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Introduction

In this thesis we explore the Floquet theory for a class of periodic evolution
equations.
The motivating example arises from the following physical model of waveg-
uides1. The (time-harmonic) electromagnetic �eld inside a cylindrical waveg-
uide can be described by an equation of the form

J
∂

∂z
u(z) = M(z)u(z).

Here, we have assumed that the waveguide has a non-varying (bounded) cross
section Ω ⊂ R2 and its axis is the z-axis. Furthermore, the relevant material
properties of the waveguide, namely the permittivity and the permeability, are
assumed to be periodic w. r. t. the z-direction. The Maxwell operator M then
is a partial di�erential operator with periodic coe�cients acting on the Hilbert
spaceH := L2(Ω)×L2(Ω) and for a �xed z the �rst and the second component
of u(z) ∈ H describes the electric and the magnetic �eld in each cross sectionΩ,
resp.. Finally, J ∈ L (H) is an invertible operator that can be represented as
an (operator-valued) anti-diagonal matrix and thus �couples� both components
of a solution u. We refer to [Der72], [Pru76] and the references therein for a
more detailed explanation of the model.
Here, we will choose a more abstract setting to deal with the problem, namely
we will consider nonautonomous evolution equations of the form

u′(t) + Atu(t) = 0 (t ∈ R) (E)

where the operator family (At)t∈R on a Banach space X periodically depends
on t ∈ R and the function u takes values in X.

1The reader unfamiliar with the physical concept of waveguides (or electrodynamics in general)
will �nd all necessary information in the monograph [Jac62].
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2 Introduction

Our central assumptions are that the operators (At)t∈R have a common domain
space D which is compactly embedded into X and that the resolvent sets all
contain a common line parallel to the imaginary axis, e. g. iR, and that the
corresponding resolvents (At−λ)−1 decay in the sense that (|λ|+1)(At−λ)−1

is uniformly bounded for all t ∈ R (cf. condition (A-iv) on page 26).

As expected in the context of partial di�erential equations with periodic coef-
�cients, Bloch solutions�and more generally Floquet solutions�will play an
important role. As the central result we will obtain that all exponentially
bounded solutions to (E) can be described as a superposition of a �xed family
of Floquet solutions.

In particular, if X is a (complex-valued) Lq-space we will prove that the
so-called Bloch property holds for (E), i. e. the existence of a non-vanishing
bounded solution implies the existence of a bounded Bloch solutions. We will
also obtain the interesting result that the set of Floquet exponents coincides
with the set of Bloch exponents, in other words if (E) has a Floquet solution
then (E) also has a Bloch solution with the same exponent. In particular, this
result could be used�e. g. when searching for so-called band gaps�to conclude
the nonexistence of Floquet solutions already from the nonexistence of Bloch
solutions.

In [Kuc93] Chapter 5 P. Kuchment gave such a description in a Hilbert space
setting, i. e. the family (At)t∈R acts on a Hilbert space X and a solution u is a
locally square integrable X-valued function.

We extend P. Kuchment's result to a Banach space setting: We treat the
case where X is a UMD-space and allow the solutions to locally belong to Lp
for some �xed p with 1 < p < ∞. Examples of UMD-spaces are all closed
subspaces of Lq-spaces with 1 < q < ∞, in particular re�exive Sobolev and
Hardy spaces.

Following P. Kuchment we use the Floquet transform to translate the problem
into a corresponding statement about analytic Fredholm homomorphisms of
bundles. The representation of exponentially bounded solutions as superposi-
tions of Floquet solutions can then be obtained from abstract results of such
homomorphisms due to M. Zaidenberg, S. Krein, P. Kuchment, A. Pankov and
V. Palamodov.
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The original treatise makes use of properties of Hilbert spaces that do not
hold in general in the Banach space setting or even in Lp-spaces with p 6= 2.
An important part of this thesis consists of replacing classical Hilbert space
methods by modern methods of spectral theory and harmonic analysis.
In particular, the construction of regularizers needed to verify the Fredholm
property mentioned above leads to a R-boundedness condition on the resolvents
of At that coincides with the boundedness condition of the original treatise if
the new result is applied to a Hilbert space. The R-boundedness then allows to
use results on operator-valued Fourier multipliers obtained by L. Weis, which
provides the base for the extension to the Banach space setting. It is known
that for many classes of di�erential operators At this R-boundedness condition
is satis�ed, e. g. if the resolvent of At or the semigroup generated by At satis�es
Gaussian bounds.
This thesis is structured as follows. In Chapter 1 we will declare notations and
state well-known or basic facts.
Chapter 2 contains basic results on the operator family (At)t∈T de�ned in the
UMD-space setting that can be obtained more or less directly from the Hilbert
space case.
The Fredholm property of the operator L = ∂ + At on Lp([0, 1], X) will be
proven in Chapter 3 with the help of Fourier multiplier theorems.
In Chapter 4 we study the dual situation and its relation with the operator L′.
Since Plancherel's theorem is not available if X is not a Hilbert space we had
to derive more general functional analytic duality arguments than the Hilbert
space methods used in P. Kuchment's treatment.
Chapter 5 generalizes the so-called hypoellipticity result�namely that quasiperi-
odic solutions have Lp([0, 1], D) ∩W 1

p ([0, 1], X) regularity�of P. Kuchment's
treatise to the Banach space setting using the same methods as in Chapter 3
and Chapter 4. Furthermore, we extend the result from periodic functions
to quasiperiodic functions that�thanks to the duality method used in Chap-
ter 4�can now be treated analogously.
In Chapter 6 we introduce and discuss the various notions of solutions relevant
here.
In Chapter 7 we reformulate our problem in terms of analytic Fredholm homo-
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morphisms of bundles. We refer to Section 7.1 for a more detailed explanation
of this transformation. In particular, we use a Banach space version of the
Floquet transform as an isomorphism from the test function spaces to spaces
of sections of bundles. Also, analogously as in the original treatise, the coinci-
dence of Floquet and Bloch exponents holds.
Finally, the central result of this thesis, namely the representation of a solution
as the superposition of Floquet solutions, will be given in Chapter 8.
For the convenience of the reader and for the sake of completeness, we provide
a summary on the structures of bundles and sheaves that are used in Chapter 7
and Chapter 8 in an appendix.
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Chapter 1

Notation and De�nitions

1.1 Basic Notation

We denote by N, Z, R and C the natural1, integer, real and complex numbers,
resp.. Furthermore, we set N0 := N ∪ {0}.
For all M ⊂ C\{0} we set M−1 := {m−1 : m ∈M }.
We will write f := [M 3 m 7→ · · · ∈ N ] to de�ne (or denote) a function
f : M → N . We will sometimes omit the explicit speci�cation of the domain
M or the codomain N if it is clear out of the context.

To avoid confusion we remark that nowhere in this thesis [. . .] is used to denote
an equivalence class.

For a function f : M → N and m ∈M we set δmf := f(m) ∈ N .

If f : M → N is a function and F is a family of functions de�ned on a set
m ⊂M we will write f ∈ F if f|m ∈ F .

For a set M we denote by 1M its characteristic function, i. e. 1M(m) = 1 for
all m ∈M and 1M(m) = 0 if m /∈M .

b·c : R → Z denotes the �oor function, i. e. for all t ∈ R btc is de�ned to be
the largest integer not greater than t.

For all n,m ∈ Z δn,m denotes the Kronecker delta, i. e. δn,m = 1 if n = m and
δn,m = 0 if n 6= m.

1i. e. the positive integers, in particular 0 /∈ N

5



6 Notation and De�nitions

If Ω is a topological space we write O
◦⊂ Ω if O ⊂ Ω is open in Ω. Analogously,

we write K ⊂⊂ Ω if K ⊂ Ω is compact.

We denote by BΩ(x, r) the open ball with radius r around x in a topological
space Ω.

A neighborhood of a point in a topological space is always assumed to be an
open set.

Unless otherwise stated a subset of a topological space is endowed with the
induced topology and the product of topological spaces is endowed with the
product topology.

For all n ∈ N0 we will write∑
α+β=n . . . shortly for

∑
(α,β)∈{ (a,b)∈N0×N0: a+b=n } . . . and∑

α+β+γ=n . . . shortly for
∑

(α,β,γ)∈{ (a,b,c)∈N0×N0×N0: a+b+c=n } . . ..

We denote by P the space of polynomials in one variable with coe�cients in
C.

1.2 Vector Spaces and Operators

We use the notion of Fréchet space as de�ned in [Trè67] Chapter 10, i. e. a
Fréchet space is a metrizable, complete, locally convex, Hausdor� topologi-
cal complex vector space. We will also use the equivalent description that a
Fréchet space is a complex vector space endowed with a topology induced by
a countable family of seminorms that is Hausdor� and complete (cf. [Sch80]
� II.4).

We denote by L (X,Y ) the space of continuous linear operators between the
Fréchet spaces X and Y and as usual we set L (X) := L (X,X).

We will use the well-known characterization of continuity of linear operators
in terms of bounds of seminorms, cf. [Trè67] Proposition I.7.7.

If X and Y are Fréchet spaces and A ∈ L (X,Y ) is bijective, then A−1 ∈
L (X, Y ) and thus A is an isomorphism of Fréchet spaces (see [Trè67] Corollary
1 to Theorem 17.1).
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If, in particular, X and Y are Banach spaces2, we equip L (X,Y ) with the
usual Banach space structure; in particular, its topology is induced by the
(strong) operator norm.

Furthermore, we denote by K (X, Y ) the space of linear compact operators
between the Banach spaces X and Y and again, we set K (X) := K (X,X).

X ↪→ Y means that the Banach space X is continuously embedded in the
Banach space Y and X ↪→↪→ Y analogously denotes a compact embedding.

We denote by ρ(A) the resolvent set for any densely de�ned operator A : X ⊃
D → X on a Banach space X.

For Fréchet spaces X1, X2 and Y we denote by L (X1;X2, Y ) the space of
continuous bilinear operators from X1×X2 to Y . By [Bou87] Corollary III.5.1
A ∈ L (X1;X2, Y ) i� [x1 7→ A(x1, x2)] ∈ L (X1, Y ) for all x2 ∈ X2 and
[x2 7→ A(x1, x2)] ∈ L (X2, Y ) for all x1 ∈ X1.

As usual, if A ∈ L (X) for some Fréchet space X we set A0 := IdX .

If (ak)k∈Z ⊂ X for some Banach space X and both series
∑∞

k=0 ak and∑∞
k=1 a−k converge absolutely we say

∑∞
k=−∞ ak converges absolutely and we

set
∑∞

k=−∞ ak :=
∑∞

k=0 ak +
∑∞

k=1 a−k.

The following identity will be used passim and can be obtained by a simple
calculation.

1.2.1 Fact∑∞
k=−∞ exp(−a|k|) = exp(a)+1

exp(a)−1 for all a > 0.

Duality

For a Fréchet space X, we denote by X∗ := L (X,C) the dual space. We
will call both the transpose of a continuous linear operator between Fréchet
spaces (as de�ned in [Trè67] section 18 (2)) and the adjoint of a densely de�ned
closed operator between Banach spaces (as de�ned in [Kat66] III.5.3) the dual
operator. Clearly, the notion coincides in the case of bounded linear operators
between Banach spaces. In any case, we will use the symbol ∗ to denote the
dual operator.

2which are always assumed to have a complex underlying vector space
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If X is a Fréchet space, x ∈ X and x′ ∈ X∗, we set 〈x′, x〉X := x′(x).
If X and Y are Fréchet spaces and A ∈ L (X, Y ) is bijective, then A∗ : X∗ →
Y ∗ is an isomorphism of vector spaces, i. e. A∗ is linear and bijective (see [Trè67]
Proposition 23.1).
If X and Y are Fréchet spaces and A ∈ L (X, Y ) then we set CokerA :=
(RangeA)⊥ := { y′ ∈ Y ∗ : y′(RangeA) = {0} }. Thus CokerA = Ker(A∗).
1.2.2 Fact
If X and Y are Banach spaces and A ∈ L (X,Y ) is a Fredholm operator, then
Y�(RangeA)

∼=
(
Y�(RangeA)

)∗ ∼= (RangeA)⊥ = CokerA, cf. [Wer05] Satz
III.1.10.
Finally, we refer to e. g. [Kat66] as a general reference for basic properties of
dual operators of closed operators between Banach spaces.

1.3 Standard Function Spaces
Throughout this section, let a, b ∈ R with a < b, p ∈ (1,∞) and X be a
Banach space.
We denote by C[0, 1] the Banach space of continuous complex-valued functions
on [0, 1] endowed with the usual supremum norm ‖ ·‖∞. We denote by C1[0, 1]
the Banach space of 1-time continuously di�erentiable3 complex-valued func-
tions on [0, 1] endowed with the usual norm4 ‖f‖C1[0,1] := max(‖f‖∞, ‖∂f‖∞.
More generally, C(R, X) denotes the space of continuous X-valued functions
on the real line.
Furthermore, we denote by Cc(R, X) and C∞

c (R, X) the spaces of continuous
and in�nitely di�erentiable, resp., X-valued functions on the real line with
compact support.
We denote by Lp([a, b], X) and Lp(R, X) the corresponding Bochner space,
i. e. the Banach space of (equivalence classes5 of) p-integrable X-valued func-
tions on [a, b] and on R, resp., endowed with the usual norm ‖ · ‖p, and by

3Of course, in the points 0 and 1 one-sided di�erentiability is meant.
4∂f denotes the derivative of f .
5We identify two functions if they coincide almost everywhere w. r. t. the Lebesgue measure. We

follow the usual convention of abuse of notation and�whenever there is no confusion about the
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W 1
p ([a, b], X) the corresponding Sobolev space, i. e. the spaces of (equivalence

classes of) 1-time weakly di�erentiable p-integrableX-valued functions on (a, b)
endowed with the usual norm6

‖f‖W 1
p ([a,b],X) :=

(‖f‖pLp([a,b],X) + ‖∂f‖pLp([a,b],X)

)1/p

as de�ned in [Ama95] Section III.1.1.
Let t ∈ [a, b]. For each 〈f〉 ∈ W 1

p ([a, b], X) there is a unique continuous
representant f : [a, b] → X and we set δt〈f〉 := 〈f〉(t) := f(t). Then δt ∈
L ((W 1

p ([a, b], X)), X), cf. [Ama95] Section III.1.4.
We denote by Lp,loc(R, X) and W 1

p,loc(R, X) the local Bochner and Sobolev
spaces, i. e. (an equivalence class of) a function f : R → X belongs to
Lp,loc(R, X) or W 1

p,loc(R, X), resp., i� for all α, β ∈ R with α < β the re-
striction f|[α,β] belongs to Lp([α, β], X) or W 1

p ([α, β], X), resp.. We remark
that [HP57] Theorem 3.5.4 (3) implies that those functions are strongly mea-
surable.
We note that for all t ∈ (a, b) f ∈ W 1

p ([a, b], X) i� f ∈ W 1
p ([a, t], X), f ∈

W 1
p ([t, b], X) and for the continuous representants f|[a,t] and f|[t,b](t) f|[a,t](t) =

f|[t,b](t) holds.

1.4 Quasiperiodic Functions
We remark that throughout this thesis, the (quasi-)period of a (quasi-)periodic
function is always 1.
During this section, let z ∈ C\{0}, p ∈ (1,∞) and X be a Banach space.
As in the previous section, equivalence of functions is again understood as
coincidence almost everywhere.
We say, a function g : R→ X is z-quasiperiodic, if g(ξ+1) = zg(ξ) for all ξ ∈
R. It is obvious that for every function f : [0, 1] → X with f(1) = zf(0) there
is a unique z-quasiperiodic extension, which we will denote by Ezf . Conversely,
every z-quasiperiodic function is of the form Ezf , where f : [0, 1] → X is a
function with f(1) = zf(0).
meaning�do not distinguish in notation between an equivalence class of a function and a (�xed)
representant.

6Throughout this thesis, the derivative of a (at least) weakly di�erentiable function f will be
denoted by ∂f .
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We say, an equivalence class 〈g〉 (of functions on R to X) is z-quasiperiodic,
if for a (or equivalently for all) representant g : R → X g(ξ + 1) = zg(ξ)
for almost all ξ ∈ R. If N ⊂ R denotes the corresponding null set for a
�xed representant g, i. e. g(ξ + 1) = zg(ξ) for all ξ ∈ R \ N , then Ñ :=⋃
k∈Z(k +N) ⊃ N is a null set such that t ∈ R \ Ñ implies t+ k ∈ R \ Ñ for

all k ∈ Z. We say, Ñ is a quasiperiodicity null set for the representant g.
Again, it is obvious that for every equivalence class 〈f〉 of functions from
[0, 1] to X there is a unique extension to a z-quasiperiodic equivalence class of
functions on R to X, which, by abuse of notation, we will denote by Ez〈f〉.
Conversely, every z-quasiperiodic equivalence class of functions on R to X is
of the form Ez〈f〉, where 〈f〉 is an equivalence class of functions from [0, 1] to
X. Ez〈f〉 has a continuous representant i� 〈f〉 has a continuous representant
f : [0, 1] → X with f(1) = zf(0).
We set W 1

p ([0, 1], X)z := { f ∈ W 1
p ([0, 1], X) : f(1) = zf(0) }. Since

W 1
p ([0, 1], X)z

is the kernel of zδ0 − δ1 on W 1
p ([0, 1], X) the space W 1

p ([0, 1], X)z is a closed
subspace of W 1

p ([0, 1], X) and therefore a Banach space.
Finally, we denote by C∞([0, 1], X)z the space of restrictions to [0, 1] of in-
�nitely di�erentiable z-quasiperiodic X-valued functions on R.

Periodic Functions

In particular, we will deal with periodic, i. e. 1-quasiperiodic, functions.
We will also write ET instead of E1 and C∞(T, X) instead of C∞([0, 1], X)1.
Furthermore, we denote by C(T, X) the space of restrictions to [0, 1] of con-
tinuous periodic X-valued functions on R.
We set Lp(T, X) := ET(Lp([0, 1], X)). We call the reader's attention to the
fact that (equivalence classes of) functions in Lp(T, X) are de�ned R in con-
trast to, e. g.7, C(T, X) that only contains functions de�ned on [0, 1]. Clearly,
Lp(T, X) ⊂ Lp,loc(R, X).
Finally, we remark that f ∈ W 1

p ([0, 1], X)1 i� there exists g ∈ Lp([0, 1], X)

7Actually, all other function spaces in this thesis that are associated with the symbol T contain
only (equivalence classes of) functions de�ned on [0, 1].
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such that
∫ 1

0 gφ dt = − ∫ 1
0 f∂φ dt for all φ ∈ C∞(T,C). In this case we have

∂f = g in the weak sense.
Another characterization of W 1

p ([0, 1], X)1 using Fourier coe�cients can be
found in [AB02] Lemma 2.1.

1.5 Analyticity

Let Ω
◦⊂ C and X be a Fréchet space or the dual of a Fréchet space endowed

with the weak-* topology, i. e. the topology of pointwise convergence on the
predual.
We say, f : Ω → X is analytic if it is di�erentiable at each point of Ω, i. e. for
each z ∈ Ω the limit lim

ξ→z

f(ξ)−f(z)
ξ−z exists.

We denote by A(Ω,X) the space of analytic functions on Ω with values in X.
We remark that X is quasi-complete (cf. [Sch80] Section IV.6.1 for the case
that X is the dual of a Fréchet space) and thus the closed, convex, circled
hull of any compact subset of X is compact (cf. [Sch80] II.4.3 Corollary). In
that case, analyticity implies continuity and coincides with weak analyticity,
cf. [Gro53] Théorème � 2.1:8

1.5.1 Fact
A(Ω,X) ⊂ C(Ω,X).
1.5.2 Fact (Weak Analyticity)
f ∈ A(Ω,X) i� x′ ◦ f ∈ A(Ω,C) for all x′ ∈ X∗.
1.5.3 Fact
Let X be a Fréchet space and endow X∗ with the weak-* topology.
Then f ∈ A(Ω,X∗) i� [z 7→ 〈f(z), x〉X ] ∈ A(Ω,C) for all x ∈ X.
We also recall the results from [Gro53] Remarque � 2.4.
1.5.4 Fact
A(Ω,X) together with pointwise addition and scalar multiplication is a C-
vector space.

8In the case that X is the dual of a Fréchet space, say X = Y ∗, X∗ here denotes the topological
dual of X endowed with the strong topology. X∗ then coincides with Y , cf. [FW68] Satz � 14.1.3.
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1.5.5 Fact (Product Rule)
Let X , Y and Z be Fréchet spaces and π ∈ L (X;Y, Z).
Then [Ω 3 z 7→ π(f(z), g(z))] ∈ A(Ω,Z) for all f ∈ A(Ω,X) and g ∈
A(Ω, Y )

For the rest of this section we assume that X is a Banach space.

1.5.6 De�nition and Fact (Fréchet Space Structure on A(Ω,X))
We endow A(Ω,X) with the compact-open topology, i. e. the topology gen-
erated by all seminorms of the form A(Ω,X) 3 f 7→ supx∈K ‖f(x)‖X where
∅ 6= K ⊂⊂ Ω (Cf. [Cha85] Section 16.8 and [Dug70] Theorem XII.7.2.). Then
A(Ω,X) is a Fréchet space, cf. [Cha85] Theorem 16.13.

Analogously to the scalar case, the Weierstraÿ convergence theorem (cf. [RS02]
Theorem 8.4.1) holds. We state the following consequence.

1.5.7 Fact
∂ ∈ L (A(Ω,X)).

As direct consequence of the compact-open topology and Fact 1.5.3 we obtain:

1.5.8 Fact
δz ∈ (A(Ω,C))∗ for each z ∈ Ω.
If we endow (A(Ω,C))∗ with the weak-* topology then

[z 7→ δz] ∈ A(Ω, (A(Ω,C))∗).

It can be easily shown that the product de�ned in Fact 1.5.5 is continuous in
the following sense.

1.5.9 Fact
Let Y and Z be Banach spaces and π ∈ L (X;Y, Z).
For all f ∈ A(Ω,X) and g ∈ A(Ω, Y ) we set Π(f, g) := [Ω 3 z 7→
π(f(z), g(z))]. Then Π ∈ L (A(Ω,X);A(Ω, Y ), A(Ω,E)).

We also state the following two applications of Fact 1.5.9.

1.5.10 Fact
Let Y and Z be Banach spaces, A ∈ A(Ω,L (X,Y )), B ∈ A(Ω,L (Y, Z)) and
f ∈ A(Ω,X). Then [x 7→ (

A(x)
)
f(x)] ∈ A(Ω, Y ) and [x 7→ (

B(x)
)(
A(x)

)
] ∈

A(Ω,L (X,Z).



Analyticity 13

1.5.11 Fact
Let α ∈ A(Ω,C[0, 1]) and f ∈ A(Ω,Lp([0, 1], X)).
Then αf ∈ A(Ω,Lp([0, 1], X)).

As a direct consequence of Fact 1.5.2 and the Hahn-Banach theorem we obtain:

1.5.12 Fact
Let f ∈ A(Ω,X) with f(Ω) ⊂ U , where U is a closed subspace of X.
Then f ∈ A(Ω,U).

Series Expansion

We will make use of the following well-known expansions, cf. [DS58] Section
III.14.

1.5.13 De�nition and Fact (Power series)
Let f ∈ A(Ω,X).
For each z ∈ Ω and all r > 0 such that BC(z, r) ⊂ Ω, f can be expanded
into a power series (about z). I. e. there exists (xk)k∈N0

⊂ X such that the
series

∑∞
k=0 xk(· − z)k converges absolutely and uniformly to f on BC(z, r).

The coe�cients (xk)k∈N0
⊂ X are uniquely determined and are given by xk =

(∂kf)(z)/k! for each k ∈ N0.
If, in particular, Ω = BC(z, r) for some r > 0 and z ∈ C then there exists
a uniquely determined power series

∑∞
k=0 xk(· − z)k about z that converges

absolutely and pointwise to f on Ω and
[
Ω 3 ξ 7→ ∑N

k=0 xk(ξ − z)k
] N→∞−→ f

in A(Ω,X).
Conversely, if g : Ω → X can be locally expanded into power series, i. e.
if for any z ∈ Ω there exists r > 0 with BC(z, r) ⊂ Ω and a power se-
ries

∑∞
k=0 xk(· − z)k that converges absolutely pointwise to g on B, then g ∈

A(Ω,X) and the power series expansion about z of g coincides with∑∞
k=0 xk(· − z)k.

1.5.14 Remark
The expansion into a unique power series also holds for each f ∈ A(Ω, Y )
where Y is a Fréchet space, cf. [Gro53] Théorème � 2.1. In particular, let
F ∈ A(Ω,A(Ω,X)) and n ∈ N0. If we denote by

∑∞
k=0 f

(z)
k (· − z)k the

power series expansion of F (z) ∈ A(Ω,X) about z, in other words f (z)
k :=
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δz(∂
k(F (z)))/k! ∈ X for each k ∈ N0, then Fact 1.5.8 in combination with

Fact 1.5.7 yields [z 7→ f
(z)
n ] ∈ A(Ω,X).

1.5.15 De�nition and Fact (Laurent series, Cauchy-Hadamard formula)
Let Ωα,β := { z ∈ C : α < |z| < β } (where α ≥ 0 and β ∈ (α,∞] be an
annulus with center 0.
Every f ∈ A(Ωα,β, X) has a unique Laurent series expansion (with center 0),
i. e. there exists (a uniquely determined) (xk)k∈Z ⊂ X such that the series∑∞

k=−∞ xk(·)k converges absolutely and pointwise to f on Ωα,β. In particular,
lim supk→∞ (‖x−k‖X)1/k ≤ α and9 β ≤ (

lim supk→∞ (‖xk‖X)1/k)−1 ∈ R ∪
{∞}. Furthermore, the convergence above is uniform on every K ⊂⊂ C\{0},
in other words

[
Ωα,β 3 ξ 7→

∑N
k=−N xk(ξ)

k] N→∞−→
A(Ωα,β ,X)

f .

Conversely, if (xk)k∈Z ⊂ X such that
α = lim supk→∞ (‖x−k‖X)1/k <

β =
(
lim supk→∞ (‖xk‖X)1/k)−1 ∈ R ∪ {∞}

then
∑∞

k=−∞ xk(·)k converges absolutely pointwise on Ωα,β, to say g. Further-
more, g ∈ A(Ωα,β, X) and

∑∞
k=−∞ xk(·)k is the Laurent series expansion of

g.

Analytic Functions on Banach Spaces

Analytic functions de�ned on Banach spaces will only occur in compositions.
The following basic statements will be all we need and we refer to the mono-
graph [Cha85] for a detailed treatise of the topic. In particular, we refer to
[Cha85] Theorem 14.13 for an equivalent de�nition and [Cha85] Theorem 5.9
for a proof of Fact 1.5.16.

Let U
◦⊂ X and Y be a Banach space. We say, f : U → Y is analytic if it is

Fréchet di�erentiable on U . (We remind the reader that all Banach spaces in
this thesis are complex vector spaces.)

We denote by A(U, Y ) the set of all analytic functions from U to Y .

9Here, we use the convention 1/∞ := 0, of course.



Intervals and Distance on the Torus 15

1.5.16 Fact
Let Y and Z be Banach spaces, U

◦⊂ X and V
◦⊂ Y .

If f ∈ A(U, Y ) with f(U) ⊂ V and g ∈ A(V, Z) then g ◦ f ∈ A(U,Z).
A direct calculation �nally yields the following result.
1.5.17 Fact
Let X ∈ {C[0, 1], C1[0, 1]}.
We de�ne exp : X → X by exp f :=

[
[0, 1] 3 t 7→ exp(f(t))

]
for each f ∈ X.

Then a simple calculation yields exp ∈ A(X,X) and for each f ∈ X the
derivative ∂ exp f ∈ L (X) is given by X 3 g 7→ (exp f) · g.

Analytic Sets

1.5.18 De�nition and Fact
A subset Z of Ω is called an analytic set in Ω if for each z ∈ Ω there exist a
neighborhood O

◦⊂ Ω of z, l ∈ N and analytic functions fi ∈ A(Ω,C) for each
i = 1, . . . , l such that Z ∩O = { ξ ∈ Ω : f1(ξ) = . . . fl(ξ) = 0 }.
Every analytic set is closed in Ω, cf. e. g. [�oj91] Section II.� 3.4.
Clearly, an analytic set in C\{0} is either C\{0} or a discrete set of points.

1.6 Intervals and Distance on the Torus

The following technical de�nition is used in connection with the domain of
periodic functions.
An openT-interval of length δ < 1 is a subset of [0, 1] of the form [0, 1]∩(I+Z),
where I ⊂ R is an open interval of length δ. The center of such a T-interval
is (the unique point) [0, 1] ∩ (c+ Z), where c is the center of I.
For all a, b ∈ R we de�ne their T-distance dT(a, b) := minn∈Z |a+ n− b|.

1.7 Fourier Series of Banach Space Valued Functions

Again, let X be a Banach space. We denote by
s(Z, X) := { (xk)k∈Z ⊂ X : lim

|k|→∞
‖knxk‖X = 0 for all n ∈ N }
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the space of rapidly decreasing sequences with values in X (which takes the
role of the Schwartz space).
We de�ne FX : C∞(T, X) → s(Z, X) by

FXf := ((FXf)k)k∈Z := (

∫ 1

0
f(t)e−2πikt dt)k∈Z.

Then FX is well-de�ned, bijective and the inverse F−1
X : s(Z, X) → C∞(T, X)

is given by F−1
X (ck)k∈Z = [t 7→ ∑∞

k=−∞ cke
2πikt].

1.8 Multiplication Operators
Throughout this section, let p ∈ (1,∞) and X be a Banach space.
1.8.1 De�nition
Let M be a set, α : M → C and X a Banach space. For any function
f : M → X we set M[α]f := [M 3 m 7→ α(m)f(m)]. If it is clear from the
context that α acts as such a multiplication operator we also shortly write αf
instead of M[α]f .
We directly obtain the following statements.
1.8.2 Fact
[α 7→ M[α]] ∈ L (C[0, 1],L (Lp([0, 1], X)).
In particular, M[α] ∈ L (Lp([0, 1], X)) for each α ∈ C[0, 1].
1.8.3 Fact
[α 7→ M[α]] ∈ L (C1[0, 1],L (W 1

p ([0, 1], X)).
In particular, M[α] ∈ L (W 1

p ([0, 1], X)) for each α ∈ C1[0, 1].

1.9 Complex Power Functions
Motivation
We will need analytic logarithm and power10 functions (locally) for all points in
z ∈ C\{0}. For each point z ∈ C\{0} we choose an arbitrary (but from then
on �xed) branch of a logarithm that is de�ned on a suitable neighborhood of z.
(For the sake of clarity we also will provide an index to indicate to which point

10for real-valued exponents
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a logarithm function �belongs�, e. g. log(1/2)
3
4 will denote the evaluation at 3

4
of the branch associated with 1/2 and e. g. log(1)

3
4 will denote the evaluation

at 3
4 of the branch associated with 1 (the values may not coincide).) For each

point z ∈ C\{0} we will then use this branch of the logarithm to de�ne a
corresponding power function, again on a suitable neighborhood of z. 4
We will now provide the technical details and some simple facts. Additionally,
we refer to [FL94] �� V.1 and V.2..
Construction
Let z ∈ C\{0}.
We set Bz := BC(z, |z|).
Then there is an analytic logarithm function ξ 7→ log(z) ξ on Bz, i. e. log(z) ∈
A(Bz,C) and exp(log(z) ξ)) = ξ for all ξ ∈ Bz.
For all ξ ∈ Bz and t ∈ R we set ξt(z) := exp(t log(z) ξ). We write shortly ξ(·)

(z)

and ξ(−·)
(z) instead of R 3 t 7→ ξt(z) and R 3 t 7→ ξ−t(z), resp.. 4

The following statements hold for all z ∈ C\{0}.
1.9.1 Fact
[ξ 7→ ξ

(·)
(z)], [ξ 7→ ξ

(−·)
(z) ] ∈ A(Bz, C[0, 1]).

[ξ 7→ ξ
(·)
(z)], [ξ 7→ ξ

(−·)
(z) ] ∈ A(Bz, C1[0, 1]).

(This is a simple consequence of Fact 1.5.2, Fact 1.5.17 and Fact 1.5.16.)
1.9.2 Fact
For every ξ ∈ Bz and n ∈ Z ξn(z) do not depend on z, namely: If n > 0

ξn(z) =
∏n

j=1 ξ, if n < 0 ξn(z) = 1/ξn(z) and ξ0
(z) = 1. Therefore we will sometimes

omit the subscript in case of an integer-valued exponent.
1.9.3 Fact
ξs+t(z) = ξs(z)ξ

t
(z) for every ξ ∈ Bz and s, t ∈ R. In particular ξ(·)

(z)ξ
(−·)
(z) = ξ

(−·)
(z) ξ

(·)
(z) =

1Bz
for every ξ ∈ Bz.

1.10 UMD-spaces, R-boundedness

A Banach space X is called a UMD-space if the Hilbert transform, de�ned
on the Schwartz space S(R, X), can be extended to a bounded operator on
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Lp(R, X) for some (or, equivalently, for all) p ∈ (1,∞). We refer to, e. g.,
[Ama95] � III.4.4 for the details and basic properties. In particular we will use,
that if X is a UMD-space and Y is a Banach space that is isomorphic to X,
then Y is a UMD-space as well. Furthermore, every UMD-space is re�exive.
We remark that every Hilbert space is a UMD-space. Furthermore, if Ω, µ is a
σ-�nite measure space then every closed subspace and every quotient space11 of
Lp(Ω, µ) for each p ∈ (1,∞) is a UMD-space, cf. [Ama95] Theorem III.4.5.2.
In particular, all re�exive Sobolev and Hardy space are UMD-spaces.
If X and Y are Banach spaces a family of operators A ⊂ L (X,Y ) is called
R-bounded if there exists c > 0 such that for all n ∈ N, A1, . . . , An ∈ A and
x1, . . . , xn ∈ X

‖∑n
i=1 riAixi‖Lp([0,1],Y ) ≤ c‖∑n

i=1 rixi‖Lp([0,1],X)

for some (or, equivalently, for all) p ∈ (1,∞). Here, rn :=
[
[0, 1] 3 t 7→

sign sin(2nπt)
]
for all n ∈ N denote the Rademacher functions. (If we want to

emphasize that A ⊂ L (X, Y ) we write (X, Y )-R-bounded.)
In that case we will denote by R(X,Y )(A) the smallest c such that the above
inequality holds. It will be clear from the context which p is meant and we
therefore omit a corresponding indication of the dependence on p.
If H is a Hilbert space, all bounded sets in L (H) are R-bounded.
If X is an Lq(Ω)-space with 1 ≤ q < ∞ one can show that (X,X)-R-
boundedness is equivalent to the following square function estimate

‖(∑n
i=1 |Aixi|2)1/2‖Lq(Ω) ≤ c‖(∑n

i=1 |xi|2)1/2‖Lq(Ω).
More details on both de�nitions, basic properties and a remark on the meaning
of the �R� can be found in [KW04] Section I.2.

