotation languages that are commonly used, we observed the rela-
tive similarity between languages such as Java Modeling Language [7], the ANSI/ISO C
Specification language (ACSL)®, and Microsoft’s variants. With possible convergence
of specification languages in the future, we expect the number of comparable verifi-
cations systems to increase. Thus the creation of verification-specific test cases will
become more desirable because of their increased reusability.

Concentrating on the theorem provers that are used in the last stage of VCC to
discharge verification conditions, different approaches are capable of building trust in
them. For example, cross-validation can be used, based on established problem libraries
such as the well-known TPTP library’. Alternatively, the results can be validated by
using proof checkers. One example of such a system is the Formally Verified Proof
Checker that was implemented in ML and even formally verified by using HOLS88 [22].

An interesting application of conformance testing is the official validation test suite
for FIPS C (a dialect of C).® In order to determine the coverage on the language stan-
dard of a test suite, the language standard itself was implemented in a so-called model

* CEA-LIST: The Caveat Tool. 3 May 2010 http://www—1list.cea.fr/labos/gb/
LSL/caveat/index.html

5 SRI International: PVS. 3 May 2010 http://www.csl.sri.com/projects/pvs/

® CEA-LIST/INRIA-Sacley: ACSL. 3 May 2010 http://frama-c.com/acsl.html

7 Geoff Sutcliffe, Christian Suttner: The TPTP Problem Library for Automated Theorem Prov-
ing. 3 May 2010 http://www.cs.miami.edu/~tptp/

8 Derek Jones: Who Guards the Guardians? 3 May 2010 http://www.knosof.co.uk/
whoguard.html

Technical Report, KIT, 2010-13 102

M. Wagner, T. Bormer

implementation, i.e., an actual compiler based on the language description. Statements
of the model implementation were then mapped back to the standard, allowing the au-
thors to show that all of the requirements in the standard were implemented. With this
approach, statement coverage w.r.t. this model implementation thus relates to coverage
of the language standard elements. In the end, a statement coverage of 84% of the model
implementation was achieved by a comprehensive test suite, demonstrating that the test
suite checks a substantial portion of the C programming language.

4 Testing of VCC

To effectively apply software testing to VCC, we have to first identify the important
quality attributes of the subject under test. These attributes can then be used to derive or
select useful metrics in order to assess the quality of testing. Then, we discuss several
possible sources for test cases in order to apply the concept of cross-validation to verifi-
cation environment testing. It has to be noted that our approach is only weakly related to
“regular” compiler testing, as our focus is not on the parsing capabilities and automatic
error corrections, but on VCC’s design goal, i.e., the ability to fully automatically prove
a program’s correctness.

4.1 Test Objective

In the following we concentrate on the soundness of verification systems. The discus-
sion of Beckert et al. [5] on the completeness of verifying compilers is related to this
definition, in which they distinguished between different types of annotations. For ex-
ample, it can be the case that a program is correct with respect to its requirement spec-
ification, but the toolchain is unable to prove it. The reason for this is the missing aux-
iliary annotations that would have guided the theorem prover to the correctness proof.
In the following, the term annotations is used to cover all the requirement specification
annotations and the auxiliary annotations of a program.

From VCC’s point of view, there is no way of differentiating a test case that is sup-
posed to succeed from one that is supposed to fail. It is important to remember that we
are not in the situation of verifying annotated programs, but of observing VCC'’s verifi-
cation attempts on annotated programs. This leaves us with the following classification
of test cases: (1) successful cases, where the outcome of a verification attempt equals
the expected outcome, and (2) failing cases, where the outcome of a verification attempt
does not equal the expected outcome. Hence, a test case for a verification system con-
sists of an annotated program and some expected output. The verification system itself
is not part of the test case; components such as the axiomatization remain unchanged
for the testing process.

4.2 Testing with Respect to the Axiomatization

As already mentioned in Section 2.2, VCC’s prelude contains an axiomatization of C
written in Boogie. And within the multi-stage verification process, it has a significant
impact on the outcome. Furthermore, the prelude is accessible to a human analyst, both
on the code level and on the level of understanding the effects of the prelude’s elements.

103 Technical Report, KIT, 2010-13

Towards Testing a Verifying Compiler

Based on the importance and its accessibility, we chose to test VCC with respect to
the prelude, that is, to observe the impact of the prelude on the verification process.
Alternatives will be discussed in Section 4.3.

The prelude itself is a Boogie program. In general, a Boogie program consists of a
theory that is used to encode the semantics of the source language, and an imperative
part [3]. A theory is composed of type declarations (keyword: type), symbol declara-
tions (const, function), and axioms (axiom). The imperative part of a Boogie program
consists of global variable declarations (var), procedure headers (procedures), and pro-
cedure implementations (implementations). The size of the prelude in our case is about
2900 lines of code—for easier maintenance and improved legibility the prelude is fur-
ther structured into sections concerning different language- and specification features.
Later on, we will modify the structure of the prelude.

4.3 Coverage Measurement

In the following, we describe our approach chosen to determine the impact of the ax-
iomatization used. The idea is to determine the subset of elements of the original prelude
that is used by the test case. It is checked whether or not an element of the prelude is
needed by comparing the original output of VCC with the result when the selected ele-
ment is left away. If the element can be left away, it is discarded for the given test case
and the process is iterated until no more elements can be left away. Note that, in gen-
eral, the minimal set of prelude elements for a given program is not uniquely defined.
Depending on the generated proof obligations, different sets of prelude elements may
be needed’ and thus the selection strategy when reducing the prelude matters.

Based on our approach, the straightforward definition of axiomatization coverage
follows:

Definition 1. Given a verification environment v, its specification s , the complete ax-
iomatization consisting of m elements, a test case t, and a corresponding minimized
axiomatization a,s; with n,s; elements. Then the axiomatization coverage is defined as
Cov(v, 8,t) = nyst/m. For a set of test cases T = t1,. .. ,t, and corresponding min-
imized axiomatizations ay, ..., an, the coverage is defined as Cov(v,s,T) = ng/m
where Un a; has n, distinct elements.

Tests that need rather many elements of the axiomatization can be regarded as strong
tests; on the other hand, tests that requires only a rather small number of elements can
also be regarded as strong because the verification task itself may be very complex.
However, the latter kind of test strength addresses the problem of “the difficulty of
verification”, rather than “the interaction of the prelude’s elements”, in which we are
actually interested.

Discussion and Alternatives In his work, Littlefair [19] examined the relation be-
tween the consideration of quality in software engineering and software metrics. Based

° e.g., consider the proof obligation a V b: either all elements needed to prove a are needed or
all relevant elements for b

Technical Report, KIT, 2010-13 104

M. Wagner, T. Bormer

on his observations and on Weyuker’s proposed conditions for useful measures of soft-
ware complexity [24], the usefulness of our own measurement can be evaluated—
exemplarily, we discuss two conditions.!® One of the conditions requires that “there
exist programs P and) such that |P| # |Q|”. This requirement motivates that for
a measure to have any value at all, it has to enable some discrimination between dif-
ferent programs. Axiomatization coverage fulfills this requirement. Another condition
requires that “For all programs P and (), and the program P; (), which is obtained
by combining P and Q, |P| + |Q| < |P;Q/”. The justification for this property is
the notion that the interaction between parts of a program may introduce complexity,
additional to that present in the components. Hence, the amount of added complex-
ity may only be non-negative. Axiomatization coverage does not fulfill this require-
ment: due to significant overlap in the minimized preludes needed by two programs,
|P| + |Q| < |P; Q] usually does not hold. Despite not fulfilling several of Weyuker’s
conditions!!, our definition of axiomatization coverage has the advantage that test cases
can easily be compared because the result of the coverage computation is a single num-
ber. While allowing for a quick classification of test cases into comprehensive test cases
and test cases with limited scope, it does not take into consideration which elements of
the prelude are needed.

Alternative 1. As the first alternative, we suggest to count the number of the covered
equivalence classes of “language feature”, for example, (1) array indexed with negative
value vs. array indexed with the value 0, (2) unwrapping an object that is not wrapped
vs. unwrapping a wrapped object. In spite of its obvious benefits attributed to the strong
relationship to the boundary value analysis, we do not expect it to be measured easily if
automatically at all, as it is not clear what a language feature is.

Alternative 2. Going away from the axiomatization coverage and back to the idea of
covering language features, a metric can be used that counts the language features used
by a test case. In fact, this can be refined by counting the features of the programming
language and the features of the annotation language separately. Based on combinatorial
testing, an extension of this metric would be the use of the number of “t-wise language
feature element combinations” that are covered by a test case. After testing, a high value
of this extended metric would allow for a high trustworthiness in the subject under test,
as data reported in several studies ([23,20,16]) show that software failures in a variety
of domains were caused by the combinations of several conditions.

Alternative 3. Similarly to the last alternative, and by adapting the derived metric
LOC/COM (lines of code per line of comments, interpretable as maintainability), it is
possible to use LOA/LOC, where LOA is the number of lines of annotations needed.
Thus, it is possible to estimate how many annotations are needed to verify a given code
block. A high ratio may indicate code that is difficult to verify, while a low ratio may
indicate easily verifiable code.

Further alternatives are imaginable, but as the way of defining the metric gets more
complicated, it becomes less conclusive how to actually interpret the results. In general,

10 In Weyuker’s notation the letters P, @, R represented distinct programs, and the result of the
adequacy measurement was signified by | P|, |Q|, |R|.

" The discussion was omitted because these are all conditions based on the composition of pro-
grams, which cannot be fulfilled due to the overlap in necessary prelude elements.

> >

105 Technical Report, KIT, 2010-13

Towards Testing a Verifying Compiler

it is very likely that a single metric is never able to be presentable as a single expression
for software quality because the objectives targeted by the models of software quality
tend to be multi-dimensional and hierarchical.

4.4 Sources of Test Cases

In the following, we address the issue of producing meaningful test cases, as the system-
atic creation of a large number of meaningful tests is not trivial. To reduce the impact
of erroneous test cases on the testing process, we obtain the test cases from three inde-
pendent sources, as a form of cross-validation.

At first, we explored the possibility of using the official C language standard. In the
next step, we analyzed existing C compiler test suites and investigated ways of adapting
those tests. Finally, tests from other verification systems were analyzed for their possible
adaption.

C Standard The C standard ISO/IEC 9899:201x, often called C1X, was selected to be
the first source of possible tests. Although it does not include tests, it specifies the form
and establishes the interpretation of C programs. The standard uses the Backus-Naur
form for the syntax and prose for the semantics and constraints.

Due to the implementation details of the VCC toolchain, two variations of the C
language had to be considered that deviate partially in language features supported
compared with C1X. For neither a comprehensive lists of the supported C language
features are available, leading to only partially usable C test cases.

In the following, we demonstrate how test cases can be constructed, based on the
sources of information on the supported C standards, based on the first paragraph of
C1X’s section 6.3.2.3 on pointers:
6.3.2.3 Pointers
A pointer to void may be converted to or from a pointer to any incomplete or object
type. A pointer to any incomplete or object type may be converted to a pointer to void
and back again; the result shall compare equal to the original pointer.|. ..]

Based on the information gathered from the standard we created a single test file
for this paragraph. Exemplarily, we annotated the test file with as much information as
possible; that is, we have listed the motivational source for the tests, the links to supple-
mentary information, and we have quoted the sentences from the standard’s paragraph.
Thus, we achieve a strong link between the standard and the derived tests. An excerpt
of the full version, which was successfully verified by VCC in accordance with the
standard, is presented below:

|\ //Scope: ClX 6.3.2.3 Pointers, p. 61f
2 #include "vcc.h"

3

4 void function6323_1 (void) {

5 //object types:

6 charx b; [...]
7
8

//paragraph 1: 1. A pointer to void may be converted to or from a pointer to
9 //any incomplete or object type.
10 b = (charx)v; v = (voidx)b; [...]
11
12 //paragraph 1: 2. A pointer to any incomplete or object type may be converted

Technical Report, KIT, 2010-13 106

M. Wagner, T. Bormer

13 //to a pointer to void and back again; the result shall compare
14 //equal to the original pointer.
15 assert (b == (charx) (voidx)b); [...1}

C Compiler Test Suites With VCC being a special kind of compiler, the construction
of test cases using compiler test suites is a straightforward approach. Test suites that
check conformance to standards are often called validation suites, and those validation
suites are very influential. Several commercial validation suites are available on the
market (for example the ACE SuperTest or the Perennial ANSI C Validation Suite),
although for licensing reasons we chose to use the test suite of the GNU Compiler
Collection (GCC) version 4.4.0'2. The C compiler of GCC supports C90, and parts of
C99. The C specific part (about 12,000 files) of the GCC test suite contains generic tests
that are supposed to run on any target, and platform specific tests. Information on the
purposes of the tests is limited, thus complicating the analysis of the test cases.

In addition to verifying developer-defined functional properties, VCC implicitly
checks for undefined behavior, such as, null pointer dereferences, division by zero, over-
and underflow. It does so by automatically inserting additional assertions into the ver-
ification conditions, which precede the translated operation. Because of these checks,
non-annotated source code normally cannot be verified, despite the lack of explicitly
stated functional properties. Therefore, minimal annotations have to be included, for
example, the definition of writes and reads clauses.

We used an iterative approach to adapt files from the GCC test suite. First, we
checked whether Microsoft’s own C compiler can compile the source code without
warnings or errors. Then, minimal annotations were added, so that VCC verifies the
source code without warnings or errors. Finally, additional specification was added
based on comments and a close inspection of the C code, defining pre- and postcon-
ditions, as well as invariants to capture the functional properties of the program. This
step-wise approach is demonstrated in Figure 1. There, we used the information given
in the main function to construct the postcondition. In this function, another function
f is called first, and subsequently, the result of f is checked against what seems to be
the expected result of £, thatis if (b != 9). If the expected result is not met, the
program stops abnormally, otherwise it stops normally. Both situations return different
exit codes, which are then interpreted by the test framework.

Verification Environments The motivation behind this approach is that the time in-
tensive task of creating interesting test cases for verification environments can be saved
by adapting existing test cases.

VCC. VCC version 2.1.20731.0 is deployed with a set of 400 test cases, addressing
specific domains, such as arrays, claims, or ghost code. Again, information on the tests’
purposes is very limited; however, some information on the background can be obtained
by an experienced user of VCC by reviewing the source code in combination with the
expected result. Out of the 400 test cases, 202 can be regarded as true positives, and 198
as true negatives. This surprisingly balanced ratio indicates that the developers of VCC
use a systematic testing approach to test succeeding and failing verification.

12 GNU Compiler Collection: 4.4. 3 May 2010 http: //gcc.gnu.org/gcc—4.4/

107 Technical Report, KIT, 2010-13

Towards Testing a Verifying Compiler

1 #include "vcc2.h" 17 int main ()

2 int b; 18 writes (&b) //A
3 19 ensures (old (b)==0 //B
4 void £ () 20 ==> result == 0)

5 writes (&b) //A 21 ensures (old(b) !=0 && old(b)!=9 //B
6 ensures (old(b)==0 ==> b==9) //B 22 ==> result == 1)

7 ensures (old(b) !=0 ==> b==0ld (b)) //B 23 { £ (;

8 { 24 if (b !'= 9) return 1;

9 int 1 = 0; 25 return 0;

10 if (b == 0) 26}

11 do

12 invariant (0<=i && i<10) { //B

13 b = 1i;

14 it++;

15 } while (i < 10) ;

16 }

Fig. 1. Demonstrating the iterative adaption of the GCC test case files. The test case file
990604-1.c without any annotations is amended with minimal annotations (lines marked with
1), and with functional specifications (lines marked with B).

Spec#. The collection of verified algorithms from Leino and Monahan [18] contains
38 relatively complex real-life algorithms,!? such as an insertion sorting algorithm and
a minimal distance algorithm. The algorithms are written in C# and verified by Spec#.
Furthermore, the algorithms are relatively well documented.

Frama-C/Jessie. The Framework for Modular Analysis of C programs (Frama-C)'#
is a set of program analyzers with Jessie as the deductive verification plug-in. Using the
Why back-end [13], automatic theorem provers can be used to perform fully automatic
verification. The C files are annotated by using ACSL (see Page 3), which is comparable
to VCC’s annotation language. Similar techniques are used to express, for example,
method contracts, invariants of loops and data structures, and ghost code. As of the
Frama-C release Beryllium 20090601, the distribution comes a set of 236 test case files
for the Jessie plug-in. Compared to the Spec# tests, the translation is slightly more
complex because the annotation language shares less common concepts with VCC’s
than Spec#’s. Still, the annotations can be very helpful, especially when invariants are
provided.

Comparison of the Sources During the exploration of the different sources for test
cases, we have made several observations. Based on these, the above-mentioned ap-
proaches can be compared both qualitatively and quantitatively.

The highest assurance level is given when the programming language standard is
used to derive test cases. However, this is the most labor-intensive approach. Further-
more, it may be difficult to determine if a failed test is caused by a misinterpretation of
the standard, or by an incorrect implementation inside the verification tool. Neverthe-
less, this approach may be useful when corner cases are needed.

An almost arbitrary number of test cases can be created by adopting C compiler
test suites, which is less labor-intensive than the standard-based one. However, the task

3 Rosemary Monahan: Verified Textbook Examples. 3 May 2010 http://www.
rosemarymonahan.com/specsharp/
4 CEA-LIST/INRIA-Sacley: Frama-C. 3 May 2010 http: //frama-c.cea.fr

Technical Report, KIT, 2010-13 108

M. Wagner, T. Bormer

remains very time consuming, and debugging may be difficult because the C compiler
and the verification tool may have different implementations of the C features.

The use of other verification tools as sources has the potential to offer substantial
support to find the annotations needed for full functional verification. But the number of
the transferable tests is relatively small, and it cannot be guaranteed that two different
verification tools are capable of verifying the same functional properties of a program.

4.5 Test Framework

We implemented a framework that allows for the automated execution and evaluation
of tests. This enables us to find errors in VCC, and to perform the regression testing
of VCC and of a code base. The framework has the benefit that it can be reused with-
out any changes at all if VCC supports further programming languages in the future.
Furthermore, it can be adapted with little effort to other fully automatic verification
environments, if the axiomatization used by these environments is externally modifi-
able. Support for interactive verification tools is not implemented, although it should be
possible to some extend using capture/replay tools.

5 Test Results

In the previous section, we have laid the basis for testing the Verifying C Compiler. The
theoretical background was investigated, a suitable test objective defined, and sources
for test cases were explored. In this section we present the results of the actual runs of
the test framework.

5.1 Prelude Coverage Results

Exemplarily, our test harness computed the axiomatization coverage that is achieved by
VCC'’s own test suite. The used test suite contained 400 test cases, which were auto-
matically extracted from the test suite collection files of VCC 2.1.20731.0. The harness
determined the axiomatization coverage that is achieved on the axiomatization of VCC
version 2.1.20731.0, and for comparative reasons the coverage on the axiomatization
of VCC version 2.1.20908.0 (a version about 6 weeks further into development). The
earlier axiomatization contains a total of 858 elements, of which 575 where covered.
Out of these 858 elements, 186 of the 378 axioms were covered; the other elements are,
for example, type and constant definitions, and helper functions. To give the reader an
idea of how this axiomatization is organized: 1) the class of C language features con-
tains 432 elements, containing 212 axioms, of which 84 were covered, and 2) the class
of specification language features contains 426 elements, where 102 of the 166 axioms
were covered. Regarding the latter axiomatization, it contains 896 elements in total, of
which 509 were covered, and only 139 out of 384 axioms were covered.

Before the runs, we had expected that the number of covered elements would stay
roughly the same because features that were added to VCC (indicated by the 38 addi-
tional elements) could not be tested by the old test cases. However, the number declined
significantly from 575 to 509 elements. Investigations reveal that the reason for this is
that axioms and procedures were modified, for example, by removing requirements or

109 Technical Report, KIT, 2010-13

Towards Testing a Verifying Compiler

by adding predicates. These changes lead to the necessary inclusion of less elements,
which is observed in smaller minimized preludes. Based on the detailed information
from the test runs, it is possible to establish links between the different minimized pre-
ludes required by a test case and the changes made to VCC’s source code and prelude.
The old tests can still be regarded as relevant to testing VCC, however, they proved to
be less adequate to the newer version of VCC. This can be observed in the decline in
the overall coverage from 67.0% to 56.8%.

In subsequent tests, we were sometimes able to construct tests so that the use of
a specific axiom was triggered. When creating such tests, one has to deal with the
complex and not visible interaction between the elements and the dependencies among
themselves. Although, this approach could be used to systematically add tests to the test
suite, it becomes increasingly difficult to cover previously uncovered elements.

5.2 Issues Encountered

During our investigations, we encountered several issues. For example, we discovered
one bug in the axiomatization with regard to the ownership model. Furthermore, we
discovered one case of VCC being more lenient than Microsoft’s C compiler, as it did
not care about a missing semicolon after the declaration of a C structure. Among the
minor issues are the following: we discovered problems with the interaction of VCC’s
command-line parameters, and one problem with VCC’s model viewer showing out-
dated values. Regarding Boogie, we encountered an incompatibility with file names
starting with numbers, as they yielded Boogie identifiers with illegal characters, which
in return caused Boogie to report errors.

6 Conclusions

The way verification environments are currently tested is not very satisfying. Most of
the time, the tools are written by researchers, and as long as those environments are not
actually used for the verification of critical systems, there is no real demand for trust
in these systems. The Verifying C Compiler (VCC) is one of these tools that are being
used for the verification of industrial products. In this paper, we investigated systematic
approaches for the validation of verification systems. Once we had specified what it
means for a verification system to be correct, we were confronted with the generation
and assessment of test cases for VCC.

The input domain of such a system is the result of the manifold combination of ele-
ments from the C programming language and from the language of verification-specific
annotations. We reduced the risk of constructing incorrect test cases by choosing trust-
worthy sources, such as, the official C language standard ISO/IEC 9899:201x, the test
suite of the GNU Compiler Collection, and the test suites of the verification tools Spec#
and Frama-C/Jessie. While the standard offers the highest level of trust, the derivation
of test cases is the most labor-intensive one. Tests adapted from other verification tools
have the potential to offer substantial support to find the annotations needed for the
functional verification. But the number of those tests is relatively small, compared to
those available from the compiler test suite. The latter, however, does not contain any
annotations, which are not easy to come by.

Technical Report, KIT, 2010-13 110

M. Wagner, T. Bormer

When we investigated how the individual components of verification systems can
be tested and how the test cases can be assessed, we realized that the common approach
of measuring the percentage of the system’s executed code statements would not take
into account the special features of verification systems. Therefore, we defined axiom-
atization coverage as our domain-specific metric for VCC, in order to assess the test
cases and to observe the impact that the individual elements of the axiomatization have
on the verification process. Concerning the tests we performed, we noticed that VCC’s
own test suite requires only about 60% of the axiomatization. Based on this fact and
on further observations, we draw the following two conclusions: (1) The used part of
the axiomatization seems to correctly reflect the developers’ assumptions about how
the verification methodology is supposed to work, and (2) additional test cases should
be written to achieve a higher coverage. If it is not possible to trigger the use of the
prelude’s element, the importance of this element should be reconsidered.

In the future, we plan to investigate ways of automatically annotating original C
compiler test case files with as many annotations as possible. One way would be to stat-
ically analyze its abstract syntax tree (AST) and then modify it. An abstract syntax tree
is a tree representation of the syntactic structure of the source code, where each node of
the tree stands for a construct occurring in the source code. Once the AST is created, it
can be modified, and then the tree can be unparsed to obtain the refactored source of the
C program. Additionally, we plan to extend the experiments by determining the “regu-
lar code coverage” that is achieved by our set of tests. This will enable us to compare
our coverage approach with those established in the software testing community.

Acknowledgments We thank the anonymous reviewers for their comprehensive and
helpful comments.

References

1. W. Ahrendt, A. Roth, and R. Sasse. Automatic validation of transformation rules for Java
verification against a rewriting semantics. In /2th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR), volume 3835, pages 412-426.
Springer, 2005.

2. P. Baker, Z. R. Dai, J. Grabowski, I. Schieferdecker, @ystein Haugen, and C. Williams.
Model-Driven Testing: Using the UML Testing Profile. Springer, Secaucus, NJ, USA, 2007.

3. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. In 3rd International Symposia on Formal
Methods for Components and Objects (FMCO), volume 4111 of Lecture Notes in Computer
Science, pages 364—387. Springer, 2005.

4. G. Barthe, L. Beringer, P. Crégut, B. Grégoire, M. Hofmann, P. Miiller, E. Poll, G. Puebla,
L. Stark, and E. Vétillard. MOBIUS: Mobility, ubiquity, security. volume 4661 of Lecture
Notes in Computer Science, pages 10-29. Springer, 2006.

5. B. Beckert, T. Bormer, and V. Klebanov. On essential program annotations and completeness
of verifying compilers, 2009. unpublished.

6. B. Beckert and V. Klebanov. Must program verification systems and calculi be verified? In
3rd International Verification Workshop (VERIFY), Workshop at Federated Logic Confer-
ences (FLoC), pages 34-41, 2006.

111 Technical Report, KIT, 2010-13

Towards Testing a Verifying Compiler

10.

11.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll.

An overview of JML tools and applications. International Journal on Software Tools for
Technology Transfer, 7(3):212-232, June 2005.

. S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamaric. A reachability predicate for ana-

lyzing low-level software. In 13th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 4424 of Lecture Notes in Computer
Science, pages 19-33. Springer, 2007.

. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,

and S. Tobies. VCC: A practical system for verifying concurrent C. In Theorem Proving in
Higher Order Logics (TPHOLs), volume 5674 of Lecture Notes in Computer Science, pages
23-42. Springer, 2009.

E. Cohen, M. Moskal, W. Schulte, and S. Tobies. Local verification of global invariants in
concurrent programs. In Computer Aided Verification (CAV), Lecture Notes in Computer
Science. Springer, 2010. To appear.

D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. Lecture Notes in
Computer Science, 3362:108-128, 2005.

. L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In Tools and Algorithms for the

Construction and Analysis (TACAS), volume 4963 of Lecture Notes in Computer Science,
pages 337-340. Springer, 2008.

J.-C. Filliatre and C. Marché. The why/krakatoa/caduceus platform for deductive program
verification. In Computer Aided Verification, 19th International Conference (CAV), volume
4590 of Lecture Notes in Computer Science, pages 173—177. Springer, 2007.

B. Jacobs, J. Kiniry, and M. Warnier. Java program verification challenges. Lecture Notes in
Computer Science, 2852:202-219, 2003.

B. Jacobs and E. Poll. Java program verification at Nijmegen: Developments and perspective.
Lecture Notes in Computer Science, 3233:134-153, 2004.

D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interactions and implications
for software testing. IEEE Transactions on Software Engineering, 30(6):418—421, 2004.

K. R. M. Leino. This is Boogie 2, 2008. Working draft 24 June 2008.

K. R. M. Leino and R. Monahan. Automatic verification of textbook programs that use
comprehensions. In Workshop on Formal Techniques for Java-like Programs (FTfJP), 2007.
T. Littlefair. An Investigation into the Use of Software Code Metrics in the Industrial Soft-
ware Development Environment. PhD thesis, Edith Cowan University Mount Lawley, 2001.
V. Nair, D. James, W. Ehrlich, and J. Zevallos. A statistical assessment of some software test-
ing strategies and application of experimental design techniques. Statistica Sinica, 8(1):165—
184, 1998.

D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and Computation
Practice and Experience, 13(13):1173-1214, 2001.

J. von Wright. The formal verification of a proof checker. SRI internal report, 1994.

D. R. Wallace and D. R. Kuhn. Failure modes in medical device software: An analysis of
15 years of recall data. International Journal of Reliability, Quality, and Safety Engineering,
8(4), 2001.

E. J. Weyuker. Evaluating software complexity measures. /[EEE Transactions on Software
Engineering, 14(9):1357-1365, 1988.

Technical Report, KIT, 2010-13 112

Dynamic Frames in Java Dynamic Logic

Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weif3

Karlsruhe Institute of Technology
Institute for Theoretical Computer Science
D-76128 Karlsruhe, Germany
{pschmitt,mulbrich, bweiss}@ira.uka.de

Abstract. In this paper we present a realisation of the concept of dy-
namic frames in a dynamic logic for verifying Java programs. This is
achieved by treating sets of heap locations as first class citizens in the
logic. Syntax and formal semantics of the logic are presented, along with
sound proof rules for modularly reasoning about method calls and heap
dependent symbols using specification contracts.

1 Introduction

To successfully support modular verification of object-oriented software, it is
essential to be able to define relevant portions of memory and reason about
the effects of method execution on them. Portions of memory, i.e., sets of heap
locations, are called frames in this context or—since they themselves are subject
to change during program execution—dynamic frames. The theoretical concept
of dynamic frames was introduced in [7] and first implemented in [21] and later
n [10]. Specification with dynamic frames is related to the use of data groups
[11], separation logic [16, 20], and to approaches based on ownership types [1, 15].

In this paper we investigate the integration of the dynamic frames specifi-
cation style into the verification of sequential Java programs based on dynamic
logic [5]. In many verification methods, the task of verifying that a property ¢
holds after execution of a program p is solved by successively computing weakest
preconditions [4] in first-order predicate logic of parts of the program starting
from its end. In dynamic logic, the weakest precondition can be directly written,
thanks to the modal operator [-], as the formula [p]e. Dynamic logic can be aug-
mented with a symbolic representation of state changes called updates [18]. This
extension allows giving inference rules for dynamic logic that compute (first-
order) weakest preconditions by performing a forward symbolic execution of the
program p starting from the beginning. The proof tree that unfolds by successive
applications of these rules will eventually contain only first-order proof subgoals.
This form of verification is the foundation of the KeY system [2]. Dynamic logic
is also used for Java verification in the KIV system [22].

An issue in program verification to be addressed no matter how proof obli-
gations at the program level are transformed to first-order proof goals is the
representation of the heap. In a closed-world setting, where the entire program
is known at verification time, an explicit heap representation can be dispensed

113 Technical Report, KIT, 2010-13

Dynamic Frames in Java Dynamic Logic

with, saving some complexity. This was e.g. realised in the KeY system. In a
modular setting, where one strives for abstract specification of interfaces and
local reasoning, the situation is different: here, reasoning about which frame is
changed by a program, or about which frame the execution of a program de-
pends on, becomes crucial. In this setting, the flexibility provided by an explicit
representation of the heap seems to offer decisive advantages.

