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Introduction

In this thesis we explore the Floquet theory for a class of periodic evolution
equations.

The motivating example arises from the following physical model of waveg-
uides!. The (time-harmonic) electromagnetic field inside a cylindrical waveg-
uide can be described by an equation of the form

0

Here, we have assumed that the waveguide has a non-varying (bounded) cross
section {2 C R? and its axis is the z-axis. Furthermore, the relevant material
properties of the waveguide, namely the permittivity and the permeability, are
assumed to be periodic w.r.t. the z-direction. The Mazwell operator M then
is a partial differential operator with periodic coefficients acting on the Hilbert
space H := Lo(£2) x Lo(£2) and for a fixed z the first and the second component
of u(z) € H describes the electric and the magnetic field in each cross section (2,
resp.. Finally, J € Z(H) is an invertible operator that can be represented as
an (operator-valued) anti-diagonal matrix and thus “couples” both components
of a solution u. We refer to [Der72|, [Pru76] and the references therein for a
more detailed explanation of the model.

Here, we will choose a more abstract setting to deal with the problem, namely
we will consider nonautonomous evolution equations of the form

u'(t) + Awu(t) =0  (t€R) (E)

where the operator family (A;),.p on a Banach space X periodically depends
on t € R and the function u takes values in X.

!The reader unfamiliar with the physical concept of waveguides (or electrodynamics in general)
will find all necessary information in the monograph [Jac62].
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2 Introduction

Our central assumptions are that the operators (A;), . have a common domain
space D which is compactly embedded into X and that the resolvent sets all
contain a common line parallel to the imaginary axis, e.g. ¢IR, and that the
corresponding resolvents (A; — A) 7! decay in the sense that (|[A\]+1)(A; —\)™
is uniformly bounded for all ¢ € R (cf. condition (A-iv) on page 26).

As expected in the context of partial differential equations with periodic coef-
ficients, Bloch solutions—and more generally Floquet solutions—will play an
important role. As the central result we will obtain that all exponentially
bounded solutions to (E) can be described as a superposition of a fixed family
of Floquet solutions.

In particular, if X is a (complex-valued) Lg-space we will prove that the
so-called Bloch property holds for (E), i.e. the existence of a non-vanishing
bounded solution implies the existence of a bounded Bloch solutions. We will
also obtain the interesting result that the set of Floquet exponents coincides
with the set of Bloch exponents, in other words if (E) has a Floquet solution
then (E) also has a Bloch solution with the same exponent. In particular, this
result could be used—e. g. when searching for so-called band gaps—to conclude
the nonexistence of Floquet solutions already from the nonexistence of Bloch
solutions.

In [Kuc93| Chapter 5 P. Kuchment gave such a description in a Hilbert space
setting, i.e. the family (A;),.p acts on a Hilbert space X and a solution u is a
locally square integrable X-valued function.

We extend P. Kuchment’s result to a Banach space setting: We treat the
case where X is a UMD-space and allow the solutions to locally belong to L,
for some fixed p with 1 < p < oo. Examples of UMD-spaces are all closed
subspaces of L,-spaces with 1 < ¢ < oo, in particular reflexive Sobolev and
Hardy spaces.

Following P. Kuchment we use the Floquet transform to translate the problem
into a corresponding statement about analytic Fredholm homomorphisms of
bundles. The representation of exponentially bounded solutions as superposi-
tions of Floquet solutions can then be obtained from abstract results of such
homomorphisms due to M. Zaidenberg, S. Krein, P. Kuchment, A. Pankov and
V. Palamodov.
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The original treatise makes use of properties of Hilbert spaces that do not
hold in general in the Banach space setting or even in L,-spaces with p # 2.
An important part of this thesis consists of replacing classical Hilbert space
methods by modern methods of spectral theory and harmonic analysis.

In particular, the construction of regularizers needed to verify the Fredholm
property mentioned above leads to a R-boundedness condition on the resolvents
of A; that coincides with the boundedness condition of the original treatise if
the new result is applied to a Hilbert space. The R-boundedness then allows to
use results on operator-valued Fourier multipliers obtained by L. Weis, which
provides the base for the extension to the Banach space setting. It is known
that for many classes of differential operators A; this R-boundedness condition
is satisfied, e. g. if the resolvent of A; or the semigroup generated by A; satisfies
Gaussian bounds.

This thesis is structured as follows. In Chapter 1 we will declare notations and
state well-known or basic facts.

Chapter 2 contains basic results on the operator family (A¢), . defined in the
UMD-space setting that can be obtained more or less directly from the Hilbert
space case.

The Fredholm property of the operator £ = 0 + A; on L,([0,1], X) will be
proven in Chapter 3 with the help of Fourier multiplier theorems.

In Chapter 4 we study the dual situation and its relation with the operator £'.
Since Plancherel’s theorem is not available if X is not a Hilbert space we had
to derive more general functional analytic duality arguments than the Hilbert
space methods used in P. Kuchment’s treatment.

Chapter 5 generalizes the so-called hypoellipticity result—mnamely that quasiperi
odic solutions have L,([0, 1], D) N W, ([0,1], X) regularity—of P. Kuchment’s
treatise to the Banach space setting using the same methods as in Chapter 3
and Chapter 4. Furthermore, we extend the result from periodic functions
to quasiperiodic functions that—thanks to the duality method used in Chap-
ter 4—can now be treated analogously.

In Chapter 6 we introduce and discuss the various notions of solutions relevant
here.

In Chapter 7 we reformulate our problem in terms of analytic Fredholm homo-
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morphisms of bundles. We refer to Section 7.1 for a more detailed explanation
of this transformation. In particular, we use a Banach space version of the
Floquet transform as an isomorphism from the test function spaces to spaces
of sections of bundles. Also, analogously as in the original treatise, the coinci-
dence of Floquet and Bloch exponents holds.

Finally, the central result of this thesis, namely the representation of a solution
as the superposition of Floquet solutions, will be given in Chapter 8.

For the convenience of the reader and for the sake of completeness, we provide
a summary on the structures of bundles and sheaves that are used in Chapter 7
and Chapter 8 in an appendiz.
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Chapter 1

Notation and Definitions

1.1 Basic Notation

We denote by N, Z, R and C the natural!, integer, real and complex numbers,
resp.. Furthermore, we set Ny := N U {0}.

For all M C C\{0} weset M~ 1:={m™': me M}

We will write f := [M 2 m +— --- € NJ to define (or denote) a function
f: M — N. We will sometimes omit the explicit specification of the domain
M or the codomain N if it is clear out of the context.

To avoid confusion we remark that nowhere in this thesis [. . .] is used to denote
an equivalence class.

For a function f: M — N and m € M we set d,,f := f(m) € N.

If f: M — N is a function and F' is a family of functions defined on a set
m C M we will write f € F'if f,, € F.

For a set M we denote by 1, its characteristic function, i.e. 1,(m) = 1 for
all m € M and 1y/(m)=01if m ¢ M.

|-] : R — Z denotes the floor function, i.e. for all t € R |¢] is defined to be
the largest integer not greater than t.

For all n,m € 7Z 0,,,, denotes the Kronecker delta, i.e. d,,,,, = 1 if n = m and
Opm = 0if n # m.

1

i.e. the positive integers, in particular 0 ¢ N

3



6 Notation and Definitions

If (2 is a topological space we write O C RO C Nis open in {2. Analogously,
we write K CC {2 if K C {2 is compact.

We denote by Bgn(z,r) the open ball with radius r around x in a topological
space (2.

A neighborhood of a point in a topological space is always assumed to be an
open set.

Unless otherwise stated a subset of a topological space is endowed with the
induced topology and the product of topological spaces is endowed with the
product topology.

For all n € Ny we will write

Za+ﬂ:n ... shortly for Z(aﬁ)e{ (0.0)eNox Nyt atbn ) - - - 8nd
Za—i—ﬁ—m:n ce Shortly for Z(a,ﬁ,’y)e{ (a,b,c)eENgxNoxNo: atb+e=n} = *

We denote by P the space of polynomials in one variable with coefficients in

C.

1.2 Vector Spaces and Operators

We use the notion of Fréchet space as defined in [Tre67] Chapter 10, i.e. a
Fréchet space is a metrizable, complete, locally convex, Hausdorft topologi-
cal complex vector space. We will also use the equivalent description that a
Fréchet space is a complex vector space endowed with a topology induced by

a countable family of seminorms that is Hausdorff and complete (cf. [Sch80]
§ 11.4).

We denote by .Z(X,Y) the space of continuous linear operators between the
Fréchet spaces X and Y and as usual we set Z(X) := Z(X, X).

We will use the well-known characterization of continuity of linear operators
in terms of bounds of seminorms, cf. |Tré67| Proposition 1.7.7.

If X and Y are Fréchet spaces and A € Z(X,Y) is bijective, then A1 €
Z(X,Y) and thus A is an isomorphism of Fréchet spaces (see |Tre67| Corollary
1 to Theorem 17.1).
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If, in particular, X and Y are Banach spaces?, we equip .Z(X,Y) with the
usual Banach space structure; in particular, its topology is induced by the
(strong) operator norm.

Furthermore, we denote by £ (X,Y’) the space of linear compact operators
between the Banach spaces X and Y and again, we set # (X)) := # (X, X).

X — Y means that the Banach space X is continuously embedded in the
Banach space Y and X < Y analogously denotes a compact embedding.

We denote by p(A) the resolvent set for any densely defined operator A : X D
D — X on a Banach space X.

For Fréchet spaces X7, Xy and Y we denote by .Z(X1; X5,Y) the space of
continuous bilinear operators from X; x X5 to Y. By [Bou87| Corollary I11.5.1
A€ L(X; X0, Y) iff [x1 — Az, 29)] € Z(X1,Y) for all z5 € X5 and
(29 — A(z1,29)] € L(X5,Y) for all 21 € X;.

As usual, if A € Z(X) for some Fréchet space X we set A := Idx.

If (ar)kez C X for some Banach space X and both series Y °,aj and
> oo a_i converge absolutely we say > ;- aj; converges absolutely and we

Set D32 Ak 1= D Gk + D Gk

The following identity will be used passim and can be obtained by a simple
calculation.

1.2.1 Fact
Y e exp(—alk|) = giggzgﬂ for all a > 0.
Duality

For a Fréchet space X, we denote by X* := Z(X,C) the dual space. We
will call both the transpose of a continuous linear operator between Fréchet
spaces (as defined in |Treé67] section 18 (2)) and the adjoint of a densely defined
closed operator between Banach spaces (as defined in [Kat66] I11.5.3) the dual
operator. Clearly, the notion coincides in the case of bounded linear operators
between Banach spaces. In any case, we will use the symbol * to denote the
dual operator.

Zwhich are always assumed to have a complex underlying vector space
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If X is a Fréchet space, x € X and ' € X*, we set (v/,x)x := 2/(x).

If X and Y are Fréchet spaces and A € Z(X,Y) is bijective, then A* : X* —
Y* is an isomorphism of vector spaces, i.e. A* is linear and bijective (see [Tre67]
Proposition 23.1).

If X and Y are Fréchet spaces and A € Z(X,Y) then we set Coker A :=
(Range A)™ := {y/ € Y*: ¢/(Range A) = {0} }. Thus Coker A = Ker(A*).

1.2.2 Fact
If X and Y are Banach spaces and A € Z(X,Y) is a Fredholm operator, then

Y/(Range A) %“ (Y/(Range A)) >~ (Range A)L = Coker A, cf. [Wer05] Satz
[11.1.10.

Finally, we refer to e.g. [Kat66| as a general reference for basic properties of
dual operators of closed operators between Banach spaces.

1.3 Standard Function Spaces

Throughout this section, let a,b € R with a < b, p € (1,00) and X be a
Banach space.

We denote by C0, 1] the Banach space of continuous complex-valued functions
on [0, 1] endowed with the usual supremum norm || ||. We denote by C*[0, 1]
the Banach space of 1-time continuously differentiable® complex-valued func-
tions on [0, 1] endowed with the usual norm* || f||c1o,1) := max(|| f|lso, [|0f]] -

More generally, C(R, X) denotes the space of continuous X-valued functions
on the real line.

Furthermore, we denote by C.(R, X) and C*(R, X)) the spaces of continuous
and infinitely differentiable, resp., X-valued functions on the real line with
compact support.

We denote by L,([a,b],X) and L,(R,X) the corresponding Bochner space,
i.e. the Banach space of (equivalence classes® of) p-integrable X-valued func-
tions on [a,b] and on R, resp., endowed with the usual norm || - ||,, and by

30f course, in the points 0 and 1 one-sided differentiability is meant.

40 f denotes the derivative of f.

SWe identify two functions if they coincide almost everywhere w.r.t. the Lebesgue measure. We
follow the usual convention of abuse of notation and—whenever there is no confusion about the
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Wpl([a, b], X') the corresponding Sobolev space, i.e. the spaces of (equivalence
classes of ) 1-time weakly differentiable p-integrable X-valued functions on (a, b)

endowed with the usual norm®

HfHWI}([a,b],X) ‘= (Hf“zip([a,b]vx) + HafH]zp([a,b],X)
as defined in [Ama95]| Section III.1.1.

)1/p

Let t € [a,b]. For each (f) € W,([a,b], X) there is a unique continuous
representant f : [a,b] — X and we set 6;(f) := (f)(t) := f(t). Then §; €
ZL(W)(la,b], X)), X), cf. [Ama95] Section III.1.4.

We denote by Lyoc(R, X) and W}, (R, X) the local Bochner and Sobolev

p,loc
spaces, 1.e. (an equivalence class of) a function f : R — X belongs to

Lyioc(R, X) or W]}’IOC(R,X), resp., iff for all a, 3 € R with o < 3 the re-
striction fij,g) belongs to Ly([a, 5], X) or W ([a, 5], X), resp.. We remark
that [HP57] Theorem 3.5.4 (3) implies that those functions are strongly mea-
surable.

We note that for all t € (a,b) f € W, ([a,b],X) iff f € W)([a,1],X), f
Wpl([t, b], X)) and for the continuous representants fij, and figs(t) fija.q(t)
f|[t7b](t) holds.

Il m

1.4 Quasiperiodic Functions

We remark that throughout this thesis, the (quasi-)period of a (quasi-)periodic
function is always 1.

During this section, let z € C\{0}, p € (1,00) and X be a Banach space.
As in the previous section, equivalence of functions is again understood as
coincidence almost everywhere.

We say, a function g : R — X is z-quasiperiodic, if g(§+1) = zg(§) for all € €
R. It is obvious that for every function f : [0,1] — X with f(1) = 2f(0) there
is a unique z-quasiperiodic extension, which we will denote by E, f. Conversely,
every z-quasiperiodic function is of the form E,f, where f : [0,1] — X is a

function with f(1) = zf(0).

meaning—do not distinguish in notation between an equivalence class of a function and a (fixed)
representant.

6Throughout this thesis, the derivative of a (at least) weakly differentiable function f will be
denoted by Of.
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We say, an equivalence class (g) (of functions on R to X)) is z-quasiperiodic,
if for a (or equivalently for all) representant g : R — X ¢(£ + 1) = zg(§)
for almost all &€ € R. If N C R denotes the corresponding null set for a
fixed representant g, i.e. g(é + 1) = zg(€) for all € € R\ N, then N :=
Upey(k+ N) D N is a null set such that ¢ € R\ N implies ¢ + k € R\ N for
all k& € Z. We say, N is a quasipertodicity null set for the representant g.

Again, it is obvious that for every equivalence class (f) of functions from
[0,1] to X there is a unique extension to a z-quasiperiodic equivalence class of
functions on R to X, which, by abuse of notation, we will denote by E.(f).
Conversely, every z-quasiperiodic equivalence class of functions on R to X is
of the form E.(f), where (f) is an equivalence class of functions from [0, 1] to
X. E.(f) has a continuous representant iff (f) has a continuous representant

f:0,1] = X with f(1) = z£(0).

We set W,([0,1], X). :={ f e W,([0,1],X) : f(1) = 2f(0) }. Since
W([0,1], X).

is the kernel of 28y — 01 on W, ([0,1], X) the space W, ([0, 1], X). is a closed

subspace of W, ([0,1], X) and therefore a Banach space.

Finally, we denote by C*°([0,1], X). the space of restrictions to [0, 1] of in-
finitely differentiable z-quasiperiodic X-valued functions on R.

Periodic Functions

In particular, we will deal with periodic, i.e. 1-quasiperiodic, functions.

We will also write Ep instead of E; and C*°(T, X) instead of C*°([0, 1], X);.
Furthermore, we denote by C(T, X) the space of restrictions to [0, 1] of con-
tinuous periodic X-valued functions on R.

We set L,(T, X) := Ep(L,([0,1], X)). We call the reader’s attention to the
fact that (equivalence classes of) functions in L,(T, X) are defined R in con-
trast to, e.g.”, C(T, X) that only contains functions defined on [0, 1]. Clearly,
L,(T, X) C Lpioc(R, X).

Finally, we remark that f € W ([0,1], X); iff there exists g € Ly([0,1], X)

"Actually, all other function spaces in this thesis that are associated with the symbol T contain
only (equivalence classes of) functions defined on [0, 1].
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such that fol godt = — fol fogdt for all ¢ € C(T,C). In this case we have
Of = ¢ in the weak sense.

Another characterization of W, ([0,1],X); using Fourier coefficients can be
found in [AB02| Lemma 2.1.

1.5 Analyticity

Let 2 C € and X be a Fréchet space or the dual of a Fréchet space endowed
with the weak-* topology, i.e. the topology of pointwise convergence on the
predual.

We say, [ : 2 — X is analytic if it is differentiable at each point of (2, i.e. for

each z € {2 the limit %im % exists.
—Z

We denote by A(£2, X) the space of analytic functions on {2 with values in X

We remark that X is quasi-complete (cf. [Sch80] Section IV.6.1 for the case
that X is the dual of a Fréchet space) and thus the closed, convex, circled
hull of any compact subset of X is compact (cf. [Sch80] I1.4.3 Corollary). In
that case, analyticity implies continuity and coincides with weak analyticity,
cf. [Gro53] Théoréme § 2.1:°

1.5.1 Fact

A2, X) C C12,X).

1.5.2 Fact ( Weak Analyticity)

feA(, X)iff ' o f € A(2,C) for all 2’ € X*.

1.5.3 Fact
Let X be a Fréchet space and endow X* with the weak-* topology.
Then f € A2, X*) iff [z — (f(2),z)x] € A(£2,C) for all z € X.

We also recall the results from [Gro53| Remarque § 2.4.

1.5.4 Fact
A(£2, X) together with pointwise addition and scalar multiplication is a C-
vector space.

8In the case that X is the dual of a Fréchet space, say X = Y*, X* here denotes the topological
dual of X endowed with the strong topology. X* then coincides with Y, cf. [FW68] Satz § 14.1.3.
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1.5.5 Fact (Product Rule)

Let X, Y and Z be Fréchet spaces and m € Z(X;Y, 7).

Then [2 3 2 — w(f(2),9(2))] € A(2,Z) for all f € A(£2,X) and g €
A(2,Y)

For the rest of this section we assume that X is a Banach space.

1.5.6 Definition and Fact (Fréchet Space Structure on A(£2, X))

We endow A(f2, X) with the compact-open topology, i.e. the topology gen-
erated by all seminorms of the form A(£2, X) > f +— sup,cx || f(2)|x where
0 # K cc 2 (Cf. [Cha85] Section 16.8 and [Dug70] Theorem XI1.7.2.). Then
A(£2,X) is a Fréchet space, cf. [Cha85] Theorem 16.13.

Analogously to the scalar case, the Weierstraf convergence theorem (cf. [RS02]
Theorem 8.4.1) holds. We state the following consequence.

1.5.7 Fact
0e ZL(A(2,X)).

As direct consequence of the compact-open topology and Fact 1.5.3 we obtain:
1.5.8 Fact
6, € (A(2,QC))" for each z € 2.
If we endow (A(£2,C))" with the weak-* topology then
[z — d,] € A2, (A(2,C))").

It can be easily shown that the product defined in Fact 1.5.5 is continuous in
the following sense.

1.5.9 Fact

Let Y and Z be Banach spaces and 7 € Z(X;Y, 7).

For all f € A(£2,X) and g € A(£2,Y) we set II(f,g) = [2 > z —
7(f(2),9(2))]. Then I € Z(A(£2,X); A(£2,Y), A(S2, E)).

We also state the following two applications of Fact 1.5.9.

1.5.10 Fact
Let Y and Z be Banach spaces, A € A(2, Z(X,Y)), Be€ A2, Z(Y,Z)) and
f€A(2,X). Then [z — (A(x)) f(z)] € A(£2,Y) and [z — (B(z)) (A(z))] €

A2, 2(X., 2).
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1.5.11 Fact
Let a € A(£2,C[0,1]) and f € A(£2, L,([0, 1], X)).
Then af € A(£2, L,([0,1], X)).

As a direct consequence of Fact 1.5.2 and the Hahn-Banach theorem we obtain:

1.5.12 Fact
Let f € A(£2, X) with f(£2) C U, where U is a closed subspace of X.
Then f € A(2,U).

Series Expansion

We will make use of the following well-known expansions, cf. [DS58] Section
I11.14.

1.5.13 Definition and Fact (Power series)

Let f € A(£2,X).

For each z € (2 and all 7 > 0 such that Bg(z,7) C §2, f can be expanded
into a power series (about z). l.e. there exists (xy)ren, C X such that the
series Y oo o T(- — 2)¥ converges absolutely and uniformly to f on Bg(z,7).

The coeflicients (zy)ren, C X are uniquely determined and are given by ), =
(0 f)(2)/K! for each k € Ny.

If, in particular, {2 = Bg(z,r) for some r > 0 and z € C then there exists

a uniquely determined power series Y o, (- — 2)¥ about z that converges
N—o0

absolutely and pointwise to f on 2 and [2 3 { — ij:o (€ — z)k] —  f
in A(£2,X).

Conversely, if g : 2 — X can be locally expanded into power series, i.e.
if for any z € (2 there exists r > 0 with Bg(z,7) C {2 and a power se-
ries > o o xk(- — z)k that converges absolutely pointwise to g on B, then g €
A(£2, X) and the power series expansion about z of g coincides with

S o k(- —2)"

1.5.14 Remark

The expansion into a unique power series also holds for each f € A(£2,Y)
where Y is a Fréchet space, cf. [Grob3| Théoréme § 2.1. In particular, let
F € A(2,A(2,X)) and n € No. If we denote by 32°° fi¥(- = 2) the
power series expansion of F(z) € A(f2,X) about z, in other words f,gz) =
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6.(0%(F(z2)))/k! € X for each k € Ny, then Fact 1.5.8 in combination with
Fact 1.5.7 yields [z — fT(LZ)] € A(£2,X).

1.5.15 Definition and Fact (Laurent series, Cauchy-Hadamard formula)
Let 2,3 ={2€ C: a< |z <P} (where « > 0 and 8 € (o, 0] be an
annulus with center 0.

Every f € A(£2,3,X) has a unique Laurent series expansion (with center 0),
i.e. there exists (a uniquely determined) (zj)rez C X such that the series
Y CL’k()k converges absolutely and pointwise to f on {2, 3. In particular,
limsup; . (J7_4]x)""* < a and® 3 < (limsup,_ (2] x)"") ™ € RU
{oc}. Furthermore, the convergence above is uniform on every K cC C\{0},

in oth ds [2a52 v T o ©
in other words [2u s gsz__ka(f)]A(@X)f

Conversely, if (zx)rez C X such that
o = limsupy_. ([l [x)"" <
8 = (limsupy_ (o] x)"") " € RU{o0}
then > 07 xk()k converges absolutely pointwise on {2, g, to say ¢g. Further-
more, g € A(244, X) and S2°° __ x(-)" is the Laurent series expansion of
qg.

Analytic Functions on Banach Spaces

Analytic functions defined on Banach spaces will only occur in compositions.
The following basic statements will be all we need and we refer to the mono-
graph [Cha85] for a detailed treatise of the topic. In particular, we refer to
|Cha85] Theorem 14.13 for an equivalent definition and [Cha85] Theorem 5.9
for a proof of Fact 1.5.16.

Let U C X and Y be a Banach space. We say, f : U — Y is analytic if it is
Fréchet differentiable on U. (We remind the reader that all Banach spaces in
this thesis are complex vector spaces.)

We denote by A(U,Y') the set of all analytic functions from U to Y.

9Here, we use the convention 1/00 := 0, of course.
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1.5.16 Fact . .
Let Y and Z be Banach spaces, U C X and V C Y.
If fe A(U,Y) with f(U) CVand g € A(V,Z) then go f € A(U, Z).

A direct calculation finally yields the following result.

1.5.17 Fact

Let X € {C]0,1],C0,1]}.

We define exp : X — X by exp f := [[0,1] 2 ¢ — exp(f(t))] for each f € X.
Then a simple calculation yields exp € A(X, X) and for each f € X the
derivative dexp f € Z(X) is given by X 5 g — (exp f) - g.