11by a closed subspace



Chapter 2

Basic Framework

The following notations will be used throughout this thesis.
Let 1 < p <∞, q := (1− 1/p)−1 and X be a UMD-space.

2.1 The Operator Family (At)t∈T

For all t ∈ R let At : X ⊃ D(At) → X be a closed operator such that
(A-i) there exists a normed space (D, ‖ · ‖D) such that D(At) = D for all

t ∈ R and (the set) D is a dense subspace of X and
(A-ii) ‖ · ‖D is, uniformly in t, equivalent to all graph norms ‖ · ‖At

(where
‖d‖At

:= ‖d‖X + ‖Atd‖X for all d ∈ D), i. e. there exists cD > 0 such
that c−1

D ‖d‖D ≤ ‖d‖At
≤ cD‖d‖D for all d ∈ D and all t ∈ R.

Since At (for, say, t := 0) is closed, D is a Banach space. Clearly, D ↪→ X and
At ∈ L (D,X) for all t ∈ R.
Furthermore, we assume that R 3 t 7→ At is periodic, i. e. At = At+1 for all
t ∈ R. To remind the reader of periodicity, we often write t ∈ T instead of
t ∈ R when referring to indices of the operator family (At)t∈R.

2.2 The Lifted Operator A
For a D-valued function f de�ned on M ⊂ R we set

Af := [M 3 t 7→ At(f(t))].

19
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We also assume (throughout this thesis) that
(A-iii) [t 7→ At] ∈ C(T,L (D,X))

holds.1

Obviously, this implies Af ∈ Lp([0, 1], X) for all f ∈ Lp([0, 1], D).
The �realization� A : Lp([0, 1], X) ⊃ Lp([0, 1], D) → Lp([0, 1], X) then is a
closed operator since its graph norm on its domain is equivalent to the norm
of (the Banach space) Lp([0, 1], D). Furthermore, A is densely de�ned.

2.3 Constant Families (At0)t∈T, At0

We remark that for (a �xed) t0 ∈ T the (constant) family
(At0 : X ⊃ D → X)t∈T

ful�lls the conditions (A-i), (A-ii) and (A-iii). Analogously to Section 2.2, we
denote byAt0f the corresponding map t 7→ At0(f(t)) for aD-valued function f .
Thus, again we obtain a closed, densely de�ned operator At0 : Lp([0, 1], X) ⊃
Lp([0, 1], D) → Lp([0, 1], X).

2.4 W1[a, b], W1,z[0, 1], W0[a, b], W−1,z[0, 1], W1(T)

During this section, let z ∈ C\{0} and a, b ∈ R with a < b.
We will now introduce the Banach spaces W1[a, b], W1,z[0, 1], W0[a, b] and
W−1,z[0, 1] where the �rst index should remind the reader of (weak) di�eren-
tiability and the second one of quasiperiodicity.
For the de�nition of the intersection and sum of normed spaces and their
corresponding natural norms we refer to [Tri95] Section 1.2.1.
We endow

W1[a, b] := Lp([a, b], D) ∩W 1
p ([a, b], X)

with the norm ‖f‖W1[a,b] :=
(‖f‖pLp([a,b],D) + ‖∂f‖pLp([a,b],X)

)1/p. Then W1[a, b]

is a Banach space (and its norm is equivalent to the natural intersection norm
‖f‖∩ := max{‖f‖Lp([a,b],D), ‖f‖W 1

p ([a,b],X)}).
1Clearly, this is equivalent to [t 7→ At] ∈ C(R,L (D,X)).
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Similarly, we de�ne the subspace of z-quasiperiodic functions2
W1,z[0, 1] := Lp([0, 1], D) ∩W 1

p ([0, 1], X)z
of W1[0, 1] and we set ‖f‖W1,z[0,1] := ‖f‖W1[0,1] for all f ∈ W1,z[0, 1]. Then
W1,z[0, 1] is a Banach space (and its norm is equivalent to the natural inter-
section norm ‖f‖∩ := max{‖f‖Lp([0,1],D), ‖f‖W 1

p ([0,1],X)z
}).

We set
W0[a, b] := Lp([a, b], X).

Furthermore, we de�ne
W−1,z[0, 1] :=

(W1,1/z[0, 1]
)∗.

We call the reader's attention to the index �1/z� which, of course, only serves
as a more intuitive presentation due to duality. By [Yos71] Proposition 1.6
we get the representation W−1,z[0, 1] =

(
Lp([0, 1], D) ∩W 1

p ([0, 1], X)1/z
)∗ ∼=(

Lp([0, 1], D)
)∗

+
(
W 1

p ([0, 1], X)1/z
)∗.

For intuitive reasons, we set
W1(T) := W1,1[0, 1].

As a direct consequence of the continuous point evaluation in W 1
p ([a, b], X))

(cf. Section 1.3), we obtain:
2.4.1 Fact
δt ∈ L (W1[0, 1], X) for all t ∈ [0, 1].
Finally, a mollifying argument (cf. [Ama95] Section III.4.2) easily yields:
2.4.2 Fact
C∞([0, 1], D)z is dense in W1,z[0, 1].

2Cf. Section 1.4.





Chapter 3

Fredholm Property of L

We set LW1,z[0,1] := ∂ +A ∈ L (W1,z[0, 1],W0[0, 1]) for all z ∈ C\{0} (and, in
particular, LW1(T) := ∂ +A ∈ L (W1(T),W0[0, 1])).
Before we impose further restrictions on (the dual operators of) (At)t∈T we
will now show that under suitable conditions LW1,z[0,1] is a Fredholm operator.
The following theorem (or its corollary, resp.) provides the basis for construct-
ing regularizers1.
3.1.3 Theorem
Assume that for (a �xed) t0 ∈ T there exists ρ ∈ R such that ρ+ iR ⊂ ρ(At0)
and { (|λ|+ 1)(At0 − λ)−1 : λ ∈ ρ+ iR } is (X,X)-R-bounded. Furthermore,
we de�ne Lt0 ∈ L (W1(T),W0[0, 1]) by Lt0 := ∂ +At0 − ρ.
Then Lt0 is invertible, i. e. Lt0 has a bounded inverse Bt0 ∈ L (W0[0, 1],W1(T)).
Remarks on the proof.
The statement mainly follows from [AB02] Theorem 2.3 and is an application
of the Marcinkiewicz multiplier theorem. However, for the convenience of the
reader we represent the complete proof in the current situation.
We also remark that the assumptions directly yield thatD is also a UMD-space,
since (At0 − ρ)−1 : X → D is an isomorphism.
Finally, we remind the reader that by FX : C∞(T, X) → s(Z, X) and analo-
gously FD we refer to the Fourier transform as de�ned in Section 1.7.
Proof.
For all f ∈ C∞(T, X) let Bt0f := F−1

D MFXf where M : s(Z, X) → s(Z, D)

1Cf. the remarks on the proof of Theorem 3.1.6.
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is de�ned by M(ck)k∈Z := (Mkck)k∈Z := ((At0 − λk)
−1ck)k∈Z with λk := ρ −

2πki ∈ ρ(At0) for each k ∈ Z. We remark that M is well-de�ned because of
the R-boundedness condition on the resolvents in combination with the identity
At0(At0 − λ)−1 = λ(At0 − λ)−1 + Id for all λ ∈ ρ(At0).
We will prove in a moment that Bt0 extends to bounded linear operator from
W0[0, 1] to W1(T) which we will denote by the same symbol.
Before, we show �rst how invertibility of Lt0 follows from this: A direct cal-
culation shows that Lt0F−1

D (ck)k∈Z = F−1
X ((At0 − λk)ck)k∈Z for all (ck)k∈Z ∈

s(Z, D). Thus for all f ∈ C∞(T, X)

Lt0Bt0f = Lt0F−1
D MFXf = F−1

X ((At0 − λk)(At0 − λk)
−1(FXf)k)k∈Z =

F−1
X ((FXf)k)k∈Z = f .

On the other hand,
FXLt0f = ((At0 − λk)(FDf)k)k∈Z for all f ∈ C∞(T, D)

and therefore
Bt0Lt0f = F−1

D MFXLt0f = F−1
D M((At0 − λk)(FDf)k)k∈Z =

F−1
D ((At0 − λk)

−1(At0 − λk)(FDf)k)k∈Z = F−1
D ((FDf)k)k∈Z = f .

Since Lt0 ∈ L (W1(T),W0[0, 1]) and Bt0 ∈ L (W0[0, 1],W1(T)) by density2
of C∞(T, D) in W1(T) and density of C∞(T, X) in W0[0, 1], resp., it follows
that Lt0 is invertible.
It remains to show that indeed Bt0 ∈ L (W0[0, 1],W1(T)). First we note,
that Bt0(C∞(T, X)) ⊂ C∞(T, D) ⊂ W1(T). Thus by density of C∞(T, X)
in W0[0, 1] it su�ces to show that3 ‖Bt0f‖W1(T) . ‖f‖W0[0,1] for all f ∈
C∞(T, X). To this end we will show that (a) ‖Bt0f‖Lp(T,D) . ‖f‖W0[0,1]

and (b) ‖∂Bt0f‖Lp(T,X) . ‖f‖W0[0,1] for all f ∈ C∞(T, X).
For all (ck)k∈Z ∈ s(Z, D) obviously

∂F−1
D (ck)k∈Z = F−1

D M̃(ck)k∈Z = F−1
X M̃(ck)k∈Z

where M̃(ck)k∈Z := (M̃kck)k∈Z := (2πikck)k∈Z. Thus4 ∂Bt0f = F−1
X M̃MFXf

for all f ∈ C∞(T, X).
Thus (a) and (b) are equivalent to

2Cf. Fact 2.4.2.
3We use the symbol . in the sense that there exists some C > 0 such that ‖Bt0f‖W1(T) ≤

C‖f‖W0[0,1] for all f ∈ C∞(T, X). The further occurrences of said symbol during this proof are
meant analogously.

4Of course, ∂F−1
D (ck)k∈Z = F−1

D M̃(ck)k∈Z and thus ∂Bt0f = F−1
D M̃MFXf also holds. However,

in general M̃M fails to be a Fourier multiplier between D and X.
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‖F−1
D M(ck)k∈Z‖Lp(T,D) . ‖F−1

X (ck)k∈Z‖W0[0,1] and
‖F−1

X M̃M(ck)k∈Z‖Lp(T,X) . ‖F−1
X (ck)k∈Z‖W0[0,1]

for all (ck)k∈Z ∈ FX(C∞(T, X)) = s(Z, X), i. e. M and M̃M are Fourier
multipliers. By [AB02] Theorem 1.3 it su�ces to show that
(a') the sets { k[Mk+1 −Mk] : k ∈ Z } and {Mk : k ∈ Z } are (X,D)-R-

bounded and that
(b') the sets

{ k[M̃k+1Mk+1 − M̃kMk] : k ∈ Z } =

{ k[2πi(k + 1)Mk+1 − 2πikMk] : k ∈ Z }
and

{ M̃kMk : k ∈ Z } = { 2πikMk : k ∈ Z }
are (X,X)-R-bounded.

By Kahane's contraction principle5 we obtain
R(X,X)({ 2πikMk : k ∈ Z }) ≤ 2R

with R := R(X,X)({ (1 + |λ|)(At0 − λ)−1 : λ ∈ ρ + iR }) < ∞. We already
remark for a later use that, similarly, we get

R(X,X)({ 2πikMk+1 : k ∈ Z }) ≤ (2 + 2π)R

and thus
R(X,X)({ kMk : k ∈ Z }) ≤ 2R/(2π) = π−1R

and
R(X,X)({ kMk+1 : k ∈ Z }) ≤ (2 + 2π)R/(2π) = (π−1 + 1)R.

The resolvent identity yields
k[2πi(k + 1)Mk+1 − 2πikMk] = 2πikMk+1 − 2πikMk2πikMk+1.

Hence by [KW04] Fact 2.8
R(X,X)({ k[2πi(k + 1)Mk+1 − 2πikMk] : k ∈ Z }) ≤
R(X,X)({ 2πikMk+1 : k ∈ Z })+

R(X,X)({ 2πikMk : k ∈ Z })R(X,X)({ 2πikMk+1 : k ∈ Z }) ≤
(2 + 2π)R + 2R(2 + 2π)R.

Therefore (b') holds.
Again, by the identity At0(At0 − λ)−1 = λ(At0 − λ)−1 + Id for all λ ∈ ρ(At0))
we get

5See, e. g., [KW04] Proposition 2.5.
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R(X,D)({Mk : k ∈ Z }) ≤
cD

(
R(X,X)({Mk : k ∈ Z }) + R(X,X)({λkMk : k ∈ Z }) + 1

)

where cD is the constant given by condition (A-ii). Another application of
Kahane's contraction principle now yields R(X,X)({Mk : k ∈ Z }) ≤ R and
R(X,X)({λkMk : k ∈ Z }) ≤ 2R. Therefore {Mk : k ∈ Z } is (X,D)-R-
bounded.
Finally, with the same argument we obtain

R(X,D)({ k[Mk+1 −Mk] : k ∈ Z }) ≤
cD

(
R(X,X)({ k[Mk+1 −Mk] : k ∈ Z })+

R(X,X)({ k[λk+1Mk+1 − λkMk] : k ∈ Z })).
Furthermore, [KW04] Fact 2.8 yields

R(X,X)({ k[Mk+1 −Mk] : k ∈ Z }) ≤
R(X,X)({ kMk+1 : k ∈ Z }) + R(X,X)({ kMk : k ∈ Z }) ≤
(π−1 + 1)R + π−1R = (2π−1 + 1)R

and using again the resolvent identity we get
R(X,X)({ k[λk+1Mk+1 − λkMk] : k ∈ Z }) ≤
R(X,X)({ 2πikMk+1 : k ∈ Z })+

R(X,X)({λkMk : k ∈ Z })R(X,X)({ 2πikMk+1 : k ∈ Z }) ≤
(2 + 2π)R + 2R(2 + 2π)R.

Therefore (a') holds. This �nishes the proof. 2

3.1.4 Corollary
Assume that for the family (At)t∈T the following condition holds.
(A-iv) There exists ρ ∈ R such that ρ+ iR ⊂ ρ(At) and

{ (|λ|+ 1)(At − λ)−1 : λ ∈ ρ+ iR }
is uniformly (X,X)-R-bounded for all t ∈ T, i. e. there exists cR > 0
such that R(X,X)({ (|λ| + 1)(At0 − λ)−1 : λ ∈ ρ + iR }) < cR for all
t ∈ T.

Then {Bt : t ∈ T }, where Bt is the inverse of Lt according to Theorem 3.1.3,
is bounded (in L (W0[0, 1],W1(T))).
Proof.
We recall that in the proof of Theorem 3.1.3 we have shown boundedness of
Bt0 by estimating certain R-bounds from above (by6 cD((2π−1 + 2π + 3)R +

6Here, of course, we are using the notations from the proof of Theorem 3.1.3. We remark that
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(4 + 4π)R2), cD(3R + 1), (2 + 2π)R + (4 + 4π)R2 and 2R, resp.) in order
to apply [AB02] Theorem 1.3. Using condition (A-iv) those bounds obviously
can be estimated from above independently of t. An examination of the proof
of the cited theorem now yields that the norm bound of Bt then also can be
estimated from above independently of t. 2

As a �nal ingredient to establish the Fredholm property of LW1(T) we will
need a compact embedding of W1(T) into W0[0, 1]. This can be obtained by
introducing an assumption on the domains D, namely we will use the following
result by Aubin (cf. [Aub63]).

3.1.5 Fact
Assume that
(A-v) D ↪→↪→ X

holds.
Then W1(T) ↪→↪→W0[0, 1].

3.1.6 Theorem
Let (A-iv) and (A-v) hold.
Then LW1(T) is a Fredholm operator.
Remarks on the proof.
We imitate the proof of [Kuc93] Theorem 5.1.4 and will construct a left- and
a right-regularizer, i. e. operators RL,RR ∈ L (W0[0, 1],W1(T)) such that
RLLW1(T) − IdW1(T) and LW1(T)RR − IdW0[0,1] are compact operators. Then
[Sch73] Theorem 2.1. yields that LW1(T) is a Fredholm operator which will
prove the theorem. We remark that we will here use the notions to the torus
w. r. t. T that we introduced in Section 1.6.
Proof.
For a (at �rst �xed) 1/2 > δ > 0 let (Uj)j=1,...,N be an open cover of [0, 1] by
N = N(δ) open T-intervals of the length 2δ such that any point of [0, 1] is
covered at most twice and for each j = 1, . . . , N we denote by tj the center
of Uj. Let7 (φj)j=1,...,N ⊂ C∞(T, [0, 1]) be a partition of unity subordinate8
to this cover. Furthermore, for each j = 1, . . . , N let ψj ∈ C∞(T, [0, 1]) such
that suppψj ⊂ Uj and ψj ≡ 1 on suppφj and let ψ̃j ∈ C∞(T, [0, 1]) such that

in general R depends on t0.
7Of course, C∞(T, [0, 1]) means the subset of all [0, 1]-valued functions of C∞(T,C).
8I. e. suppφj ⊂ Uj for each j = 1, . . . , N .
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supp ψ̃j ⊂ Uj and ψ̃j ≡ 1 on suppψj for all j = 1, . . . , N .
By Theorem 3.1.3 Lt := ∂ + At − ρ ∈ L (W1(T),W0[0, 1]) has a bounded
inverse Bt ∈ L (W0[0, 1],W1(T)) for each t ∈ [0, 1] and Corollary 3.1.4 yields
that the norms of the operators {Bt}t∈[0,1] can be estimated by a common
constant cB > 0 independently of t.
We set Bf :=

∑N
j=1 M[φj]BtjM[ψj]f for each f ∈ W0[0, 1]. By Fact 1.8.2

and Fact 1.8.3 we obtain M[φj]BtjM[ψj] ∈ L (W0[0, 1],W1(T)) for each j =
1, . . . , N and thus by Fact 3.1.5 M[φj]BtjM[ψj] ∈ K (W0[0, 1]). Therefore

B ∈ L (W0[0, 1],W1(T)) and B ∈ K (W0[0, 1]).
A simple calculation shows

LW1(T)B =
N∑
j=1

M[φj]LtjBtjM[ψj] +
N∑
j=1

M[∂φj]BtjM[ψj]+

ρ
N∑
j=1

M[φj]BtjM[ψj] +
N∑
j=1

M[φj]
(A −Atj

)BtjM[ψj] on W0[0, 1].

For the �rst summand the de�nition directly yields
N∑
j=1

M[φj]LtjBtjM[ψj] = IdW0[0,1].

As above, for the second summand

K1 :=
N∑
j=1

M[∂φj]BtjM[ψj] ∈ K (W0[0, 1])

and clearly for the third summand

K2 := ρ
N∑
j=1

M[φj]BtjM[ψj] = ρB ∈ K (W0[0, 1])

holds.
We will now show that the last summand S :=

∑N
j=1 φj

(A − Atj

)Btjψj is a
contraction in W0[0, 1].
We denote by ω(δ) := sup{ ‖At − As‖L (D,X) : t, s ∈ [0, 1], dT(t, s) ≤ δ } the
modulus of continuity of T 3 t 7→ At ∈ L (D,X). In combination with peri-
odicity of the family (At)t∈T we obtain by a compactness argument ω(δ)

δ→0−→ 0.
Note that 1Uj

(t)‖At − Atj‖L (D,X) ≤ ω(δ) for all j = 1, . . . , N and all t ∈ [0, 1]

since all points of Uj have at most T-distance δ to the center of Uj.
Furthermore, by the inequalities of Jensen and Hölder
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ap + bp ≤ (a+ b)p ≤ 2p−1(ap + bp) for all a, b ≥ 0.
Thus, if for each j = 1, . . . , N gj : [0, 1] → X is a function with supp gj ∈ Uj
then

N∑
j=1
‖gj(t)‖pX ≤

( N∑
j=1
‖gj(t)‖X

)p ≤ 2p−1
N∑
j=1
‖gj(t)‖pX for each t ∈ [0, 1],

since by construction of the sets Uj at a �xed point all but at most two sum-
mands vanish.

Therefore we obtain for all f ∈ W0[0, 1]

‖Sf‖pW0[0,1] =
∥∥∥

N∑
j=1

M[φj]
(A −Atj

)BtjM[ψj]f
∥∥∥
p

W0[0,1]
=

∫ 1

0

∥∥∥
N∑
j=1

(
M[φj]

(A −Atj

)BtjM[ψj]f
)
(t)

∥∥∥
p

X
dt ≤

∫ 1

0

( N∑
j=1

∥∥(
M[φj]

(A −Atj

)BtjM[ψj]f
)
(t)

∥∥
X

)p
dt ≤

2p−1
∫ 1

0

N∑
j=1

∥∥(
M[φj]

(A −Atj

)BtjM[ψj]f
)
(t)

∥∥p
X
dt =

2p−1
∫ 1

0

N∑
j=1

∥∥φj(t) ·
((A −Atj

)BtjM[ψj]f
)
(t)

∥∥p
X
dt =

2p−1
N∑
j=1

∫ 1

0
φj(t)

p
∥∥(At − Atj)[(BtjM[ψj]f)(t)]

∥∥p
X
dt ≤

2p−1
N∑
j=1

∫ 1

0
1Uj

(t)p‖At − Atj‖pL (D,X)‖(BtjM[ψj]f)(t)‖pD dt ≤

2p−1(ω(δ))p
N∑
j=1

∫ 1

0
‖(BtjM[ψj]f)(t)‖pD dt =

2p−1(ω(δ))p
N∑
j=1
‖BtjM[ψj]f‖pLp(T,D) ≤

2p−1(ω(δ))p
N∑
j=1
‖BtjM[ψj]f‖pW1(T) ≤

2p−1(ω(δ))p
N∑
j=1
‖Btj‖pL (W0[0,1],W1(T))‖M[ψj]f‖pW0[0,1] ≤
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2p−1cBp(ω(δ))p
N∑
j=1
‖M[ψj]f‖pW0[0,1] =

(2cBω(δ))p/2
N∑
j=1

∫ 1

0
‖(M[ψj]f)(t)‖pX dt ≤

(2cBω(δ))p/2

∫ 1

0

( N∑
j=1
‖(M[ψj]f)(t)‖X

)p
dt =

(2cBω(δ))p/2

∫ 1

0

( N∑
j=1

ψj(t)
)p
‖f(t)‖pX dt =

(2cBω(δ))p/2

∫ 1

0
‖f(t)‖pX dt = (2cBω(δ))p/2 ‖f‖pW0[0,1].

We conclude that ‖S‖L (W0[0,1]) ≤ 21−pcBω(δ)ω(δ)‖f‖W0[0,1]
δ→0−→ 0. From now

on we assume that δ is small enough such that ‖S‖L (W0[0,1]) < 1. Thus then
IdW0[0,1] + S ∈ L (W0[0, 1]) is invertible.
Since LW1(T)B = IdW0[0,1] + S +K1 +K2 we obtain

LW1(T)B(IdW0[0,1] + S)−1 = IdW0[0,1] + (K1 +K2)(IdW0[0,1] + S)−1.
Clearly, (K1 +K2)(IdW0[0,1] + S)−1 ∈ K (W0[0, 1]). Thus

B(IdW0[0,1] + S)−1 ∈ L (W0[0, 1],W1(T))

is a right regularizer.
For the construction of a left regularizer we �rst remark that

Btj ∈ L (W0[0, 1],W1(T))

together with Fact 3.1.5 also yields Btj ∈ K (W1(T)) for each j = 1, . . . , N .
Analogously as above we obtain

(A − Atj

)
M[ψ̃j] ∈ L (W1(T),W0[0, 1]) and∥∥(A − Atj

)
M[ψ̃j]

∥∥
L (W1(T),W0[0,1]) ≤ ω(δ) for each j = 1, . . . , N . Therefore

∥∥Btj
(A − Atj

)
M[ψ̃j]

∥∥
L (W1(T)) ≤ cBω(δ)

δ→0−→ 0 and thus we can again as-
sume that δ is small enough such that Btj

(A − Atj

)
M[ψ̃j] is a contraction

in W1(T). Hence then IdW1(T) + Btj
(A − Atj

)
M[ψ̃j] is invertible and we set

Sj :=
(
IdW1(T) + Btj

(A −Atj

)
M[ψ̃j]

)−1 ∈ L (W1(T)).
A simple calculation now shows(∑N

j=1 φjSjBtjM[ψj]
)
LW1(T) =
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IdW1(T) + ρ
∑N

j=1 M[φj]SjBtjM[ψj]−
∑N

j=1 M[φj]SjBtjM[∂ψj].
As above we obtain that the second and third summand are compact opera-
tors on W1(T) since Btj ∈ K (W1(T)). Thus

∑N
j=1 M[φj]SjBtjM[ψj] is a left

regularizer.
This proves the theorem. 2

3.1.7 Corollary
Let (A-iv) and (A-v) hold.
Then LW1(T)−z ∈ L (W1(T),W0[0, 1]) is a Fredholm operator for each z ∈ C.
Proof.
Since by Fact 3.1.5 W1(T) ↪→↪→ W0[0, 1] we conclude that LW1(T) − z is a
compact perturbation of the Fredholm operator LW1(T). Thus [Sch73] Theorem
3.1 yields the statement. 2

A direct calculation yields the following relation which will allow us to extend
the Fredholm result to all operators LW1,z[0,1].
3.1.8 Fact
Let z ∈ C\{0}.
Then LW1,ξ[0,1] = M[ξ

(·)
(z)](LW1(T) + log(z) ξ)M[ξ

(−·)
(z) ] for all ξ ∈ Bz.

3.1.9 Corollary
Let (A-iv) and (A-v) hold.
Then LW1,z[0,1] ∈ L (W1,z[0, 1],W0[0, 1]) is a Fredholm operator for each z ∈ C.
Proof.
Let z ∈ C\{0}. Fact 3.1.8 particularly yields

LW1,z[0,1] = M[z
(·)
(z)](LW1(T) + log(z) z)M[z

(−·)
(z) ].

By Corollary 3.1.7 LW1(T) + log(z) z is a Fredholm operator and Fact 1.8.3
yields that M[z

(−·)
(z) ] ∈ L (W1,z[0, 1],W1(T)) and M[z

(·)
(z)] ∈ L (W0[0, 1]) are

isomorphisms9. We obtain that LW1,z[0,1] is a Fredholm operator. 2

3.1.10 Remark
Indepently and during the development of this thesis, W. Arendt and P. Rabier
proved similar results to this chapter, cf. [AR09].

9The inverses are M[z(·)
(z)] ∈ L (W1(T),W1,z[0, 1]) and M[z(−·)

(z) ] ∈ L (W0[0, 1]),resp..





Chapter 4

The Dual Framework

We will now introduce the �dual� objects to the objects de�ned in Chapter 2.
Loosely speaking, all construction are carried out analogously by substituting
D by D′,X by X∗ and p by q.

4.1 (A∗t )t∈T, A′, A′
t0

We will use duality to de�ne what we mean by solutions to equation (E).
Therefore we assume from now on, that the following three conditions hold for
the dual operators A∗t : X∗ ⊃ D(A∗t ) → X∗.

(A∗-i) There exists a normed space (D′, ‖ · ‖D′) such that D(A∗t ) = D′ for
all t ∈ R.

(A∗-ii) ‖ · ‖D′ is, uniformly in t ∈ R, equivalent to all graph norms ‖ · ‖A∗t .
(A∗-iii) [t 7→ A∗t ] ∈ C(T,L (D′, X∗)).

4.1.1 Remark
ince At (for, say, t := 0) is closed, (D′, ‖ · ‖X∗) is dense in X∗ by [Kat66]
Theorem III.5.29.
Periodicity of (At)t∈R yields periodicity of (A∗t )t∈R and we will again use the
notation t ∈ T when referring to indices.

Analogously as in Section 2.2 and Section 2.3, resp., we then de�ne the closed,
densely de�ned operators A′ : Lq([0, 1], X∗) ⊃ Lq([0, 1], D′) → Lq([0, 1], X∗)
and A′

t0
: Lq([0, 1], X∗) ⊃ Lq([0, 1], D′) → Lq([0, 1], X∗) for (a �xed) t0 ∈ T.

33
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4.2 W ′
1[a, b], W ′

1,z[0, 1], W ′
0[a, b], W ′

−1,z[0, 1], W ′
1(T)

Analogously to Section 2.4, we de�ne, again for all z ∈ C\{0} and a, b ∈ R
with a < b, the Banach spaces

W ′
1[a, b] := Lq([a, b], D

′) ∩W 1
q ([a, b], X

∗),
endowed with the norm ‖f‖W ′

1[a,b] :=
(‖f‖qLq([a,b],D′)

+ ‖∂f‖qLq([a,b],X∗)

)1/q,
W ′

1,z[0, 1] := Lq([0, 1], D′) ∩W 1
q ([0, 1], X∗)z,

endowed with the norm ‖f‖W ′
1,z[0,1] := ‖f‖W ′

1[0,1],
W ′

0[a, b] := Lq([a, b], X
∗), and

W ′
−1,z[0, 1] :=

(W ′
1,1/z[0, 1]

)∗ ∼= (
Lq([0, 1], D′)

)∗
+

(
W 1

q ([0, 1], X∗)1/z
)∗.

Again, we set
W ′

1(T) := W ′
1,1[0, 1]

and we state the results analogous to Fact 2.4.1 and Fact 2.4.2.

4.2.1 Fact
δt ∈ L (W ′

1[0, 1], X∗) for all t ∈ [0, 1].

4.2.2 Fact
C∞([0, 1], D′)z is dense in W ′

1,z[0, 1].

4.2.3 De�nition and Fact (Duality between W0[0, 1] and W ′
0[0, 1])

Since X is re�exive, by [Edw65] Theorem 8.20.5
(W0[0, 1]

)∗ can be identi�ed
withW ′

0[0, 1] by the usual isomorphismW ′
0[0, 1] 3 f ′ 7→ 〈f ′, ·〉W ∈ (W0[0, 1]

)∗,
where 〈f ′, f〉W :=

∫ 1
0 〈f ′(t), f(t)〉X dt for all f ′ ∈ W ′

0[0, 1] and f ∈ W0[0, 1].
Analogously, W0[0, 1] ∼= (W ′

0[0, 1]
)∗ by the isomorphism f 7→ 〈·, f〉W . Fur-

thermore, both W0[0, 1] and W ′
0[0, 1] are re�exive and as usual the canonical

embedding into their biduals is compatible with the identi�cation 〈·, ·〉W . We
will use these identi�cations without further notice.

4.3 Extension and Duality of L and L′

4.3.1 Motivation
In this section we will introduce extensions of the operators LW1,z[0,1] and
L′W ′

1,z[0,1] using duality. We will explain the basic idea behind this construc-
tion in the following (general) situation.
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If a : x ⊃ d→ x is a closed and densely de�ned operator on a re�exive Banach
space x, then there are the following two operators associated with a w. r. t.
duality.
First, there is the �usual� dual operator a∗ : x∗ ⊃ d′ → x∗ (as e. g. de�ned
in [Kat66] � III.5.5), which then is also closed and densely de�ned by [Kat66]
Theorem III.5.29.
On the other hand, a ∈ L ([d], x), where [d] denotes the Banach space induced
by the graph norm of a on d. As a bounded operator a has then a dual operator
in L (x∗, [d]∗) (in the sense of [Kat66] � I.3.6), which we (here) denote by a∗˜.
If we apply the second method to a∗ : x∗ ⊃ d′ → x∗, we obtain a˜ :=
(a∗)∗˜ ∈ L (x∗∗, [d′]∗). After the natural identi�cation of x∗∗ with x, we obtain
a˜ ∈ L (x, [d′]∗) and a direct calculation shows that a˜ is the (unique [d′]∗-
valued) extension of a ∈ L ([d], x) to x. 4
During this section let z ∈ C\{0}. We remark that the de�nition of the
following operators, in particular the �extended ones�, depends on z. E. g., if
in the above motivation a = ∂ with x = Lp([0, 1],C) and d = W 1

p ([0, 1],C)
z
,

then a˜1 = (1− 1/z)δ0 (in [d′]∗)). However, for the sake of readability we will
mostly omit the use of a corresponding index in this section.

We remark that A : W0[0, 1] ⊃ Lp([0, 1], D) →W0[0, 1] is the adjoint operator
of A′ : W ′

0[0, 1] ⊃ Lq([0, 1], D′) →W ′
0[0, 1] and vice versa.

We have already mentioned that the graph norm of A is equivalent to the norm
of Lp([0, 1], D). Thus A ∈ L (Lp([0, 1], D),W0[0, 1]). Analogously, we obtain
A′ ∈ L (Lq([0, 1], D′),W ′

0[0, 1]).

For both operators there is a unique extension to
A˜∈ L

(W0[0, 1],
(
Lq([0, 1], D′)

)∗) and
A′˜∈ L (W ′

0[0, 1], (Lp([0, 1], D))∗), resp..

A˜ coincides with the dual operator of A′ ∈ L (Lq([0, 1], D′),W ′
0[0, 1]) and

A′˜ coincides with the dual operator of A ∈ L (Lp([0, 1], D),W0[0, 1]).

For the sake of completeness we remark that analogous results hold for At0

and A′
t0
, resp. and we de�ne At0̃ ∈ L

(W0[0, 1],
(
Lq([0, 1], D′)

)∗) and A′
t0̃
∈

L (W ′
0[0, 1], (Lp([0, 1], D))∗) analogously.