In Sect. 2 we motivate the use of dynamic frames with a simple example. The
dynamic logic to be presented will explicitly represent dynamic frames as sets of
locations. Syntax and semantics and some exemplary proof rules of this logic are
given in Sect. 3. Contract-based proof obligations and proof rules for verifying
dynamic frames specifications are defined in Sect. 4. Conclusions in Sect. 5 wrap
up the paper.

2 DMotivating Example

As an example, we consider the Java program shown in Fig. 1. The intention
behind the List interface is that objects of this type represent lists of objects.
The interface provides methods for querying the size of the list, retrieving an
element out of the list at a given index, and appending an element to the end
of the list. Class ArrayList implements the interface with the help of an array,
and class Client is an artificial snippet of client code using the interface.

Our goal is to specify this program following the design by contract paradigm
[14]. That is, we are interested in providing pre- and postconditions for the
methods of the program, where we refer to a pair of a pre- and a postcondition
as a method contract. Furthermore, the goal is to verify the correctness of these
contracts using dynamic logic, and to do so in a modular (or local) fashion: the
verification of a given method should not make use of implementational details
that are not visible in this method. For example, when verifying m in Client,

— Java
interface List { class ArrayList implements List {
int size(); private int n = 0;
Object get(int 1i); private Object[] a = new Object[10];
void add(Object o); public int size() {
} return n;
class Client { ¥
public int x; public Object get(int i) {
Object m(List 1) { if(0 <= i && i < n) return al[il;
x++; else return null;
return 1.get(0); }
} //method "add" omitted
} }

Java —

Fig. 1. Example program

Technical Report, KIT, 2010-13 114

P. H. Schmitt, M. Ulbrich, B. Weiss

we do not want to make use of the fact that there is only one implementation of
List, nor of the internals of this particular implementation. Instead, reasoning
about the dynamically bound call to get should be based only on the contract
for get in the interface. For subtypes of the interface, we only require that all
overriding method bodies satisfy the contracts given at the level of the interface;
this means that we enforce behavioural subtyping [12].

A main difficulty in specifying an interface such as List is that we do not have
access to any implementational data structures for writing our specifications.
The general solution is to use data abstraction [6]: we specify the interface in
a more abstract fashion, using either some form of abstract fields (sometimes
called model fields [3]), or side-effect free methods present in the program. Here,
we choose to specify get with the help of the size method, and with the help
of an abstract Boolean field inv:

pre: this.inv A0 < iAi < this.size() post: res # null

We use a dot to distinguish some syntactic operators of the logic (such as =)
from meta-level operators (such as =). Java’s == operator translates to = in the
logic. The identifier res refers to the method’s return value.

In class ArrayList, the meaning of the symbol size is defined by the method
body for size. Similarly, we need to give a definition for the abstract field inv,
which we do with the following axiom:

exactInstanceprrayrist (this)
— (this .inv < this.a # null Athis.n < this.a.length (1)
A VInti; (0 <iAid<this.n— this.ali] # null))

For a type A and an expression e, the formula exactInstance o(e) evaluates to
true in a state if the dynamic type of e is A. Intuitively, inv represents an “object
invariant” for List, i.e., a consistency property on its objects, where the exact
nature of this property is defined privately in subclasses of the interface. With
the definition for ArrayList in (1), the implementation of get in ArrayList
satisfies the method contract for get.

For method m in Client, we give the following method contract:

pre: 1 #null Al.inv A0 < 1l.size() post: res # null

Can we verify that m complies with this contract, provided that all implementa-
tions of get satisfy the contract for get? Unfortunately, the answer is no. The
problem is that even though the precondition guarantees properties about the
initial values of 1.4nv and 1.size(), this does not imply that these properties
still hold when get is called at the end of m, because of the intervening change
to x. This is an instance of a general problem when using data abstraction in
specifications [8, Challenge 3]: without further measures, any change to the heap
can affect the value of an abstract field or of a method in an unknown way.

As a solution, we introduce dependency contracts (also known as depends
clauses [9]) into our specifications. A dependency contract restricts the set of

115 Technical Report, KIT, 2010-13

Dynamic Frames in Java Dynamic Logic

memory locations that are allowed to influence the value of an abstract field or
of a method, provided that some precondition holds. An example for a correct
dependency contract for method size in ArrayList is one which states that the
method result is allowed to depend only on {(this,n)}, where the expression
{(this,n)} refers to the set consisting of the single memory location given by
the field n for the object represented by the expression this.

How can we express a useful dependency contract for inv or size in List,
even though here we do not have access to the locations implementing the list?
We see that the need for data abstraction also extends to location sets. Our
solution is to use dynamic frames [7], i.e., abstract fields that evaluate to sets
of memory locations. For the specification of List, we declare a dynamic frame
locs. In ArrayList, we define locs via the following axiom:

ezactInstanceprragrist (this) — this.locs = (this.* U this.a.*) (2)

The expression o.* refers to the set of all fields of the object represented by the
expression o. If o has an array type, then o.* denotes all components of the array.

We use the dynamic frame locs to give dependency contracts for both inv
and size: both are supposed to depend at most on the locations in locs. These
dependency contracts are satisfied in ArrayList, because both this.inv (as
defined by (1)) and this.size() (as defined by the method body in Fig. 1)
read only locations that are members of this.locs as defined by (2).

Finally, we modify the precondition of m in Client to be as follows:

pre: 1 #null Al.inv A0 < 1l.size() A (this,x) ¢ 1.locs

Now, when reasoning about the correctness of m, we know that the location
(this, x) is not a member of the (unknown) set of locations 1. locs on which 1. inv
and 1.size() may depend. Thus, changing the value of this location cannot have
an effect on the values of 1.inv and 1.size(), and so 1.imv A0 < 1.size()
must still be true when method get is called at the end of m. Together with the
method contract for get, this guarantees that the return value of get is different
from null, and thus that the postcondition of m is satisfied.

In general, we also need modifies clauses in method contracts, which fix a
set of locations that may at most be modified by a method, provided that the
precondition of the contract holds upon method entry. In the example, get and
size are supposed to not have side effects, so we can use modifies clauses of 0
(an empty set of locations). For add, this.locs can serve as a modifies clause.

Also, as the value of the dynamic frame this.locs is itself state-dependent,
specifications of the behaviour of locs itself are needed in order to make the
specification fully useful for modular verification. We can give a dependency
contract for this.locs stating that its value depends at most on the locations in
this.locs itself; this is satisfied by the definition (2), because the only location it
reads is (this,a), which itself is defined to be a member of this.locs. We may
also want to specify (via method contracts) that after the construction of an
ArrayList object, the set this.locs contains only freshly allocated locations,
and that method add can add to the set only freshly allocated locations (the
latter is sometimes called the “swinging pivots property” [11,7]).

Technical Report, KIT, 2010-13 116

P. H. Schmitt, M. Ulbrich, B. Weiss

3 Java Dynamic Logic With an Explicit Heap Model

In this section, we present a dynamic logic and a sequent calculus for the modular
verification of Java source code wrt. dynamic frames style specifications. It is
a variation of the dynamic logic underlying the KeY verification tool [2]. The
main difference is in the logical modelling of heap memory. For complete formal
definitions please see the technical report [19], which accompanies this paper.

3.1 Syntax and Semantics

The syntax of the logic is based on a signature X', which comprises a set 7 of
types, a partial order C called the subtype relation, and disjoint sets of (logical)
variables V, program variables PV, function symbols F, and predicate symbols P.
All variables and symbols are typed. We use the notation z: A to indicate that
the type of x is A, the notation f:Ay,...,A, — B to indicate that the func-
tion symbol f maps arguments of types A1,..., A, to type B, and the notation
p: A1, ..., A, toindicate that the predicate symbol p represents a relation on the
types Aj, ..., A,. The signature X is specific to a Java program to be verified.
All types of this program also appear as types in 7, and all local variables appear
as program variables in PV. In contrast to program variables, logical variables
may not appear in programs, but may be quantified. The type Any € 7 is a
supertype of all types of the program.

The set Fmay of formulas and the set Trmy of terms are defined mostly as
in classical typed first-order logic. For any type A € 7T, we have the set Trm‘g C
Trmy; of terms of type A. In addition to the operators of first-order logic, Java
dynamic logic includes modal operators [p] and (p) for every executable Java
program fragment p. If ¢ € Fmay is a formula, then both [p]y and (p)¢ are
also formulas. Our version of dynamic logic also includes another kind of modal
operator, called updates [18]. An update is denoted as a; :=1t1 | ... ||a, := tx,
where ai,...,a, € PV, and where ¢y, ...,t, are terms such that the type of ¢; is
a subtype of the type of a;. The set of updates is called Upd .. If u is an update
and ¢ is a term or formula, then {u}t is also a term or formula, respectively.

The semantics of a term or formula is given by an interpretation which maps
all function symbols to functions and all predicate symbols to relations, and by a
state which maps all program variables to values. First-order terms and formulas
are evaluated as usual. The formula [p]¢ holds in a state s if the execution of
p started in s either does not terminate, or terminates in a state s’ such that
¢ holds in s’ (partial correctness). The formula (p)e holds if [p]e holds, and
if additionally p does indeed terminate (total correctness). Like a program p,
an update u changes the state: executing the update a; := t1 | ... ||a, := t,
in a state s leads to an updated state s’ which is identical to s, except that
the program variables a; have been assigned the values of the terms ¢; in paral-
lel. Evaluating {u}t in s is the same as evaluating ¢ in the updated state s’. A
formula is called logically valid if it holds for all interpretations and all states.

117 Technical Report, KIT, 2010-13

Dynamic Frames in Java Dynamic Logic

3.2 Sequent Calculus

The calculus we use to reason about logical validity of formulas is a sequent
calculus. A proof in the sequent calculus is a tree of so-called sequents I' = A, in
which I" (called the antecedent) and A (the succedent) are finite sets of formulas.
A sequent I = A has the same semantic truth value as the formula A I' — \/ A.

An inference rule of the sequent calculus has a number of sequents as its
premisses and a single sequent as its conclusion; it is sound if logical validity of
all premisses implies logical validity of the conclusion. In addition to inference
rules, our calculus contains rewrite rules, which allow rewriting a term or formula
at an arbitrary position in a sequent. A rewrite rule is sound if the original and
the rewritten term or formula are equal resp. logically equivalent. We formulate
both sequent and rewrite rules schematically to achieve a finite representation
of the calculus. For example, in the following two (sound) rule schemata, the
schema formulas ¢ and ¥ can be instantiated with arbitrary formulas, and I
and A with arbitrary sets of formulas:

. I'=sp,A I'sy, A
(andRight) T=ort A (andldem) P A ~

Starting with the sequent to prove as root, a proof tree is constructed by
applying sequent and rewrite rules. For the application of a sequent rule to a
leaf in the proof tree, this sequent must be identical to the conclusion of the
rule. The rule’s premisses are then added as new children to the former leaf. A
rewrite rule ¢t; ~~ t5 can be applied to a leaf by replacing one occurrence of ¢;
in its sequent by t2. Provided that all applied rules are sound, it is guaranteed
that at any time during this process, validity of all the leaves implies validity of
the root sequent. If one arrives at a tree whose leaves are all obviously valid, one
has proven the validity of the original proof obligation.

3.3 Heap Model

In contrast to [2,18], where the Java heap is modelled via a non-rigid function
symbol f: A — B for every Java field £ of type B declared in class A, here we
follow [17,22,1,21] in modelling the heap using the theory of arrays [13]. The
fields of our Java program are represented as constant symbols of a type Field €
T, which are axiomatised to have distinct values. Heaps now occur “explicitly” in
formulas, as terms of a type Heap € 7. The values of this type are arrays indexed
by locations, i.e., by pairs of (Object, Field) values. Reading from and writing to a
heap is done with the help of the function symbols select 4 : Heap, Object, Field —
A and store : Heap, Object, Field, Any — Heap. These are standard, except that
for convenience we use a separate symbol select for every type A € 7, which
implicitly casts the retrieved value to a desired type A. A global program variable
heap: Heap € PV holds the current heap of the program. We will in the following
often use the more concise notation o. f instead of select 4 (heap, o, f).

The axiom of the theory of arrays manifests itself in the rewrite rule selectOf-
Store depicted in Fig. 2: The value select 4 (store(h, o, f,t),0', f') of a location

Technical Report, KIT, 2010-13 118

P. H. Schmitt, M. Ulbrich, B. Weiss

select a(store(h, o, f,1),0', f) ~ (selectOfStore)
if(0=0 A f = f)then(casta(t))else(selecta(h,o’, f))
selecta(anon(h,s,h’),0, f) ~ (selectOfAnon)

if (((0, f) €Es A f # created) V (o, f) € freshLocs(h))
then(selecta (', 0, f))
else(select a(h, o, f))

casta(t) ~ t for t € Trm% and A'C A (cast)

(o, f) € freshLocs(h) ~ (inFreshLocs)
0 # null A select ootean (I, 0, created) = FALSE

[a=t;...]p ~ {a:=t}...]p (assignLocal)
[o.f = t;...]¢ ~ {heap:= store(heap,o, f,t)}[...]¢ (assignField)

Fig. 2. A selection of rewrite rules for heap modifications and location sets

(o, f) retrieved from a modified heap store(h,o, f,t) depends on whether the
retrieved location is the previously modified one, i.e., whether (o', f') = (o, f)
holds. If so, the assigned value t is read, otherwise the retrieval is delegated to
the embedded heap h as select 4(h, o', f'). The type coercion operation cast(t)
can later be removed using the rule cast if the heap has been used consistently.

In our logic, all states share a common semantic domain (this is known as the
constant domain assumption). Therefore, we need a means to explicitly distin-
guish between already-created and not-yet-created objects in the sense of Java.
We use an implicit (“ghost”) field created : Field for this purpose: we consider
an object o to be created in a state if and only if 0. created evaluates to true in
this state. Allocating an object via Java’s new operator implicitly sets its created
field to true.

Dynamic frames are supported via a type LocSet € 7. Terms of type LocSet
evaluate to sets of memory locations. Our signatures contain the symbols @, U,
N, \, € C, disjoint and allLocs, which are pre-defined to have their expected
set-theoretical semantics. The function symbol freshLocs : Heap — LocSet yields
for every heap the set of locations (o, f) for which the object o is not yet created
in this heap. The corresponding rule inFreshLocs is shown in Fig. 2.

When dispatching a method call in a proof with the help of a contract
for the called method (Sect. 4), we use a special heap modification function
anon : Heap, LocSet, Heap — Heap. Roughly, the heap anon(h, s,h’) is identical
to A’ in the locations of s, and it is identical to the “original” heap h in all
other locations. The exact semantics of anon is described by the rewrite rule
selectOfAnon in Fig. 2: independently of the set s, going from h to anon(h, s, h’)
for some unknown A’ (a process which we call an “anonymisation” of the heap h
wrt. the set s) never leads to deallocating existing objects, but always implicitly
allows for the allocation of new objects. This resembles the behaviour of method
calls in Java.

119 Technical Report, KIT, 2010-13

Dynamic Frames in Java Dynamic Logic

We also introduce a unary predicate symbol wellFormed : Heap, which can
be axiomatised as

VHeap h; (wellFormed(h) — VYObject o, p;VField f;
(select apy(h, 0, f) =p — (p =null V select Booican (, p, created) = TRUE))) ,

i.e., a heap h is considered well-formed if any object p which is referenced by
some location (o, f) is either the null object or an object which has already
been created. The semantics of Java guarantees that wellFormed(heap) holds
for all states occurring during the execution of a Java program.

3.4 Symbolic Execution

A central component of our calculus is a set of rule schemata that allow us to
transform formulas with program modalities and updates into formulas without.
This process is called symbolic execution. Programs are systematically processed
in a forward manner: whenever we encounter a formula [p;q]e, we handle the
statement p first, and leave the formula [q]¢ to be treated later. This forward
treatment of programs is based on the concept of updates. There is also a set
of rules which handle the simplification and application of updates to terms and
formulas. The theory of rule-based update treatment has been elaborated in [18].

Two rules for symbolic execution, namely assignLocal and assignField, are
shown in Fig. 2. The corresponding rules for the modality (-) read accordingly.
Both rules are used to execute assignment statements, either for a local variable
a or for a field reference o. f. Let ¢ be a side-effect free Java expression which
(after some syntactic adaptions like == to =, && to A, etc.) can be read as a term
in our logic. An assignment statement a = t; which assigns to a the value of the
expression ¢, describes then the same state modification as the update a := ¢.
This is captured in the symbolic execution rule assignLocal. An assignment to a
location o. f is treated differently: it corresponds to a modification of the global
program variable heap. We do not show the rules for other language features here,
as they are numerous and largely orthogonal to the focus of this paper. We also
ignore Java exceptions throughout the paper, which allows for a more readable
presentation of rules and proof obligations. For a more complete treatment of
Java language features, please refer to [2].

Fig. 3 depicts a small example proof. Therein, o € PV is a local variable of a
reference type, £ : Field € F is a constant symbol, and a: Int € PV is a local vari-
able. Symbolic execution first converts the two Java assignments into correspond-
ing updates. The updates are then simplified into a single update that performs
both state changes in parallel. The left sub-update heap := store(heap, o, £) can
be simplified away, because the variable heap does not occur in the scope of
the update any more, and thus its value is irrelevant. The rule selectOfStore is
applied inside the remaining update, followed by an obvious simplification of the
resulting if-then-else-term. The type cast operator can be removed with the cast
rule, because 0 is of type Int. Finally, the update is applied to the sub-formula
a = 0 as a substitution, resulting in an obviously valid formula. Hence, we have
proven that the original formula is valid as well.

Technical Report, KIT, 2010-13 120

P. H. Schmitt, M. Ulbrich, B. Weiss

[o.f =0; a =o0.f;](a=0)
{heap := store(heap, 0,£,0)}[a = o.f;](a =0)

assignField
s

assignLocal

~ {heap := store(heap, o, £, 0) }{a := select ¢ (heap, 0,f)}(a = 0)
upd. ggmpl: {heap := store(heap, o, f,0) || a := select i (store(heap, 0, £,0), 0,f)}(a = 0)

upd: ggmel. {a := select it (store(heap, o, £,0),0,f)}(a = 0)

SEIem«/O»»fsmre{a :=if (0o = o A £ = f)then(castm(0))else(select i (heap, 0, £))}(a = 0)
st {a := castm:(0)}(a = 0)
B {a:=0}(a=0)

upd. appl. .
PWPP 0=0

Fig. 3. Example proof

4 Contracts and Proof Obligations

Both abstract fields, such as inv and locs in Sect. 2, and side-effect free methods
such as size are represented in the logic as so-called observer symbols.

Definition 1 (Observer symbols). An observer symbol for type A with ar-
gument types By, ..., By, is either a function symbol obs : Heap, A, By, ..., B, —
B € F or a predicate symbol obs : Heap, A, By, ..., B, € P, where A C Object.

As syntactic sugar, we sometimes write 0. 0bs(p1, ..., pn) to denote the term or
formula obs(heap, 0,p1,-..,pn). This (deliberately) resembles the notation o. f
for field access terms select 4 (heap, o, f). Nevertheless, an observer symbol does
not give rise to a memory location; instead, it “observes” (i.e., it depends on) the
values of memory locations. For an observer symbol m representing a side-effect
free method without parameters, we sometimes write o.m() instead of o.m.

We have seen in Sect. 2 that the value of abstract fields is defined via axioms
such as (1) and (2). Similarly, observer symbols representing methods are defined
via axioms such as the following (where this and r are fresh program variables):

exactInstanceyrrayrist (this) (3)

— VInti; (this.size() =i « (r = this.size();)r =)

The axiom uses the modal operator (-) to connect the observer symbol size
with a call to method size in class ArrayList.

Axioms (1), (2), (3) are supposed to hold for all values of the program vari-
ables this and heap. The corresponding universally quantified versions of the
axioms can be used as assumptions in proofs for the correctness of ArrayList.
We could also allow using them in other proofs, but this is undesirable for rea-
sons of modularity: the axioms are implementational secrets of ArrayList, and
should not be exposed to other classes.

Besides observer symbols and axioms, a specification in our setting consists
of a set of method contracts constraining the behaviour of methods, and of a

121 Technical Report, KIT, 2010-13

Dynamic Frames in Java Dynamic Logic

set of dependency contracts constraining the dependencies of observer symbols.
Both kinds of contract give rise to proof obligations, i.e., formulas whose validity
must be proven in order for the program to be considered correct. On the other
hand, both kinds of contract can also be used as assumptions in the proofs
of other contracts, via special rules. Subsect. 4.1 defines method contracts, the
corresponding proof obligation, and the corresponding rule; Subsect. 4.2 does the
same for dependency contracts. Note that for simplicity of presentation, we omit
the treatment of void methods, static methods, static fields, and constructors.

4.1 Method Contracts

Definition 2 (Method contracts). A method contract mct is a tuple
met = (m, this, (py,...,P,), res, hPre, pre, post, mod, 7')

wherem is a Java method; where this: A € PV such thatm is defined for receiver
objects of type A; where py,...,p,,res € PV such that their types correspond

to the declared signature of m; where hPre: Heap € PV; and where pre, post €

Fmasx, mod € Trmé"cse’f, and 7 € {partial, total}.

The program variables this and p,,...,p, may be used in the precondition pre,
in the postcondition post and in the modifies clause mod to represent the receiver
object of m and the arguments to m, respectively. The variables res and hPre can
be used in post to refer to the method’s return value and to the value of heap
in the pre-state. The “termination marker” 7 indicates whether the contract
demands partial or total correctness.

Definition 3 (Proof obligation for method contracts). Given a method
contract met = (m, this, (py,-..,p,), res, hPre, pre, post, mod, 7') with this: A,
and given a type B T A, the proof obligation CorrectMethodContract(mct, B) €
Fmay is defined as

pre A reachableState N exactInstancep(this)

— {hPre := heap}res = this.m(p,,...,p,);](post A frame),
where [-] stands for [] if T = partial and for {-) if T = total, and where
— reachableState is the formula

wellFormed (heap) A this # null A this. created = TRUE

A /\ (p, =nullVp,.created = TRUE)
i€{1,...,n}, p;:A for some AC Object

— frame is the formula

YV Object o; V Field f; ((0, f) € {heap := hPre}(mod U freshLocs(heap))
Vo.f = {heap := hPre}o. f)

Technical Report, KIT, 2010-13 122

P. H. Schmitt, M. Ulbrich, B. Weiss

The reachableState property is guaranteed by Java itself: the heap is well-formed,
the receiver object is created, and all objects passed as arguments are either
null or created. The formula frame is the frame condition generated from the
modifies clause mod: after executing m, only locations in mod (interpreted in the
pre-state) and “fresh” locations may have changed compared to the pre-state.
For method get with pre and post from Sect. 2, 7 = total, and B =
ArrayList, we get the following instance of CorrectMethodContract:

this.inv A0 < iAi< this.size() A wellFormed(heap)
A this # null A this. created = TRUE A ezactInstanceprrayrist (this)
— {hPre := heap}(res = this.get(i);)(res # null A frame)

where frame with a modifies clause mod = () states that only fresh locations
may have been changed by m. The formula is valid under the assumption of (the
universally quantified versions of) axioms (1) and (3). When proving this, one
of the first steps is to inline the body of method get, which is possible because
we know the exact type of this and, hence, do not have to consider dynamic
dispatch.

The following rule allows using a method contract as an assumption:

Definition 4 (Rule useMethodContract).

I' = {u}{w}(pre A reachableState), A
I' = {u}{w}{hPre := heap}{v}(post A reachableState’ — [...Jp), A
I' = {u}[r = o.m(p],...,P); .. Jp, A

where:

o € Trm%: for some A € T such that there is a method contract
mct = (m, this, (py,...,p,), res, hPre, pre, post, mod, T)

where this: A; where T = total if the modality [-] is (-), and where T does

not matter otherwise; and where this, p;,...,p,,, res and hPre do not occur
in the formula [r = o.m(p},...,pL); -..J¢
- pl,...,p, are terms

— reachableState € Fmay is as in Def. 3, and reachableState’ is the formula
wellFormed (heap) A (res = nullV res. created = TRUE)
if res: B for some B C Object, and the formula wellFormed(heap) otherwise

— v = (heap := anon(heap, mod, h) ||t := 1’ || res := 1)

—w= (this:=o|p; :=pi|...[p, =p)
— h:Heap € F and v' € F are fresh symbols, i.c., they do not yet occur
anywhere in the proof when applying the rule

Like reachableState, reachableState’ is a property guaranteed by Java. The up-
date v “anonymises” the locations that may be changed by the call to m, namely

123 Technical Report, KIT, 2010-13

Dynamic Frames in Java Dynamic Logic

the members of the modifies clause mod, by setting them to unknown values with
the help of the new symbol h. It also sets the result variable r, and its counter-
part res, to an unknown value r’. The update w instantiates the variables used
in the contract with the corresponding terms in the method call.

Instead of using anon, we could also anonymise (or “havoc” [10]) the entire
heap, and use a framing formula like frame in Def. 3 to express that some
locations do not change. The advantage of our approach is that it avoids the
universal quantifiers of frame in applications of useMethodContract.

The useMethodContract rule is sound, provided that for all subtypes B C A of
the static receiver type A, the proof obligation CorrectMethodContract(mct, B)
is logically valid. A proof of this theorem is contained in [19]. We forbid “circular”
applications of the rule, such as applying the rule on a call to the method which
is itself being verified in the current proof. An extension to support recursion is
possible, but beyond the scope of this paper.

4.2 Dependency Contracts

Definition 5 (Dependency contracts). A dependency contract is a tuple
depct = (obs, this, (py,...,p,), pre, dep)

where obs is an observer symbol for type A’ with argument sorts By, ..., By;
where this: A € PV such that A T A’; where p;:Bi,...,p, :Bn € PV; and

where pre € Fmayx, dep € Trmé"cset.

The program variables this and p4,...,p,, can be used in the precondition pre
and the depends clause dep to stand for the receiver object and the parameters
of obs, respectively. An example for a dependency contract in the context of the
program of Sect. 2 is (inv,this, (), this.inv,this.locs), which demands that

the value of this.inv should depend only on locations in this.locs, provided
that this.nv is true at the time.

Definition 6 (Proof obligation for dependency contracts). For a depen-
dency contract depct = (obs, this, (py,...,Pp,), pre, dep) with this : A, and for a
type B C A, the proof obligation CorrectDependencyContract(depct, B) € Fmax
is defined as follows:

pre A reachableState N exactInstancep(this)

— this.obs(py,..-,DP,)
= {heap := anon(heap, allLocs \ dep, h)}(this.obs(py,...,p,))

where reachableState € Fmay is as in Def. 3, where h: Heap € F is fresh, and
where = stands for = if obs € F and for < if obs € P.

The proof obligation formalises the notion of 0bs “depending” only on the loca-
tions in dep: if we change all locations except for dep in an unknown way, then

Technical Report, KIT, 2010-13 124

P. H. Schmitt, M. Ulbrich, B. Weiss

this must not affect obs. For the dependency contract for inv above, and for
B = ArrayList, we get the following instance of CorrectDependencyContract:

this.inv A wellFormed(heap) A this # null A this. created = TRUFE

A exactInstanceprrayrist (this)

— (this.inv < {heap := anon(heap, allLocs \ this.locs, h)}(this. inv))
The formula is valid under the assumption of axioms (1) and (2), because all
locations read by (1) are defined to be a part of this. locs by (2). Analogously, (3)

defines this.size () such that it also depends only on the locations in this. locs
as defined by (2).

Definition 7 (Rule useDependencyContract).

I, guard — equal = A
I' = A

where:

— the term or formula obs(h"*",0,p],...,p)) occurs in I' or A, where A" =
Fi(faloo . (Fm(BY95e) with fu, ..., fm € {store, anon}, h*@s¢ € Trm 2

— o€ Trmg for some A € T such that there is a dependency contract depct =
(obs, this, (py,...,P,), Pre, dep), where this: A, and where both this and
Pis---,P, do not occur in I' or A

— hPre: Heap € PV is fresh, mod = allLocs\dep

— reachableState, frame € Fmayx, are as in Def. 3, w € Updy. is as in Def. 4

— noDeallocs € Fmay is the formula

freshLocs(heap) C freshLocs(hPre)
A null.created = {heap := hPre}null. created

— guard is the formula

{w} ({heap := hb®¢}(pre A reachableState)
A {bPre := h"**¢ || heap := K" }(frame A noDeallocs))

— equal is the formula obs(h™" 0,p,...,p,) = obs(ht¢ o,p},...,p.),
where = stands for = if obs € F and for < if obs € P

The useDependencyContract rule adds an assumption guard — equal to the se-
quent, which relates the value of obs in the heaps h?®¢ and h™™. Property
noDeallocs holds for all heap changes occurring in Java programs, where ob-
jects can be created but this process cannot be undone (we do not consider
garbage collection). Property frame expresses that the locations in dep have not
changed when going from h%®*¢ to h™". If guard holds, then the dependency
contract guarantees that obs has the same value for both heaps. The rule is
sound if for all subtypes B C A of the static receiver type A the proof obligation

125 Technical Report, KIT, 2010-13

Dynamic Frames in Java Dynamic Logic

CorrectDependencyContract(depct, B) is logically valid; this is proven in [19].
Like for method contracts, we do not allow “circular” applications of the rule.

Automatic application of this rule is not as straightforward as for useMethod-
Contract, because the rule is nondeterministic in the choice of h??*¢, and because
it can be applied repeatedly, which could lead to non-termination of automatic
proof search. However, we can avoid non-termination by avoiding duplicate ap-
plications of the rule for the same pair of heap terms. To avoid a finite, but large
number of “unsuccessful” applications where guard cannot be proven, a strategy
that seems to work well in practice is to apply the rule only for choices of h?®s¢
for which obs(h®®¢, 0,p],...,p,) already occurs somewhere in the sequent.