Analytic Sets

1.5.18 Definition and Fact
A subset Z of §2 is called an analytic set in §2 if for each z € (2 there exist a

neighborhood O C 2 of z, I € N and analytic functions f; € A(£2, C) for each
i=1,...,lsuch that ZNO={&e€2: fi(§)=...fi(§) =0}.

Every analytic set is closed in (2, cf. e. g. [L0j91] Section I1.§ 3.4.
Clearly, an analytic set in C\{0} is either C\{0} or a discrete set of points.

1.6 Intervals and Distance on the Torus

The following technical definition is used in connection with the domain of
periodic functions.

An open T-interval of length § < 1 is a subset of [0, 1] of the form [0, 1]N(/+Z),
where I C R is an open interval of length d. The center of such a T-interval
is (the unique point) [0,1] N (¢ + 7Z), where c is the center of 1.

For all a,b € R we define their T-distance dr(a,b) := min,ez |a +n — b|.

1.7 Fourier Series of Banach Space Valued Functions

Again, let X be a Banach space. We denote by

s(Z,X) :={ (xg)rez C X : ‘kllim |k"zg||x =0 for all n € N }
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the space of rapidly decreasing sequences with values in X (which takes the
role of the Schwartz space).

We define Fx : C*(T, X) — s(Z, X) by
1
Fxf = (Fxfoer = ( /0 F(t)e > dt) ey,

Then Fx is well-defined, bijective and the inverse Fy' : s(Z, X) — C>(T, X)

1.8 Multiplication Operators

Throughout this section, let p € (1,00) and X be a Banach space.

1.8.1 Definition
Let M be a set, a : M — C and X a Banach space. For any function
f: M — X weset Mla]f := [M > m — a(m)f(m)]. If it is clear from the
context that a acts as such a multiplication operator we also shortly write o f
instead of M|a]f.

We directly obtain the following statements.

1.8.2 Fact
[a — M[a]] € Z(C0,1], Z(L,([0,1], X)).
In particular, M[a] € Z(L,([0, 1], X)) for each a € C0, 1].

1.8.3 Fact
[a — M[a]] € 92”(01[0, 1],Z(W1([O, 1], X)).

p
In particular, M[a] € £ (W, ([0, 1], X)) for each o € C'[0, 1].

1.9 Complex Power Functions

Motivation

We will need analytic logarithm and power!? functions (locally) for all points in
z € C\{0}. For each point z € C\{0} we choose an arbitrary (but from then
on fixed) branch of a logarithm that is defined on a suitable neighborhood of z.
(For the sake of clarity we also will provide an index to indicate to which point

Ofor real-valued exponents
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a logarithm function “belongs”, e.g. log /9 3 W111 denote the evaluation at

of the branch associated with 1/2 and e.g. log(;y § 3 will denote the evaluamon
at 2 of the branch associated with 1 (the values may not coincide).) For each
point z € C\{0} we will then use this branch of the logarithm to define a
corresponding power function, again on a suitable neighborhood of z. JAN

We will now provide the technical details and some simple facts. Additionally,
we refer to [F1.94] §§ V.1 and V.2..

Construction
Let z € C\{0}.

We set B, := Be(z, |2]).
Then there is an analytic logarithm function § +— log,y§ on B, i.e. log(,) €

A(B., C) and exp(log, §)) = & for all £ € B..

For all £ € B, and t € R we set fgz) = exp(tlog,)§). We write shortly 5((2)

and f((z_)) instead of R 3 t — ﬁfz) and R >t +— ‘5(_z§> resp.. A
The following statements hold for all z € C\{0}.

1.9.1 Fact
EH%)H@eileAwmmam.

€~ D)€ € AB., 1o, 1)).
(This is a simple consequence of Fact 1.5.2; Fact 1.5.17 and Fact 1.5.16.)

1.9.2 Fact
For every £ € B, and n € Z 5&) do not depend on z, namely: If n > 0

L) = H;‘Zl §ifn <08’ = 1/5&) and f?z) = 1. Therefore we will sometimes

omit the subscript in case of an integer-valued exponent.
1.9.3 Fact
gt — g3 §€Z) for every £ € B, and s,t € R. In particular 5((2>§(;') = 5(_')5(') =

(2) (2)
1p, for every £ € B,.

1.10 UMD-spaces, R-boundedness

A Banach space X is called a UMD-space if the Hilbert transform, defined
on the Schwartz space S(RR, X), can be extended to a bounded operator on
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L,(R,X) for some (or, equivalently, for all) p € (1,00). We refer to, e.g.,
[Ama95] § I11.4.4 for the details and basic properties. In particular we will use,
that if X is a UMD-space and Y is a Banach space that is isomorphic to X,
then Y is a UMD-space as well. Furthermore, every UMD-space is reflexive.

We remark that every Hilbert space is a UMD-space. Furthermore, if {2, i1 is a
o-finite measure space then every closed subspace and every quotient space!! of

L,(£2, ) for each p € (1,00) is a UMD-space, cf. [Ama95] Theorem I11.4.5.2.
In particular, all reflexive Sobolev and Hardy space are UMD-spaces.

If X and Y are Banach spaces a family of operators A C Z(X,Y) is called
R-bounded if there exists ¢ > 0 such that for all n € N, Ay,..., A, € A and
Ti,...,2p, € X

1> riAiillz,qoy) < el 2oimy il L (o.1).x)
for some (or, equivalently, for all) p € (1,00). Here, r, := [[0,1] 2 ¢ —
signsin(2"wt)] for all n € N denote the Rademacher functions. (If we want to
emphasize that A C Z(X,Y) we write (X, Y)-R-bounded.)

In that case we will denote by R(xy)(A) the smallest ¢ such that the above
inequality holds. It will be clear from the context which p is meant and we
therefore omit a corresponding indication of the dependence on p.

If H is a Hilbert space, all bounded sets in .Z(H) are R-bounded.

If X is an Ly(£2)-space with 1 < ¢ < oo one can show that (X, X)-R-
boundedness is equivalent to the following square function estimate

I A ) 2 N L0 < el 2y |2a®) 2 L, 0)-

More details on both definitions, basic properties and a remark on the meaning
of the “R” can be found in [KW04] Section I.2.

Hhy a closed subspace



Chapter 2

Basic Framework

The following notations will be used throughout this thesis.
Let 1 <p<oo,q:=(1—-1/p)~t and X be a UMD-space.

2.1 The Operator Family (A;), 1

Forall t € R let A;: X D D(A;) — X be a closed operator such that

(A-i) there exists a normed space (D, || - ||p) such that D(A;) = D for all
t € R and (the set) D is a dense subspace of X and

(A-ii) || - ||p is, uniformly in ¢, equivalent to all graph norms || - ||4, (where
|| 4, == ||d||x + ||Asd||x for all d € D), i.e. there exists ¢cp > 0 such
that c;'||d||p < ||d||a, < cplld||p for all d € D and all ¢ € R.

Since A; (for, say, t := 0) is closed, D is a Banach space. Clearly, D — X and
Are Z(D,X) for all t € R.

Furthermore, we assume that R > t — A; is periodic, i.e. A; = A4 for all
t € R. To remind the reader of periodicity, we often write t € T instead of
t € R when referring to indices of the operator family (A;),cp.

2.2 The Lifted Operator A

For a D-valued function f defined on M C R we set
Af =M >t— A(f(t))]

19
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We also assume (throughout this thesis) that

(A-iii) [t — Ay € C(T, Z(D, X))

holds.?

Obviously, this implies Af € L,([0, 1], X) for all f € L,([0,1], D).

The “realization” A : L,([0,1],X) D Ly([0,1],D) — L,([0,1], X) then is a
closed operator since its graph norm on its domain is equivalent to the norm
of (the Banach space) L,([0,1], D). Furthermore, A is densely defined.

2.3 Constant Families (Ay)), 1, As,

We remark that for (a fixed) ¢y € T the (constant) family

(A, : X DD — X)),
fulfills the conditions (A-i), (A-ii) and (A-iii). Analogously to Section 2.2, we
denote by A;, f the corresponding map t — A, (f(t)) for a D-valued function f.

Thus, again we obtain a closed, densely defined operator Ay, : L,([0, 1], X) D
L,([0,1], D) — L,([0,1], X).

2.4 Wila, b, Wi.[0,1], Wola, b], W_1..[0, 1], Wi(T)

During this section, let z € C\{0} and a,b € R with a < b.

We will now introduce the Banach spaces Wila,b], Wi [0, 1], Whla, b] and
W_1.[0,1] where the first index should remind the reader of (weak) differen-
tiability and the second one of quasiperiodicity.

For the definition of the intersection and sum of normed spaces and their
corresponding natural norms we refer to [Tri95] Section 1.2.1.

We endow
Wila,b] :== L,([a,b],D) N W;([a, b, X)

: 1/
with the norm || f{lw,jap = (||f\|]£p([a’b]’D) + Hafﬂip([a,b],x)) ”_ Then Wila, b]
is a Banach space (and its norm is equivalent to the natural intersection norm
[ flln == max{|[| fl|z, (a.0)s | f w2 (an.x) })-

LClearly, this is equivalent to [t — A;] € C(R,.Z(D, X)).
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Similarly, we define the subspace of z-quasiperiodic functions?

Wi .[0,1] := L,([0,1], D) N Wpl([O, 1], X).
of Wi[0,1] and we set || f|lw, .01 == [[fllwijo,q) for all f € Wi .[0,1]. Then
Wi .[0, 1] is a Banach space (and its norm is equivalent to the natural inter-
section norm || f||n := max{|[f|z,(0.11,): [l/]lw;(0,11,x).1)-

We set
Wola, b] :== L,([a, b], X).

Furthermore, we define

W_1.[0,1] :== (Wl,l/z[oa 1])*
We call the reader’s attention to the index “1/2z” which, of course, only serves
as a more intuitive presentation due to duality. By [Yos71| Proposition 1.6
we get the representation W_y.[0,1] = (L,([0,1], D) N W ([0, 1], X)1.) =
(Lp([0,1], D))" + (W, ([0, 1], X)) "
For intuitive reasons, we set

Wl(T) = Wl,l[(), 1]

As a direct consequence of the continuous point evaluation in W, ([a,b], X))
(cf. Section 1.3), we obtain:

2.4.1 Fact
oy € Z(W1[0,1], X) for all t € [0, 1].

Finally, a mollifying argument (cf. [Ama95| Section I11.4.2) easily yields:

2.4.2 Fact
C>([0,1], D), is dense in W [0, 1].

2Cf. Section 1.4.






Chapter 3

Fredholm Property of £

We set Ly, 0,1] = 0+ A € L(W1.[0,1], Wy[0,1]) for all z € C\{0} (and, in
particular, Ly, (ry := 0+ A € Z(Wi(T), Wy|0,1])).

Before we impose further restrictions on (the dual operators of) (A:),cp we
will now show that under suitable conditions Lyy, 0.1 is a Fredholm operator.

The following theorem (or its corollary, resp.) provides the basis for construct-

ing regularizers!.

3.1.3 Theorem

Assume that for (a fixed) ty € T there exists p € R such that p+iR C p(Ay,)
and { (A +1)(A, —A) ' : A€ p+iR}is (X, X)-R-bounded. Furthermore,
we define £, € Z(Wh(T), Wy[0,1]) by Ly, :== 0 + Ay, — p.

Then L, is invertible, i. e. £, has a bounded inverse By, € .Z(Wy|0, 1], W, (T)).

Remarks on the proof.

The statement mainly follows from [AB02] Theorem 2.3 and is an application
of the Marcinkiewicz multiplier theorem. However, for the convenience of the
reader we represent the complete proof in the current situation.

We also remark that the assumptions directly yield that D is also a UMD-space,
since (Ay, — p)~' : X — D is an isomorphism.

Finally, we remind the reader that by Fx : C*°(T, X) — s(Z, X) and analo-
gously Fp we refer to the Fourier transform as defined in Section 1.7.

Proof.
For all f € C*(T, X) let By, f := Fp'MFx f where M : s(%Z, X) — s(%, D)

LCf. the remarks on the proof of Theorem 3.1.6.

23
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is defined by M(c)pep = (Mick)pey = (At — M)~ k) g With Mg := p —
2rki € p(Ay,) for each k € Z. We remark that M is well-defined because of
the R-boundedness condition on the resolvents in combination with the identity

A (A, — X)) = MAy, —A) 7+ 1d for all X € p(Ay,).

We will prove in a moment that B;, extends to bounded linear operator from
Wh|0, 1] to Wi (T') which we will denote by the same symbol.

Before, we show first how invertibility of £y, follows from this: A direct cal-
culation shows that L, Fp' (ck)reg = Fyx ((Ay — Me)k)peg for all (c)peq €
s(Z, D). Thus for all f € C>(T, X)

EtOBtof - EtoflslM‘FXf = f;(l((Ato - )‘k)(Ato - Ak)_1<fo)k)k€Z -

FX (FxFipez = -
On the other hand,

fxﬁtof = ((Ato — )‘k’)(]:Df)k)keZ for all f - COO(T, D)
and therefore

BiLoof = Fp' MFx Ly f = Fp' M((Aty = M) (FDf i) pen =

FpH (A = M) (A = M) (Fo idsen = Fp (Fof))pes = |
Since Ly, € LW (T),Wp[0,1]) and By, € L(W,[0,1], Wi(T)) by density?
of C*(T, D) in Wi(T) and density of C*(T, X) in Wy[0, 1], resp., it follows
that £, is invertible.
It remains to show that indeed B;, € Z(Wyl0,1], Wi(T)). First we note,
that By, (C>*(T, X)) c C*(T,D) C Wy(T). Thus by density of C*(T, X)
in W0, 1] it suffices to show that® ||By, fllwym) S I fwppo for all f e
C>®(T,X). To this end we will show that (a) HBtofHLp(T,D) S 1w
and (b) [|0By, fllL,r.x) S | fllwopo, for all f e C=(T, X).
For all (¢k)ey € s(Z, D) obviously

8]:1:_11(%)%2 = FilM(Ck)keZ = Fx M(cr)pez )
where M (ck),cq = (Mkck)peq = (2mikcy),cq. Thus* OBy, f = Fx' MM Fx f
for all f € C*(T, X).
Thus (a) and (b) are equivalent to

2Cf. Fact 2.4.2.

*We use the symbol < in the sense that there exists some C' > 0 such that ||By, fllw, (1) <
Cll fllweo, for all f € C°°(T, X). The further occurrences of said symbol during this proof are
meant analogously.

10f course, 0F " (ck)pey = fBlM(ck)kEZ and thus By, f = Fp' MM Fx f also holds. However,
in general MM fails to be a Fourier multiplier between D and X
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IFp M (cr)perlli, o) S N Fx () perlbwoo and
1P MM (er) ez, S I1Fx (e)penlwoon
for all ()., € Fx(C®(T,X)) = s(Z,X), i.e. M and MM are Fourier
multipliers. By [AB02] Theorem 1.3 it suffices to show that
(a’) the sets {k[Mg1 — My : k€ Z} and { My : k € Z} are (X, D)-R-
bounded and that
(b’) the sets
{K[My 1 Myyy — MyMy) : k€ Z} =
{k2mi(k + 1) My — 2wikMy) : k€ Z }
and
(MM, : k€ Z}={2mikM,: k€ Z}
are (X, X)-R-bounded.

By Kahane’s contraction principle® we obtain

Rix.x)({ 2mikMy - k € Z}) < 2R
with R := Ruxx)({ (1 + [A\)(A, —A) ' s A € p+iR}) < co. We already
remark for a later use that, similarly, we get

Rixx)({ 2mikMyy - k€ Z}) < (2+2m)R
and thus

Rixx){kMy: ke Z}) <2R/(2r) =7 'R
and

R(X,X)({ kMk;—i—l kel }) < (2 + 27T)R/(27T)
The resolvent identity yields

k[2mi(k + 1) My — 2mik My] = 2wik My — 2mik Myp2mik My 1.
Hence by [KW04| Fact 2.8

R(X’X)({]{?[Qﬂ'@(k + 1)Mk+1 — QWZ/CMk] kel }) <

Rixx)({2mikMyy - k€ Z })+

R(ny)({ 2mik M, - k € Z})R(ny)({ 2mikMy - k€ Z}) <

(2+27)R+ 2R(2 + 27)R.
Therefore (b’) holds.
Again, by the identity Ay (Ay, —A) " = M4y, — A) "+ 1d for all X € p(Ay,))
we get

(T '+ 1)R.

°See, e.g., [KW04] Proposition 2.5.
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R(X,D)({ M, : ke Z}) <

CD(R(X,X)({ M. k€ Z}) + R(X7X)({ MMy, k€ Z}) + 1)
where c¢p is the constant given by condition (A-ii). Another application of
Kahane’s contraction principle now yields Rix x)({ My : k¥ € Z}) < R and
Rixxy({ My : k € Z}) < 2R. Therefore { M}, : k € Z} is (X, D)-R-
bounded.

Finally, with the same argument we obtain
Rix.py({ k[My11 — My]: k€Z}) <
co(Rixx)y({ k(Mg — My) - k€ Z})+
Rix x)({ b[Aey1Mpy1r — MeMy] : k€ Z }))
Furthermore, [KW04] Fact 2.8 yields
Rixx)({ k[Mgs1 — M) : k€Z}) <
R(X,X)({ kMk—i—l ke Z}) + R(X,X)({ kM, - k € Z}) <
(7 '+ 1R+ 'R=02r '+ 1)R
and using again the resolvent identity we get
Rix x)({ B[ ApyiMpyr — MeMy] - k€ Z}) <
R(X,X)({ 27Ti]€Mk+1 kel })—I—
R(X,X)({ MMy k€ Z})R(X’X)({ 2mik My 1 k € Z}) <
(2+27)R+ 2R(2 + 27)R.
Therefore (a’) holds. This finishes the proof. O

3.1.4 Corollary
Assume that for the family (A;), . the following condition holds.
(A-iv) There exists p € R such that p + iR C p(A4;) and
{(N+DA =N Aep+iR}
is uniformly (X, X)-R-bounded for all t € T, i.e. there exists cg > 0
such that Rix x)({ (A + 1)(4s, — AN A€ p+iRY) < e for all
teT.
Then { By : t € T}, where B, is the inverse of £; according to Theorem 3.1.3,
is bounded (in Z(Wy[0, 1], Wi (T))).
Proof.

We recall that in the proof of Theorem 3.1.3 we have shown boundedness of
B;, by estimating certain R-bounds from above (by® cp((2n~1 + 27 + 3)R +

6Here, of course, we are using the notations from the proof of Theorem 3.1.3. We remark that
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(4 + 4m)R?), cp(B3R + 1), (2 + 2m)R + (4 + 47)R? and 2R, resp.) in order
to apply [AB02] Theorem 1.3. Using condition (A-iv) those bounds obviously
can be estimated from above independently of . An examination of the proof
of the cited theorem now yields that the norm bound of B; then also can be
estimated from above independently of ¢. O

As a final ingredient to establish the Fredholm property of Ly, () we will
need a compact embedding of W;(T) into Wy[0, 1]. This can be obtained by
introducing an assumption on the domains D, namely we will use the following

result by Aubin (cf. [Aub63]).

3.1.5 Fact
Assume that

(A-v) D = X
holds.
Then Wi (T) < W;|0, 1].

3.1.6 Theorem
Let (A-iv) and (A-v) hold.
Then Lyy, (1) is a Fredholm operator.

Remarks on the proof.

We imitate the proof of [Kuc93] Theorem 5.1.4 and will construct a left- and
a right-regularizer, i.e. operators Ry, Rgr € Z(Wy|0,1], Wi(T)) such that
ReLw, () — Idw, (1) and Ly, (myRr — Idyy,0,1) are compact operators. Then
[Sch73] Theorem 2.1. yields that Lyy, (1) is a Fredholm operator which will
prove the theorem. We remark that we will here use the notions to the torus
w.r.t. T that we introduced in Section 1.6.

Proof.

For a (at first fixed) 1/2 > 6 > 0 let (U;)j=1... n be an open cover of [0, 1] by
N = N(6) open T-intervals of the length 2§ such that any point of [0, 1] is
covered at most twice and for each j = 1,..., N we denote by ¢; the center

.....

to this cover. Furthermore, for each j =1,..., N let ¢»; € C°(T, [0, 1]) such
that supp¢; C U; and ¢; = 1 on supp ¢; and let ¢, € C°(T, [0, 1]) such that

in general R depends on ty.
TOf course, C*°(T, [0, 1]) means the subset of all [0, 1]-valued functions of C>°(T, C).
8T.e. supp ¢; C U, for each j =1,...,N.
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supp{/;j C Uj and {/;j =1lonsuppy;forall j=1,...,N.

By Theorem 3.1.3 £; := 0+ A, — p € Z(Wi(T), Wy|0, 1]) has a bounded
inverse B; € Z(Wy[0, 1], Wi (T)) for each t € [0,1] and Corollary 3.1.4 yields
that the norms of the operators {B;}icjo1) can be estimated by a common
constant cg > 0 independently of ¢.

We set Bf = Z] L M[g;]By, M[9);] f for each f € Wy[0,1]. By Fact 1.8.2
and Fact 1.8.3 we obtain M[¢;]B; M[¢);] € L (Wyl[0, 1], Wi(T)) for each j =
1,..., N and thus by Fact 3.1.5 M[¢;]B; M[3);] € £ (W0, 1]). Therefore

B € L(Wy[0,1], Wi(T)) and B € # (W0, 1]).

A simple calculation shows

Lyl =

N
ZIM[ij]EthtjMWj] + ZIM[a¢j]BtjM[¢j]+
j= j=

P 2 MIEIB ML) + 35 MI65) (4 = A )5, M ] on W0, 1]
For the first summand the definition directly yields
jé\f:l M{e;] L1, B, M[1h;] = Tdyy,jo,1)-
As above, for the second summand
K1 1= 3 MI00,1B, M) € # (Wol0, 1))
and clearl}]/:fi)r the third summand
G i= f: M{g, B, M[] = pB € £ (Wp[0, 1))

holds.

We will now show that the last summand S = Zjvzl b, (A — Atj)Btjq/)j is a
contraction in Wy|0, 1].

We denote by w(d) := sup{ [|[A; — As|l#mp.x) : t,5 € [0,1],dr(t,5) < 5} the
modulus of continuity of T 3 ¢ — A; € £ (D, X). In combination with peri-

odicity of the family (A;),. we obtain by a compactness argument w(d) =09,
Note that 1y, (t)||A; — Athg(D x) < w(d) forallj=1,...,Nandallt € [0,1]
since all points of U; have at most T-distance d to the center of Uj.

Furthermore, by the inequalities of Jensen and Hélder
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a? + P < (a+ b)? < 2071(aP + P) for all a,b > 0.
Thus, if for each j =1,...,N g; : [0,1] — X is a function with supp g; € U;
then

N N N
Zl lg;(®I% < ( 21 lg;()llx)" < 2v7! Zl 1g; ()| for each ¢ € [0, 1],
j= J= j=

since by construction of the sets U; at a fixed point all but at most two sum-
mands vanish.

Therefore we obtain for all f € Wy[0, 1]

IS By = | X 3 MI0;] (A — A, B, Ml |

Wol0,1]
/H > (M[9j](A — Ay)By, Wj]f)(t)Hidtg
/1(§DH( (A A EMUI ) <

/% MI6,) (A — A B M ) (0| dt =

/ i!@ (A = A) B ML) ()] dt =

i / 07[1(Ar = A (B, MIw; £ B[ dt <

% / 1140 = A ) (B ML ) DI dt <
2 (w(8))" z H(&MW )(®)1 dt =

21 (w(8))? ; 1B ML gy <

2

271 (0o(8))" > 18, M3 f Iy, oy <

2

21 (w(9))" Z_: B4, 1% vy 0,11, () IS L By o 1y <
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N
2 Lag (@) 3 MWL o) =
(2e50(6) p/zﬁ1 O)|% dt <

(2¢50(8) p/z/(i 1OM[51f) )HX)pdt:

eaato)? /2 [ (S 00) 10 -

(2050(5))" /2 / P dt = 2eso(@) /2 11/ Ko

We conclude that [|S||zomo.1) < 28 Pesw(0)w ()| f|Iweo.1] %0, From now

on we assume that ¢ is small enough such that ||S|| 2w,y < 1. Thus then
Idyy, 0,1 + S € L(W[0,1]) is invertible.
Since Ly, (B = Idyy, 0.1 -I— S + K1 + Ky we obtain

£W1(T)B(IdW0[O,1] + S) IdWO 0,1] (’Cl + ICQ)(IdWO 0,1] + 8)
Clearly, (K1 + o) (Idwyjo,1) + S) ' e o (W[0,1]). Thus

B(Idy,p1 + 8) ™" € L(Wo[0, 1], Wi(T))
is a right regularizer.
For the construction of a left regularizer we first remark that

Btj S "%(WO[Oa 1]7 WI(T))
together with Fact 3.1.5 also yields B;, € Z (W (T)) foreach j =1,..., N.
Analogously as above we obtain (A — Atj)M[?Zj] e ZWi(T), Wy|0,1]) and
(A - Ata‘)MWJ]H.,sf(wl(ir),wo[o,l]) < w(d) for each j = 1,..., N. Therefore

B, (A — Atj)M[%]HX(Wl(T)) < cpw(0) 2% 0 and thus we can again as-

sume that d is small enough such that B, (.A — Atj)M[{va] is a contraction
in Wi(T). Hence then Idyy, ) + By, (A Ay, )M[t;] is invertible and we set

S; = (Idwy(m) + By, (A — A, ) W) € LMWi(T)).
A simple calculation now shows

( PO ¢j5j5tjM[¢j]) Ly (1) =
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Idyy, () + p 5y {18, B M) — S0 M(65,]8; B M[0W].
As above we obtain that the second and third summand are compact opera-
tors on Wi(T) since By, € 2 (Wi (T)). Thus Zjvzl M([¢;]S;B:, M[1);] is a left

regularizer.