Furthermore, as usual by partial integration ∂ : W0[0, 1] ⊃ W 1
p ([0, 1], X)

z
→
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W0[0, 1] and −∂ : W ′
0[0, 1] ⊃ W 1

q ([0, 1], X∗)1/z → W ′
0[0, 1] are closed and

densely de�ned operators that are mutually adjoint. Their graph norms are
equivalent to the given norms on their domains.
Again, the dual operator of −∂ ∈ L (W 1

q ([0, 1], X∗)1/z,W ′
0[0, 1]) is an exten-

sion of ∂ ∈ L (W 1
p ([0, 1], X)

z
,W0[0, 1]) to

∂˜ ∈ L
(W0[0, 1],

(
W 1

q ([0, 1], X∗)1/z

)∗)

and the dual operator of ∂ ∈ L (W 1
p ([0, 1], X)

z
,W0[0, 1]) is an extension of

−∂ ∈ L (W 1
q ([0, 1], X∗)1/z,W ′

0[0, 1]) to
−∂˜ ∈ L

(W ′
0[0, 1],

(
W 1

p ([0, 1], X)
z

)∗).
The following diagrams on the next page illustrate the situation. To avoid
confusion, we explicitly state that the symbol ∩ denotes the intersection.
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We recall that in Chapter 3 we de�ned
LW1,z[0,1] := ∂ +A ∈ L (W1,z[0, 1],W0[0, 1]),

and we now set
Lz̃ := ∂˜ +A˜∈ L (W0[0, 1],W ′

−1,z[0, 1]),
L′W ′

1,1/z[0,1] := −∂ +A′ ∈ L (W ′
1,1/z[0, 1],W ′

0[0, 1]) and
L′1/z̃ := −∂˜ +A′˜∈ L (W ′

0[0, 1],W−1,1/z[0, 1]).

We remark that throughout this thesis, formally L := ∂+A and L′ := −∂+A′

will hold and subscripts will be used for concrete realizations.

It follows that Lz̃ is the unique extension LW1,z[0,1] and coincides with the dual
operator of L′W ′

1,1/z[0,1]. Analogously, L′1/z̃ is the unique extension L′W ′
1,1/z[0,1] and

coincides with the dual operator of LW1,z[0,1].

For the convenience of the reader we redraw the diagrams using the introduced
notations.
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4.4 The Operators L and L′ on the Real Line � Part 1

The following statements are direct consequences of the de�nitions and the
underlying spaces, cf. Section 1.3.

4.4.1 De�nition and Remark
We set

W1,loc(R) := Lp,loc(R, D) ∩W 1
p,loc(R, X),

W0,loc(R) := Lp,loc(R, X),
W ′

1,loc(R) := Lq,loc(R, D′) ∩W 1
q,loc(R, X∗) and

W ′
0,loc(R) := Lq,loc(R, X∗).

Obviously, (an equivalence class of) a function f : R→ X belongs toW1,loc(R)
or W0,loc(R) i� for all a, b ∈ R with a < b the restriction f|[a,b] belongs to
W1[a, b] or W0[a, b], resp..
Analogously, (an equivalence class of) a function f ′ : R → X∗ belongs to
W ′

1,loc(R) or W ′
0,loc(R) i� for all a, b ∈ R with a < b the restriction f ′|[a,b]

belongs to W ′
1[a, b] or W ′

0[a, b], resp..
We endow W1,loc(R), W0,loc(R), W ′

1,loc(R) and W ′
0,loc(R) with the topologies

induced by the seminorms
{‖ · ‖W1[−k,k]}k∈N, {‖ · ‖W0[−k,k]}k∈N, {‖ · ‖W ′

1[−k,k]}k∈N and
{‖ · ‖W ′

0[−k,k]}k∈N, resp..
Then W1,loc(R) (and analogously W0,loc(R), W ′

1,loc(R) and W ′
0,loc(R)) is a

Fréchet space (since it coincides with the projective limit of the Banach spaces
{W1[−k, k]}k∈N, cf. [FW68] � 6.2).

Furthermore, we easily obtain:

4.4.2 Fact
f ∈ W1,loc(R) i� f ∈ W1[k, k + 1] and f|[k−1,k](k) = f|[k,k+1](k) for all k ∈ Z.
f ∈ W0,loc(R) i� f ∈ W0[k, k + 1] for all k ∈ Z.
f ′ ∈ W ′

1,loc(R) i� f ′ ∈ W ′
1[k, k + 1] and f ′|[k−1,k](k) = f ′|[k,k+1](k) for all k ∈ Z.

f ′ ∈ W ′
0,loc(R) i� f ′ ∈ W ′

0[k, k + 1] for all k ∈ Z.
We now de�ne the operators L and L′ on the real line.

4.4.3 De�nition and Fact
LW1,loc(R) := [f 7→ (∂ +A)f ] ∈ L (W1,loc(R),W0,loc(R)).
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L′W ′
1,loc(R) := [f ′ 7→ (−∂ +A′)f ′] ∈ L (W ′

1,loc(R),W ′
0,loc(R)).

4.4.4 Remark
Obviously, C∞

c (R, D′) ⊂ W ′
1,loc(R) and L′W ′

1,loc(R)(C
∞
c (R, D′)) ⊂ Cc(R, X∗).

Combining Section 1.4 with Fact 4.4.2, a direct calculation yields:

4.4.5 Fact
Let f ∈ W1,z[0, 1].
Then Ezf ∈ W1,loc(R) and LW1,loc(R)(Ezf) = Ez(LW1,z[0,1]f) (in W0,loc(R)).

4.4.6 Fact
Let f ′ ∈ W ′

1,z[0, 1].
Then Ezf ′ ∈ W ′

1,loc(R) and L′W ′
1,loc(R)(Ezf ′) = Ez(L′W ′

1,z[0,1]f
′) (in W ′

0,loc(R)).

4.5 Solutions � Part 1

Using the introduced notation, equation (E) formally reads Lu = 0. We will
now give the precise de�nition of solutions, using duality.

4.5.1 Preparation and De�nition
For all f ′ ∈ Cc(R, X∗) and f ∈ W0,loc(R) clearly [t 7→ 〈f ′(t), f(t)〉X ] ∈
L1(R,C) and we set 〈f ′, f〉 :=

∫
R 〈f ′(t), f(t)〉X dt ∈ C.

In particular, by Remark 4.4.4 〈L′W ′
1,loc(R)φ

′, f〉 is well-de�ned for all φ′ ∈
C∞

c (R, D′) and f ∈ W0,loc(R).

4.5.2 De�nition (Solutions)
u ∈ W0,loc(R) is called a solution (to equation (E)) if 〈L′W ′

1,loc(R)φ
′, u〉 = 0 for

all φ′ ∈ C∞
c (R, D′).

We end this section with two propositions that mostly will play a technical role
but also indicate the connection between the �weak formulation� used in the
above de�nition and a more classical concept.

4.5.3 Proposition
Let u ∈ W1,loc(R).
Then u is a solution i� LW1,loc(R)u = 0.
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Proof.
Analogously as in Section 4.3 partial integration yields

〈L′W ′
1,loc(R)φ

′, u〉 = 〈φ′,LW1,loc(R)u〉 for all φ′ ∈ C∞
c (R, D′).

Thus if LW1,loc(R)u = 0 then we obtain directly that u is a solution. Conversely,
if u is a solution, then density of the restrictions of C∞

c (R, D′) in W ′
0[a, b]

yields LW1,loc(R)u = 0 almost everywhere on [a, b] for all a, b ∈ R with a < b,
hence LW1,loc(R)u = 0. 2

4.5.4 Proposition
Let u be a solution. Furthermore, assume that u is z-quasiperiodic for some
z ∈ C\{0}.
Then Lz̃ (u|[0,1]) = 0.

Proof.
Let ψ′ ∈ C∞([0, 1], D′)1/z. We will show that 〈Lz̃ (u|[0,1]), ψ

′〉W ′
1,1/z[0,1] = 0.

Then the assertion follows from Fact 4.2.2.

Let α ∈ C∞
c (R,C) with suppα ⊂ [−1, 2] and α = 1 on [0, 1]. We set α̃ := α

on (−∞, 1], α̃ := 1 on (1, 2] and α̃ := α(·−1) on (2,∞). Then α̃ ∈ C∞
c (R,C)

and φ′ := M[α](E1/zψ
′), φ̃′ := M[α̃](E1/zψ

′) ∈ C∞
c (R, D′).

Quasiperiodicity of u and ψ′ in combination with the results of Section 4.3 and
Fact 4.4.6 yields

〈Lz̃ (u|[0,1]), ψ
′〉W ′

1,1/z[0,1] = 〈u|[0,1],L′W ′
1,1/z[0,1]ψ

′〉W ′
1,1/z[0,1] =

∫ 1

0
〈(L′W ′

1,loc(R)ψ
′)(t), u(t)〉X dt =

∫ 2

1
〈(L′W ′

1,loc(R)(E1/zψ
′))(t), u(t)〉X dt.

On the other hand, a direct calculation yields

〈L′W ′
1,loc(R)φ̃

′, u〉 = 〈L′W ′
1,loc(R)φ

′, u〉+

∫ 2

1
〈(L′W ′

1,loc(R)(E1/zψ
′))(t), u(t)〉X dt.

By the assumption 〈L′W ′
1,loc(R)φ

′, u〉 = 0 and 〈L′W ′
1,loc(R)φ̃

′, u〉 = 0, hence
∫ 2

1
〈(L′W ′

1,loc(R)(E1/zψ
′))(t), u(t)〉X dt = 0.

This proves the proposition. 2
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4.6 Fredholm Property of L′

For the sake of completeness we state the analogous result to Section 3. We
remark that all statements easily follow from the fact that the family (−A∗t )t∈T
ful�lls the corresponding conditions.

4.6.1 Theorem
Assume that for (a �xed) t0 ∈ T there exists ρ ∈ R such that ρ+ iR ⊂ ρ(A∗t0)
and { (|λ|+1)(A∗t0 − λ)−1 : λ ∈ ρ+iR } is (X∗, X∗)-R-bounded. Furthermore,
we de�ne L′t0 ∈ L (W ′

1(T),W ′
0[0, 1]) by L′t0 := −∂ + A′

t0
− ρ. Then L′t0 is

invertible.

4.6.2 Corollary
Assume that for the family (A∗t )t∈T the following condition holds.
(A∗-iv) There exists ρ ∈ R such that ρ+ iR ⊂ ρ(A∗t ) and

{ (|λ|+ 1)(A∗t − λ)−1 : λ ∈ ρ+ iR }
is uniformly (X∗, X∗)-R-bounded for all t ∈ T.

Then {B′t : t ∈ T }, where B′t is the inverse of L′t according to Theorem 4.6.1,
is bounded (in L (W ′

0[0, 1],W ′
1(T))).

4.6.3 Fact
Assume that
(A∗-v) D′ ↪→↪→ X∗

holds.
Then W ′

1(T) ↪→↪→W ′
0[0, 1].

4.6.4 Theorem
Let (A∗-iv) and (A∗-v) hold.
Then L′W ′

1(T) is a Fredholm operator.

4.6.5 Corollary
Let (A∗-iv) and (A∗-v) hold.
Then L′W ′

1(T)−z ∈ L (W ′
1(T),W ′

0[0, 1]) is a Fredholm operator for each z ∈ C.

4.6.6 Fact
Let z ∈ C\{0}.
Then L′W ′

1,ξ[0,1] = M[ξ
(·)
(z)](L′W ′

1(T) − log(z) ξ)M[ξ
(−·)
(z) ] for all ξ ∈ Bz.
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4.6.7 Corollary
Let (A∗-iv) and (A∗-v) hold.
Then L′W ′

1,z[0,1] ∈ L (W ′
1,z[0, 1],W ′

0[0, 1]) is a Fredholm operator for each z ∈ C.

4.7 Equivalence and Relation of Conditions

4.7.1 Proposition
Condition (A-iv) is equivalent to condition (A∗-iv).
Proof.
We �rst note that ρ(A∗t ) = ρ(At) and (A∗t − λ)−1 = ((At − λ)−1)∗ for all λ ∈
ρ(A∗t ) and all t ∈ T. Then by [KKW06] Proposition 3.5 the uniform (X,X)-
R-boundedness of { (|λ|+ 1)(At − λ)−1 : λ ∈ ρ+ iR } for all t ∈ T yields the
uniform (X∗, X∗)-R-boundedness of { (|λ|+1)(A∗t − λ)−1 : λ ∈ ρ+ iR }, thus
(A-iv) implies (A∗-iv). The converse direction directly follows from (A∗t )

∗ = At

for all t ∈ T. 2

Important Remark
We will not always explicitly mention the above equivalence.

4.7.2 Remark
In particular, whenever in the following we require both the conditions (A-iv)
and (A∗-iv) to hold, we can assume that they hold for the same ρ ∈ R.

4.7.3 Proposition
Let (A-iv) hold.
Then condition (A-v) is equivalent to condition (A∗-v).
Remarks on the proof.
To avoid confusion we here use the symbol ∗˜ to denote the dual of a bounded
operator, cf. Motivation 4.3.1.
Proof.
Assume that condition (A-v) holds and denote by J : D → X the compact
embedding. Then by Schauder's theorem J∗˜ ∈ K (X∗, D∗). By (A-iv) A0 −
ρ ∈ L (D,X) is an isomorphism and hence (A0 − ρ)∗˜ ∈ L (X∗, D∗) is also
an isomorphism. Furthermore, by Proposition 4.7.1 A∗0− ρ ∈ L (D′, X∗) is an
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isomorphism. An easy calculation now shows that the diagram

X∗ J∗˜ // D∗

((A0−ρ)∗˜)−1

²²
D′

J ′
//

A∗0−ρ
OO

X∗

commutes, where J ′ denotes the embedding of D′ into X∗. We conclude that
J ′ is compact and thus (A∗-v). Conversely, if we assume that (A∗-v) holds,
i. e. J ′ ∈ K (D′, X∗), then the diagram yields J∗˜ ∈ K (X∗, D∗) and again by
Schauder's theorem we conclude that (A-v) holds. 2

4.7.4 Proposition
Assume that there is ρ ∈ ρ(At) for all t ∈ R. Then the conditions (A-i) and
(A-iii) and continuity of the embedding D ↪→ X imply condition (A-ii).
Proof.
Clearly (A-iii) yields that c1 := supt∈R ‖At‖L (D,X) <∞ and by D ↪→ X there
is c2 > 0 such that ‖d‖X ≤ c2‖d‖D for all d ∈ D. Thus

‖d‖At
≤ ‖At‖L (D,X)‖d‖D + ‖d‖X ≤ max{c1, c2}‖d‖D

for all d ∈ D and all t ∈ R. On the other hand, by [t 7→ At − ρ] ∈ L (D,X)
we obtain [t 7→ (At − ρ)−1] ∈ L (X,D) (cf. [Cha85] Theorem 7.17) and thus
c3 := supt∈R ‖(At − ρ)−1‖L (X,D) <∞. Therefore

‖d‖D ≤ ‖(At − ρ)−1‖L (X,D)‖(At − ρ)d‖X ≤
c3 max{1, |ρ|}(‖Atd‖X + ‖d‖X) = c3 max{1, |ρ|}‖d‖At

for all d ∈ D and all t ∈ R. 2

As a direct consequence we obtain
4.7.5 Corollary
The conditions (A-i), (A-iii), (A-iv) and (A-v) imply condition (A-ii). 2

4.7.6 Corollary
The conditions (A∗-i), (A∗-iii), (A∗-iv) and (A∗-v) imply condition (A∗-ii). 2



Chapter 5

Hypoellipticity

We remark that the notion of �hypoellipticity� chosen by P. Kuchment in
[Kuc93] Chapter 5 does not coincide with the �usual� de�nition (e. g. cf. [Hör61]
Section 1). We follow P. Kuchment's usage of the notion: �Hypoellipticity� is
used to refer to the regularity statement of the forthcoming Theorem 5.1.7, not
to a well-de�ned class of operators.
5.1.7 Theorem
Let (A-iv) hold. (We remind the reader that condition (A-iv) is formulated on
page 26 and implies condition (A∗-iv), cf. Proposition 4.7.1.)
Furthermore, let u be a solution and assume that u is z-quasiperiodic for some
z ∈ C\{0}.
Restricting u to [0, 1] we have u ∈ W1,z[0, 1] and LW1,z[0,1]u = 0.
Remarks on the proof.
We extend the proof of [Kuc93] Theorem 5.1.5 to the given situation.
Proof.
Proposition 4.5.4 yields u ∈ W0[0, 1] and Lz̃ u = 0.
Let δ, N , (Uj)j=1,...,N , (tj)j=1,...,N , (φj)j=1,...,N , (ψj)j=1,...,N , (ψ̃j)j=1,...,N and
ω(δ) be as in Theorem 3.1.6.
Let ρ̃ := ρ+ log(z) z. Then the operators

Ltj := ∂ +Atj − ρ̃ ∈ L (W1,z[0, 1],W0[0, 1])

have a bounded inverse Btj ∈ L (W0[0, 1],W1,z[0, 1]) for each j = 1, . . . , N :
Indeed, if we denote by Ltj ,W1(T) the operator ∂+Atj−ρ ∈ L (W1(T),W0[0, 1])

then by Fact 3.1.8 Ltj = M[z
(·)
(z)](Ltj ,W1(T))M[z

(−·)
(z) ] and all three operators on

the right hand side are invertible, cf. Theorem 3.1.3 and footnote 9 on page 31.

45
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Next, we will show that Btj has an extension to Btj̃ ∈ L (W ′
−1,z[0, 1],W0[0, 1])

for each j = 1, . . . , N . The results of Section 4.3 (applied to the (con-
stant) families (Atj − ρ̃)

t∈T and (A∗tj − ρ̃)
t∈T) yield that Ltj has an exten-

sion Ltj̃∈ L (W0[0, 1],W ′
−1,z[0, 1]) that is given by the dual of the operator

L′tj := −∂ +A′
tj
− ρ̃ ∈ L (W ′

1,1/z[0, 1],W ′
0[0, 1]). Analogously as above, if we

denote by L′tj ,W ′
1(T) the operator −∂ + A′

tj
− ρ ∈ L (W ′

1(T),W ′
0[0, 1]), then

L′tj = M[(1/z)
(·)
(1/z)](Ltj ,W1(T)−log(z) z−log(1/z) (1/z))M[(1/z)

(−·)
(1/z)]. Obviously,

− log(1/z) (1/z) is a logarithm of z, therefore clog := − log(z) z− log(1/z) (1/z) ∈
2πiZ. Thus ρ + iR ⊂ ρ(A∗t + clog) and it can be easily shown that { (|λ| +
1)(A∗t + clog − λ)−1 : λ ∈ ρ+ iR } = { (|λ+clog|+1)(A∗t − λ)−1 : λ ∈ ρ+ iR }
is uniformly (X∗, X∗)-R-bounded for all t ∈ T. By Corollary 4.6.2 we conclude
that Ltj ,W1(T)− log(z) z− log(1/z) (1/z) = −∂+(A′

tj
+ clog)−ρ is invertible and

the norm of the inverse can be estimated independently of tj. It follows that
L′tj has a bounded inverse B′tj ∈ L (W ′

0[0, 1],W ′
1,1/z[0, 1]), whose norm can be

estimated by a constant cB′ > 0 independently of tj. It is easily checked that
Btj̃ := (B′tj)∗ ∈ L (W ′

−1,z[0, 1],W0[0, 1]) is an extension of Btj . We remark that
‖Btj̃ ‖L (W ′

−1,z[0,1],W0[0,1]) = ‖B′tj‖L (W ′
0[0,1],W ′

1,1/z[0,1]) ≤ cB′ for all j = 1, . . . , N .
We can again assume that δ is small enough such that, analogously as in the
proof of Theorem 4.6.4, IdW1,z[0,1] + Btj

(A −Atj

)
M[ψ̃j] ∈ L (W1,z[0, 1]) is in-

vertible and we set Sj :=
(
IdW1,z[0,1] + Btj

(A −Atj

)
M[ψ̃j]

)−1 ∈ L (W1,z[0, 1]).
Also, similarly to the proof of Theorem 4.6.4 (in combination with a dual-
ity argument), we obtain

(A˜− Atj̃

)
M[ψ̃j] ∈ L (W0[0, 1],W ′

−1,z[0, 1]) and∥∥(A˜− Atj̃

)
M[ψ̃j]

∥∥
L (W0[0,1],W ′

−1,z[0,1]) ≤ ω(δ) for each j = 1, . . . , N . There-

fore
∥∥Btj̃

(A˜− Atj̃

)
M[ψ̃j]

∥∥
L (W0[0,1]) ≤ cB′ω(δ)

δ→0−→ 0 and thus we can again
assume that δ is small enough such that Btj̃

(A˜−Atj̃

)
M[ψ̃j] is a contraction

in W0[0, 1]. Thus then IdW0[0,1] + Btj̃
(A˜−Atj̃

)
M[ψ̃j] is invertible and we set

Sj̃ :=
(
IdW0[0,1] + Btj̃

(A˜−Atj̃

)
M[ψ̃j]

)−1 ∈ L (W0[0, 1]).
Then Sj̃ is an extension of Sj.
We remark that a simple density argument shows that the dual operator
(M[ψj])

∗ ∈ L (W ′
−1,z[0, 1]) of M[ψj] ∈ L (W ′

1,1/z[0, 1]) is an extension of
M[ψj] ∈ L (W ′

0[0, 1]). Thus by the corresponding property of the unextended
operators analogous to the proof of Theorem 3.1.6 we obtain by a density ar-
gument
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( N∑
j=1

M[φj]Sj̃ Btj̃(M[ψj])
∗
)
Lz̃ =

IdW0[0,1] + ρ̃
N∑
j=1

φjSjBtjM[ψj]−
N∑
j=1

M[φj]SjBtjM[∂ψj] ∈ L (W0[0, 1]).

Furthermore,
R :=

ρ̃
N∑
j=1

M[φj]SjBtjM[ψj]−
N∑
j=1

M[φj]SjBtjM[∂ψj] ∈ L (W0[0, 1],W1,z[0, 1]).

Thus 0 =
( N∑
j=1

M[φj]Sj̃ Btj̃ (M[ψj])
∗
)
Lz̃ u = u+Ru and therefore u = −Ru ∈

W1,z[0, 1].
Then, �nally, LW1,z[0,1]u = Lz̃ u = 0. 2





Chapter 6

Basic Properties of Solutions

6.1 Functions of Floquet Form

6.1.1 De�nition
u ∈ W0,loc(R) is called at most exponentially increasing if there exist c, a > 0
such that ‖u‖W0[k,k+1] ≤ c exp(a|k|) for all k ∈ Z.
6.1.2 De�nition
u ∈ W0,loc(R) is called of Floquet form if there are λ ∈ C, n ∈ N0 and for
each l = 0, . . . , n gl ∈ Lp(T, X) such that u = [t 7→ exp(λt)

∑n
l=0 t

lgl(t)] a. e.
on R. If u 6= 0, then exp(λ) is called the1 Floquet exponent of u.
Furthermore, let z ∈ C.
We denote by Fformz the union of 0 ∈ W0,loc(R) and the set of all non-zero
W0,loc(R) functions of Floquet form with Floquet exponent z.
u ∈ Fformz is called of Bloch form if there are λ ∈ C and g ∈ Lp(T, X) such
that u = [t 7→ exp(λt)g(t)] a. e. on R.
We set Bformz := {u ∈ Fformz : u is of Bloch form }.
The following three facts are direct consequences of the de�nition or can be
easily checked.

6.1.3 Fact
Fform0 = {0}.

1Cf. Proposition 6.1.6.
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6.1.4 Fact
Every function of Floquet form is at most exponentially increasing.

6.1.5 Fact
Let z ∈ C\{0} and u ∈ W0,loc(R).
Then u ∈ Bformz i� u is z-quasiperiodic.

6.1.6 Proposition (On Uniqueness of the Floquet Form)
Let z ∈ C\{0} and 0 6= u ∈ Fformz. Let u = [t 7→ exp(λt)

∑n
l=0 t

lgl(t)] a. e.
on R for some λ ∈ C, n ∈ N0 and gl ∈ Lp(T, X) for each l = 0, . . . , n.
Then λ is a logarithm of z.
In particular, the Floquet exponent of a non-zero function of Floquet form is
uniquely determined, i. e. Fformz1 ∩ Fformz2 = {0} for all z1, z2 ∈ C\{0} with
z1 6= z2.
Conversely, if λ̃ ∈ C is a logarithm of z then there are ñ ∈ N0 and g̃l ∈
Lp(T, X) for each l = 0, . . . , ñ such that u = [t 7→ exp(λ̃t)

∑ñ
l=0 t

lg̃l(t)] a. e.
on R. Furthermore, if in the above representations n and ñ are chosen such
that gn 6= 0 and g̃ñ 6= 0 then ñ = n and T(λ,λ̃)gl = g̃l for each l = 0, . . . , n

where T(λ,λ̃) := [t 7→ exp((λ− λ̃)t)] ∈ C(R,C) is periodic. In this sense, n is
uniquely determined and for each l = 0, . . . , ñ gl is uniquely determined up to
a phase shift.
Proof.
Let u = [t 7→ exp(λ̃t)

∑ñ
l=0 t

lg̃l(t)] a. e. on R for some λ̃ ∈ C, ñ ∈ N0

and g̃l ∈ Lp(T, X) for each l = 0, . . . , ñ. W. l. o. g. we can assume that
gn 6= 0 and g̃ñ 6= 0. There is a null set N in R such that (from now on
�xed representants of2) t 7→ exp(λt)

∑n
l=0 t

lgl(t) and t 7→ exp(λ̃t)
∑ñ

l=0 t
lg̃l(t)

coincide pointwise on R \N . W. l. o. g. we can assume that3 N is a quasiperi-
odicity null set for each gl and g̃l for each l = 0, . . . , n and l = 0, . . . , ñ,
resp.. We set R := R \ N . For all t ∈ R and k ∈ Z we set pt(k) :=∑n

l=0 (t+ k)lgl(t) and p̃t(k) :=
∑ñ

l=0 (t+ k)lg̃l(t). Thus for every t ∈ R by pe-
riodicity

(
T(λ,λ̃)pt(k)

)
k∈Z =

(
exp(−(λ− λ̃)k)p̃t(k)

)
k∈Z. There is τ ∈ R such

that gn(τ) 6= 0 and by asymptotic analysis we conclude Reλ = Re λ̃ and then
2In particular, we �x representants of gl for each l = 0, . . . , n and g̃l for each l = 0, . . . , ñ.
3Indeed, if Nl and Ñl are quasiperiodicity null sets for gl and g̃l for each l = 0, . . . , n and

l = 0, . . . , ñ, resp., then we can use the null set
⋃

k∈Z(k+ (N ∪⋃n
l=0Nl ∪

⋃ñ
l=0 Ñl)) ⊃ N instead of

N .
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ñ ≥ n. Thus
(
T(λ,λ̃)(τ) exp(ik Im(λ− λ̃))pτ(k)

)
k∈Z =

(
p̃τ(k)

)
k∈Z and g̃n(τ) =

limk→∞ (τ + k)−np̃τ(k) = T(λ,λ̃)(τ) limk→∞ exp(ik Im(λ−λ̃))(τ + k)−npτ(k) =

T(λ,λ̃)(τ)
(
limk→∞ exp(ik Im(λ − λ̃))

)
gn(τ). T(λ,λ̃)(τ)gn(τ) 6= 0 yields Im(λ −

λ̃) ∈ 2πZ, since Im(λ − λ̃) /∈ 2πZ would imply that
(
exp(ik Im(λ− λ̃))

)
k∈Z

has at least two accumulation points. Therefore T(λ,λ̃) is periodic and for all
t ∈ R

(
T(λ,λ̃)(t)pt(k)

)
k∈Z = (p̃t(k))k∈Z and thus ñ = n and T(λ,λ̃)gl = g̃l (in

Lp(T, X)) for each l = 0, . . . , n.
Since by de�nition of 0 6= u ∈ Fformz there is a representation where λ̃ is a
logarithm of z we conclude that λ is a logarithm of z. In particular, u /∈ Fformξ

for every ξ ∈ C\{0} with ξ 6= z.
Conversely, if λ̃ ∈ C is a logarithm of z we choose λ ∈ C, n ∈ N0 and
gl ∈ Lp(T, X) for each l = 0, . . . , n as in De�nition 6.1.2. Then again T(λ,λ̃)
is periodic and thus g̃l := T(λ,λ̃)gl ∈ Lp(T, X) for each l = 0, . . . , n and
u = [t 7→ exp(λ̃t)

∑n
l=0 t

lg̃l(t)] a. e. on R. 2

6.1.7 Remark
Obviously, for every z ∈ C Fformz is a linear subspace of W0,loc(R).

6.2 Solutions � Part 2

6.2.1 De�nition
Let z ∈ C\{0}.
If 0 6= u ∈ Fformz is a solution to (E) then u is called a Floquet solution.
If 0 6= u ∈ Bformz is a solution to (E) then u is called a Bloch solution.
6.2.2 De�nition
We denote by Fset the set of all z ∈ C\{0} such that there is a Floquet solution
with Floquet exponent z. For each z ∈ Fset we denote by Fsolz the set of all
Floquet solutions with Floquet exponent z.
We denote by Bset the set of all z ∈ C\{0} such that there is a Bloch solution
with Floquet exponent z. For each z ∈ Bset we denote by Bsolz the set of all
Bloch solutions with Floquet exponent z.
6.2.3 Remark
Clearly, Bset ⊂ Fset and Bsolz ⊂ Fsolz for each z ∈ Bset .
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6.2.4 Remark
Theorem 5.1.7 in combination with Fact 6.1.5 yields that Bloch solutions are
continuous (i. e. they have a continuous representant).

6.3 The Test Function Spaces Φ0,α, Φ1,α Φ0, Φ1

We will now de�ne function spaces, that will play the role of test functions on
which Floquet solutions will act (similar to distributions) as linear functionals.
More precisely, primarily the spaces Φ′0 and Φ′1 corresponding to the dual ob-
jects (which will be de�ned in the ) will be used as test spaces (cf. Section 7.1).
However, in Theorem 8.1.6 the �predual� versions Φ0 and Φ1 will occur and in
Theorem 8.1.9 we'll make use of the more general de�nitions Φ′0,α and Φ′1,α.
Thus for the sake of completeness, we treat the �predual� case in full detail in
this section and resume the dual situation in the following section.

6.3.1 De�nition and Proposition (The Fréchet Spaces Φ0,α, Φ1,α Φ0, Φ1)
Let j ∈ {0, 1}.
For all a > 0 and φ ∈ Wj,loc(R) we set

γ
(a)
j (φ) := supk∈Z ‖φ‖Wj [k,k+1] exp(a|k|) ∈ R ∪ {∞}.

Furthermore, let α ∈ (0,∞].
We de�ne Φj,α := {φ ∈ Wj,loc(R) : γ

(a)
j (φ) <∞ for all a ∈ (0, α) }.

We set Φj := Φj,∞.
For every a > 0 γ

(a)
j is a seminorm on Φj,α and we endow Φj,α with the topology

generated by the family {γ(a)
j }a>0.

Then Φj,α is a Fréchet space.
Proof.
The vector space structure of Φj,α is immediate and obviously γ(a)

j is a norm
for each a > 0. In particular, Φj,α is Hausdor�. Furthermore, if b ≥ a > 0 then
γ

(b)
j ≥ γ

(a)
j . Therefore, the topology on Φj is already generated by the family

{γ(n)
j }n∈N, and if α < ∞ the topology on Φj,α is already generated by the

countable family {γ(α−1/n)
j }n∈N. In any case, the topology on Φj,α is generated

by a countable family.
It remains to show completeness. Let (φn)n∈N be a Cauchy sequence in Φj,α. An
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easy calculations shows that Φj,α ↪→ Wj,loc(R) and we conclude that (φn)n∈N
is a Cauchy sequence inWj,loc(R) and therefore converges inWj,loc(R) to, say,
φ0.
We will now show that γ(a)

j (φn−φ0)
n→∞−→ 0 for all a ∈ (0, α). Let a ∈ (0, α) and

ε > 0. There is N > 0 such that γ(a)
j (φn − φm) < ε/2 if n,m > N . Further-

more, for each k ∈ Z there is Nk ≥ N such that ‖φNk
−φ0‖Wj [k,k+1] exp(a|k|) <

ε/2. We obtain for all n > N and all k ∈ Z ‖φn − φ0‖Wj [k,k+1] exp(a|k|) ≤
γ

(a)
j (φn−φNk

)+‖φNk
−φ0‖Wj [k,k+1] exp(a|k|) < ε. In particular, γ(a)

j (φ0) <∞.
Thus φ0 ∈ Φj,α and φn n→∞−→

Φj,α

φ0. Hence Φj,α is complete. 2

The following remark indicates that these functions are suitable as coe�cients
of Laurent series on C\{0} about 0, cf. Fact 1.5.15. We will make us of that
observation (more precisely: of the analogous statement in the dual situation,
cf. Remark 6.4.2) in Construction 7.6.9.
6.3.2 Remark
Let j ∈ {0, 1} and α ∈ (0,∞].
For all φ ∈ Φj,α and k ∈ Z, clearly φk := (φ(· − k))|[0,1] ∈ Wj[0, 1].
A direct calculation shows φ ∈ Φj,α i� φ ∈ Wj,loc(R) and4

lim supk→∞ (‖φk‖Wj [0,1])
1/k ≤ exp(−α) and

lim supk→∞ (‖φ−k‖Wj [0,1])
1/k ≤ exp(−α).

6.3.3 Remark
Let j ∈ {0, 1} and α, β ∈ (0,∞] with α ≤ β.
Then obviously, Φj,β ↪→ Φj,α.
6.3.4 Remark
Obviously, Φ1 ↪→ Φ0.
For each j = 0, 1 the rapid decay of functions in Φj directly yields that
Wj,loc(R)-functions with compact support are dense in Φj and then with a
mollifying argument (cf. [Ama95] Section III.4.2) we obtain:
6.3.5 Fact
C∞

c (R, D) is dense in Φ1.
C∞

c (R, X) is dense in Φ0.
4Here, we use the convention exp(−∞) := 0, of course.
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6.4 The Test Function Spaces Φ′0,α, Φ′1,α Φ′0, Φ′1

As explained in the previous section, we will state the corresponding de�nitions
and results for the dual situation.