We conclude our treatment of dependency contracts by returning to the ex-
ample of verifying method m from Sect. 2. The precondition of m guarantees that
the invariant of 1 holds initially, i.e., that inv(heap,1) is true. To establish the
precondition of the method call 1.get (0) in the body of m, we need to establish
that inv(store(heap, this,x,t),1) also holds (for some term t). Modularity de-
ters us from using (1) to deduce this. Instead, we apply useDependencyContract,
with obs = inv and h*® = heap. We get the following instantiation for guard
(already slightly simplified):

inv(heap, 1) A wellFormed(heap) A 1 # null A 1. created = TRUE

AV Object 0;V Field f; ((o, f) € ((allLocs \ locs(heap, 1)) U freshLocs(heap))
V select ony (store(heap, this, x,t), 0, f)
= select any (heap, o, f)) A noDeallocs

As the only location changed between the two heaps is (this,x), and as the
precondition of m guarantees that (this,x) ¢ locs(heap,1) holds, we can prove
that the instantiation of guard is satisfied. This allows us to use the instantia-
tion of equal, namely inv(store(heap, this, x,t),1) < inv(heap, 1), to prove that
inv(store(heap, this, x,t),1) holds. After an analogous derivation about the de-
pendencies of size, we can establish that the precondition of get holds, and then
conclude with the help of useMethodContract that the postcondition of m holds.

5 Conclusions

We have presented an extension of Harel’s dynamic logic from [5] that includes
explicit representations of sets of heap locations and we have demonstrated how
this logic can be used to support reasoning about dynamic frames style specifica-
tions. We have focused on the details of the logic and completely ignored issues
of the specification interface and the implementation of the generation of proof
obligations. Suffice it to say here that the whole approach has been implemented
in a variant of the KeY system' and successfully tested on some simple examples.
The implemented system in particular comprises an extension and modification
of the Java Modeling Language, JML, for dynamic frames style specifications
using model fields.

! available at http://il2www.ira.uka.de/~bweiss/keyheap/

Technical Report, KIT, 2010-13 126

P. H. Schmitt, M. Ulbrich, B. Weiss

References

1. M. Barnett, R. DeLine, M. Fahndrich, K. R. M. Leino, and W. Schulte. Verification
of object-oriented programs with invariants. Journal of Object Technology (JOT),
3(6):27-56, 2004.

2. B. Beckert, R. Hahnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. LNCS 4334. Springer, 2007.

3. Y. Cheon, G. T. Leavens, M. Sitaraman, and S. H. Edwards. Model variables:
cleanly supporting abstraction in design by contract. Software—Practice and Ez-
perience, 35(6):583-599, 2005.

4. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8):453-457, 1975.

5. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

6. C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1:271-281, 1972.

7. 1. T. Kassios. Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In FM 2006, LNCS 4085, pages 268-283. Springer, 2006.

8. G. T. Leavens, K. R. M. Leino, and P. Miiller. Specification and verification
challenges for sequential object-oriented programs. Formal Aspects of Computing,
19(2):159-189, 2007.

9. K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, California Insti-
tute of Technology, 1995.

10. K. R. M. Leino. Specification and verification of object-oriented software. Lecture
Notes, Marktoberdorf International Summer School, 2008.

11. K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify
and check side effects. In PLDI 2002, pages 246-257. ACM Press, 2002.

12. B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811-1841, 1994.

13. J. McCarthy. Towards a mathematical science of computation. In Information
Processing 1962, pages 21-28, 1963.

14. B. Meyer. Applying “design by contract”. Computer, 25(10):40-51, 1992.

15. P. Miiller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered
object structures. Science of Computer Programming, 62(3):253-286, 2006.

16. M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. In POPL
2005, pages 247-258. ACM Press, 2005.

17. A. Poetzsch-Heffter. Specification and verification of object-oriented programs.
Habilitationsschrift, Technische Universitdt Miinchen, 1997.

18. P. Riimmer. Sequential, parallel, and quantified updates of first-order structures.
In LPAR 2006, LNCS 4246, pages 422-436. Springer, 2006.

19. P. H. Schmitt, M. Ulbrich, and B. Weif}. Dynamic frames in Java dynamic logic:
Formalisation and proofs. Technical Report 2010-11, Department of Computer
Science, Karlsruhe Institute of Technology, 2010.

20. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In ECOOP 2009, LNCS 5653, pages 148—172. Springer,
2009.

21. J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An automatic verifier for Java-
like programs based on dynamic frames. In FASE 2008, LNCS 4961, pages 261-275.
Springer, 2008.

22. K. Stenzel. A formally verified calculus for full Java Card. In AMAST 2004,
volume 3116 of LNCS, pages 491-505. Springer, 2004.

127 Technical Report, KIT, 2010-13

A Dynamic Logic for Unstructured Programs
with Embedded Assertions

Mattias Ulbrich

Karlsruhe Institute of Technology
Institute for Theoretical Computer Science
D-76128 Karlsruhe, Germany
ulbrich@kit.edu

Abstract. We present a program logic for an intermediate verification
programming language and provide formal definitions of its syntax and
semantics. The language is unstructured, indeterministic, and has em-
bedded assertions. A set of sound rewrite rules which allow symbolic
execution of programs is given. We prove the soundness of three infer-
ence rules which can be used to resolve loops using invariants.

1 Introduction

The purpose of deductive software verification is to formally prove that a piece
of code in a particular programming language behaves as specified. This can
be done on the level of the programming language or after a translation to an
intermediate verification language. In this paper, we will consider a minimalistic,
general verification language that covers the essential features of established
intermediate languages and is close to Boogie [9]. We present a program logic in
the style of first-order dynamic logic (DL) for it.

DL is a program logic which embeds pieces of code within formulas. In its
original presentation [8] by Harel et al., a code fragment 7 in a structural lan-
guage gives rise to a modality [w] which can be used as prefix to a formula ¢.
The result is the formula [7]¢ which is true if and only if ¢ holds in every state
in which the execution of 7 terminates. The Hoare triple {¢'}7{¢} can hence
be written as ¢y — [n]¢ in DL. Since every intermediate step of a symbolic ex-
ecution in DL is a formula itself, this type of verification allows the alternation
of symbolic execution and application of deductive inference rules. Therefore,
symbolically stepping through a program provides further insight into a process
which usually happens hidden in the verification condition generator. This is not
only helpful to find mismatches between specification and implementation, but
also particularily valuable when experimenting with new modelling or translation
techniques. Other approaches use wp-calculi to automatically compute weakest
preconditions. In the end, automatic generation and proving of first-order ver-
ification conditions as done by these approaches is certainly preferable, but we
believe that, in the present state of research, the possibility of interaction is a
valuable factor.

Technical Report, KIT, 2010-13 128

M. Ulbrich

The design of the intermediate language requires considerable adaptations
of the original DL. Moreover, we give a set of sound rewrite rules which allow
symbolic execution of programs, and prove the soundness of three inference rules
which can be used to deal with loops using invariants.

The remainder of this section provides an overview of related work. We
present the dynamic logic in Sect. 2. The rewrite rules used to symbolically
execute programs in formulas are given in Sect. 3. Gentzen-style inference rules
for the treatment of loops are presented and proved correct in Sect. 4. Conclu-
sions in Sect. 5 wrap up the paper.

1.1 Related Work

While some verification tools (e.g., [1], [12]) take advantage of the greater trans-
parency of source code verification, most employ a special-purpose intermediate
language. The Why language [7] and the Forge Intermediate Representation
(FIR) [6], for instance, are used as target languages by various tools. Also, veri-
fication using the low level virtual machine (LLVM) format is a topic of ongoing
research. Boogie [5,9] is the most popular intermediate language and is used as
back-end for many research approaches in formal verification. The Boogie verifi-
cation condition generator breaks up loops using invariants in a fashion similar to
this work. In [11], a Hoare-style calculus for Java Bytecode is defined. It includes
a loop rule which is similar to the inference rules of Sect. 4, but is more evolved
due to the higher complexity of the Java bytecode. [4] describes a wp-calculus
for Java bytecode. Therein, loops are resolved by a code modification rendering
the control flow acyclic prior to the wp-calculation.

HOL/Boogie [3], like this work, aims for a combination of intermediate lan-
guage and interactive verification. There, the generated verification conditions
can be interactively proved; their generation, however, (i.e., the symbolic execu-
tion) remains inaccessible.

2 Syntax and Semantics

In this section, we present the syntax and semantics of unstructured dynamic
logic (USDL). It is built around a minimalistic intermediate verification language
which is unstructured, indeterministic and contains embedded assertions. The
logic extends untyped first-order predicate logic, but the approach can easily
be transferred to sorted logics, the issue of types is orthogonal to the novelties
presented here. For instance, the polymorphic type system presented in [10] could
be used.

Unlike in DL where a program 7 can be used as a prefix [r] to a formula, in
USDL 7 and a natural number n induce an atomic program formula [n; 7] which
is not prefix to another formula but a formula on its own. The number n is an
explicitly denoted program pointer referring to the currently active statement
in . The conditions that we want to check are embedded within . This is
done because it is not always the case that we only need to examine whether

129 Technical Report, KIT, 2010-13

A Dynamic Logic for Unstructured Programs with Embedded Assertions

properties hold after the execution, but often want to ensure that properties hold
at certain points during the execution of a program. For a program containing
a division expression 1/z embedded in some statement, for instance, we need
to verify that upon reaching this statement, x is different from 0 to ensure this
program’s correctness and cannot simply postpone this check to the after state
of the entire code.

2.1 Syntax

USDL is an extension of first order logic with two modal additional operators.
Besides the atomic program formulas, we introduce the concept of updates which
are explicitly denoted value assignments to record the effect of assignment state-
ments.

Definition 1 (Signature). A USDL-signature X for is a 5-tuple
Y = (Var, Fct, PVar, Prd, a)

with

Var: the set of logical variable symbols

— Fct: the non-empty set of function symbols
PVar C Fct: the set of program variables

Prd: the set of predicate symbols

— «: FctUPrd — N: the arity mapping

a(pv) =0 for any program variable pv € PVar

The syntax of terms, formulas and programs is given by the grammar in
Fig. 1. For predicate and function application expressions, we additionally insist
on a correct number of argument terms. If a predicate or function symbol s has
no arguments, we write s instead of s(). Terminal symbols are set in italics and
terminal literals in bold.

Definition 2 (Terms and Formulas). The set Termy of all terms in the
signature X is the set of expressions which can be produced from the non-terminal
“Term” in Fig. 1.

The set Formy, of all formulas in the signature X is the set of expressions
which can be produced from the non-terminal “Formula” in Fig. 1.

Let us for an example consider a USDL-signature X' which contains a program
variable x € PVar, a unary predicate symbol positive € Prd and a unary function
symbol succ € Fct. The expression

[0; goto 1 4, assume —positive(z), z := succ(x), goto 0,

assume positive(x), assert positive(x)] (1)

is then a valid atomic program formula in Formy;.

Technical Report, KIT, 2010-13 130

M. Ulbrich

Formula ::= Formula (A ‘ \Y | —) Formula
| — Formula

| (V]3)Var. Formula

| Prd | Prd (TermList) *)

| { Update } Formula

| [NaturalNumber ; Program]

| [[NaturalNumber ; Program]]

| true | false

Term w= Var
| Fet | Fet (TermList) *)
| { Update } Term

TermList ::= Term | TermList , TermList
Update ::= PVar := Term

| Update || Update
Program ::= Statement | Program , Program

Statement ::= PVar := Term
| assert Formula
| assume Formula
| goto NaturalNumber
| goto NaturalNumber NaturalNumber
| havoc PVar

(*) if the length of the term list coincides with the arity of the symbol

Fig. 1. Formulas, Terms and Programs

Definition 3 (Unstructured programs). The set of all unstructured pro-
grams Ils; is the set of expressions that can be produced from the non-terminal
“Program” in Fig. 1. Terms and formulas that are embedded in unstructured
programs must not have free variables.

For a given program w € Il s, len(w) € N denotes the length (i.e., the number
of statements) of w. For a natural number i € N, the selection 7[i] refers to the
i-th statement in 7 if i < len(w) and refers to the statement “assume false” if
i > len(m).

Unlike in dynamic logic for structured programs, we need to list the entire
code, also after the current statement since goto statements may refer to any
statement in the program, before or after the current one. Therefore, we need
an explicit program counter which indicates which is the current statement.

2.2 Semantics

We start the definition of our model-theoretic semantics by repeating the defi-
nition of first order structures.

Definition 4 (Domain, Interpretation, Variable assignment). A domain
D is a non-empty set. For a given domain D and a signature X an interpretation

131 Technical Report, KIT, 2010-13

A Dynamic Logic for Unstructured Programs with Embedded Assertions

I is a mapping assigning a meaning to every predicate and function symbol in
Y, such that

— I(f) : DY) = D for any f € Fct
— I(p) € D*®) for any f € Prd

A variable assignment G : Var — D is a mapping from the logical variables
to elements in the domain.

The set of all interpretation functions for a given D and X is denoted by
IE,D'

For the notion of the state of an execution of an unstructured program, we
need a way to refer to the current position within the sequence of statements,
i.e. a program counter pointing to the active statement.

Definition 5 (State). For a signature X' and a domain D, the set of of states
Ss.p :=TIsp x N is the Cartesian product of interpretations (current variable
state) and natural numbers (current position in the program,).

We explicitly encode the current statement number within the execution state
as it simplifies the definition of state transitions considerably if the execution
environment includes a reference to the statement to be executed next.

Definition 6 (Function overriding). Given a function f : A — B and values
a € A and b € B the function overriding f°: A — B is the function with

f;’(x):{b S

f(x) otherwise

An update ¢; := t1]|...||cn := t, can be applied to an interpretation I
resulting in the multiply overridden interpretation

I013:t1”~~~\|0n3:tn — ((Iglalzﬁ(tl)) o)’é)fll],ﬁ(tn)

in which the program variables cy, ..., ¢, have their values updated.

Definition 7 (Term evaluation). For a given signature X, a domain D, an
interpretation I and a variable assigment 3, the term valuation valy g : Termy —
D is defined by:

— valy g(z) = B(z) if © € Var,

- valjﬂ(f(tl, e ,tk)) = I(f)(vallﬁ(tl), . ,V&l]ﬁ(tk))
if f € Fet with o(f) =k and t1,...,t, € Termsy,

— valy s({U}t) = valu g(t)

For the definition of the semantics of atomic program formulas, the seman-
tics of programs has to be defined. The next two definitions for programs and
formulas (Def. 8 and 9) depend on each other and have to be read as one.

Technical Report, KIT, 2010-13 132

M. Ulbrich

Definition 8 (Program execution, Traces). The program execution func-
tion Ry : Sx.p — P(Sx.p) is a mapping that for a program m € IIs; assigns to
every state a set of successor states. Its result depends on the currently active
statement.

Let s = (I,n) € Sx.p be a state and 5 a variable assignment. Then the value
of Rx(s) is according to the following table:

If [n] matches| and |then R,(s)=

skip {I,n+1)}

ci=t (@ 4 1))

assert ¢ L=o¢{I,n+1)}

assert ¢ LBKES|D

assume ¢ LBE | {In+1)}

assume ¢ LABKES|D

goto m {(I,m)}

goto m k {(I,m),(I,k)}

havoc ¢ {deDe (I n+1)}
— We call a sequence (sg,$1,...,57) (or (So,81,...) resp.) with s; € S and

Sit+1 € Rr(s;) for i € {0,...,7 — 1} (resp. i € N) a finite (infinite) trace of ®
starting in sg.

— We call a finite trace maximal if Ry (s,) = 0.

— A mazimal finite trace (sg, $1,-..,8y) with s, = (I, n,) is called successful
if w[n,] is not an “assert ...” statement.

Unstructured programs are indeterministic, hence, there may be no, one or
many successor states in R;(s) to a state s. Two types of indeterminism can
be distinguished: control indeterminism (induced by goto statements with two
targets) and data indeterminism (induced by havoc statements which take many
possible assignments into account). It seems counter-intuitive that the successor
states of assert and assume statements are identical. The difference is that a trace
is considered successful if it fails at an assumption but unsuccessful for a failed
assertion.

Definition 9 (Formula evaluation). For given X, I, 3, m and D, the validity
of a formula ¢ € Formy, under the given parameters is defined as:

— 1,8 = true and I, £~ false

- LBEONVI|=)Yif 1,8 E ¢ and/or/implies I, 3 = 1.

I,B = (V3)z.¢ iff I, 8L = ¢ for every/some d € D.

— 1,8 =p(ty,... tg) iff (valrg(t1),...,valr g(tg)) € I(p) for a predicate sym-
bol p € Prd with a(p) = k and ty,...,t; € Termy.

— 1,8 = [n; 7] iff every maximal finite trace (I,n),...,(Ix, ng) is successful.
— I,B E [[n;7)] iff 1,8 | [n;] and there is no infinite trace of m starting in
(I,n).

133 Technical Report, KIT, 2010-13

A Dynamic Logic for Unstructured Programs with Embedded Assertions

Let us revisit example (1) considering an interpretation with the domain
D = Z, I(succ)(n) = n+ 1 and I(positive) = N. If I(x) = —1, we have the
maximal trace (I,0), (I,4) which is successful since the last considered statement
7[4] was not an assertion but an assumption. We are not interested in a further
execution of this trace and regard it as “not relevant” since an assumption has
proved to be false.

USDL possesses expressive means to model both partial and total correctness

of code pieces using the operators [-] and [[-]]. Please note that they are not dual
to another like O and ¢ in modal logics or [-] and (-) in classical dynamic logic
are.

The programming language of USDL has a number of points in common
with regular programs upon which the while-language in dynamic logic has been
defined in [8]. The program operators U (nondeterministic choice) and * (nonde-
terministic repetition) are closely related to the indeterministic goto statement.
The statement assume ¢ has the same semantics as the regular program ¢?. Harel
et al. also propose an extension with wildcard assignments like z :=7 which is
the same as the statement havoc z.

We can, hence, use the kinds of statement defined in this document to define
compound structures as macros like Harel did using regular programs. Formula
(1) could then be reformulated as

[0; while —positive(x) do = := succ(x) end; assert positive(x)] (2)

using such a macro for the while-do-end loop.

It is obvious that any formula in dynamic logic without embedded assertions
can canonically be translated into a formula with embedded conditions. We
formulate a typical proof as P — [7]Q for a precondition P, and a postcondition
@. We would formulate the same problem in USDL as

P — [0; (m, assert Q)]

which checks property @ after the execution of m. We can also prepend the
program with the statement assume P embedding also the precondition into the
program and obtain the equivalent formula

[0; (assume P, 7, assert Q)] .
Note that now the entire verification obligation is encoded within the program

to be verified.

3 Symbolic Execution

We now present a set of rewriting rules which allow us to symbolically execute
an unstructured program step by step, either interactively or in an automatic
proof process. Unlike wp-calculi which traverse programs from back to front, we
process programs in the order of an execution, beginning at the first statement.

Technical Report, KIT, 2010-13 134

M. Ulbrich

The update mechanism allows us to record the state changes we collect during
the execution. This forward treatment is particularly helpful if the execution is
part of an interactive verification process since the verifier can then track more
conveniently what has happened.

A rewrite rule [~» r allows the calculus to replace any occurrence of [within
a formula with r to obtain an equivalent formula. Such a rule is sound if the
formula | < r is valid. A rule schema of the form C(X) = I(X) ~» r(X) with
a set of schematic variables X is an abbreviation for the set {l(x) ~ r(z) | C(z)}
of all instances for which the (meta) condition C holds.

Theorem 10 (Symbolic execution). The following rules are sound rewrite
rules for the symbolic execution of unstructured programs.

mw[n] = skip = [n;7] ~ [n+ 1;7) (3)

wln] =c:=v = [n;y7] ~ {c:=v}n+ 1;7] (4)
w[n] = havoc ¢ = [n; @] ~ Vo {c:=z}[n + 1;7] (5)
#ln] = goto m = [1;] ~ [m; 7] 6)
7[n] = goto m k = [n;7] ~ [7| A [k;] (1)
7[n] = assume ¢ = [n;7| ~ ¢ — [n+ 1;7] (8)
w[n] = assert ¢ = [n;m| ~ ¢ An+1;7) 9)

Proof. The soundness proofs for these rules are straightforward. We exemplarily
provide them for (8) and (9). The basic argument is the same for all cases: We
reduce the case that all finite traces starting in (I,n) must be successful to the
case that all finite traces from (I’,n') € R.(I,n) are successful and encode the
knowledge on I’ either into an update, an implication or conjunction. The state
successor relation R, of assert and assume are identical, but their semantics differ
due to the definition of successful traces.

assume: Assume [, [~ ¢, then R;(I,n) = () and the only trace beginning in
(I,n) ends there in an assume statement and, hence, is successful. If, on the
other hand, I, 8 | ¢, the truth value depends entirely on the traces starting
n (I,n+ 1), therefore, on [n + 1; .

1,8 = [n; 7]

<= every finite trace beginning in (I, n) is successful

— [,BE¢or
1,8 | ¢ and every finite trace beginning in (I,n + 1) is successful

<= I, £ ¢ or every finite trace beginning in (I,n + 1) is successful
—=I,0E¢—[n+1;7]

assert: If I, 8 [~ ¢, the only trace beginning in (I,n) ends there in an assert
statement and, hence, is not successful. The other case depends again on the

135 Technical Report, KIT, 2010-13

A Dynamic Logic for Unstructured Programs with Embedded Assertions

runs from (I,n 4+ 1):

I, = [n; 7]
<= every finite trace beginning in (I, n) is successful
< I, | ¢ and every finite trace beginning in (I,n + 1) is successful

<~ I[,BEA[n+1;7]
O

The presented rules execute one single step and reduce a formula to a formula
encoding all possible follow-up traces. This implies that the traces of the atomic
program formulas on the left-hand-side are finite if and only if all traces of all
modalities on the right-hand-side are finite. This observation leads to

Corollary 11. We obtain sound rewrite rules if we replace every occurrence of
a modality [n; 7] by the corresponding terminating counterpart [[n;w]] in (3)—(9).

4 Invariant Rules

The rewrite rules in Thm. 10 and Cor. 11 allow us to symbolically execute an
unstructured program in a stepwise manner. If a program contains no loops, sym-
bolic execution eventually results in a formula free of atomic program formulas.
However, as soon as the program flow allows a statement to be executed more
than once during the run of a program, these rules can no longer remove atomic
program formulas entirely. A calculus for symbolic execution requires rules using
loop invariants to resolve programs with loops. Such rules will, naturally, closely
resemble invariant rules which are used to resolve loops in structured programs.

First, we give the simple version of an invariant rule. Then, a rule involving
termination is defined and, finally, a rule which preserves more context informa-
tion. The latter two could canonically be combined to a rule with termination
and context preservation.

4.1 Program Modifications

In classic dynamic logic, the invariant rule introduces new proof goals on the
loop body, i.e. on a program which is a strict subprogram of the original code.
We are not able to reduce the code to a subset of statements in USDL since no
restriction is imposed on the targets of goto statements and any statement, also
outside the loop body, may be addressed.

We need, however, a means to reduce the number of runs of a loop body
to one. This is achieved by inserting new statements into the program under
inspection. The insertion is problematic, however, since index changes may make
goto statements point to wrong targets afterwards. To compensate for this effect,
we introduce an offset correction function off fn which increments the target
indices by k if they lie above the insertion point m.

oﬁﬁl(a)z{a ifa<m

a+k otherwise

Technical Report, KIT, 2010-13 136

M. Ulbrich

0: goto 4
Lapc T |5 s
2: goto 1 1: assume ¢ 3: skip
T
4: goto 1
T (7, 1)

Fig. 2. Example of a program insertion

We apply off fn also to statements where it operates only on the target indices of
goto statements and behaves like the identity function on all other statements.

Definition 12 (Statement insertion). For programs w,7 € II and an arbi-
trary index m € N, the insertion w < (1,m) € II of T into ® at position m is
defined as
oﬁﬁ"(T)(ﬁ[i]) fori<m
(m < (r,m))[i] = < 7[i —m] form <i < m+len(r)
off ™M (zli — len(7)]) for m + len(r) < i

T is not subject to an offset correction since the programs we use for insertion
in this section will not contain goto statements.

Fig. 2 shows a sample program insertion. The program 7 = (assert ¢; assume ¢)
is inserted into the program m = (goto 2;skip; goto 1) at position 1. Please note
that in statement 4 : goto 1 of the resulting program, the target has not been
incremented and still refers to the insertion point even though the statement to
which it points has been changed.

Due to the index adaption oﬁfn, a trace for m which does not pass through
the insertion point m induces a trace for the program after insertion also (of
course with possibly adapted statement indices). The only way to enter the
inserted statement sequence is to reach statement m, either as a goto target or
by “walking” into it. Hence, if m is not part of the trace, we can observe:

Property 13. For any trace (o, ko), ..., (L, kr) with k; # n for 0 < ¢ < r, the
sequence (Io, kp),. .., (I, kL) with k} = off () is a trace for 7 < (7,n).

The rules we develop in this section will be inference rules for a sequent
calculus. A sequent is of the form I' H A in which the antecedent I' and the
succedent A are finite sets of formulas. It has the same truth value as the formula
(AD) = (V A).

One problem that is not present in structured dynamic logic but with which
we have to cope here is the detection of loops. In classic dynamic logic, a loop
can be identified syntactically as a statement initiated with the “while” keyword.
We do not have such landmarks in an unstructured program. A loop becomes a
loop because of a goto statement targeting backward. Not every such statement,
however, is necessarily an indicator for a loop. Therefore, we formulate our in-
variant rules in such a manner that they can be applied to every statement. Of

137 Technical Report, KIT, 2010-13

A Dynamic Logic for Unstructured Programs with Embedded Assertions

course, the application is not equally expedient for all execution states, and it is
the task of either a static analysis or the translation mechanism to identify (and
to mark) the spots at which an invariant rule should be applied.

4.2 Simple Invariant Rule

The general idea in the upcoming invariant rules is it to change the code of the
program in such a way that if the starting statement n is reached again during
symbolic execution, the invariant is asserted and the execution then terminated.
For that purpose we insert the program (assert ¢; assume false) into the program
under inspection at the current position.

Theorem 14. The rule
I'E{Uuyp, A P Fn+2;p]
I't{Utn;], A

with py = m < ((assert 1; assume false), n) is a sound rule for any formula 1.

This rule has two premisses: The first provides evidence that the invariant 1
holds initially when arriving in the current state. The second premiss requires
that in a state in which the invariant holds, the execution of the changed program
is successful. Please note that the antecedent and succedent contexts I and A
are not present in the second premiss. We will address this issue in Thm. 17.

This rule is similar to the invariant rule for a dynamic logic for a simple
while language. One difference is that, here, we do not have three but only
two premisses to establish. This is due to the fact that multiple assertions are
embedded into the program p; and the second premiss [n+2; p;] plays two roles:
Firstly, it proves the absence of assertion violations after the loop (the "use case’
of) and, secondly, it ensures that the loop body preserves ¢ establishing it as
an invariant.

Proof. We can without loss of generality! assume that A = (). Moreover, we
may assume that (A) AI' — {U}y and (B) ¢ — [n + 2; p1] are valid formulas.
For an arbitrary interpretation? I, we need to show that I = AI' — {U}[n;7].
If I = AI', we are done. Thus, let I | AI'. It remains to be shown that
I = {U}[n;). Setting I, := I¥ yields, equivalently, Iy, = [n;7].

Let us look at an arbitrary maximal finite trace now. We can divide this
trace in “loops to n”, i.e., we split the trace into r subsequences such that every
occurrence of n starts a new subtrace. For any 0 < ¢ < r, the state (I,,n)
initiates a subtrace. The last trace ends in state (I, sk.). See Fig. 3 for an
illustration.

We now claim that for every first state (Ix,,n) of a subtrace, It, = v holds
and show this by induction on 0 < i < r. For Iy (= I%), this is a simple

! There are first order inference rules that allow us to move the negation of all formulas
in A to the antecedent I.
2 For the sake of better readability, we leave variable assignments aside in this section.

Technical Report, KIT, 2010-13 138

M. Ulbrich

Iy, Ty -1 Iy, T I,
n Sk1—1 n Skyp_1—1 n Sk

Fig. 3. Chopping a trace into subtraces

consequence of the validity of (A). Now, we assume that Ir, = v for some
0<i<r—1.

For the trace (Iy,,n),...,([Ix, 1 —1,5k;4,—1), apart from the first state, no
state is in statement n: it matches the requirements of Prop. 13, and, thus, we
know that (Ip,n+2),..., Ik, -1, oﬁ”i(ski“_l)) is a trace for program p;. From

the original trace we know that (Ix,,,,n) is a successor state to the last state of
this trace. Furthermore, p;[n] = assert ¢ and every maximal finite trace for p;
is successful by assumption (B). This implies directly that the assert-condition
must be true, i.e. that Iy, , = 1.

We have seen now that every subtrace begins in an interpretation in which
holds. In particular, we have Ij,_, |= %. The last subtrace (I, ,,n),..., Ik, Sk,)
is maximal (since the entire trace was chosen maximal). Statement n does not
appear after the first state of this trace. We can therefore apply Prop. 13 again

and obtain a trace (I, _,,n +2),..., (I, off2(sk,)) which is maximal again.
Due to assumption (B), this trace must be successful, implying that the entire
trace is successful. O

4.3 Invariant Rule with Termination

Thm. 14 is not sufficient if we want to incorporate the question of termination
into the verification process. The rule for the terminating modality [[-]] introduces
a variant term whose value strictly decreases from iteration to iteration. We
assume there is a binary predicate symbol <€ Prd whose interpretation is a
well-founded relation. With the aid of this predicate symbol, we can formulate
an invariant rule which includes termination.

Theorem 15. The rule
I'={uiyp, A Y F {nc:=var}n+ 2; ps]]
I'{U}[[n;7]], A

with pa = m < ((assert ¥ A var < nc;assume false),n) is a sound rule for any
formula ¥, any term var, and a program variable nc which does not yet appear
elsewhere on the sequent.

Proof. Partial correctness [n;n] is a direct consequence of Thm. 14 since we
made the program modification stronger requiring 1) A var < nc to hold instead
of only .

139 Technical Report, KIT, 2010-13

A Dynamic Logic for Unstructured Programs with Embedded Assertions

Like in the proof above, we fix an interpretation I with I = AI" and set
Iy, := I". It remains to be shown that there is no infinite trace for 7 starting
in (Iy,,n). Assuming there is such an infinite trace, we could subdivide it into
subtraces such that every occurrence of the statement n initiates a new subtrace
like in the previous proof. We can use the induction from the proof of Thm. 14
to establish that for every first state (Ix,,n) of a subtrace we have I, |= 9.