This proves the theorem. O

3.1.7 Corollary

Let (A-iv) and (A-v) hold.

Then Ly, (my—2z € L (Wi (T), Wy[0, 1]) is a Fredholm operator for each z € C.
Proof.

Since by Fact 3.1.5 Wi(T) <= W;[0,1] we conclude that Ly, ) — 2z is a
compact perturbation of the Fredholm operator Lyy, (r). Thus [Sch73] Theorem
3.1 yields the statement. U

A direct calculation yields the following relation which will allow us to extend
the Fredholm result to all operators Ly, o,1).

3.1.8 Fact
Let z € C\{0}.

Then Ly, (o) = MIED (Lo, () + log ) )MIEL] for all € € B..
3.1.9 Corollary
Let (A-iv) and (A-v) hold.
Then Ly, jo,1) € £ (W1,.[0, 1], W|0, 1]) is a Fredholm operator for each 2 € C.
Proof.
Let z € C\{0}. Fact 3.1.8 particularly yields

Ly, o) = M) (Lo + log (o) )Mz ).
By Corollary 3.1.7 Lyy, () + log(,) 2 is a Fredholm operator and Fact 1.8.3
yields that M[z()’] € Z(W1.[0,1], Mi(T)) and M[z{)] € L(Wy[0,1]) are
isomorphisms?. We obtain that Lyy, (01 is a Fredholm operator a
3.1.10 Remark

Indepently and during the development of this thesis, W. Arendt and P. Rabier
proved similar results to this chapter, cf. [AR09].

"The inverses are M[z()] € Z(W1(T), W1.[0,1]) and M[z(,"] € L(Wo[0,1]) resp..






Chapter 4

The Dual Framework

We will now introduce the “dual” objects to the objects defined in Chapter 2.

Loosely speaking, all construction are carried out analogously by substituting
D by D’ X by X* and p by q.

4.1 (A e, A5 A

We will use duality to define what we mean by solutions to equation (E).
Therefore we assume from now on, that the following three conditions hold for

the dual operators A : X* O D(A}) — X*.

(A*-1) There exists a normed space (D', || - ||p/) such that D(A}) = D’ for
all t € R.

(A*-ii) || - ||pr is, uniformly in ¢ € R, equivalent to all graph norms || - || 4:.
(A*iil) [t — Af] € C(T, Z(D', X¥)).
4.1.1 Remark

ince A; (for, say, t := 0) is closed, (D', || - |
Theorem I11.5.29.

Periodicity of (A¢),cg vields periodicity of (Af),.r and we will again use the
notation ¢ € T when referring to indices.

x+) is dense in X* by [Kat66|

Analogously as in Section 2.2 and Section 2.3, resp., we then define the closed,
densely defined operators A’ : L,([0, 1], X*) D L,([0,1], D) — L,([0, 1], X*)
and A : L,([0,1], X*) D L,([0,1], D") — L,([0, 1], X*) for (a fixed) ty € T.

33



34 The Dual Framework

4.2 Wila, 0, Wy .[0,1], Wyla, b, W2, [0, 1], Wi(T)

Analogously to Section 2.4, we define, again for all z € C\{0} and a,b € R
with a < b, the Banach spaces

Wila, b] == Ly([a,b], D) N qu([a,b],X*),
endowed with the norm || f{|wijap == (HquLq([a’b]?D/) + H@quLq([a’bLX*))l/q,
WA [0, 1] := Ly([0, 1], D) 0 W, ([0, 1], X™).,
endowed with the norm ”fHW{,z[QU = || flbwo.,s
Wyla,b] :== Ly([a, b], X*), and
WL, [0,1] == (W, 0, 1) 2 (Ly([0,1], D))" + (W ([0, 1], X*)1/2) "

Again, we set
WI(T) == Wr,[0,1]
and we state the results analogous to Fact 2.4.1 and Fact 2.4.2.

4.2.1 Fact
o € Z(W1[0,1], X*) for all t € [0, 1].

4.2.2 Fact
C*>([0,1], D"). is dense in Wy [0, 1].

4.2.3 Definition and Fact (Duality between Wy[0,1] and W0, 1])

Since X is reflexive, by [Edw65] Theorem 8.20.5 (W[0,1])" can be identified
with W([0, 1] by the usual isomorphism W)0,1] 3 f' = (f',)w € Wp[0,1]),
where (f, flw = fo ), x dt for all f" € Wy[0,1] and f € W0, 1].
Analogously, Wy[0, 1] = (WO[O 1]) by the isomorphism f +— (-, f)yy. Fur-
thermore, both Wy|0, 1] and W][0, 1] are reflexive and as usual the canonical
embedding into their biduals is compatible with the identification (-, -)yy. We
will use these identifications without further notice.

4.3 Extension and Duality of £ and £’

4.3.1 Motivation
In this section we will introduce extensions of the operators Lyy o1 and
EQ/V{ 0,1] using duality. We will explain the basic idea behind this construc-

tion in the following (general) situation.
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Ifa:x D d— zisa closed and densely defined operator on a reflexive Banach
space x, then there are the following two operators associated with a w.r.t.
duality.

First, there is the “usual” dual operator a* : z* O d" — z* (as e.g. defined
in [Kat66] § I11.5.5), which then is also closed and densely defined by [Kat66]
Theorem I11.5.29.

On the other hand, a € Z([d], x), where [d] denotes the Banach space induced
by the graph norm of @ on d. As a bounded operator a has then a dual operator
in Z(x*,[d]*) (in the sense of [Kat66] § 1.3.6), which we (here) denote by a* .

If we apply the second method to a* : z* D d — z*, we obtain a”~ :=
(a*)*~ € L(a*,[d']"). After the natural identification of 2** with x, we obtain
a” € Z(x,[d]*) and a direct calculation shows that a™ is the (unique [d']*-
valued) extension of a € Z([d], ) to z. JAN

During this section let z € C\{0}. We remark that the definition of the
following operators, in particular the “extended ones”, depends on z. E.g., if
in the above motivation a = 0 with x = L,([0, 1], C) and d = W, ([0, 1], C) ,
then a1 = (1 —1/2)dp (in [d']*)). However, for the sake of readability we will
mostly omit the use of a corresponding index in this section.

We remark that A : Wy[0,1] D L,([0, 1], D) — W,]0, 1] is the adjoint operator
of A" : W0, 1] D L,([0,1], D") — W;|0, 1] and vice versa.

We have already mentioned that the graph norm of A is equivalent to the norm
of L,([0,1], D). Thus A € Z(L,([0,1], D), Wy[0,1]). Analogously, we obtain
A e Z(L,([0,1], D"),W;|0,1]).
For both operators there is a unique extension to

A” e L(Wh[0,1], (Ly([0,1],D"))") and

AT e LWl0,1], (Ly([0, 1], D)), resp..
A” coincides with the dual operator of A" € Z(L,([0,1], D"), W}[0,1]) and
A" coincides with the dual operator of A € Z(L,([0,1], D), W0, 1]).

For the sake of completeness we remark that analogous results hold for Ay,
and A; , resp. and we define Ay, € .2 (Wp[0,1], (Ly([0,1],D'))") and A} €
£ (Ws[0, 1], (Ly([0, 1], D))") analogously.

Furthermore, as usual by partial integration 9 : Wy[0,1] D W,([0,1], X)_ —
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Wol0,1] and —0 = Wg[0,1] D W ([0, 1],X*)1/Z — W0, 1] are closed and
densely defined operators that are mutually adjoint. Their graph norms are
equivalent to the given norms on their domains.

Again, the dual operator of —0 € .Z(W,/ ([0, 1], X*)
sion of 0 € Z(W,([0,1], X)_, Wo[0, 1]) to

0" € L(Wl0, 1], (W} (0,1, X), )")
and the dual operator of 0 € Z(W,([0,1], X)_, Wy[0,1]) is an extension of
~0 € ZOVH(0. 1, X7), . Wi, 1) fo

—0~ € 2(Wyl0,1], (W([0,1], X) )").

l/z’W(/)[Ov 1]) 1S an exten-

The following diagrams on the next page illustrate the situation. To avoid
confusion, we explicitly state that the symbol N denotes the intersection.
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We recall that in Chapter 3 we defined
Ly, o1) =0+ A € LW.[0,1], W[0,1]),
and we now set
L. =0+ A € ZW[0,1], W .[0,1]),
L 0.1] = -0+ A € Z( {71/2[0, 1], W0, 1]) and

1,1/z1Y

/172:: -0~ + A" € .Z(W(S[O, 1], V\Lm/z[o, 1])

We remark that throughout this thesis, formally £ := 0+ A and £ := -0+ A’
will hold and subscripts will be used for concrete realizations.

It follows that £ is the unique extension Lyy, o1 and coincides with the dual

/ 1~ - : : /
operator of L 0 Analogously, L‘l/zls the unique extension 'CW{,l/z

coincides with the dual operator of Ly, (.1-

0,1] and

For the convenience of the reader we redraw the diagrams using the introduced
notations.

LP([()? 1]7D) (qu([o7 1]7X*)1/Z)*
A
«/gw . \ / . \
Wi2[0, 1] [0, 1] 5 WL [0,1]
\ / K /
W, ([0,1], X) (Ly(0,1), D))
LQ([07 1]7D/) v (Wpl([oa 1]7X)z)*
%W/ [0 ”\ e . \
117200, 1] = W0, 1] = W_1,1:[0,1]
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4.4 The Operators £ and £’ on the Real Line — Part 1

The following statements are direct consequences of the definitions and the
underlying spaces, cf. Section 1.3.

4.4.1 Definition and Remark
We set

Witee(R) = Lyioe(R, D) AW (R, X),
Wooe(R) := Ly 10c(R, X),

W{,loc(]R) = Lgc(R, D) N qu,loc(]R7 X*) and
Wotoe(R) = Lgjoc(R, X¥).

Obviously, (an equivalence class of) a function f : R — X belongs to Wi j0c(R)
or Woloc(R) iff for all a,b € R with a < b the restriction fij,s belongs to
Wila, b] or Wyla, b], resp..
Analogously, (an equivalence class of) a function f' : R — X* belongs to
Wi oo (R) or Wi joo(R) iff for all a,b € R with a < b the restriction fj,
belongs to W[a,b] or Wi[a, b], resp..
We endow Wi ioc(R), Wotoe(R), W] 1,(R) and Wy 1,.(R) with the topologies
induced by the seminorms

ST N [ N S Y TNUPIN W

{II HW(’)[—k,k]}keNa Tesp..
Then Wi joc(R) (and analogously Wojec(R), Wi ,.(R) and Wy, (R)) is a
Fréchet space (since it coincides with the projective limit of the Banach spaces

W=k, k]}pen, cf [FWG68] § 6.2).

Furthermore, we easily obtain:

4.4.2 Fact

fe Wl,loc(]R) iff f € Wl[k‘, k + 1] and f|[k_1,k](k‘) = f‘[k7k+1](k) for all k£ € Z.
f €Woioe(R) iff f € Wylk,k+ 1] for all k € Z.

frewi . .(R)iff f/ € Wilk, k + 1] and f|’[k71’k](k) = f|’[k7k+1](k:) for all k € Z.

1,loc

f €W (R) iff f € Wiylk, k + 1] for all k € Z.
We now define the operators £ and £’ on the real line.

4.4.3 Definition and Fact
LWI,IOC(R) =[f—= 0+ A)f] € g(WI,IOC(R)v WO,IOC(]R))-
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El (R) = [f/ = (_a + Al)fl] = "%(W{,IOC(R% W(/),IOC(IR’))'

1 JJoc

4.4.4 Remark
Obviously, C(R, D) C Wy, (R) and L}, (CZ(R, D)) C Ce(R, X¥).

1, loc

Combining Section 1.4 with Fact 4.4.2, a direct calculation yields:

4.4.5 Fact
Let f e Wi .[0,1].
Then Ezf € Wl,locGR) and £W1,1oc(IR)(Ezf) = EZ<£W1,Z[O,1]f) (in WO,IOC(]R))-

4.4.6 Fact
Let f" € Wi .[0,1].
Then E. /' € Wi oo(R) and Ly ) (Bof') = Bo(Lhyy o) (i Whoo(R)).

1 loc

4.5 Solutions — Part 1

Using the introduced notation, equation (E) formally reads Lu = 0. We will
now give the precise definition of solutions, using duality.

4.5.1 Preparation and Definition
For all f' € C.(R,X¥) and f € Wmoc( ) clearly [t — (f'(t), f(t))x] €
Li(R, C) and we set (f', ) := [ (f'(t), f(t))x dt € C.

In particular, by Remark 44 4 <£/W{1 )qb’,f> is well-defined for all ¢’ €
CX(R,D’) and f € Whioc(R).

4.5.2 Definition (Solutions)
u € Wojoc(R) is called a solution (to equation (E))if (L),

(R r)®'su) =0 for
all ¢ € CX(R, D).

We end this section with two propositions that mostly will play a technical role
but also indicate the connection between the “weak formulation” used in the
above definition and a more classical concept.

4.5.3 Proposition
Let u € W1’1OC(]R).
Then w is a solution iff Ly = (wr)u = 0.
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Proof.
Analogously as in Section 4.3 partial integration yields

<£;/V{,1OC(R)¢/’U> = (¢, Lw, .. (m)u) for all ¢’ € CX(R, D").
Thus if Ly, . w)u = 0 then we obtain directly that w is a solution. Conversely,
if w is a solution, then density of the restrictions of C°(RR,D’) in Wla, b]
yields Ly, .. wyu = 0 almost everywhere on [a, b] for all a,b € R with a < b,
hence Lyy, . mwyv = 0. O

4.5.4 Proposition

Let u be a solution. Furthermore, assume that u is z-quasiperiodic for some
z € C\{0}.

Then 'C;(uHO,l]) = 0.

Proof.
Let w, € COO([O, 1],D/)1/z. We will show that <£;(U|[0,1]),¢/>W{ L0 = 0.
Then the assertion follows from Fact 4.2.2. 7

Let a € CX(R, C) with suppa C [—1,2] and @ = 1 on [0, 1]. We set & := «
on (=00, 1], @ =T on (1,2] and & := a(-—1) on (2,00). Then & € C*(R, C)
and ¢ == M{a](Ey21), & = M[3)(Ey,-/) € C2(R, D)

Quasiperiodicity of u and ¢’ in combination with the results of Section 4.3 and
Fact 4.4.6 yields

(L (wp), ¥dwy, o) = <U|[0,1]>/:;/V{’l/z[0,1]¢/>W{)1/Z[0,1] =

| Ot = [ (L, Byt DOl

1 1,loc
On the other hand, a direct calculation yields

2
Loy @@ ) = Loy @)@ u) + /1 (Lo ) Bryt)) (1), u(t)) x dt.

w @ u) =0 and (L)),

1,loc

By the assumption (L},,

1,loc

/1 <(£§/V{,10C(R)(El/zW))(t), w(t))x dt = 0.

This proves the proposition. O

(R)gg’, u) = 0, hence
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4.6 Fredholm Property of £’

For the sake of completeness we state the analogous result to Section 3. We
remark that all statements easily follow from the fact that the family (—A;), ¢
tulfills the corresponding conditions.

4.6.1 Theorem

Assume that for (a fixed) to € T there exists p € R such that p+iR C p(A4})
and { (A|+1)(4; —A) "' A€ p+iR}is (X*, X*)-R-bounded. Furthermore,
we define £; € Z(Wj(T), Wy[0,1]) by L; = —0 + A}, — p. Then L} is

invertible.

4.6.2 Corollary
Assume that for the family (Ay), . the following condition holds.
(A*-iv) There exists p € R such that p + iR C p(A}) and
{(AN+1)(A =N Aep+iR}
is uniformly (X*, X*)-R-bounded for all ¢ € T.

Then {B; : t € T }, where B; is the inverse of £ according to Theorem 4.6.1,
is bounded (in -Z(W}[0, 1], Wi (T))).

4.6.3 Fact
Assume that
(A*v) D <= X*
holds.
Then Wi (T) < W0, 1].

4.6.4 Theorem
Let (A*-iv) and (A*-v) hold.
Then £’W{ () 18 @ Fredholm operator.

4.6.5 Corollary
Let (A*-iv) and (A*-v) hold.
Then Ly, py—z € Z(Wi(T), Wy[0, 1]) is a Fredholm operator for each z € C.

4.6.6 Fact
Let z € C\{0}.

Then Ly, 1) = MIED Ly o) — log() MIEL] for all € € B..
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4.6.7 Corollary
Let (A*-iv) and (A*-v) hold.
Then £€/V{,Z[O,1] € LW .[0,1], W0, 1]) is a Fredholm operator for each z € C.

4.7 Equivalence and Relation of Conditions

4.7.1 Proposition

Condition (A-iv) is equivalent to condition (A*-iv).

Proof.

We first note that p(AF) = p(A;) and (AF —A) ™" = ((4, — N )* for all X €
p(A;) and all t € T. Then by [KKWO06| Proposition 3.5 the uniform (X, X)-
R-boundedness of { (|A|+1)(4; —A)': A€ p+iR} forall t € T yields the
uniform (X*, X*)-R-boundedness of { (|A|+1)(4F —A)"': X € p+iR}, thus
(A-iv) implies (A*-iv). The converse direction directly follows from (Aj)* = A;
for all t € T. O

Important Remark
We will not always explicitly mention the above equivalence.

4.7.2 Remark

In particular, whenever in the following we require both the conditions (A-iv)
and (A*-iv) to hold, we can assume that they hold for the same p € R.

4.7.3 Proposition
Let (A-iv) hold.
Then condition (A-v) is equivalent to condition (A*-v).

Remarks on the proof.
To avoid confusion we here use the symbol *~ to denote the dual of a bounded
operator, cf. Motivation 4.3.1.

Proof.

Assume that condition (A-v) holds and denote by J : D — X the compact
embedding. Then by Schauder’s theorem J*~ € J# (X*, D*). By (A-iv) Ay —
p € Z(D,X) is an isomorphism and hence (Ay — p)*~ € Z(X*, D*) is also
an isomorphism. Furthermore, by Proposition 4.7.1 A —p € Z(D’, X*) is an
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isomorphism. An easy calculation now shows that the diagram

X+ pr
Ai-| | (o)
D'— X"

commutes, where J' denotes the embedding of D’ into X*. We conclude that
J' is compact and thus (A*-v). Conversely, if we assume that (A*-v) holds,
i.e. J € (D', X*), then the diagram yields J*~ € J# (X*, D*) and again by
Schauder’s theorem we conclude that (A-v) holds. O

4.7.4 Proposition
Assume that there is p € p(A4;) for all £ € R. Then the conditions (A-i) and
(A-iii) and continuity of the embedding D < X imply condition (A-ii).
Proof.
Clearly (A-iii) yields that ¢; := sup;e || A¢|| 2(p,x) < 00 and by D — X there
is ¢o > 0 such that ||d||x < ¢o|d||p for all d € D. Thus

Idl[a, < [[Aill.z.x0lldlp + lldllx < max{es, e} |d][p
for all d € D and all t € R. On the other hand, by [t — A; — p] € Z(D, X)
we obtain [t — (4; — p)7!] € Z(X, D) (cf. |Cha85| Theorem 7.17) and thus
c3 := supyeg || (Ar — p) |l z(x.p) < 00. Therefore

ldllp < [I(As = p) "M zcep) (A = p)dllx <

cgmax{l, |p[}([[Avdl[x + [ld][x) = es max{1, |p[}|d]|4,
for all d € D and all t € R. O

As a direct consequence we obtain

4.7.5 Corollary
The conditions (A-i), (A-iii), (A-iv) and (A-v) imply condition (A-ii). O

4.7.6 Corollary
The conditions (A*-1), (A*-iii), (A*-iv) and (A*-v) imply condition (A*-ii). O



Chapter 5

Hypoellipticity

We remark that the notion of “hypoellipticity” chosen by P. Kuchment in
|[Kuc93| Chapter 5 does not coincide with the “usual” definition (e. g. cf. [H6r61]
Section 1). We follow P. Kuchment’s usage of the notion: “Hypoellipticity” is
used to refer to the regularity statement of the forthcoming Theorem 5.1.7, not
to a well-defined class of operators.

5.1.7 Theorem

Let (A-iv) hold. (We remind the reader that condition (A-iv) is formulated on
page 26 and implies condition (A*-iv), cf. Proposition 4.7.1.)

Furthermore, let u be a solution and assume that u is z-quasiperiodic for some
z € C\{0}.

Restricting v to [0, 1] we have u € W, [0, 1] and Lyy, jo1ju = 0.

Remarks on the proof.

We extend the proof of [Kuc93] Theorem 5.1.5 to the given situation.

Proof.
Proposition 4.5.4 yields u € Wy[0, 1] and £, u = 0.

Let 0, N, (Uj)j=1..n, (tj)j=1..v; (@5)j=1..v; (¥))j=1...v, (¥5)j=1,..n and
w(d) be as in Theorem 3.1.6.
Let p:= p+1log(,)z. Then the operators

Ly, =0+ A, —pe W0, 1],M]0,1])
have a bounded inverse B;, € Z(Wy[0,1], W1.[0,1]) for each j = 1,...,N:
Indeed, if we denote by Ly, yy, (1) the operator 0+A;,—p € L (Wi (T), Wy[0, 1])
then by Fact 3.1.8 £;, = M[z('))](E%Wl(qr))M[z((z_)')] and all three operators on

(z

the right hand side are invertible, c¢f. Theorem 3.1.3 and footnote 9 on page 31.
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Next, we will show that By, has an extension to B; € Z (W' [0, 1], Wy|0, 1])
for each j = 1,...,N. The results of Section 4.3 (applied to the (con-
stant) families (At ) and (A7 —ﬁ)teT) yield that £;, has an exten-
sion EtNE ZWhl0, 1], W~ 12[0 1]) that is given by the dual of the operator
Ly =—-0+ A, —peLW,,[0,1],W[0,1]). Analogously as above, if we
denote by £}, W,( ) the operator =0 + Ay — p € Z(W((T ) W([0,1]), then

L, = M[(l/z)(l/z (L4, (1) —log o) z—log(y .y (1/2))M[(1/2), 1/,2] Obviously,
log(l/z (1/2) is a logarithm of 2, therefore ciog := —log .y 2 —log,,) (1/2) €
2miZ. Thus p 4+ iR C p(A] + cog) and it can be easily shown that { (JA| +
(A 4 clog — N XN Ep+iR Y = { (Mg +1D)(AF =N A€ p+iR}
is uniformly (X*, X*)-R-bounded for all £ € T. By Corollary 4.6.2 we conclude
that £, w, (1) —1og(;) 2 —1ogn.) (1/2) = =0+ (A}, + cig) — p is invertible and
the norm of the inverse can be estimated independently of ¢;. It follows that
L; has a bounded inverse B € Z(Wj|0,1], W], [0, 1]), whose norm can be
estimated by a constant c¢g > 0 independently of ¢;. It is easily checked that
Bi:= (B;)" € Z(W.,,[0,1], W[0,1]) is an extension of B,. We remark that

”Bt Hf (W1, [0,1]Wo[0,1]) = HBllgjug(Wé[o UWw ., 01) S e forallj=1,...,N.

1,1/z
We can again assume that 4 is small enough such that, analogously as in the
proof of Theorem 4.6.4, Idyy, o1 + By, (A — Ay, )M[h;] € L (W1.[0,1]) is in-

vertible and we set S := (Idw, 1] + By, (A — Atj)M[%])_l e LW .[0,1]).

Also, similarly to the proof of Theorem 4.6.4 (in combination with a dual-
ity argument), we obtain (A~ — A}v) (] € L(Wh[0,1], W [0,1]) and
H(AN— A )M wj Hg Moo, o)) = w(d) for each 5 = 1,...,N. There-

fore || B (A™— A)M ¢j]H$(Wo[o1
assume that ¢ is small enough such that By, (A~ Atj) Wg] is a contraction
in Wp[0, 1]. Thus then Idyy o1 + B (A™ — A,

- SOP U E |
S = (Idwyo + B, (A™— A )M[Yy]) € L(W[0,1]).