6.4.1 De�nition and Proposition (The Fréchet Spaces Φ′0,α, Φ′1,α Φ′0, Φ′1)
Let j ∈ {0, 1}.
By abuse of notation, for all a > 0 and φ′ ∈ W ′

j,loc(R) we set
γ

(a)
j (φ′) := supk∈Z ‖φ′‖W ′

j [k,k+1] exp(a|k|) ∈ R ∪ {∞}.
Furthermore, let α ∈ (0,∞].
We de�ne Φ′j,α := {φ′ ∈ W ′

j,loc(R) : γ
(a)
j (φ′) <∞ for all a ∈ (0, α) }.

We set Φ′j := Φ′j,∞.
For every a > 0 γ

(a)
j is a seminorm on Φ′j,α and we endow Φ′j,α with the topology

generated by the family {γ(a)
j }a>0.

Then Φ′j,α is a Fréchet space.

6.4.2 Remark
Let j ∈ {0, 1} and α ∈ (0,∞].
Then φ′ ∈ Φ′j,α i� φ′ ∈ W ′

j,loc(R) and5

lim supk→∞ (‖φ′k‖W ′
j [0,1])

1/k ≤ exp(−α) and
lim supk→∞ (‖φ′−k‖W ′

j [0,1])
1/k ≤ exp(−α),

where again φ′k := (φ′(· − k))|[0,1] ∈ W ′
j[0, 1] for all φ′ ∈ Φ′j,α and k ∈ Z.

6.4.3 Remark
Let j ∈ {0, 1} and α, β ∈ (0,∞] with α ≤ β.
Then Φ′j,β ↪→ Φ′j,α.

6.4.4 Remark
Φ′1 ↪→ Φ′0.

6.4.5 Fact
C∞

c (R, D′) is dense in Φ′1.
C∞

c (R, X∗) is dense in Φ′0.

5Here, we use again the convention exp(−∞) := 0.



The Operators L and L′ on the Real Line � Part 2 55

6.5 The Operators L and L′ on the Real Line � Part 2

6.5.1 De�nition and Proposition
Let α ∈ (0,∞].
We denote by6 LΦ1,α

the restriction of LW1,loc(R) to Φ1,α and by L′Φ′1,α
the re-

striction of L′W ′
1,loc(R) to Φ′1,α.

Then LΦ1,α
∈ L (Φ1,α, Φ0,α) and L′Φ′1,α

∈ L (Φ′1,α, Φ
′
0,α).

Proof.
We will prove LΦ1,α

∈ L (Φ1,α, Φ0,α). The second statement follows analo-
gously. For all k ∈ Z obviously

‖LW1[k,k+1]‖L (W1[k,k+1],W0[k,k+1]) = ‖LW1[0,1]‖L (W1[0,1],W0[0,1]),
where of course LW1[k,k+1] := −∂+A ∈ L (W1[k, k + 1],W0[k, k + 1]). There-
fore γ(a)

0 (LΦ1,α
φ) ≤ ‖LW1[0,1]‖L (W1[0,1],W0[0,1]) · γ(a)

1 (φ) for all a ∈ (0, α) and all
φ ∈ Φ1,α. This directly yields the assertion. 2

6.5.2 De�nition and Proposition
Let u ∈ W0,loc(R) be at most exponentially increasing with corresponding
constants c, a > 0, i. e. ‖u‖W0[k,k+1] ≤ c exp(a|k|) for all k ∈ Z.
Let α ∈ (a,∞].
For each φ′ ∈ Φ′0,α we set (Fu)(φ′) :=

∫
R 〈φ′(t), u(t)〉X dt ∈ C.

Then Fu ∈ (Φ′0,α)
∗ and the map F : W0,loc(R) → (Φ′0,α)

∗ is injective. In
particular, Fu ∈ (Φ′0)

∗ and the map F : W0,loc(R) → (Φ′0)
∗ is injective.

Proof.
First we remark that for each φ′ ∈ Φ′0,α by [Edw65] Theorem 8.20.5 [t 7→
φ(t)u(t)] ∈ L1,loc(R,C). Let ã ∈ (a, α). Since clearly Fu is linear Fu ∈ (Φ′0)

∗

follows from

|(Fu)(φ)| ≤
∫

R
|φ(t)u(t)| dt =

∞∑
k=−∞

∫ k+1

k

|φ(t)u(t)| dt ≤
∞∑

k=−∞
‖φ‖W ′

0[k,k+1]‖u‖W0[k,k+1] ≤
∞∑

k=−∞
‖φ‖W ′

0[k,k+1]c exp(a|k|) ≤

c · ( supk∈Z ‖φ′‖W ′
0[k,k+1] exp(ã|k|))(

∞∑
k=−∞

exp(−ã|k|) exp(a|k|)) ≤

6Of course, this is meant to include the cases LΦ1 := LΦ1,∞ and L′Φ′1 := L′Φ′1,∞
.
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c · exp(ã−a)+1
exp(ã−a)−1 · γ

(ã)
0 (φ′)

for each φ′ ∈ Φ′0,α.
If u1, u2 ∈ W0,loc(R) with Fu1 = Fu2 then

∫
K 〈φ′(t), (u1 − u2)(t)〉X dt = 0 for

all K ⊂⊂ R and φ′ ∈ C∞
c (R, X∗) with suppφ′ ⊂ K.This yields u1 = u2 a. e.

on K and hence on R. 2

6.5.3 Proposition
Let u ∈ W0,loc(R) be at most exponentially increasing.
Then u is a solution to (E) i� Fu ∈ CokerL′Φ′1.
Proof.
First, we note that by de�nition L′W ′

1,loc(R)φ
′ = L′Φ′1φ

′ for all φ′ ∈ C∞
c (R, D′)

and 〈L′W ′
1,loc(R)φ

′, u〉 = (Fu)(L′Φ′1φ
′). Thus if Fu ∈ CokerL′Φ′1 (and hence

(Fu)(L′Φ′1φ
′) = 0 for all φ′ ∈ C∞

c (R, D′)) this directly yields that u is a solu-
tion. Conversely, if u is a solution then, since by Fact 6.4.5 C∞

c (R, D′) is dense
in Φ′1, continuity of Fu and L′Φ′1 yields (Fu)(L′Φ′1φ

′) = 0 for all φ′ ∈ Φ′1 and
therefore Fu ∈ CokerL′Φ′1. 2



Chapter 7

Transformation of the Problem

7.1 Motivation

We �rst remark that this motivation is intended to give an overview of the
constructions and statements in this chapter. We will clarify the rigorous
mathematical meaning in the following sections. In particular, we will give
de�nitions of the mentioned objects. Furthermore, we refer to the appendix
for a precise explanation of the structure of analytic bundles and their sections.

We recall that we want to analyze solutions to the equation Lu = 0. In
order to allow solutions in W0,loc(R), in Section 4.5 we have introduced a
weak formulation, where we used C∞

c (R, X∗) as a test function space and
the �dual� operator L′ acting on that test function space. (We have seen in
Proposition 4.5.3 that this weak formulation indeed leads to Lu = 0 if u is
regular enough.)

However, the test function space Cc(R, X∗) is not suitable for our needs. If
we restrict ourselves to solutions that are at most exponentially increasing
then Proposition 6.5.2 allows the bigger test function space Φ′1. (Indeed, when
using C∞

c (R, X∗) as a test function space, functions in the image under L′
still have compact support and therefore allow integration against aW0,loc(R)-
function. With the test function space Φ′1 functions in the image under L′
decay fast enough (they are in Φ′0) to allow the integration against an at most
exponentially increasing W0,loc(R)-function.)

After switching to the �right� test function space, �the place to look for so-
lutions� is then the dual space of Φ′0 and in particular, solutions can now be

57
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described as the cokernel of L′Φ′1, cf. Proposition 6.5.3.

However, the main bene�t of using Φ′1 is that the problem can be translated
into the analysis of the spectrum and cospectrum of certain homomorphism of
sections of bundles.

Indeed, we will introduce an isomorphism, namely the Floquet transform U ,
to carry both the structure of Φ′1 and Φ′0 to section spaces Γ (C\{0}, 〈C′1〉) and
Γ (C\{0}, 〈B′

0〉), resp., where 〈C′1〉 and 〈B′
0〉 will be suitable bundles.

This leads to the map Γ (C\{0}, 〈C′1〉) U−1−→ Φ′1
L′−→ Φ′0

U−→ Γ (C\{0}, 〈B′
0〉)

between those section spaces. This map can be identi�ed with the induced
homomorphism of a bundle homomorphism L′ between 〈C′1〉 and 〈B′

0〉, cf.
Corollary 7.6.12. (This bundle homomorphism will be constructed explicitly
and could be described as the �berwise action of L′ and it will be a Fredholm
homomorphism.)

We will see that solutions of Floquet (and Bloch) form will play an important
role in describing all at most exponentially increasing solutions. As mentioned,
we will understand solutions as functionals on Φ′0. Then the Floquet transform
(or more precisely: (U∗)−1) will translate those functionals to functionals on
Γ (C\{0}, 〈B′

0〉). By Proposition 7.7.6 we will be able to describe the image of
Floquet solutions.

The following diagram illustrates the situation.

Φ′1
U //

L′
Φ′1

²²

Γ (C\{0}, 〈C′1〉)

L′Γ

²²

〈C′1〉

L′

²²

/o/o/o/o/o/o/o/o

Φ′0
U //

Fu∈CokerL′
Φ′1

ÂÂ?
??

??
??

??
??

??
??

?
Γ (C\{0}, 〈B′

0〉)

(U∗)−1Fu
}}zz

zz
zz

zz
zz

zz
zz

zz
z

〈B′
0〉

C

In this situation, Proposition 7.8.1 will yield a correspondence of the set of
Floquet exponents to the cospectrum of the bundle homomorphism described
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above. In particular, we will obtain that the set of Floquet exponents is an
analytic set.

Furthermore, thanks to the Fredholm property of the bundle homomorphism a
superposition principle for functionals on Γ (C\{0}, 〈B′

0〉) is known, cf. [Kuc93]
Theorem 1.7.1. After translating back to the original problem, this will yield
the superposition principle for at most exponentially increasing solutions, the
central result of this thesis.

7.2 The Bundles 〈B0〉 and 〈B′
0〉

In this section, by abuse of notation we will use the symbol ν for a projection
function ν : M×N 7→M de�ned by ν(m,n) := m, where m ∈M and n ∈ N ,
for varying sets M and N .

7.2.1 Construction (The Bundles 〈B0〉 and 〈B′
0〉)

Let B0 := C\{0} × W0[0, 1] and B′
0 := C\{0} × W ′

0[0, 1]. Furthermore, let
b0 := IdB0

and b′0 := IdB′
0
. We denote by 〈B0〉 := 〈B0

νÂC\{0}〉 and 〈B′
0〉 :=

〈B′
0
νÂ C\{0}〉, resp., the trivial bundle constructed in Example A.1.8 (with

trivialization {Id : B0 → C\{0} × W0[0, 1]} = {b0} and with Ω = C\{0},
E = B0 and [ν : C\{0} ×W0[0, 1] → C\{0}] = [p : E → Ω] and analogously
for 〈B′

0
νÂC\{0}〉). 4

Duality between 〈B′
0〉 and 〈B0〉

7.2.2 De�nition and Remark
Let z ∈ C\{0}. For all f ′ ∈ (B′

0)z and f ∈ (B0)z we set 〈f ′, f〉z :=
〈(b′0)zf ′, (b0)zf〉W . In view of Fact 4.2.3, obviously

(
(B0)z

)∗ can be identi�ed
with (B′

0)z and
(
(B′

0)z
)∗ can be identi�ed with (B0)z by the isomorphisms

(B′
0)z 3 f ′ 7→ 〈f ′, ·〉z ∈

(
(B0)z

)∗ and (B0)z 3 f 7→ 〈·, f〉z ∈
(
(B′

0)z
)∗.

7.2.3 De�nition and Proposition
Let ∅ 6= Ω

◦⊂ C\{0}, s′ ∈ Γ (Ω, 〈B′
0〉) and s ∈ Γ (Ω, 〈B0〉).

We set 〈s′, s〉Ω := [Ω 3 z 7→ 〈s′(z), s(z)〉z ∈ C].
Then 〈·, ·〉Ω ∈ L (Γ (Ω, 〈B′

0〉);Γ (Ω, 〈B0〉), A(Ω,C)).
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Proof.
This is a direct consequence of Proposition A.2.8 and Fact 1.5.9. 2

7.2.4 Remark
In view of Remark A.2.9 in the situation of De�nition 7.2.3 〈·, ·〉O is well-de�ned
for every ∅ 6= O

◦⊂ Ω and coincides with restriction of 〈·, ·〉Ω to sections on O.

7.3 The Bundles 〈B1〉 and 〈C1〉
7.3.1 Construction (The Bundle 〈B1〉)
Let B1 := C\{0} × W1[0, 1] and b1 := IdB1

. Let 〈B1〉 := 〈B1
νÂ C\{0}〉

be the trivial bundle constructed in Example A.1.8 (with trivialization {Id :
B1 → C\{0} × W1[0, 1]} = {b1} and with Ω = C\{0}, E = B1 and [ν :
C\{0} ×W1[0, 1] → C\{0}] = [p : E → Ω]).
Furthermore, for all z ∈ C\{0} and (ξ, f) ∈ (B1)|Bz

b1
(z)(ξ, f) := (ξ,M[ξ

(−·)
(z) ]f)

de�nes a homeomorphism b1
(z) : (B1)|Bz

→ Bz ×W1[0, 1]. {b1
(z)}z∈C\{0} is a

trivialization that is equivalent to {b1}.
Proof.
It can be easily checked that b1

(z) : (B1)|Bz
→ Bz × W1[0, 1] is a homeo-

morphism and obviously, condition (a) of De�nition A.1.1 holds. Further-
more, for each ξ ∈ Bz, the induced map (b1

(z))ξ : (B1)ξ → W1[0, 1] coincides
with the multiplication operator M[ξ

(−·)
(z) ] ◦ ∼= ∈ L ((B1)ξ,W1[0, 1]), where ∼=

denotes the natural identi�cation of (B1)ξ with W1[0, 1], i. e. the isometric
isomorphism (b1)ξ ∈ L ((B1)ξ,W1[0, 1]). Thus Remark A.1.4 yields condi-
tion (b) of De�nition A.1.1. Finally, if z, z̃ ∈ C\{0} with Bz ∩ Bz̃ 6= then
Bz ∩ Bz̃ is a domain and [RS02] Section 5.4.1 yields that there is k ∈ Z
such that for every ξ ∈ Bz ∩ Bz̃ ((b1

(z))ξ)
−1

(b1
(z̃))ξ coincides with the multi-

plication operator M[exp(2πik(·))] ∈ L (W1[0, 1]) and thus the corresponding
transition function is constant. This yields condition (c) of De�nition A.1.1.
Thus {b1

(z)}z∈C\{0} is a trivialization and we now show that it is equivalent
to {b1}: Let z ∈ C\{0}. By Remark A.1.2 it su�ces to show that the

map Ψξ : W1[0, 1]
((b1

(z))ξ)
−1

−→ (B1)ξ
Idξ−→ W1[0, 1] is analytically depending on

ξ ∈ Bz. Since for every ξ ∈ Bz Ψξ coincides with the multiplication op-
erator M[ξ

(−·)
(z) ] ∈ L (W1[0, 1]), Fact 1.9.1, Fact 1.8.3 and Fact 1.5.10 yield
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[ξ 7→ Ψξ] ∈ A(Bz,L (W1[0, 1])). 2

7.3.2 Construction (The Bundle 〈C1〉)
We endow C1 :=

⋃
z∈C\{0}{z} ×W1,z[0, 1] ⊂ B1 with the induced topology.

By (further) abuse of notation we denote the restriction of ν : B1 → C\{0}
to C1 also by ν.
Furthermore, for all z ∈ C\{0} we understand {z} × W1,z[0, 1] = (C1)z =
(ν|C1

)−1(z) as a (closed) linear subspace of (B1)z. (Thus (C1)z has a Banach
space structure and it coincides with the natural identi�cation withW1,z[0, 1].)
Then ν : C1 → C\{0} is a bundle projection.
For each z ∈ C\{0} let c1

(z) be the restriction of b1
(z) to (C1)|Bz

. Then c1
(z) :

(C1)|Bz
→ Bz ×W1(T) is a homeomorphism. {c1

(z)}z∈C\{0} is a trivialization.
For all z ∈ C\{0} and ξ ∈ Bz the induced map (c1

(z))ξ : (C1)ξ → W1(T)

coincides with the multiplication operator M[ξ
(−·)
(z) ] ◦ ∼= ∈ L ((C1)ξ,W1(T)),

where ∼= denotes the natural identi�cation of (C1)ξ with W1,ξ[0, 1], i. e. the
isometric isomorphism ((b1)ξ)|(C1)ξ

∈ L ((C1)ξ,W1,ξ[0, 1]).

The equivalence class of {c1
(z)}z∈C\{0} is denoted by 〈C1〉.

Proof.
Obviously, for every z ∈ C\{0}, the topology of (C1)z coincides with the
topology induced by the Banach space structure of (C1)z and therefore ν :
C1 → C\{0} is a bundle projection. Next, we note that for each z ∈ C\{0}
c1

(z) maps indeed into Bz ×W1(T) since (M[ξ
(−·)
(z) ]f)(0) = f(0) = ξ−1f(1) =

(M[ξ
(−·)
(z) ]f)(1) for all (ξ, f) ∈ (C1)|Bz

and thus by Fact 1.8.3 M[ξ
(−·)
(z) ]f ∈ W1(T).

We conclude that c1
(z) : (C1)|Bz

→ Bz ×W1(T) is a homeomorphism and that
the induced map (c1

(z))ξ : (C1)ξ → W1(T) coincides with the multiplication
operator M[ξ

(−·)
(z) ] ◦ ∼= ∈ L ((C1)ξ,W1(T)). Again, condition (a) of De�ni-

tion A.1.1 holds and Remark A.1.4 yields condition (b) of De�nition A.1.1.
Analogously as in Construction 7.4.1, if z, z̃ ∈ C\{0} with Bz ∩ Bz̃ 6= then
there is k ∈ Z such that for every ξ ∈ Bz ∩ Bz̃ ((c1

(z))ξ)
−1

(c1
(z̃))ξ coincides

with the multiplication operator M[exp(2πik(·))] ∈ L (W1(T)) and thus the
corresponding transition function is constant. This yields condition (c) of Def-
inition A.1.1. 2
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7.3.3 Proposition
〈C1〉 is a subbundle of 〈B1〉.
Proof.
Let z ∈ C\{0}. By Remark A.6.2 it su�ces to show that the map Iξ :

W1(T)
((c1(z))ξ)

−1

−→ (C1)ξ ↪→ (B1)ξ
(b1

(z))ξ−→ W1[0, 1] is analytically depending on
ξ ∈ Bz. By de�nition, for all ξ ∈ Bz Iξ coincides with the embeddingW1(T) ↪→
W1[0, 1] as a subspace. Thus obviously [ξ 7→ Iξ] ∈ A(Bz,L (W1(T),W1[0, 1])).

2

7.3.4 Remark
Let (A-iv) hold.
Then Theorem 3.1.3 yields that W0[0, 1] and W1(T) are isomorphic. Thus if
{φ(λ) : C1|Uλ

→ Uλ × Bλ}λ∈Λ ∈ 〈C1〉 then by Proposition A.1.11 and Proposi-
tion A.1.13 there exists {ψ(λ) : C1|Uλ

→ Uλ ×W0[0, 1]}λ∈Λ ∈ 〈C1〉.

7.4 The Bundles 〈B′
1〉 and 〈C′1〉

We will now introduce bundles 〈B′
1〉 and 〈C′1〉 that are de�ned analogously

as 〈B1〉 and 〈C1〉, i. e. loosely speaking the �bers {z} × W1[0, 1] and {z} ×
W1,z[0, 1] are substituted by {z}×W ′

1[0, 1] and {z}×W ′
1,z[0, 1]. For the sake

of completeness, we explicitly give the following de�nitions. All statements
follow analogously as in the situation of Section 7.3.

7.4.1 Construction (The Bundle 〈B′
1〉)

We denote by 〈B′
1〉 the bundle analogous to 〈B1〉, i. e. its total space is given

B′
1 := C\{0} × W ′

1[0, 1] and the de�ning trivialization is {b′1 := Id : B′
1 →

C\{0} ×W ′
1[0, 1]}. A further trivialization that is equivalent to {b′1} is given

by {b′1(z)}z∈C\{0} where b′1
(z)(ξ, f ′) := (ξ,M[ξ

(−·)
(z) ]f ′) for all z ∈ C\{0} and

(ξ, f ′) ∈ (B′
1)|Bz

. 2

7.4.2 Construction (The Bundle 〈C′1〉)
We denote by 〈C′1〉 the bundle analogous to 〈C1〉, i. e. its total space is given by
C′1 :=

⋃
z∈C\{0}{z} × W ′

1,z[0, 1] and the de�ning trivialization is {c′1(z)}z∈C\{0}
where for each z ∈ C\{0} c′1

(z) : (C′1)|Bz
→ Bz ×W ′

1(T) is the restriction of
b′1

(z) to (C′1)|Bz
. (Again, for each z ∈ C\{0} (C′1)z is endowed with the Banach

space structure of the linear subspace {z} ×W ′
1,z[0, 1] of (B′

1)z.)
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For all z ∈ C\{0} and ξ ∈ Bz the induced map (c′1
(z))ξ : (C′1)ξ → W ′

1(T)

coincides with the multiplication operator M[ξ
(−·)
(z) ] ◦ ∼= ∈ L ((C′1)ξ,W ′

1(T)),
where ∼= denotes the natural identi�cation of (C′1)ξ with W ′

1,ξ[0, 1], i. e. the
isometric isomorphism ((b′1)ξ)|(C′1)ξ

∈ L ((C′1)ξ,W ′
1,ξ[0, 1]). 2

7.4.3 Proposition
〈C′1〉 is a subbundle of 〈B′

1〉. 2

7.4.4 Remark
Let (A∗-iv) hold.
If {φ(λ) : C′1|Uλ

→ Uλ × Bλ}λ∈Λ ∈ 〈C′1〉 then there exists {ψ(λ) : C′1|Uλ
→

Uλ ×W ′
0[0, 1]}λ∈Λ ∈ 〈C′1〉.

7.5 The Bundle Homomorphisms L and L′

7.5.1 De�nition and Proposition (L)
Let (A-iv) and (A-v) hold.
We de�ne L : C1 → B0 by L(z, f) := (z,LW1,z[0,1]f) for all z ∈ C\{0} and
f ∈ W1,z[0, 1].
Then L : 〈C1〉 → 〈B0〉 is an analytic Fredholm homomorphism.
Proof.
Let z ∈ C\{0}. Clearly, (z,LW1,z[0,1]f) ∈ (B0)z for all f ∈ W1,z[0, 1] and
thus L is well-de�ned. Obviously, condition (a) of De�nition A.4.1 holds.
Lz is given by (C1)z

∼=−→ W1,z[0, 1]
LW1,z [0,1]−→ W0[0, 1]

∼=−→ (B0)z where, by
abuse of notation, ∼= denotes both the natural identi�cation of (C1)z with
W1,z[0, 1] and of W0[0, 1] with (B0)z, resp.. Thus Corollary 3.1.9 implies that
Lz ∈ L ((C1)z, (B0)z) is a Fredholm operator. In particular, condition (b) of
De�nition A.4.1 holds. Then by Construction 7.3.2, for all ξ ∈ Bz the trivial-

ized induced mapW1(T)
((c1(z))ξ)

−1

−→ (C1)ξ
Lξ−→ (B0)ξ

(b0)ξ−→W0[0, 1] coincides with
LW1,ξ[0,1]M[ξ

(·)
(z)]. By Fact 3.1.8 LW1,ξ[0,1]M[ξ

(·)
(z)] = M[ξ

(·)
(z)](LW1(T) + log(z) ξ) for

all ξ ∈ Bz and by Fact 1.9.1, Fact 1.5.10 and Fact 1.8.2 [ξ 7→ M[ξ
(·)
(z)](LW1(T) +

log(z) ξ)] ∈ A(Bz,L (W1(T),W0[0, 1])). This yields condition (c) of De�ni-
tion A.4.1. Therefore L : 〈C1〉 → 〈B0〉 is an analytic Fredholm homomor-
phism. 2
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7.5.2 Corollary
Let (A-iv) and (A-v) hold.
S(L) and CS(L) are analytic sets in C\{0}.
Proof.
Since L : 〈C1〉 → 〈B0〉 is an analytic Fredholm homomorphism, the assertion
directly follows from [ZKKP75] � 5.0. 2

Analogously, we obtain:
7.5.3 De�nition and Proposition (L′)
Let (A∗-iv) and (A∗-v) hold.
We de�ne L′ : C′1 → B′

0 by L′(z, f) := (z,L′W ′
1,z[0,1]f) where z ∈ C\{0} and

f ∈ W ′
1,z[0, 1].

Then L′ : 〈C′1〉 → 〈B′
0〉 is an analytic Fredholm homomorphism.

7.5.4 Corollary
Let (A∗-iv) and (A∗-v) hold.
S(L′) and CS(L′) are analytic sets in C\{0}.

7.6 The Floquet Transform
Analogously we will introduce two versions of the Floquet transform, one in
the predual and one in the dual situation.

The Floquet Transform on Φ0,α and Φ1,α

7.6.1 De�nition
For all α > 0 we set Aα := { z ∈ C : exp(−α) < |z| < exp(α) }.
Furthermore, we set A∞ := C\{0}.
For the convenience of the reader we state the following inclusions, cf. Re-
mark A.2.9 and Remark 6.4.3.
7.6.2 Remark
Let α, β ∈ (0,∞] with α ≤ β.
Then
Aα ⊂ Aβ ⊂ C\{0},
Γ (C\{0}, 〈B0〉) ⊂ Γ (Aβ, 〈B0〉) ⊂ Γ (Aα, 〈B0〉),



The Floquet Transform 65

Γ (C\{0}, 〈C1〉) ⊂ Γ (Aβ, 〈C1〉) ⊂ Γ (Aα, 〈C1〉) and
Φj ⊂ Φj,β ⊂ Φj,α for each j ∈ {0, 1}.

For the rest of this section, let α ∈ (0,∞].

7.6.3 Remark and Convention
By Proposition A.1.9 the restrictions (b0)|Aα

, (b1
(z))|(Bz∩Aα) and (c1

(z))|(Bz∩Aα)
(where z ∈ Aα) are trivializing maps for 〈B0〉, 〈B1〉 and 〈C1〉, resp.. By
abuse of notation we will use the same notation for the original maps and their
restrictions within in this section.

7.6.4 Construction (Floquet Transform on Φ0,α)
For all φ ∈ Φ0,α and k ∈ Z, by Remark 6.4.2 the Cauchy-Hadamard formula
for Laurent series yields [z 7→ ∑∞

k=−∞ φkz
k] ∈ A(Aα,W0[0, 1]), where φk :=

(φ(· − k))|[0,1] ∈ W0[0, 1]. Thus

Uφ := [z 7→ ((b0)z)
−1(

∞∑
k=−∞

φkz
k)] ∈ Γ (Aα, 〈B0〉)

for all φ ∈ Φ0,α and for clarity, we remark (Uφ)(z) = (z,
∑∞

k=−∞ φkz
k) for all

φ ∈ Φ0,α and z ∈ Aα. Clearly, U : Φ0,α → Γ (Aα, 〈B0〉) is linear and uniqueness
of Laurent expansions implies that U is injective.
Conversely, let s ∈ Γ (Aα, 〈B0〉) and thus by Proposition A.2.4

[z 7→ (b0)z(s(z))] ∈ A(Aα,W0[0, 1])

can be expanded into a Laurent series with center 0 on Aα, say
∑∞

k=−∞ sk (·)k
(with sk ∈ W0[0, 1] for all k ∈ Z). We set φ(t) := s−btc(t− btc) for all t ∈ R.
Then1 φk = sk (pointwise on [0, 1) and hence inW0[0, 1]) for all k ∈ Z and thus
φ|[k,k+1] ∈ W0[k, k + 1]. Hence by Fact 4.4.2 φ ∈ W0,loc(R) and the Cauchy-
Hadamard formula2 in combination with Remark 6.4.2 yields φ ∈ Φ0,α. Since
Uφ = s, we conclude that U is surjective.
Finally, we show that U is continuous: Let ∅ 6= K ⊂⊂ Aα. Thus there is
a ∈ (0, α) such that exp(−a) ≤ |z| ≤ exp(a) for all z ∈ K. In particular,
|z|k ≤ exp(a|k|) for all z ∈ K and k ∈ Z. Furthermore, let ã ∈ (a, α). We
calculate for all φ ∈ Φ0,α

supz∈K ‖(b0)z(Uφ)(z)‖W0[0,1] =

1where φk := φ(· − k) as above
2applied to the coe�cients (sk)k∈Z
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supz∈K ‖
∞∑

k=−∞
φkz

k‖W0[0,1] ≤

supz∈K
∞∑

k=−∞
‖φk‖W0[0,1]|zk| ≤

∞∑
k=−∞

‖φ‖W0[−k,−k+1] exp(a|k|) ≤
(
supk∈Z ‖φ‖W0[k,k+1] exp(ã|k|))(

∞∑
k=−∞

exp(−ã|k|) exp(a|k|)) ≤
exp(ã−a)+1
exp(ã−a)−1 · γ

(ã)
0 (φ).

Thus Proposition A.2.7 yields U ∈ L (Φ0,α, Γ (Aα, 〈B0〉)).
We resume:

U :





Φ0,α → Γ (Aα, 〈B0〉)

φ 7→ Uφ :




Aα → 〈B0〉
z 7→ (

z,
∞∑

k=−∞
φkz

k
)

is an isomorphism from Φ0,α to Γ (Aα, 〈B0〉) and is called Floquet transform.
4

7.6.5 Remark
In particular, U∗ : (Γ (C\{0}, 〈B0〉)))∗ → (Φ0)

∗ is an isomorphism of vector
spaces.
We will now examine the restriction of U to Φ1.
7.6.6 Construction (Floquet Transform on Φ1,α)
We will now show that U(Φ1,α) = Γ (Aα, 〈C1〉) by an application of Propo-
sition A.2.4. Let z ∈ Aα. First, we remark that for all φ ∈ Φ1,α, analo-
gously to Construction 7.6.4, [ξ 7→ (ξ,

∑∞
k=−∞ φkξ

k)] ∈ Γ (Aα, 〈B1〉) where
the series is to be understood as a W1[0, 1]-valued Laurent series. Since
W1[0, 1] ↪→W0[0, 1] the so de�ned section coincides with Uφ. In particular, by
Proposition A.2.4

[
ξ 7→ (b1

(z))ξ
(
(Uφ)(ξ)

)] ∈ A(Bz ∩ Aα,W1[0, 1]). Next, for
all φ ∈ Φ1,α and ξ ∈ Aα by Fact 2.4.1 ξδ0

∑∞
k=−∞ φkξ

k =
∑∞

k=−∞ δ0φkξ
k+1 =∑∞

k=−∞ δ1φk+1ξ
k+1 = δ1

∑∞
k=−∞ φkξ

k and thus (Uφ)(ξ) ∈ (C1)ξ. Therefore
(b1

(z))ξ
(
(Uφ)(ξ)

)
= (c1

(z))ξ
(
(Uφ)(ξ)

) ∈ W1(T) for all ξ ∈ Bz ∩ Aα. By
Fact 1.5.12 we obtain

[
ξ 7→ (c1

(z))ξ
(
(Uφ)(ξ)

)] ∈ A(Bz ∩ Aα,W1(T)). Since
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obviously, ν ◦ (Uφ) = IdAα
, Proposition A.2.4 yields Uφ ∈ Γ (Aα, 〈C1〉).

Conversely, let s ∈ Γ (Aα, 〈C1〉). Then by Proposition 7.3.3 and Proposi-
tion A.7.1 s ∈ Γ (Aα, 〈B1〉). Thus by Proposition A.2.4

[ξ 7→ (b1)ξ(s(ξ))] ∈ A(Aα,W1[0, 1])

can be expanded into a Laurent series with center 0 on Aα, say
∑∞

k=−∞ sk (·)k
(with sk ∈ W1[0, 1] for all k ∈ Z). We set φ(t) := s−btc(t − btc) for all
t ∈ R. Again since W1[0, 1] ↪→ W0[0, 1] we obtain φ = U−1s as in the pre-
vious construction. In particular,3 φk = sk (pointwise on [0, 1) and hence in
W1[0, 1]) for all k ∈ Z and thus φ|[k,k+1] ∈ W1[k, k + 1]. Furthermore, for
each t = 0, 1 by Fact 2.4.1 and Fact 1.5.10 [ξ 7→ δt

(
(b1)ξ(s(ξ))

)
] ∈ A(Aα, X)

and the Laurent expansion is given by
∑∞

k=−∞ δt(sk) (·)k. For every ξ ∈ Aα∑∞
k=−∞ δ1(sk)ξ

k = δ1
(
(b1)ξ(s(ξ))

)
= ξδ0

(
(b1)ξ(s(ξ))

)
=

∑∞
k=−∞ δ0(sk)ξ

k+1

and thus uniqueness of the Laurent expansion yields δ1sk+1 = δ0sk for all k ∈ Z.
Thus4 limt↗k φ(t) = limt↗k s−(k−1)(t−(k−1)) = s−k+1(1) = s−k(0) = φ(k) for
all k ∈ Z. By Fact 4.4.2 we obtain φ ∈ W1,loc(R) and the Cauchy-Hadamard
formula5 in combination with Remark 6.4.2 yields φ ∈ Φ1,α. Thus indeed
U(Φ1,α) = Γ (Aα, 〈C1〉).
Finally, we will show that U ∈ L (Φ1,α, Γ (Aα, 〈C1〉)) where, by abuse of
notation, we denote by U the restriction of U to Φ1,α. Let z ∈ Aα and
∅ 6= K ⊂⊂ Bz ∩ Aα.
Analogously as in Construction 7.6.4 there are a, ã ∈ (0, α) with a < ã such
that for all φ ∈ Φ1,α supξ∈K ‖(b1)ξ(Uφ)(ξ)‖W1[0,1] ≤ exp(ã−a)+1

exp(ã−a)−1γ
(ã)
1 (φ).

Furthermore
supξ∈K ‖(c1

(z))ξ‖L ((C1)ξ,W1(T)) = supξ∈K ‖M[ξ
(−·)
(z) ]‖L (W1,ξ[0,1],W1(T)) ≤

c := supξ∈K ‖ξ(−·)
(z) ‖C1[0,1] <∞.