In case there are finitely many subtraces, the last subtrace ((Ikrfwn), ..)
must be infinitely long and does not pass through n. We have I, = 4 which
already contradicts the second premiss which forbids an infinite trace for 7 start-
ing in (I,_,,n) (because it uses the operator for total modality).

In case of infinitely many subtraces, every subtrace is finite. For the first
states of the subtraces, we define v; := valy, (var). If we take one beginning
state (Iy,,n) with ¢ > 0, we know that (*) I, E var < nc since this formula
is part of the asserted loop invariant. As nc does not occur elsewhere on the
sequents and because of the semantics of the update nc := var, we get that nc
holds the value of var of the previous iteration, i.e. Iy, (nc) = v;—;. This and
(*) imply that (v;_1,v;) € I(<). The sequence (v1,vs,...) would therefore be
an infinitely descending chain for I(<) which cannot be since < was chosen as
a well-founded relation. O

4.4 Improved Invariant Rule

The major disadvantage of the rules in Thms. 14 and 15 is that the information
contained in I" and A of the conclusion is not available in the second premiss.
There invariant v is the only formula in the antecedent of the sequent. If any of
the information encoded in I' U A was needed to close the proof, it would have
to be implied by ¢ and one would need to proof its validity.

We will provide an invariant rule which keeps the context I' and A but
subjects those program variables which are touched during a loop iteration to a
generalisation. We can use the havoc statement to do this generalisation because
of (5).

The rule follows the ideas of [2] were a context preserving invariant rule is de-
fined for a structured dynamic logic. The advantage is that more information on
the sequent remains available and does not need to be encoded in the invariant.

Definition 16 (loop-reachable). A statement m is called loop-reachable from
n within a program 7 if there is a trace (I,, ko), (I1,k1),. .. such that

1. ko =mn,
2. there is an index r > 1 with k, = m, and
3. there is an index s > r with ks = n.

We denote this as reach(n,m,7).

We use the notion of reachability to define the set of possibly modified program
variables as

mod(n,7) = {c

there are m,c and t s.t. reach(n,m,n) and
(w[m] = havoc ¢ or w[m] = ¢ :=1t)

} C PVar .

Technical Report, KIT, 2010-13 140

M. Ulbrich

Loop reachability can, in general, not be computed. The reachability of a state-
ment may depend on the satisfiability of an assumption statement earlier in the
execution path and this is undecidable. However, a static analysis can be used
to over-approximate mod(n,).

The modified program p3 is now more complex. The first two statements have
the same intention as in Thm. 14 and the concluding assumption corresponds
to the formula v in the antecedent of the second premiss in rule Thm. 14. The
remaining statements need to be added to anonymise the values of those program
variables that are possibly changed by the execution of the loop body.

Theorem 17. The rule
DE{UWA TFn+2p) A
I'={U}n;n], A

with
ps = m < ((assert 1;assume false;havoc ry;...;havoc rp;assume), n)
is a sound rule for any formula 1 and any finite set {rq,...,rp} with mod(n;m) C

{r1,...,m} C PVar.

Proof. Again, let A = (). We observe that the second premiss is (after a number
of steps of symbolic execution and simplification) equivalent to

V... Napdry = x| lre =2} (0 — [n+ 2+ b+ 15 p3])

which by construction (the inserted havoc and following assume statements can-
not be executed again) is equivalent to

V... Napdry = x| lre = 2} — [0+ 25 p1])

For an interpretation I with I = AI', we know, because of the validity of the
premiss, that

I'EVr... Vep{ry i=a|| ... |lrp = 2 (0 — [n+ 25 p1]) -

If an interpretation I’ differs from I at most on the values of the program
variables 71,...,7p, then we have due to the semantics of the quantifier and
the updates that also

I'e @ —n+2p)) -

For a trace for [n;m] (cf. Fig. 3) we observe that every statement before
(Ig,_,,n) is loop-reachable from n. The program variables which are changed
over this trace are, hence, in mod(n, 7) and, therefore, also among the {ry,...,r}.
This implies that for all 0 < ¢ < r, the interpretation Iy, coincides with I on the
required program variables and we obtain I, = (¢ — [n + 2;p1]) and, hence,
Iy, E [n + 2; p1] by induction from the proof of Thm. 14.

In particular we have I _, = [n + 2;p1] for which we saw in the proof of
Thm. 14 that it implies that the entire trace is successful. a

141 Technical Report, KIT, 2010-13

A Dynamic Logic for Unstructured Programs with Embedded Assertions

5 Conclusion

In this paper, we have presented a dynamic logic USDL for an unstructured
verification language. The logic differs from Harel’s logic as presented in [8]
as it contains the formulas to be verified embedded in the program code. We
have provided a model-theoretic semantics for USDL and calculus rules for the
symbolic execution of programs within USDL formulas. For the treatment of
loops, we have proved the soundness of three invariant rules.

Future work on this topic includes the examination of the relationship be-
tween a propositional variant of the logic and propositional dynamic logic (PDL).

The presented calculus has been implemented in an interactive, rule-based
proof-of-concept tool which has been used to successfully conduct first experi-
ments on the benefits of interaction in verification with intermediate languages.

Acknowledgements The author would like to thank Peter H. Schmitt for his
constructive comments which helped improve this paper.

References

1. B. Beckert, R. Hahnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

2. B. Beckert, S. Schlager, and P. H. Schmitt. An improved rule for while loops
in deductive program verification. In Seventh Intl. Conf. on Formal Engineering
Methods (ICFEM), pages 315-329. Springer-Verlag, 2005.

3. S. Bohme, K. R. M. Leino, and B. Wolff. HOL-Boogie—An interactive prover for
the Boogie program-verifier.

4. L. Burdy and M. Pavlova. Java bytecode specification and verification. Manuscript,
2005.

5. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for check-
ing object-oriented programs. Technical Report MSR-TR~2005-70., Microsoft Re-
search, 2005.

6. G. Dennis, F. S.-H. Chang, and D. Jackson. Modular verification of code with
SAT. In ISSTA ’06: Proceedings of the 2006 international symposium on Software
testing and analysis, pages 109-120, New York, NY, USA, 2006. ACM.

7. J.-C. Fillidtre and C. Marché. The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In In CAV 07, pages 173-177, 2007.

8. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

9. K. R. M. Leino. This is Boogie 2, 2008.

10. K. R. M. Leino and P. Riimmer. A polymorphic intermediate verification language:
Design and logical encoding. In TACAS, pages 312-327, 2010.

11. C. L. Quigley. A programming logic for java bytecode programs. In TPHOLs,
pages 41-54, 2003.

12. K. Stenzel. Verification of Java Card Programs. PhD thesis, University of Augs-
burg, 2005.

Technical Report, KIT, 2010-13 142

A Refinement Methodology for
Object-Oriented Programs *

Asma Tafat!, Sylvain Boulmé?, and Claude Marché3:!

! Lab. de Recherche en Informatique, Univ Paris-Sud, CNRS, Orsay, F-91405
2 Institut Polytechnique de Grenoble, VERIMAG, Giéres, F-38610
3 INRIA Saclay - Ile-de-France, F-91893

Abstract. Refinement is a well-known approach for developing correct-
by-construction software. It has been very successful for producing high
quality code e.g., as implemented in the B tool. Yet, such refinement
techniques are restricted in the sense that they forbid aliasing (and more
generally sharing of data-structures), which often happens in usual pro-
gramming languages.

We propose a sound approach for refinement in presence of aliases. Suit-
able abstractions of programs are defined by algebraic data types and the
so-called model fields. These are related to concrete program data using
coupling invariants. The soundness of the approach relies on method-
ologies for (1) controlling aliases and (2) checking side-effects, both in a
modular way.

1 Introduction

Design-by-contract is a methodology for specifying programs (in particular
object-oriented ones) by attaching pre- and post-conditions to functions, meth-
ods and such. In recent years, significant progress has been made in the field of
deductive verification of programs, which aims at building mathematical proofs
that such a program satisfies its contracts. Some widely used programming lan-
guages, like JAvA, C# or C have been equipped with formal specification lan-
guages and tools for deductive verification, e.g., JML [11] for Java, Spec# [6]
for C#, ACSL [7] for C. The assertions written in the contracts are close to the
syntax of the underlying programming language, and directly express properties
of the variables of the program. However, for codes of large size the need for
data abstractions arises, both for writing advanced specifications and for hiding
implementation details.

Leavens et al. [18] have listed some specification and verification challenges
for sequential object-oriented programs that still have to be addressed. One of
these issues deals with data abstraction in specification, and more specifically
the specification of modeling types. The task to be done is summed up as follows:
Develop a technique for formally specifying modeling types in a way that is useful
for verification.

* This work is partly supported by INRIA Collaborative Research Action (ARC) “Ce-
ProMi”, http://www.lri.fr/cepromi/

143 Technical Report, KIT, 2010-13

A Refinement Methodology for Object-Oriented Programs

This paper proposes to solve this problem using a refinement approach. Our
proposal has strong connections with the notion of program refinement of the
B method [1] for developing correct-by-construction programs. In a first step,
abstract views of objects are specified with so-called model fields as an abstract
representation of their state. Unlike the standard model fields of JML, our model
fields are described as algebraic data types instead of immutable objects. The
refinement of such an abstract view is a concrete object together with a coupling
invariant that connects its concrete fields with model fields of the abstract view.
Like all refinement approaches, we want to ensure that reasoning on the abstract
view in a client code does not allow establishing properties that are falsified at
runtime. Hence, in the presence of arbitrary pointers or references (and thus data
sharing), the verification of these coupling invariants requires a strict policy on
assignment, for controlling where a given invariant is potentially broken.

This paper is based on the ownership policy of Boogie methodology [4]. In
Section 3 we propose a variant of ownership to support model fields. The main
result (Theorem 1) states that class invariants, including coupling invariants,
are preserved during execution. Section 4 then proposes a refinement approach
for object-oriented programs, where subclasses are refined programs for abstract
classes. An additional ingredient needed is a technique for controlling side effects
in subclasses: in this paper we use datagroups [22]. We illustrate the methodology
on two examples: first, the calculator example of Morgan [23], and second, an
instance of the observer pattern.

2 Preliminaries

2.1 Deductive verification of contracts

We consider object-oriented programs equipped with a Behavioral Interface
Specification Language (BISL) such as JML [11] for Java, Spec# [6] for C#, etc.
Methods are equipped with contracts: pre- and postconditions, frame clauses to
specify write effects, etc; and objects are equipped with class invariants.

Our goal is to verify that a program satisfies its specification using proof
methods. A general approach for that purpose is the generation of wverification
conditions (VCs), which are logical formulas whose validity implies the cor-
rectness of the program with respect to the specification. To automatize this
process, a popular method is the calculus of weakest preconditions, as available
in ESC/Java [14], Spec# [6], and the Why platform [17]. In a slightly differ-
ent context but for similar purposes, weakest preconditions are used in the B
method [1] for developing correct-by-construction programs.

The primary application of BISL is runtime assertion checking. For this rea-
son, assertions used in annotations are boolean expressions. However, it has
been noted by several authors [12,16] that for deductive verification purposes,
the language of assertions should be instead based on classical first-order logic.
In particular, it allows calling SMT provers to discharge VCs. This is the set-
ting we assume in this paper. More generally, we assume that the specification

Technical Report, KIT, 2010-13 144

A. Tafat, S. Boulmé, C. Marché

language allows user-defined algebraic datatypes, such as in B [1], ACSL [7] or
Why [17].

FEzample 1. Multisets, or bags, are typically a useful algebraic datatype for spec-
ifying programs, that we need later. Here is a (partial) user-defined axiomatiza-
tion of bags (See [26] for a full one)

type bag<X>;

constant emptybag: bag<X>;

function singleton: X —> bag<X>;

function union: bag<X>, bag<X> —> bag<X>;

function card: bag<X> —> integer;

function sumbag: bag<real> —> real;

axiom union_empty: \forall b:bag<X>, union(b,emptybag) = b;

axiom union_assoc: \forall bl,b2,b3:bag<X>,
union(bl,union(b2,b3)) = union(union(bl,b2),b3);

2.2 Refinement

Refinement calculus [23, 2] is a program logic which promotes an incremental ap-
proach to the formal development of programs: from very abstract specifications
down to implementations. The B method [1] has successfully mechanized this
logic in some industrial developments [§]. In the B method, an abstract com-
ponent introduces abstract variables and defines each procedure by an abstract
behavior on these variables. A refined component is then given using other vari-
ables, a coupling invariant which relates them to abstract variables, and refined
definitions of procedures. A component may be refined several times in this way,
until all behaviors of procedures are given as programs.

Ezample 2. Morgan’s calculator [23] is a typical and simple example of refine-
ment. Such a calculator is aimed at recording a sequence of real numbers, and
providing their arithmetic mean on demand. Below, on the left, is an abstract
view of a calculator, whereas the right part presents a refinement expressing that
two numbers are sufficient to encode the required informations on the whole se-
quence:

var values : bag(R) var count : N
init values «— 0; var sum : R
op add(z : R):void = invariant sum = sumbag(values)A

values «— values U {x}; count = card(values);
op mean():R = init sum < 0; count « 0;

pre values # (J; op add(z : R):void =

I‘esult - sumbag(values) : sum «— sum + X

card(values) count «— count + 1 ;
op mean():R =

result «— sum/count;

145 Technical Report, KIT, 2010-13

A Refinement Methodology for Object-Oriented Programs

This paper investigates how to adapt this approach to reasoning on object-
oriented programs. However, we consider the simpler case with only one ab-
stract level, where behaviors are given as pre/post-conditions together with
frame clauses, and one concrete level, the implementations in the underlying
programming language.

Technically, refinement corresponds to the condition below, verified for each
operator, where x are the input parameters, a the abstract variables, ¢ the con-
crete ones, P the abstract precondition, I the coupling invariant, ¢ the ab-
stract postcondition, S the body of the concrete operation: Ve, z,a; (P AI) =
Ja’; wp(S, (Q A I)[a — a']). Let us explain this VC from client’s point of view.
For any reachable state c, a satisfying I in the execution of a given client code,
there exists abstract values a’ such that I is still satisfied. For instance, in a
client code, we can safely replace an execution of the concrete sequence S, by a
non-deterministic update of variable a that chooses an arbitrary value a’ satis-
fying both @ and I. The VC on any operation call ensures that the remaining of
the client code is correct for all possible choices of this non-deterministic update.

Ezxample 8 (Calculator continued). The VC for the add operation is

Yeount, sum, values, x; (sum = sumbag(values) A count = card(values)) =
Jualues'; values’ = values U {z}A
(sum + = = sumbag(values’) A count + 1 = card(values’))

which is a logical consequence of the axiomatization of bags (Example 1).

2.3 Model fields

Model fields have been introduced by Leino [19] as abstract representations of ob-
ject states. Syntactically, a model field is used only for specification purpose and
remains invisible from the actual code. Clients can refer to its successive values
in their assertions, without knowing how this abstract state is implemented.

We adopt the JML syntax for model fields [13], but the JML represents
clauses are replaced by coupling invariants, which are more general since they
do not enforce a model field to be deterministically determined from concrete
fields. Notice that model fields differ from ghost fields: the latter can be directly
assigned in implementations.

Ezxample 4. In the following, we declare a public view of class Euros to compute
addition and subtraction on euros. In this public view, the model field value
represents the state of the object as a real number.

class Euros {
//@ model real value=0.0;
//@ invariant this.value>=0.0;

/%@ assigns this.value;
@ ensures this.value==\old(this.value+a.value); */
void add(Euros a);

}

Technical Report, KIT, 2010-13 146

A. Tafat, S. Boulmé, C. Marché

In the corresponding implementation below, the real number is coded as two
integers: in particular, the fractional part of the real is coded as a byte less than
100.

class Euros {
private int euros=0;
private byte cents=0;
//@ invariant 0 <= euros && 0 <= cents < 100;
//@ invariant coupling: value == euros + cents / 100.0;

void add(Euros a) {
euros += a.euros; cents += a.cents;
if (cents >= 100) { euros++; cents —= 100; }
}
}

Giving a semantics to model fields leads to several issues [10,13,20] that we
will discuss further in Section 5: as model fields are not directly assigned in the
code, at which program points the values of model fields are changed? At which
program points the coupling invariant, relating the concrete fields (like euros
and cents above) to the model field (value above), is ensured? Also, the public
view above says that only model field value is modified, is it sound to ignore
the change on private fields (like euros and cents) in clients?

2.4 Ownership

Checking preservation of class invariants is known to be a difficult problem be-
cause of aliasing and thus sharing of references [18]. The ownernhip approach
proposed by Barnett et. al in 2004 [4] is suitable for deductive verification, and
implemented in the Boogie VC generator [5]. Informally, ownership views ob-
jects as boxes which can be opened or closed. A closed object ensures that its
invariant is satisfied. Conversely, the contents of an object can be updated only
when this object is open. The status, open or closed, of an object is represented
by some specific boolean field inv similar to a model field (that is only accessi-
ble in specifications). Concretely, opening and closing an object is performed by
using special statements unpack and pack. Hence, closing an object generates a
VC that the invariant of this object holds.

Updating an object’s field must not break the invariant of an other closed
object. This crucial property is ensured by a strict discipline. First, the invariant
of an object o can constrain only objects accessible via dedicated fields called
“rep fields”. More precisely, the invariant of o may refer to o.f1... f,.g only if
fi,..., fn are declared as rep. Hence, a rep field f declares that whenever o
is closed, then o.f must also be closed: in this case, we say that o owns o.f.
Moreover, a given closed object can only have at most one owner. Technically,
another model boolean field committed represents whether an object has a owner
or not. This field acts as a lock that is only modified by applying unpack and
pack statements to its owner. This ensures that an object can not be modified
without opening its owner first.

147 Technical Report, KIT, 2010-13

A Refinement Methodology for Object-Oriented Programs

With inheritance, this approach is generalized by transforming inv field into
a class name: “o.inv = C” means that object o satisfies invariant of all su-
perclasses of C' (C included). Packing and unpack are made relative to a class
name: “pack o as C” means “close the box o with respect to class C”; whereas
“unpack o from C” means “open the box o out of C”, i.e set its inv to the
superclass of C.

This informal description is formalized in next section (see also [26]), together
with our proposed extension adding a specific support of model fields.

3 Ownership and Model Fields

3.1 Language setting

We consider a core object-oriented language [4] extended with model fields. A
hierarchy of classes is defined together with specifications. First there is a base
class Object which contains only the two special model fields: inv denoting a
class name and committed denoting a boolean. Each class is given by:

— its (unique) name

— the name of its superclass, Object by default

— a set of model fields, whose types are logic datatypes

— a set of concrete fields, some of them might be marked as rep

— an invariant, that is a logical assertion syntactically limited to mention well-
typed locations (according to Java static typing) of the form “this.f; ... f,,.g”
where f; are rep concrete fields and g is either a model or a concrete field.

— a set of method definitions that counsists of a profile “7 m(z1 : 71,..., 2, :
7,)", a body, and a contract defined as:
e a pre-condition Pre,,(this,x1,...,xy,)
e a post-condition, Post,, (this,z1, ..., z,, result) which might refer to the

pre-state using old and to the return value using result

e a frame clause Assigns(locs) specifying the side-effects: it states that
any memory locations, allocated in the pre-state, that do not belongs to
locs, is unchanged in the post-state.

— a set of constructors with a profile C(x; : 7,...,2, : 7o), a body, and a
contract similar to those of methods, except that precondition cannot refer
to this and postcondition cannot not refer to result, but can refer to this to
denote the constructed object.

Pre- and postconditions must be purely logic expressions, in particular we forbid
constructor or method calls in them. A class inherits fields of its superclass,
in particular it has an inv and a committed field. We denote by <: reflexive-
transitive closure of subclass relation. We denote by Compr the set of rep fields
declared in class T. More precisely, Compr contains only rep fields declared
in T but not the rep fields declared in a strict superclass of T'. A field update
o.f := F where f is a concrete field declared in superclass T of o static type, has
the precondition —(o.inv <: T'), meaning that o.inv must be a strict superclass

Technical Report, KIT, 2010-13 148

A. Tafat, S. Boulmé, C. Marché

of T. Field update o.f := E where f is a model field is syntactically forbidden.
Using pack (see below) is the only way to update model fields. Bodies of methods
are verified in a context where type(this) is the current class: inherited methods
are rechecked according to the context of the subclass.

3.2 pack/unpack for model fields

We define two statements for opening and closing object. Opening an object o
is done via the following statement, whose semantics is given by the contract:

unpack o from 7T :
pre: o # null A o.inv =T A —o.committed
assigns: o.inv, o.f.committed | f € Compr
post: o.inv =S A /\feCompT o.f.committed = false

where T is a class identifier (using type(o) instead of T is forbidden, hence
Compr is statically known by VC generator), and S is the direct superclass of
T.

The pack statement is significantly more complex than the original in Boo-
gie’s ownership, because it performs a non-deterministic update of model fields.
We adopt here a syntax inspired by unbound choice operator of B:

pack o as T with My := vg,..., M, := v, such that P

where o is the object to close, M; is a model field to update, v; is a fresh variable
denoting the desired new value for o.M;, and P is a proposition which can
mention both v; and the current values of the model fields or the concrete fields.
Syntactically, T is a class identifier and M; must belong to model fields declared
in T (updating model fields of a superclass is forbidden). The semantics is given
by the contract:

pack o as T with My := v, ... M, := v, such that P :
pre: o # null A o.inv = S A
Fug, ..., Un, Invp[this.M; — v;][this — o] A P A
A fecompy 0-F =null V (o.f.inv = type(o.f) A —o.f.committed)
assigns: 0.My, . ..,0.M,,,0.inv, o.f.committed | f € Compr
post: o.inv = T A Invp[this — o] A (old(P))[v; — o.M;] A
NteCompy - # null = o.f.committed

where S is the superclass of T, type(e) denotes the dynamic type of expression
e and Invr[this.M; — v;][this — o] is the coupling invariant in which model
fields M; mentioned in the clause with are substituted by v;.

Example 5. Figure 1 is a variant of Morgan’s calculator equipped with
pack/unpack statements and pre- and postconditions to state the values of inv
and committed fields. The VC generated from the precondition of pack state-
ment in method add is:

this # null A this.inv = Object N
v, this.sum = sumbag(v) A this.count = card(v)A
v = union(this.values, singleton(z))

149 Technical Report, KIT, 2010-13

A Refinement Methodology for Object-Oriented Programs

class SimpleCalc {
//@ model bag<real> values;
private int count;
private double sum;
//@ invariant sum==sumbag(values) && count==card(values);

/*@ assigns \nothing;
@ ensures inv==\type (this) && !committed
@ && values == empty_bag; */
SimpleCalc() {
sum = 0.0; count = O;
/%@ pack this \as SimpleCalc \with values:=v
Q@ \such_that v==empty_bag; */

/*@ requires inv==\type (this) && !committed;
@ assigns values, count, sum;
@ ensures values==union(\old(values),singleton(x)); */
void add(double x) {
//@ unpack this \from SimpleCalc;
sum += X; count++;
/*@ pack this \as SimpleCalc \with values := v
@ \such_that v == union(values,singleton(x)); */

/%@ requires inv==\type (this) && values != empty_bag;
@ assigns \nothing;
@ ensures \result==sum_bag(values)/card(values); */
double mean() { return sum/count; }

Fig. 1. Morgan’s calculator with pack/unpack

Hence, notice that the weakest precondition of add is thus very similar formula
to the VC of the refinement given in Example 3.

3.3 Invariant preservation

We state below our main result. The first proposition means that committed
objects must be fully packed. The second states the most important property:
invariants are valid for packed objects. The third states that components of a
closed object are committed. The fourth expresses that a committed component
can have only one owner.

Technical Report, KIT, 2010-13 150

A. Tafat, S. Boulmé, C. Marché

abstract class Calc {
//@ datagroup Gvalues;
//@ model bag<real> values \in Gvalues;

/%@ requires this.inv == \type (this) && !this.committed;
@ assigns Gvalues;
@ ensures values == union(\old(this.values),singleton(x));
@x*/

abstract void add(double x);

/%@ requires inv == \type (this) && values != empty_bag;
@ assigns \nothing;
@ ensures \result == sum_bag(values)/card(values); */
abstract double mean();

3

Fig. 2. Morgan’s Calculator, abstract class

Theorem 1 (invariant preservation). The following properties hold during
any program ezxecution.

Yo; o.committed = o.inv = type(o) (1)
Yo, T;0.inv <: T = Invr(o) (2)
Vo, T;0.inv <: T = A tccompy 0-f = null V o. f.committed (3)

VO7 T7 0/7 T/; /\j’ECompT,f’GC07in/
(oinv <: T A dinv <:T'No.f Znull No.f =0 .f)= (o= AT =T") (4)

where quantifications over references range over allocated objects.

See [26] for the proof. It is similar to the one of [4]. Differences come from the
presence of model fields, coupling invariants and our extended pack statement.

4 A refinement methodology

We have a notion of model fields with a proper nondeterministic semantics, sim-
ilar to abstract variables as they are used in the B method. To go further, we
now describe a methodology for the development of OO programs which mimics
the refinement approach. This methodology is simply a combination of our no-
tion of model fields with datagroups as proposed by [19,22]. We introduce this
methodology below on Morgan’s Calculator before considering a more complex
example.

4.1 Hiding effects using datagroups in assigns clauses

Let us consider Morgan’s Calculator of Example 2. We would like to mimic this
example in Java by splitting class SimpleCalc of Fig. 1 into two classes: first,

151 Technical Report, KIT, 2010-13

A Refinement Methodology for Object-Oriented Programs

class SmartCalc extends Calc {
private int count; //@ \in Gvalues;
private double sum; //@ \in Gvalues;
/*@ invariant this.sum == sumbag(this.values)
@ && this.count == card(this.values); */

/*@ assigns \nothing;
@ ensures this.values == empty_bag;
@ ensures this.inv == \type(this) && !this.committed;
SmartCalc() {
sum = 0.0; count = O0;
/%@ pack this \as Calc \with values:=c
Q@ \such_that ¢ == empty_bag;
@ pack this \as SmartCalc; */

void add(double x) {
//@ unpack this \from SmartCalc;
//@ unpack this \from Calc;
sum += X; count++;
/%@ pack this \as Calc \with values:=c
6] \such_that ¢ == union(values,singleton(x));
@ pack this \as SmartCalc; */

double mean() { return sum/count; }

Fig. 3. Morgan’s Calculator, implementation class

Technical Report, KIT, 2010-13 152

A. Tafat, S. Boulmé, C. Marché

an abstract class Calc (Fig. 2) mentioning only the model field and contracts
for methods; second, an implementation SmartCalc (Fig. 3) using concrete fields
count and sum. Two successive unpack or pack statements are needed to open or
close an object from class SmartCalc to Calc then to Object. A key issue arises
here, about the specification of side effects: the abstract class is not supposed
to mention count and sum in assigns clauses, since those fields are not even
known.

In the B method [1], a simple encapsulation mechanism of private fields
ensures that their modifications can not be observed from clients. Hence, in B,
it is safe to simply ignore modifications on private fields in clients, since clients
cannot access them. Unfortunately, such a simple approach is not sound for
OO programs. Indeed, a given object can be indirectly a client of itself via a
reentrant call, and observes modifications made by this reentrant call on its own
private fields. Actually such a problem would also occur in B, if mutual recursion
between components was allowed.

In presence of reentrancy, we can not ignore modifications on private fields.
Alternatively, [19, 22] proposes to abstract such modifications using datagroups.
We use this approach in this paper since it smoothly integrates into any VC
generator using classical logic (see Section 5 for further discussion). Roughly, a
datagroup is a name for a set of memory locations and used in assigns clauses
to express that all its memory locations may have been modified. The main
feature of datagroups is that they can be extended in subclasses with new fields
(public or private). The inclusion of a field to a datagroups must appear in the
declaration of that field and is defined all over its scope. Datagroups may also
include other datagroups (hence, we may have nested datagroups) and a field
may belong to several datagroups.

Hence, coming back to Morgan’s calculator, we introduce a datagroup called
Gvalues that consists of model field values in abstract class Calc of Fig. 2,
and which is extended with concrete fields count and sum in its implementation
SmartCalc of Fig. 3. Of course, on this example, it would be more user-friendly
to identify syntactically the datagroup Gvalues and the model field values.
However, in this paper, we prefer to keep a clear distinction between the two
notions, since in other examples, a datagroup may contain several model fields.

4.2 Modular Reasoning on Shared State: the Observer Pattern
Example

In the literature (see for instance [24]), ownership discipline is often considered as
incompatible with modular reasoning on a shared state between objects. Indeed,
at first sight, ownership discipline forbids objects constraining simultaneously a
given substate through an invariant. A contribution of our work is to show that
this common belief is wrong. Ownership extended with nondeterministic refine-
ment of model fields allows some modular reasoning on a shared state between
objects.

We illustrate this claim on observer pattern, a generic implementation of
event programming in OO languages. In this pattern, an object, called Subject,

153 Technical Report, KIT, 2010-13

A Refinement Methodology for Object-Oriented Programs

maintains a list of its dependents, called observers, and notifies them automat-
ically of any state changes, by calling their notify methods. When notified,
observers updates their own state according to the new state of Subject, usually
by calling back some accessor of Subject. Hence, Subject is shared between ob-
servers. Moreover, observers are themselves shared between Subject and some
clients of the whole pattern.