Then S;’is an extension of §;.

< cpw(0) =% 0 and thus we can again

+)M[t;] is invertible and we set

We remark that a simple density argument shows that the dual operator
(M[p])" € LW .[0,1]) of M[yp;] € Z( 11/20,1]) is an extension of
My;] € Z(Wp[0,1]). Thus by the corresponding property of the unextended
operators analogous to the proof of Theorem 3.1.6 we obtain by a density ar-
gument
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(% Mo iS5 )7 -

N N
Idwyfo,1) + 9 Zl ¢;SiBy; M[th;] — Zl M[g;]S; By, M[0y;] € £ (W|0, 1]).
= -

j
Furthermore,

R =
; % M[6;],B, M) — éM[astsjstjM[awj] & LM, 1], Wh..[0, 1]).

N
Thus 0 = ( > M[qu]SfB,;(M[wj])*)EZu = u+Ru and therefore u = —Ru €
=1

Wi [0, 1].
Then, finally, Ly, pu = LZu = 0. O






Chapter 6

Basic Properties of Solutions

6.1 Functions of Floquet Form

6.1.1 Definition
u € Woioe(R) is called at most exponentially increasing if there exist ¢,a > 0
such that [|ul[yw,[kr+1) < cexp(alk|) for all k € Z.

6.1.2 Definition

u € Woee(R) is called of Floguet form if there are A € C, n € Ny and for
cach [ =0,...,n g € L,(T, X) such that u = [t — exp(A\t) >}, t'qi(t)] a.e.
on R. If u # 0, then exp(\) is called the! Floquet exponent of wu.

Furthermore, let z € C.

We denote by Fform, the union of 0 € Wyoc(R) and the set of all non-zero
Woloe(R) functions of Floquet form with Floquet exponent z.

u € Fform, is called of Bloch form if there are A € C and g € L,(T, X) such
that u = [t — exp(At)g(t)] a.e. on R.

We set Bform, := {u € Fform. : wu is of Bloch form }.

The following three facts are direct consequences of the definition or can be
easily checked.

6.1.3 Fact
Fformy = {0}.

LCf. Proposition 6.1.6.
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6.1.4 Fact
Every function of Floquet form is at most exponentially increasing.

6.1.5 Fact
Let z € C\{0} and v € Wyjoc(R).

Then u € Bform, iff u is z-quasiperiodic.

6.1.6 Proposition (On Uniqueness of the Floquet Form)
Let 2 € C\{0} and 0 # u € Fform,. Let u = [t — exp(At) > | t'ai(t)] a.e.
on R for some A € C, n € Ny and g; € L,(T, X) for each I =0, ..., n.

Then A is a logarithm of z.

In particular, the Floquet exponent of a non-zero function of Floquet form is
uniquely determined, i.e. Fform, N Fform., = {0} for all z1, 2o € C\{0} with
21 7& 29.

Conversely, if A € C is a logarithm of z then there are n € Ny and g; €
L,(T, X) for each [ = 0,...,7 such that u = [t — exp(\t) Z?:o g (t)] a.e.
on R. Furthermore, if in the above representations n and n are chosen such
that g, # 0 and g5 # 0 then n = n and T(Aj)gl =g/ foreachl =0,...,n
where T 5) = [t — exp((A — Mt)] € C(R, C) is periodic. In this sense, 7 is
uniquely determined and for each [ = 0,...,n ¢; is uniquely determined up to
a phase shift.

Proof.

Let u = [t — exp(\t) Y ot'di(t)] a.e. on R for some A € C, 7 € N
and §; € L,(T,X) for each [ = 0,...,7. W.lo.g. we can assume that
gn # 0 and gz # 0. There is a null set N in R such that (from now on
fixed representants of?) ¢ — exp(At) S, t'gi(t) and t — exp(\t) 321 t'a(t)
coincide pointwise on R\ N. W.1.0.g. we can assume that® N is a quasiperi-

odicity null set for each ¢; and g; for each [ = 0,...,n and [ = 0,...,n,
resp.. We set R := R\ N. Forallt € R and k € Z we set pi(k) :=
Sy (t 4 E) gi(t) and py(k) == S1, (t + k)'Gi(t). Thus for every t € R by pe-
riodicity (T(/\,S\)pt(k))kez = (exp(—(\ — S\)k)ﬁt(k))kez. There is 7 € R such

that g,(7) # 0 and by asymptotic analysis we conclude Re A = Re \ and then

2In particular, we fix representants of g; for each Il =0,...,n and § for each [ = 0,. .., 7.

3Indeed, if N; and N; are quasiperiodicity null sets for g; and g for each [ = 0,...,n and
1 =0,...,n, resp., then we can use the null set (Jc,(k+ (N Uy MUUo Ni)) D N instead of
N.
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n > n. Thus (T()M;\)(T) exp(ik Im(A — X))pT(k)) = (p ~( ))kez and g,(7) =
lmy oo (7 4+ k) "pr(k) = T} 5)(7) limy—oc eXp(zk Im()\ (T + k) "p, (k) =
T(/\ (T 7) (limy_oo exp(ik Im(X — )\))) (7). T 5)(T)gn(T) # 0 yields Im(A —
\) € 277, since Im(\ — \) ¢ 277 would 1mply that (exp(ik Im(X — )\)))kEZ

has at least two accumulation points. Therefore T(A’ % is periodic and for all
teR (T(A’X)(t)pt(/{))keZ = (pt(k))jey and thus 7 = n and Tang = G (in
L,(T, X)) foreach [ =0,...,n

Since by definition of 0 # u € Fform. there is a representation where \ is a
logarithm of 2z we conclude that X is a logarithm of z. In particular, u ¢ Fform,

for every £ € C\{0} with £ # z.

Conversely, if A € C is a logarithm of z we choose A € C, n € Ny and
g € L,(T,X) for each | = 0,...,n as in Definition 6.1.2. Then again Tz
is periodic and thus g, = T, 591 € L,(T,X) for each [ = 0,...,n and

u = [t — exp(\t) 1, t'G:i(t)] a.e. on R. O

6.1.7 Remark
Obviously, for every z € C Fform, is a linear subspace of Wy c(R).

6.2 Solutions — Part 2

6.2.1 Definition
Let z € C\{0}.

If 0 # u € Fform, is a solution to (E) then w is called a Floguet solution.
If 0 # u € Bform, is a solution to (E) then w is called a Bloch solution.

6.2.2 Definition

We denote by Fset the set of all z € C\{0} such that there is a Floquet solution
with Floquet exponent z. For each z € Fset we denote by Fsol, the set of all
Floquet solutions with Floquet exponent z.

We denote by Bset the set of all z € C\{0} such that there is a Bloch solution
with Floquet exponent z. For each z € Bset we denote by Bsol, the set of all
Bloch solutions with Floquet exponent z.

6.2.3 Remark
Clearly, Bset C Fset and Bsol, C Fsol, for each z € Bset.
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6.2.4 Remark
Theorem 5.1.7 in combination with Fact 6.1.5 yields that Bloch solutions are
continuous (i.e. they have a continuous representant).

6.3 The Test Function Spaces @, ?1, Do, 1

We will now define function spaces, that will play the role of test functions on
which Floquet solutions will act (similar to distributions) as linear functionals.
More precisely, primarily the spaces @, and @] corresponding to the dual ob-
jects (which will be defined in the ) will be used as test spaces (cf. Section 7.1).
However, in Theorem 8.1.6 the “predual” versions @y and @ will occur and in
Theorem 8.1.9 we'll make use of the more general definitions & , and & .
Thus for the sake of completeness, we treat the “predual” case in full detail in
this section and resume the dual situation in the following section.

6.3.1 Definition and Proposition (The Fréchet Spaces ©g o, 1.0 Do, P1)
Let j € {0,1}.
For all @ > 0 and ¢ € W;1,.(R) we set

7" (6) = supgey, [ Slwwr1 explalk]) € RU {oo}.

Furthermore, let a € (0, 00].
We define @;, :={ ¢ € W,10(R) : ”y](-a)(gb) < oo for all a € (0,a) }.
We set @; 1= D, .

(a)

For every a > 0 *yja is a seminorm on 9; , and we endow @; , with the topology

generated by the family {fyj(-a)}a>0.
Then &; , is a Fréchet space.

Proof.
The vector space structure of @;, is immediate and obviously ,Yj(_a)
for each @ > 0. In particular, @, , is Hausdorff. Furthermore, if b > a > 0 then

’yj(.b) > ’yj(.a). Therefore, the topology on @; is already generated by the family

1S a norm

{7](-")}%11\1, and if o < oo the topology on @;, is already generated by the

a—=1/n

countable family {75 )}nE]N. In any case, the topology on @; , is generated

by a countable family.

It remains to show completeness. Let (¢, )nen be a Cauchy sequence in @;,. An
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ecasy calculations shows that @;, — W;jc(R) and we conclude that (¢,,)nen
is a Cauchy sequence in W, joc(R) and therefore converges in W o.(R) to, say,
Po-

We will now show that fyj(-a)(qbn—gbo) X 0foralla € (0,a). Let a € (0, ) and
€ > 0. There is N > 0 such that 7]<.a)(¢n — ¢Om) < €/2if n,m > N. Further-
more, for each k € Z there is Ny > N such that [|¢xn, —@ollw;xk-+1) explalk]) <
€¢/2. We obtain for all n > N and all k € Z ||¢,, — dollw,ke+1 explalk]) <
7 (S0 = dm) + |0 = dollwy i1y explalk]) < e In particular, 7, (¢o) < oo.

Thus ¢y € D, and ¢, 2:—03 ¢o. Hence @, is complete. O
7,

The following remark indicates that these functions are suitable as coefficients

of Laurent series on C\{0} about 0, cf. Fact 1.5.15. We will make us of that

observation (more precisely: of the analogous statement in the dual situation,

cf. Remark 6.4.2) in Construction 7.6.9.

6.3.2 Remark
Let j € {0,1} and « € (0, 0.
For all ¢ € ®;, and k € Z, clearly ¢y := (¢(- — k)) ;1) € W;[0, 1].
A direct calculation shows ¢ € @, iff ¢ € Wjjo(R) and*
lim supy, (Hﬁbkﬂwj[o,l])l/k < exp(—a) and
lim supy_ (- llw, )" < exp(—a)
6.3.3 Remark
Let 7 € {0,1} and «, B € (0, 00] with a < 3.
Then obviously, @5 — Dj ..

6.3.4 Remark
Obviously, &1 — &y.

For each j = 0,1 the rapid decay of functions in @; directly yields that
Wj1oc(R)-functions with compact support are dense in @; and then with a
mollifying argument (cf. [Ama95| Section 111.4.2) we obtain:

6.3.5 Fact
C>X(R, D) is dense in @.

C>®(R, X) is dense in Py.

4Here, we use the convention exp(—oo) := 0, of course.
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. / / / /
6.4 The Test Function Spaces ¢, 9|, ¢, P

As explained in the previous section, we will state the corresponding definitions
and results for the dual situation.

6.4.1 Definition and Proposition (The Fréchet Spaces &y, 1, Py, 97)
Let j € {0,1}.

By abuse of notation, for all @ > 0 and ¢' € W, .(R) we set

’V](a)(cb') = SUPgez Hﬁb'HW]’.[k,kH] exp(alk|) € R U {oo}.
Furthermore, let a € (0, 00].
We define @, := {¢' € Wi, (R) : 7\ (¢/) < o0 for all a € (0,a) }.
We set & := &' .

For every a > 0 7](-&) is a seminorm on @;ﬂ and we endow @;‘,a with the topology

generated by the family {’y](.a)}a>o.

Then &% , is a Fréchet space.

6.4.2 Remark

Let j € {0,1} and « € (0, 0.

Then ¢' € &, iff ¢' € Wi .(R) and®
lim supy, .. (|04 Ilwrjo.) """ < exp(—a) and
lim supy o, (|64 wrp)'"* < exp(—a),

where again ¢ := (¢'(- — k)) o) € W;[0,1] for all ¢' € & , and k € Z.

6.4.3 Remark
Let j € {0,1} and «, 8 € (0, 00] with a < 3.
Then @;ﬂ — @;,a.

6.4.4 Remark

D) — P,

6.4.5 Fact

C>®(R, D’) is dense in &,
C>®(R, X*) is dense in @,

"Here, we use again the convention exp(—oc) := 0.
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6.5 The Operators £ and £’ on the Real Line — Part 2

6.5.1 Definition and Proposition
Let o € (0, 00].
We denote by® Ly, the restriction of Ly, (r) to @1, and by Ly the re-

striction of 'C;/Vil ®) tO P, o
Then Lg,,, € L(P10,Po.a) and Ly, € L(D . D)0)-

Proof.
We will prove Lg,, € L (P1,0,Po,). The second statement follows analo-
gously. For all & € Z obviously
Lo, (k1) | 2 om ek 1) = w011 Lz om0, 0(01))
where of course Ly, [y p+1) := —0+A € LWk, k + 1], Wy|k, k + 1]). There-

fore 70 (E@la ) < Lol 2omvio.10,m600,10) -fyfa)(gb) for all @ € (0, ) and all
¢ € 91 ,. This directly yields the assertion. O

6.5.2 Definition and Proposition

Let u € Whiee(R) be at most exponentially increasing with corresponding
constants ¢,a > 0, i.e. ||ullw, i1 < cexp(alk|) for all k € Z.

Let o € (a, 0.

For each ¢' € &, we set (Fu)(¢') := [ (¢'(t),u(t))x dt € C.

Then Fu € (@6705)* and the map F : W()JOC( ) — (P,)" is injective. In
particular, Fu € (¥()" and the map F : Wy 1oc(R) — (&))" is injective.

Proof.

First we remark that for each ¢' € &, by [Edw65] Theorem 8.20.5 [t +
d(t)u(t)] € L1joc(R, C). Let a € (a, ). Since clearly Fu is linear Fu € (&))"

follows from

k+1
) < [ louola= 3 [ o)<

k=—0o0

Z D1l e,k 1wl i) < Z DIl [k exp(alk]) <

k‘:—oo k— o0

- (suppe 1 hwgira exp(@kD) (Y exp(—alk]) exp(alk])) <

k=—00

60f course, this is meant to include the cases Lg, := Lg, .. and C’@,l =Ll
: "
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% ()

for each ¢" € &,

If wy, ug € Wojoe(R) with Fuy = Fug then [, (¢/(t), (w1 — u2)(t))x dt = 0 for
all K CC R and ¢ € C*(R, X*) with supp ¢’ C K.This yields u; = ug a.e.
on K and hence on R. O

6.5.3 Proposition
Let u € Wohioc(R) be at most exponentially increasing.
Then w is a solution to (E) iff Fu € Coker Lg, .

Proof.

First, we note that by definition E;/v{,loc(]R)¢/ = ’@,1¢’ for all ¢/ € C*(R,D")
and <£€/V{,1OC(R)¢/’U> = (Fu)(Lg¢'). Thus if Fu € Coker L, (and hence
(Fu)(Ly ¢') = 0 for all ¢ € CX(R,D’)) this directly yields that u is a solu-
tion. Coilversely, if u is a solution then, since by Fact 6.4.5 C2°(R, D’) is dense
in @, continuity of Fu and L}, yields (Fu)(L} ¢') = 0 for all ¢’ € & and
therefore Fu € Coker L] - 1 1 O



Chapter 7

Transtformation of the Problem

7.1 Motivation

We first remark that this motivation is intended to give an overview of the
constructions and statements in this chapter. We will clarify the rigorous
mathematical meaning in the following sections. In particular, we will give
definitions of the mentioned objects. Furthermore, we refer to the appendix
for a precise explanation of the structure of analytic bundles and their sections.

We recall that we want to analyze solutions to the equation Lu = 0. In
order to allow solutions in Wyjo(R), in Section 4.5 we have introduced a
weak formulation, where we used C°(R, X™) as a test function space and
the “dual” operator £’ acting on that test function space. (We have seen in
Proposition 4.5.3 that this weak formulation indeed leads to Lu = 0 if u is
regular enough.)

However, the test function space C.(R, X™*) is not suitable for our needs. If
we restrict ourselves to solutions that are at most exponentially increasing
then Proposition 6.5.2 allows the bigger test function space @}. (Indeed, when
using C°(R, X*) as a test function space, functions in the image under L'
still have compact support and therefore allow integration against a Wy oc(R)-
function. With the test function space @] functions in the image under L'
decay fast enough (they are in @) to allow the integration against an at most
exponentially increasing Wy joc(R)-function.)

After switching to the “right” test function space, “the place to look for so-
lutions” is then the dual space of @f and in particular, solutions can now be
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described as the cokernel of L’;yl , cf. Proposition 6.5.3.

However, the main benefit of using @) is that the problem can be translated
into the analysis of the spectrum and cospectrum of certain homomorphism of
sections of bundles.

Indeed, we will introduce an isomorphism, namely the Floquet transform i,
to carry both the structure of @] and &}, to section spaces I'(C\{0}, (&})) and
I'(C\{0}, (B;)), resp., where (€}) and (B{) will be suitable bundles.

This leads to the map I(C\[0},(€})) ¥= & £ @1 4o p(@\{o}, (B)))
between those section spaces. This map can be identified with the induced
homomorphism of a bundle homomorphism £ between (€}) and (*Bj), cf.
Corollary 7.6.12. (This bundle homomorphism will be constructed explicitly
and could be described as the fiberwise action of £ and it will be a Fredholm
homomorphism.)

We will see that solutions of Floquet (and Bloch) form will play an important
role in describing all at most exponentially increasing solutions. As mentioned,
we will understand solutions as functionals on @). Then the Floquet transform
(or more precisely: (U*)~!) will translate those functionals to functionals on

I'(C\{0}, (B()). By Proposition 7.7.6 we will be able to describe the image of
Floquet solutions.

The following diagram illustrates the situation.

b 4 r(c\o} () (e
Lo L)~ g
P 4 I'(C\{0}, (Bp)) (B))
FueCokerﬁ’qj,1
(U*)"'Fu
C

In this situation, Proposition 7.8.1 will yield a correspondence of the set of
Floquet exponents to the cospectrum of the bundle homomorphism described



The Bundles (B,) and (Bj) 59

above. In particular, we will obtain that the set of Floquet exponents is an
analytic set.

Furthermore, thanks to the Fredholm property of the bundle homomorphism a
superposition principle for functionals on I'(C\{0}, (B()) is known, cf. [Kuc93|
Theorem 1.7.1. After translating back to the original problem, this will yield
the superposition principle for at most exponentially increasing solutions, the
central result of this thesis.

7.2 The Bundles (B;) and (B))

In this section, by abuse of notation we will use the symbol v for a projection
function v : M x N — M defined by v(m,n) := m, where m € M andn € N,
for varying sets M and N.

7.2.1 Construction (The Bundles ($8y) and (*Bj))

Let By := C\{0} x W0, 1] and B, := C\{0} x W}[0,1]. Furthermore, let
by := Idg, and b) := Idm, . We denote by (Bo) := (B> C\{0}) and (B}) :=
(B, s C\{0}), resp., the trivial bundle constructed in Example A.1.8 (with
trivialization {Id : By — C\{0} x Wy[0,1]} = {bo} and with 2 = C\{0},
E =B and [v: C\{0} x Wy[0,1] — C\{0}] = [p: &€ — 2] and analogously
for (3B} = C\{0})). A

Duality between (B() and (B)

7.2.2 Definition and Remark

Let z € C\{0}. For all f' € (Bj), and f € (By), we set (f', f), =
((6). £, (bo), f)w. In view of Fact 4.2.3, obviously ((Bp),)" can be identified
with (Bf), and ((Bf),)" can be identified with (3By), by the isomorphisms

(B7). 3 /"= (f',): € (Bo).) " and (Bo). > [ = (-, /). € ((By).)"
7.2.3 Deﬁr;ition and Proposition

Let 0 # 2 C C\{0}, s’ € I'(£2,(B})) and s € I'(£2, (By)).

We set (s',s)0 = [22 2+ (5(2),s(2)), € C].

Then (-, -)o € Z(I'(£2, (By)); I'($2, (Bo)), A(2, C)).
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Proof.
This is a direct consequence of Proposition A.2.8 and Fact 1.5.9. O

7.2.4 Remark
In view of Remark A.2.9 in the situation of Definition 7.2.3 (-, )¢ is well-defined

for every ) # O C £2 and coincides with restriction of (-, ") to sections on O.

7.3 The Bundles (¥5,) and (&)

7.3.1 Construction (The Bundle (B1))

Let B; := C\{0} x Wi[0,1] and by := Idy,. Let (B;) = (B; = C\{0})
be the trivial bundle constructed in Example A.1.8 (with trivialization {Id :
B, — C\{0} x W,[0,1]} = {b;} and with 2 = C\{0}, £ = B; and [v :
C\{0} x W4[0,1] — C\{0}] =[p: & — £2)).

Furthermore, for all 2 € C\{0} and (&, f) € (B1)p_ b, A€, f) == (€, M[f((z_))]f)

defines a homeomorphism b;*) : (B1)p. — B. x Wi[0,1]. {6/} cvoy is a
trivialization that is equivalent to {b;}.

Proof.

It can be easily checked that b,*) : (B1)p. — B. x Wi[0,1] is a homeo-
morphism and obviously, condition (a) of Definition A.1.1 holds. Further-
more, for each £ € B,, the induced map (bl(Z))5 : (B1)e — W10, 1] coincides
with the multiplication operator M[f((z_))] o= € Z((B1), Wh[0,1]), where =
denotes the natural identification of (%B1), with W1[0,1], i.e. the isometric
isomorphism (b1), € Z((B1):, W1[0,1]). Thus Remark A.1.4 yields condi-
tion (b) of Definition A.1.1. Finally, if z,Z € C\{0} with B, N B; # then
B. N B; is a domain and [RS02| Section 5.4.1 yields that there is k € Z
such that for every £ € B, N B; (([)1(2))5)_1([11(5))g coincides with the multi-
plication operator M[exp(27ik(-))] € Z(W4[0,1]) and thus the corresponding
transition function is constant. This yields condition (c) of Definition A.1.1.
Thus {6:*)},coyoy is a trivialization and we now show that it is equivalent
to {b1}: Let z € C\{0}. By Remark A.1.2 it suffices to show that the

b))
map ¥ : Wi[0,1] (e (B1); 2, Wi [0, 1] is analytically depending on

§ € B.. Since for every { € B, ¥ coincides with the multiplication op-

erator M §(_') e Z(W10,1]), Fact 1.9.1, Fact 1.8.3 and Fact 1.5.10 yield
(2)



The Bundles (%B;) and (€;) 61

[5 — Epg] - A(]B%Z,Z(Wl[O, 1])) J

7.3.2 Construction (The Bundle (€;))

We endow & =, o012} X Wi.2[0,1] C By with the induced topology.
By (further) abuse of notation we denote the restriction of v : 8; — C\{0}
to €; also by v.

Furthermore, for all z € C\{0} we understand {z} x W, .[0,1] = (&), =
(V|¢1)71(Z) as a (closed) linear subspace of (B1),. (Thus (¢;), has a Banach
space structure and it coincides with the natural identification with W ,[0, 1].)

Then v : €; — C\{0} is a bundle projection.

For each z € C\{0} let ¢;*) be the restriction of b;*) to (€1)p,. Then ?)
(€1)p. — B. x Wi(T) is a homeomorphism. {ei®)}.cooy 1s a trivialization.
For all z € C\{0} and £ € B, the induced map (cl(z))g 2 (€1) — WA(T)
coincides with the multiplication operator M[ﬁ((z_))] o= € Z((&), Wi(T)),

where = denotes the natural identification of (&), with Wi¢[0,1], i.e. the
isometric isomorphism ((bl)f)m ) € L((€1)e, Wi |0, 1]).
1)e

The equivalence class of {¢1®},cqo\oy is denoted by (€1).

Proof.

Obviously, for every z € C\{0}, the topology of (€;), coincides with the
topology induced by the Banach space structure of (€;), and therefore v :
¢; — C\{0} is a bundle projection. Next, we note that for each z € C\{0}

¢1*) maps indeed into B. x Wi(T) since (M[E()]f)(0) = £(0) = €71 f(1) =
(MIEC,1£)(1) forall (€, f) € (€1) 5. and thus by Fact 1.8.3 M[¢(”]f € Wi(T).
We conclude that ¢;*) : (€1)p, — B. x Wi(T) is a homeomorphism and that
the induced map (c1(2>)5 1 (€4) — WA(T) coincides with the multiplication
operator M[f((z_)')]o = e Z((¢), Wi(T)). Again, condition (a) of Defini-
tion A.1.1 holds and Remark A.1.4 yields condition (b) of Definition A.1.1.
Analogously as in Construction 7.4.1, if z,Z € C\{0} with B, N B; # then
there is k € Z such that for every £ € B, N B; ((cl(z))g)il(cl(g))g coincides
with the multiplication operator M[exp(27mik(-))] € Z(Wi(T)) and thus the

corresponding transition function is constant. This yields condition (c) of Def-
inition A.1.1. O
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7.3.3 Proposition
(1) is a subbundle of (B1).