Therefore
supξ∈K ‖(c1

(z))ξ(Uφ)(ξ)‖W1(T) ≤ c supξ∈K ‖(Uφ)(ξ)‖(C1)ξ
=

c supξ∈K ‖(b1)ξ(Uφ)(ξ)‖W1[0,1] ≤ c · exp(ã−a)+1
exp(ã−a)−1 · γ

(ã)
1 (φ) for all φ ∈ Φ1,α.

Thus again Proposition A.2.7 yields U ∈ L (Φ1,α, Γ (Aα, 〈C1〉)).
3where φk := φ(· − k) as above
4Here limt↗k denotes the left-sided limit.
5applied to the coe�cients (sk)k∈Z



68 Transformation of the Problem

We resume: U is an isomorphism from Φ1,α to Γ (Aα, 〈C1〉). 4
By a direct calculation using Remark 7.6.5 we obtain:
7.6.7 Corollary
LΓ |Aα

= U ◦ LΦ1,α
◦ U−1. In particular, LΓ = U ◦ LΦ1

◦ U−1.

The Floquet Transform on Φ′0,α and Φ′1,α

Throughout this section, let α ∈ (0,∞].
Again, by applying all constructions of the previous section to the dual objects,
we obtain the following results. By abuse of notation we denote by U also the
corresponding map between the dual objects and its restrictions.
7.6.8 Remark and Convention
By Proposition A.1.9 the restrictions (b′0)|Aα

, (b′1
(z))|(Bz∩Aα) and (c′1

(z))|(Bz∩Aα)
(where z ∈ Aα) are trivializing maps for 〈B′

0〉, 〈B′
1〉 and 〈C′1〉, resp.. By

abuse of notation we will use the same notation for the original maps and their
restrictions within in this section.
7.6.9 Construction (Floquet Transform on Φ′0,α)
The following map, again called Floquet transform, is well-de�ned.

U :





Φ′0,α → Γ (Aα, 〈B′
0〉)

φ′ 7→ Uφ′ :




Aα → 〈B′

0〉
z 7→ (

z,
∞∑

k=−∞
φ′kz

k
)

It is an isomorphism from Φ′0,α to Γ (Aα, 〈B′
0〉). 4

7.6.10 Remark
U∗ : (Γ (C\{0}, 〈B′

0〉)))∗ → (Φ′0)
∗ is an isomorphism of vector spaces.

7.6.11 Construction (Floquet Transform on Φ′1,α)
U is an isomorphism from Φ′1,α to Γ (Aα, 〈C′1〉). 4
7.6.12 Corollary
L′Γ |Aα

= U ◦ L′Φ′1,α
◦ U−1. In particular, L′Γ = U ◦ L′Φ′1 ◦ U

−1.

Using Proposition 6.5.3 we additionally obtain:
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7.6.13 Corollary
U∗(Coker L′Γ ) = CokerL′Φ′1.

7.7 Form of Solution Functionals

Throughout this section let z ∈ C\{0}.
7.7.1 De�nition and Proposition
If n ∈ N and for each l = 1, . . . , n pl ∈ P, 1/z ∈ Ωl

◦⊂ C\{0} and σl ∈
Γ (Ωl, 〈B0〉) then

[
s′ 7→ ∑n

l=1 δ1/z
(
pl(∂)〈s′, σl〉Ωl

)] ∈ (Γ (C\{0}, 〈B′
0〉))∗.

The set of all functionals of that form (with all possible choices of n, pl, Ωl and
σl) is denoted by Ffuncz. Ffuncz is a linear subspace of (Γ (C\{0}, 〈B′

0〉))∗.
The set of all functionals in Ffuncz that have a representation of the above form
where pl is a constant polynomial for each l = 1, . . . , n is denoted by Bfuncz.
Proof.
For each l = 1, . . . , n by Remark A.2.9 and Proposition 7.2.3 [s′ 7→ 〈s′, σl〉Ωl

] ∈
L (Γ (C\{0}, 〈B′

0〉), A(Ωl,C)), by Fact 1.5.7 pl(∂) ∈ L (A(Ωl,C)) and ob-
viously δ1/z ∈ (A(Ωl,C))∗. This yields

[
s′ 7→ ∑n

l=1 δ1/z
(
pl(∂)〈s′, σl〉Ωl

)] ∈
(Γ (C\{0}, 〈B′

0〉))∗. The vector space structure of Ffuncz is obvious. 2

7.7.2 Remark
Let

[
s′ 7→ ∑n

l=1 δ1/z
(
pl(∂)〈s′, σl〉Ωl

)] ∈ (Γ (C\{0}, 〈B′
0〉))∗ (where n, pl, Ωl

and σl are de�ned as in De�nition 7.7.1). Furthermore, let 1/z ∈ Ω
◦⊂ Ωl for

each l = 1, . . . , n. Then in view of Remark 7.2.4 obviously∑n
l=1 δ1/z

(
pl(∂)〈s′, σl〉Ω

)
=

∑n
l=1 δ1/z

(
pl(∂)〈s′, σl〉Ωl

)

for all s′ ∈ Γ (C\{0}, 〈B′
0〉). Thus we can always assume w. l. o. g., that for each

l = 1, . . . , n Ωl can be chosen to be a ��xed but arbitrary small� neighborhood
of 1/z.
7.7.3 Construction
Let f ∈ W0[0, 1]. Then sf := [ξ 7→ ((b0)ξ)

−1(ξ
(−·)
(1/z)f)] ∈ Γ (B1/z, 〈B0〉).

Proof.
Clearly p0 ◦ sf = IdB1/z

. Fact 1.9.1 in combination with Fact 1.5.11 yields
[ξ 7→ ξ

(−·)
(1/z)f ] ∈ A(B1/z,W0[0, 1]). Since (b0)ξ(sf(ξ)) = ξ

(−·)
(1/z)f for all ξ ∈ B1/z

we conclude sf ∈ Γ (B1/z, 〈B0〉). 2
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7.7.4 Proposition
Ffuncz is generated (as a vector space) by all functionals of the form

[
s′ 7→

δ1/z
(
∂l〈s′, sf〉B1/z

)] ∈ (Γ (C\{0}, 〈B′
0〉))∗ where l ∈ N0 and f ∈ W0[0, 1].

Proof.
We will refer to functionals of the form mentioned in the statement as sim-
ple functionals. Obviously, Ffuncz is generated by all functionals of the form
S ′′l,Ω,σ :=

[
s′ 7→ δ1/z

(
∂l〈s′, σ〉Ω

)] ∈ (Γ (C\{0}, 〈B′
0〉))∗ with l ∈ N0, 1/z ∈

Ω
◦⊂ C\{0} and σ ∈ (Γ (Ω, 〈B0〉). Thus it su�ces to show that all functionals

of that form are linear combinations of simple functionals.
Therefore let l ∈ N0, 1/z ∈ Ω

◦⊂ C\{0} and σ ∈ (Γ (Ω, 〈B0〉). By Re-
mark 7.7.2 we can assume w. l. o. g. that Ω ⊂ B1/z. Furthermore, there is
r > 0 such that BC(1/z, r) ⊂ Ω and we set Ω̃ := BC(1/z, r). Thus by
Fact 1.5.13 analytic functions on Ω can be expanded into power series about
1/z on Ω̃.
By Proposition A.2.4 [ξ 7→ (b0)ξ(σ(ξ))] ∈ A(Ω,W0[0, 1]) and therefore by
Fact 1.5.11 [ξ 7→ ξ

(·)
(1/z)(b0)ξ(σ(ξ))] ∈ A(Ω,W0[0, 1]). By Fact 1.9.1 [ξ 7→

ξ
(−·)
(1/z)] ∈ A(Ω,C[0, 1]). Again by Proposition A.2.4 [ξ 7→ (b′0)ξ(s

′(ξ))] ∈
A(Ω,W ′

0[0, 1]) for all s′ ∈ Γ (C\{0}, 〈B′
0〉).

We denote the power series expansion about 1/z on Ω̃ of
ξ 7→ ξ

(·)
(1/z)(b0)ξ(σ(ξ)),

ξ 7→ ξ
(−·)
(1/z) and

ξ 7→ (b′0)ξ(s
′(ξ)),

where s′ ∈ Γ (C\{0}, 〈B′
0〉), by

∞∑
α=0

fα(· − 1/z)α,

∞∑
β=0

cβ(· − 1/z)β and

∞∑
γ=0

f ′γ(· − 1/z)γ, resp..

Note that δ1/z(∂n[Ω 3 ξ 7→ (ξ − 1/z)m]) = n!δn,m for all n,m ∈ N0. Thus for
every f ∈ W0[0, 1] and every n ∈ N0, linearity and continuity of the involved
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operators in combination with Fact 1.5.13 yield
δ1/z

(
∂n〈s′, sf〉Ω̃

)
=

δ1/z
(
∂n

[
Ω̃ 3 ξ 7→ 〈(b′0)ξ(s′(ξ)), (b0)ξ(((b0)ξ)

−1(ξ
(−·)
(1/z)f))〉W

])
=

∞∑
γ=0

∞∑
β=0

δ1/z
(
∂n

[
Ω̃ 3 ξ 7→ (ξ − 1/z)γ+β〈f ′γ, cβf〉W ]

)
=

n!
∑

γ+β=n
〈f ′γ, cβf〉W .

Similarly, we obtain for all s′ ∈ Γ (C\{0}, 〈B′
0〉)

S ′′l,Ω,σ(s
′) = δ1/z

(
∂l〈s′, σ〉Ω̃

)
=

δ1/z
(
∂l

[
Ω̃ 3 ξ 7→ 〈(b′0)ξ(s′(ξ)), ξ(−·)

(1/z)ξ
(·)
(1/z)(b0)ξ(σ(ξ))〉W

])
=

∞∑
γ=0

∞∑
β=0

∞∑
α=0

δ1/z
(
∂l

[
Ω̃ 3 ξ 7→ (ξ − 1/z)γ+β+α〈f ′γ, cβfα〉W ]

)
=

∑
γ+β+α=l

l!〈f ′γ, cβfα〉W =

l∑
α=0

l!
∑

γ+β=l−α
〈f ′γ, cβfα〉W

l∑
α=0

l!
(l−α)!δ1/z

(
∂(l−α)〈s′, sfα

〉Ω̃
)
,

where the last step follows from applying the �rst calculation to fα instead of
f .
We conclude that S ′′

l,Ω̃,σ
is a linear combination of simple functionals. By

Remark 7.7.2 S ′′
l,Ω̃,σ

coincides with S ′′l,Ω,σ as a functional on Γ (C\{0}, 〈B′
0〉).

This �nishes the proof. 2

7.7.5 Proposition
Let s′′ ∈ (Γ (C\{0}, 〈B′

0〉))∗.
Then the following are all equivalent:
(a) s′′ ∈ Bfuncz,

(b) s′′ is of the form s′ 7→ δ1/z〈s′, σ〉Ω where 1/z ∈ Ω
◦⊂ C\{0} and σ ∈

Γ (Ω, 〈B0〉),
(c) s′′ is of the form s′ 7→ 〈s′(1/z), f〉1/z where f ∈ (B0)1/z,
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(d) s′′ is of the form s′ 7→ δ1/z〈s′, sf〉B1/z
where f ∈ W0[0, 1].

Proof.
�(a)⇒(b)�: Let s′′ ∈ Bfuncz. Then by de�nition

s′′ =
[
s′ 7→ ∑n

l=1 δ1/z
(
pl〈s′, σl〉Ωl

)]

with n ∈ N and for each l = 1, . . . , n pl ∈ C, 1/z ∈ Ωl

◦⊂ C\{0} and
σl ∈ Γ (Ωl, 〈B0〉). By Remark 7.7.2 and Proposition A.2.5 we obtain s′′ =
[s′ 7→ δ1/z〈s′, σ〉Ω] where Ω :=

⋂n
k=1Ωl and σ :=

∑n
l=1 plσl.

�(b)⇒(c)�: Let s′′ be of the form s′ 7→ δ1/z〈s′, σ〉Ω where 1/z ∈ Ω ◦⊂ C\{0} and
σ ∈ Γ (Ω, 〈B0〉). Thus s′′ = [s′ 7→ 〈s′(1/z), σ(1/z)〉1/z]. Since f := σ(1/z) ∈
(B0)1/z, s′′ has indeed the required form.
�(c)⇒(d)�: Let s′′ be of the form s′ 7→ 〈s′(1/z), f〉1/z where f ∈ (B0)1/z Then
(b0)(1/z)f ∈ W0[0, 1] and thus f := (1/z)

(·)
(1/z)(b0)(1/z)f ∈ W0[0, 1]. Thus by

de�nition sf(1/z) = ((b0)(1/z))
−1((1/z)

(−·)
(1/z)f) = f and [s′ 7→ δ1/z〈s′, sf〉B1/z

] =

[s′ 7→ 〈s′(1/z), sf(1/z)〉1/z] = s′′. Therefore s′′ is of the required form.
�(d)⇒(a)�: This is a direct consequence of Construction 7.7.3. 2

7.7.6 Proposition
F(Fformz) = U∗(Ffuncz) and F(Bformz) = U∗(Bfuncz).
Proof.
Let s′′ ∈ Ffuncz. Let us assume for the moment that s′′ has the form described
in Proposition 7.7.4, i. e. there are l ∈ N0 and f ∈ W0[0, 1] such that s′′ =[
Γ (C\{0}, 〈B′

0〉) 3 s′ 7→ δ1/z
(
∂l〈s′, sf〉B1/z

)]
. Then for all φ′ ∈ C∞

c (R, X∗)

(U∗s′′)(φ′) = s′′(Uφ′) = δ1/z
(
∂l〈Uφ′, sf〉B1/z

)
=

δ1/z
(
∂l

[
B1/z 3 ξ 7→

〈
(b′0)ξ

(
(Uφ′)(ξ)), (b0)ξ

(
sf(ξ)

)〉
W

])
=

δ1/z
(
∂l

[
B1/z 3 ξ 7→

∫ 1

0

〈 ∞∑
k=−∞

ξkφ′(t− k), ξ−t(1/z)f(t)
〉
X dt

])
=

δ1/z
(
∂l

[
B1/z 3 ξ 7→

∞∑
k=−∞

∫ 1

0
ξk−t(1/z)〈φ′(t− k), f(t)〉X dt

])
=

δ1/z
(
∂l

[
B1/z 3 ξ 7→

∞∑
k=−∞

∫ −k+1

−k
ξ−τ(1/z)〈φ′(τ), f(τ + k)〉X dτ

])
=

δ1/z
(
∂l

[
B1/z 3 ξ 7→

∫

R
ξ−τ(1/z)〈φ′(τ),ETf(τ)〉X dτ

])
=
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δ1/z
[
B1/z 3 ξ 7→

∫

R
(∂l[B1/z 3 ξ̃ 7→ ξ̃−τ(1/z)])(ξ) 〈φ′(τ),ETf(τ)〉X dτ

]
=

δ1/z
[
B1/z 3 ξ 7→

∫

R
pl(τ)ξ

−τ−l
(1/z) 〈φ′(τ),ETf(τ)〉X dτ

]
=

∫

R
〈φ′(τ), (1/z)−τ(1/z)pl(τ)(1/z)

−lETf(τ)〉X dτ =

∫

R
〈φ′(τ), exp(−τ log(1/z) (1/z))pl(τ)z

lETf(τ)〉X dτ =

F[R 3 t 7→ exp(tλz)pl(t)z
lETf(t)](φ′),

where6 pl(τ) :=
∏l−1

m=0(−τ −m) for all τ ∈ R and λz := − log(1/z) (1/z).
Density of C∞

c (R, X∗) in Φ′0 thus yields
U∗s′′ = F[R 3 t 7→ exp(tλz)pl(t)z

lETf(t)].
We remark that since exp(λz) = z

uλz,l,pl,f := [R 3 t 7→ exp(tλz)pl(t)z
lETf(t)] ∈ Fformz.

Now, let s′′ ∈ Ffuncz be arbitrary. By Proposition 7.7.4 s′′ can be represented
as a linear combination of functionals of the above form. Hence U∗(Ffuncz) ⊂
F(Fformz).
Conversely, let u ∈ Fformz. Obviously {pl}l∈N0

is a basis for the space of
polynomials. In combination with Proposition 6.1.6 we obtain that u can be
written as linear combination of functions t 7→ exp(λzt)pl(t)gl(t) a. e. on R
with l ∈ N0 and gl ∈ Lp(T, X). Since [t 7→ exp(λzt)pl(t)gl(t)] = uλz,l,pl,g̃l

with g̃l := z−l(gl)|[0,1] the above calculation yields Fu ∈ U∗(Ffuncz), hence
F(Fformz) ⊂ U∗(Ffuncz).
Finally, if s′′ ∈ Bfuncz or u ∈ Bformz, then by Proposition 7.7.5 and Proposi-
tion 6.1.6, resp., s′′ and u have the corresponding representations with l = 0.
This directly yields F(Bformz) = U∗(Bfuncz). 2

7.7.7 Proposition
For each z ∈ Fset

F(Fsolz) = U∗(Ffuncz ∩ Coker L′Γ ) \ {0} and
F(Bsolz) = U∗(Bfuncz ∩ Coker L′Γ ) \ {0} holds.

6Here, we set
∏−1

m=0(−τ −m) := 1.
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Proof.
This is a direct consequence of Proposition 7.7.6, Proposition 6.5.3 and Corol-
lary 7.6.13. 2

7.8 Characterization of Floquet Exponents
7.8.1 Proposition
Let (A-iv) and (A∗-v) hold.
Then Bset = Fset = (CS(L′))−1 = S(L).
Proof.
We will show Bset ⊂ Fset ⊂ (CS(L′))−1 ⊂ S(L) ⊂ Bset .
�Bset ⊂ Fset �:
The de�nition of Bset directly yields Bset ⊂ Fset .
�Fset ⊂ (CS(L′))−1�:
Let z ∈ Fset .
We will prove the statement by contradiction. So, assume that z−1 /∈ CS(L′).
By Corollary 7.5.4 CS(L′) is an analytic set in C\{0}. In particular, CS(L′)
is closed in C\{0}. Therefore there exists a neighborhood Ω of z−1 such
that Ω ∩ CS(L′) = ∅. W. l. o. g. we can assume that Ω is connected and
that7 there are trivializing maps c′ : (C′1)|Ω → Ω × W ′

0[0, 1] for 〈C′1〉 and
b′ : (B′

0)|Ω → Ω ×W ′
0[0, 1] for 〈B′

0〉, resp..
Then the induced homomorphism L′Γ |Ω : Γ (Ω, 〈C′1〉) → Γ (Ω, 〈B′

0〉) is surjec-
tive: First, we remark that for all ξ ∈ Ω by Fact 1.2.2 {0} = Coker L′ξ ∼=
(B′

0)ξ�(Range L′ξ)
and therefore L′ξ : (C′1)ξ → (B′

0)ξ is surjective. We de�ne
L′ : Ω → L (W ′

0[0, 1]) by L′(ξ) := b′ξ ◦ L′ξ ◦ (c′ξ)
−1 for all ξ ∈ Ω. Thus,

L′(ξ) ∈ L (W ′
0[0, 1]) is surjective for each ξ ∈ Ω. Since L′ξ is a Fredholm

operator, L′(ξ) has a �nite and thus complemented kernel. Therefore L′(ξ) is
right-invertible for each ξ ∈ Ω, cf. [Heu92] � 26 Aufgabe 4. Furthermore, by
Proposition 7.5.3 and Proposition A.4.3 L′ ∈ A(Ω,L (W ′

0[0, 1])). By the cen-
tral theorem of [All67]8 there is R′ ∈ A(Ω,L (W ′

0[0, 1])) such that R′(ξ) is a
7Cf. Proposition A.1.10 and Remark 7.4.4
8Actually, the theorem only yields the existence of a right inverse on a �little smaller� (but still

connected and open) set than Ω. However, if need be, we can choose Ω to be that smaller domain
and therefore assume w. l. o. g. the result holds as cited.
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right inverse of L′(ξ) for all ξ ∈ Ω. Now, let s′ ∈ Γ (Ω, 〈B′
0〉). For all ξ ∈ Ω, we

set σ′(ξ) :=
(
(c′ξ)

−1R′(ξ)b′ξ
)(
s′(ξ)

)
. Since [ξ 7→ b′ξ

(
s′(ξ)

)
] ∈ A(Ω,W ′

0[0, 1]),
by Fact 1.5.10 we obtain [ξ 7→ c′ξ

(
σ′(ξ)

)
] ∈ A(Ω,W ′

0[0, 1]). Clearly, p1 ◦
σ′ = IdΩ and thus σ′ ∈ Γ (Ω, 〈C′1〉). Furthermore, L′

(
σ′(ξ)

)
= L′ξ

(
σ′(ξ)

)
=(

(b′ξ)
−1b′ξL

′
ξ(c

′
ξ)
−1R′(ξ)b′ξ

)(
s′(ξ)

)
=

(
(b′ξ)

−1 ◦ L′(ξ) ◦ R′(ξ) ◦ b′ξs
′)(ξ) = s′(ξ)

for all ξ ∈ Ω. Thus L′Γ |Ωσ
′ = s′. This proves that L′Γ |Ω is surjective.

Proposition 7.7.7 yields that there is 0 6= S ′′ ∈ Ffuncz ∩ Coker L′Γ . Again, by
choosing Ω smaller, if need be, by Remark 7.7.2 we can assume w. l. o. g. that
S ′′ =

[
Γ (C\{0}, 〈B′

0〉) 3 s′ 7→ ∑n
l=1 δ1/z

(
pl(∂)〈s′, σl〉Ω

)]
, where n ∈ N and

for each l = 1, . . . , n pl ∈ P and σl ∈ (Γ (Ω, 〈B0〉).
We will now show the contradiction S ′′ = 0: Let s′0 ∈ Γ (C\{0}, 〈B′

0〉). Then
there exists σ′0 ∈ Γ (Ω, 〈C′1〉) such that L′Γ |Ωσ

′
0 = (s′0)|Ω.

Then by [Lei78] Theorem 2.3 (iv) there exists9 (σ′n)n∈N ⊂ Γ (C\{0}, 〈C′1〉) with
(σ′n)|Ω

n→∞−→ σ′0 in Γ (Ω, 〈C′1〉). Thus L′Γ |Ω
(
(σ′n)|Ω

) n→∞−→ (s′0)|Ω in Γ (Ω, 〈B′
0〉).

By de�nition, S ′′(L′Γσ′n) = 0 for all n ∈ N. On the other hand, by Proposi-
tion 7.7.1 and by continuity of the involved operators10

S ′′(L′Γσ
′
n) =

n∑
l=1

δ1/z
(
pl(∂)〈L′Γσ′n, σl〉Ω

)
=

n∑
l=1

δ1/z
(
pl(∂)〈L′Γ |Ω

(
(σ′n)|Ω

)
, σl〉Ω

) n→∞−→
n∑
l=1

δ1/z
(
pl(∂)〈(s′0)|Ω, σl〉Ω

)
=

n∑
l=1

δ1/z
(
pl(∂)〈s′0, σl〉Ω

)
=

S ′′(s′0).
This yields S ′′(s′0) = 0 and therefore S ′′ = 0.
�(CS(L′))−1 ⊂ S(L)�:
Let z in (CS(L′))−1. Then by Remark 7.2.2 there exists 0 6= f ∈ (B0)1/z such

9We note that Ω is (as every domain inC) holomorphically convex (cf. [GR65] de�nition VII.A.2
and the subsequent example (3)) and that by Fact B.1.29 O〈C′1〉(C\{0}) is a BCAF sheaf.

10Namely, 〈·, ·〉Ω ∈ L (Γ (Ω, 〈B′
0〉);Γ (Ω, 〈B0〉), A(Ω,C)) by Proposition 7.2.3, ∂ ∈ L (A(Ω,C))

by Fact 1.5.7 and δ1/z ∈ (A(Ω,C))∗ by Fact 1.5.8.
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that 〈L′1/zf ′, f〉1/z = 0 for all f ′ ∈ (C′1)1/z. By Proposition 7.7.5 S ′′ := [s′ 7→
〈s′(1/z), f〉1/z] ∈ Bfuncz. Clearly, S ′′ 6= 0. Since for all s′ ∈ Γ (C\{0}, 〈C′1〉)
S ′′(L′Γs

′) = 〈(L′ ◦ s′)(1/z), f〉1/z = 〈L′1/z(s′(1/z)), f〉1/z = 0, S ′′ ∈ Coker L′Γ .
Thus by Proposition 7.7.7 there is 0 6= u ∈ Bsolz. By Fact 6.1.5 u is z-
quasiperiodic and thus Theorem 5.1.7 yields u ∈ W1,z[0, 1] and LW1,z[0,1]u = 0.
Hence11 Lz(z, u) = (z,LW1,z[0,1]u) = 0 and z ∈ S(L).
�S(L) ⊂ Bset �:
Let z ∈ S(L). Then there is f̃ ∈ Ker Lz, i. e. there is f ∈ W1,z[0, 1] such
that f̃ = (z, f) and LW1,z[0,1]f = 0. Then by Fact 4.4.5 Ezf ∈ W1,loc(R) and
LW1,loc(R)(Ezf) = 0. Hence Proposition 4.5.3 yields that Ezf is a solution.
Furthermore, by Fact 6.1.5 Ezf ∈ Bformz and thus Ezf ∈ Bsolz. We conclude
z ∈ Bset . 2

11Here, 0 denotes the zero vector in (B0)z.



Chapter 8

The Superposition Result

For the convenience of the reader we recall the most important notions.
We examine solutions (cf. De�nition 4.5.2) to the equation

u′(t) + Atu(t) = 0 (t ∈ R) (E)

where the following conditions hold for the family (At : X ⊃ D(At) → X)t∈T
of closed operators depending periodically on t.
(A-i) There exists a normed space (D, ‖ · ‖D) such that D(At) = D for all

t ∈ R and (the set) D is a dense subspace of X.
(A-iii) [t 7→ At] ∈ C(T,L (D,X)).
Furthermore, we assume that the dual family (A∗t : X∗ ⊃ D(A∗t ) → X∗)t∈T
ful�lls the following conditions.
(A∗-i) There exists a normed space (D′, ‖ · ‖D′) such that D(A∗t ) = D′ for

all t ∈ R.
(A∗-iii) [t 7→ A∗t ] ∈ C(T,L (D′, X∗)).
We assume throughout this chapter that also the conditions
(A-iv) there exists ρ ∈ R such that ρ+ iR ⊂ ρ(At) and

{ (|λ|+ 1)(At − λ)−1 : λ ∈ ρ+ iR }
is uniformly (X,X)-R-bounded for all t ∈ T and

(A-v) D is compactly embedded into X
hold.
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We refer to Section 4.7 for equivalent formulations and to see that the present
conditions also imply (A-ii) and (A∗-ii).

8.1.2 Theorem
The set of Floquet exponents Fset is either discrete in C\{0} or Fset = C\{0}.
Proof.
By Proposition 7.8.1 Fset = (CS(L′))−1 and Corollary 7.5.4 yields that CS(L′)
is an analytic set in C\{0}. In particular, CS(L′) is either discrete in C\{0}
or CS(L′) = C\{0}. This directly yields the statement. 2

8.1.3 Theorem
If Fset is discrete then for every z ∈ Fset there exists a �nite set {u(l)

z }l∈Lz
of

Floquet solutions in Fsolz such that
a) for any at most exponentially increasing solution u : R → X of (E) there

exist uniquely determined coe�cients αi ∈ C where i ∈ I := { (z, l) : z ∈
Fset , l ∈ Lz } with αi = 0 for almost all i ∈ I such that

u =
∑

(z,l)∈I
α(z,l)u

(l)
z a. e. on R,

b) if αi ∈ C for each i ∈ I with αi = 0 for almost all i ∈ I then∑
(z,l)∈I

α(z,l)u
(l)
z

is an at most exponentially increasing solution to (E).
Remarks on the proof.
We will prove Theorem 8.1.3 in combination with the next theorem.

8.1.4 Theorem
If Fset = C\{0} then there exist
• nU ∈ N and 1 U (l) : C\{0} ×R→ X for each l = 1, . . . , nU such that

� the function C\{0} 3 z 7→ U (l)(z, ·) ∈ W0,loc(R) is analytic for each
l = 1, . . . , nU and

� for all z ∈ C\{0} and l = 1, . . . , nU [R 3 t 7→ U (l)(z, ·) ∈ X] ∈ Fsolz
and

• a discrete subset Z ⊂ C\{0} and for each z ∈ Z a �nite set {u(l)
z }l∈Lz

⊂
Fsolz

1Using the identi�cation ofC\{0} withR2\{0} we will allow the �rst component of the argument
of U (l) to take values in R2\{0}.
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such that
a) for any at most exponentially increasing solution u : R → X of (E) there

exist for each l = 1, . . . , nU µ(l) ∈ C∞
c (R2\{0}) and coe�cients αi ∈ C

where i ∈ I := { (z, l) : z ∈ Z, l ∈ Lz } with αi = 0 for almost all i ∈ I

such that2

u = [t 7→ ∑
(z,l)∈I

α(z,l)u
(l)
z (t) +

nU∑
l=1

∫

R2\{0}
U (l)(ξ, t)µ(l)(ξ) dξ] a. e. on R,

b) if for each l = 1, . . . , nU µ
(l) ∈ C∞

c (R2\{0}) and for each i ∈ I αi ∈ C with
αi = 0 for almost all i ∈ I then

t 7→ ∑
(z,l)∈I

α(z,l)u
(l)
z (t) +

nU∑
l=1

∫

R2\{0}
U (l)(ξ, t)µ(l)(ξ) dξ

is an at most exponentially increasing solution to (E).
Remarks on the proof.
We mainly follow the proof of [Kuc93] Theorem 3.2.1.
Proof of Theorem 8.1.3 and Theorem 8.1.4.

8.1.5 Preparation
We remind the reader of the following objects introduced earlier or in the
appendix.
L′ : 〈C′1〉 → 〈B′

0〉 is an analytic Fredholm homomorphism between the Banach
vector bundles 〈C′1〉 and 〈B′

0〉, cf. Proposition 7.5.3.
The induced homomorphism on the corresponding spaces of sections is denoted
by L′Γ ∈ L

(
Γ (C\{0}, 〈C′1〉), Γ (C\{0}, 〈B′

0〉), cf. De�nition A.7.1.
Furthermore, the corresponding sheaves of germs of sections

O〈C′1〉 := O〈C′1〉(C\{0}) and O〈B′
0〉 := O〈B′

0〉(C\{0}), resp.,
are BCAF sheaves, cf. Construction B.1.12 and Fact B.1.29.
L′ induces a homomorphism L′O : O〈C′1〉 → O〈B′

0〉, cf. Fact B.1.30.

Then M := Coker L′O := O〈B′
0〉�Range L′O

is coherent, cf. Fact B.1.29.
Furthermore, Γ (C\{0},M) is the quotient module

Γ (C\{0},O〈B′
0〉)�Γ (C\{0},Range L′O),

cf. De�nition B.1.21, and we denote by
2This representation is, in general, not uniquely determined.
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P ∈ L (Γ (C\{0},O〈B′
0〉), Γ (C\{0},M))

the natural projection.
We set Z := AssocM. We refer to [Kuc93] De�nition 1.5.15 for the de�nition
of the set AssocM, but we remark that in particular each Z ∈ Z is an
irreducible analytic subset of C\{0}. Clearly this yields that Z is either of the
form Z = {z} with some z ∈ C\{0} or Z = C\{0}.
Then, in particular, the sheaf O(Z) of germs of analytic functions on the
analytic set Z ∈ Z can be identi�ed with OC\{0} if Z = C\{0} and with C
if Z = {z}, cf. [GR65] Section IV.D. In any case, Z consists only of regular
points.
Furthermore, from the de�nition of Z we obtain

⋃
Z∈Z Z = CS(L′). Thus⋃

Z∈Z Z
−1 = Fset since by Proposition 7.8.1 (CS(L′))−1 = Fset .

By [Pal93] Theorem 3.4 for each Z ∈ Z there exits a Z-Noether operator3
νZ : M→ [O(Z)]nZ where νZ = (ν

(1)
Z , . . . , ν

(nZ)
Z ).

Then νZ induces a linear map ν̂Z : Γ (C\{0},M) → Γ (Z, [O(Z)]nZ). In case of
Z = {z} ν̂Z can be identi�ed with the map δzν̂Z : Γ (C\{0},M) → CnZ and in
the case of Z = C\{0} ν̂Z is of the form ν̂Z : Γ (C\{0},M) → A(C\{0},CnZ).
By [Kuc93] Theorem 1.7.1 we obtain a characterization of Coker(L′Γ ), namely
S ′′ ∈ Coker(L′Γ ) i� there is a �nite set Z�n ⊂ Z and smooth functions µZ :
Z → Cn

Z such that S ′′ is of the form S ′′(s′) =
∑

Z∈Z�n

∫
Z 〈ν̂ZPs′, µZ〉 dVZ for

all s′ ∈ Γ (C\{0}, 〈B′
0〉), where we used the notations of the cited theorem4.

In particular, 〈·, ·〉 denotes the inner product on CnZ .
We explain the notation in the given situation. If Z = C\{0} we identify
C\{0} with the real manifold R2\{0} and then µZ ∈ C∞

c (R2\{0},CnZ).dVZ
denotes the Lebesgue measure dλ on R2\{0}. We remark that

s′ ∈ Γ (C\{0}, 〈B′
0〉)

yields Ps′ ∈ Γ (C\{0},M) and ν̂ZPs′ ∈ A(C\{0},CnZ) and thus
〈νZPs′, µZ〉 ∈ C∞

c (R2\{0},C)

is integrable.

3For the general de�nition of Noether operators, we refer to [Pal93] De�nition 3.3 and the
de�nition of the sheaf of germs of analytic functions on an analytic set O(Z) is given, e. g., in
[GR65] IV.D.5 De�nition.

4We remark that of course Z�n and µZ are depending on S′′, although we omit the dependence
in the notation.
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If Z is of the form Z = {z} then dVZ denotes the point measure at z. Thus,
after identifying µZ : {z} → CnZ with a constant (µ̃

(1)
Z , . . . , µ̃

(nZ)
Z ) := δzµZ ∈

CnZ we obtain
∫
Z 〈ν̂ZPs′, µZ〉 dVZ = 〈δz(ν̂ZPs′), δzµZ〉 =

∑nZ

l=1 µ̃
(l)
Z δz(ν̂

(l)
Z Ps′).