Here, we instantiate this pattern to define observers of a Morgan’s calculator
(example fully detailed in [26]). The key idea, that makes this example work with
ownership discipline, is the following: in observers, we clone an abstraction of
their shared state using model fields (below size and mean). Thus, these clones
exist only in assertions, not at runtime:

abstract class CalcObs {
SubjectCalc sub;

//@ datagroup Gsubject;
//@ model int size \in Gsubject;
//@ model real mean \in Gsubject;

/*@ requires this.inv == \type (this) && !this.committed;
@ requires sub != null && sub.mc != null
¢ && sub.mc.inv==\type (sub.mc) ;
@ assigns this.Gsubject;
@ ensures size == card(sub.mc.values)
¢ && size*mean == sumbag(sub.mc.values);
@x*/

abstract void notify();

}

A given object (here Subject) glues the actual shared state with its clones
through an invariant. Here is an excerpt of its specification, where the important
part is the observers_notified invariant:

class SubjectCalc {
int obs_nb;
rep CalcObs[] obs;
//@ invariant obs_size: obs != null && 0O<=obs_nb<obs.length;

rep Calc mc;
/*@ invariant observers_notified: mc != null &&
@ \forall integer i; 0 <= i < obs_nb ==>

[¢] obs[i] != null && obs[i].sub == this
[¢] && obs[i].size == card(mc.values)
¢ && obs[i].size*obs[i] .mean == sumbag(mc.values); */

/*@ requires inv == \type (this) && !committed;
@ assigns obs[0..obs_nb—1].Gsubject, mc.Gvalues ;
@ ensures mc.values==union(\old (mc.values),singleton(x)); */
void update(double x){
//@ unpack this \from SubjectCalc;

Technical Report, KIT, 2010-13 154

A. Tafat, S. Boulmé, C. Marché

mc.add(x) ;
for (int i = 0; i < obs_nb; i++) obs[i].notify();
//@ pack this \as SubjectCalc ;

/%@ requires inv==\type (this) && !committed ;
@ requires o!=null && o.inv==\type (o) && !o.committed;
@ requires o.sub==this && obs_nb < obs.length ;
@ assigns o.committed, o.Gsubject;
@ assigns obs_nb, this.obs[\old(this.obs_nb)];
@ ensures o.committed;
@ ensures this.obs_nb==\old(this.obs_nb)+1
[¢] && this.obs[\old (this.obs_nb)]==0; */
void register(CalcObs 0){
//@ unpack this \from \type (this);
this.obs[obs_nb++]=0;
o.notify();
//@ pack this \as \type (this) ;
}
}

The observers can then be implemented independently by refining their own
clone of the shared state: they can introduce a coupling invariant relating their
own actual state to the clone. For observers, the possibility to update their model
fields non-deterministically is crucial here. Indeed, observers update their clone
when notified by Subject which has been modified in a undetermined way from
their point of view. Here is an example of such an observer:

class Success extends CalcObs {
boolean passed;
//@ invariant coupling: passed==(size>=4 && mean>=10.0) ;

void notify(){
//@ unpack this \from Success ;
//@ unpack this \from CalcObs ;
/*@ pack this \as CalcObs \with size:=s, mean:=m
@ \such_that s==card(sub.mc.values) &&
¢} s*m==sumbag (sub.mc.values); */
passed = (sub.size() >= 4 && sub.mean() >= 10.0);
/%@ pack this \as Success; */

In conclusion, this cloning technique through model fields offers some freedom
in the design of an architecture that is both compatible with ownership discipline
and that fits the particular needs of the application. However, this example
reveals the need of several improvements in our approach:

— We would like a more abstract interface for Subject. First, a more abstract
representation of the set of observers is desirable. Second, it would be more
convenient to include all internal state of observers in one datagroup of

155 Technical Report, KIT, 2010-13

A Refinement Methodology for Object-Oriented Programs

Subject. However, the datagroups discipline (with the use of pivot fields (22,
26]) would then prevent access to observers from outside of Subject, which
not desirable.

— This architecture would be more elegant if Subject was allowed to unpack ob-
servers: notify method of observers could hence be used to (re)pack them.*
However, if we want to allow a given object o to be an unknown instance of
a given class, we can not unpack o, because this would produce an uncon-
trolled side-effect on the committed field of o rep fields (which are not fully
known).

5 Conclusions, Related Works and Perspectives

In 2003, Cheon et al. [13] propose foundations for the model fields in JML, which
are presented as a way to achieve abstraction. Their main concern is the runtime
assertion checker of JML, hence they naturally propose that model fields are Java
objects as any other field (although immutable objects for obvious reasons), and
not logical datatypes. Moreover, a model field is related to concrete fields by
a represents clause which amounts to giving a function from concrete fields to
the associated model field. Consequently, they cannot support non-deterministic
updates of model fields as in Morgan’s calculator: there is more than one bag
having a given cardinal and a given sum of its elements.

In 2003, Breunesse and Poll [10] explore the possible use of model fields in
the context of deductive verification instead. They also analyse the potential use
of non-deterministic coupling relations via \such_that clauses. They propose
four possible approaches. The first one, which indeed originates from Leino and
Nelson [21], amounts to assume that the coupling invariant holds at any program
point. This is impracticable and indeed unsound since it does not check for ex-
istence of a model. Two other approaches amount to systematically replace each
predicate refering to a model field by a complex formula with proper quantifiers,
these are impracticable too. The last approach replaces the model fields by an
underspecified function which returns any possible value for it. In some sense it
is similar to our pack with but clearly less flexible.

In 2006, Leino and Miiller [20] proposed a technique to deal with model
fields via ownership. This work was the main inspiration of ours: we wanted to
remove a limitation of their approach which prevent them from dealing with
Morgan’s calculator. Precisely, the post-condition of their pack statement for
the add method is just the coupling invariant

this.sum = sumbag(this.values) A this.count = card(this.values)
from which it is not possible to prove the postcondition
this.values = union(old(this.values), singleton(x))

4 Indeed, method register of Subject, that registers a new observer, could be called
on a open observer before to pack it via notify. Thus, inside their constructor,
observers would not be obliged to be pack in a dummy state before the call to
register.

Technical Report, KIT, 2010-13 156

A. Tafat, S. Boulmé, C. Marché

because the latter is not the only bag b which have the given sum and cardinal.
In other words, Leino-Miiller approach [20] can only deal with deterministic
coupling invariants, which impose only one possible value for model field from
the values of the concrete fields.

Our methodology for refinement has a few originalities: unlike previous ap-
proaches, it allows non-deterministic refinement, as it exists classically in refine-
ment paradigm; it permits to safely hide the side-effects on private data from the
public specification of classes, which is a very important property for modularity
of reasoning on programs.

More recently, the Jahob verification system [29] also uses algebraic data
types to model programs. However, again the relation from concrete data to
abstract is done by logic functions, hence as previous approaches they are deter-
ministic and not amenable to refinement in general.

On the other way around, there have been attempts to apply ownership
systems to refinement-based techniques as in B. Boulmé and Potet [9] have shown
that the ownership policy of Boogie is a strict generalization of the verification
of invariants in B. More precisely, they have encoded the component language of
B (without refinement) in a pseudo-Boogie language, and have shown that the
VCs induced by this encoding imply those of B. Moreover, syntactic restrictions
of B that limit data-sharing between components can be safely relaxed using a
Boogie approach. However they have only considered B without refinement. By
extending their encoding using a pack with statement, we can also derive the
VCs of B for a subset of B limited at one level of refinement. However, extending
this to several levels of refinements is not obvious.

Our refinement methodology combines modular techniques for (1) ensuring
invariant preservation (ownership) and (2) checking side effects. Although such
a combination was already said possible in the past [20], it seems strange that
to the best of our knowledge, no tool currently propose both, e.g., Spec# has
ownership but no datagroups, whereas ESC/Java2 has datagroups but no own-
ership.

Datagroups provide quite a simple technique to check side-effects, in particu-
lar because it naturally fits in a standard weakest precondition calculus in classi-
cal first-order logic. It is clearly interesting to investigate more recent approaches
like separation logic [25], dynamic frames, or region-based access control [27, 28,
3.

In this paper we choose that model fields are algebraic data types because it
is handy for deductive verification. However our refinement technique is certainly
usable with immutable objets as models, more suitable for runtime verification;
such as by approaches of Darvas [15] which map model classes to algebraic
theories.

Acknowledgments We thank Marie-Laure Potet, Wendi Urribarri, Christine
Paulin and others CeProMi members for their fruitful discussions on this work.

157 Technical Report, KIT, 2010-13

A Refinement Methodology for Object-Oriented Programs

References

1.

2.

10.

11.

12.
13.

14.

15.

16.

17.

18.

J.-R. Abrial. The B-Book, assigning programs to meaning. Cambridge University
Press, 1996.

R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, 1998.

A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for local reasoning
about global invariants. In European Conference on Object-Oriented Programming
(ECOOP’08), Paphos, Cyprus, July 2008.

M. Barnett, R. DeLine, M. Fahndrich, K. R. M. Leino, and W. Schulte. Verification
of object-oriented programs with invariants. Journal of Object Technology, 3(6):27—
56, June 2004.

M. Barnett, R. DeLine, B. Jacobs, B.-Y. E. Chang, and K. R. M. Leino. Boogie:
A Modular Reusable Verifier for Object-Oriented Programs. In FMCO’05, volume
4111 of LNCS, pages 364—-387, 2005.

M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming System:
An Overview. In Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices (CASSIS’04), volume 3362 of LNCS, pages 49-69. Springer, 2004.
P. Baudin, J.-C. Filliatre, C. Marché, B. Monate, Y. Moy, and V. Prevosto. ACSL:
ANSI/ISO C Specification Language, 2008. http://frama-c.cea.fr/acsl.html.
P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Météor: A successful appli-
cation of B in a large project. In Formal Methods’99, volume 1708 of LNCS, pages
348-387. Springer, Sept. 1999.

S. Boulmé and M.-L. Potet. Interpreting invariant composition in the B method
using the Spec# ownership relation: a way to explain and relax B restrictions. In
J. Julliand and O. Kouchnarenko, editors, B 2007, volume 4355 of LNCS. Springer,
2007.

C.-B. Breunesse and E. Poll. Verifying JML specifications with model fields. In
FTfJP’03, 2003.

L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer, 2004.

J. Charles. Adding native specifications to JML. In FTfJP’06, 2006.

Y. Cheon, G. Leavens, M. Sitaraman, and S. Edwards. Model variables: cleanly
supporting abstraction in design by contract. Softw. Pract. Ezper., 35(6):583-599,
2005.

D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In G. Barthe,
L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, CASSIS, volume
3362 of LNCS, pages 108—128. Springer, 2004.

A. P. Darvas. Reasoning About Data Abstraction in Contract Languages. PhD
thesis, ETH Zurich, 2009.

J.-C. Filliatre and C. Marché. Multi-prover verification of C programs. In
ICFEM’04, volume 3308 of LNCS, pages 15-29. Springer, 2004.

J.-C. Filliatre and C. Marché. The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In CAV’07, volume 4590 of LNCS, pages 173-177, Berlin,
Germany, July 2007. Springer.

G. T. Leavens, K. R. M. Leino, and P. Miiller. Specification and verification
challenges for sequential object-oriented programs. Formal Aspects of Computing,
2007.

Technical Report, KIT, 2010-13 158

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A. Tafat, S. Boulmé, C. Marché

K. R. M. Leino. Data groups: Specifying the modification of extended state. In
OOPSLA’98, pages 144-153, 1998.

K. R. M. Leino and P. Miiller. A verification methodology for model fields. In
ESOP’06, volume 3924 of LNCS, pages 115-130. Springer, 2006.

K. R. M. Leino and G. Nelson. Data abstraction and information hiding. ACM
Trans. Prog. Lang. Syst., 24(5):491-553, 2002.

K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify
and check side effects. In PLDI’02. ACM, 2002.

C. Morgan. Programming from specifications (2nd ed.). Prentice Hall International
(UK) Ltd., 1994.

M. Parkinson. Class invariants: The end of the road? In IWACO’07, 2007. http:
//www.cs.purdue.edu/homes/wrigstad/iwaco/.

J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In
17h Annual IEEE Symposium on Logic in Computer Science. IEEE Comp. Soc.
Press, 2002.

A. Tafat, S. Boulmé, and C. Marché. A refinement approach for correct-by-
construction object-oriented programs. Technical Report RR-7310, INRIA, 2010.
J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference. Journal
of Functional Programming, 2(3):245-271, 1992.

M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation, 132(2):109-176, 1997. Academic Press.

K. Zee, V. Kuncak, and M. Rinard. Full functional verification of linked data
structures. In PLDI’08, pages 349-361. ACM Press, 2008.

159 Technical Report, KIT, 2010-13

Data refinement based testing

David Faitelson! and Shmuel Tyszberowicz?
L ProActive Modeling,
david@proactivemodeling.com
2 The Academic College, Tel Aviv Yaffo, Israel
tyshbe@tau.ac.il

Abstract. FineFit is a model-driven framework for testing object-
oriented systems. A FineFit specification is a collection of HTML ta-
bles representing the structure and the operations of the system under
test. FineFit translates the specification into a relational model that
serves both as a test oracle and as a source of test cases. FineFit uses
the retrieve relation — the data refinement definition of the relation-
ship between the abstract and the concrete system states — to check
if the actual behavior of a Java program matches its abstract specifica-
tion. The emphasis on representing and comparing system states makes
this approach particularly attractive to object-oriented systems, which
often consist of a complex graph of objects that represent the entities
of a problem domain and the relationships between them. Thus, FineFit
demonstrates the advantages of a data refinement approach to testing.

1 Introduction

Many object-oriented programs consist of a complex graph of objects that rep-
resent the entities of the problem domain and the relationships between them.
We may say that these systems have a rich data model. To verify the correctness
of such systems we must explicitly map the concrete representation of the data
model to its abstract specification. Data refinement [3] is a theory that formally
captures the relationship between an abstract specification and its concrete rep-
resentation. In particular the notion of a retrieve relation formally captures the
relationship between abstract and concrete representations of states. Data re-
finement is the underlying theory behind proof-oriented techniques [11,14] that
are used to develop safety critical systems [15,7]. Unfortunately, proving data
refinement is not practical for most commercial systems because they are built
from existing off-the-shelf components for which no proofs of correctness exist.
Additionally, the common languages in which we develop these systems have
complicated semantics that make it very difficult to reason about formally.
However, we can use data refinement as an effective theory for testing. Instead
of trying to prove that an implementation is a data refinement of its specifica-
tion, we can use the specification as a test oracle (and, as we shall see, as a source
of test cases) to automatically check if the behavior of the program satisfies the
laws of data refinement. Yet, deducing the retrieve relation automatically from

Technical Report, KIT, 2010-13 160

D. Faitelson, S. Tyszberowicz

the program is very difficult (indeed it brings back all the problems that are
related with formal proofs in today’s popular programming languages). Fortu-
nately, we can delegate this task to the programmer — after all she must know
how her data structures implement the system’s specification. By delegating the
implementation of the retrieve relation to the programmer we make the test-
ing framework flexible and scalable because she can control which parts of the
system to expose for the purpose of testing, even if the system is too large and
complicated for automatic analysis.

To demonstrate the feasibility of this approach we have developed FineFit.
FineFit is a proof of concept prototype that automatically tests Java programs
for data refinement. FineFit was inspired by the following tools and ideas:

1. Data refinement [3] provides the correctness criteria and the theoretical foun-
dation behind the testing algorithm.

2. Parnas tables [10] inspired us to use a tabular specification notation.

3. The Fit framework for integrated testing [9] gave us two important ideas:

(a) Representing tables in HTML.
(b) code fiztures that act as device drivers connecting the system under test
(SUT) to the testing framework.

4. The Alloy analyzer [5] from which we have taken:

(a) The relational semantics and the concrete syntax of the expressions that
we write inside the tables.

(b) The Kodkod relational constraint solver [12] to check for consistency,
generate test cases, and check for data refinement compliance.

To test a system using FineFit we first write the system’s specification as a
collection of HTML tables (which may be generated from any tool that supports
the HTML format, including Microsoft Word, Excel, Open-Office and Google
docs) that define the structure and the operations of the SUT.

FineFit translates the system’s specification into an Alloy relational model
and ensures that it is internally consistent. Next, FineFit finds an operation that
is available from the current system state, applies it to the SUT and checks if
the new state corresponds to the operation’s specification. This process continues
until either FineFit finds a discrepancy or until we decide to stop the process.
Figure 1 in Section 3.4 illustrates the testing process.

During testing, FineFit prints a trace that consists of the abstract snapshots
(states) and the operation calls of the SUT. Thus, when FineFit detects a dis-
crepancy we can review the entire history that led to the problem. This can
greatly help us to investigate the reason for the problem.

The rest of the paper is organized as follows. In Section 2 we demonstrate
FineFit using a concrete example. Then, in Section 3 we present FineFit in a
general context and explain the essential ideas of its implementation. Following
that, in Section 4 we describe the theory on which FineFit is based. In the last
section we discuss FineFit’s limitations, compare it to other related work and
describe ideas for future work.

161 Technical Report, KIT, 2010-13

Data refinement based testing

2 The case study

We illustrate FineFit with a case study taken from a commercial system that the
first author is currently developing. We wish to test a simple photo album that
consists of a sequence of photos which a user, Alice, can manipulate. Alice may
append a photo at the end of the sequence, remove photos (from any place in the
sequence) or replace photos by other photos. However, only the identifiers are
stored in the album; the actual photos are stored in a remote server. When Alice
is happy with her new album she presses ‘save’, at which point the difference
between the old and the new state of the album is sent to the server. The
difference consists of any new photos that were added to the album and the
unique identifiers of existing photos that were deleted from the album. The
server then stores the new photos and removes the deleted photos. For example,

PID, PID, PIDs PIDy

=,

The scenario below demonstrates what happens when Alice interacts with the
photo album and how the variables that define the album’s state are affected
by the interaction. Each step in the scenario describes an action and shows the
state of the system immediately after Alice performed that action:

Action taken Album sequence toAdd existing toDelete
1 2 3

Alice already has two photos ¢
1 in her album. These photos
are stored in the server.

{} {PIDs,PID:} {}
& {PID,} {PIDs, PID} {}

{PID,} {PIDs, PID,} {PIDs}

Now Alice decides to add |
a new photo. The photo is
placed into the first available
position (3).

Next Alice remove the first s
3 photo. This causes the other
photos to shift to the left.

Then Alice replaces the last (=2 2
4 photo with a new photo
(PIDy4).

{PIDs} {PIDs, PID,} {PID3}

Finally Alice presses save.]
As a result the server re- =4
5 ceives one new photo (PIDy)
to add and one existing
photo id (PIDs) to delete.

{} {PID:, PIDs} {}

Technical Report, KIT, 2010-13 162

D. Faitelson, S. Tyszberowicz

2.1 Modeling the photo album
To model the photo album using FineFit we must define four things:

1. the basic entities (atoms) that appear in the album,
2. the state of the album,

3. the album’s invariant,

4. the operations of the album.

Atoms We use three basic entities to describe the album: photos, photo
identifiers and integers (which index the photos in the album). To simplify the
model we may assume that there is an injective mapping between photos and
photo identifiers, and use only photo identifiers in the model. We therefore define
two kinds of atoms:

Atom Scope
PID 3
Int 3

Because FineFit uses a finite constraint solver the size of our model must be
small. This is achieved by associating a scope with each atom that determines
its maximal number of instances. In this example we have decided to test systems
with at most three photo identifiers and three integers.

The album’s state We can describe the state of the photo album by capturing
the sequence of photo identifiers in the album and the content of the toAdd,
existing and toDelete sets:

State
album seq PID
toAdd set PID

existing set PID
toDelete set PID

The album’s invariant Of course, not every combination of values for the
state’s components represents a valid album. For example, a photo cannot be
both new (i.e. it was not previously saved) and existing (i.e. it was previously
saved). In addition, the sequence of photos must be injective because the album’s
business logic forbids the same photo from appearing more than once in the
album. We use FineFit’s invariant table to define the album’s valid states:

Invariant
album in Int lone -> lone PID the album is an injective sequence
no toAdd & existing we cannot add an existing photo
toDelete in existing we can only delete existing photos
no toAdd & toDelete cannot add and delete the same photo
#album <= 3 no more than 3 photos

The invariant is the conjunction of the rows in the table. We use Alloy’s
notation to write the constraints and the expressions. Briefly, every expression

163 Technical Report, KIT, 2010-13

Data refinement based testing

is a relation (sets are relations of arity-1), the formula x in y stands for either
membership or inclusion, depending on whether x is a single atom or a relation,
the expression X lone -> lone Y represents the set of all injective functions
from X to Y, the formula no x means that the relation x has no tuples.

The album’s operations We define operations using operation tables. An
operation table consists of three major parts: a precondition header, a frame
column and a sequence of postcondition columns. The precondition is a predicate
that captures the states and inputs from which we may apply the operation. The
frame describes which parts of the state the operation may modify. Finally, the
postcondition consists of a set of equations that define the new value of each
component of the state as a function of the current state:

disjunction

P Q

precondition{ Pi P P3 Meaning:

conjunction

(P APLA (S = Fi(S)) V
S’ F1(S) | F2(S) | F3(S) (PAPy A (S =Fy(9)))V
(Q NP3 A (S = F3(9)))

frame

postcondition

To understand the meaning of the precondition header it is best to read it from
the bottom row towards the top row. The bottom row contains a separate leaf
predicate for each case of the operation’s behavior. Predicates that are common
to a group of cases are factored into the row above. In the example we have
three different cases Py, Py, and Ps. The predicate P, which is located above
P; and Ps, represents a constraint that is common to both P; and Ps. There
is a postcondition column for each leaf predicate. Each postcondition column
contains an expression for each variable in the frame.

The following table is the complete specification of the addPhoto operation®:

#album < 3 #album = 3

pid? !'in toAdd pid? in

.
+ existing pid? in toDelete album.elems true
album album.add[pid?] | album.add[pid?] album album
toAdd toAdd + pid? toAdd toAdd toAdd
toDelete toDelete toDelete - pid? @ toDelete toDelete
report! 0K 0K PHOTO_EXISTS @ ALBUM_FULL

3 The operators +,-,& stand for union, set-difference, and intersection respectively;
the expression xs.add[y] appends y at the end of the xs sequence; the expression
xs.elems denotes the set of elements held in xs; the suffixes ? and ! denote respec-
tively input and output variables.

Technical Report, KIT, 2010-13 164

D. Faitelson, S. Tyszberowicz

The leftmost column contains the operation’s frame — the parts of the state
that the operation may change. The top two rows contain the operation’s pre-
condition. The precondition is divided into two major cases: the album is not
full or the album is full. The first major case is further divided into three sub
cases: the input photo is not already in the album, the input photo was previ-
ously deleted or the input photo already exists in the album. The column below
each case represents the operation’s postcondition in this case. Each row in the
postcondition column corresponds to the same row in the frame. For example,
the first column has the following meaning: if the album is not yet full and the
input photo is not already in the album then add the new photo to album and
to toAdd and set report! to OK. The content of toDelete is not changed. The
existing set does not appear in the frame because it is not changed.

2.2 Implementing the photo album

The implementation of the photo album consists of two Java classes. The Photo
class consists of a status that says if the photo is new or existing (stored in the
server), and a string® that holds the content of the image. The PhotoAlbum class
consists of a list of photos that defines the order of the photos in the album, and
a set that contains the photo identifiers of the photos that we should delete:

public class Photo { public class PhotoAlbum {
public enum List<Photo> album;
Status {Exists, New}; Set<String> toDelete;
Status status;
String image; // operatiomns ...
}

// operations ...

}

Unfortunately we cannot list the entire implementation, but the program’s classes
demonstrate that in practice there is no simple correspondence between the data
structures of the specification and the SUT.

2.3 Testing the photo album
In order to test the album we must perform the following steps:

1. Connect the album’s code to FineFit by writing a method (named retrieve)
that translates the concrete state into an instance of the abstract state.

2. Run the tests by creating and running a program that consists of the FineFit
library and the album’s code (see also Section 3.3).

4 To simplify the prototype we represent the image and the photo’s identifier using

the same string. In the actual system the photo’s identifier is calculated as a hash
of the bitmap image.

165 Technical Report, KIT, 2010-13

Data refinement based testing

We will describe the first step in Section 3.2 because it requires more background
on the structure of FineFit.

Testing FineFit first ensures that the specification is consistent. It then be-
gins testing the SUT by finding which operations and inputs may be called from
the current state, calling them and comparing their effect against the specifi-
cation. As the test runs, FineFit prints a trace that consists of the operation’s
name and inputs and the abstraction of the SUT’s state.

The trace represents the behavior of the SUT as seen through the retrieve
function. Thus, when we detect an error we have at our disposal the entire
sequence of operations and states that led to that error. This history is an
invaluable tool for understanding and correcting errors. Here is a trace that
ends with a state discrepancy — a difference between the behavior of the SUT
and the specification:

1 $ java PhotoAlbumModel 11 toAdd = []

2 System is consistent. 12 existing = [[PIDO], [PID1], [PID2]]

3 init -> 13 toDelete = [[PIDO], [PID2]]

4 album = [] 14 addPhoto.PID2 ->

5 toAdd = [] 15 album = [[SqudXO,PIDl] s [SquXm,PIDQ]]
¢ existing = [] 16 toAdd = [[PID2]]

7 toDelete = [] 17 existing = [[PIDO], [PID1]]

8 . 18 toDelete = [[PIDO]]

9 removePhoto.SeqIdx0 -> 19 STATE DISCREPANCY

10 album = [[SeqIdx0, PID1]] 20 $

After declaring that the model is consistent (line 2) FineFit initializes the SUT
(line 3) and displays the resulting initial state (lines 4-7). The trace then proceeds
in the same fashion. After 30 calls, FineFit stops with a state discrepancy error
(line 19). The error is that after PID, was deleted and then added back again
(line 14), it disappeared from ezisting (compare lines 12 and 17). In this case
the culprit is a bug in the implementation. When we add a previously deleted
photo, we mark it (mistakenly) as new.

3 FineFit

The FineFit testing framework consists of the following parts:

— A tabular modeling notation in which we specify the SUT.
— A relational constraint solver that we use for four purposes:
1. to check the consistency of the specification,
2. to calculate which operations are available from a given state,
3. to generate inputs for an operation we would like to apply,
4. to check for violations of data refinement.

In addition, the SUT must implement the following Java interface which
FineFit calls during the testing process:

public kodkod.Instance retrieve(kodkod.Universe universe);

Technical Report, KIT, 2010-13 166

D. Faitelson, S. Tyszberowicz

This method takes the universe of atoms of the abstract model and returns the
abstraction of the current SUT’s state constructed as a set of tuples from the
atoms in the universe. We show an example in Section 3.2.

3.1 The Kodkod relational constraint solver

Kodkod [12] is a Java library that implements a bounded relational constraint
solver. It is the engine on which the Alloy analyzer [5] is currently implemented.
Kodkod translates first order constraints over bounded relational terms into a
SAT problem, applies a SAT solver to the problem and translates the solutions
(if any) back into relational models. The Kodkod class library consists of the
following major classes:

Atom an uninterpreted object (often just strings) that represents the basic
entities of a specification.

Universe a set of atoms.

Tuple a sequence of atoms taken from a particular universe.

Expression either a relation or a relational expression such as union, intersec-
tion, join and so on.

Formula a first order logic constraint over expressions. For example, that one
relation is a subset of another relation.

Bounds an association of relations to the power set of all the tuples they can
take in a particular universe.

Instance an association of relations to particular sets of tuples.

In order to use Kodkod we follow these steps:

1. Create a universe and populate it with atoms. In our case study we create
two kinds of atoms, one for photo identifiers and one for integers.

2. Create the specification:

(a) Create the relations that describe the system. For example, a unary
relation PID that represents the set of all possible photo identifiers and
a binary relation toAdd that associates every state with the set of new
photos in this state.

(b) Create a formula that defines relationships between the relations. For
example, a formula that insists that in every state the intersection of
toAdd and existing is empty.

3. Create bounds for the relations by associating them with power sets of tuples.
For example, the PID relation is associated with the power set of the atoms
PIDy, PIDy, PIDs.

4. Create a Kodkod solver, giving it the formula and the bounds object.

5. Ask the solver to find a solution, that is, to find from the set of all possible
bindings a particular subset that satisfies the formula.

If the solver finds a solution it returns an instance that contains the satisfying
bindings, otherwise it returns an error code indicating that no solution exists.

167 Technical Report, KIT, 2010-13

Data refinement based testing

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

3.2 Connecting the SUT to FineFit

Before FineFit can test the program we must implement the retrieve method that
translates the concrete program state into an instance of the abstract state®. In
our example this means that we have to translate the objects in the album and
toDelete containers into the equivalent set of tuples for each of the relations
album, toAdd, existing and toDelete:

public Instance retrieve(Universe universe) {
TupleFactory factory = universe.factory();
Instance instance = new Instance(universe);

List<Tuple> albumTuples = new ArrayList();
List<Tuple> toAddTuples = new ArrayList();
List<Tuple> existingTuples = new ArrayList();
int i = 0;
for (Photo p : album) {
albumTuples.add(factory.tuple(i, p.getImage()));
if (p.getStatus() == Photo.Status.New)
toAddTuples.add(factory.tuple(p.getImage()));
else if (p.getStatus() == Photo.Status.Exists)
existingTuples.add(factory.tuple(p.getImage()));
++1i;

}

List<Tuple> toDeleteTuples = new ArrayList();

for (String key : toDelete) {
toDeleteTuples.add(factory.tuple(key)) ;

}
instance.add(Relation.binary("album"), factory.setOf (albumTuples));
// ... similarly for the other relations

return instance;

}

In lines 5-7 we create temporary lists to hold the tuples of each relation and then
(lines 9-21) traverse, first the album (lines 9-16), then the toDelete set (lines
18-21) and collect the appropriate tuples into the temporary lists. Finally (lines
21-22) we associate each relation with its list of tuples and return the result as
a Kodkod Instance object (line 24).

3.3 Detecting model inconsistencies

There is no more reason to believe that we can write error-free specifications
than there is to believe that we can write error-free programs. Therefore it is
important that we ensure that our specification is consistent before we start
testing. With the help of Kodkod we check two things:

5 As we have mentioned in Section 1, we delegate the responsibility of implementing
the retrieve relation to the programmer.

Technical Report, KIT, 2010-13 168

D. Faitelson, S. Tyszberowicz

1. That there exists at least one state that satisfies the system’s invariant.
Formally, we ask Kodkod to find a solution to the following constraint:

some s : State | inv[s]

If no model can satisfy this constraint then either the scope is too small or
we have a contradiction in the invariant. In both cases this means that the
specification has errors and cannot be used for testing.

2. That (at least within the given scope) every operation that starts from a
valid state (one that satisfies the invariant) ends in a valid state. Formally,
we ask Kodkod to find a solution to the negation of this requirement:

some s, 8" : State | inv[s] and op|s, '] and ! inv[s']

If Kodkod can find a solution then there is a valid state from which the operation
op takes the system to an invalid state. This means that the specification has
errors and must be fixed before it can be used for testing. Once we have ensured
that the specification is consistent we can begin to test the SUT.