Proof.
Let = € C\{0}. By Remark A.6.2 it suffices to show that the map Z; :

() b1%)),

Wi(T)  — (&) = (B), ) W1[0, 1] is analytically depending on
¢ € B,. By definition, for all £ € B, Z¢ coincides with the embedding Wy (T') —
W1 [0, 1] as a subspace. Thus obviously [§ — Z¢] € A(B,, Z(Wi(T), Wi[0, 1])).

U

7.3.4 Remark

Let (A-iv) hold.

Then Theorem 3.1.3 yields that Wy[0, 1] and W;(T) are isomorphic. Thus if
{oW) €1y, — Ux X By}aeca € (€1) then by Proposition A.1.11 and Proposi-
tion A.1.13 there exists {¢/™ : €1y, — Uy x Wol0,1]}ren € (€1).

7.4 The Bundles (8}) and ()

We will now introduce bundles () and (€}) that are defined analogously
as ($B1) and (&), i.e. loosely speaking the fibers {z} x W}[0,1] and {z} X
Wi [0, 1] are substituted by {z} x Wy[0,1] and {2} x Wy [0, 1]. For the sake
of completeness, we explicitly give the following definitions. All statements
follow analogously as in the situation of Section 7.3.

7.4.1 Construction (The Bundle (B)))

We denote by (/) the bundle analogous to ($81), i.e. its total space is given
1= C\{0} x W}[0,1] and the defining trivialization is {b] := Id : B —

C\{0} x W1[0,1]}. A further trivialization that is equivalent to {b}} is given

by {619} .coo) where BE(E, f1) = (&, M[¢(,)))f") for all z € C\{0} and

(&, 1) € (BY) .- L

7.4.2 Construction (The Bundle (€}))

We denote by (€]) the bundle analogous to (€4), i.e. its total space is given by
€ = U.coym{z} x Wi.[0,1] and the defining trivialization is {0y
where for each z € C\{0} ¢|*) : (€)p. — B. x Wi(T) is the restriction of
/%) to (€1)p.. (Again, for each z € C\{0} (&}), is endowed with the Banach
space structure of the linear subspace {2} x W [0,1] of (%87).,.)
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For all z € C\{0} and ¢ € B. the induced map (¢!

coincides with the multiplication operator M[é(_ Jo

Pe + (€)= WI(T)
Z((€), Wi(T)),

c
h Wi [0,1], i.e. the

1(
1
~

where = denotes the natural identification of (Qﬁ’ )¢ wit

isometric isomorphism ((bll)f)l(@) € Z((¢Y)g, [ 0,1]). O
Ve

7.4.3 Proposition

(€}) is a subbundle of (B). O

7.4.4 Remark

Let (A*iv) hold.

I (6% €y — Un x Bahaea € (€1) then there exists {v® : € —
Uy x Wy[0,1]}rea € (€)).

7.5 The Bundle Homomorphisms £ and £’

7.5.1 Definition and Proposition (£)

Let (A-iv) and (A-v) hold.

We define £ : & — By by £(2, f) = (2,Lw, p1f) for all z € C\{0} and
fe Wl,z[(); 1].

Then £: (&) — (By) is an analytic Fredholm homomorphism.

Proof.

Let z € C\{0}. Clearly, (2, Ly, j01)f) € (Bo), for all f € Wi .[0,1] and
thus £ is well-defined. Obviously, condition (a) of Definition A.4.1 holds.

WlZ[Ol

£, is given by (&), = Wi.0,1] — Wy[0,1] =, (°By), where, by
abuse of notation, = denotes both the natural identification of (&), with
Wi +[0,1] and of Wy|0, 1] with (2By),, resp.. Thus Corollary 3.1.9 implies that
£. € Z((¢€1),,(%By).) is a Fredholm operator. In particular, condition (b) of
Definition A.4.1 holds. Then by Construction 7.3.2, for all £ € B, the trivial-

KON
ized induced map W, (T) (e (€1), — (%0) (bolg Wo[0, 1] coincides with

Ly, o MIE)]- By Fact 3.1.8 Loy, (o MIE)] = MIE (Lo, () + log €) for
all £ € B, and by Fact 1.9.1, Fact 1.5.10 and Fact 1.8.2 [ — M[ﬁ((;))](ﬁwl(qr) +
log .y §)] € A(B., Z(Wi(T), Ws[0,1])). This yields condition (c) of Defini-
tion A.4.1. Therefore £ : (€;) — ($By) is an analytic Fredholm homomor-
phism. O
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7.5.2 Corollary
Let (A-iv) and (A-v) hold.
S(L) and CS(L) are analytic sets in C\{0}.

Proof.
Since £ : (€1) — (By) is an analytic Fredholm homomorphism, the assertion
directly follows from [ZKKP75] § 5.0. O

Analogously, we obtain:

7.5.3 Definition and Proposition (£')

Let (A*-iv) and (A*-v) hold.

We define £ : & — B by £'(z, f) = (z,Cg/VLZ[OJ]f) where z € C\{0} and
feWr [0,1].

Then £ : (€]) — (B is an analytic Fredholm homomorphism.

7.5.4 Corollary
Let (A*-iv) and (A*-v) hold.
S(£) and CS(L') are analytic sets in C\{0}.

7.6 The Floquet Transform

Analogously we will introduce two versions of the Floquet transform, one in
the predual and one in the dual situation.

The Floquet Transform on ¢y, and ¢,

7.6.1 Definition
For all @« > 0 we set A, :={z € C: exp(—a) < |z| < exp(a) }.

Furthermore, we set A, := C\{0}.

For the convenience of the reader we state the following inclusions, cf. Re-
mark A.2.9 and Remark 6.4.3.

7.6.2 Remark
Let a, 8 € (0, 00] with a < §.
Then
A, C Az C C\{0},
I(C\{0}, (Bo)) € I'(Ag, (Bo)) C I'(Aa, (Bo)),
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L(C\0}, (€1)) € I'(Ag, (€1)) C I'(Aa, (€1)) and
@, C Dj5 C Dj, for each j € {0,1}.

For the rest of this section, let av € (0, 00].

7.6.3 Remark and Convention

By Proposition A.1.9 the restrictions (bo)_, (bl(z))|(BzmAa) and (cl(z))\(BZmAa)
(where z € A,) are trivializing maps for (), (1) and (&), resp.. By
abuse of notation we will use the same notation for the original maps and their
restrictions within in this section.

7.6.4 Construction (Floguet Transform on 9 )

For all ¢ € &y, and k € 7Z, by Remark 6.4.2 the Cauchy-Hadamard formula
for Laurent series yields [z +— > ro _ ér2¥] € A(Ay, Wo[0,1]), where ¢y :=
(@ = k)01 € Wo[0,1]. Thus

Up = [z ((60).) (S @12 € I(Ag, (Bo))

k=—0c0
for all ¢ € @y, and for clarity, we remark (UP)(z) = (2, > e, Or2") for all
¢ € Dy and z € A,. Clearly, U : @y — I'(A,, (Bo)) is linear and uniqueness
of Laurent expansions implies that U is injective.

Conversely, let s € I'(A,, (By)) and thus by Proposition A.2.4
[z = (bo).(5(2))] € A(Aa, W[0,1])

can be expanded into a Laurent series with center 0 on A, say S0°_sp. ()"
(with s € Wp[0,1] for all k € Z). We set ¢(t) := s_;)(t — [t]) for all t € R.
Then! ¢ = s (pointwise on [0, 1) and hence in W0, 1]) for all k£ € Z and thus
Plikp1] € Wolk, k + 1]. Hence by Fact 4.4.2 ¢ € Wyjo(R) and the Cauchy-
Hadamard formula? in combination with Remark 6.4.2 yields ¢ € @ ,. Since
Up = s, we conclude that U is surjective.

Finally, we show that U/ is continuous: Let () # K cC A,. Thus there is
a € (0,a) such that exp(—a) < |2| < exp(a) for all z € K. In particular,
|z|¥ < exp(alk|) for all 2 € K and k € Z. Furthermore, let @ € (a,a). We
calculate for all ¢ € Dg,

SUp,ex ||(00).(UO)(2) o, =

'where ¢y := ¢(- — k) as above
2applied to the coefficients (sg)ycy
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(0.¢]
supzeKH Z ¢kzkHWo[0a1]§

k=—00

00
sup.ex 2o | Bkllwgon|2"] <

k=—o00
k_Z | Dl —,—k11] exp(alk]) <
(supges |l w1y eXP(@|k|))(kZ exp(—alk|) exp(alk)) <

exp(a—a)+1 (a) (¢)

exp(@a—a)—1 10
Thus Proposition A.2.7 yields U € Z(Pp o, I (As, (By))).

We resume:

Py — F(Aaa<%0>)
A, — 0)

. (B
Tl W s e S e

is an isomorphism from @, to I'(A, (Bo)) and is called Flogquet transform.

JAN

7.6.5 Remark
In particular, U* : (I'(C\{0}, (By))))" — (Po)" is an isomorphism of vector
spaces.

We will now examine the restriction of U to ;.

7.6.6 Construction (Floguet Transform on @1 ,)

We will now show that U(P1,) = I'(A,, (€1)) by an application of Propo-
sition A.2.4. Let z € A,. First, we remark that for all ¢ € &,,, analo-
gously to Construction 7.6.4, [§ — (£, Y 0 ox€")] € I'(A,, (B1)) where
the series is to be understood as a W;|0, 1]-valued Laurent series. Since
W10, 1] < W)[0, 1] the so defined section coincides with U¢. In particular, by
Proposition A.2.4 [¢ — (by¢ ) (UP)(E))] € A(B. N Ay, W1[0,1]). Next, for
all € 1, and € € A, by Fact 24.1 60> oo i =50 50¢k§k+1
Zk__oo 010k &M = 615700 orE® and thus (U9)(€) € (€1)¢. Therefore
(6:)c (U)(©)) = (), ((U¢)(§)) € WA(T) for all £ € B. N A, By
Fact 1.5.12 we obtain [§ — (¢, ) (UP)(E))] € A(B. N Ay, Wi(T)). Since
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obviously, v o (Up) = Idy,, Proposition A.2.4 yields Up € I'(A,, (€1)).

Conversely, let s € I'(A,,(€1)). Then by Proposition 7.3.3 and Proposi-
tion A.7.1 s € I'(A,, (3B1)). Thus by Proposition A.2.4

(€ = (b1)(s(£))] € A(Aa, Wi[0,1])

can be expanded into a Laurent series with center 0 on A, say Y oo sk (1)
(with s, € Wh[0,1] for all k& € Z). We set ¢(t) := s_jy(t — [t]) for all
t € R. Again since Wi[0, 1] < W)[0, 1] we obtain ¢ = U 's as in the pre-
vious construction. In particular,® ¢p = s; (pointwise on [0,1) and hence in
Wi[0,1]) for all & € Z and thus @ 1) € Wik, k +1]. Furthermore, for
each t = 0,1 by Fact 2.4.1 and Fact 1.5.10 [£ — 575(([11)5(8(5)))] € A(A,, X)

and the Laurent expansion is given by S _ dy(s) ()", For every € € A,

Do O1(s8)€" = 81 ((b1)¢(5(£))) = €0o((b1)e(s(€))) = D7 dolsi)€

and thus uniqueness of the Laurent expansion yields 01511 = dosi for all k € Z.

Thus4 limt/k ¢(t) = limt/k S_(k_l)(t—(/{?—l)) = S_k+1(1) = S_k(O) = gb(k) for
all kK € Z. By Fact 4.4.2 we obtain ¢ € W 10.(R) and the Cauchy-Hadamard
formula® in combination with Remark 6.4.2 yields ¢ € b1 . Thus indeed
U(DP1o) = T'(Aa, (T1)).

Finally, we will show that U € Z(P14,1 (A4, (€1))) where, by abuse of
notation, we denote by U the restriction of U to ?1,. Let z € A, and
04K cCcB.NA,.

Analogously as in Construction 7.6.4 there are a,a € (0,«) with a < a such
that for all ¢ € @14 supecg [[(b1)(US)(E) w01 < Ziggg Z;+ 7(")(¢)
Furthermore

SUP¢c i | (c1 (Z)) Hz (€1)Mi(T)) = SUP¢ek HMK((Z_)')]Hz(wl,g[o,u,wl(qr)) <

€ = SUP¢eck Hf ||C1 0,1] < 00.
Therefore

supgerc [|(€17)) UO)(E)wm) < esupeer [|U)(E)ll(e,

esupeere [|(b1)(US)(E)[lwypoy < ¢ EREUEL . 47 >(¢) for all ¢ € Py ,.
Thus again Proposition A.2.7 yields U € L (P14, (A4, (€1))).

Swhere ¢y, := ¢(- — k) as above
4Here lim, K denotes the left-sided limit.
Papplied to the coefficients (sg)yecy
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We resume: U is an isomorphism from @4 , to I'(A,, (€1)). JAN
By a direct calculation using Remark 7.6.5 we obtain:

7.6.7 Corollary
Lria, =Uo Ly, oU'. In particular, £p =U o Lo o U

The Floquet Transform on &;, and &,

Throughout this section, let a € (0, 0.

Again, by applying all constructions of the previous section to the dual objects,
we obtain the following results. By abuse of notation we denote by U also the
corresponding map between the dual objects and its restrictions.

7.6.8 Remark and Convention

By Proposition A.1.9 the restrictions (bg) (b’l(z))KBzmAa) and (c,l(Z))\(IBZOAa)
(where z € A,) are trivializing maps for (%8(), (8)) and (€}), resp.. By
abuse of notation we will use the same notation for the original maps and their
restrictions within in this section.

7.6.9 Construction (Floguet Transform on @ )
The following map, again called Floquet transform, is well-defined.

Doo = 1'(Aa, (By))

u:g , bo = 0
G N ISy
It is an isomorphism from &g, to I'(A,, (By)). A

7.6.10 Remark
U* : (I(C\{0}, (B}))))" — ()" is an isomorphism of vector spaces.

7.6.11 Construction (Floquet Transform on @} )
U is an isomorphism from @] , to I'(A,, (€})). JAN

7.6.12 Corollary
T, =Uo 'C/@’l,a o1 In particular, £ =U o Ly ol 1.

Using Proposition 6.5.3 we additionally obtain:
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7.6.13 Corollary
U*(Coker £.) = Coker Ly .

7.7 Form of Solution Functionals

Throughout this section let z € C\{0}.

7.7.1 Definition and Proposition

If n € Nand foreach Il = 1,....np € P, 1/2 € {) C C\{0} and o, €
I(£2;,(Bo)) then [s"— 371, 612 (p(0)(s', on)a,) | € (I(C\{0}, (Bp)))"

The set of all functionals of that form (with all possible choices of n, p;, 2 and
07) is denoted by Ffunc,. Ffunc, is a linear subspace of (I'(C\{0}, (B})))".
The set of all functionals in Ffunc, that have a representation of the above form
where p; is a constant polynomial for each [ = 1,...,n is denoted by Bfunc..
Proof.

For each [ = 1,...,n by Remark A.2.9 and Proposition 7.2.3 [s' — (', 01) 0] €
ZL(I(C\{0}, (B))), A(£2,©)), by Fact 1.5.7 p;(9) € L(A(£,C)) and ob-
viously &/, € (A(f2,C))". This yields [s' — YL, 61/ (m(9){(s,01)0)] €
(I'(C\{0}, (B)))". The vector space structure of Ffunc, is obvious. O

7.7.2 Remark
Lot [s' = Y0, 81 (n(0)(s, on))] € (D(C\{0}. (BY)))" (where n, pi, &

and o) are defined as in Definition 7.7.1). Furthermore, let 1/z € (2 c (2, for
each [ =1,...,n. Then in view of Remark 7.2.4 obviously

> 01 () o)) = 201, 012 (i (0)(s, o))
for all s € I'(C\{0}, (B{)). Thus we can always assume w. 1. 0. g., that for each
[ =1,...,n {2 can be chosen to be a “fixed but arbitrary small” neighborhood
of 1/z.

7.7.3 Construction

Let f € Wo[0,1]. Then s; := [ — ((bo)¢) " (&(,,) /)] € I(Byyz. (Bo)).

Proof.

Clearly pg o 6 = Idp,,,. Fact 1.9.1 in combination with Fact 1.5.11 yields
€ = &L F) € A(Byy, Wal0,1)). Since (by)c(s5()) = &) f for all € € By,
we conclude sy € I'(By /., (By)). O
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7.7.4 Proposition
Ffunc. is generated (as a vector space) by all functionals of the form [s' —

01/2 (8l(s’,5f>131/z)] € (I'(C\{0}, (3B})))" where | € Ny and f € Wy|0, 1].

Proof.
We will refer to functionals of the form mentioned in the statement as sim-
ple functionals. Obviously, Ffunc, is generated by all functionals of the form

Sloe = |8 — 01.(0(s',0)a)] € (I(C\{0},(B()))" with I € No, 1/z €

0cC C\{0} and o € (I'(§2, (By)). Thus it suffices to show that all functionals
of that form are linear combinations of simple functionals.

Therefore let | € Ny, 1/2z € 2 c C\{0} and o € (I'(£2,(By)). By Re-
mark 7.7.2 we can assume w.l.o.g. that {2 C B,,,. Furthermore, there is

r > 0 such that Be(1/2z,r) C 2 and we set 2 := Bg(1l/z,7). Thus by
Fact 1.5.13 analytic functions on {2 can be expanded into power series about

1/z on (2.
By Proposition A.2.4 [§ — (bo)(0(§))] € A(£2,W[0,1]) and therefore by
Fact 1.5.11 [€ = &) (bo)e(0(&))] € A(2,WM[0,1]). By Fact 1.9.1 [¢

gg;/;)] € A(2,C[0,1]). Again by Proposition A.2.4 [¢ — (b)).(s'(€))] €

A(2,W0,1]) for all s € I(C\{0}, (B)).

We denote the power series expansion about 1/z on Q of
& &) (b0)e(0()),
£ )
§ — (bp)¢(s'(£)),

where s' € I'(C\{0}, (*B})), by

> fal = 1/2)"
i cs(- —1/2)” and
3=0

i fé( —1/2)7, resp..
v=0

Note that 61/,(0"[£2 2 £ — (£ — 1/2)"]) = nld,,m for all n,m € No. Thus for
every f € Wyl0,1] and every n € Ny, linearity and continuity of the involved
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operators in combination with Fact 1.5.13 yield
51/z(8”<s’,5f>§) =
012 (0" [$2 3 € = {(B))(5'(€)), (Ba)e(((b0)e) (€L, L HIw]) =

5 3 010703 € (€= 172 cofiwl) =

v=0 8=0
n! }: <;wcﬂf>mb
Y+p=n
Similarly, we obtain for all s’ € I'(C\{0}, (2B}))
Sioe(s') = 0112 (0(s, o)) =
817:(0'[02 3 € = ((6))(5'(€)), 6011 €Ly (60)e (0(€))w])

> 3 3 0,025 € (6= 1/ cafubw]) =

v=0 =0 a=0
2. I epfa)w =
y+B+a=l

SHY (feafaby

a=0 y4p=l-«

l
Zo (l—“a)!(sl/z (01,870 5).

where the last step follows from applying the first calculation to f, instead of
f.

We conclude that Sl/,lfz,a is a linear combination of simple functionals. By
Remark 7.7.2 Sl”’(}’g coincides with S}y, ; as a functional on I'(C\{0}, (Bj)).
This finishes the proof. O

7.7.5 Proposition

Let s" € (I'(C\{0}, (%))

Then the following are all equivalent:

(a) " € Bfunc,,

(b) s” is of the form s’ +— 6,/.(s',0)0 where 1/2 € 2 c C\{0} and o €
[1127CBO>%

(c) " is of the form s" — (s'(1/2), f)1/. where f € (Bo), .,
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(d) " is of the form s' — dy,.(s',57)m,,. where f € Wy[0,1].
Proof.
“(a)=(b)" Let s" € Bfunc,. Then by definition
s = [s" = 2oL 01 (s 1) )]
with n € N and for each [ = 1,...,np € C, 1/2z € () c C\{0} and

o € I'(£2, ($By)). By Remark 7.7.2 and Proposition A.2.5 we obtain s” =
8" = 017:(5', 0) o] where £2:=(\,_, £ and 0 := Y poy.

“(b)=>(c)™ Let s” be of the form s' + d,.(s’, 0) o where 1/z € 12 C C\{0} and
o € I'(£2,(By)). Thus s" = [s' — (s'(1/2),0(1/2))1/.]. Since | :=o(1/z) €
(Bo);,,, s has indeed the required form.

“(¢)=(d)” Let s” be of the form s +— (s (l/z) f)1/. where § € (By),,, Then
(b0)(1/,)f € Wo[0,1] and thus f := (l/z) (1/2) (bo) 1/-f € Wol0,1]. Thus by
definition s¢(1/2) = ((50)(1/2))71((1/2)(1/2) ) =fand [s" — d1/.(s,8¢)m,.] =
s'+— (s'(1/2),5¢(1/2))1,.] = s”. Therefore s” is of the required form.

[s" =« 5 / q

“(d)=(a)”: This is a direct consequence of Construction 7.7.3. O

7.7.6 Proposition

F(Fform,) = U*(Ffunc,) and F(Bform,) = U* (Bfunc.).

Proof.

Let s” € Ffunc,. Let us assume for the moment that s” has the form described

in Proposition 7.7.4, i.e. there are [ € Ny and f € W;|[0,1] such that s =

[I(C\{0}, (B)) > 8"+ 61, (9'(s', 84)B,,.) |- Then for all ¢' € C*(R, X*)
Us")(¢) = s"(US) = 61, (0" U, 5f>181/z) =

01/.(9'[By). 3 £H<b' (UP)(E)), (bo)e(57(6)))w]) =
01/-(0'[By), 3 € < 5 5/ (t — k), €0 (1)) x dt]) =

k=—00

01/:(0' By > € — Z 51/2 (@'t — k), f(t)x dt]) =

. —k+1

01/:(0' [Bryz 26— 22 Sy (@ (7). f(r + k) x dr]) =

k=—o00J —k

508 € [ &7 Brstr)xar]) =
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uelBe 3 €= [ OBy 3 € 71O (0(0), Bxf(r))xdr] =
12 [Byy. 5 € /R Pu(T)ETTTHY (), B f(r))x dr] =
| @ /T2 B (7)) dr =

/R<¢’(7')7 exp(—7log ) (1/2)pu(7) 2B f (7)) x dr =

F[R > t — exp(tA:)pi(t) ' Exf()](4),

where® py(7) := Hi;io(—T —m) forall 7 € R and A, := —log ) (1/2).

Density of C°(R, X*) in @[ thus yields

U's" = F[R >t — exp(th.)p(t) ' Ef(¢)].
We remark that since exp(\,) = z

Uy, 1p.f = [R Dt exp(t\)p (1) Ex f(t)] € Form..
Now, let s € Ffunc, be arbitrary. By Proposition 7.7.4 s” can be represented
as a linear combination of functionals of the above form. Hence U*( Ffunc,) C
F(Fform.,).
Conversely, let u € Fform,. Obviously {p;}ien, is a basis for the space of
polynomials. In combination with Proposition 6.1.6 we obtain that u can be
written as linear combination of functions ¢ — exp(A.t)p;(t)gi(t) a.e. on R
with [ € Ny and ¢; € L,(T, X). Since [t — exp(A.t)pi(t)gi(t)] = ur,ipa
with g :== z7'(g:)jjo.1] the above calculation yields Fu € U*(Ffunc.), hence
F(Fform,) C U*(Ffunc.).
Finally, if " € Bfunc, or u € Bform,, then by Proposition 7.7.5 and Proposi-

tion 6.1.6, resp., s” and u have the corresponding representations with [ = 0.
This directly yields F(Bform,) = U*(Bfunc.). O

7.7.7 Proposition
For each z € Fset

F(Fsol,) = U*(Ffunc, N Coker £7) \ {0} and
F(Bsol,) = U*(Bfunc, N Coker £7.) \ {0} holds.

SHere, we set H;LLO(—T —m):= 1.
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Proof.
This is a direct consequence of Proposition 7.7.6, Proposition 6.5.3 and Corol-
lary 7.6.13. O

7.8 Characterization of Floquet Exponents

7.8.1 Proposition

Let (A-iv) and (A*-v) hold.

Then Bset = Fset = (CS(L)) ™" = S(L).

Proof.

We will show Bset C Fset C (CS(L)) ™" C S(L) C Bset.

“Bset C Fset’:

The definition of Bset directly yields Bset C Fset.
“Fset C (CS(L))

Let z € Fset.

We will prove the statement by contradiction. So, assume that 21 ¢ CS(£').