We will now prepare the de�nition of the (�xed) Floquet solutions that occur
in the statement of Theorem 8.1.4.
For each Z ∈ Z , z ∈ Z−1 and l = 1, . . . , nZ we de�ne

S ′′Z,z
(l) ∈ (Γ (C\{0}, 〈B′

0〉))∗
by S ′′Z,z(l)(s′) := δ1/z(ν̂

l
ZPs′) for all s′ ∈ Γ (C\{0}, 〈B′

0〉). S ′′Z,z(l) is well-de�ned:
Indeed, linearity is obvious and continuity follows from [Pal93] Theorem 3.8.
For each Z ∈ Z , z ∈ Z−1 and l = 1, . . . , nZ we obtain S ′′Z,z

(l) ∈ Coker L′Γ :
Let s′ ∈ Γ (C\{0}, 〈C′1〉). Then for all z ∈ C\{0} γz(L′Γs′) ∈ Range L′O, thus
PL′Γs

′ = 0 in Γ (C\{0},M). Thus indeed S ′′Z,z(l)(L′Γs′) = 0.
Therefore by Corollary 7.6.13 for each Z ∈ Z , z ∈ Z−1 and l = 1, . . . , nZ
U∗S ′′Z,z(l) ∈ CokerL′Φ′1, i. e. U∗S ′′Z,z(l) corresponds to a solution, cf. Proposi-
tion 6.5.3.
We will now show that for each Z ∈ Z , z ∈ Z−1 and l = 1, . . . , nZ there exists
d ∈ N such that if s′ ∈ Γ (C\{0}, 〈B′

0〉) has a zero5 of order d+ 1 at 1/z then
S ′′Z,z

(l)(s′) = 0: By the de�nition of the Noether operator µZ we obtain that
the induced homomorphism on the stalks (νZ)1/z : (M)1/z → ([O(Z)]nZ)1/z

is a di�erential operator between sheaves6. We denote by d its order. Now
assume that s′ indeed has a zero of order d + 1 at 1/z, thus s′ = (· −
1/z)d+1g for some g ∈ Γ (C\{0}, 〈B′

0〉). Then we obtain7 (νZ)1/z(γ1/z(Ps′)) =

−∑d+1
i=1 (−1)i

(
d+1
i

)
γ1/z((·−1/z)i)(νZ)1/z(γ1/z(P(·−1/z)d+1−ig)). The evalua-

tion of the germs at 1/z of the right hand side yields δ1/z((νZ)1/z(γ1/z(Ps′))) =
0, hence S ′′Z,z(l)(s′) = 0.
We conclude, that if s′ ∈ Γ (C\{0}, 〈B′

0〉) is expanded into the power series8∑∞
α=0 s

′
α(· − 1/z)α about 1/z on some neighborhood Ω of 1/z then S ′′Z,z(l)(s′) =

5By Proposition A.2.8 Γ (C\{0}, 〈B′
0〉) is isomorphic to A(C\{0},W ′

0[0, 1]) and s′ ∈
Γ (C\{0}, 〈B′

0〉) i� there is s̃′ ∈ A(C\{0},W ′
0[0, 1]) such that s′(z) = (z, s̃′(z)) for all z ∈ C\{0},

cf. the de�nition of b0. We say s′ has a zero of order d + 1 at 1/z i� s̃′ has. In that case we
write s′(z) = (z − 1/z)d+1f ′(z) i� s̃′(z) = (z − 1/z)d+1f̃ ′(z) for some f̃ ′ ∈ A(C\{0},W ′

0[0, 1]) and
f ′(z) = (z, f̃ ′(z)) for all z ∈ C\{0}.

6For a de�nition, we refer to [Pal93] Section 3.
7Cf. [Pal68] Proposition 1.1.
8The expansion is meant in the sense of footnote 5, i. e. s′ is identi�ed with an function in

A(C\{0},W ′
0[0, 1]).
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S ′′Z,z
(l)(

∑d
α=0 s

′
α(· − 1/z)α). That means that S ′′Z,z(l) coincides with a functional

on (W ′
0[0, 1])d. Hence S ′′Z,z(l) can be represented in the form

s′ 7→ ∑d
α=0 〈fα, s′α〉W

with (a �xed) fα ∈ W0[0, 1] for each α = 0, . . . , d. This means that S ′′Z,z(l) can
be represented in the form s′ 7→ δ1/z[Ω 3 ξ 7→ ∑d

α=0 〈fα, (∂αs′)(ξ)〉W ] where
by abuse of notation fα ∈ W0[0, 1] for each α = 0, . . . , d may now denote
some di�erent but again �xed parameter. Finally, we de�ne σα ∈ Γ (Ω, 〈B0〉)
to be the constant section z 7→ (z, fα) for each α = 0, . . . , d and then we
conclude that S ′′Z,z(l) has the form then s′ 7→ ∑d

α=0 δ1/z
(
∂α〈s′, σα〉Ω

)
. Therefore

S ′′Z,z
(l) ∈ Ffuncz and by Proposition 7.7.6 U∗S ′′Z,z(l) corresponds to a function of

Floquet form, i. e. by Proposition 7.7.7 for each Z ∈ Z , z ∈ Z and l = 1, . . . , nZ
there exists u(l)

Z,z ∈ Fsolz such that Fu(l)
Z,z = U∗S ′′Z,z(l).

We point out that S ′′Z,z(l) (and thus u(l)
Z,z) does not depend on S ′′.

Furthermore, in the case of Z = C\{0} the map C\{0} 3 z 7→ u
(l)
Z,z is analytic

for each l = 1, . . . , nZ : First we note that if we endow (Γ (C\{0}, 〈B′
0〉))∗ with

the weak-* topology by Fact 1.5.3 we obtain
S ′′Z,z

(l) ∈ A(C\{0}, (Γ (C\{0}, 〈B′
0〉))∗).

Remark 1.5.14 in combination with the proof of Proposition 7.7.6 then yields
[z 7→ u

(l)
Z,z] ∈ A(C\{0},W0,loc(R)). 4

We are now in the position to prove Theorem 8.1.3 and Theorem 8.1.4.
Let u be an arbitrary at most exponentially increasing solution of (E).
By Proposition 6.5.3 Fu ∈ CokerL′Φ′1 and by Corollary 7.6.13 we obtain S ′′ :=
(U∗)−1(Fu) ∈ Coker L′Γ .
As in Preparation 8.1.5 we denote by µZ and Z�n the corresponding objects
that are used to represent S ′′ in [Kuc93] Theorem 1.7.1.
Then for all φ′ ∈ Φ′0 and s′ := Uφ′ ∈ Γ (C\{0}, 〈B′

0〉) we obtain (Fu)(φ′) =
(U∗)−1(Fu)(Uφ′) = S ′′(s′) =

∑
Z∈Z�n

∫
Z 〈ν̂ZPs′, µZ〉 dVZ .

We �rst treat the case that Fset is discrete. Then each Z ∈ Z is of the form
Z = {z}.
We write u(l)

z instead of u(l)
Z,z for each l = 1, . . . , nZ if Z ∈ Z and {z} = Z−1.

Every summand in the above sum is given by
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∫

{z}
〈ν̂{z}Ps′, µ{z}〉 dV{z} =

n{z}∑
l=1

µ̃
(l)
{z}u

(l)
1/z(s

′)

for the corresponding z ∈ {z} = Z.
Therefore

(Fu)(φ′) =

∑
{z}∈Z�n

n{z}∑
l=1

µ̃
(l)
{z}u

(l)
1/z(s

′) =

∑
{z}∈Z�n

n{z}∑
l=1

µ̃
(l)
{z}(U∗u

(l)
1/z)(φ

′) =

∑
{z}∈Z�n

n{z}∑
l=1

µ̃
(l)
{z}(Fu

(l)
1/z)(φ

′) =

(
F
(∑
{z}∈Z�n

n{z}∑
l=1

µ̃
(l)
{z}u

(l)
1/z

))
(φ′).

We conclude that u =
∑

{z}∈Z�n

∑n{z}
l=1 µ̃

(l)
{z}u

(l)
1/z is indeed of the stated form.

We remark that every discrete set in C\{0} is countable, thus {u(l)
1/z : {1/z} ∈

Z�n
n{1/z}
l=1 } is countable. Thus uniqueness of the coe�cients can be obtained

by simply omitting solutions u(l)
1/z that would allow di�erent representations.

In the case that Fset = C\{0}, additionally the summand∫

R2\{0}
〈ν̂C\{0}Ps′, µC\{0}〉 dλ

occurs.
We set ν := νC\{0}, n := nC\{0}, µ := µC\{0}, S ′′z (l) := S ′′C\{0},z

(l) and U
(l)
z :=

u
(l)
C\{0},1/z for all l = 1, . . . , n and z ∈ C\{0}. Then we obtain

∫

R2\{0}
〈ν̂Ps′, µ〉 dλ =

∫

R2\{0}

n∑
l=1

(ν̂Ps′)l(z)µ(l)(z) dz =

n∑
l=1

∫

R2\{0}
δz(ν̂

(l)Ps′)µ(l)(z) dz =
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n∑
l=1

∫

R2\{0}
S ′′1/z

(l)(s′)µ(l)(z) dz =

n∑
l=1

∫

R2\{0}
U∗S ′′1/z(l)(U−1s′)µ(l)(z) dz =

n∑
l=1

∫

R2\{0}
(FU (l)

z )(φ′)µ(l)(z) dz =

n∑
l=1

∫

R2\{0}

∫

R
〈φ′(t), U (l)

z (t)〉X dtµ(l)(z) dz =

∫

R

n∑
l=1

∫

R2\{0}
〈φ′(t), U (l)

z (t)〉Xµ(l)(z) dz dt =

∫

R

n∑
l=1
〈φ′(t), (

∫

R2\{0}
U

(l)
z (·)µ(l)(z) dz)(t)〉X dt =

(F(
n∑
l=1

∫

R2\{0}
U

(l)
z (·)µ(l)(z) dz))(φ′).

This �nishes the proof. 2

8.1.6 Theorem
The following are equivalent.
(1) Fset = C\{0}.
(2) For each a > 0 there is a solution u 6= 0 and c > 0 such that

‖u‖W1[k,k+1] ≤ c exp(−a|k|) for all k ∈ Z.
(3) There is a solution u 6= 0 and a > 0, c > 0 such that

‖u‖W1[k,k+1] ≤ c exp(−a|k|) for all k ∈ Z.
Proof.
�(1)⇒(2)�:
As a �rst step, we will show that there exists 0 6= S ∈ Γ (C\{0}, 〈C1〉) such
that LΓS = 0.
Proposition 7.8.1 in combination with the assumption (1) yields S(L) = Fset =
C\{0}, hence there is z ∈ C\{0} such that

dim Ker Lz = min{ dim Ker Lξ : ξ ∈ C\{0} } ≥ 1.

For each ξ ∈ Bz we denote by L(ξ) the trivialized induced mapW1(T)
((c1(z))ξ)

−1

−→
(C1)ξ

Lξ−→ (B0)ξ
(b0)ξ−→W0[0, 1] of the bundle homomorphism L. Thus by Propo-
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sition 7.5.1 [ξ 7→ L(ξ)] ∈ A(Bz,L (W1(T),W0[0, 1]) is Fredholm operator-
valued. Hence by [Kuc93] Corollary 1.2.14 the map ξ 7→ dim KerL(ξ) is upper
semi-continuous. In particular, there exists a neighborhood Ω

◦⊂ Bz of z such
that ξ 7→ dim KerL(ξ) is constant on Ω. We conclude that ξ 7→ dim Ker Lξ

is constant on Ω.
We endow K :=

⋃
ξ∈Ω{ξ} × Ker Lξ ⊂ C1|Ω with the induced topology. Fur-

thermore, for all ξ ∈ Ω we understand Kξ := {ξ} ×Ker Lξ as a (closed) linear
subspace of (C1)ξ. Then ν := [K 3 (ξ, f) 7→ ξ ∈ Ω] is a bundle projection.
By [Kuc93] Theorem 1.6.13 there exists a trivialization for ν such that its
equivalence class 〈K νÂΩ〉 is a subbundle of 〈C1〉.
By choosing Ω smaller, if need be, by Proposition A.2.8 and by Proposi-
tion A.1.11 we can assume w. l. o. g. that Γ (Ω, 〈K νÂ Ω〉) is isomorphic to
A(Ω,Ker Lz). Hence there is s ∈ Γ (Ω, 〈K νÂ Ω〉) such that s(z) 6= 0. By
Remark A.6.5 and Remark A.3.2 s ∈ Γ (Ω, 〈C1〉). Furthermore, Lξ(s(ξ)) = 0
for all ξ ∈ Ω. Thus9 γz(s) ∈ Ker LO. By [Kuc93] Theorem 1.5.9 ii) in combina-
tion with Fact B.1.30 there is σ ∈ Γ (C\{0},Ker LO) such that σ(z) = γz(s).
By De�nition B.1.20 σ ∈ Γ (C\{0},O〈C1〉(C\{0})) and thus by Remark B.1.14
there is S ∈ Γ (C\{0}, 〈C1〉) such that σ(ξ) = γξ(S) for all ξ ∈ C\{0}. Finally,
S(z) = (σ(z))(z) = s(z) 6= 0 and for each ξ ∈ C\{0} γξ(LΓS) = LO(σ(ξ)) =
0, hence LΓS = 0.
Now, Construction 7.6.6 and Corollary 7.6.7 yield 0 6= u := U−1S ∈ Φ1 and
LW1,loc(R)u = LΦ1

u = (U−1 ◦ LΓ ◦ U)u = (U−1 ◦ LΓ )S = 0, hence by Proposi-
tion 4.5.3 u is a solution. This yields (2).
�(2)⇒(3)�: This is obvious.
�(3)⇒(1)�: Let ‖u‖W1[k,k+1] ≤ c exp(−a|k|), a > 0 and c > 0 such that
‖u‖W1[k,k+1] ≤ c exp(−a|k|) for all k ∈ Z. Then 0 6= u ∈ Φ1,a and hence
Construction 7.6.6 yields 0 6= Uu ∈ Γ (Aα, 〈C1〉). In combination with Propo-
sition A.2.8 we obtain that there is z ∈ Aα and am open neighborhood z ∈ Ω ◦⊂
Aα such that (Uu)(ξ) 6= 0 for all ξ ∈ Ω. By Proposition 4.5.3 LW1,loc(R)u = 0
and then by Corollary 7.6.7 LΓ |Aa

(Uu) = 0 holds. For each ξ ∈ Ω we obtain
Lξ

(
(Uu)(ξ)) = 0, thus 0 6= (Uu)(ξ) ∈ Ker Lξ. Hence ξ ∈ S(L). Therefore, in

combination with by Proposition 7.8.1 Ω ⊂ S(L) = Fset and thus Fset is not

9We remind the reader that LO denotes the induced sheaf homomorphism by L, cf. Fact B.1.30
and KerLO is a subsheaf of O〈C1〉(C\{0}), cf. De�nition B.1.23.
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discrete. Then Theorem 8.1.2 yields Fset = C\{0}. 2

We directly obtain:
8.1.7 Corollary
If Fset = C\{0} then there is a solution 0 6= u ∈ Lp(R, X).

Bloch Property

We �nish this section by analyzing the so-called Bloch property. First we
remark that the following direct consequence of the �rst three theorems in this
chapter holds.
8.1.8 Corollary
If there exists a non-vanishing, bounded10 solution then there exists at least
one Bloch solution.
Proof.
If there is a bounded solution u 6= 0 to (E) then by Theorem 8.1.2 we are either
in the situation of Theorem 8.1.3 or Theorem 8.1.4. In any case we particularly
obtain Fset 6= ∅ since there must exist at least one Floquet solution to represent
u. Then Proposition 7.8.1 yields Bset = Fset 6= ∅, in other words there exists
a Bloch solution. 2

We now show that under an additional assumption the Bloch property holds.
8.1.9 Theorem (Bloch Property)
Assume that the bundle 〈C′1〉 is trivial.
Furthermore, assume that there exists an at most exponentially increasing
solution u 6= 0 with corresponding constants c, a > 0, i. e. ‖u‖W0[k,k+1] ≤
c exp(a|k|) for all k ∈ Z.
Then there is z ∈ Bset such that exp(−a) ≤ |z| ≤ exp(a).
(For conditions when 〈C′1〉 is trivial we refer to Remark 8.1.11.)
Proof.
We will prove the statement by contradiction. Assume that there is no z ∈ Bset
with exp(−a) ≤ |z| ≤ exp(a). Then in particular by Theorem 8.1.2 and
Proposition 7.8.1 Bset = Fset is discrete in C\{0} and we conclude that there
exists ε > 0 such that for all z ∈ Bset |z| < exp(−(a+ ε)) or |z| > exp(a+ ε).

10(a. e. on R)
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We will now show that (Fu)(φ′) = 0 for all φ′ ∈ Φ′0,a+ε. Then, since Φ′0 ⊂
Φ′0,a+ε, by Proposition 6.5.2 we obtain the contradiction u = 0.
It su�ces to show that L′Φ′1,a+ε

: Φ′1,a+ε → Φ′0,a+ε is surjective: Indeed then
for each φ′ ∈ Φ′0,a+ε there is ψ′ ∈ Φ′1,a+ε with L′Φ′1,a+ε

ψ′ = φ′ and (Fu)(φ′) =

(Fu)(L′Φ′1,a+ε
ψ′) = 〈L′W ′

1,loc(R)ψ
′, u〉 = 0 by the de�nition of solutions.

By Corollary 7.6.12 surjectivity of L′Φ′1,a+ε
is equivalent to surjectivity of L′Γ |Aa+ε

.

By Proposition 7.8.1 Bset = (CS(L′))−1 and hence for all z ∈ CS(L′) |z| >
exp(a+ε) or |z| < exp(−(a+ε)). In particular, CS(L′)∩Aa+ε = ∅. By Propo-
sition A.5.2 in combination with Proposition A.1.10 and Remark 7.4.4 there is
a trivializing map c′ : (C′1)|Aa+ε

→ Aa+ε×W ′
0[0, 1]. The same argument11 as in

the step �Fset ⊂ (CS(L′))−1� of the proof of Proposition 7.8.1 now yields that
L′Γ |Aa+ε

is surjective. This �nishes the proof. 2

8.1.10 Corollary (Bloch Property, Classic Version)
Assume that the bundle 〈C′1〉 is trivial.
If there exists a non-vanishing, bounded12 solution then there exists at least
one bounded12 Bloch solution.
Proof.
We recall that by Proposition 7.8.1 Bset = Fset . If Bset = C\{0} then the
statement directly follows. Thus by Theorem 8.1.2 we can assume that Bset
is discrete in C\{0}. If we denote the bounded solution by u then for all
a > 0 there is c > 0 such that ‖u‖W0[k,k+1] ≤ c exp(a|k|) for all k ∈ Z.
Thus by Theorem 8.1.9 there exists (zn)n∈N ∈ Bset such that exp(−1/n) ≤
|zn| ≤ exp(1/n) for all n ∈ N and hence |zn| n→∞−→ 1. Discreteness of Bset
in combination with compactness of { z ∈ C : |z| = 1 } yields that there is
z0 ∈ Bset such that |z0| = 1. There is u0 ∈ Bsolz0 and thus ‖u0(t)‖X = ‖g(t)‖X
a. e. on R for some g ∈ Lp(T, X). By Remark 6.2.4 g has a continuous
representant and this directly yields the assertion. 2

8.1.11 Remark
We remark that by Remark 7.4.4 〈C′1〉 is a bundle with �ber W ′

0[0, 1]. Then
by [Bun68] � 8 a su�cient condition for the bundle 〈C′1〉 to be trivial is that
the so-called structure group L (W ′

0[0, 1]) is contractible.
11We remark�w. r. t. footnote 8 in said proof (on page 74)�that if need be we might substitute

ε by ε/2.
12(a. e. on R)
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In particular, if X is a (C-valued) Lp(Ω)-space then
W ′

0[0, 1] = Lp([0, 1], Lp(Ω)) = Lp([0, 1]×Ω)

is also a Lp-space. Hence by [Mit70] Proposition 5 L (W ′
0[0, 1]) is contractible

and 〈C′1〉 is trivial.



Appendix A

Analytic Banach Vector Bundles

Throughout this chapter let Ω
◦⊂ C.

A.1 Analytic Banach Vector Bundles

A.1.1 De�nition (Analytic Banach Vector Bundle)
Let E be a topological space and p : E → Ω a surjective, continuous function
such that for each x ∈ Ω the so-called �ber Ex := p−1({x}) has a Banach
space structure, whose topology (that comes from the norm) coincides with
the topology induced from E . Ω is called base space, E is called total space and
p is called (bundle) projection.
For each U

◦⊂ Ω we set E|U := p−1(U).
Let {Uλ}λ∈Λ be an open cover of Ω. Furthermore, suppose that for each λ ∈ Λ
there exists a Banach space Bλ and a homeomorphism φ(λ) : E|Uλ

→ Uλ ×Bλ.
Then {φ(λ)}λ∈Λ is called a trivialization (for p) if for all λ ∈ Λ
(a) the diagram

E|Uλ

φ(λ)
//

p
!!CC

CC
CC

CC
Uλ ×Bλ

ν
zzuuuuuuuuuu

Uλ

(where ν denotes the natural projection ν : Uλ × Bλ → Uλ given by
ν(u, b) := u) commutes, i. e. p = ν ◦ φ(λ) and

(b) φ(λ) induces on each �ber Ex (where x ∈ Uλ) an isomorphism φ
(λ)
x : Ex →

89
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Bλ, i. e. the map

φ(λ)
x : Ex

(φ(λ))|Ex−→ {x} × Bλ

∼=−→ Bλ

(where ∼= denotes the natural identi�cation given by {x} × Bλ 3 (x, b) 7→
b ∈ Bλ) is an (Banach space) isomorphism and

(c) for all κ ∈ Λ with Uλ ∩ Uκ 6= ∅ the so-called transition function (from Bλ

to Bκ)

Φ(λ,κ)
x : Bλ

(φ(λ)
x )

−1

−→ Ex φ
(κ)
x−→ Bκ

is analytically depending on x ∈ Uλ ∩ Uκ 6= ∅, i. e. [x 7→ Φ
(λ,κ)
x ] ∈ A(Uλ ∩

Uκ,L (Bλ, Bκ)).
In this case, {Uλ}λ∈Λ is called the associated trivializing cover.
Two trivializations for p are called equivalent if their union satis�es (c).
A nonempty equivalence class of this relation is called an (analytic Banach
vector) bundle (over Ω) and is denoted by 〈E pÂ Ω〉 for short. If {φ(λ)}λ∈Λ
is a representant of 〈E pÂ Ω〉, then each φ(λ) is called a trivializing map (for
〈E pÂΩ〉).
A.1.2 Remark
In the situation of De�nition A.1.1 the transition function Φ(κ,λ)

x from Bκ to Bλ

(where Uλ ∩ Uκ 6= ∅) obviously coincides with
(
Φ

(λ,κ)
x

)−1
. Thus [x 7→ Φ

(λ,κ)
x ] ∈

A(Uλ ∩ Uκ,L (Bλ, Bκ)) i� [x 7→ Φ
(κ,λ)
x ] ∈ A(Uκ ∩ Uλ,L (Bκ, Bλ)) (cf. [Cha85]

Theorems 7.17, 5.9 and 14.13).
A.1.3 Remark
The notion of equivalence introduced in De�nition A.1.1 is indeed an equiva-
lence relation: Re�exivity and symmetry are obvious. In order to show tran-
sitivity, let {φ(λ)}λ∈Λ, {ψ(κ)}κ∈K and {φ̃(λ̃)}λ̃∈Λ̃ be trivializations for a bundle
projection p : E → Ω such that {φ(λ)}λ∈Λ ∼ {ψ(λ)}λ∈Λ and {ψ(λ)}λ∈Λ ∼
{φ̃(λ̃)}λ̃∈Λ̃ where ∼ denotes equivalence. Let [φ : E|U → U × B] ∈ {φ(λ)}λ∈Λ
and [φ̃ : E|Ũ → Ũ × B̃] ∈ {φ̃(λ̃)}λ̃∈Λ̃ such that U ∩ Ũ 6= ∅ and for each

x ∈ U ∩ Ũ we denote the transition function B
(φx)−1

−→ Ex φ̃x−→ B̃ by Φx.
Let ξ ∈ U ∩ Ũ . We will show that there is O

◦⊂ U ∩ Ũ with ξ ∈ O such
that [x 7→ Φx] ∈ A(O,L (B, B̃)). Then in combination with Remark A.1.2,
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we obtain {φ(λ)}λ∈Λ ∼ {φ̃(λ̃)}λ̃∈Λ̃. Let [ψ : E|V → V × C] ∈ {ψ(κ)}κ∈K
such that ξ ∈ V . Then O := V ∩ U ∩ Ũ ◦⊂ U ∩ Ũ and ξ ∈ O. For each
x ∈ O Φx can be written as B

(φx)−1

// Ex ψx //

Id
66C

(ψx)−1

// Ex φ̃x // B̃ as a �product� of

[x 7→ ψx ◦ (φx)
−1] ∈ A(O,L (B,C)) and [x 7→ φ̃x ◦ (ψx)

−1] ∈ A(O,L (C, B̃))
and thus by Fact 1.5.10 [x 7→ Φx] ∈ A(O,L (B, B̃)).
A.1.4 Remark
In the situation of De�nition A.1.1 condition (b) is equivalent to the condition
(b') φ(λ) induces on each �ber Ex (x ∈ Uλ) a linear map φ(λ)

x : Ex → Bλ, i. e.
the map

φ(λ)
x : Ex

(φ(λ))|Ex−→ {x} ×Bλ

∼=−→ Bλ

(where ∼= again denotes the natural identi�cation) is linear
since φ is homeomorphic and thus the restrictions (φ(λ))|Ex

: Ex → {x} × Bλ

are continuous and bijective.

A.1.5 Proposition (On the Notation 〈E pÂΩ〉)
Let {Eλ}λ∈Λ, {Uλ}λ∈Λ be families of topological spaces, {Bλ}λ∈Λ a family of
Banach spaces and {φ(λ) : Eλ → Uλ × Bλ}λ∈Λ a family of homeomorphisms
such that {φ(λ)}λ∈Λ is a representant of a bundle 〈E pÂΩ〉.
Then the topological spaces E and Ω and the map p : E → Ω can be recovered,
i. e. they are uniquely determined. Furthermore, for each x ∈ Ω, the Banach
space structure of Ex can be recovered up to equivalence of the norm.
Proof.
Let E , Ω, p and {Ex}x∈Ω be as in De�nition A.1.1 (such that {φ(λ)}λ∈Λ is a
trivialization for p). The topological space Ω is determined by Ω =

⋃
λ∈Λ

Uλ

and the neighborhood basises of x ∈ Uλ (which are also neighborhood basises
in Ω since Uλ is open in Ω) (see [Que01] 2.8, [Que01] 2.9 and [Que01] 2.10).
Analogously, the topological space E is determined by E =

⋃
λ∈Λ

Eλ and the
neighborhood basises of e ∈ Eλ (which are also neighborhood basises in E since
Eλ = E|Uλ

= p−1(U) is open in E). Furthermore, for each e ∈ E there exists
λ ∈ Λ such that e ∈ E|Uλ

and thus p(e) is determined by the �rst coordinate
of φ(λ)(e). Finally, for each x ∈ Ω scalar multiplication, addition and the
zero vector in Ex is uniquely determined by αe = (φ

(λ)
x )

−1(
αφ

(λ)
x e

)
, e + ẽ =
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(φ
(λ)
x )

−1(
φ

(λ)
x e+φ

(λ)
x ẽ

)
and 0 = (φ

(λ)
x )

−1
(0), resp. for α ∈ C, e, ẽ ∈ Ex and λ ∈ Λ

such that x ∈ Uλ. A complete norm on Ex is given by ‖e‖Ex
:= ‖φ(λ)

x e‖Bλ
. If ‖·‖

is another complete norm on Ex then ‖e‖ ≤ ‖(φ(λ)
x )

−1‖L (Bλ,(Ex,‖·‖))‖φ(λ)
x e‖Bλ

=

‖(φ(λ)
x )

−1‖L (Bλ,(Ex,‖·‖))‖e‖Ex
and thus by [Wer05] Korollar IV.3.5 ‖ ·‖Ex

and ‖ ·‖
are equivalent. 2

A.1.6 Remark
We will see in Example A.4.8 that the �nonuniqueness� of the Banach space
norms that occurred in Proposition A.1.5 is in some sense compatible with the
structure of bundles.

A.1.7 Remark
We refer to [Ste51] Lemma 2.8 for a criteria whether the equivalence classes of
two (not necessarily equivalent) trivializations for the same bundle projection
are isomorphic (see De�nition A.4.4) bundles.

A.1.8 Example (�The� Trivial Bundle)
Let Ω be a topological space, E a Banach space and E := Ω×B. Furthermore,
de�ne the natural projection p : E → Ω by p(x, b) := x. For each x ∈ Ω, we
endow p−1({x}) = {x} × E with a Banach space structure by identifying it
with E. It is easy to show, that norm induced topology coincides with the
one induced from the product topology. Clearly, {Id : E → Ω × E} is a
trivialization (with associated trivializing cover {Ω}). Thus its equivalence
class is a bundle. 4
A.1.9 Proposition (Re�nement of Trivialization)
Let 〈E pÂΩ〉 be a bundle and {φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ ∈ 〈E
pÂΩ〉. Further-

more, let {Vκ}κ∈K be an open cover of Ω that is �ner than {Uλ}λ∈Λ, i. e. for
all κ ∈ K there exists a λκ ∈ Λ such that Vκ ⊂ Uλκ

.
Then {φ(λκ)

|E|Vκ
}κ∈K ∈ 〈E

pÂΩ〉. In particular, if φ : E|U → U ×B is a trivializing
map, then the restriction φ|V to any open set V

◦⊂ U is one, too.
Proof.
We set ψ(κ) := φ

(λκ)
|E|Vκ

for each κ ∈ K. Since (φ(λκ))
−1

(Vκ × Bλκ
) = p−1(Vκ) =

E|Vκ
we get indeed that ψ(κ) is a homeomorphism from E|Vκ

to Vκ × Bλκ
.