3.4 The testing procedure

Spec
1 l
Finefit
select applicable find new abstract
2-4 operation based 6-7 state using the
on current state retrieve function

Q SUT |

5

Fig. 1. A schematic view of the testing procedure. The numbers refer to the steps of the
testing procedure. Steps 2 to 7 repeat in a loop until either FineFit finds a discrepancy
or the user decides to stop.

The testing procedure (illustrated in Figure 1) uses two variables, currentState
and neztState, to keep track of the SUT’s state before and after each operation.
The procedure consists of the following steps:

1. Initialize the SUT and set currentState to its initial state.

169 Technical Report, KIT, 2010-13

Data refinement based testing

o

Use Kodkod to find all the operations that may be applied from currentState.

If no operation can be applied then stop and report a deadlock error.

4. Otherwise, select at random® one of the available operations, ask the SUT
to apply this operation and set nextState to the new SUT’s state.

5. Use Kodkod to check that the pair (currentState, nextState) satisfies the
operation’s specification.

6. If the pair does not satisfy the specification then stop and report a data
refinement error.

7. Otherwise, set currentState to nextState and go to step 2.

@

4 Data refinement

4.1 Systems as state based ADTs

Following [3] we represent a software system as a single abstract data type (ADT)
that consists of a set of states S and a collection of operations OP indexed over
the finite set I:

ADT = (S,(0P;)icr)

Each state consists of named components (the state variables) that are mapped
to some arbitrary values. Let V be a set of possible values and N be a finite set
of names. The state space of the system, X, is the set of all total functions from
N to V, that is ¥ = N — V. The set of system states, .S, is a subset of X', that
is § C Y. Each operation is a relation between system states:

Vi:IeOP;e S« S
We say that the ADT (S, (OP;);er) is consistent if two conditions hold:

1. The set of system states is not empty:
S#0

2. For every operation OP;, if the operation moves the system from state s to
state s’ and s is a valid system state, then s’ must also be a valid system

state:
Vs:S;s":Xe(s,s)eOP,=s €S

We can use different ADTs to describe the same system, depending on their
abstraction level. The difference in the abstraction level is both in the states and
in the operations of the ADT: a more abstract ADT will have states with less
details (each state will have fewer components) than a more concrete ADT. In
addition, a more abstract ADT will have operations that are less deterministic
than a more concrete ADT.

Data refinement formally captures what it means for a concrete ADT to
implement a more abstract ADT. The general idea is that for a concrete ADT
C' to behave according to an abstract ADT A, each operation of C' must simulate
its corresponding abstract operation. In the rest of this section we will explain
precisely what this means.

6 See also Section 5.4.

Technical Report, KIT, 2010-13 170

D. Faitelson, S. Tyszberowicz

4.2 Forward simulation

To say that a concrete operation COP; behaves according to an abstract oper-
ation AOP;, we first have to explain what is the relationship between concrete
and abstract states. Because a concrete state contains more details then an ab-
stract state, it is natural to think of the abstract state as being encoded in the
concrete state, and that therefore we should have a way of retrieving the abstract
state from the concrete state. A retrieve relation is a relation between concrete
and abstract states that defines how abstract states are retrieved from concrete
states. Given two ADTs A and C that represent the same system, and a retrieve
relation R that associates concrete states in C' to their corresponding abstract
states in A, we say that COP; is a forward simulation of AOP; if the following
two conditions hold:

1. Every abstract state in AOP;’s domain has a corresponding concrete state:
Va:dom AOP; ¢ 3¢ : dom COP; e (¢,a) € R

2. For every concrete transition (¢, ¢’), if the initial concrete state ¢ corresponds
to an initial abstract state a, then there exists an abstract transition (a, a’)
where the final abstract state a’ corresponds to the final concrete state ¢’:

Va:dom AOP;; ¢,c': Sc e (¢,c') € COP; A (c,a) € R=
Ja’ : Sy e (a,a') € AOP; A (c',d') € R
We can simplify this condition under two useful assumptions:

1. the concrete ADT is deterministic (i.e., its operations are functions),
2. the retrieve relation is a function.

In such a case the second condition of forward simulation simplifies to:
Va:dom AOP;; c,c’ : Sc o ¢ € dom COP; A ¢ € dom R =
COP;(c) edomR A (R(c), R(COP;(c)) € AOP;

In practice the first assumption applies to virtually all the cases where the
concrete ADT is a program, and in such cases the second assumption is good
software engineering. It would be very confusing if a single concrete state can be
interpreted as different abstract states.

4.3 Testing for data refinement

Assume now that we have a concrete program C' that is currently in a particular
valid state c¢. Assume also that ¢ can be mapped to a valid abstract state a
of an abstract operation OP4. We can check that the concrete operation OP¢
behaves as specified by OP,4 by using the following procedure:

1. Apply OP¢ to the concrete system.

171 Technical Report, KIT, 2010-13

Data refinement based testing

2. If the operation results in a crash we have found a problem. Either the
precondition of OPy4 is too weak (a bug in the specification) or there is a
problem in the implementation OP¢.

Otherwise, the operation terminates successfully in the state ¢/ = OP¢(c).

4. If ¢’ is not in the domain of R then we have found a problem. Either there’s
a mistake in OP¢ or there’s a mistake in R.

5. Otherwise, we can check if (R(c), R(¢’)) is a valid transition of OPg4. If the
check fails, then we have found a problem. Either the abstract operation or
the concrete operation are wrong.

6. Otherwise, we can continue the test by taking ¢’ to be the new current
concrete state. Note that we already know that this state is in R’s domain.

@

5 Discussion

5.1 Limitations

Currently, we provide only a limited way to specify non deterministic operations
by defining overlapping cases in the operation’s precondition. However this is
only a problem of the current notation which we plan to address in the future.

Two more fundamental limitations are due to FineFit’s underlying constraint
solver: it cannot generate test cases for large data structures and it is not suitable
for numerical specifications. The reason is that the more atoms we have in the
model, the more time (and memory) it takes for Kodkod to find solutions.

Note however that the fact that FineFit cannot generate large test cases
(that is, data structures that contain many objects) does not mean that it is
not suitable for testing large systems (that is, systems that consist of many
complicated components). On the contrary, as others have already noted [5],
many kinds of errors can be illustrated on a small example and therefore will be
detected by FineFit’s testing strategy.

5.2 Performance

Even though it is possible to create models on which Kodkod performs badly
(SAT is NP-complete after all), in our experience Kodkod is quite fast as long
as the scope is small. For scopes of between 3 and 7 instances, the speed of
analyzing the consistency of the model and of finding solutions using the sat4j
SAT solver is on the order of a few tens of milliseconds on a 2.16 GHz Intel Core
2 Duo iMac.

As the size of the scope grows, the performance of course degrades expo-
nentially. However, there are several arguments why we should prefer a small
scope. First, even a small scope often generates a huge number of combinations
which means that we will be exploring a very large state space (certainly much
larger than anything we can hope to achieve by hand). Second, as a good testing
practice we should use the smallest possible scope that can exhibit the SUT’s
behavior, because this makes it much easier to understand the problems that the

Technical Report, KIT, 2010-13 172

D. Faitelson, S. Tyszberowicz

tests reveal. Finally, there is empirical evidence [1] to support Daniel Jackson’s
Small Scope Hypothesis: “Most bugs have small counterexamples” [5]. Thus, if
we focus on the small test cases we are likely to find most of the bugs quickly
and we will have a better chance at understanding them.

5.3 Related work

The idea of generating tests and a test oracle from a specification is not new. In
this section we compare FineFit to related works.

Fit [9] is an open source tool for enhancing collaboration in software devel-
opment. Fit automatically compares customers’ expectations to actual results.
It allows customers and testers to give examples of how a program should be-
have by writing these examples in HTML tables. Fit automatically checks those
examples against the actual program. Each Fit table is interpreted by a fizture
— a piece of code that is responsible for executing the SUT against the examples
in the tables. Fit provides a very simple (and therefore effective) platform inde-
pendent testing framework. However, the test cases must be derived manually
from the specification. This is a laborious and error prone process that must be
repeated every time the specification changes.

Parnas Tables [10] are tabular constructs that organize mathematical ex-
pressions, where rows and columns separate an expression into cases and each
table entry specifies either the result value for some case or a condition that
partially identifies some case. The tabular notation of FineFit is based on a
combination of ideas taken from Fit and from Parnas tables. However, the spe-
cific details of FineFit’s tabular notation are different from both tools. To the
best of our knowledge the structure and semantics of FineFit’s operation table
is original and does not appear in previous works.

TestEra [6] is a framework for automated testing of Java programs that
generates all non-isomorphic test cases within a given input size, and evaluates
them against a correctness criteria. As an enabling technology, TestEra uses
Alloy, and the Alloy Analyzer. Korat [8] has a similar purpose but it does not use
Alloy and instead uses its own unique solver for expressing structural invariants.
Both tools assume that the SUT can change its state to any arbitrary state
that they choose. Unfortunately for many commercial systems this approach is
not practical because the state of the component is often related to the state of
other components forcing us to change the state of the entire system just to test a
particular unit. In contrast, FineFit requires only that the component can report
its current state, which is much easier for the concrete system to support. This
makes FineFit more suitable than TestEra or Korat for testing large systems.

Spec Explorer [13] is a platform for writing model programs and using them
to verify and test reactive object-oriented systems. Spec explorer provides tools
for generating and visualizing test scenarios and for executing them against
the SUT. The main difference between FineFit and Spec Explorer is that in
Spec Explorer the state is an opaque object (often identified with a simple label
whereas in FineFit a state has an internal structure and is more similar to an
actual program state. Thus, Spec Explorer is better suited for testing reactive

173 Technical Report, KIT, 2010-13

Data refinement based testing

systems while FineFit is better suited for testing data processing system where
as the system moves from state to state we are more interested in the evolution
and integrity of the data structures in each state.

Verification based testing (VBT) is a technique for generating test cases from
correctness proofs. In [4] this idea is implemented using the KeY verification sys-
tem [2]. KeY is intended for verifying the correctness of security-critical Java and
Java Card programs. The idea is that the structure of a proof tree corresponds
to the possible execution paths of the program. It is then possible, by using a
constraint solver, to calculate the test data that will force the program to follow a
particular execution. The benefit of a VBT approach is that it can guarantee the
coverage of the code (given suitable coverage criteria). However, the drawbacks
of VBT are that it requires a formal semantics of the programming language and
that the test oracle is platform specific. Unfortunately, many popular languages
have a complicated semantics that changes as they evolve. As a result we must
constantly update the VBT framework to support the changes in the language.
We must also implement a VBT framework for each new language. Finally, when
we change the language (perhaps because we have to port the program to a dif-
ferent platform) we must rewrite its specification. In contrast, a FineFit model
remains the same regardless of the SUT’s platform.

5.4 Future work

The FineFit framework is currently under development. We have implemented its
essential core and demonstrated that the approach works in practice. However,
we have not yet completed its user interface. Once completed, we plan to release
FineFit as an open source project. In the rest of this section we discuss the
research ideas that we would like to explore in future versions.

User defined exploration heuristics Currently FineFit decides which opera-
tion to apply by picking at random one that is applicable in the current state.
However, in many cases it can be more effective to guide this process. For ex-
ample, we may use a Markov chain to define the probabilities of operations
according to the system’s state. This way we can create behavioral profiles that
match the behavior of actual users or focus the exploration to particular areas of
the application. We would like to implement a user defined Markov chain model
in a future version of FineFit.

Testing reactive systems Reactive systems respond to events that arrive from
its environment. That is, the tester is no longer the only entity that can change
the system’s state. We would like to extend FineFit to support testing of reactive
systems.

Black bozes Often when a system crashes the reason is buried somewhere in
its past. If we record the trace of the last N states and operations in a black box
(either a log file or an area of the memory that we can retrieve from a core file
when the program crashes), we can later replay the trace on the specification to
find the first point at which the system misbehaved. We plan to add a replay
feature to FineFit in a future version.

Technical Report, KIT, 2010-13 174

D. Faitelson, S. Tyszberowicz

Supporting different languages Currently FineFit supports the testing of Java
programs. However, by implementing the framework as a client/server system
and defining a platform independent notation (for example XML or JSON) to
represent atoms and tuples we can support languages other than Java.

References

1. A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov. Evaluating the “small scope
hypothesis”. Technical report, In POPL’02, 2002.

2. B. Beckert, R. Hiahnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. LNCS 4334. Springer, 2007.

3. W. de Roever and K. Engelhardt. Data Refinement: model-oriented proof meth-
ods and their comparison. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1998.

4. C. Engel and R. Hahnle. Generating unit tests from formal proofs. In Tests and
Proofs (TAP), pages 169-188, 2007.

5. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

6. S. Khurshid and D. Marinov. TestEra: specification-based testing of Java programs
using SAT. Automated Software Engineering, 11(4):403-434, 2004.

7. T. Lecomte, T. Servat, and G. Pouzancre. Formal methods in safety-critical railway
systems. In Brazilian Symposium on Formal Methods, 2007.

8. A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid. Korat: A tool for generat-
ing structurally complex test inputs. In the International Conference on Software
Engineering, pages 771-774. IEEE, 2007.

9. R. Mugridge and W. Cunningham. Fit for Developing Software: framework for
integrated tests. Prentice Hall, 2005.

10. D. L. Parnas. Tabular representation of relations. CRL Report 260, Research
Institute of Ontario (TRIO), McMaster University, 1992.

11. K. Robinson. The B method and the B toolkit. In Algebraic Methodology and
Software Technology, pages 576-580. Springer, 1997.

12. E. Torlak and D. Jackson. Kodkod: A relational model finder. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 4424 of LNCS,
chapter 49, pages 632—647. Springer, 2007.

13. M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and L. Nach-
manson. Model-based testing of object-oriented reactive systems with Spec Ex-
plorer. In Formal Methods and Testing, volume 4949 of LNCS, pages 39-76.
Springer, 2008.

14. J Woodcock and J Davies. Using Z: Specification, Refinement, and Proof. Prentice
Hall, 1996.

15. J. Woodcock, S. Stepney, D. Cooper, J. Clark, and J. Jacob. The certification of
the Mondex electronic purse to ITSEC level E6. Formal Aspects of Computing,
2007.

175 Technical Report, KIT, 2010-13

Satisfiability Solving and Model Generation for
Quantified First-order Logic Formulas

Christoph D. Gladisch*

University of Koblenz-Landau
Department of Computer Science
Germany

Abstract. The generation of models, i.e. interpretations, that satisfy
first-order logic (FOL) formulas is an important problem in different ap-
plication domains, such as, e.g., formal software verification, testing, and
artificial intelligence. Satisfiability modulo theory (SMT) solvers are the
state-of-the-art techniques for handling this problem. A major bottleneck
is, however, the handling of quantified formulas.

Our contribution is a model generation technique for quantified formu-
las that is powered by a verification technique. The model generation
technique can be used either stand-alone for model generation, or as a
precomputation step for SMT solvers to eliminate quantifiers. Quantifier
elimination in this sense is sound for showing satisfiability but not for
refutational or validity proofs. A prototype of this technique is imple-
mented.

1 Introduction

Showing the satisfiability of a first-order logic (FOL) formula means to show
the existence of an interpretation in which the formula evaluates to true. This
is an important and long studied problem in different application domains such
as formal software verification, software testing, and artificial intelligence. In
software verification and testing the models, i.e. interpretations, are used as
counter examples to debug programs and specifications and to generate test
data respectively.

Satisfiability modulo theory (SMT) solvers are the state-of-the-art techniques
for showing satisfiability of FOL formulas and to generate models for FOL for-
mulas. A major bottleneck is, however, the handling of quantifiers (see, e.g., [7,
19,11, 20]). Quantifiers often lead to problems that are not in the decidable frag-
ments of SMT solvers. In such cases an SMT solver returns the result unknown,
which means that the solver cannot determine if the formula is satisfiable or not.

We propose a model generation technique that is not explicitly restricted to
a specific class of formulas and which can therefore solve more general formulas
than SMT solvers can solve. As a motivating example, assume we want to show
the satisfiability of the formula

Va.(z = 0 — prev(next(x)) = x) (1)

* gladisch@uni-koblenz.de

Technical Report, KIT, 2010-13 176

where prev and next are uninterpreted function symbols. Some state-of-the-art
SMT solvers — concretely we have tested Z3 [6], CVC3 [1], Yices [10,9] — are in
contrast to the proposed technique not capable to solve this formula. The reason
is that this formula is not in the decidable fragment of the solvers because it
combines arithmetics, uninterpreted functions, and quantification.

The proposed technique is also capable of generating only partial interpreta-
tions that satisfy only the quantified formulas, and return a residue of ground
formulas that is to be shown satisfiable. In this mode the technique acts as a
precomputation step for SMT solvers to eliminate quantifiers. Quantifier elimi-
nation in this sense is sound for showing satisfiability but not for refutational or
validity proofs. However, for handling of quantifiers in refutational and validity
proofs powerful instantiation based techniques already exist. These can be com-
bined with the proposed technique in order to create semi-decision procedures.

While model generation is not a new idea, the novelty of our approach are (1)
the choice of language to represent (partial) interpretations, (2) the technique
for construction of models, and (3) the means to evaluate (quantified) formulas
under these interpretations. Since satisfiability solving and model generation
for ground formulas is already well studied, we concentrate on the handling of
quantified formulas.

Furthermore we would like to motivate the importance of satisfiability solving
for software verification and testing. Software verification is a costly task mainly
because programs and specifications have bugs and also because annotations
such as invariants are often too weak to show desired program properties. We
experience that during software verification most time is spend with fixing and
adjusting the programs, specifications, and annotations. It is therefore invaluable
to detect if verification conditions have counter examples. This requires, however,
the ability to show the satisfiability of formulas that often contain quantifiers.
The generation of counter examples is further important in counter example
guided abstraction refinement (CEGAR) [4] and for checking the consistency, i.e.
contradiction-freeness, of axiomatizations and of preconditions in specifications.
Once a program is correct and annotations are strong enough a state-of-the-art
verification tool can afterwards prove the correctness of the program usually
automatically.

1.1 Background and Related Work

One has to distinguish between different quantifiers in different contexts, namely
between those that can be skolemized and those that cannot be skolemized. For
instance, in an attempt to show the validity of the formula Vz.p(z), the variable
x can be skolemized, i.e. replaced by a fresh constant, because all symbols of the
signature are implicitly universally quantified in this context. When showing the
validity of Jz.¢(z), then skolemization is not possible. In contrast, when show-
ing satisfiability, then skolemization is allowed for Jz.¢p(x) but not for Va.p(z).
Thus, assuming the formulas being in prenex form, the tricky cases are the han-
dling of (a) existential quantification when showing validity and (b) universal

C. Gladisch

177 Technical Report, KIT, 2010-13

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

quantification when showing satisfiability. In order to handle case (a) some in-
stantiation(s) of the quantified formulas can be created hoping to complete the
proof. Soundness is preserved by any instantiation. The situation in case (b) is,
however, worse when using instantiation-based methods, because these methods
are sound only if a complete instantiation of the quantified formula is guaranteed.

A popular instantiation heuristic is E-matching [19] which was first used in
the theorem prover Simplify [8]. E-matching is, however, not complete in general.
In general a quantified formula Vz.p(z) cannot be substituted by a satisfiability
preserving conjunction ¢(tg) A...Ap(t,) where g ... t, are terms computed via
E-matching. For this reason Simplify may produce unsound answers (see also
[17]) as shown in the following example.

Vh.Vivv.rd(wr(h,i,v),1)

v (2)

VYh.¥5.0 < rd(h, j) Ard(h,j) <232 —1 (3)

Formula (2) is an axiom of the theory of arrays and (3) specifies that all array
elements of all arrays have values between 0 and 232 — 1. The first axiom is used
to specify heap memory in [18]. Formula (3) seems like a useful axiom to specify
that all values in the heap memory have lower and upper bounds, as it is the
case in computer systems. However, the conjunction (2) A (3) is inconsistent, i.e.
it is false, which can be easily seen when considering the following instantiation
[h = wr(ho, k,23?),j := k], (see [18]). Simplify, however, produces a counter
example for =((2) A (3)), which means that it satisfies the false formula (2) A
(3). E-matching may be used for sound satisfiability solving when a complete
instantiation of quantifiers is ensured. For instance, completeness of instantiation
via E-matching has been shown for the Bernays-Schonfinkel class in [12]. An
important fragment of FOL for program specification which allows a complete
instantiation is the Array Property Fragment [3]. E-matching is used in state-
of-the-art SMT solvers such as Z3 [6], CVC3 [1], Yices [10,9], and others (see
[5]). Formula (1) which is solvable with our technique is, however, neither in the
Bernays-Schonfinkel class nor in the Array Property Fragment.

Another set of approaches for finding instantiations of quantified formulas
is based on free-variables (see e.g. [14]). These approaches focus, however, on
validity or respectively unsatisfiability proofs and not on satisfiability solving.
More precisely, they don’t guarantee a complete instantiation of quantifiers.

Satisfiability of a formula can be shown by weakening the formula with ex-
istential quantifiers and then showing its validity, instead of satisfiability. This
idea is followed in [22] for proving the existence of a state that reveals a software
bug. The approach uses free variables in order to compute instantiations of the
existentially quantified variables.

Quantifier elimination techniques, in the traditional sense, replace quantified
formulas by equivalent ground formulas, i.e. without quantifiers. Popular meth-
ods are, e.g., the Fourier-Motzkin quantifier elimination procedure for linear ra-
tional arithmetic and Cooper’s quantifier elimination procedure for Presburger
arithmetic (see, e.g., [13] for more examples). These techniques are, in contrast
to the proposed technique, not capable of eliminating the quantifier in, e.g., (1).

Technical Report, KIT, 2010-13 178

Since first-order logic is only semi-decidable, equivalence preserving quantifier
elimination is possible only in special cases. The transformation of formulas by
our technique is not equivalence preserving. The advantage of our technique is,
however, that it is not restricted to a certain class of formulas.

Finally, Finite Model Finding methods regard the finite domain version of
the satisfiability problem in first-order logic. These methods were developed
primarily in the '90ies and in some later work such as [23]. Our approach handles,
however, also infinite domains.

Structure of the paper. In Section 2 the basic idea of our approach is ex-
plained. In Section 3 the underlying formalism of our approach is introduced.
The main sections are Section 4 and 5 where the approach is described in more
detail and where we identify the crucial problems that have to be solved. The
solution to the problems described in Section 4 is given in form of a theorem
and the soundness of the theorem is proved. In Section 6 we report on our pre-
liminary experiments with our approach and provide conclusions and further
research plans.

2 The Basic Idea of our Approach

The basic idea of our approach is to generate a partial FOL model in which a
quantified formula that we want to eliminate evaluates to true. A set of quantified
formulas can be eliminated, i.e. evaluated to true, by successive extensions of
the partial model. This approach can be continued also on ground formulas
to generate complete models. While this basic idea is simple, the interesting
questions are: how to represent the interpretations, how to generate (partial)
models, and what calculus is suitable in order to evaluate formulas under those
(partial) interpretations.

The approach that we suggest is to use programs to represent partial models
and to use weakest precondition computation in order to evaluate the quanti-
fied formulas to true. Weakest precondition is a well-known concept in formal
software verification and symbolic execution based test generation. A weakest
precondition wp(p, p), where p is a program and ¢ is a formula, expresses all
states such that execution of p in any of these states results in states in which ¢
evaluates to true. Here, program states and FOL interpretations are understood
as the same concepts. Our approach is to generate for a given quantified formula
@ a program p such that the final states of p satisfy ¢. Thus a technique for
program generation is one of our contributions.

For example, in order to solve (1), we could generate the following program
(assuming, e.g., Java-like syntax and semantics):

for(i=0;true;i++){ next[il=new T(); next[i].prev=i; } (4)

and compute the weakest precondition of (1) with respect to this program, i.e.
wp((4), (1)). Using a verification calculus the weakest precondition of the quanti-
fied subformula can be evaluated to true. Thus, effectively the quantified formula

C. Gladisch

179 Technical Report, KIT, 2010-13

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

is eliminated and a partial interpretation represented in form of a program is
obtained.

A typical programming language such as JAva is, however, not directly suit-
able for this task because function and predicate symbols are usually not repre-
sentable in such languages. A verification calculus may also require extensions
because loops are usually handled by the loop invariant rule and the loop invari-
ant may introduce new quantified formulas.

A language and a calculus that are suitable for our purpose exist, however, in
the verification system KeY. The language consists of so-called updates. In the
following sections we introduce this language and describe our technique for con-
struction of updates that evaluate quantified formulas to true while minimizing
the chance of introducing new quantified formulas.

3 KeY’s Dynamic Logic with Updates

The KeY system [2,16] is a verification and test generation system for a subset
of Java. The system is based on the logic Java CArRD DL, which is an instance
of Dynamic Logic (DL) [15]. Dynamic Logic is an extension of first-order logic
with modal operators. The ingredients of the KeY system that are needed in this
paper are first-order logic (FOL) extended by the modal operators updates [21].

Notation. We use the following abbreviations for syntactic entities: V' is the
set of (logic) variables; X7 is the set of function symbols; X7 C X/ is the
set of rigid function symbols, i.e. functions with a fixed interpretation such as,
e.g., '0’, 'succ’, '+ XF < X/ is the set of non-rigid function symbols, i.e.
uninterpreted functions; XP is the set of predicate symbols; X' is the signature
consisting of X U XP; Trmpor is the set of FOL terms; Trm is the set of DL
terms; Fmlroy is the set of FOL formulas; F'ml is the set of DL formulas; U is
the set of updates; = is the equality predicate; and = is syntactic equivalence.
The following abbreviations describe semantic sets: D is the FOL domain or
universe; S is the set of states or equivalently the set of FOL interpretations. To
describe semantic properties we use the following abbreviations: vals(t) € D is
the valuation of t € Trm and vals(u) € S is the valuation of u € U in s € S;
s E ¢ means that ¢ is true in state s € S; F ¢ means that ¢ is valid, i.e. for all
s €S8, sF p; and = is semantic equivalence.

Updates capture the essence of programs, namely the state change computed
by a program execution. States and FOL interpretations are the same concept.
An update changes the interpretation of symbols £ such as uninterpreted
functions. Hence, updates represent partial states and can be used to repre-
sent (partial) models of formulas. The set X represents rigid functions whose
interpretation is fixed and cannot be changed by an update.

For instance, the formula ({a := b}a = ¢) € Fml, where a € X/ and
b,c € X/ consists of the (function) update a := b and the application of the
update modal operator {a := b} on the formula a = ¢. The meaning of this update
application is the same as that of the weakest precondition wp(a :=b,a = ¢), i.e.

Technical Report, KIT, 2010-13 180

C. Gladisch

it represents all states such that after the assignment a := b the formula a = ¢
is true — which is equivalent to b = c.

Definition 1. Syntaz. The sets U, Trm and Fml are inductively defined as the
smallest sets satisfying the following conditions. Let x € V; u,uj,us € U; f €
Xf ottty € Trm; o € Fml.

nr’

o Updates. The set U of updates consists of: neutral update €; function updates
(f(t1,...,tn) :=t), where f(t1,...,t,) is called the location term and t is
the value term ; parallel updates (uy || ug); conditional updates (if ; u);and
quantified updates (for x; ¢; u).

o Terms. The set of Dynamic Logic terms includes all FOL terms, i.e. Trm D
Trmpor; and {u}t € Trm for allu € U and t € Trm.

o Formulas. The set of Dynamic Logic formulas includes all FOL formulas,
i.e. Fml D Fmlpor; {u}p € Fml for allu € U and ¢ € Fml; sequents I' =
A € Fml, where I'y A C Fml; and all ¢ € Fml are closed by quantifiers, i.e.
o has no free variables.

A sequent I' = A is equivalent to the formula (1 A.. . Av,) — (61V...Vin),
where v1,...,v, € ' and d1,...,d,, € A. Sequents are normally, e.g. in [2] , not
included in the set of formulas. However, in this work it is convenient to include
them to the set of formulas as syntactic sugar.

Definition 2. Semantics. We use the notation from Def. 1, further let s,s' € S;
v,v1,v2 € D; x, 25,25 € V; and p(x) and u(zx) denote a formula resp. an update
with an occurrence of x.

Terms and Formulas

e vals({u}t) = valy(t), where s’ = vals(u)
e val;({u}p) = valy(p), where s’ = vals(u)

Updates

o s =wvals(e)

o ' =wals(f(t1,...,tn) :=1t), where s’ = s except the interpretation of f5 s
changed such that valy (f(t1,...,t,)) = vals(t)

o s’ =wals(ui;ug), there is s with s = vals(u1) and s’ = valgr (ug)

o s =wals(uy ||uz). We define s’ by the interpretation of terms t.
Let vg = vals(t), v1 = vals({u1 }t), and ve = vals({usg}t).

If vg # vo then valy (t) = vy else valg (t) = vy.
o ' =wals(if ¢; u), if vals(p) = true then s’ = vals(u), otherwise s’ = s.

o Intuitively, a quantified update (for x; (x); u(x)) is equivalent to the infi-
nite composition of parallel updates (parallel updates are associative):

AL p(@i); ule:)) || (GE o(z); ulz)) || -

satisfying some global order = such that B(x;) > B(x;), where §:V — D.

181 Technical Report, KIT, 2010-13

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

A complete and formal definition of quantified updates cannot be given in
the scope of this paper; we refer the reader to [21,2] for a complete definition
of the language and the simplification calculus. In the following some examples
are shown of how updates, terms, and formulas are evaluated in KeY respecting
the given semantics in Def 2.

o {f(1):=a}f(2) = f(1) simplifies to f(2) = a.

o {f(b) :=a}P(f(c)) simplifies to (b =c¢ — P(a)) A (=b=c— P(f(c))).

e {f(a):=a}f(f(f(a))) simplifies to a.

o {uy; f(t1,...,t,) :=t} is equivalent to {uq || f({u}t1,...,{u}tt,) = {u}t}.

e {f(1):=al|l f(2) :=0}f(2) = f(1) simplifies to b = a.

e {f(1):=all f(fl) = bgf(2) = f(1) simplifies to f(2) = b, i.e. the last update
wins in case of a conflict.

o (if @ f(b) = a}P(f(c)) simplifies to ¢ — {f(B) == a}P(f(c)).

o {for ;0 <z Az <1; f(x):==a} is equivalent to {f(1) := 1]| £(0) := 0}.