By Corollary 7.5.4 CS(£') is an analytic set in C\{0}. In particular, CS(L')
is closed in C\{0}. Therefore there exists a neighborhood 2 of z=! such
that 2 N CS(L) = 0. W.lo.g. we can assume that (2 is connected and
that” there are trivializing maps ¢ : (€D — 2 x Wy[0,1] for (&) and
b1 (B(), — 2 x W[0, 1] for (By), resp..

Then the induced homomorphism £, : I'(£2,(€})) — I'(£2, (By)) is surjec-
tive: First, we remark that for all § € 2 by Fact 1.2.2 {0} = Coker £; =
(%6)5/(Range g)) and therefore £ : (€]), — (By), is surjective. We define
L' 2 — LW[0,1)) by L'(€) = bl o & o (c,)”" for all £ € 2. Thus,
L'(§) € L(Wl0,1]) is surjective for each § € 2. Since £ is a Fredholm
operator, L'(£) has a finite and thus complemented kernel. Therefore L'(§) is
right-invertible for each £ € 2, ¢f. [Heu92| § 26 Aufgabe 4. Furthermore, by
Proposition 7.5.3 and Proposition A.4.3 L' € A(£2, . Z(W;[0,1])). By the cen-
tral theorem of [All67]® there is R € A(02, £ (W}[0,1])) such that R'(£) is a

"Cf. Proposition A.1.10 and Remark 7.4.4

8 Actually, the theorem only yields the existence of a right inverse on a “little smaller” (but still
connected and open) set than 2. However, if need be, we can choose {2 to be that smaller domain
and therefore assume w.1. 0. g. the result holds as cited.
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right inverse of L’(g) for all§ € 2. Now, let ' € I'(£2, (¥B()). Forall £ € 2, we

set o'(€) = ((c}) )by) (5'(€)). Since [§ — b’( '(€))] € A(2,W[0,1]),
by Fact 1.5.10 we obtam € = (d'(9)] € A(R2,Wy[0,1]). Clearly, p; o
Idg and thus o' € I'(£2,(€))). Furthermore L (0'(€)) = Le(d'(6)) =

) =

(
((b’) L (cy) R’() )(8 () ((6f) "o L'(&) o RI(§) 0 bs') (€) = 5'(€)

for all £ € 2. Thus ‘Qa = s'. This proves that £’F|9 is surjective.

Proposition 7.7.7 yields that there is 0 # S” € Ffunc, N Coker £5.. Again, by
choosing {2 smaller, if need be, by Remark 7.7.2 we can assume w.1.0.g. that
S" = [I(C\{0}, (B)) 2 8 — >/, 61 (m(9)(s', 1)) |, where n € N and
foreach l=1,...,np, € Pand g, € (I'(£2,($By)).

We will now show the contradiction S” = 0: Let s; € I'(C\{0}, (%8()). Then
there exists o € I'(£2, (€})) such that £, ;00 = (s())0-

Then by |Lei78] Theorem 2.3 (iv) there exists® (0},),, . € I'(C\{0}, (€})) with
(o /)m — g in '(2,(€})). Thus Elpm(( )m) — (36)\9 in I'(£2, (B)).
By definition, S”(£}0),) = 0 for all n € N. On the other hand, by Proposi-
tion 7.7.1 and by eontinuity of the involved operators!

S"(Lray,) =
12151/,2(291(5)( Lo, 01)0) =

§51/2<pz<a><£'m(<a;>m),azm) o
éal/z(pl<a><<sa>|g,az>g) -

ZZ 01/-(pi(9) (50, 1) 2) =
-1

5"(sp)-
This yields S”( o) = 0 and therefore S” = 0.
“(Cs(£) " C s(e)”
) 1

Let z in (CS(£) Then by Remark 7.2.2 there exists 0 # f € (3By),,, such

9We note that (2 is (as every domain in C) holomorphically convex (cf. [GR65] definition VII.A.2
and the subsequent example (3)) and that by Fact B.1.29 O(®)(€\{0}) is a BCAF sheaf.

ONamely, (-,-)o € ZL(I'(£2, (Bf)); I'(£2, (Bo)), A(£2,C)) by Proposition 7.2.3, 0 € L(A(£2,C))
by Fact 1.5.7 and &;/, € (A(£2,C))" by Fact 1.5.8.



76 Transformation of the Problem

that (£}, f', f)1/ = 0 for all /" € (&}),,,. By Proposition 7.7.5 5" := [
(s'(1/2), f1/:] € Bfunc.. Clearly, S” # 0. Since for all 5" € I'(C\{0},(€}))
S"(Lps') = (£ e s)(1/2), ). = (£1,.(s'(1/2)), f)1). = 0, 5" € Coker £7..
Thus by Proposition 7.7.7 there is 0 # u € Bsol,. By Fact 6.1.5 u is z-
quasiperiodic and thus Theorem 5.1.7 yields u € W .[0, 1] and Ly, jo,ju = 0.
Hence'' £,(z,u) = (z, EWLZ[OJ]U) =0 and z € S(£).

“S(L) C Bset™

Let 2 € S(£). Then there is f € Ker L., i.e. there is f € W;.[0,1] such
that f = (2, f) and Ly, jo11f = 0. Then by Fact 4.4.5 E. f € Wi o.(R) and
Ly, ..w)(E.f) = 0. Hence Proposition 4.5.3 yields that E.f is a solution.
Furthermore, by Fact 6.1.5 E. f € Bform, and thus E, f € Bsol,. We conclude
z € Bset. d

Here, 0 denotes the zero vector in (By), .



Chapter 8

The Superposition Result

For the convenience of the reader we recall the most important notions.

We examine solutions (cf. Definition 4.5.2) to the equation
u'(t) + Aw(t) =0  (t€R) (E)

where the following conditions hold for the family (A: : X D D(A;) — X),cp
of closed operators depending periodically on t.

(A-i) There exists a normed space (D, || - ||p) such that D(A;) = D for all
t € R and (the set) D is a dense subspace of X.

(A-iii) [t — AJ] € O(T,.2(D, X)).

Furthermore, we assume that the dual family (A} : X* D D(A}) — X*),cp
fulfills the following conditions.

(A*-1) There exists a normed space (D', || - ||p/) such that D(A}) = D’ for
all t € R.

(A*-iii) [t — Af] € C(T, Z(D', X¥)).
We assume throughout this chapter that also the conditions

(A-iv) there exists p € R such that p + iR C p(A;) and
{(A+1D)(A =N e p+iR}
is uniformly (X, X)-R-bounded for all ¢ € T and

(A-v) D is compactly embedded into X
hold.

7
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We refer to Section 4.7 for equivalent formulations and to see that the present
conditions also imply (A-ii) and (A*-ii).

8.1.2 Theorem
The set of Floquet exponents Fset is either discrete in C\{0} or Fset = C\{0}.

Proof.

By Proposition 7.8.1 Fset = (CS(£')) " and Corollary 7.5.4 yields that CS(&')
is an analytic set in C\{0}. In particular, CS(L') is either discrete in C\{0}
or CS(£') = C\{0}. This directly yields the statement. O

8.1.3 Theorem
If Fset is discrete then for every z € Fset there exists a finite set {ug)}le . of
Floquet solutions in Fsof, such that

a) for any at most exponentially increasing solution u : R — X of (E) there
exist uniquely determined coefficients o; € C where i € I :={(z,0): z €
Fset,l € L, } with o; = 0 for almost all 7 € I such that

u= >, a(zl)ug) a.e. on R,
(z,l)el
b) if a; € C for each i € I with o; = 0 for almost all ¢ € I then
!
Z a(z,l)u,(z)
(z,0)el
is an at most exponentially increasing solution to (E).
Remarks on the proof.
We will prove Theorem 8.1.3 in combination with the next theorem.

8.1.4 Theorem
If Fset = C\{0} then there exist
e ny € Nand ' UV : C\{0} x R — X for each [ = 1,...,ny such that
— the function C\{0} 2 2z +— UW(z,-) € Wyoe(R) is analytic for each
[=1,...,ny and
—forallz€e C\{0} and I =1,...,ny [R>t+— UY(z,-) € X] € Fsol,
and
e a discrete subset Z C C\{0} and for each z € Z a finite set {ug)}leLz C
Fsol,

1 Using the identification of C\{0} with R?\{0} we will allow the first component of the argument
of UD to take values in R2\{0}.
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such that

a) for any at most exponentially increasing solution u : R — X of (E) there
exist for each | = 1,...,ny p) € C*(R?*\{0}) and coefficients o; € C
where i € [ :={(z,l): z € Z,l € L, } with a; = 0 for almost all i € |
such that?

ny
u=lt ¥ ae O+ [ UOEOu0E) ] ae.on R,
(z,)el =1 JR*\{0}

b) if foreach I = 1,...,ny pu) € CX(R*\{0}) and for each i € I a; € C with
a; = 0 for almost all 7= € I then

ny
te S agaul () + OO, 6)p(€) dé
(2,l)el =1 JR*\{0}

is an at most exponentially increasing solution to (E).

Remarks on the proof.
We mainly follow the proof of [Kuc93] Theorem 3.2.1.

Proof of Theorem 8.1.3 and Theorem 8.1.4.

8.1.5 Preparation
We remind the reader of the following objects introduced earlier or in the
appendix.

£ (&) — (B[) is an analytic Fredholm homomorphism between the Banach
vector bundles (€}) and (Bj), cf. Proposition 7.5.3.

The induced homomorphism on the corresponding spaces of sections is denoted
by £ € X(F(@\{O}, (€))), I'(C\{0}, (*B{)), cf. Definition A.7.1.
Furthermore, the corresponding sheaves of germs of sections

04 .= OG)(C\{0}) and OF0) .= OFo)(C\{0}), resp.,
are BCAF sheaves, cf. Construction B.1.12 and Fact B.1.29.
£ induces a homomorphism £, : O — O®B0) ¢f. Fact B.1.30.

%/
Then M := Coker £, := o' O>/Range e is coherent, cf. Fact B.1.29.
Furthermore, I'(C\{0}, M) is the quotient module

r(c\{o}, 0%
(MO0 0y, Range 2p)
cf. Definition B.1.21, and we denote by

2This representation is, in general, not uniquely determined.
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P € Z(I(C\{0},0%)), [ (C\{0}, M))
the natural projection.

We set Z := Assoc M. We refer to [Kuc93| Definition 1.5.15 for the definition
of the set Assoc M, but we remark that in particular each Z € Z is an
irreducible analytic subset of C\{0}. Clearly this yields that Z is either of the
form Z = {z} with some z € C\{0} or Z = C\{0}.

Then, in particular, the sheaf O(Z) of germs of analytic functions on the
analytic set Z € Z can be identified with OPX% if Z = C\{0} and with C
if Z = {z}, cf. [GR65] Section IV.D. In any case, Z consists only of regular
points.

Furthermore, from the definition of Z we obtain |J,.-Z = CS(£'). Thus
Uyez Z71 = Fset since by Proposition 7.8.1 (CS(£')) = Fset.

By |Pal93] Theorem 3.4 for each Z € Z there exits a Z-Noether operator?
vy : M — [O(Z)]"% where vy = (V(Zl>, e V(ZnZ)).

Then vz induces a linear map vy : I'(C\{0}, M) — I'(Z,[O(Z)]"#). In case of
Z = {z} Uz can be identified with the map 6,07 : I'(C\{0}, M) — C"% and in
the case of Z = C\{0} 7 is of the form v, : I'(C\{0}, M) — A(C\{0}, C"%).
By [Kuc93| Theorem 1.7.1 we obtain a characterization of Coker(£7.), namely
S" € Coker(£7) iff there is a finite set Zg, C Z and smooth functions pyz :
7 — CY such that S” is of the form S"(s') = 3,5 [, (02Ps', uz) dVz for
all s € I'(C\{0}, (B{)), where we used the notations of the cited theorem?.
In particular, (-, -) denotes the inner product on C"2,

We explain the notation in the given situation. If Z = C\{0} we identify
C\{0} with the real manifold R*\{0} and then py € C*(R?*\{0}, C"2).dV,
denotes the Lebesgue measure dA on R?\{0}. We remark that

s € I'(C\{0}, (By))
yields Ps’ € I'(C\{0}, M) and 0,Ps" € A(C\{0}, C"#) and thus

(vzPs' uz) € C(R*\{0}, C)

is integrable.

3For the general definition of Noether operators, we refer to [Pal93] Definition 3.3 and the
definition of the sheaf of germs of analytic functions on an analytic set O(Z) is given, e.g., in
[GR65] IV.D.5 Definition.

4We remark that of course Zg, and pz are depending on S”, although we omit the dependence
in the notation.
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If Z is of the form Z = {z} then dV; denotes the point measure at z. Thus,
after identifying uy : {z} — C"# with a constant ([L(Zl), o ,[L(an ) =,y €
C"7 we obtain [, (0, Ps, pz) dVy = (5.(04Ps'), opiz) = 212 A6 (00 Ps).
We will now prepare the definition of the (fixed) Floquet solutions that occur
in the statement of Theorem 8.1.4.

Foreach Z € Z, z€ Z tandl =1,...,ny we define

Sz € (D(C\{0}, (B()))"
by 5% (s') := 81/.(0},Ps') for all 8" € I'(C\{0}, (By)). 5% is well-defined:
Indeed, linearity is obvious and continuity follows from [Pal93] Theorem 3.8.
For each Z € Z, 2 € Z7Vand | = 1,...,nz we obtain Sgéf) € Coker £7-:
Let ' € I'(C\{0}, (€})). Then for all z € (D\{O} 7. (£s") € Range £, thus
PLhs' =0in I'(C\{0}, M). Thus indeed S% I (£)s") = 0.
Therefore by Corollary 7.6.13 for each Z € Z, 2 € Zlandl =1,...,ny
L{*Sg’g) € Cokerﬁ’,l, ie. U*Sgél) corresponds to a solution, cf. Proposi-
tion 6.5.3.

We will now show that foreach Z € Z, z € Z 'and [ =1,...,ny there exists
d € N such that if s’ € I'(C\{0}, (B})) has a zero® of order d + 1 at 1/ then
Sg’g)(s’) = 0: By the definition of the Noether operator pz we obtain that
the induced homomorphism on the stalks (vz)i/. : (M), — ([O(Z)]"%)1).
is a differential operator between sheaves®. We denote by d its order. Now
assume that s’ indeed has a zero of order d + 1 at 1/z, thus § = (- —

1/z)" g for some g € I'(C\{0}, (B{)). Then we obtain” (vz)1,.(71/.(Ps’)) =
= > D (T (= 1/2)) (w2)1-(ny:(P(- = 1/2)*1~g)). The evalua-
tion of the germs at 1/z of the right hand side yields 61,.((vz)1/:(71/:(P5s"))) =
0, hence Sg’g)(s') = 0.

We conclude, that if s € I'(C\{0}, (B})) is expanded into the power series®
S sk (- —1/2)" about 1/2 on some neighborhood 2 of 1/z then Sg’g)(s’) =

aOa

®By Proposition A.2.8 I'(C\{0},(B})) is isomorphic to A(C\{0},W}[0,1]) and s €
I'(C\{0}, (B())) iff there is §' € A(C\{0}, W)[0,1]) such that s'(z) = (2,5 (2)) for all z € C\{0},
cf. the definition of by. We say s’ has a zero of order d + 1 at 1/z iff § has. In that case we
write s'(2) = (z — 1/2)% 1 f/(2) iff §(2) = (2 — 1/2)%1 f/(2) for some f' € A(C\{0}, W)[0,1]) and
f'(2) = (z, f'(2)) for all z € C\{0}.

For a definition, we refer to [Pal93] Section 3.

"Cf. [Pal68] Proposition 1.1.

8The expansion is meant in the sense of footnote 5, i.e. s’ is identified with an function in

A(C\{0}, Mg[0, 1)).
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ng(,l)(zd st (+—1/2)"). That means that S%él) coincides with a functional

a=0

on (W}[0,1])%. Hence Sgy) can be represented in the form

s = Yoo (far su)w
with (a fixed) f, € Wy[0, 1] for each a = 0,...,d. This means that Sgél) can
be represented in the form s' +— 6;/.[2 5 § — ZZ:O (fa, (095")(€))w] where
by abuse of notation f, € W;l|0,1] for each a = 0,...,d may now denote
some different but again fixed parameter. Finally, we define o, € I'({2, (B¢))

to be the constant section z +— (z, f,) for each @ = 0,...,d and then we
conclude that Sg;” has the form then s’ — Zi:o 01/:(0°(s', 5a) ). Therefore

Sy € Ffunc. and by Proposition 7.7.6 U*S% ! corresponds to a function of
Floquet form, i.e. by Proposition 7.7.7foreach 7 € Z, z € Zandl =1,...,ny

there exists u(Zl)Z € Fsol, such that Fu(Zl)Z =usy .

We point out that Sg’(l) (and thus u(Zl)Z) does not depend on S”.

z

Furthermore, in the case of Z = C\{0} the map C\{0} > z — u(Zl>Z is analytic
for each | = 1,...,nyz: First we note that if we endow (I"(C\{0}, (B})))* with
the weak-* topology by Fact 1.5.3 we obtain

Sy e A(C\{0}, (I'(C\{0}, (B)))")-
Remark 1.5.14 in combination with the proof of Proposition 7.7.6 then yields

[z uf) ] € AC\0}, Woyoe(R)): A

We are now in the position to prove Theorem 8.1.3 and Theorem 8.1.4.

Let u be an arbitrary at most exponentially increasing solution of (E).

By Proposition 6.5.3 Fu € Coker E’@l and by Corollary 7.6.13 we obtain S” :=
(U*) "1 (Fu) € Coker £7..

As in Preparation 8.1.5 we denote by puz and Zg, the corresponding objects
that are used to represent S” in |[Kuc93| Theorem 1.7.1.

Then for all ¢’ € @) and s := U@ € I'(C\{0}, (B[)) we obtain (Fu)(¢') =
U FWUY) = S"(5') = X gez,, [z (02PS pz) dVz.

We first treat the case that Fset is discrete. Then each Z € Z is of the form
Z ={z}.

We write vl instead of u(Zl)Z foreach I =1,...,nzif Z € Z and {2} = Z71.

Every summand in the above sum is given by
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n{z} I
/{}<V{z}738 fizy) dViy = Z M{z)} §}z( ’)

for the corresponding z € {z} = Z.
Therefore

(Fu)(¢') =

& o
XX A =
{Z}GZﬁn =1

i)

Z Z M{Z}(U* )(¢/)

{Z}EZﬁn =1

=)
D)

Z Z M{Z}(Fu )(¢/) =

{Z}EZﬁn =1

(F(2 z iilyul)) ) (@),

{#}€2qn 1

We conclude that u =3, cz o Ng)}ugl/) is indeed of the stated form.

We remark that every discrete set in C\{0} is countable, thus {u :{1/z} €

Zﬁnn{l/ }} is countable. Thus uniqueness of the coefficients can be obtained

()

by simply omitting solutions u, A that would allow different representations.

In the case that Fset = C\{0}, additionally the summand

/ (DevoyPs', penoy) dA
R2\{0}

occurs.
We set v = Voo, = ooy, B= Beo)s S S(II,]\{O}, and U()
u((é)\{o}vl/z foralll=1,...,n and z € C\{0}. Then we obtain

[ e
R2\{0}
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> [ sy Oue) d -
=1 JR2\(0}

Z/ U*Si’/za)(u_ls’)u(l)(z) dz =
R2\{0}

=1

n

2/ (FUDY (@) uD(2) dz =
1 JR2\{0}

l

3 |

Z—Z:l ./132\{0} /]R (1), Uz(l)(t»X dt,u(l)(Z) dz =
[ ] @000

S (D), / UD (D (2) dz)(t)) x dt =
R =1 R2\{(0}
F [ UOOu0(z)d2))(@).
1=1 JR2\{0}
This finishes the proof. O

8.1.6 Theorem
The following are equivalent.

(1) Fset = C\{0}.
(2) For each a > 0 there is a solution u # 0 and ¢ > 0 such that
|l [k 1) < cexp(—alk]) for all k € Z.
(3) There is a solution u # 0 and a > 0, ¢ > 0 such that
2w, [k, 1) < cexp(—alk]) for all k € Z.
Proof.
“(H=(2)"
As a first step, we will show that there exists 0 # S € I'(C\{0}, (€;)) such
that £,5 = 0.
Proposition 7.8.1 in combination with the assumption (1) yields S(£) = Fset =
C\{0}, hence there is z € C\{0} such that
dimKer £, = min{ dim Ker £ : £ € C\{0} } > 1.

1

),)”
For each £ € B, we denote by L(§) the trivialized induced map W, (T) Y

b
(€1); T (Bo), (bolg Wh|0, 1] of the bundle homomorphism £. Thus by Propo-
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sition 7.5.1 [ — L(&)] € A(B., ZWi(T),Ws[0,1]) is Fredholm operator-
valued. Hence by [Kuc93] Corollary 1.2.14 the map & — dim Ker L(§) is upper

semi-continuous. In particular, there exists a neighborhood (2 c B. of z such
that & — dim Ker L(§) is constant on 2. We conclude that & — dim Ker £¢
is constant on (2.

We endow R := [Jeco{€} X Ker £¢ C &) with the induced topology. Fur-
thermore, for all £ € £2 we understand R¢ := {£} x Ker £¢ as a (closed) linear
subspace of (&€1),. Then v :=[R 3> (§, f) — & € (2] is a bundle projection.
By [Kuc93] Theorem 1.6.13 there exists a trivialization for v such that its

equivalence class (ﬁ; (2) is a subbundle of (€;).

By choosing {2 smaller, if need be, by Proposition A.2.8 and by Proposi-
tion A.1.11 we can assume w.l.o.g. that ['(£2, (R < (2)) is isomorphic to

A(2,Ker £.). Hence there is s € I'({2, (R < (2)) such that s(z) # 0. By
Remark A.6.5 and Remark A.3.2 s € I'(£2,(¢)). Furthermore, £¢(s(§)) = 0
for all ¢ € 2. Thus? . (s) € Ker £0. By [Kuc93| Theorem 1.5.9 ii) in combina-
tion with Fact B.1.30 there is 0 € I'(C\{0}, Ker £0) such that o(z) = 7.(s).
By Definition B.1.20 0 € I'(C\{0}, O (C\{0})) and thus by Remark B.1.14
there is S € I'(C\{0}, (€1)) such that (&) = 7¢(5) for all £ € C\{0}. Finally,
S(z) = (0(2))(2) = s(z) # 0 and for each £ € C\{0} v:(£rS) = Lo(o(§)) =
0, hence £S5 = 0.

Now, Construction 7.6.6 and Corollary 7.6.7 yield 0 # u := U~1S € &; and
Ly, @yt = Lo,u = U o Lroll)u= (U0 Lp)S =0, hence by Proposi-
tion 4.5.3 w is a solution. This yields (2).

“(2)=-(3)": This is obvious.

“(3)=(1)" Let [Jullw,gr+1) < cexp(—alk|), @ > 0 and ¢ > 0 such that

|l es1) < cexp(—alk|) for all & € Z. Then 0 # u € &1, and hence
Construction 7.6.6 yields 0 # Uu € I'(A,, (€1)). In combination with Propo-

sition A.2.8 we obtain that there is z € A, and am open neighborhood z € {2 c
A, such that (Uu)(§) # 0 for all § € 2. By Proposition 4.5.3 Ly, (w)u = 0
and then by Corollary 7.6.7 £, (Uu) = 0 holds. For each £ € {2 we obtain
Le((Uu)(€)) =0, thus 0 # (Uu)(§) € Ker £¢. Hence £ € S(£). Therefore, in
combination with by Proposition 7.8.1 {2 C S(£) = Fset and thus Fset is not

9We remind the reader that £o denotes the induced sheaf homomorphism by £, cf. Fact B.1.30
and Ker £¢ is a subsheaf of Q@) (C\{0}), cf. Definition B.1.23.
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discrete. Then Theorem 8.1.2 yields Fset = C\{0}. O
We directly obtain:

8.1.7 Corollary
If Fset = C\{0} then there is a solution 0 # u € L,(R, X).

Bloch Property

We finish this section by analyzing the so-called Bloch property. First we
remark that the following direct consequence of the first three theorems in this
chapter holds.

8.1.8 Corollary
If there exists a non-vanishing, bounded! solution then there exists at least
one Bloch solution.

Proof.

If there is a bounded solution u # 0 to (E) then by Theorem 8.1.2 we are either
in the situation of Theorem 8.1.3 or Theorem 8.1.4. In any case we particularly
obtain Fset # () since there must exist at least one Floquet solution to represent
u. Then Proposition 7.8.1 yields Bset = Fset # (), in other words there exists
a Bloch solution. O

We now show that under an additional assumption the Bloch property holds.

8.1.9 Theorem (Bloch Property)

Assume that the bundle (&) is trivial.