Clearly, conditions (a) and (b) of De�nition A.1.1 hold. Finally, if (Wi, χ
(i)) ∈

{(Vκ, ψ(κ))}κ∈K ∪ {(Uλ, φ(λ))}λ∈Λ for each i = 1, 2 with W := W1 ∩W2 6= ∅
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then, by de�nition, there exist λ1,2 ∈ Λ such that χ(i) = φ
(λi)
|E|Wi

and W ⊂
Uλ1

∩ Uλ2
6= ∅. Thus the map W 3 x 7→ χ

(2)
x ◦ (χ

(1)
x )

−1 ∈ L (Bλ1
, Bλ2

) is
analytic since it coincides with restriction of the analytic map Uλ1

∩Uλ2
3 x 7→

φ
(λ2)
x ◦ (φ

(λ1)
x )

−1 ∈ L (Bλ1
, Bλ2

) to W . Therefore the transition functions of
{ψ(κ)}κ∈K alone and joined with {φ(λ)}λ∈Λ ful�ll condition A.1.1 (c). 2

A.1.10 Proposition (Common Re�nement)
Let 〈E pÂΩ〉 and 〈F qÂΩ〉 be bundles over the same base space Ω.
Then there are representants {φ(ϑ)}ϑ∈Θ and {ψ(ϑ)}ϑ∈Θ of 〈E pÂΩ〉 and 〈F qÂΩ〉,
resp. with the same associated trivializing cover {Wϑ}ϑ∈Θ of Ω such that for
each ϑ ∈ Θ Wϑ is connected.
Proof.
Let {φ(λ)}λ∈Λ and {ψ(κ)}κ∈K be representants with associated trivializing cover
{Uλ}λ∈Λ and {Vκ}κ∈K for 〈E pÂ Ω〉 and 〈F qÂ Ω〉, resp.. {Uλ ∩ Vκ}(λ,κ)∈Λ×K
is an open cover that is �ner than both {Uλ}λ∈Λ and {Vκ}κ∈K . Thus, by
Proposition A.1.9, {φ(λ)

|Uλ∩Vκ
}(λ,κ)∈Λ×K and {ψ(κ)

|Uλ∩Vκ
}(λ,κ)∈Λ×K are trivializations

for 〈E pÂΩ〉 and 〈F qÂΩ〉, resp.. Furthermore, since Ω is locally connected1
by Proposition A.1.9 we can also assume w. l. o. g. that for each ϑ ∈ Θ Wϑ is
connected. 2

A.1.11 Proposition (Exchange of the Banach Space Structure on Bλ)
Let {φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ be a trivialization for a bundle projection
p : E → Ω. Furthermore, let ιλ : Bλ → B̃λ be an isomorphism (of Banach
spaces) for every λ ∈ Λ and set iλ := (IdUλ

, ιλ) : Uλ ×Bλ → Uλ × B̃λ.
Then {iλ ◦φ(λ) : E|Uλ

→ Uλ× B̃λ}λ∈Λ is a trivialization for p, that is equivalent
to {φ(λ)}λ∈Λ.
Proof.
Clearly, iλ and thus iλ ◦ φ(λ) are homeomorphic. Condition (a) of De�ni-
tion A.1.1 obviously holds. Furthermore, for every λ ∈ Λ and x ∈ Uλ the
induced isomorphism (iλ ◦ φ(λ))x is given by Ex φ

(λ)
x−→ Bλ

ιλ−→ B̃λ and thus is
isomorphic. Therefore, condition A.1.1 (b) holds and for all λ, κ ∈ Λ with
x ∈ Uλ ∩Uκ 6= ∅ the transition function is given by (ικ ◦ φ(κ)

x ) ◦ (ιλ ◦ φ(λ)
x )

−1
=

ικ ◦
(
φ

(κ)
x ◦ (φ

(λ)
x )

−1) ◦ (ιλ)
−1 and thus by Fact 1.5.10 is analytic. We con-

1Cf. [Que01] De�nition 4.16.
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clude, that condition A.1.1 (c) holds and that {iλ ◦ φ(λ)}λ∈Λ is a trivialization
for p. It is equivalent to {φ(λ)}λ∈Λ since analogously to the previous argu-
ment, all additional transition functions that arise in their union have the form(
φ

(κ)
x ◦ (φ

(λ)
x )

−1) ◦ (ιλ)
−1 or ικ ◦

(
φ

(κ)
x ◦ (φ

(λ)
x )

−1)
and are therefore analytic. 2

A.1.12 Construction (Exchange of the Banach Space Structure on Ex)
Let 〈E pÂΩ〉 be a bundle. Furthermore, let ιx : Ex → Ẽx be an isomorphism
(of Banach spaces) for every x ∈ Ω.
We set Ẽ :=

⋃
x∈Ω

{x} × Ẽx and de�ne i : E → Ẽ by i(e) := (p(e), ιp(e)(e)) for

each e ∈ E . Clearly, i is bijective. We endow Ẽ with the �nal topology w. r. t.
i, i. e. O ⊂ Ẽ is open i� i−1(O) is open in E (see [Que01] Satz 3.16). Then i is
a homeomorphism.
Denote by p̃ : Ẽ → Ω the natural projection p̃(x, ẽ) := x. Clearly, p̃ ◦ i = p

and thus p̃ is surjective and continuous.
Furthermore, for each x ∈ Ω we equip Ẽx = p̃−1({x}) = i(p−1({x})) = i(Ex) =
{x}× Ẽx with a Banach space structure by the natural identi�cation with Ẽx.
Then its topology coincides with the induced topology from Ẽ : If õ := {x} ×
õx

◦⊂ {x} × Ẽx is open in the Banach space norm topology, then ι−1
x (õx)

◦⊂ Ex
is open (in the Banach space norm topology). Thus there exists O

◦⊂ E such
that ι−1

x (õx) = Ex ∩ O. Setting Õ := i(O)
◦⊂ Ẽ we obtain õ = i(ι−1

x (õx)) =
i(Ex∩O) = i(Ex)∩ i(O) = ({x}× Ẽx)∩ Õ and thus õ is open in in the induced
topology. Conversely, if we assume that ∅ 6= Õ

◦⊂ Ẽ , then i−1(Õ)
◦⊂ E and

o := i−1(Õ)∩Ex
◦⊂ Ex. Therefore, Õ∩ ({x}× Ẽx) = i

(
i−1

(
Õ∩ ({x}× Ẽx)

))
=

{x}× ιx
(
i−1

(
Õ∩ ({x}× Ẽx)

))
= {x}× ιx

(
i−1(Õ)∩Ex

)
= {x}× ιx(o) is open

in the Banach space norm topology.
Clearly, for all x ∈ Ω the restriction i|Ex

is given by i|Ex
: Ex ιx−→ Ẽx

∼=−→
{x} × Ex

=−→ Ẽx and therefore is an isomorphism from Ex to Ẽx.
Next, for a representant {φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ of 〈E pÂΩ〉 de�ne φ̃(λ) :=

φ(λ) ◦ i−1 for each λ ∈ Λ. Then {φ̃(λ)}λ∈Λ is a trivialization for p̃: Since
i−1 : E|Uλ

→ Ẽ|Uλ
is homeomorphic, φ̃(λ) : Ẽ|Uλ

→ Uλ×Bλ is a homeomorphism.
By construction, condition (a) of De�nition A.1.1 holds. Furthermore for each
λ ∈ Λ and x ∈ Uλ, φ̃(λ)

x is given by Ẽx
(i|Ex)−1

−→ Ex φ
(λ)
x−→ Bλ and thus is an

isomorphism. Therefore, condition (b) holds. Finally, since for all λ, κ ∈ Λ
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with x ∈ Uλ ∩ Uκ 6= ∅ the transition function is given by φ̃(κ)
x ◦ (φ̃

(λ)
x )

−1
=

φ
(κ)
x ◦ i−1 ◦ (φ

(λ)
x ◦ i−1)

−1
= φ

(κ)
x ◦ (φ

(λ)
x )

−1
and thus is analytic, condition (c)

holds.
Therefore the equivalence class 〈Ẽ p̃ÂΩ〉 of {φ̃(λ)}λ∈Λ is a bundle.
For each ξ ∈ Ω we choose λ ∈ Λ such that ξ ∈ Uλ. Then the map Ix :

Bλ
(φ(λ)

x )
−1

−→ Ex
i|Ex−→ Ẽx φ̃

(λ)
x−→ Bλ coincides with the �constant� IdBλ

and thus is
analytically depending on x ∈ Uλ. We will later say (see De�nition A.4.4 and
Proposition A.4.5 (b)): �The bundles 〈E pÂΩ〉 and 〈Ẽ p̃ÂΩ〉 are isomorphic�.

4
A.1.13 Proposition (Isomorphism of Fibers)
Let 〈E pÂΩ〉 be a bundle.
Then on every connected component C of Ω, all �bers Ex for all x ∈ C are
isomorphic (as Banach spaces).
If, in particular, the base space Ω is connected, then all �bers Ex for all x ∈ Ω
are isomorphic (as Banach spaces).
Proof.
Let C be a connected component of Ω and {φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ a
representant of 〈E pÂ Ω〉. Furthermore, let x, y ∈ C. Since C is connected
there exists λ1, . . . , λn ∈ Λ such that x ∈ Uλ1

, y ∈ Uλn
and Uλi

∩ Uλj
6= ∅ for

all |i − j| ≤ 1 (see e. g. [Que01] Lemma 4.8). Thus Bλi
∼= Eξ ∼= Bλj

for some
ξ ∈ Uλi

∩Uλj
and all |i− j| ≤ 1. Therefore Ex ∼= Bλ1

∼= Bλ2
∼= · · · ∼= Bλn

∼= Ey.
2

A.1.14 De�nition
Let 〈E pÂΩ〉 be a bundle and E a Banach space.
We say 〈E pÂ Ω〉 is a bundle with �ber E if all �bers Ex for all x ∈ Ω are
isomorphic (as Banach spaces) to E.

A.2 Sections

Throughout this section let 〈E pÂΩ〉 be a bundle. We denote the Banach space
structure on the �bers by (Ex,+x : Ex × Ex → Ex, ·x : C× Ex → Ex, ‖ · ‖x) for
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each x ∈ Ω. Furthermore, let ∅ 6= O
◦⊂ Ω.

A.2.1 De�nition (Section)
A function s : O → E is called (analytic) section (of 〈E pÂ Ω〉) (over O) if
p ◦ s = IdO and for every ξ ∈ O there is a trivializing map φ : E|U → U × B

for 〈E pÂΩ〉 such that ξ ∈ U and2
[
x 7→ φx

(
s(x)

)] ∈ A(U ∩O,B). We denote
the set of all sections of 〈E pÂΩ〉 over O by Γ (O, 〈E pÂΩ〉).

Throughout the rest of this section we set Γ := Γ (O, 〈E pÂΩ〉).
A.2.2 Remark
Let ∅ 6= o

◦⊂ O.
Then s ∈ Γ (O, 〈E pÂΩ〉)) obviously implies s|o ∈ Γ (o, 〈E pÂΩ〉)).
A.2.3 Proposition
Let [s : O → E ] ∈ Γ .
Then s is continuous.
Proof.
Let ξ ∈ O. Furthermore, let φ : E|U → U×B be a trivializing map for 〈E pÂΩ〉
such that ξ ∈ U and

[
x 7→ φx

(
s(x)

)] ∈ A(U∩O,B). Thus by Fact 1.5.1
[
x 7→(

x, φx
(
s(x)

))] ∈ C(U∩O, (U∩O)×B). Therefore
[
x 7→ φ−1

(
x, φx

(
s(x)

))] ∈
C(U ∩ O, EU). On the other hand

(
x, φx

(
s(x)

))
=

(
p(s(x)), φx

(
s(x)

))
=

φ
(
s(x)

)
and thus φ−1

(
φ
(
s(x)

))
= s(x) for all x ∈ U ∩ O. This yields that s

is continuous in ξ and therefore continuous on O.

A.2.4 Proposition
In the situation of De�nition A.2.1, s ∈ Γ i� p◦s = IdO and

[
x 7→ ψx

(
s(x)

)] ∈
A(V ∩O,C) for every trivializing map ψ : E|V → V × C for 〈E pÂΩ〉.
Proof.
The direction �⇐=� is clear. In order to show �=⇒�, let ξ ∈ V ∩ O. Then
there is a trivializing map φ : E|U → U × B for 〈E pÂΩ〉 such that ξ ∈ U and[
x 7→ φx

(
s(x)

)] ∈ A(U ∩ O,B). Then for each x ∈ U ∩ V ∩ O ψx
(
s(x)

)
=(

ψx ◦ (φx)
−1 ◦φx

)(
s(x)

)
=

(
ψx ◦ (φx)

−1)(φx
(
s(x)

))
. Since [x 7→ ψx ◦ (φx)

−1] ∈
A(U ∩ V ∩ O,L (B,C) by de�nition, this yields

[
x 7→ ψx

(
s(x)

)] ∈ A(U ∩
V ∩ O,C) (cf. [Cha85] Example 3.10, Exercise 5D and Theorem 14.13). In

2We note that x 7→ φx

(
s(x)

)
is well-de�ned since s(x) ∈ Ex for all x ∈ O.
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particular x 7→ ψx
(
s(x)

)
is analytic in the point ξ and thus analytic on V ∩O.

2

A.2.5 De�nition and Proposition (Vector Space Structure)
For all s, s̃ ∈ Γ , α ∈ C and x ∈ Ω we de�ne (α · s)(x) := (αs)(x) := α ·x s(x)
and (s+ s̃)(x) := s(x) +x s̃(x) for all x ∈ Ω.
Then α · s, s+ s̃ ∈ Γ and (Γ,+, ·) is a vector space.
Proof.
It is obvious that (Γ,+, ·) is a vector space once we have shown that α·s, s+s̃ ∈
Γ for all s, s̃ ∈ Γ and α ∈ C. Let ψ : E|U → U × B be a trivializing map
for 〈E pÂΩ〉. Then by Proposition A.2.4

[
x 7→ ψx

(
s(x)

)]
,
[
x 7→ ψx

(
s̃(x)

)] ∈
A(U ∩ O,B). In addition, since ψx is an Banach space isomorphism, ψx

(
(α ·

s)(x)
)

= ψx
(
α ·x s(x)

)
= αψx

(
s(x)

)
and ψx

(
(s+ s̃)(x)

)
= ψx

(
s(x)+x s̃(x)

)
=

ψx
(
s(x)

)
+ ψx

(
s̃(x)

)
for all x ∈ U ∩ O. Thus by Fact 1.5.6

[
x 7→ ψx

(
(α ·

s)(x)
)]
,
[
x 7→ ψx

(
(s + s̃)(x)

)] ∈ A(U ∩ O,B) and then by Proposition A.2.4
α · s, s+ s̃ ∈ Γ . 2

A.2.6 De�nition
We endow Γ with the compact-open topology, i. e. the topology generated by
the subbasis of all sets of the form BΓ (K,O) := { s ∈ Γ : s(K) ⊂ O } where
K ⊂⊂ O and O ◦⊂ E .
A.2.7 Proposition (Fréchet Space Structure)
Let {φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ ∈ 〈E
pÂΩ〉 and K := { (λ,K) : λ ∈ Λ, ∅ 6=

K ⊂⊂ Uλ ∩O }.
For each (λ,K) ∈ K we de�ne p(λ,K) : Γ → R by

p(λ,K)(s) := sup
x∈K

∥∥φ(λ)
x

(
s(x)

)∥∥
Bλ
.

Then p(λ,K) is a seminorm. The topology induced by the family of seminorms3
{pκ}κ∈K coincides with the compact-open topology on Γ .
Γ is a (complex) Fréchet space.
Proof.
Since O is (a metric space and thus) paracompact and separable, O is a Lindelöf
space (see [Dug70] De�nition VIII.6.4 and the theorem in [Dug70] VIII.7.4).
Therefore there exists a countable subset Λcnt ⊂ Λ such that {Uλ}λ∈Λcnt covers

3Cf. [Jän05] Section 2.5.
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O. For each λ ∈ Λcnt, analogously Uλ is a locally compact Lindelöf space
and therefore countable at in�nity, i. e. there is a countable family {K(λ)

n }n∈N
such that for every K ⊂⊂ Uλ there is n ∈ N with K ⊂ K

(λ)
n . Then Kcnt :=⋃

λ∈Λcnt

({λ} × {K(λ)
n }n∈N

)
is a countable subset of K.

It is clear that pκ is a seminorm for each κ ∈ K.
We denote the topology induced by the family of seminorms4 {pκ}κ∈K and
{pκ}κ∈Kcnt by τ and τcnt, resp.. Furthermore, for all κ ∈ K, ε > 0 and s ∈ Γ

we denote by Bκ
ε (s) := {σ ∈ Γ : pκ(s − σ) < ε } the open balls of τ (and

particularly of τcnt if κ ∈ Kcnt).
Let K ⊂⊂ O and O ◦⊂ E . We will now show that BΓ (K,O) ∈ τcnt. Therefore,
w. l. o. g. we can assume that there exists s ∈ BΓ (K,O) (and thus K ⊂ p(O))
and that there exists x ∈ K. Then there is λx ∈ Λcnt with x ∈ Uλx

. Then(
x, φ

(λx)
x

(
s(x)

))
= φ(λx)

(
s(x)

) ∈ φ(λx)(E|Uλx
∩O)

◦⊂ Uλx
×Bλx

. Thus there are
ox

◦⊂ Uλx
and εx > 0 such that

(
x, φ

(λx)
x

(
s(x)

)) ∈ ox × b
(x)
εx

◦⊂ φ(λx)(E|Uλx
∩ O),

where b(x)ε := BBλx

(
φ

(λx)
x

(
s(x)

)
, ε

)
for each ε > 0. By continuity of φ(x0) ◦

s|Uλx∩O we can additionally choose ox �small enough� such that ox ⊂ O and
φ

(λx)
ξ

(
s(ξ)

) ∈ b(x)εx/2
for all ξ ∈ ox.

{ox}x∈K is an open cover of K. By compactness of K and, since K is a metric
and thus normal space, by [Que01] Satz 7.12 and [Que01] Satz 8.6 there is a
�nite set K�n ⊂ K and kx ⊂⊂ ox for each x ∈ K�n such that {kx}x∈K�n covers
K. For each x ∈ K�n there is Kx ⊂⊂ Uλx

such that (λx, Kx) ∈ Kcnt and kx ⊂
Kx. We set ε := 1/2 min{ εx : x ∈ K�n } > 0 and Bs :=

⋂
x∈K�n

B
(λx,Kx)
ε (s).

We now show that Bs ⊂ BΓ (K,O): Let σ ∈ Bs and ξ ∈ K. Then there is
x ∈ K�n such that ξ ∈ kx. Since σ ∈ B

(λx,Kx)
ε (s) we obtain

∥∥φ(λx)
ξ

(
σ(ξ)

) −
φ

(λx)
ξ

(
s(ξ)

)∥∥
Bλx

=
∥∥φ(λx)

ξ

(
(σ − s)(ξ)

)∥∥
Bλx

< ε ≤ εx/2. Also, ξ ∈ ox and
thus φ(λx)

ξ

(
s(ξ)

) ∈ b
(x)
εx/2

. Therefore
∥∥φ(λx)

ξ

(
s(ξ)

) − φ
(λx)
x

(
s(x)

)‖Bλx
< εx/2.

Thus
∥∥φ(λx)

ξ

(
σ(ξ)

)− φ
(λx)
x

(
s(x)

)‖Bλx
< εx, or reformulated, φ(λx)

ξ

(
σ(ξ)

) ∈ b(x)εx .
Therefore φ(λx)

(
σ(ξ)

)
=

(
ξ, φ

(λx)
ξ

(
σ(ξ)

)) ∈ φ(λx)(E|Uλx
∩O). This yields σ(ξ) ∈

O and thus σ ∈ BΓ (K,O).
Since trivially s ∈ Bs and Bs is open in τcnt, we conclude that BΓ (K,O)
consists only of interior points w. r. t. τcnt and therefore is open in τcnt. Thus

4Cf. [Jän05] Section 2.5.
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the compact-open topology is coarser than τcnt.
Of course, τcnt is coarser than τ .
Finally, let (λ,K) ∈ K, ε > 0 and s ∈ Γ . We set o :=

⋃
ξ∈Uλ∩O

({ξ} ×
BBλ

(
φ

(λ)
ξ

(
s(ξ)

)
, ε

))
. We note that Uλ × Bλ 3 (ξ, β) 7→ (

ξ, β + φ
(λ)
ξ

(
s(ξ)

)) ∈
Uλ×Bλ is a homeomorphism and o is the image of (Uλ∩O)×BBλ

(0, ε)
◦⊂ Uλ×

Bλ under that homeomorphism. Therefore o
◦⊂ Uλ×Bλ. Then (φ(λ))

−1
(o)

◦⊂ E
and BΓ (K, (φ(λ))

−1
(o)) = {σ ∈ Γ : σ(ξ) ∈ (φ(λ))

−1
(o) for all ξ ∈ K } =

{σ ∈ Γ : φ(λ)
(
σ(ξ)

) ∈ o for all ξ ∈ K } = {σ ∈ Γ : φ
(λ)
ξ

(
σ(ξ)

) ∈
BBλ

(
φ

(λ)
ξ

(
s(ξ)

)
, ε

)
for all ξ ∈ K } = {σ ∈ Γ :

∥∥φ(λ)
ξ

(
(s − σ)(ξ)

)∥∥
Bλ

<

ε for all ξ ∈ K }. We note that {σ ∈ Γ :
∥∥φ(λ)

ξ

(
(s− σ)(ξ)

)∥∥
Bλ
< ε for all ξ ∈

K } = B
(λ,K)
ε (s) since the continuous function K 3 ξ 7→

∥∥φ(λ)
ξ

(
(s− σ)(ξ)

)∥∥
Bλ

attains its supremum on K. Therefore B(λ,K)
ε (s) = BΓ (K, (φ(λ))

−1
(o)) is open

in the compact-open topology. Thus τ is coarser than the compact-open topol-
ogy.
We conclude that τ , τcnt and the compact-open topology all coincide.
In view of τ it is clear that Γ is a Hausdor� space and in view of τcnt it then
follows that Γ is a pre-Fréchet space.
Before we show completeness we treat the special case where O belongs to the
trivializing cover:

A.2.8 Proposition
Let φ : E|U → U ×B be a trivializing map for 〈E pÂΩ〉.
Then5 s 7→ [x 7→ φx(s(x))] ∈ L (Γ (U, 〈E pÂΩ〉), A(U,B)) is an isomorphism.
Proof.
For all s ∈ Γ (U, 〈E pÂ Ω〉) we denote by T (s) := [x 7→ φx(s(x))]; then by
Proposition A.2.4 T (s) ∈ A(U,B) and clearly T : Γ (U, 〈E pÂΩ〉) → A(U,B)
is linear and injective. If conversely f ∈ A(U,B), then obviously sf := [U 3
x 7→ (φx)

−1(s(x))] ∈ Γ (U, 〈E pÂΩ〉) and T (sf) = f . Thus T is surjective. The
open balls in Γ (U, 〈E pÂ Ω〉) and A(U,B) are given by BK

ε (s) := {σ ∈ Γ :

5We have introduced the symbol L (. . . ) only for complete spaces, but it is clear from the
statement itself that Γ (U, 〈E pÂΩ〉) is indeed complete.
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sup
x∈K

∥∥φx
(
(s − σ)(x)

)∥∥
B
< ε } and B̃K

ε (f) := { f̃ ∈ A(U,B) : supx∈K ‖(f −

f̃)(x)‖B < ε }, resp., where s ∈ Γ (U, 〈E pÂΩ〉), f ∈ A(U,B), ∅ 6= K ⊂⊂ U

and ε > 0. Then T (BK
ε (s)) = B̃K

ε (Ts) for all s ∈ Γ (U, 〈E pÂΩ〉), ∅ 6= K ⊂⊂ U

and ε > 0. Thus T is continuous and open. 2

Proof of Proposition A.2.7 (Continuation).
It remains to show completeness.
Let (sn)n∈N ⊂ Γ be a Cauchy sequence6. Then for each x ∈ O (sn(x))n∈N is
a Cauchy sequence in Ex and thus converge to some s(x) ∈ Ex. We will now
show that the so-de�ned function s : O → E is a section.
p ◦ s = IdO holds by construction.
Let ξ ∈ O. Then there is λ ∈ Λ such that ξ ∈ Uλ (and thus Uλ ∩ O 6=
∅). For all n ∈ N we set f (λ)

n := Tλ((sn)|Uλ∩O) ∈ A(Uλ ∩ O,Bλ), where
Tλ is the isomorphism given by Proposition A.2.8 w. r. t. the trivializing map
φ(λ) : E|Uλ∩O → (Uλ ∩ O) × Bλ for 〈E pÂ Ω〉. Proposition A.2.8 yields that
(f

(λ)
n )n∈N is a Cauchy sequence in A(Uλ ∩ O,Bλ). Thus there exists f (λ) ∈

A(Uλ ∩ O,Bλ) such that f (λ)
n

n→∞−→ f (λ) In particular f (λ)
n (x)

n→∞−→ f (λ)(x)

in Bλ for all x ∈ Uλ ∩ O. On the other, since φ(λ)
x ∈ L (Ex, Bλ) for each

x ∈ Uλ ∩ O, f (λ)
n (x) = φ

(λ)
x

(
sn(x)

) n→∞−→ φ
(λ)
x

(
s(x)

)
in Bλ for all x ∈ Uλ ∩ O.

Thus Uλ ∩O 3 x 7→ φ
(λ)
x

(
s(x)

)
coincides with f (λ) ∈ A(Uλ ∩O,Bλ).

Therefore s is a section.
Let N be a neighborhood of s in Γ . Then there are ε > 0, l ∈ N and
(λi, Ki) ∈ K for each i = 1, . . . , l such that

⋂l
i=1B

(λi,Ki)
ε (s) ⊂ N . Then for

each i = 1, . . . , l there is mi ∈ N such that f (λi)
n ∈ B̃Kλi

ε (f (λi)) for all n ≥ mi,
where BKλi

ε is de�ned as in the proof of Proposition A.2.8. Since Tλi
(s|Uλi

∩O) =

f (λi), from the proof of Proposition A.2.8 we then obtain sn ∈ B
(λi,Ki)
ε (s) for

all n ≥ mi for each i = 1, . . . , l. Thus sn ∈ N for all n ≥ max{m1, . . . ,ml}.
Hence sn n→∞−→

Γ
s. 2

A.2.9 Remark
Let ∅ 6= o

◦⊂ O.
Then obviously [s 7→ s|o] ∈ L (Γ, Γ (o, 〈E pÂΩ〉)).

6i. e. for every neighborhood N of 0 ∈ Γ there is n0 ∈ N such that sn−sm ∈ N for all n,m ≥ n0
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A.2.10 Proposition (Identity Theorem for Analytic Sections)
Assume that O is connected and let s, s̃ ∈ Γ . If there is ∅ 6= o

◦⊂ O such that
s|o = s̃|o then s = s̃ (on O).
Proof.
By Proposition A.1.10 we can assume w. l. o. g., that Uλ is connected for each
λ ∈ Λ. Let x ∈ O. It su�ces to show that s(x) = s̃(x). Let y ∈ o.
Since O is connected there exists λ1, . . . , λn ∈ Λ such that y ∈ Uλ1

, x ∈
Uλn

and O ∩ Uλi
∩ Uλj

6= ∅ for all |i − j| ≤ 1 (see e. g. [Que01] Lemma
4.8). By Proposition A.2.4

[
x 7→ φ

(λ1)
x

(
s(x)

)]
,
[
x 7→ φ

(λ1)
x

(
s̃(x)

)] ∈ A(O ∩
Uλ1

, Bλ1
) and

[
x 7→ φ

(λ1)
x

(
s(x)

)]
|o∩Uλ1

=
[
x 7→ φ

(λ1)
x

(
s̃(x)

)]
|o∩Uλ1

. Therefore
by the identity theorem for analytic functions (see [Cha85] Theorem 12.9)[
x 7→ φ

(λ1)
x

(
s(x)

)]
|O∩Uλ1

=
[
x 7→ φ

(λ1)
x

(
s̃(x)

)]
|O∩Uλ1

. Since φ(λ1)
x is bijective for

each x ∈ Uλ1
we obtain s|O∩Uλ1

= s̃|O∩Uλ1
. Similarly

[
x 7→ φ

(λ2)
x

(
s(x)

)]
,
[
x 7→

φ
(λ2)
x

(
s̃(x)

)] ∈ A(O ∩ Uλ2
, Bλ2

) and
[
x 7→ φ

(λ2)
x

(
s(x)

)]
|O∩Uλ1

∩Uλ2

=
[
x 7→

φ
(λ2)
x

(
s̃(x)

)]
|O∩Uλ1

∩Uλ2

and thus s|O∩Uλ2
= s̃|O∩Uλ2

. Analogously, we obtain
s|O∩Uλi

= s̃|O∩Uλi
for each i = 3, . . . , n. Thus s(x) = s̃(x). 2

A.3 Restrictions

A.3.1 Construction and De�nition (Restriction)
Let 〈E pÂΩ〉 be a bundle and ∅ 6= O

◦⊂ Ω. Furthermore, let {φ(λ)}λ∈Λ be a
representant of 〈E pÂΩ〉.
We set Λ|O := {λ ∈ Λ : O ∩ Uλ 6= ∅ } and for each λ ∈ Λ|O we denote by φ(λ)

|O
the restriction of φ(λ) to E|O∩Uλ

.
Then clearly, {O∩Uλ}λ∈Λ|O is an open cover of O, φ(λ)

|O : E|O∩Uλ
→ (O∩Uλ)×Bλ

is a homeomorphism for each λ ∈ Λ|O and {φ(λ)
|O }λ∈Λ|O is a trivialization for

p|O.

Thus equivalence class of {φ(λ)
|O }λ∈Λ|O is a bundle and is denoted by 〈E pÂΩ〉|O.

It's called the restriction (of the bundle 〈E pÂΩ〉).
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A.3.2 Remark
Let 〈E pÂΩ〉 be a bundle and ∅ 6= o

◦⊂ O
◦⊂ Ω.

Then obviously Γ (o, 〈E pÂΩ〉)) coincides with Γ (o, 〈E pÂΩ〉|O)).

A.4 Homomorphisms
A.4.1 De�nition (Homomorphism)
Let 〈E pÂΩ〉 and 〈F qÂΩ〉 be bundles (over the same base space Ω).
A function A : E → F is called homomorphism (of bundles), if
(a) the diagram

E
p

))RRRRRRRRRRRRRRRRRRR

A

²²

Ω

F
q

55lllllllllllllllllll

commutes, i. e. q ◦ A = p and
(b) for all x ∈ Ω the induced operator on the �bers Ax := A|Ex

is linear and
bounded, i. e. Ax ∈ L (Ex,Fx) and

(c) for all ξ ∈ Ω there are trivializing maps φ : E|U → U × B for 〈E pÂ Ω〉
and ψ : F|V → V × C for 〈F qÂΩ〉, resp., with ξ ∈ U ⊂ V such that the
trivialized induced map

Ax : B
(φx)−1

−→ Ex Ax−→ Fx ψx−→ C

is analytically depending on x ∈ U , i. e. [x 7→ Ax] ∈ A(U,L (B,C))

holds. By abuse of notation we write A : 〈E pÂΩ〉 → 〈F qÂΩ〉. We say the
homomorphism A : 〈E pÂ Ω〉 → 〈F qÂ Ω〉 is injective or bijective if the map
A : E → F is injective or bijective, resp..
A.4.2 Proposition
In the situation of De�nition A.4.1, the function A : E → F is continuous.
Proof.
Let e0 ∈ E and let φ : E|U → U × B and ψ : F|V → V × C be trivial-
izing maps according to (c) of De�nition A.4.1 with ξ := p(e0). We note
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that it su�ces to show that A|E|U is continuous. For all e ∈ E|U A(e) =

ψ−1
(
p(e), ψp(e)Ap(e)(φp(e))

−1φp(e)e
)

= ψ−1
(
p(e),Ap(e)φp(e)e

)
. By Fact 1.5.1

E|U 3 e 7→ Ap(e) ∈ L (B,C) is continuous and by [Que01] Satz 3.10 E|U 3
e 7→ φp(e)e ∈ B is continuous. Therefore E|U 3 e 7→ Ap(e)φp(e)e ∈ B is contin-
uous. This yields [e 7→ A(e)] ∈ C(E|U ,FV ) and thus [e 7→ A(e)] ∈ C(E|U ,F).

2

A.4.3 Proposition
In the situation of De�nition A.4.1, condition (c) is equivalent to each of the
following conditions.
(c1) There are {φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ ∈ 〈E pÂ Ω〉 and {ψ(κ) : F|Vκ
→

Vκ × Cκ}κ∈K ∈ 〈F
qÂΩ〉, such that the trivialized induced maps

A(λ,κ)
x : Bλ

(φ(λ)
x )

−1

−→ Ex Ax−→ Fx ψ
(κ)
x−→ Cκ

are analytically depending on x ∈ Uλ ∩ Vκ whenever Uλ ∩ Vκ 6= ∅, i. e.
[x 7→ A(λ,κ)

x ] ∈ A(Uλ ∩ Vκ,L (Bλ, Cκ)).
(c2) There are {φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ ∈ 〈E pÂ Ω〉 and {ψ(λ) : F|Uλ
→

Uλ × Cλ}λ∈Λ ∈ 〈F qÂ Ω〉 (with the same associated trivializing cover
{Uλ}λ∈Λ of Ω) such that the trivialized induced maps

A(λ)
x : Bλ

(φ(λ)
x )

−1

−→ Ex Ax−→ Fx ψ
(λ)
x−→ Cλ

are analytically depending on x ∈ Uλ, i. e. [x 7→ A(λ)
x ] ∈ A(Uλ,L (Bλ, Cλ))

for all λ ∈ Λ.
(c3) For all {φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ ∈ 〈E pÂ Ω〉 and {ψ(κ) : F|Vκ
→

Vκ × Cκ}κ∈K ∈ 〈F
qÂΩ〉 the trivialized induced maps

A(λ,κ)
x : Bλ

(φ(λ)
x )

−1

−→ Ex Ax−→ Fx ψ
(κ)
x−→ Cκ

are analytically depending on x ∈ Uλ ∩ Vκ whenever Uλ ∩ Vκ 6= ∅, i. e.
[x 7→ A(λ,κ)

x ] ∈ A(Uλ ∩ Vκ,L (Bλ, Cκ)).
Proof.
�(c)⇒(c1)�: For each ξ ∈ Ω we denote by φ(ξ) : E|Uξ

→ Uξ × Bξ and ψ(ξ) :

F|Vξ
→ Vξ×Cξ the trivializing maps given by (c). We will show that {φ(ξ)}ξ∈Ω
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and {ψ(ξ)}ξ∈Ω are trivializations for which (c1) holds: Clearly, {Uξ}ξ∈Ω is an
open cover of Ω and for all ξ ∈ Ω φ(ξ) is a homeomorphism for which conditions
(a) and (b) of De�nition A.1.1 hold. Finally, if Uξ ∩ Uζ 6= ∅ for some ξ, ζ ∈ Ω
then the transition map Uξ∩Uζ 3 x 7→ Φ

(ξ,ζ)
x ∈ L (Bξ, Bζ) ful�lls condition (c)

of De�nition A.1.1, since by de�nition trivializing maps are part of equivalent
trivializing covers. Thus, {ψ(ξ)}ξ∈Ω is a representant of 〈E pÂΩ〉. Analogously,
{ψ(ξ)}ξ∈Ω is a representant of 〈F qÂ Ω〉. Now, let Uη ∩ Vζ 6= ∅ for some
η, ζ ∈ Ω. In order to prove (c1) it su�ces to show that [x 7→ A(η,ζ)

x ] ∈
A(Uη∩Vζ ,L (Bη, Cζ)). To this end, let ξ ∈ Uη∩Vζ . We note that it su�ces to
show that there exist some W

◦⊂ Uη ∩ Vζ with ξ ∈ W such that [x 7→ A(η,ζ)
x ] ∈

A(W,L (Bη, Cζ)). Let W := Uη ∩Vζ ∩Uξ ∩Vξ. Clearly, ξ ∈ W
◦⊂ Uη ∩Vζ and

for each x ∈ W the map Bη
(φ(η)

x )
−1

−→ Ex Ax−→ Fx ψ
(ζ)
x−→ Cζ can be written as

Bη
(φ(η)

x )
−1

// Ex φ
(ξ)
x //

Id
55Bξ

(φ(ξ)
x )

−1

// Ex Ax //Fx ψ
(ξ)
x //

Id
55Cξ

(ψ(ξ)
x )

−1

//Fx ψ
(ζ)
x // Cζ

or, equivalently by associativity,

Bη
(φ(η)

x )
−1

//

φ
(ξ)
x ◦(φ(η)

x )
−1

55Ex φ
(ξ)
x // Bξ

(φ(ξ)
x )

−1

//

ψ
(ξ)
x ◦Ax◦(φ(ξ)

x )
−1

44Ex Ax //Fx ψ
(ξ)
x // Cξ

(ψ(ξ)
x )

−1

//

ψ
(ζ)
x ◦(ψ(ξ)

x )
−1

55Fx ψ
(ζ)
x // Cζ

as a �product� of three operator-valued functions and thus by Fact 1.5.10 [x 7→
A(η,ζ)
x ] ∈ A(W,L (Bη, Cζ)).