4 Model Generation by Iterative Update Construction

In order to show the satisfiability of a formula ¢;,, our approach is to generate
an update u, such that F {u}¢;,. If such an update exists, then ¢;,, is satisfiable
and the update represents a model of ¢;,.

Our main contribution is a technique for generating (partial) models for
quantified formulas. As this work was developed in the context of KeY which
is based on a sequent calculus, we regard the model generation problem of a
quantified formula Vz.¢(z) in a sequent ¢ = (I',Vz.¢(xz) = A). Such sequents
occur frequently as open branches of failed proof attempts. The reason for proof
failure is often unclear and it is desired to determine if ¢ has a counter example,
i.e. if a model exists for —¢. The goal is therefore given by the following problem
description.

Definition 3. Problem Description. Given a sequent (I',Vx.¢(x) = A) the goal
is to gemerate an update u such that:

{up(M\WVz.p(x) = A)) = (I, true = A”) (5)

If this problem is solved by a technique, then this technique can be applied
iteratively to all quantified formulas occuring in I" and A resulting in a sequent
I'" = A" that consists only of ground formulas. Note that non-skolemizable
quantified formulas occuring in A are those with existential quantifiers and
they can be moved to I' using the following equivalence: (I' = Jz.¢(x), A) =
(I'\WVz.—o(z) = A).

We have implemented different algorithms that follow this approach. Unfor-
tunately, only in rare cases the problem formulated in Def. 3 was solved by early
algorithms. Based on experiments with early algorithms we have identified two
important problems that we state in form of the following informal proposition.

Proposition 1. The following description follows the notation of Def. 3.

Technical Report, KIT, 2010-13 182

C. Gladisch

a) In general cases of Vx.p(x), it is not feasible to construct an update u such
that E {u}Vz.¢(z), without analysing the semantic properties of the matriz
o(x).

b) The theorem prover defined in [2] is not sufficiently powerful to simplify
(I A{ulVe.p(z) = A7) to (I, true = A') if E {u}Ve.¢(z) and u is a
quantified update.

Some possitilities to analyse the semantic properties of ¢(x) are to test in-
stances of ¢(z) or to use free variables (see, e.g., [14]). We have experimented
with the latter approach and could solve problem (a) in several cases. The reason
for problem (b) is that in order to simplify the matrix ¢(x) the sequent calculus
requires semantic information about ¢(x) to be available on the sequent level,
i.e. in the formulas I" U A.

We have implemented an algorithm that solves both problems of Proposi-
tion 1. The algorithm itself is not provided in this paper; instead we provide
a theorem that formalizes only the crucial problem simplification technique of
the algorithm. The simplification technique is the core of the algorithm and we
therefore prove the soundness of this simplification.

For the construction of the updates it is sometimes necessary to introduce and
axiomatize fresh function symbols. For instance, it may be desired to introduce
a fresh function notZero € X7 with the axiom —(notZero = 0). With this axiom
it is, e.g., possible to write an update a := b + notZero, with a,b € Trmpor,
expressing a general assignment to a with a value different from b. Each update
u; is therefore associated with an axiom «;.

Definition 4. Given a sequent ¢ = (I'\Vz.¢p(x) = A), where I, A C Fml and
¢(x) is an arbitrary formula with an occurrence of x € V, i.e. ¢ is not restricted
to ¢ € XP. The formulas Y, @h,, om € Fml, for m € N, are defined recursively

as:

o vo = (I'\Vz.¢(z) = A) Om+1 = {um}(am — @m)

o ¢y = (I true = A) Prnp1 = {um}(am — ¢5,)

b Yo = (I' = Va.é(z), A) VYmt1 = {tum}(am — ¥m)

Definition 4 describes an abstract search technique for a sequence of updates
U ;- - - 3 Ug, M € N, for solving the problem of Def. 3. The updates wuy, ;... ;ug

constitute the update u in Def. 3 and ¢y = ¢ is the original sequent that is to
be shown falsifiable. In the following theorem we assume v = Vz.¢(x).

Theorem 1. Letm € N, ug,...,um € U; ag,...,qm € Fmil;let o = (I,y = A)
and Yoyl 0m € Fml be defined according to Def. 4, then

i B thy o (@;n e ‘Pm)
. If there is s, € S such that s, F —@p,, then there exists s € S with
s =vals,, (Um;...;u1;€) and s E —gp.

The theorem describes under what condition a sequence (not sequent) of
update and axiom pairs (ug, ag), .. ., (Um, @m) evaluates a quantified formula to
true; and the theorem describes how this sequence represents a partial model.

183 Technical Report, KIT, 2010-13

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

Formula —¢ is the formula for which a model shall be generated. Statement
(7) of Theorem 1 states that if there is a model s, € S for a formula —p,,,
according to Def. 4, then from s,, a model for —¢ can be derived by evaluation
of the updates uy, ..., u,,. Hence, -, can be used to show the satisfiability of

For instance, let ¢ = (—a = b), then a suitable pair (ug, ap) to construct ¢ is,
e.g. (a := b, true). In this case ¢ has the form {a := b}(true — (—a = b)) which
can be simplified to false. Hence, any state s; € S satisfies s; F —p; which
implies that —¢ is satisfiable and a model s € S for —p is s = vals, (a := b).
Note, that chosing an update is a heuristic, e.g. the pair (b := a,true) or the
pair (a := 1||b:= 1,true) are also suitable candidates.

An important property of the statement for the construction of an update
search procedure is that soundness of the statement is preserved by any pair
(u,). For instance, consider the pair (a := 1]||b := 2,true) or the pair (a :=
b, false). In both cases ¢1 evaluates to true. Hence, there is no s; € S such that
s1 F =1 and therefore no implication is made regarding the satisfiability of ¢.

Based on statement (i) an algorithm can be constructed for the generation
of models for ground formulas. The challenge is, however, to generate a model
that satisfies a quantified formula that cannot be skolemized. If 1), is valid then
the model generation problem for —¢,, can be replaced by the model generation
problem for —p! because ¢, and ¢} are equivalent. Considering Def. 4, the
statement is interesting because in ¢/, the quantified formula is eliminated, i.e. it
is replaced by true. Together with Statement (4i), =@, can be used to generate
a model for —p.

The problem is to check if ¢, = ¢/, which is a generalization of the problem
in Def. 3. Theorem 1 states that the problem ¢,, = ¢/, can be solved by a
validity proof of 1,,. This allows solving the problems described in Proposition
1 because the quantified formula in ,,, occurs negated wrt. ¢, and can therefore
be skolemized — note that (IVx.¢(z) = A) = (I' = —Va.¢(x),A). When
U, is skolemized, then it is (a) easy to analyse the semantics of ¢(sk), where
sk € X7 is the skolem function, and (b) the propositional structure of ¢(sk)
can be flattened to the sequent level which is necessary to simplify quantified
updates. In this way both problems described in Proposition 1 are solved.

The approach can be generalized for the generation models for ground for-
mulas by using the more general Def. 5 instead of Def. 4 in Theorem 1.

Definition 5. Given a sequent ¢ = (I',y = A), where I, A C Fml and v €
Fml, let the formulas tm, @, om € Fml, for m € N, be defined recursively as

follows:
b Yo = (F =7, A) Ymy1 = {um}(am - wm)
hd 906 = (F’ true = A) @;n-i-l = {um}(am - 410471)
hd ¥Yo = (F,’}/ = A) Pm+1 = {um}(am - @m)

In the proof of Theorem 1 we use the following lemma.

Lemma 1. Weakening Update. Let uw € U and ¢ € Fml. If E ¢, then E {u}p.

Technical Report, KIT, 2010-13 184

C. Gladisch

Proof of Lemma 1. Since for any s € S, holds s F ¢, it is also the case for
s’ =wals(u) that s’ E ¢ because s € S. B

Proof of Theorem 1. The proof of Theorem 1 is based on induction on m.
Induction Base (m = 0). (i) Validity of

(I' = Va.¢(x), Q) < (I true = A) « (IVa.¢(z) = A))
b 0 ©0

can be shown by using propositional transformation rules. In the following we
simplify ¢ < o and derive by equivalence transformations .

(I’ ANtrue) — A) « ((I' AVz.¢(z)) — A)
(I' = 4) = (I'AVa.¢(x)) — A)

(I' = A) = (I' A\Vz.¢(x)) — A) (I AVz.d(z)) = A) = (I' = A)
(I' = A) AT AVz.¢(z)) — A ((I" ANYz.¢(x)) = A)AT) HA
T A

(
(ANT AVz.p(x)) — A ((Vz.p(z) = AYAT) —
(ANT)— A (Vo.g(x) = A)AT) —
A— A ((=Vz.¢(x) I —A)A(AA F) — A)
true (—Vz.dp(x)ANT) — A

I' - (Vz.¢(z) Vv A)

Since po = ¢ and s = valy, () = so statement (ii) is trivially true.
Induction Step (m > 0). (i) Assuming F ¢, < (@), < ©m), we want to show
FYmir < (i1 < @me1). HE m = (@7, < ©m), then

Eam = (Ym < (9, < Pm)) (6)
for any «,, € Fml. We use the equivalence

(A= (B<0)<(A—=B)=(A4=0)

to derive the following statement that is equivalent to (6)
F ((m = Ym) < (o — SO;'n) < (am — ¢m))) (7)
Due to Lemma 1 (i), (7) implies
E {um}((am = m) = (am = ¢5,) < (@m — ©m))) (8)
that can be simplified by update propagation to
F ({umHom = ¥m) & {umHam — @) < {umb(om — ¢m))) (9)

Statement 9 is equivalent to & Y1 < (¢),41 < Pm1)-

(ii) Assume there is s,,+1 € S such that s,,+1 F ~¢n+1. By propagating the
negation of —,,+1 to the inside of the formula, loosely speaking, we obtain the
equivalent formula ¢, € F'ml that can be recursively defined as

po = (I} true = A) Prmt1 = {tum}(am A)

185 Technical Report, KIT, 2010-13

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

Hence, s;41 F —@mq1 is equivalent to sp,41 F ¢, which is equivalent to
Sm+1 E {um}(am A ¢,,). There is s, € S with s, = vals,, ., () such that
Sm E am A ¢, and therefore s, F ¢,. Since ¢, is equivalent to —p,, we have
Sm E —m. According to the induction hypothesis there exists s € S with s =
vals,, (U ... u1;€) such that s F . Because of s, = vals,, ., (Um), we con-
clude that if s,,11 F =@y 1, then there exists s € S with s = vals,, |, (Um41; Um;
...;u1;€) such that s E —p. B

5 Heuristics for Update Construction from Formulas

While Section 4 describes a general sound framework for model generation, in
this Section we shortly describe some heuristics that we have implemented to
construct concrete updates. In particular we give an intuition of how quantified
updates can be constructed in order to satisfy quantified formulas. Important to
note is that soundness of Theorem 1 is preserved by any sequence of update and
axiom pairs. Hence, unsoundness cannot be introduced by any of the heuristics.

Definition 6. Update Construction. Let v € Fmlpor be the currently selected
formula for which a partial model is to be created and which is a subformula in
a sequent p = (Iy = A). Let v = (I’ = v, A) and ¢’ = (I" = A).

The goal of update construction from the formula v is to create a pair (u,),
with uw € U and o« € Fml, such that

o E{u}a— 1), and
o there is some s € S with s F ~{u}(a — ¢’)

The sequent v is equivalent to ¢y and ¢’ is equivalent to ¢y, according to
Def. 5. In a model search algorithm each time a pair (u,, a,,) is constructed,
new formulas ¢}, 1, ¢}, 1, and ¢, 1 are generated according to Def. 5. These
formulas must be simplified to ¢, ¥ and, ¢, respectively, such that a new formula
v € Fmlpor, can be selected for update construction according to Def. 6. In the
following subsections, case distinctions are made on the structure of ~.

5.1 Update Construction from Ground Formulas

Handling of Fqualities. Assume t1,t2 € Trmpoy, are location terms (see Def. 1).
If 7 is of the form t; = [or [= ¢1, where [is a literal, then the pair (¢, := [, true)
should be created because F {t; := [}(true — (t; = 1Al = t1). If v is of the
form t; = t9, a choice has to be made between the pairs (t1 := to,true) and
(ta := t1,true). Equality between terms can in some cases also be established,
if the terms share the same top-level function symbol and have location terms
as arguments. For instance, let f(t1), f(t2) € Trmpor and f € X/, then F
{u} (@ — f(t1) = f(t2)) can be satisfied by the pair (¢; := to,true) or by
(to := tq,true).

Technical Report, KIT, 2010-13 186

C. Gladisch

Handling of Arithmetic Expressions. Let t1,ta € Trmpor be arithmetic expres-
sions composed of rigid and non-rigid function symbols. Several solutions exist
to satisfy F {u}(a — t1 = t2). Consider for instance the polynomial equation

2xa+bxc=d—e

where a,b,c,d, e € Z,J:T are location terms. There are five most general updates
evaluating this equation to true. These can be obtained by solving the polynomial
equation for one of the location terms at a time. Our implementation enumerates
those solutions during update search. An example for one of the solutions is
((a:=(d—e—bxc)/2,true).

Handling of Inequalities. Let t1,to € Trmpor where t1 is a location term. An
inequation t; # to can be satisfied, e.g., by the pair (¢; := to + 1,true). A
more general update is, however, t; := ty + notZero, where notZero € X1 is
a fresh-symbol representing a value different from 0. This is where the axiom
part of a pair comes into play. A general solution for the formula t; # to is
the pair (¢; := ta + notZero, ~(notZero = 0)). Inequations of the form t; < to
can be handled by introducing a fresh symbol gtZero € X} with the axiom
gtZero > Q.

5.2 Update Construction from Quantified Formulas

Our approach to create models for quantified formulas is to generate quantified
updates. For example, the quantified formula

Ve.x >a— f(x)=g(z)+z (10)
is satisfiable in any state after execution of the quantified update
for ;x> a; f(x) :=g(x) +x (11)

i.e. E {(11)}(10). Notice the similar syntactical structure between (10) and (11).
Another solution is
for z; z > a; g(x) :== f(z) — (12)

for which holds F {(12)}(10). It is easy to see that a translation can be general-
ized for other simple quantified formulas. Furthermore, the heuristics and case
distinctions described in Section 5.1 can be reused to handle different arithmetic
expressions and relations. For instance the formula

Va.f(z) 2z — (9(z) < f(2))
evaluates to true after execution of any of the following updates (with axioms)

(for z; f(x) = x; g(x) := f(x) + gtZero , gtZero > 0)
(for z; ~(g9(z) < f(x)); f(z) :==a — gtZero, gtZero > 0)

187 Technical Report, KIT, 2010-13

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

— Java + JML

/*@ public normal_behavior
@ requires next!=null && prev!=null && next!=prev
@ && (\forall int k; true ; O<=next[k] && next[k] < prev.length)
@ && (\forall int 1; 0<=1 && l<next.length; next[1l]==1);
@ ensures (\forall int j; 0<=j && j<next.length; prev[next[jl]l==j);
@ assignable prev[*]; */
public void link(){
/*@ loop_invariant (\forall int x; 0<=x && z <=1; prev[next[x]]==x)
&& (0<=i && i<=next.length) ; modifies prev[*],i; @*/
for(int i=0;i<next.length;i++){ prev[next[i]l]l=i; }

}

© 0w N o G A W N =

o
S}

-
=

Java + JML —

Fig. 1. An example of a Java method (of class MyCls) with a JML specification that is
not verifiable because the underlined formula should be = < i instead of x < ¢

The KeY tool implements a powerful update simplification calculus for quan-
tified updates. The calculus may in some cases introduce new quantified formu-
las. In such cases our approach has to be applied either recursively on the new
quantified formulas or the heuristic has to choose different updates in a search
procedure to prevent the introduction of new quantified formulas.

Finally, the initial example of the paper, i.e. Formula (1), can be solved by
the following quantified update application which the KeY system simplifies to
true.

{(for z1; z1 > 0; next(xy) := x1); (for xa; 2 = 0; prev(next(zs)) := x2)}(1)

6 Experiments, Conclusions, and Future Work

We have proposed a model generation approach for quantified first-order logic
(FOL) formulas that is based on weakest-precondition computation. The lan-
guage we propose for representing models is KeY’s update language. The advan-
tage of using updates is the possibility to express models for quantified formulas
via quantified updates, and the availability of a powerful calculus for simplifying
formulas with updates to FOL formulas. In particular, no loop invariants have
to be generated in order to simplify quantified updates.

We have identified problems (Proposition 1) that occur, when the approach is
implemented according to the basic description. Theorem 1 provides a solution to
these problems. The theorem allows us to reformulate the basic model generation
approach for quantified formulas into a semantically equivalent approach without
the problems described in Proposition 1.

Based on Theorem 1 and Definitions 4 and 5 an algorithm for model gen-
eration can be derived. The technique can be used in two ways. On the one
hand, it can be used as a precomputation step to SMT solvers by restricting the

Technical Report, KIT, 2010-13 188

Vo :int.(z < =1V > 14140 V get,(prev(self),accy(next(self),z) = x),
Vz : MyCls. (prevAtPre z) = prev(z)),

Vz : MyCls.(x = null V —created(z) V —a(z) = null),

Vz : MyCls.(x = null V —created(x) V —|next() =null),

Vz : MyCls.(z = null V —created(z) V —prev(z) = null),

Vz : int.acc(next(self),z) > 0),

Vz :int.accp(next(self),) < —1 + length(prev(self))),

Vo :int.(l < —1V 1 > length(next(self)) V accp(next(self),z) = x),

Fig. 2. Quantified formulas in a sequent resulting from a failed verification attempt of
the code in Figure 1; 21 additional ground formulas are abbreviated by ’...

{for z : MyCls; (next(z) = null A —a(z) =null A...); created(z) := false}
{for z : MyCls; (a(z) = 0 A -z = null); created(x) := false}

{for z :int; (b > 1+ Az < —1); accpj(next(self)) := —1 + ca}

{for z: int; x < —1; i := accp(next(self)) —co*x —1 +c1}

{for z :int; (x > 0 Az > 1410); accj(next(self)) := length(prev(self)) + co}
{for z : int; (accy (next(self)7 z)=x Az <ioN...); gety(prev(self),z) = x}

Fig. 3. A subset of generated updates satisfying the quantified formulas in Figure 2

computation of the formulas ¥,,, ¢!, and ¢,, to Def 4. In this case the tech-
nique eliminates quantified formulas and leaves a residue of ground formulas or
alternative quantified formulas to be solved by a different method, e.g. an SMT
solver. On the other hand, the technique can be used stand-alone for model
generation by using the general Def. 5.

The approach was developed in the context of formal software verification
and test generation project. Verification attempts often fail, i.e., they are inter-
rupted by a timeout. Figure 1 shows a JAava method with a JML specification.
A verification attempt of the method results in a set of open proof obligations.
One of them is shown in Figure 2 that we abbreviate as ¢. For a verification
engineer it is important to know if the open proof obligation has a counter ex-
ample or not. State-of-the-art approaches use SMT solvers to try answering such
questions. These are, however, not powerful enough to solve formulas such as .
Preliminary experiments show that our method can generate counter examples
for formulas such as ¢ that SMT solvers cannot solve. For instance, Figure 3
shows a part of an iterative update application that describes a model for —p
and was generated by an implementation of our approach.

What formulas can be solved by our general approach depends on the chosen
language for model representation, the theorem prover in use, and the heuristics
for model construction. Quantified formulas are suitable to represent models
for certain kinds of quantified formulas. They are, however, not sufficient to
represent models of inductively defined functions. We are currently working on
an extension of the update language for this purpose.

C. Gladisch

189 Technical Report, KIT, 2010-13

Satisfiability Solving and Model Generation for Quantified First-order Logic Formulas

References

1.

Clark Barrett and Cesare Tinelli. Cve3. In CAV, pages 298-302, 2007.

2. Bernhard Beckert, Reiner Hahnle, and Peter H. Schmitt, editors. Verification of

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Object-Oriented Software: The KeY Approach. LNCS 4334. Springer, 2007.
Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable about
arrays? In VMCAI, pages 427-442, 2006.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In CAV, pages 154-169, 2000.
Leonardo Mendonga de Moura and Nikolaj Bjgrner. Efficient e-matching for smt
solvers. In CADE, pages 183-198, 2007.

Leonardo Mendonga de Moura and Nikolaj Bjgrner. Z3: An efficient smt solver.
In TACAS, pages 337-340, 2008.

David Déharbe and Silvio Ranise. Satisfiability solving for software verification.
STTT, 11(3):255-260, 2009.

David Detlefs, David Detlefs, Greg Nelson, Greg Nelson, James B. Saxe, and
James B. Saxe. Simplify: A theorem prover for program checking. Technical
report, J. ACM, 2003.

Bruno Dutertre and Leonardo de Moura. The YICES SMT solver. Technical
report, Computer Science Laboratory, SRI International, 2006. http://yices.
csl.sri.com/tool-paper.pdf.

Bruno Dutertre and Leonardo Mendonga de Moura. A fast linear-arithmetic solver
for dpll(t). In CAV, pages 81-94, 2006.

Yeting Ge, Clark W. Barrett, and Cesare Tinelli. Solving quantified verification
conditions using satisfiability modulo theories. Ann. Math. Artif. Intell., 55(1-
2):101-122, 2009.

Yeting Ge and Leonardo Mendonga de Moura. Complete instantiation for quanti-
fied formulas in satisfiabiliby modulo theories. In CAV, pages 306-320, 2009.
Silvio Ghilardi. Quantifier elimination and provers integration. FElectr. Notes
Theor. Comput. Sci., 86(1), 2003.

Martin Giese. Incremental closure of free variable tableaux. In IJCAR, pages
545-560, 2001.

David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press,
London, England, 2000.

KeY project homepage. At http://www.key-project.org/.

Joseph R. Kiniry, Alan E. Morkan, and Barry Denby. Soundness and completeness
warnings in esc/java2. In Proc. Fifth Int. Workshop Specification and Verification
of Component-Based Systems, pages pp. 19-24, 2006.

Michal Moskal. Satisfiability Modulo Software. PhD thesis, University of Wroclaw,
2009.

Michal Moskal, Jakub Lopuszanski, and Joseph R. Kiniry. E-matching for fun and
profit. Electr. Notes Theor. Comput. Sci., 198(2):19-35, 2008.

Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-Carbonell, and Albert Ru-
bio. Challenges in satisfiability modulo theories. In RTA, pages 2—-18, 2007.
Philipp Riimmer. Sequential, parallel, and quantified updates of first-order struc-
tures. In LPAR, pages 422-436, 2006.

Philipp Riimmer and Muhammad Ali Shah. Proving programs incorrect using a
sequent calculus for java dynamic logic. In TAP, pages 41-60, 2007.

Jian Zhang and Hantao Zhang. Extending finite model searching with congruence
closure computation. In AISC, pages 94-102, 2004.

Technical Report, KIT, 2010-13 190

An Experience Report on the Verification of
Algorithms in the C++4 Standard Library using
Frama-C

Jochen Burghardt, Jens Gerlach, Hans Pohl, and Juan Soto

Fraunhofer FIRST, Kekuléstrafle 7, 12489 Berlin, Germany,
FIRSTNAME.LASTNAME@first.fraunhofer.de,
URL: http://www.first.fraunhofer.de/device_soft_en

Abstract. Over the past few years, we have been conducting assessment
studies to determine the utility of the Frama-C/Jessie platform of soft-
ware analyzers (in conjunction with automatic theorem provers) for the
formal verification of software. In this experience report, we discuss ex-
periments in the verification of algorithms in the C+4 Standard Library
based on tool-supported Hoare-style weakest precondition computations
to formally prove ACSL (ANSI/ISO C Specification Language) proper-
ties. Often automated provers are unable to perform inductive proofs.
Hence, we introduce an approach to guide automated provers to find an
inductive proof using auxiliary C-code corresponding to the proof struc-
ture. We also present a method to verify that a function only permutes
the contents of an array, and obtain the relation between the pre- and
post-index for each array element for use in later specification properties.
Furthermore, we describe an approach to prove the essential properties
of a function independent of each other, supplying for each task only
the assumptions actually needed, i.e., related to the current goal. This
approach reduces the proof search space and leads to higher verifica-
tion rates for automatic provers. However, additional methods and tool
support are desired to overcome drawbacks from a software engineering
point of view. Finally, we sketch some ideas for an extension of ACSL
for C++.

1 Introduction

As a step towards the goal of enabling verification of industrial software products,
Fraunhofer FIRST is evaluating the Frama-C tool set within the Inter-Carnot-
Fraunhofer project, DEVICE-SOFT!. Frama-C [1] is a suite of software tools
dedicated to the analysis of C source code, developed at CEA LIST. Within
Frama-C, the Jessie plug-in [2] enables deductive verification of C programs?
that have been annotated with the ANSI-C Specification Language (ACSL) [9].

! Supported under grant 01SF0804 by BMBF (Germany) and ANR. (France)

2 Full ANSI-C is supported, including arbitrary aliases of type-compatible objects,
but except for some current implementation restrictions concerning “dirty” type
conversions, like int <--> char=, by casts or union types.

191 Technical Report, KIT, 2010-13

An Experience Report on the Verification of Algorithms in the C4++ Standard Library using Frama-C

The paramount notion in ACSL is the function contract. While many soft-
ware engineering experts advocate the “function contract mindset” when design-
ing complex software, they generally leave the actual expression of the contract
to run-time assertions, or to comments in the source code. ACSL is expressly
designed for writing the kind of properties that make up a function contract.

The Jessie plug-in of Frama-C uses Hoare-style weakest precondition com-
putations to formally prove ACSL properties of a program fragment. Internally,
Jessie relies on the languages and tools contained in the Why platform [4]. Ver-
ification conditions are generated and submitted to external automatic theo-
rem provers or interactive proof assistants. We employed the automatic theorem
provers Alt-Ergo [13], CVC3 [8], Simplify [5], Yices [18], and Z3 [17] collectively.

We have chosen examples from the C++ Standard Library whose initial
version was known as the Standard Template Library (STL). The STL contains a
broad collection of generic algorithms that work not only on C-arrays but also on
more elaborate containers, i.e., data structures. For this report, we will reference
preselected algorithms, that were converted from C++ function templates to
ISO-C functions that work on arrays of type int. Our experience report was
inspired by our prior publishing, viz. the ACSL tutorial [12].

The structure of the remainder of this report are as follows. After a brief
introduction to ACSL in Sect. 2, we demonstrate in Sect. 3 how to guide au-
tomatic provers to find difficult, in particular, inductive proofs. In Sect. 4, we
report our experiences in proving permutations of array contents. Section 5 dis-
cusses our approach to prove certain properties of a function individually. In
Sect. 6, we sketch some requirements for an object-oriented extension to ACSL,
based on our experiences with downcasting C++ Standard-Library code to strict
C. Finally, we draw some conclusions in Sect. 7.

2 An Introduction to ACSL

ACSL annotations are expressed in special C-comments /*@. ../ as a multi-
line comment or //@. .. as a single-line comment. A function contract declares
a set of requires clauses, stating the properties the function may expect on
entry, and a set of ensures clauses, stating the properties the function must
satisfy upon exit (cf. Sect. 4 for examples).

Properties are formulas denoted in a language close to C itself. For exam-
ple, equality, negation, and conjunction are denoted by ==, !, and «&, respec-
tively; binding-priorities are as in C. In addition, the weaker-binding junctors
==> and <==> denote implication and equivalence; quantifiers over c- or logical
types are denoted by \forall TYPENAME VARNAME; FORMULA, and similar for
\exists. Moreover, relation chains familiar from mathematical notation, such
as, 0 <= i < n, may be used.

Function parameters and visible variables may appear in formulas, they refer,
by default, to their values on entry and exit in a requires and ensures clause,
respectively. The notation \at (v, L) refers to the value of v at the program
point corresponding to the c-label L:. A predefined label 01d allows one to refer

Technical Report, KIT, 2010-13 192

J. Gerlach, J. Burghardt

to on-entry values in ensures clauses too, \old (EXPR) being an abbreviation
for \at (EXPR, 01d). The label Here refers to the on-exit value in an ensures
clause.

In the function body, an assert clause may be placed at any program point,
causing a corresponding additional proof obligation to be generated. Each loop
may have a set of loop invariant clauses and a loop variant expression
needed to prove its termination. The former property is expected to hold before
loop entry and after the incrementation statement (usually “i++”) of each loop
iteration, while the latter expression must decrease at each iteration, but remain
positive.

Using the default setting, c-types like int and double denote the finite
ranges of values implemented on the target machine; absence of overflows is
verified. In contrast, logical types like integer and real denote infinite sets
like Z and R familiar from mathematics.

Programs may be enhanced with interspersed ghost declarations and state-
ments that may compute auxiliary values used only for verification purposes.
Since such ghost code is enclosed in the special comments, it is ignored by an
ordinary compiler, like all ACSL constructs. Syntactical restrictions ensure that
ghost code cannot influence non-ghost program components.

Auxiliary properties may be formulated as lemmas; their validity is checked
by the provers. A macro-like mechanism, the predicate definition allows users
to abbreviate arbitrary formulas by a parametrized name (Fig. 2). Parameters
may be of C types or logical types enclosed in parentheses (). They may also
denote memory states at certain labels enclosed in curly braces { }. If a definition
or a lemma is declared to have just one such memory-state parameter, it may
be omitted in the body; e.g. bi[i] in line 2 of Fig. 2 defaults to \at (bi[i],L).
The predefined predicate \valid_range (a,1,u) expresses the property that
the addresses sa[l], ..., &a[u] may be safely dereferenced at run-time.

3 Proof Assistance for Inductive Proofs by Automatic
Provers

While Frama-C/Why supports interactive theorem provers like Coq, PVS, Is-
abelle/HOL, and Mizar, as well, we consider the additional necessity of learning
their respective proving methodology and interactive command language a se-
rious obstacle preventing an application-domain engineer from using such an
approach. For this reason, we are exploring how far we can go using solely fully
automatic provers, thus restricting the learning necessities to Hoare’s verification
method and the ACSL specification language.

We use an example from the heap operations in the C++ Standard Library
to illustrate our discussion. Heap operations will also provide other examples in
later sections.

The Apache C++ Standard Library User’s Guide provides the following def-
inition for heaps:

193 Technical Report, KIT, 2010-13

An Experience Report on the Verification of Algorithms in the C4++ Standard Library using Frama-C

A heap is a binary tree in which every node is larger than the values
associated with either child. A heap and a binary tree, for that matter,
can be very efficiently stored in a vector ¢, by placing the children of
node ¢ at positions 2¢ + 1 and 2¢ + 2. Using this encoding, the largest
value in the heap is always located in the initial position, ...