Furthermore, assume that there exists an at most exponentially increasing
solution u # 0 with corresponding constants c¢,a > 0, i.e. [|ullwypit) <
cexp(alk|) for all k € Z.

Then there is z € Bset such that exp(—a) < |z| < exp(a).

(For conditions when (€}) is trivial we refer to Remark 8.1.11.)

Proof.

We will prove the statement by contradiction. Assume that there is no z € Bset
with exp(—a) < |z| < exp(a). Then in particular by Theorem 8.1.2 and
Proposition 7.8.1 Bset = Fset is discrete in C\{0} and we conclude that there
exists € > 0 such that for all z € Bset |z| < exp(—(a+¢€)) or |z| > exp(a + €).

V(a.e. on R)
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We will now show that (Fu)(¢’) = 0 for all ¢ € &g,, .. Then, since &, C
D04+, by Proposition 6.5.2 we obtain the contradiction u = 0.

It suffices to show that Lg, L D are — Dyare is surjective: Indeed then

for each ¢" € &, there is ¢ € &, with L, . Y = ¢ and (Fu)(¢') =
(Fu)(Ly ') = <£€/V{1 w¥'su) = 0 by the definition of solutions.

1l,a+e¢

By Corollary 7.6.12 surjectivity of L/ / is equivalent to surjectivity of S’Fl A -

at a+te
By Proposition 7.8.1 Bset = (CS(£))" and hence for all z € CS(&) |z| >
exp(a+e) or |z| < exp(—(a+e¢)). In particular, CS(£)NA, e = 0. By Propo-
sition A.5.2 in combination with Proposition A.1.10 and Remark 7.4.4 there is
a trivializing map ¢ : (&), — Agpe x Wy[0,1]. The same argument'! as in
the step “Fset C (CS(£))™" of the proof of Proposition 7.8.1 now yields that
S’F‘AW is surjective. This finishes the proof. O

8.1.10 Corollary (Bloch Property, Classic Version)

Assume that the bundle (€}) is trivial.

If there exists a non-vanishing, bounded!? solution then there exists at least
one bounded'? Bloch solution.

Proof.

We recall that by Proposition 7.8.1 Bset = Fset. If Bset = C\{0} then the
statement directly follows. Thus by Theorem 8.1.2 we can assume that Bset
is discrete in C\{0}. If we denote the bounded solution by u then for all
a > 0 there is ¢ > 0 such that |u|lwprs1) < cexp(alk|) for all & € Z,
Thus by Theorem 8.1.9 there exists (2,)nen € Bset such that exp(—1/n) <
|z,| < exp(1/n) for all n € N and hence |z,|] " 1. Discreteness of Bset
in combination with compactness of {z € C : |z| = 1} yields that there is
29 € Bset such that |zg| = 1. There is ug € Bsol,, and thus ||ue(t)||x = ||g(t)||x
a.e. on R for some g € L,(T,X). By Remark 6.2.4 g has a continuous
representant and this directly yields the assertion. O

8.1.11 Remark

We remark that by Remark 7.4.4 (&) is a bundle with fiber W}[0, 1]. Then
by [Bun68| § 8 a sufficient condition for the bundle (€}) to be trivial is that
the so-called structure group -Z(W)[0, 1]) is contractible.

"U'We remark—w.r. t. footnote 8 in said proof (on page 74)—that if need be we might substitute
€ by €/2.
2(a.e. on R)
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In particular, if X is a (C-valued) L,(2)-space then

Wil0, 1] = Ly([0,1], Ly(£2)) = Ly([0, 1] x £2)
is also a L,-space. Hence by [Mit70| Proposition 5 .2 (W0, 1]) is contractible
and (€)) is trivial.



Appendix A

Analytic Banach Vector Bundles

Throughout this chapter let (2 C C.

A.1 Analytic Banach Vector Bundles

A.1.1 Definition (Analytic Banach Vector Bundle)

Let £ be a topological space and p : & — {2 a surjective, continuous function
such that for each z € §2 the so-called fiber &, = p~!({x}) has a Banach
space structure, whose topology (that comes from the norm) coincides with
the topology induced from &. (2 is called base space, &€ is called total space and
pis called (bundle) projection.

For each U C £ we set Ew =p 1 (U).

Let {Uy}rea be an open cover of 2. Furthermore, suppose that for each A € A
there exists a Banach space By and a homeomorphism ¢® : Eu, — Uy x By.
Then {¢M} ey is called a trivialization (for p) if for all A € A

(a) the diagram
¢(A)
(‘5'|UA U,\ X B)\
N /

Uy

(where v denotes the natural projection v : Uy x By — U, given by
v(u,b) := u) commutes, i.e. p = v o ¢ and

(b) ™ induces on each fiber &, (where z € Uy) an isomorphism oV &, —

89
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B, i.e. the map

™M) ~
oM g, e B 2 B,

(where = denotes the natural identification given by {z} x By 3 (x,b)
b € B)) is an (Banach space) isomorphism and

(c) for all Kk € A with Uy N U, # 0 the so-called transition function (from B)
to By)

—1 EL[{)

(A)

PN By

x

is analytically depending on x € UyNU, # 0, i.e. [x — @537“)] e A(UyN
Um g(B/M Bm))
In this case, {Ux}xea is called the associated trivializing cover.

Two trivializations for p are called equivalent if their union satisfies (c).

A nonempty equivalence class of this relation is called an (analytic Banach

vector) bundle (over (2) and is denoted by (& < 2) for short. If {¢M}req

is a representant of (&€ £ (2), then each oW is called a trivializing map (for
p

(E=12)).

A.1.2 Remark

In the situation of Definition A.1.1 the transition function @Sf’” from B, to B)
(where Uy N U, # 0) obviously coincides with (@9"{))_1. Thus [z — @;(CA’K)] €
A(U\NU,, Z(By, By)) iff [z — &Y € A(U, N Uy, Z(By, B))) (cf. [Cha85]
Theorems 7.17, 5.9 and 14.13).

A.1.3 Remark

The notion of equivalence introduced in Definition A.1.1 is indeed an equiva-
lence relation: Reflexivity and symmetry are obvious. In order to show tran-
sitivity, let {0 hea, {0} ek and {pW i be trivializations for a bundle
projection p : € — (2 such that {6Mhea ~ {WV}ea and {pMN}yeq ~
{¢W Y51 where ~ denotes equivalence. Let [¢ : Eu — U x B] € {¢W}yea
and [¢ g — U x B] € {¢W};.1 such that UN U # @ and for each

~ 71 7 ~
xr € U NU we denote the transition function B (% E, P, B by &,.

Let £ € UNU. We will show that there is O C UNU with ¢ € O such
that [z — @,] € A(O,Z(B, B)). Then in combination with Remark A.1.2,
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we obtain {¢pM}yeq ~ {é(;\)};\d. Let i : &y — V x (] € {pY, ek
such that £ € V. Then O := VNUNU c UNU and € € O. For each

(¢2) £, Va C(%)_

\W/
Id

(2= ¥ 0(0,) '] € A0, 2(B,C)) and [z = 6, 0 (,) '] € A0, £(C, B))
and thus by Fact 1.5.10 [x — &,] € A(O, Z (B, B)).

A.1.4 Remark

In the situation of Definition A.1.1 condition (b) is equivalent to the condition

(b") W induces on each fiber &, (x € U,) a linear map oV €, — By, i.e.
the map

xr € O @, can be written as B &, O B as a “product” of

by ((b()\))\g >~
oW . &, —" {z} x By — B,

T

(where = again denotes the natural identification) is linear

since ¢ is homeomorphic and thus the restrictions (¢(A))Ifz : & — {x} X By,
are continuous and bijective.

A.1.5 Proposition (On the Notation <5§-Q>)
Let {Ex}aea, {Ur}rea be families of topological spaces, {By}ea a family of
Banach spaces and {¢(A) : B\ — Uy X B)}xea a family of homeomorphisms

such that {1} c4 is a representant of a bundle (€ < ).

Then the topological spaces £ and (2 and the map p : £ — {2 can be recovered,
i.e. they are uniquely determined. Furthermore, for each x € (2, the Banach
space structure of £, can be recovered up to equivalence of the norm.

Proof.
Let £, 2, p and {&€,}.e0 be as in Definition A.1.1 (such that {3} ey is a

trivialization for p). The topological space (2 is determined by 2 = (J U,
AeA
and the neighborhood basises of © € Uy (which are also neighborhood basises

in {2 since U, is open in §2) (see [Que0l] 2.8, [Que0l]| 2.9 and [Que01] 2.10).

Analogously, the topological space £ is determined by £ = [J E) and the
AeA
neighborhood basises of e € E) (which are also neighborhood basises in &£ since

E\ = &py, = p '(U) is open in &). Furthermore, for each e € & there exists
A € A such that e € £, and thus p(e) is determined by the first coordinate
of MV (e). Finally, for each x € {2 scalar multiplication, addition and the

: : : : 0N o -
zero vector in &, is uniquely determined by ae = (¢;") (agbm 6), e+ée=
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-1 -1

(gbgﬁ)) ((bg\)e—i—gb;(c)‘)é) and 0 = (gby)) (0), resp. fora € C,e,é € E,and X € A

such that = € Uy. A complete norm on &, is given by ||e||¢s, := HQZS;(E/\)GHB/\. If |-

is another complete norm on &, then ||e|| < |\(¢§ﬁ))_ vaﬂ(BA,(gm,||.||))H(/bgcA)eﬂBA —

-1
||(¢£c)\)) | 2By, -1 1€lle, and thus by [Wer05] Korollar IV.3.5 || - [|¢, and || - ||
are equivalent. O

A.1.6 Remark

We will see in Example A.4.8 that the “nonuniqueness” of the Banach space
norms that occurred in Proposition A.1.5 is in some sense compatible with the
structure of bundles.

A.1.7 Remark

We refer to [Ste51] Lemma 2.8 for a criteria whether the equivalence classes of
two (not necessarily equivalent) trivializations for the same bundle projection
are isomorphic (see Definition A.4.4) bundles.

A.1.8 Example (“The” Trivial Bundle)

Let {2 be a topological space, E a Banach space and £ := {2 x B. Furthermore,
define the natural projection p : € — 2 by p(x,b) := x. For each z € {2, we
endow p~1({z}) = {2} x E with a Banach space structure by identifying it
with E. It is easy to show, that norm induced topology coincides with the
one induced from the product topology. Clearly, {Id : &€ — 2 x E} is a
trivialization (with associated trivializing cover {§2}). Thus its equivalence
class is a bundle. JAN

A.1.9 Proposition (Refinement of Trivialization)

Let (:‘Jg-(?} be a bundle and {¢®) : £, — Uy x By}aea € (é’g— (2). Further-
more, let {Vi}wex be an open cover of (2 that is finer than {U)}\ey, i.e. for
all Kk € K there exists a A\, € A such that V,, C U,,_.

Then {qbfg";) trek € <5£ (2). In particular, if ¢ : &y — U x B is a trivializing

map, then the restriction ¢y to any open set V' CUis one, too.

Proof.

We set ) = Qbf?;) for each k € K. Since (gb(/\ﬂ))fl(‘/ﬂ X By)=p (V) =
&y, we get indeed that ¥ is a homeomorphism from Ev, to Vi x By..
Clearly, conditions (a) and (b) of Definition A.1.1 hold. Finally, if (W}, x\) €
{(Vie, 0N} oere U {(Uy, dM) }aen for each i = 1,2 with W := Wy N Wy # ()
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then, by definition, there exist A\;2 € A such that Y@ = (bfé‘v)v and W C

-1
Uy, NUy, # 0. Thus the map W 3 z o (XS)) € Z(By,B),) is
analytic since it coincides with restriction of the analytic map Uy, NU,, 3 = —

-1
92) o ( 91)) € Z(By,, By,) to W. Therefore the transition functions of
{yp(")} ek alone and joined with {¢M} e, fulfill condition A.1.1 (c). O

A.1.10 Proposition (Common Refinement)
Let (5£ (2) and <.7:g (2) be bundles over the same base space (2.

Then there are representants {¢")}yeo and {1} yeo of (€ < 2) and <]—"£ ),
resp. with the same associated trivializing cover {Wy}yeo of {2 such that for

each ¥ € © Wy is connected.

Proof.

Let {¢™}eq and {4}, cx be representants with associated trivializing cover
p q

{U/\}/\e/l and {V,Q},QEK for <5 - Q> and <f - Q>, resp.. {U)\ N VK}(}\,H)EAXK

is an open cover that is finer than both {U)}xca and {Vi}iex. Thus, by

Proposition A.1.9, {¢|((/>)mv Foumeaxx and {wfgim/ Foumeaxk are trivializations

for (& < 2) and (F d §2), resp.. Furthermore, since §2 is locally connected?
by Proposition A.1.9 we can also assume w.l.0.g. that for each v € © Wy is
connected. O

A.1.11 Proposition (FEzchange of the Banach Space Structure on B))

Let {¢()‘) c quy, — Uy x By}aea be a trivialization for a bundle projection
p: & — 2. Furthermore, let ¢y : By — B, be an isomorphism (of Banach
spaces) for every A € A and set iy := (Idy,, ty) : Uy X By — Uy % B,.

Then {i) o0 oW Ey, — Unx BA}AGA is a trivialization for p, that is equivalent
to {¢(>\)})\6A-

Proof.

Clearly, 45 and thus iy o ™ are homeomorphic. Condition (a) of Defini-

tion A.1.1 obviously holds. Furthermore, for every A\ € A and x € U, the
5 -
induced isomorphism (iy o ™) is given by &, LN By, = B, and thus is
isomorphic. Therefore, condition A.1.1 (b) holds and for all A\, x € A with
-1
x € UyNUy, # () the transition function is given by (¢ o qbgf)) o(1yo0 gbgﬁ)) =

—1
Ly O (gb(f) o (gbgg)\)) ) o (1x)”" and thus by Fact 1.5.10 is analytic. We con-

LCf. [Que01] Definition 4.16.
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clude, that condition A.1.1 (c) holds and that {iy 0 M} c4 is a trivialization
for p. It is equivalent to {gb(’\)} ae4 since analogously to the previous argu-
ment, all additional transition functions that arlse in their union have the form

(%) o (MY .
(g2 0 (¢3) )O(L)\) Or Ly O (gbx o(gbx ) )and are therefore analytic. O

A.1.12 Construction (Ezchange of the Banach Space Structure on &,)

Let (& < (2) be a bundle. Furthermore, let ¢, : & — E, be an isomorphism

(of Banach spaces) for every x € (2.

We set € := |J {z} x E, and define i : £ — & by i(e) := (p(€), tp(e)(e)) for
x€ef?

each e € €. Clearly, i is bijective. We endow £ with the final topology w.r.t.
i,i.e. O C & is open iff i 1(O) is open in € (see [Que01] Satz 3.16). Then i is
a homeomorphism.

Denote by p : £ — 2 the natural projection p(x,€) := x. Clearly, poi = p
and thus p is surjective and continuous.

Furthermore, for each x € {2 we equip E=p'{z}) =i(p 1 ({z})) = i(&x) =
{z} x E, with a Banach space structure by the natural identification with E,.
Then its topology coincides with the induced topology from &: If 6 := {z} X

Oy c {2} x E, is open in the Banach space norm topology, then :'(5,) c Ex
is open (in the Banach space norm topology). Thus there exists O C € such
that ¢;1(6,) = £, N O. Setting (~)~:: i(0) C & we obtain 6 = i(1;1(0,)) =
i(E,NO0)=1i(&)Ni(O) = ({z} x E;)NO and thus 6 is open in in the induced
topology. Conversely, if we assume that § # O c £, then i~'(0) C & and
0:=i 1 (0)NE, C &,. Therefore, ON {z}x E,) =i(i"H(ON({z} x E,))) =
{z} X1, (i_l(OH ({x} x Ex))) = {z} X1, (z'_l(O) NE;) = {z} x 1,(0) is open

in the Banach space norm topology.

Clearly, for all z € {2 the restriction ig, is given by ig, : &, L By —
{2} x E, — &, and therefore is an isomorphism from &, to &,.

Next, for a representant {¢pM : Ep, — U,\ X By}aea of (€ < 2) define oM
qbw o7 ! for each A € A. Then {gb }AeA is a trivialization for p: Smce
5% — <S’|UA is homeomorphic, ¢V E|U — Uy X B) is a homeomorphism.

By construction, condition (a) of Definition A.1. 1 holds. Furthermore for each
o)

(i) £, — B, and thus is an

A€ Aand z € U, (;;9) is given by &,
isomorphism. Therefore, condition (b) holds. Finally, since for all A\,x € A
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~ ~yy. —1
with x € Uy N U, # () the transition function is given by ¢§f> o (gb(;\)) =
Cb:(vﬁ) oilo (Cbgc)\) oi ) = gbgf) o ((b;({\)) and thus is analytic, condition (c)

holds.

Therefore the equivalence class (€ ﬁ 2) of {¢M} ¢4 is a bundle.

For each & € (2 we choose A\ € A such that & € Uy. Then the map Z, :

B (&:1 E, ﬁ ENx @ By coincides with the “constant” Idp, and thus is

analytically depending on x € U). We will later say (see Definition A.4.4 and

Proposition A.4.5 (b)): “The bundles (£ < Q) and (€ f— (2) are isomorphic”.
JAN

A.1.13 Proposition (Isomorphism of Fibers)

Let <€£ 2) be a bundle.
Then on every connected component C' of {2, all fibers &£, for all x € C are
isomorphic (as Banach spaces).

If, in particular, the base space {2 is connected, then all fibers &, for all x € (2
are isomorphic (as Banach spaces).

Proof.
Let C be a connected component of {2 and {gb(’\) : 5|U,\ — Uy X By}xesa a

representant of (€ < (2). Furthermore, let z,y € C. Since C is connected
there exists Ai,..., A, € A such that x € Uy, y € Uy, and Uy, N U,, # 0 for
all [i —j| <1 (see e.g. [QueOl] Lemma 4.8). Thus By, = & = B,, for some
£ € Uy,NU,, and all [i — j| < 1. Therefore &, = By, = By, = --- = B, = &,.

U

A.1.14pDeﬁniti0n
Let (€ > 2) be a bundle and E a Banach space.

We say (€ < 2y is a bundle with fiber E if all fibers &, for all x € {2 are
isomorphic (as Banach spaces) to E.

A.2 Sections

Throughout this section let (€ < (2) be a bundle. We denote the Banach space
structure on the fibers by (&, 45 : € X & — &y o : Cx E — &4y || - ||2) for
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each = € 2. Furthermore, let § £ O C (2.

A.2.1 Definition (Section)

A function s : O — & is called (analytic) section (of (€ - 2)) (over O) if
pos = Idp and for every { € O there is a trivializing map ¢ : £y — U X B
for (Eﬁﬂ} such that £ € U and? [z — ¢,(s(z))] € A(UNO, B). We denote
the set of all sections of (5£ (2) over O by I'(O, <€£ 2)).

Throughout the rest of this section we set I' := I'(O, (€ < 2y).

A.2.2 Rerglark
Let 0 £ 0 C O.

Then s € I'(O, <5£Q>)) obviously implies 5|, € I'(o, <€£ 2))).

A.2.3 Proposition
Let [s: 0 —= €& eT.
Then s is continuous.

Proof.

Let £ € O. Furthermore, let ¢ : & — U x B be a trivializing map for (€ s
such that £ € U and [z — ¢,(s(z))] € A(UNO, B). Thus by Fact 1.5.1 [z
(z,9.(s(z)))] € C(UNO, (UNO) x B). Therefore [z — ¢~ (ZU gbx( )]
C(U N O,&). On the other hand (z,¢,(s(z))) = (p(s(x)), ¢ (s(x ))
¢(s(z)) and thus ¢~ (¢(s(x))) = s(z) for all z € UN O. ThlS yields that
is continuous in £ and therefore continuous on O.

el m I

A.2.4 Proposition
In the situation of Definition A.2.1, s € I'"iff pos = Idp and [x — Py (s(a:))} €

A(V N O,QC) for every trivializing map 1 : &y — V x C for (é’g— 2).

Proof.

The direction “<=" is clear. In order to show “=", let £ € V N O. Then
there is a trivializing map ¢ : &y — U x B for (£ < (2) such that £ € U and
[z — ¢.(s(z))] € A(UNO,B). Then for each z € UNV NO ¥,(s(x)) =
(r0(2) "0 02) (5(x) = (Vw0 (90) ) (82 (s(2))). Since [z = 1h0(6,) ] €
AUNVNO,Z(B,C) by definition, this yields [z — ¢, (s(z))] € AU N
VN O,C) (cf. [Cha85] Example 3.10, Exercise 5D and Theorem 14.13). In

*We note that @ — ¢, (s(x)) is well-defined since s(z) € &, for all z € O.
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particular x — 1, (s(x)) is analytic in the point ¢ and thus analytic on VN O.
]

A.2.5 Definition and Proposition (Vector Space Structure)

Forall s,5 € I', « € C and x € 2 we define (a - s)(z) := (as)(z) := a -, s(z)
and (s + 8)(x) := s(x) +, 5(z) for all x € (2.

Then o+ s,s+§ € ["and (I',+,-) is a vector space.

Proof.

It is obvious that (17,4, -) is a vector space once we have shown that a-s, s+§ €
I''tfor all s,5 € I'and a € C. Let ¥ : £y — U x B be a trivializing map

for (€ < (2). Then by Proposition A.2.4 [z — ¢,(s(z))], [z — ¢.(5(z))] €
A(U N O, B). In addition, since 1, is an Banach space 1som0rphlsm 1/)1,( Q-

(
s)(2)) = bu(ays(z)) = Oﬂﬂx( (2)) and ¢, ((s+3)(2)) = ¥ (s(x) +. 3(2)) =
U (s(x)) + wx( (z)) for all z € UN O. Thus by Fact 1.5.6 [.I — ¢x((04
s)(@)], [z — ¥.((s + 5)(z))] € A(UNO,B) and then by Proposition A.2.4
a-s,s+sel. O

A.2.6 Definition
We endow [' with the compact-open topology, i.e. the topology generated by
the subbasis of all sets of the form By (K,0) :={se€ ': s(K) C O} where

KcCcOandOCE.

A.2.7 Proposition (Fréchet Space Structure)

Let {¢W : &y, — Uy x Byhea € (5£Q> and K .= {(\,K): A e A #
KccUynNnoO }

For each (A, K) € K we define p, gy : I' — R by

PoK)(8) = 22}8 H(bw (s(x)) HBA-

Then p) i) is a seminorm. The topology induced by the family of seminorms>

{px }rek coincides with the compact-open topology on I
I' is a (complex) Fréchet space.

Proof.

Since O is (a metric space and thus) paracompact and separable, O is a Lindel6f
space (see [Dug70] Definition VIII.6.4 and the theorem in [Dug70| VIIL.7.4).
Therefore there exists a countable subset Aqp C A such that {Uy}aega,,, covers

3Cf. [Jdn05] Section 2.5.
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O. For each A € Agy, analogously U) is a locally compact Llndelof space
and therefore countable at infinity, i.e. there is a countable family {K }n@N
such that for every K CC U, there is n € N with K C K,(L ). Then Kent 1=
Usea.., ({2} {Ky({\)}nelN) is a countable subset of .

It is clear that p, is a seminorm for each x € IC.

We denote the topology induced by the family of seminorms?® {p.}.cx and
{px}rex,,, by T and ey, resp.. Furthermore, for all k € K, ¢ > 0 and s € I
we denote by Bf(s) :={o € I' : py(s —0) < €} the open balls of 7 (and
particularly of 7oy if & € Kept).

Let K cC O and @ C €. We will now show that Br(K,O) € Teyt. Therefore,
w.l.0.g. we can assume that there exists s € Bp(K, O) (and thus K C p(O))
and that there exists x € K. Then there is A\, € A¢ye with x € Uy, . Then

(z, P (s(z))) = ¢ (s(x)) € ¢ (&, NO) C Uy, X B),. Thus there are
0y C Uy, and €, > 0 such that (z, gbgf\z)(s(x))) € 0, X bgf) c o) (Ep,. NO),
where b\") = Bg,. (¢§ﬁz) (s(z)),€) for each € > 0. By continuity of P(*0)
Sj,,no we can additionally choose o, “small enough” such that o, C O and
60" (5(€)) € b), for all € € o,.

{0z }zek 18 an open cover of K. By compactness of K and, since K is a metric
and thus normal space, by [Que01] Satz 7.12 and [Que01| Satz 8.6 there is a
finite set K, C K and k, CC o, for each z € Kz, such that {k,},ck, covers
K. For each x € Ky there is K, CC U, such that (A;, K;) € Koy and k, C

: A K
K. Weset €:=1/2min{ e, : © € Kg, } > 0 and By = (g, B! )(s)
We now show that By C Bp(K,O): Let 0 € B and £ € K. Then there is
x € Ky, such that € € k,. Since 0 € BG(A”KI)(S) we obtain Hgbg“’”) (a(&)) —
Az Az

o0 ()|, = 168 (0 = )(©)|, < € < /2. Also, € € o, and
thus gbg‘”)( ) € bix}Q Therefore Hgb?‘”) (s(€)) — PO (s(@)|lB, < €/2.
Thus ng5§ ( £)) — ( (x ))HBA < €, or reformulated, gbém((f(f)) e b,

Therefore ¢*) (o (g)) 3 ¢5 a(€))) € ¢*)(Ey, NO). This yields o(€) €
O and thus 0 € Bp(K,O).