�(c1)⇒(c2)�: Using the trivializations constructed in the proof of Proposi-
tion A.1.10 (c2) directly follows from the assumption.
�(c2)⇒(c3)�: We assume that {φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ and {ψ(λ) : F|Uλ
→

Uλ × Cλ}λ∈Λ are the trivializations for 〈E pÂΩ〉 and 〈F qÂΩ〉, resp., given by
(c2). Let φ : E|U → U × B and ψ : F|V → V × C be arbitrary7 trivializing
maps for 〈E pÂΩ〉 and 〈F qÂΩ〉, resp., with U ∩V 6= ∅. We note, that it su�ces
to show [x 7→ ψx ◦ Ax ◦ (φx)

−1] ∈ A(U ∩ V,L (B,C)). In order to prove this,
again, it su�ces, that for any ξ ∈ U ∩V , there exists W

◦⊂ U ∩V with ξ ∈ W
such that [x 7→ ψx ◦Ax ◦ (φx)

−1] ∈ A(W,L (B,C)). Therefore, let ξ ∈ U ∩V .
7We remark that we don't assume φ ∈ {φ(λ)}λ∈Λ or ψ ∈ {ψ(λ)}λ∈Λ.
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There exists λ ∈ Λ such that ξ ∈ Uλ. Then W := Uλ ∩ U ∩ V
◦⊂ U ∩ V and

ξ ∈ W . Analogously to step �(c)⇒(c1)�, for each x ∈ W the map B
(φx)−1

−→
Ex Ax−→ Fx ψx−→ C can be written as

B
(φx)−1

//

φ
(λ)
x ◦(φx)−1

55Ex φ
(λ)
x // Bλ

(φ(λ)
x )

−1

//

ψ
(λ)
x ◦Ax◦(φ(λ)

x )
−1

33Ex Ax //Fx ψ
(λ)
x // Cλ

(ψ(λ)
x )

−1

//

ψx◦(ψ(λ)
x )

−1

66Fx ψx // C

and thus again by Fact 1.5.10 [x 7→ ψx ◦Ax ◦ (φx)
−1] ∈ A(W,L (B,C)). This

proves (c3).
�(c3)⇒(c)�: For each ξ ∈ Ω let φ : E|U → U × B, ψ : F|V → V × C

be trivializing maps with ξ ∈ U , ξ ∈ V (such maps obviously exit, since
every bundle has a representant by de�nition). By Proposition A.1.9 and the
assumption, φ|U∩V and ψ|U∩V are trivializing maps for which (c) holds. 2

A.4.4 De�nition (Isomorphism)
Let A : 〈E pÂΩ〉 → 〈F qÂΩ〉 be a bijective homomorphism of bundles. Further-
more, assume that A is bijective and that A−1 : F → E is a homomorphism,
too.
Then A is called an isomorphism (of bundles) and 〈E pÂΩ〉 and 〈F qÂΩ〉 are
called isomorphic.
A.4.5 Proposition
Let A : 〈E pÂΩ〉 → 〈F qÂΩ〉 be a homomorphism of bundles over Ω.
Then the following are all equivalent.
(a) A is an isomorphism.
(b) A is bijective.
(c) For each x ∈ Ω Ax is an isomorphism.
Proof.
�(a)⇒(b)� and �(b)⇒(c)� are clear. In order to show �(c)⇒(a)� we assume
that (b) holds. Clearly, bijectivity of Ax for each x ∈ Ω in combination with
condition (a) of De�nition A.4.1 yields bijectivity of A. Therefore it remains to
show that A−1 : F → E is a homomorphism. Bijectivity of A implies conditions
(a) and (b) of De�nition A.4.1 for A−1. By Proposition A.4.3 (c2) there are
{φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ ∈ 〈E pÂΩ〉 and {ψ(λ) : F|Uλ
→ Uλ × Cλ}λ∈Λ ∈

〈F qÂΩ〉 such that [x 7→ A(λ)
x ] ∈ A(Uλ,L (Bλ, Cλ)) for all λ ∈ Λ, where A(λ)

x
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denotes the trivialized induced maps of the bundle homomorphism A. Then

the trivialized induced maps associated with A−1 are given by Ã(λ)
x : Cλ

(ψ(λ)
x )

−1

−→
Fx (Ax)−1

−→ Ex φ
(λ)
x−→ Bλ and thus coincides with (A(λ)

x )−1. Hence by [Cha85]
Theorems 7.17, 5.9 and 14.13 [x 7→ Ã(λ)

x ] ∈ A(Uλ,L (Cλ, Bλ)) for all λ ∈ Λ.
Therefore Proposition A.4.3 yields condition (c) of De�nition A.4.1 for A−1.

2

A.4.6 Proposition (Compatibility w. r. t. Equivalence)
Let A : 〈E pÂΩ〉 → 〈F qÂΩ〉 be an isomorphism of bundles and let {φ(λ)}λ∈Λ
be a representant of 〈E pÂΩ〉.
Then {φ(λ) ◦ A−1}λ∈Λ is a representant of 〈F qÂΩ〉.
Proof.
For each λ ∈ Λ we denote by Uλ and Cλ the open set and the Banach space
associated with φ(λ), i. e. φ(λ) has the form φ(λ) : E|Uλ

→ Uλ×Bλ. By de�nition
of A−1 and φ(λ) for each f ∈ F|Uλ

q(f) = p(A−1f) = (ν ◦ φ(λ))(A−1f) =
ν(φ(λ) ◦ A−1)(f)), where ν is the natural projection (associated with both
{φ(λ)}λ∈Λ and {φ(λ)◦A−1}λ∈Λ), and thus condition (a) of De�nition A.1.1 holds
for φ(λ) ◦A−1. Furthermore, on each �ber Fx (where x ∈ Uλ) the map induced
by φ(λ) ◦ A−1 is given by (φ(λ) ◦ A−1)x : Fx (A−1)x−→ Ex φ

(λ)
x−→ Bλ and thus is an

isomorphism. Therefore condition (b) holds. Additionally, for each κ ∈ Λ with
Uλ∩Uκ 6= ∅ then the transition function from Bλ to Bκ w. r. t. {φ(λ) ◦A−1}λ∈Λ
is given by Bλ

(φ(λ)
x )

−1

−→ Ex ((A−1)x)−1

−→ Fx (A−1)x−→ Ex φ
(κ)
x−→ Bκ. Since ((A−1)x)

−1
= Ax

conditions (c) holds. Thus {φ(λ) ◦ A−1}λ∈Λ is a trivialization for q. Finally,
if ψ : V → V × C is trivializing map for 〈F qÂ Ω〉 with Uλ ∩ V 6= ∅ then

the transition function from Bλ to C is given by Bλ
(φ(λ)

x )
−1

−→ Ex Ax−→ Fx ψx−→ C

and thus is analytically depending on x ∈ Uλ ∩ V by Proposition A.4.3 (c3).
Together with Remark A.1.2 this yields that {φ(λ) ◦A−1}λ∈Λ is a representant
of 〈F qÂΩ〉. 2

A.4.7 Corollary
Let A : 〈E pÂΩ〉 → 〈F qÂΩ〉 be an isomorphism of bundles.
Then every representant of 〈F qÂ Ω〉 is of the form {φ(λ) ◦ A−1}λ∈Λ where
{φ(λ)}λ∈Λ is a representant of 〈E pÂΩ〉.
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Proof.
Let {ψ(λ)}λ∈Λ be a representant of 〈F qÂΩ〉. Then by Proposition A.4.6 {ψ(λ)◦
A}λ∈Λ is a representant of 〈E qÂΩ〉. The result follows with φ(λ) := ψ(λ) ◦ A
(where λ ∈ Λ). 2

A.4.8 Example
Let {φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ be a trivialization for a bundle projection
p : E → Ω. For each x ∈ Ω let ‖ · ‖x be a norm on the Banach space Ex
that is equivalent to the �original� one. Denote by Ẽ =

⋃
x∈Ω

(Ex, ‖ · ‖x) the total

space �associated� with the norms ‖ · ‖x. Then {φ(λ)}λ∈Λ is a trivialization
for p : Ẽ → Ω since obviously conditions (a), (b) and (c) of De�nition A.1.1
hold. Thus its equivalence class 〈Ẽ pÂ Ω〉 is a bundle. Then Id : E → Ẽ
is an isomorphism of bundles: Obviously, Id is bijective and condition (a) of
De�nition A.4.1 holds. Furthermore, clearly the induced operator on the �bers
Idx is linear and by equivalence of the norms Idx ∈ L (Ex, Ẽx). Thus condition
(b) holds. Finally, let x ∈ Ω and λ ∈ Λ such that x ∈ Uλ. The transition

function Ix : Bλ
(φ(λ)

x )
−1

−→ Ex Idx−→ Ẽx φ̃
(λ)
x−→ Bλ coincides with IdBλ

and thus is
analytically depending on x ∈ Uλ. Therefore condition (c) holds. 4

Spectrum and Cospectrum

A.4.9 De�nition
Let A : 〈E pÂΩ〉 → 〈F qÂΩ〉 be a homomorphism of bundles.
S(A) := {x ∈ Ω : KerAx 6= {0} } is called the spectrum (of A).
CS(A) := {x ∈ Ω : CokerAx 6= {0} } is called the cospectrum (of A).

A.5 Trivial Bundles

A.5.1 De�nition (Trivial Bundle)
A bundle, that is isomorphic to the bundle constructed in Example A.1.8, is
called trivial bundle.

A.5.2 Proposition (A Characterization of Trivial Bundles)
A bundle 〈E pÂΩ〉 is trivial i� it has a representant of the form {φ : E|Ω →
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Ω ×B}.
Proof.
By de�nition, the bundle constructed in Example A.1.8 has such a representant.
Thus Proposition A.4.6 yields the direction �=⇒�. Conversely for �⇐=�, let
{φ : E|Ω → Ω × B} be a representant of 〈E pÂΩ〉. Denote by 〈Ω × B

νÂΩ〉
the bundle constructed in Example A.1.8 (with �bers the given Banach space
B). Then φ : 〈E pÂΩ〉 → 〈Ω × B

νÂΩ〉 is an isomorphism: By de�nition, φ
is bijective and conditions (a) and (b) of De�nition A.1.1 yield conditions (a)
and (b) of De�nition A.4.1. Finally, let x ∈ Ω. Then the trivialized induced
map B

(φx)−1

−→ Ex φx−→ {x} × B
Idx−→ B (where, by abuse of notation, (φx)

−1

denotes the induced isomorphism in the sense of De�nition A.1.1 (b) and φx
denotes the induced operator in the sense of De�nition A.4.1 (b))] coincides
with IdB and thus is analytically depending on x ∈ Ω. Therefore condition (c)
of De�nition A.4.1 holds. 2

A.6 Subbundles

A.6.1 De�nition
Let 〈E pÂΩ〉 and 〈F qÂΩ〉 be bundles over the same base space Ω.
〈E pÂΩ〉 is called a subbundle (of 〈F qÂΩ〉) if
(a) E ⊂ F (and the topology of E is the induced one from F and for each

x ∈ Ω the Banach space Ex is a subspace of the Banach space Fx) and
(b) the inclusion map I : E ↪→ F is an homomorphism from 〈E pÂ Ω〉 to

〈F qÂΩ〉.
A.6.2 Remark
By Proposition A.4.3 and Proposition A.1.10, in the situation of De�nition A.6.1
condition (b) is equivalent to the following condition.
(b1) p = q|E and for all ξ ∈ Ω there are trivializing maps φ : E|U → U ×B for

〈E pÂΩ〉 and ψ : F|U → U × C for 〈F qÂΩ〉, resp., with ξ ∈ U such that
the map

Ix : B
(φx)−1

−→ Ex ↪→ Fx ψx−→ C

is analytically depending on x ∈ U , i. e. [x 7→ Ix] ∈ A(U,L (B,C)),
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where for each x ∈ U Ex ↪→ Fx denotes the embedding by inclusion as a
subspace.

We refer to Proposition A.4.3 and De�nition A.4.1 for further equivalent for-
mulations.

A.6.3 Remark
In the situation of De�nition A.6.1 Ex = Fx ∩ E for each x ∈ Ω and thus Ex is
a closed linear subspace of Fx since all Ex are complete.

A.6.4 Remark
Clearly, every bundle is a subbundle of itself.

A.6.5 Remark
Let 〈E pÂ Ω〉 be a subbundle of 〈F qÂ Ω〉 and s ∈ Γ (O, 〈E pÂ Ω〉) where
∅ 6= O

◦⊂ Ω.
For each ξ ∈ O by Proposition A.1.10 there are trivializing maps φ : E|U →
U ×B for 〈E pÂΩ〉 and ψ : F|U → U ×C for 〈F qÂΩ〉, resp., with ξ ∈ U ⊂ O.
Then by Remark A.6.2, Proposition A.2.4 and Fact 1.5.10 q ◦ s = p ◦ s = IdO
and

[
x 7→ ψx

(
s(x)

)]
=

[
x 7→ ψx(φx)

−1φx
(
s(x)

)] ∈ A(O,C). Hence, again by
Proposition A.2.4 s ∈ Γ (O, 〈F qÂΩ〉).

A.7 Induced Homomorphisms on Sections

A.7.1 Proposition and De�nition
Let A : 〈E pÂΩ〉 → 〈F qÂΩ〉 be a homomorphism of bundles and ∅ 6= O

◦⊂ Ω.
Then AΓ |O(s) := A ◦ s for all s ∈ Γ (O, 〈E pÂ Ω〉) de�nes a map AΓ |O ∈
L

(
Γ (O, 〈E pÂΩ〉), Γ (O, 〈F pÂΩ〉)), called the induced homomorphism by A.

We set AΓ := AΓ |Ω.
Proof.
Let s ∈ Γ (O, 〈E pÂ Ω〉). Then q ◦ (

AΓ |O(s)
)

= q ◦ A ◦ s = p ◦ s = IdO.
Furthermore, let ξ ∈ O. By Proposition A.4.3 (2) there are trivializing maps
φ : E|U → U × B for 〈E pÂΩ〉 and ψ : F|V → V × C for 〈F qÂΩ〉, resp., such
that De�nition A.4.1 (c) holds. Then for all x ∈ U ∩ O ψx

((
AΓ |O(s)

)
(x)

)
=

ψx
(
A

(
s(x)

))
= ψx

(
Ax

(
(φ−1

x )φxs(x)
))

= (ψx ◦ Ax ◦ φ−1
x )

(
φxs(x)

)
. By the

assumption [x 7→ ψx ◦ Ax ◦ φ−1
x ] ∈ A(U,L (B,C)) and

[
x 7→ φx

(
s(x)

)] ∈
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A(U ∩ O,B). Thus by Fact 1.5.10
[
x 7→ ψx

((
AΓ |O(s)

)
(x)

)] ∈ A(U ∩ O,C).
This yields AΓ |O(s) ∈ 〈F pÂ Ω〉. Clearly, AΓ |O is linear. In order to prove
continuity it su�ces to show that (AΓ |O)−1(B

Γ (O,〈FpÂΩ〉)(K,O)
)
is open for

every K ⊂⊂ O and O ◦⊂ F . By Proposition A.4.2 A−1(O)
◦⊂ E and thus

(AΓ |O)−1(B
Γ (O,〈FpÂΩ〉)(K,O)

)
= B

Γ (O,〈EpÂΩ〉)(K,A
−1(O))

◦⊂ Γ (O, 〈E pÂΩ〉) for

every K ⊂⊂ O and O ◦⊂ F . This �nishes the proof. 2

A.8 Fredholm Homomorphisms

A.8.1 De�nition
A homomorphism A : 〈E pÂ Ω〉 → 〈F qÂ Ω〉 of bundles over the space Ω
is called Fredholm homomorphism if for each x ∈ Ω the induced operator
Ax ∈ L (Ex,Fx) is a Fredholm operator.

A.8.2 Proposition
Let A : 〈E pÂΩ〉 → 〈F qÂΩ〉 be a homomorphism of bundles.
Then the following are all equivalent.
(1) A is a Fredholm homomorphism.
(2) There are trivializations {φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ and {ψ(κ) : F|Vκ
→

Vκ × Cκ}κ∈K for 〈E pÂ Ω〉 and 〈F qÂ Ω〉, resp., such that the trivialized
induced maps

A(λ,κ)
x : Bλ

(φ(λ)
x )

−1

−→ Ex Ax−→ Fx ψ
(κ)
x−→ Cκ

are Fredholm operators whenever x ∈ Uλ ∩ Vκ 6= ∅.
(3) There are trivializations {φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ and {ψ(λ) : F|Uλ
→

Uλ × Cλ}λ∈Λ for 〈E pÂΩ〉 and 〈F qÂΩ〉, resp., (with the same open cover
{Uλ}λ∈Λ of Ω) such that the trivialized induced maps

A(λ)
x : Bλ

(φ(λ)
x )

−1

−→ Ex Ax−→ Fx ψ
(λ)
x−→ Cλ

are Fredholm operators for all x ∈ Uλ for all λ ∈ Λ.
(4) For all trivializations {φ(λ) : E|Uλ

→ Uλ × Bλ}λ∈Λ and {ψ(κ) : F|Vκ
→
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Vκ ×Cκ}κ∈K for 〈E pÂΩ〉 and 〈F qÂΩ〉, resp., the trivialized induced maps

A(λ,κ)
x : Bλ

(φ(λ)
x )

−1

−→ Ex Ax−→ Fx ψ
(κ)
x−→ Cκ

are Fredholm operators whenever x ∈ Uλ ∩ Vκ 6= ∅.
Proof.
�(1)⇒(2)�: Let {φ(λ)}λ∈Λ and {ψ(κ)}κ∈K be the trivializations from A.4.3 (c1).
Since the composition of isomorphisms with Fredholm operators are Fredholm
operators (2) follows from the assumption.
�(2)⇒(3)�: This follows from the same argument as the step �(c1)⇒(c2)� in the
proof of Proposition A.4.3.
�(3)⇒(4)�: Using the construction and its notation from the step �(c2)⇒(c3)�
in the proof of Proposition A.4.3 we obtain the operator composition

B
(φx)−1

//

φ
(λ)
x ◦(φx)−1

55Ex φ
(λ)
x // Bλ

(φ(λ)
x )

−1

//

ψ
(λ)
x ◦Ax◦(φ(λ)

x )
−1

33Ex Ax //Fx ψ
(λ)
x // Cλ

(ψ(λ)
x )

−1

//

ψx◦(ψ(λ)
x )

−1

66Fx ψx // C

which together with the argument used in the step �(1)⇒(2)� proves (4).
�(4)⇒(1)�: For each x ∈ Ω let φ : E|U → U×B, ψ : F|V → V ×C be trivializing
maps with x ∈ U , x ∈ V (such maps obviously exit, since every bundle has a
trivialization by de�nition). Then Ax = (ψx)

−1 ◦ ψx ◦Ax ◦ (φx)
−1 ◦ φx and by

the assumption and the argument of step �(1)⇒(2)�, (1) follows. 2
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Sheaves

For the convenience of the reader we recall some basic de�nitions from sheaf
theory. We remark that the main intention of this chapter is to introduce and
�x notations. We refer to, e. g., [Hör67] Chapter 7, [GR65] Chapter 4 and the
monographs [Kul70], [Ten75] and [GR84] where the reader will �nd proofs that
we will omit here.
Furthermore, we state well-known results that we use in this thesis.
We will restrict ourselves to analytic sheaves over open subsets of C, as only
those occur during this thesis, and the following notions will be used only in
the �customized� version de�ned below.
During this chapter, let ∅ 6= Ω

◦⊂ C.
B.1.3 De�nition and Remark (Local Homeomorphism)
Let F be a topological space. Then p : F → Ω is called a local homeomorphism
i� for every a ∈ F there are U

◦⊂ F and O
◦⊂ Ω such that a ∈ U and

p|U : U → O is a homeomorphism.
A local homeomorphism is continuous and open (see e. g. [Ten75] Lemma 1.3.5).
B.1.4 Convention (Ring, Module)
With ring we always mean a commutative ring with identity. The underlying
ring R of a module M (�R-module M � for short) will always be a ring in
the sense above. The underlying ring homomorphism of an algebra is always
assumed to be of the form C → M where M is a ring in the sense above; in
particular, we will only deal with C-algebras.
(We refer to e. g. [Bos04] Sections 2.1, 2.9 and 3.3, resp., for precise de�nitions
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of the mentioned structures and corresponding homomorphisms. For intuition,
we remark that loosely speaking, a ring is a �eld without division, i. e. there
are associative, commutative and �compatible� operations �+�, �−� and �·�,
and corresponding neutral elements 0 and 1. Also, loosely speaking, a module
M is a vector space where the �eld is replaced by a ring R, i. e. there are
operations �+� and �−� for elements in M a corresponding neutral element
0 and a �compatible� scalar multiplication · : R × M → M . Furthermore,
an algebra is a ring that additionally allows a compatible scalar multiplication
with elements of C.)
As an example, the space of analytic functions A(Ω) is a C-algebra; again
loosely speaking that means, that for all f, g ∈ A(Ω) and α ∈ C there are
operations f + g, f − g, f · g, αf and the constant analytic functions 0,1 are
the corresponding neutral elements. Furthermore, e. g. A(Ω,C2) is an module
over A(Ω).

B.1.5 Construction (The Sheaf of Germs of Analytic Functions)
For all z ∈ Ω and functions f : Ω ⊃ Df → C and g : Ω ⊃ Dg → C we write
f ∼z g i� there is a neighborhood O of z, such that O ⊂ Df ∩Dg, f, g ∈ A(O)
and f = g on O.
Then ∼z is an equivalence relation and the residue class γz(f) of such f is
called the germ (of f at z).
Furthermore, let Oz be the set of all residue classes with respect to ∼z and
O(Ω) :=

⋃̇
z∈Ω
Oz their disjoint union.

Obviously, if a ∈ Oz, then there exists a function f : Ω ⊃ Df → C with
a = γz(f) and a(z) := f(z) is well-de�ned.
For each z ∈ Ω Oz is endowed with the ring structure (Oz,+z, ·z) induced by
the ring structure of the space of analytic functions, i. e. if for each i = 1, 2
ai ∈ Oz and fi ∈ A(Oi), then the ring operations are given by a1 +z a2 :=
γz(f̃1 + f̃1), a1 ·z a2 := γz(f̃1 · f̃1), where f̃i denotes the restriction of fi to
O1∩O2, and the neutral elements are the residue classes of 0,1 ∈ A(Ω), resp..
We de�ne a function p : O(Ω) → Ω: If a ∈ O(Ω) then by de�nition of the
disjoint union, there exists exactly one p(a) ∈ Ω with a ∈ Op(a). p is called
projection.
We endow O(Ω) with the topology that is de�ned by the base of all sets of the
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form {f ¢O} := { γz(f) : z ∈ O } where O
◦⊂ Ω and f ∈ A(O), i. e. a subset

of O(Ω) is open i� it is the union of sets of this form.
Then p is a local homeomorphism: Indeed, for all ∅ 6= O

◦⊂ Ω and f ∈ A(O)

the restriction p|{f¢O} :

{ {f ¢O} → O

γz(f) 7→ z
is a homeomorphism.

O(Ω) is called the sheaf of germs of analytic functions (over Ω), cf. Re-
mark B.1.8.

B.1.6 De�nition (Analytic Sheaf )
Let F be a topological space. Furthermore, let p : F → Ω be surjective and a
local homeomorphism.
For each z ∈ Ω Fz := p−1({z}) is called stalk. The elements of Fz are called
germs.
Furthermore, assume that each stalk Fz carries the structure of an Oz-module.
We set F ◦ F =

⋃
z∈Ω

Fz ×Fz and O(Ω) ◦ F =
⋃
z∈Ω

Oz ×Fz.
We de�ne + : F ◦ F → F and · : O(Ω) ◦ F → F by the pointwise operations
of the corresponding module. Finally, assume that +, · and X 3 x 7→ 0x ∈ F
(where 0x is the neutral element in Fx) are continuous.
Then (by abuse of notation) F is called an (analytic) sheaf (over Ω).
p is called projection.

B.1.7 Remark
If F is a sheaf, then the induced topology (by F) on each stalk Fz is the
discrete topology (i. e. every subset is open).

B.1.8 Remark
O(Ω) is a sheaf. (For each z ∈ Ω Oz is a module over itself). We also remark
that Ω 3 z 7→ 1z ∈ O(Ω) (where 1z is the identity in Oz) is continuous.

B.1.9 De�nition and Fact
Let F be a sheaf over Ω and ∅ 6= O

◦⊂ Ω. A continuous map s : O → F with
p ◦ s = Id is called a section (over O).
We denote the set of all sections over O by Γ (O,F).
The stalkwise ring structure of O(Ω) (or, viewed from a di�erent point1:

1Cf. Remark B.1.10.
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the ring structure of A(Ω)) induces a ring structure on Γ (O,O(Ω)) and the
stalkwise module structure of F induces a Γ (O,O(Ω)) module structure on
Γ (O,F), cf. [Kul70] I.� 2. Moreover, the C-algebra structure of A(Ω) induces
C-vector space structures on both Γ (O,O(Ω)) and Γ (O,F).
B.1.10 Remark (Identi�cation of A(O) with Γ (O,O(Ω)))
Let ∅ 6= O

◦⊂ Ω.
For all f ∈ A(O) we de�ne σ(f) : O → O by [σ(f)](z) := γz(f). Then
σf ∈ Γ (O,O(Ω)).
The so-de�ned map σ : A(O) → Γ (O,O(Ω)) is bijective.
B.1.11 Remark
By the preceding remark we can identify the sections of O(Ω) with analytic
functions. On the other hand, the construction of O(Ω) was based on analytic
functions. There is a general result regarding the correspondence of a sheaf and
its spaces of sections, see [Ten75] Chapter 2 (especially 5.7 Terminology) for a
detailed explanation. In particular, the topology chosen in Construction B.1.5
occurs in a more general context.
In particular, the following sheaves can be constructed analogously to Con-
struction B.1.5.
B.1.12 Construction (The Sheaf of Germs of Analytic Sections of a Bundle)
Let 〈E pÂΩ〉 be a bundle. If we substitute in Construction B.1.5 A(O) with
Γ (O, 〈E pÂ Ω〉) for each ∅ 6= O

◦⊂ Ω, we obtain a sheaf called the sheaf of
germs of sections (of the bundle 〈E pÂ Ω〉) and it is denoted by2 O〈EpÂΩ〉(Ω).
In particular, for a �xed z ∈ Ω two sections of a bundle si ∈ Γ (Oi, 〈E

pÂΩ〉)
for each i = 1, 2 are equivalent if there is a neighborhood O of z, such that
O ⊂ O1∩O2 and s1 = s2 on O. Thus a ∈ O〈EpÂΩ〉(Ω) i� there is a ∈ O ◦⊂ Ω and
s ∈ Γ (O, 〈E pÂΩ〉) such that a is the residue class of s. Again, the topology of
O〈EpÂΩ〉(Ω) can be described by the open sets {s¢O} := { γz(s) : z ∈ O } for
all O

◦⊂ Ω and s ∈ Γ (O, 〈E pÂΩ〉).
B.1.13 Construction
Let X be a Banach space. If we substitute in Construction B.1.5 A(O) with

2Again, by abuse of notations the symbol is used both for the sheaf and the underlying topo-
logical space.
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A(O,X) for each ∅ 6= O
◦⊂ Ω, we obtain a sheaf OX(Ω). Clearly OC(Ω) =

O(Ω) and once we have introduced the sum of sheaves, cf. De�nition B.1.22,
we obtain that OCn

(Ω) coincides with OC(Ω))n.

B.1.14 Remark
Analogously to Remark B.1.10 we can identify

Γ (O, 〈E pÂΩ〉) with Γ (O,O〈EpÂΩ〉(Ω))

and A(O,X) with Γ (O,OX(Ω)) where ∅ 6= O
◦⊂ Ω, 〈E pÂΩ〉 is a bundle and

X a Banach space.

B.1.15 De�nition
For each O

◦⊂ Ω Γ (O,O(Ω)) is endowed with the Fréchet space structure of
A(O) (cf. Fact 1.5.6) via the bijection given by Remark B.1.10.

B.1.16 Fact and De�nition
Let F be a sheaf over Ω. Assume that for each ∅ 6= O

◦⊂ Ω Γ (O,F) carries a
Fréchet space structure such that
1. Γ (O,F) is a Fréchet Γ (O,O) module, i. e. the multiplication Γ (O,O)×
Γ (O,F) → Γ (O,F) is continuous and

2. for all ∅ 6= o
◦⊂ O the restriction map Γ (o,F) 3 s 7→ s|o ∈ Γ (o,F) is

continuous.
Then F is called a Fréchet sheaf.

B.1.17 De�nition (Homomorphism of Sheaves)
Let F1 and F2 be sheaves over Ω with projections p1, p2, resp.. A continuous
map H : F1 → F2 is called a homomorphism i� p2◦H = p1 and for each z ∈ Ω
the restriction ofH to (F1)z is aOz-homomorphism between the modules (F1)z
and (F2)z.

B.1.18 De�nition and Fact (Isomorphism of Sheaves)
A homomorphism H : F1 → F2 that is bijective is called an isomorphism. In
that case, H−1 : F2 → F1 is an homomorphism of sheaves, cf. [Kul70] Satz
I.3.1.

B.1.19 De�nition (Restriction of a Sheaf )
Let F be a sheaf over Ω with projection p and ∅ 6= O

◦⊂ Ω. Endow p−1(O)
with the induced topology from the topological space F . For each z ∈ O

endow p−1({z}) with the Oz-module structure given by the identi�cation with
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Fz. Then F|O := p−1(O) is a sheaf over O with projection p|F|O , called the
restriction of F .

B.1.20 De�nition (Subsheaf )
Let F1 and F2 be sheaves over Ω with projections p1, p2, resp.. Furthermore,
assume that the topological space F1 is an open subspace of F2, that p1 is the
restriction of p2 to F1 and that for each z ∈ Ω (F1)z is a submodule of (F2)z.
Then F1 is called a subsheaf of F2.
In that case, for each O

◦⊂ Ω Γ (O,F1) is a submodule of Γ (O,F2).

B.1.21 De�nition (Quotient of Sheaves)
Let F be a sheaf over Ω with projection p and let G be subsheaf of F . Let
H :=

⋃̇
z∈Ω
Fz�Gz be the disjoint union of the pointwise quotient modules and

denote by p̃ : H → Ω the canonical projection. For each z ∈ Ω we denote
by qz : F → Fz�Gz the canonical projection and we de�ne q : F → H by
F 3 a 7→ qp(a)(a). Finally, we endow H with the quotient topology induced
by q.
Then F�G := H is a sheaf over Ω with projection p̃, called the quotient sheaf
of F and G.
In that case, for each O

◦⊂ Ω Γ (O,F�G) coincides with the quotient module
Γ (O,F)�Γ (O,G), cf. [Kul70] Satz I.5.3. and the remark thereafter.

B.1.22 De�nition (Sum of Sheaves)
Let n ∈ N and F1, . . . ,Fn be sheaves over Ω. Let G :=

⋃̇
z∈Ω

(F1)z⊕· · ·⊕ (Fn)z
be the disjoint union of the pointwise direct sums and denote by p̃ : G → Ω the
canonical projection. We endow G with the induced topology of the topological
product space F1 × · · · × Fn.
Then F1 ⊕ · · · ⊕ Fn := G is a sheaf over Ω with projection p̃, called the
(Whitney) sum of the sheaves F1, . . . ,Fn.
If F := F1 = · · · = Fn then we set (F)n := F1 ⊕ · · · ⊕ Fn.
B.1.23 De�nition (KerH, Range)
Let H : F → G be an homomorphism. Then KerH := { a ∈ F : H(a) =
0p(a) } is a subsheaf of F (where p denotes the projection of F and 0z denotes
the zero element of Fz) and RangeH := H(F) is a subsheaf of G.
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B.1.24 De�nition (Exact Sequences)
Let n ∈ N and F1, . . . ,Fn be sheaves over Ω. We say there exists an exact
sequence F1 −→ F2 −→ . . . −→ Fn if there exist homomorphisms Hi :
Fi → Fi+1 for each i = 1, . . . , n − 1 such that RangeHi = KerHi+1 for all
i = 1, . . . , n− 1.
The sheaves that occur in this thesis share an additional property, called �co-
herence�.
B.1.25 De�nition (BCAF sheaf )
Let F be a Fréchet sheaf over Ω. Assume that for each z ∈ Ω there exist an
neighborhood O

◦⊂ Ω of z and Banach spaces X and Y such that there exists
an exact sequence of the form

OX(O) −→ OY (O) −→ F|O −→ 0.

Then F is called a Banach coherent analytic Fréchet sheaf, or BCAF sheaf for
short.
B.1.26 De�nition (Coherent sheaf )
If in De�nition B.1.25 both Banach spaces X and Y are of �nite dimension for
each z ∈ Ω, then F is called a coherent (analytic) sheaf.
B.1.27 Remark
The above de�nitions are adjusted to the situation of analytic sheaves over
Ω

◦⊂ C. In order to allow a comparison with more general de�nitions commonly
found in the referenced literature, we outline the correlation with the general
situation. We will omit details and refer to the cited references for precise
de�nitions.
BCAF sheaves (locally) allow exact sequences

OX1(O) −→ OX2(O) −→ . . . −→ OXn(O) −→ F|O −→ 0.

of arbitrary (�nite) length, i. e. BCAF sheaves are BCAF sheaves in the sense
of [Lei78] De�nition 2.1. (This is a consequence of Ω

◦⊂ C, cf. [Lei78] Problem
2.4 and the reference therein.)
Coherence in the sense of De�nition B.1.26 can be characterized by the re-
quirement that both F and all corresponding sheaves of relations are �nitely
generated (see [Kul70] for the de�nitions of �nitely generated sheaves and the
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sheaf of relations): This is a consequence of the requirement that the underly-
ing rings of the module structure are the stalks of O(Ω), cf. [Kul70] Satz 28.2
and the fact that O(Ω) is coherent, cf. Oka's Coherence theorem [Kul70] Satz
28.7.
B.1.28 Remark
In the situation of De�nition B.1.26 the requirement that F is a Fréchet sheaf
can be dropped. Indeed, by [KK83] Theorem 55.5 for all U

◦⊂ Ω Γ (U,F) can
be endowed with a topology such that F is a Fréchet sheaf:
B.1.29 Fact
Let 〈E pÂ X〉 be a bundle. Then O〈EpÂΩ〉(Ω) is a BCAF sheaf (Cf. [Bun68]
Theorem 4.2).
B.1.30 Fact (Induced Homomorphism of Banach Vector Bundles on Sheaves)
Let A : 〈E pÂ Ω〉 → 〈F qÂ Ω〉 be a homomorphism of bundles. Let a ∈
O〈EpÂΩ〉(Ω). Then by de�nition there is O ⊂ Ω, s ∈ Γ (O, 〈E pÂΩ〉) and z ∈ O
such that a = γz(s). We set AO(a) := γz(AΓ |O(s)).

ThenAO : O〈EpÂΩ〉(Ω) → O〈FpÂΩ〉(Ω) is a well-de�ned homomorphism of sheaves,
called the induced (sheaf) homomorphism by A.
Furthermore, if A is Fredholm, then KerAO and

CokerAO :=
O〈FpÂΩ〉(Ω)�RangeAO

are coherent. (See [Kuc93] Theorem 1.6.14.)
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