The main operations include:

— push_heap, which inserts a new element into a heap;

— pop_heap, which removes the largest element from a heap;

— make_heap, which re-arranges an arbitrary array into a heap;

— sort_heap, which rearranges the elements in a heap so that they are in
ascending order; and

— heap_sort, which uses make_heap and sort_heap to sort an arbitrary array
in ascending order in time O(n -log(n)). Note that this algorithm does not
directly belong to the C++ Standard Library.

For detailed informal specifications of the aforementioned functions, cf. [6].

We explain our method along the example of the pop_heap function, which
removes the root element c[0] of a heap, and reorders the remaining elements
into a heap again. An essential property of pop_heap is that the popped value
c[0] is in fact the largest one in the given heap.

Translating the informal specification of pop_heap to ACSL, we get

\forall integer i; 0 <= i < n ==>
cl[i] >= c[2%i+1] && c[i] >= c[2%1i+2]

as a heap data-type invariant that will be abbreviated by a user-defined predicate
IsHeap (c,n) in the following, and

\forall integer i; 0 <= i < n ==> c[0] >= c[i]

as “largest-value-in-initial-position” property.

A closer look reveals that an induction on i is necessary to prove the latter
property from the former invariant. While that property is necessary to verify
heap_sort in Sect. 4, none of the automatic provers employed by Frama-C is
prepared to do induction proofs. Luckily, we found a way to trick them into it,
utilizing Hoare’s loop rule for that purpose. We also employed auxiliary (ghost)
code and data. This situation is similar to many mathematical proofs, where
auxiliary definitions are common.

We define a C-function pop_heap_induction that does not contribute to the
functionality of pop_heap, but rather encapsulates the induction proof needed
for the verification of that property. The pop_heap_induction function contract
essentially requires our type invariant, viz. IsHeap (c,n) and ensures our proof
goal, viz. the above “largest-value-in-initial-position” property:

/%@
requires IsHeap(c, n);
ensures \forall integer i; 0 <= 1 < n ==> c[0] >= c[i];

*/

Technical Report, KIT, 2010-13 194

J. Gerlach, J. Burghardt

void pop_heap_induction (const intx c, int n) {

/*Q@ loop variant n - i;

loop invariant 0 <= i <= n;

loop invariant \forall integer j;

0 <= j <1i<=n==>cl[0] >= c[]];

*/
for (int i = 1; i < n; i++) {

//@ assert 0 < i ==> ParentChild((i-1)/2, i);

In order to cause the prover to do an induction on n, we use a for-loop with
a corresponding range and the induction hypothesis as loop invariant. The loop
body is empty, except for an additional hint to the prover (viz. that (i-1)/2 is
the parent node of node i, employing another user-defined predicate).

In the function body of pop_heap, we call pop_heap_induction using a
ghost statement, thereby establishing its inductive conclusion just at the place
where it is needed for proof reasoning; cf. Fig. 1.

/%@
requires 0 < n < (MAX_INT-2)/2;
requires \valid_range(c, 0, n-1);
requires IsHeap(c, n);
ensures IsHeap(c, n-1);
ensures c[n-1] == \old(c[0]);
ensures \forall integer i; 0 <= i < n ==> c[n-1] >= c[i];
*/
void pop_heap(intx ¢, int n) {
//Q@ ghost pop_heap_induction(c, n);
//@ assert \forall integer i; 0 < i < n ==> c[0] >= c[i];
int max = c[0];
// ... (reordering loop omitted)
c[n-1] = max;

Fig. 1. C-function call to establish inductive consequence

Some care is necessary with the method described above. The set of provable
consequences is not closed with respect to the deduction theorem, “Whenever
PFQ, then F P — @7, as long as there is not a Hoare rule like:

{r} s {Q}
{true} ; {P — Q}

Note that pop_heap_induction changes the value of its local variable i. There-
fore, a useful version of such a new rule needs to address the matter of visibility.

if S doesn’t change visible memory state.

195 Technical Report, KIT, 2010-13

An Experience Report on the Verification of Algorithms in the C4++ Standard Library using Frama-C

Due to the absence of such a rule, the relativized property

(\forall integer i; 0 <= i < n ==> c[(i-1)/2] >= c[i]) ==>
(\forall integer i; 0 < i < n ==> c[0] >= c[i]);

cannot be obtained by calling pop_heap_induction. However, we can establish
it, if needed for further reasoning, by a modified version of pop_heap_induction,
using this property as a post-condition and a similarly relativized loop invariant.
In general, however, an additional assumption P may well lead some provers into
an endless loop that were previously able to prove () without it.

Our method is in principle not limited to the use of simple for-loops. For
example, the following verification needs two nested loops:

/%@
requires \forall integer i; 0 <= i < n-1 ==> c[i] <= c[i+1]
ensures \forall integer i,j; 0 <= 1 <= j < n ==> c[i1] <= c[]]
*/
void induction_example_2 (const intx c, int n);

4 Permutations of Array Contents

This section is concerned with a method for proving that some procedure changes
only the ordering of an array under consideration. For example, the function
pop_heap should not just re-establish the heap property, but also ensure that
all elements (except the one that was popped) remain in the heap, although
possibly rearranged.

Our method relies on bijections (represented as index arrays) operating on
the index set {0,...,n — 1} for some n. Basically, we use a swap operation
swap (a, i, 7), which simply exchanges elements a[i] and a[j] in an array,
a. The corresponding predicate definition is as follows:

/*@ predicate Swap{Ll,L2} (int* a, integer i, integer j) =
0 <=1 && 0 <= 3

&& (\forall integer k; 0 <= k && k != 1 && k != j ==>
\at (a[k],Ll) == \at(alk],L2))

&& \at(a[i],Ll) == \at(aljl,L2)

ss \at(a[j],Ll) == \at(al[il,L2);

*/

We now introduce some basic predicates and a lemma needed for our method
as shown in Fig. 2. The predicate Bi jection defines in the mathematical sense a
bijection or one-to-one mapping from the set of natural numbers {0,1,2,...,n—
1} to itself. In its current form it is suitable for the finite case only, therefore an
upper bound n is needed. Lemma B1 states that a bijection concatenated with a
swap-mapping is still a bijection. The predicate SameElements is of the utmost

Technical Report, KIT, 2010-13 196

J. Gerlach, J. Burghardt

/*@ predicate Bijection{L} (intx bi, integer n) =
(\forall integer i; 0 <= 1 < n ==> 0 <= bi[i] < n)
&& (\forall integer i, j;
0 <= 1i<ne&& 0<=7<na&&il=7 ==>bi[i] != bi[F]);

lemma B1{L1,L2}: \forall int+ bi,integer i, j, n;
0 <=1 <n & 0 <=3 < n &&
Bijection{Ll} (bi, n) && Swap{Ll,L2}(bi, i, 3J) ==>
Bijection{L2} (bi, n);

predicate SameElements{L} (int* a,intx o,intx bi,integer n)=
Bijection{L} (bi, n) &&
\forall integer k; 0 <= k < n ==> alk] == o[bi[k]];
x/

Fig. 2. The bijection predicates and lemmata

importance, stating that the bijection bi shows how to reorder the indices to
get the same values.

As examples, we use the functions push_heap, make_heap, and heap_sort,
each showing different techniques. This approach works similar for pop_heap
and sort_heap. We introduce four ghost declarations (see below).

//@ ghost int N;

//@ ghost int«* biject;

//@ ghost int«* twin;

//@ ghost const intx orig;

The global variable N plays a role later in make_heap (and sort_heap as well).
For the moment, let us assume that N equals the actual size of the heap, n.
The array twin behaves like a duplicate of the array c under consideration, see
Fig. 3. Prior to the procedure, c and twin must have the same values at the same
positions. The same must be true after the procedure. The elements in array orig
can be thought of as being the elements of the original heap-contents c; they
are retained and unaffected by any function verified here. The array biject will
hold the bijection we seek. It is used to show that the sameElements-predicate
with respect to twin and orig is preserved.

Figure 3 illustrates the principal operating scheme of the bijection method. It
is based on an invariant property in the pre- and post-condition of all algorithms.
The verification of this commonly occurring invariant is treated here.

Figure 4 shows our “universal function contract”, in which is just a formal-
ization of the relations shown?® in Fig. 3. It is used literally in the same form
for all functions involving heap-modifying operations. The symmetry between

3 We omitted additional requirements that serve only to avoid numeric overflow.

197 Technical Report, KIT, 2010-13

An Experience Report on the Verification of Algorithms in the C++ Standard Library using Frama-C

J bijection const
Old el equals 1 il | same orig[]
5 . elements =

bijection
 differ — =ame
elements

I bijection —»
equals J{ twin[] L same ‘
i —I‘

Fig. 3. Principal operating scheme of the bijection method

/*@ requires 1 <= n <= N;
// \valid_range requirements

requires \forall integer i; 0 <= i < N ==> c[i] == twin[i];
requires SameElements (twin, orig, biject, N);

ensures \forall integer i; 0 <= i < N ==> ¢[i] == twin[i];
ensures SameElements(twin, orig, biject, N);
*/

Fig.4. Contract for push_heap, pop_heap, make_heap, sort_heap, and
heap_sort

Technical Report, KIT, 2010-13 198

J. Gerlach, J. Burghardt

requires and ensures reflects the vertical symmetry in Fig. 3. We distinguish
the actual heap size, n, and an arbitrarily larger one, N. Since we require all
operations to affect the area up to N this more relaxed requirement is easier to
handle.

We start with the verification of push_heap whose implementation is shown
below. This algorithm inserts the value found immediately beyond the old heap,
viz. at c[n-1] into it.

void push_heap (intx ¢, int n) {

const int tmp = c[n-1];
int hole = n-1;
/*@ loop invariant 0 <= hole < n;
loop invariant tmp == twin[hole];
loop invariant \forall integer 1i;
0 <=1 <N && i != hole ==> c[i1] == twin[i];

loop invariant SameElements (twin, orig, biject, N);
loop variant hole;

*/
while (hole > 0) {
const int parent = (hole-1)/2;
if (cl[parent] < tmp) {
clhole] = cl[parent];
//@ ghost swap (twin, hole, parent);
//@ ghost swap (biject, hole, parent);
} else

break;
hole = parent;

t
c[hole] = tmp;

The main part of its loop invariant corresponds to the ensures clauses of
the universal contract, except for i == hole. We wish to be certain that twin
is a duplicate of c. While ¢ is manipulated with particular emphasis on run-time
efficiency, we duplicate these manipulations in twin, however, using less efficient
ghost calls to swap only. As we build-up biject, we apply swap-operators for
both biject and twin. These two ghost assignments are the heart of the method.

Our implementation of make_heap is depicted below.

void make_heap (intx c, int n) {

/*@ loop invariant 2 <= i <= n+1;
loop invariant SameElements (twin, orig, biject, N);
loop invariant \forall integer j; 0 <= j < N ==>

clj] == twin[3Jl;

loop variant n - i;

x/

for (int i = 2; i <= n; i++)

push_heap(c, 1i);

199 Technical Report, KIT, 2010-13

An Experience Report on the Verification of Algorithms in the C4++ Standard Library using Frama-C

With successive calls to push_heap, elements are inserted into a heap c
one by one. The essential requires and ensures clauses of the universal con-
tract are just passed-on to its loop invariant. At this point we need to dis-
tinguish between n and N. Without the unique N, we would have predicates
SameElements (twin, orig, biject, i) for different values of i which would
not fit together.

The universal contract can also be used for heap_sort. This contract is
most useful as a unique interface description in general, since it allows us to
compose different algorithms easily. Since heap_sort is the outermost function
in our example, we prefer, however, another version that is closer to the intended
meaning of its informal description, as shown below.

/*Q@ requires 0 < n == N;
// \valid_range requirements
ensures Bijection(biject, n);
ensures \forall integer i; 0 <= i < n ==>
\at (c[1], Here) == \at(c[\at (biject[i], Here)], 01d);
*/

void heap_sort (intx ¢, int n);

This alternative contract of heap_sort no longer requires c to equal twin
initially nor twin to be a permutation of orig. Rather, we include ghost code in
the implementation (below) to establish the following properties. First, we make
both twin and orig a copy of c, and then we initialize biject to the identity
mapping, viz. [0, ...,n-1]. For the latter purpose, we call the c++ Standard

Library function iota(a,n,v) that assigns v+i to a[i] for ¢ = 0,...,n — 1.
Here, we require n == N, because the called functions deal with arrays of the
same size.

void heap_sort (intx c, int n) {
//@ ghost copy(c, n, twin);
//@ ghost copy(c, n, orig);
//@ ghost iota(biject, n, 0);
make_heap (c, n);
sort_heap(c, n);

As early as 1971, Hoare [16] was concerned about proving a rearrangement-
only property of an algorithm. He suggested to introduce a concept of permu-
tation, and to prove essential properties that might be re-expressed in ACSL as
follows?:

4 If they were used as a definition of Permutation, due to its recursivity its appro-
priateness relied on the implicit assumption that its intended semantics is the least
fixpoint. Note that e.g. the greatest fixpoint was a predicate that is true for all a
and n, which was certainly inappropriate.

Technical Report, KIT, 2010-13 200

J. Gerlach, J. Burghardt

\forall intx a, int n; Permutation{Ll,L1} (a, n);

\forall intx a, int n, i, J; 0 <=1 < n && 0 <= J < n &&
Permutation{Ll,L2} (a, n) && Swap{L2,L3}(a, i, 3j) ==>
Permutation{L1l,L3} (a, n);

If Permutation{0ld, Here} (a, n) has been verified, the prover has just
confirmed what could be seen also by code inspection, viz. that only swaps were
applied to a. Based on this property only, it seems to be impossible to prove
properties of the rearranged array needed in a calling function. Let us assume
that in our example an additional data-type invariant has to be proved, e.g., that
every heap element has a value less than 10. This is straight-forward as soon as
we are ensured that some additional array biject holds the source position each
heap element came from?:

/x@ ...

requires \forall integer i; 0 <= i < n ==> c[i] < 10;
x/
void foo(intx ¢, int n) {

heap_sort (c, n);

//@ assert \forall integer i; 0 <= i < n ==> c[i] < 10;

//

Bubel et. al. [10] uses a different approach to characterize permutations for
verifying selection-sort. They specify that the number of occurrences of each
value remains unchanged in the rearranged array. This way, is it also possible
to prove properties of the rearranged array needed in a calling function. In our
example, no values larger than 9 may occur in the sorted array, if none occurred
in the unsorted one.

5 Proving Properties Separately

As mentioned in Sect. 3, our experience corroborated again the well-known phe-
nomenon that additional assumptions may lead a prover into an endless loop,
even if they are not necessary for a proof. This is the first reason for separating
function properties and their verification. The second reason follows a rationale
of “separation of concerns” adapted from classical software engineering.

As an example, the function contract, pop_heap, essentially states that

1. the heap-property (each node entry is less or equal than its parent’s entry)
is re-established, and
2. all elements, except the one that was popped, remain in the heap.

5 If the inverse bijection is needed in the verification of a calling function, it can also
be constructed and validated, too.

201 Technical Report, KIT, 2010-13

An Experience Report on the Verification of Algorithms in the C4++ Standard Library using Frama-C

We built two separate files, each containing a partial contract based on 1. and 2.,
and that share the same implementation code each, however with different loop
invariants and other ACSL assertions, and varying auxiliary ghost code. While
we were able to verify each of them successfully, an attempt to verify the whole
contract (based on 1. and 2.) failed. We suppose that the reason was infinite
applicability of some assumption from 1. to a proof goal from 2., or vice versa,
however, certainty about that could only be gained by a detailed inspection of
a prover trace, which is not available to us.

We consider our two partial contract proofs sufficient to convince a human
user that the code has both properties 1. and 2. Moreover, each part is easier to
understand on its own.

However, if pop_heap is to be used by another function f that needs pop_
heap’s complete contract for its own verification proof, there is currently no
sound way to verify f’s correctness. We can only declare (rather than define)
pop_heap and claim (rather than prove) its entire contract in a preamble of
the file containing f’s contract and code. This approach is unsatisfactory as
soon as large software is to be verified or when a certifying authority is to be
convinced of the correctness. Moreover, the need to maintain several copies of
the implementation code is a serious drawback.

In order to exploit the advantages of separation and avoid its disadvantages,
we suggest to supply explicit methodical support for users. Moreover, a tool
should be provided that validates or establishes the syntactical restrictions and
provides the entire contract for further use by the provers.

We thought of the following as a typical scenario: The tool maintains a
“repository file” containing the whole contract and implementation, e.g. of pop_
heap. In this file, ACSL clauses and ghost code lines may be annotated to in-
dicate which of the partial contracts 1. and 2. they belong to. On user-demand,
the tool extracts a particular “version”, containing only the parts belonging to
the selected partial contract, the proper source code, and the corresponding an-
notations. This version can then be updated stand-alone and finally be “checked
in” using the tool, which tests consistency and reports any conflicts. Calling
functions may rely on the complete specification.

6 Towards a Specification Language for C++

The C algorithms we have considered in our research have their origin in the C++
standard library. It would be very desirable to have a specification language for
C++ with support for templates such that the generic algorithms and containers
of the C++ standard library could deductively verified.

Based on our experience with ACSL we mention a few points that should be
taken into account when defining a behavioral specification language for C++.

— Even if we stay within the realm of C programming it would make sense to
extend ACSL to allow for generic predicates. Note that the built-in predicate
is_valid_range is already generic with respect to the type of the values
of an array.

Technical Report, KIT, 2010-13 202

J. Gerlach, J. Burghardt

— Initially, a specification language for C++ should use special comments to
annotate source code. If later the specification language and the supporting
tools are sufficiently mature, efforts could be undertaken to fully integrate
formal specification and deductive verification into the language. This work
could built on previous attempts to add “contract programming to C++”
[14] as well as on the experiences with Spec# [3].

— An interesting aspect of the C++ standard library is that the informal spec-
ification includes requirements for the (amortised) complexity of algorithms.
A specification language for C++ should include provisions to formally ex-
press the complexity of operations.

— The idea of using concepts to specify requirements for types had been intro-
duced to C++ with the original STL. Despite strong efforts, concepts were
excluded from the forthcoming C++ standard. A specification language for
C++ should investigate whether concepts can contribute to concise and more
general specifications.

Last but not least, we suggest that a specification language for C++ treats
ranges in a way that fits more natural to the C/C++ language family. By this we
mean the problem that in ACSL the set of valid indices of an array on length n,
for example, must be specified as 0 < i < n — 1 whereas the established C-idiom
describes this set as 0 < i < n.

7 Conclusions

The deductive verification of the heap algorithms of the C++ standard library
poses several challenges for automatic theorem provers. On the one hand, there
is a need to perform inductive proofs. On the other hand, it must be shown that
the heap operations only permute the elements in a range. For both problems we
have found viable solutions that work well with the ACSL specification language
and the Frama-C/Jessie tools.

Based on our experience with the deductive verification of C++ standard
library algorithms we have also suggested tool-support for tackling larger ver-
ification tasks. The key idea here is the separate verification of independent
properties.

It would be interesting to try to reproduce our methods in JML [7, 15, 11] and
Spec# [3]. This can be expected both to yield an estimation of the generalizibility
of our ideas and to compare the strengths and weaknesses of these different
verification systems.

It may be a problem that the methods presented here are still too complex
to be taught to application-domain engineers. However, in our opinion, they are
still easier to learn than a language of proof tactics requiring much theoretical
knowledge about an underlying logical calculus.

The idea of separation of concerns is widely accepted in software-engineering,
and its extension to proof goals (Sect. 5) is expected to get so, too. The con-
nection in Sect. 4 between manipulating the ghost array twin and its non-ghost

203 Technical Report, KIT, 2010-13

An Experience Report on the Verification of Algorithms in the C4++ Standard Library using Frama-C

correlate ¢ in an easy-to-verify and an equivalent fast-to-execute way, respec-
tively, is familiar to programmers under the notion of “tweaking code for optimal
performance”. Obviously, the feature of ghost code is needed to implement the
less efficient code variant.

References

[1] Frama-C Software Analyzers. http://frama-c.com

[2] Jessie Plug-in. http://frama-c.com/jessie.html

[3] Spec#. http://research.microsoft.com/en-us/projects/specsharp

[4] Why — Software Verification Platform. http://why.Iri.fr

[5] Homepage of the Simplify Theorem Prover.

http://freshmeat.net/projects/simplifyprover/ (2007)

[6] Standard Template Library Programmer’s Guide. http://www.sgi.com/tech/stl
(2010)

[7] Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language. The Java
Series, Addison-Wesley, Reading/MA (2000)

[8] Barrett, C., Tinelli, C.: Homepage of CVC3. http://www.cs.nyu.edu/acsys/cve3/
(2010)

[9] Baudin, P., Fillidtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: AN-
SI/ISO C Specification Language, Version 1.4 Frama-C Beryllium implementa-
tion. http://frama-c.com/download/acsl-implementation-Beryllium-20090902.pdf
(Sep 2009)

[10] Bubel, R., Hahnle, R., Schmitt, P.H.: Specification predicates with explicit de-
pendency information. In: Beckert, B. (ed.) Proc. 5th Int. Verification Workshop
(VERIFY’08). CEUR Workshop Proceedings, vol. 372, pp. 28-43. CEUR-WS.org
(2008)

[11] Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Rustan, K.,
Leino, M., Poll, E.: An overview of JML tools and applications. Technical Report
TR NIII-R0309, Dept. of Computer Science, University of Nijmegen (2003)

[12] Burghardt, J., Gerlach, J., Hartig, K., Pohl, H., Soto, J.: ACSL by
example. Tech. Rep. Version 4.2.1, Fraunhofer FIRST (Apr 2010),
http://www.first.fraunhofer.de/owx_download /acsl-by-example-4_2_1.pdf

[13] Conchon, S., Contejean, E., Kanig, J.: Homepage of the Alt-Ergo Theorem Prover.
http://alt-ergo.Iri.fr/

[14] Crowl, L., Ottosen, T.: Proposal to add Contract Programming to C++.
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2005/n1866.html (2005)

[15] Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification. The
Java Series, Addison-Wesley, Reading/MA (2000)

[16] Hoare, C.: Proof of a program: FIND. CACM 14(1), 3945 (Jan 1971)

[17] Research, M.: Homepage of the Z3 SMT Solver. http://research.microsoft.com/en-
us/um/redmond/projects/z3/

[18] SRI International: Homepage of the Yices SMT Solver. http://yices.csl.sri.com/

Technical Report, KIT, 2010-13 204

Formal Verification of Industrial C Code
using Frama-C: a Case Study’

D. Pariente, E. Ledinot

Dassault Aviation - 78, quai Marcel Dassault - F-92552 Saint-Cloud Cedex 300, France
{Dillon.Pariente ; Emmanuel.Ledinot} @Dassault-Aviation.com

Abstract. This paper gives some results and lessons learnt with Frama-C, a
static analysis toolbox, used to prove behavioral and safety properties on an
industrial code. After a short presentation of the methods and tools background,
the related industrial use case is briefly exposed, with an overview of the
process that was followed. Then the positive results obtained so far are
presented, with a few practices and additional tools developed in-house. To
conclude, this paper presents some needs and future work directions that should
be addressed, to ensure a technology readiness level compliant with operational
use of formal verification into an industrial development environment.

Keywords: Software verification, Formal Methods, Hoare Logic, Abstract
Interpretation, Theorem Proving.

1 Introduction

Since 1990, Dassault Aviation has carried out numerous formal methods studies and
assessments. The first ones were focused on synchronous languages (first Esterel [1],
then Lustre), for control and data flow formal specification, coding and model-
checking, through collaborations with research teams. Over the last few years, much
effort was devoted to the integration of UML modeling and signal flow programming
(Matlab, Scade, Esterel), in order to introduce these new methods and tools into the
Flight Control System (FCS) software development process. By the end of 2003, the
first control module formally specified in a graphical way, automatically generated
(~15 Kloc), and proven was embedded into a military aircraft operational software.
More recently, in 2007, the FCS of the first Dassault's Fly-By-Wire business jet was
developed and certified, using a similar development process.

In the meantime, some experiments on formal verification of hand-written code
were initiated, because in numerous situations pieces of critical software cannot be
generated from formal specification models (drivers, schedulers, encoding of data
formats, ...). Indeed, even formally specified and automatically generated codes may
take advantage of formal methods in many cases. For instance, as floating-point
variables in data-flow models strongly compromise model-checking computability,

! This work was partly supported by the French national Research project ANR/U3CAT 2008-
SEGI-021-06, and the project DGAC/ANASTASY 2009-93-0816.

205 Technical Report, KIT, 2010-13

Formal Verification of Industrial C Code using Frama-C: a Case Study

these generated codes are good candidates for static analyses. This is the basis of our
motivation to assess formal approaches, and to verify annotated hand-coded or
automatically generated C programs (a first attempt is detailed in [2]).

The tools involved into the experimentation presented here are essentially
developed through research projects RNTL/CAT and ANR/U3CAT, namely Frama-C
toolbox [3], a recent but efficient collaborating static analysis platform. These tools
are mainly developed by academics involved into these research projects (CEA LIST
and INRIA ProVal).

In this case study, Frama-C has been used to prove the correctness of some
properties annotated into a critical C code embedded into aircraft. This use case is
representative of a certain class of programs and properties. Code contains both
generated and hand-coded functions. Most of the sought properties are locally
annotated to any function of the callgraph, but need a whole application analysis (i.e.,
they are context-sensitive to the main entry point), which is of course a challenging
issue compared to unit proof (which generally only needs local function behavior to
be discharged).

In the following, we will briefly introduce the underlying technical background and
tools we have experienced for the last three years: Value Analysis, Jessie and Slicing
Frama-C's plug-ins [3] using a common specification language named ACSL [23]
inspired by JML, Why platform [7] (a verification condition generator developed at
INRIA ProVal), and several automatic theorem provers like INRIA's Alt-ergo [8].
Then we will present our industrial use case that was successfully verified, and some
techniques and "tricks" that permitted to overcome a few classical difficulties faced
with formal methods implementations. To conclude, this paper will focus on lessons
learnt and future work directions aiming Frama-C's usage into an industrial
development context.

Of course, due to code development legacy and current industrial practices, the use
case presented here is based on a C program. However, this experimentation is
expected to be profitable in the context of other programming languages and
verification tools, as theoretical issues, technical limitations, but also successful
results obtained with C code, share large common features with other specification
and coding languages (e.g., Spec# [4] for C#, IML [6] for ESC/Java2 [5], etc.),
coming for sure with a bulk of new research challenges.

2 Background and Tools

This paragraph aims at giving some major references to theoretical background and

tools used in our case study:

— the Frama-C platform [3] is an open source collaborative and extendable static
analysis toolbox, coming with several plug-ins exploiting the same annotation
language ACSL (ANSI-C Specification Language [23], inspired by JML), and
implementing abstract interpretation method [9] (Value Analysis plug-in),
deductive verification [10] [11] (Jessie plug-in), slicing [12], among other
cooperating plug-ins,

Technical Report, KIT, 2010-13 206

D. Pariente, E. Ledinot

— the Why [7] toolchain, a verification condition generator, interfaced with several
automatic theorem provers like Alt-ergo [8], Z3 [13], Simplify [14], CVC3 [15],
proof assistants like Coq [21], and some others.

Contrarily to many other analysis tools, Frama-C gives powerful means to achieve
proof of properties using different cooperating methods. Hence, users are less
potentially facing implementation limitations of classical mono-paradigm-based static
analysis tools, as they may switch to another method and plug-in when the currently
used one is not conclusive w.r.t. the sought properties.

Frama-C also offers ways to develop user-specific plug-ins, to get around some
costly hand-made operations by automating them, or to palliate a few sources of non-
conclusive results, from the code annotation phase, to some customized static
analyses themselves (these aspects will be discussed later).

2.1 Preamble on Static Analysis Methods

Static analysis [16] is the analysis of computer software, performed without actually
executing programs, and generally by an automated tool. Uses of the information
obtained from the analysis vary from highlighting possible coding errors, to formal
methods that mathematically prove properties about a given program (e.g., code
behavior matching its specification). A growing commercial use of static analysis is
the verification of properties on software used in safety-critical computer systems,
and locating potential vulnerability in code.

It has been proven that, except for some hypothesis that the state space of programs
is finite and small, finding possible run-time errors or more generally any kind of
violation of a specification on the final result of a program is undecidable: there is no
mechanical method that can always answer whether a given program may or may not
exhibit runtime errors (works of Church, Godel and Turing in the 1930s). As with
most undecidable questions, one can still attempt to give useful approximate
solutions. These solutions can be achieved using different formal techniques like:

— Model-checking [17], usually devoted to finite or reduced state space,

— Abstract interpretation [9], generally based on a preliminary data-flow analysis,
providing an over-approximation of program behaviors, simpler to analyze, sound
(every property true of the abstract program can be mapped to a true property of
the original program), but incomplete (not every property true of the original
program is true in the abstract program),

— Deductive verification (by means of assertions in source code as first suggested by
Floyd-Hoare logic), verification condition generation, and theorem proving,

— Slicing, consisting in keeping all the statements that affect a variable v at a given
statement (v is a variable of the program).

2.2 Overview of implementations in Frama-C platform

Frama-C gathers several static analysis techniques (abstract interpretation, deductive
verification, slicing, ...) in a single collaborative framework. Namely, the cooperating

207 Technical Report, KIT, 2010-13

Formal Verification of Industrial C Code using Frama-C: a Case Study

plug-ins approach of Frama-C allows static analyzers to make use of the results
already computed by other analyzers in the same framework.

Abstract Interpretation.

The Value Analysis plug-in [3] computes for each variable, a set of values which
necessarily contains the values obtained on any concrete execution. It is quite
automatic, although the user may guide the analysis in places. It handles a wide
spectrum of C constructs. This plug-in uses abstract interpretation techniques.

The results of the value analysis are accessible to the other plug-ins (including
those developed by final users). Furthermore, in order to propagate its computations
as far as possible, Value Analysis plug-in may generate its own annotations. These
annotations deals with some potential runtime errors that must be refuted by means of
any other plug-in (as deductive verification plug-in Jessie, for instance