Since trivially s € By and By is open in 7.y, we conclude that Bp(K, O)
consists only of interior points w.r.t. 7. and therefore is open in 7.. Thus

4Cf. [Jan05] Section 2.5.
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the compact-open topology is coarser than 7.

Of course, Teyt 1S coarser than 7.

Finally, let (\,K) € K, ¢ > 0 and s € I'. We set o := U&Umo ({¢}
B, (6" (5(€)).€)). We note that Uy x By 3 (¢,8) = (& 8+ ¢{" (s(9)))
U

Uy x By is a homeomorphism and o is the image of (UyNO) x Bp, (0, E) C U,
B) under that homeomorphism. Therefore o C Uy x BA Then (gb(A))_ (0) C
and Br(K, (™) (0) = {0 € T : (&) € (™) (o) for aug e K} =
{oc € I: ¢W(c(¢)) € oforallé € K} = {0 € T : ¢ £(( )) €
BBA((bé/\)(s(f)),e) forallé € K} = {o € I : Hgbg)((s —0)(& )HBA
e for all £ € K'}. We note that {o € [": H(bé’\)((s — a)(ﬁ))“BA < eforall £ €
K} = BE(/\’K)(S) since the continuous function K 3 £ +— Hgb?)((s —0)(¢)) HBA

attains its supremum on K. Therefore Be(/\’K)(s) = Br(K, (¢™) (0)) is open
in the compact-open topology. Thus 7 is coarser than the compact-open topol-

ogy.
We conclude that 7, 7x and the compact-open topology all coincide.

th X M X

In view of 7 it is clear that I is a Hausdorff space and in view of 7., it then
follows that I'is a pre-Fréchet space.

Before we show completeness we treat the special case where O belongs to the
trivializing cover:

A.2.8 Proposition

Let ¢ : £y — U X B be a trivializing map for (5£ 2).

Then® s — [z — ¢,(s(2))] € L(I'(U, <5£ 2)), A(U, B)) is an isomorphism.
Proof.

For all s € I'(U, (& < 2)) we denote by T'(s) := [z — ¢,(s(x))]; then by
Proposition A.2.4 T'(s) € A(U, B) and clearly T : I'(U, (€ - 2)) — A(U, B)
is linear and injective. If conversely f € A(U, B), then obviously sy := [U 2
z— (¢) " (s(z))] € (U, <S£ 2)) and T'(sys) = f. Thus T is surjective. The
open balls in I'(U, (€ < 2)) and A(U, B) are given by BX(s) := {0 € I :

®We have introduced the symbol .Z(...) only for complete spaces, but it is clear from the
statement itself that I"(U, <5f— 2)) is indeed complete.
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EEEH%(“ —0)(@))||, < €} and BE(f) := {f € A(U,B) : sup,ex ||(f —

A@)|ls < €}, resp., where s € T(U,(E = 2)), f € AU,B), 0 # K cC U

and € > 0. Then T(BX(s)) = BX(Ts) forall s € ['(U, (€= 2)), 0 £ K cC U
and € > 0. Thus T is continuous and open. O

Proof of Proposition A.2.7 (Continuation).
[t remains to show completeness.

Let (sn),ex C I be a Cauchy sequence®. Then for each z € O (s,()), o 18
a Cauchy sequence in &, and thus converge to some s(x) € &£,. We will now
show that the so-defined function s : O — £ is a section.

po s = Idp holds by construction.
Let £ € O. Then there is A € A such that £ € Uy (and thus Uy N O #

(). For all n € N we set FN = T\((sn)jrano) € A(UxN O, By), where
T is the isomorphism given by Proposition A.2.8 w.r.t. the trivializing map

oW Eurino — (UxNO) x By for (€ < 2). Proposition A.2.8 yields that
(féA))ne]N is a Cauchy sequence in A(Uy N O, By). Thus there exists fV) €
A(Uy N O, By) such that fT(lA) % XN In particular f}g’\)(x) W)
in By for all x € Uy N O. On the other, since qbg{\) € Z(&;, B)) for each
reUynNO, fé”(a:) = ¢§ﬁ> (sn(z)) = gbg{\) (s(x)) in By for all z € Uy N O.
Thus Uy N O 3 z — ¢ (s(z)) coincides with f& € AU, N O, By).
Therefore s is a section.

Let N be a neighborhood of s in I'. Then there are ¢ > 0, [ € N and
(N, K;) € K for each i = 1,...,[ such that ﬂézl Be(/\i’Ki)(s) C N. Then for
each i =1,...,[ there is m; € N such that fé)‘i) € BEKAi(f(AZ’)) for all n > m;,
where B/ is defined as in the proof of Proposition A.2.8. Since T),(sy, no) =

fX) from the proof of Proposition A.2.8 we then obtain s, € Be(/\i’Ki)(S) for

all n > m,; for each i = 1,...,l. Thus s, € N for all n > max{my,...,m}.

Hence s,, —> s. O
r

A.2.9 Remark

Let O # o cO.

Then obviously [s +— s),] € Z(I',I'(o, (5£ 2))).

6i.e. for every neighborhood N of 0 € I" there is ng € N such that s, — s, € N for all n,m > ng
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A.2.10 Proposition (Identity Theorem for Analytic Sections)

Assume that O is connected and let s,5 € I'. If there is ) # o C O such that

Slo = 8|, then s = 5 (on O).

Proof.

By Proposition A.1.10 we can assume w.l.0.g., that U, is connected for each

A€ A Let x € O. It suffices to show that s(z) = 3(z). Let y € o.

Since O is connected there exists Aj,..., A\, € A such that y € Uy, x €

Uy, and ONUy\, NUy, # 0 for all i — j| < 1 (see e.g. [QueOl| Lemma

4.8). By Proposition A.2.4 [z — gbgj\l)(s(a:))], [z — (b(x/\l)(g(a:))] e A(ON

)\1 >\1 =

U Ba) and [i = 68 (50)] i, = o 68 (5(2)] - Therefors

by the identity theorem for analytic functions (see [Cha85] Theorem 12.9)
A1 A1) [~ . A1) . .. .

[x — ¢§c >(3(x))} vy, = [m — gbé )(s(:z:))} 0Nt Since qﬁi )i bijective for

cach x € U, we obtain sjony,, = Sjonu,,- Similarly [:13 — Qﬁ;(z;AQ)(S(aﬁ))]a [33 =

Ag) [~ N
M (E@)] € AN U By) and [ 6 (@) o i, = 7
§6A2)(§(5’7))}|OﬁUA1mUk2 and thus Sjont,, = §|OQUA2. Analogously, we obtain
S|onUy, = S|0NT;, for each i = 3,...,n. Thus s(x) = 3(x). O

A.3 Restrictions

A.3.1 Construction and Definition (Restriction)
Let (€ < 2) be a bundle and ) # O C . Furthermore, let {¢WM}rena be a
representant of (€ < ).

We set Ap:=={ A€ A: ONU,# 0} and for each A € Ao we denote by gb|%)
the restriction of ™ to Elonu, -

Then clearly, {ONUy}aea,, is an open cover of O, ¢|%) : Elonu, — (ONUY) x B,

is a homeomorphism for each A € Ao and {¢|%)}/\e/1‘0 is a trivialization for
Pio-

Thus equivalence class of {¢|%)})\e/1|o is a bundle and is denoted by (€ < 0.
It’s called the restriction (of the bundle (€ < 2)).
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A.3.2 :}EQ{emark o
Let (€% (2) be a bundle and ) £ 0 C O C (2.

Then obviously (o, (€ < (2))) coincides with I'(o, (€ < 20))-

A.4 Homomorphisms

A.4.1 Definition (Homomorphism)

Let <5£ 2) and <]—“g 2) be bundles (over the same base space {2).
A function A : £ — F is called homomorphism (of bundles), if

(a) the diagram

commutes, i.e. go A = p and

(b) for all x € {2 the induced operator on the fibers A, := Aj¢, is linear and
bounded, i.e. A, € Z(&,, F,) and

(c) for all £ € {2 there are trivializing maps ¢ : &y — U x B for (£ < 2)
and ¢ : Fly — V x C for (fg 2y, resp., with £ € U C V such that the

trivialized induced map

(

-1

A, B
is analytically depending on x € U, i.e. [z — A,| € A(U, Z(B,(C))
holds. By abuse of notation we write A : (€ < 2y - (F < 2. We say the
homomorphism A : (€ < 2y - (F d (2) is injective or bijective if the map
A & — F is injective or bijective, resp..

A.4.2 Proposition
In the situation of Definition A.4.1, the function A : & — F is continuous.

Proof.
Let g € £ and let ¢ : &y — U X B and ¢ : Fy — V x C be trivial-
izing maps according to (c¢) of Definition A.4.1 with £ := p(eg). We note
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that it suffices to show that Ay, is continuous. For all e € &y Ale) =
U (p(e): Yooy Ante) (Bo0) Do) = ¥ (ple), Apeybpere) . By Fact 151
Eu D e Ay € Z(B,C) is continuous and by [QueO1] Satz 3.10 &y >
e — ¢pee € B is continuous. Therefore &y 3 e — A, )Ppe)e € B is contin-
uous. This yields [e — A(e)] € C(&y, Fv) and thus [e — A(e)] € C(Ey, F).

(]

A.4.3 Proposition
In the situation of Definition A.4.1, condition (c) is equivalent to each of the
following conditions.

(c1) There are {¢) : gy, — Uy x By}iea € (€ < 2) and {y¥) : Fy —
Vi X Cilrer € (]:g 2y, such that the trivialized induced maps

M o 4, @
gl' fx C/i

.A;(E)\’F"') : B,\
are analytically depending on x € U, NV, whenever Uy NV, # 0, i.e.
[ — AP € AU NV, Z(B), Cy)).
(c2) There are {¢V : Ep, — Uy X Byhrea € (€ < 2) and {pV : Fp, —

Uy X Chbrea € (F S (2) (with the same associated trivializing cover
{Ux}rea of £2) such that the trivialized induced maps

-1
(6 Aq I
Fu

AEC)‘) . B)\ O)\

are analytically depending on © € Uy, i.e. [z — Aé”] € A(Uy, Z(B),C)))
for all A € A.

(c3) For all {opW) Eu, — Ux X Byxhyea € (€ < 2) and {0 Fv, —
Vi X Cylrer € (Fg (2) the trivialized induced maps

M)y 1 (%)
E, Fau

.A(x)\’n) : B,\ ( Cﬁ

are analytically depending on x € Uy NV, whenever Uy NV, # 0, i.e.
[ — A € AU NV, Z(By, Cy)).

Proof.
“(c)=(c1)™: For each & € £2 we denote by ¢\® : &y, — Ue x B and ¢ :
Fiv, — Ve x C¢ the trivializing maps given by (c). We will show that {6} een
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and {1} ecp are trivializations for which (c;) holds: Clearly, {Uc}ecp is an
open cover of £2 and for all ¢ € 2 ¢ is a homeomorphism for which conditions
(a) and (b) of Definition A.1.1 hold. Finally, if Us N U, # O for some &, ¢ € 2

then the transition map UsNU; 3 z +— P e Z (B, Be) fulfills condition (c)
of Definition A.1.1, since by definition trivializing maps are part of equivalent

trivializing covers. Thus, {19 }¢cq is a representant of (€ s 2). Analogously,

{p©}¢cn is a representant of (F d 2). Now, let U, NV, # 0 for some
n,¢ € §2. In order to prove (c1) it suffices to show that [z AEU”’O] €
AUNV;, Z(B,, C¢)). To this end, let £ € U,NV;. We note that it suffices to
show that there exist some W C U, NV with £ € W such that [z — A&”’Q] €
AW, Z(B,,C)). Let W := U, NV, NU:N V. Clearly, ¢ € W C U,NV; and

(my~! ©)
for each v € W the map B, (&), E, As, Fa ¥, C¢ can be written as

<¢é"’> ¢z <¢>§f)>’1 A o WO @) O
Id Id

or, equivalently by associativity,

( (77)) ¢ ( (5)) A 3(55) ( gf))fl g(EC
Bl = Bz b Pz O F 2

6©o(a) P O0A,0(6®) Oo(ple™

as a “product” of three operator-valued functions and thus by Fact 1.5.10 [z —
A € AW, Z(B,.C.)).

“(c1)=(c2)™ Using the trivializations constructed in the proof of Proposi-
tion A.1.10 (cq) directly follows from the assumption.

“(ca)=>(c3)” We assume that {¢N : &y, — Uy, x BA}AEA and {yW™ : Fy, —
Uy X C\}aea are the trivializations for (€ < 2) and (J’:> (), resp., given by
(ca). Let ¢ : Ey — U x Band ¢ : Fjy — V x C be arbitrary’ trivializing
maps for <€£ (2) and (fﬁ §2), resp., with UNV # (). We note, that it suffices
to show [z — 1, 0 Ay 0 (¢,) '] € A(UNV, Z(B,C)). In order to prove this,

again, it suffices, that for any £ € UNV, there exists W C UNV with ceWw
such that [z — ¢, 0 A, 0 (¢,) '] € AW, Z(B,C)). Therefore, let E e UNV.

"We remark that we don’t assume ¢ € {¢pM}yeq or o € {pWM}yeq.
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There exists A € A such that £ € Uy. Then W :=U,NU NV CUNV and
¢ € W. Analogously to step “(c)=(c1)”, for each x € W the map B (%),
E, A, Fu e, C' can be written as
Lo o p@) oA, &)y,
No(gr) ™! é”oAz o é”) Yo 9’)

and thus again by Fact 1.5.10 [z — v, 0 A, 0 (¢,) '] € A(W,.Z(B,C)). This
proves (cs).

“(c3)=(c)” For each £ € 21t ¢ : Ey — U Xx B, v : Fy — V xC
be trivializing maps with £ € U, ¢ € V (such maps obviously exit, since
every bundle has a representant by definition). By Proposition A.1.9 and the
assumption, @y and Yy are trivializing maps for which (c) holds. O

A.4.4 Definition (Isomorphism)

Let A: (& < 2y — <]—"£ 2) be a bijective homomorphism of bundles. Further-
more, assume that A is bijective and that A™! : F — & is a homomorphism,
too.

Then A is called an isomorphism (of bundles) and (€ < (2) and (fg 2) are
called isomorphic.

A.4.5 Proposition

Let A: (& < 2) — (]:g 2) be a homomorphism of bundles over (2.
Then the following are all equivalent.

(a) A is an isomorphism.
(b) A is bijective.
(c) For each z € (2 A, is an isomorphism.

Proof.

“(a)=(b)” and “(b)=>(c)” are clear. In order to show “(c)=-(a)” we assume
that (b) holds. Clearly, bijectivity of A, for each x € (2 in combination with
condition (a) of Definition A.4.1 yields bijectivity of A. Therefore it remains to
show that A1 : F — £ is a homomorphism. Bijectivity of A implies conditions
(a) and (b) of Definition A.4.1 for A_l. By Proposition A.4.3 (c2) there are

{oW : Euy — U X Balaea € (€ £ 2) and {pW : Fy, — Uy x Chlrea €
(.7:> (2) such that [x — AN ] C A(U,\,.,Q”(B)\,C,\)) for all A € A, where A%
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denotes the trivialized induced maps of the bundle homomorphism A. Then
- )yt
the trivialized induced maps associated with A~! are given by A&A) : C) We7),

-1 (A)
Fu ()] Es L2 B\ and thus coincides with (AECA))_l. Hence by [Cha85]
Theorems 7.17, 5.9 and 14.13 [z +— fl(x)‘)] € AUy, Z(Cy, By)) for all A € A,
Therefore Proposition A.4.3 yields condition (c) of Definition A.4.1 for A~1,

(]

A.4.6 Proposition (Compatibility w. r. t. Equivalence)

Let A : (€ - ) — (.7:>q— 2) be an isomorphism of bundles and let {3} oy
be a representant of (£ - (2).

Then {¢™ o A7} ¢4 is a representant of (fg 2).

Proof.

For each A € A we denote by Uy and C) the open set and the Banach space
associated with o™, i.e. ¢ has the form ¢W : Ev, — U\ x B). By definition
of A~ and 9 for each f € Fiy, q(f) = p(ALf) = (v o GW)(ATLf) =
v(¢W o A7N)(f)), where v is the natural projection (associated with both
{¢pW Y ex and {¢Mo A7)\ 4), and thus condition (a) of Definition A.1.1 holds

for ™) o A~!. Furthermore, on each fiber F, (where x € Uy) the map induced

-1 \)
by ¢()‘) 1o A_l 1S given by (d)o‘) o) A_l)x : fl‘ (A—)f 53; AN B)\ and thus is an

isomorphism. Therefore condition (b) holds. Additionally, for each x € A with
U,NU, # 0 then the transition function from B) to B, w.r.t. {gbw o A 1} e

)y~ -1y ! -1 ()
is given by By 0 g, U 2 W e 2B Since ((471),) = 4,

conditions (c) holds. Thus {¢pM) o A1}y is a trivialization for ¢. Finally,
if ¢ : V. — V x C is trivializing map for (F d 2) with Uy NV # () then

)yt
the transition function from By to C' is given by B) @), E, Aa, F, LEN

and thus is analytically depending on x € Uy NV by Proposition A.4.3 (c3).
Together with Remark A.1.2 this yields that {¢") o A71} ¢, is a representant

of (F>02). 0
A.4.7 Corollary

Let A: (€ < ) — (Fg- (2) be an isomorphism of bundles.

Then every representant of (F d 2) is of the form {¢™ o A7} cq where
{6 \e is a representant of (5£ 2).
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Proof.
Let {yM}yca be a representant of (]—“ﬁ (2). Then by Proposition A.4.6 {yyM o

Al}aes is a representant of (€ d 2). The result follows with ¢ := M o A
(where A € A). O

A.4.8 Example
Let {gb(A) : §u, — Uy X By}rea be a trivialization for a bundle projection
p: & — 2. For each x € (2 let || - ||z be a norm on the Banach space &,

that is equivalent to the “original” one. Denote by £ = |J (&, || - ||.) the total
x€ef?

space “associated” with the norms || - [|;. Then {¢W}yeq is a trivialization
for p : £ — 2 since obviously conditions (a), (b) and (c) of Definition A.1.1

hold. Thus its equivalence class (€ < ) is a bundle. Then Id : £ — &
is an isomorphism of bundles: Obviously, Id is bijective and condition (a) of
Definition A.4.1 holds. Furthermore, clearly the induced operator on the fibers
Id, is linear and by equivalence of the norms Id, € .Z(&,,E,). Thus condition
(b) holds. Finally, let € 2 and A € A such that + € U,. The transition

N L gW
function Z, : B, @), E. 1, &, — B, coincides with Idp, and thus is

analytically depending on x € U,. Therefore condition (c) holds. A

Spectrum and Cospectrum

A.4.9 De%nition .
Let A: (£>12) — (F>{2) be a homomorphism of bundles.

S(A) :={x e 2: Ker A, # {0} } is called the spectrum (of A).
CS(A) :={x € 2: Coker A, # {0} } is called the cospectrum (of A).

A.5 Trivial Bundles

A.5.1 Definition ( Trivial Bundle)

A bundle, that is isomorphic to the bundle constructed in Example A.1.8, is
called trivial bundle.

A.5.2 Proposition (A Characterization of Trivial Bundles)

A bundle (&€ < (2) is trivial iff it has a representant of the form {¢ : o —
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2 x B}.

Proof.
By definition, the bundle constructed in Example A.1.8 has such a representant.

Thus Proposition A.4.6 yields the direction “=". Conversely for “<=", let
{0 : £ — 2 x B} be a representant of (£ < 2). Denote by (£2 x B - 2)
the bundle constructed in Example A.1.8 (with fibers the given Banach space
B). Then ¢ : (£ s 2) - (2 x B o (2) is an isomorphism: By definition, ¢
is bijective and conditions (a) and (b) of Definition A.1.1 yield conditions (a)

and (b) of Definition A.4.1. Finally, let x € (2. Then the trivialized induced

map B (), Ex 9=, {z} x B B (where, by abuse of notation, (gbx)fl

denotes the induced isomorphism in the sense of Definition A.1.1 (b) and ¢,
denotes the induced operator in the sense of Definition A.4.1 (b))] coincides
with Idp and thus is analytically depending on = € (2. Therefore condition (c)
of Definition A.4.1 holds. O

A.6 Subbundles

A.6.1 Peﬁnition .
Let (€= (2) and (F > 2) be bundles over the same base space {2.

<5£ (2) is called a subbundle (of (Fg 2)) if
(a) & C F (and the topology of £ is the induced one from F and for each
x € {2 the Banach space &, is a subspace of the Banach space F,) and
(b) the inclusion map I : £ — F is an homomorphism from (& < 2) to
q
(F=12).
A.6.2 Remark

By Proposition A.4.3 and Proposition A.1.10, in the situation of Definition A.6.1
condition (b) is equivalent to the following condition.

(b1) p = q¢ and for all { € {2 there are trivializing maps ¢ : &y — U x B for
(Egﬂ) and ¥ : Fjy — U x C for <.7-"£ 2y, resp., with £ € U such that
the map

—1
7,: B & s F, o

is analytically depending on x € U, i.e. [v — I,] € AU, Z(B,()),
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where for each x € U &, — F, denotes the embedding by inclusion as a
subspace.

We refer to Proposition A.4.3 and Definition A.4.1 for further equivalent for-
mulations.

A.6.3 Remark
In the situation of Definition A.6.1 £, = F, N E for each x € 2 and thus &, is
a closed linear subspace of F, since all £, are complete.

A.6.4 Remark
Clearly, every bundle is a subbundle of itself.

A.6.5 I%emark . )
Let (€ > §2) be a subbundle of (F = ) and s € I'(O,(€ > {2)) where

0+#0CQ.

For each £ € O by Proposition A.1.10 there are trivializing maps ¢ : &y —
U x B for <5§—(Z> and ¢ : Fjy — U x C for <f>(]—(2>, resp., with £ € U C O.
Then by Remark A.6.2, Proposition A.2.4 and Fact 1.5.10 gos =pos=1Idp
and |z — ¥, (s(z))] = [z — wx(%)_l%(s(x))} € A(O,C). Hence, again by
Proposition A.2.4 s € I'(O, (]:g 2)).

A.7 Induced Homomorphisms on Sections

A.7.1 Proposition and Definition

Let A: (€ < Q) — (]:g 2) be a homomorphism of bundles and () # O c 0.
Then Apjp(s) := Ao s for all s € I'(O, (€ < (2)) defines a map Apjp €
ZL(I(0,(& < 2)), (O, (F < 2))), called the induced homomorphism by A.
We set Ar := Apjq.

Proof.

Let s € F(O,<5£ 2)). Then qo (Apo(s)) = goAos =pos = ldo.
Furthermore, let £ € O. By Proposition A.4.3 (2) there are trivializing maps
¢: &y — U x B for (5£(2> and ¢ : Fly — V x C for {fﬁﬁ), resp., such
that Definition A.4.1 (c) holds. Then for all z € UN O ¢, ((Aro(s))(z)) =

Vo (A(s(2))) = vo(As((071)das(2))) = (g 0 Ay 0 ¢1)(¢us(x)). By the
assumption [z — ¥, 0 A, 0 ¢, '] € A(U,Z(B,C)) and [z — ¢,(s(z))] €
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A(UNO,B). Thus by Fact 1.5.10 [z — ¥, ((Arjo(s))(z))] € AUNO,QO).

This yields Apjo(s) € (F < (2). Clearly, Apjp is linear. In order to prove
continuity it suffices to show that (App)” 1( 0F D) (K, (’))) is open for

every K CC O and O c F. By Proposition A.4.2 A1) C € and thus
-1 _ o p

every K CC O and O C F. This finishes the proof. O

A.8 Fredholm Homomorphisms

A.8.1 Definition ) .
A homomorphism A : (£ > §2) — (F > {2) of bundles over the space {2

is called Fredholm homomorphism if for each x € {2 the induced operator
A, € Z(&;, F,) is a Fredholm operator.

A.8.2 Proposition

Let A: (€ s 2) — (]:g (2) be a homomorphism of bundles.
Then the following are all equivalent.

(1) Ais a Fredholm homomorphism.
(2) There are trivializations {¢( 5|U — Uy X By}aea and {w Fy, —

Vi X Cylrer for (€ - 2) and (F o 2y, resp., such that the trivialized
induced maps

A, ()

M)yt
AW) : By, (¢=7) E, F C.

are Fredholm operators whenever x € Uy, NV, # (.
(3) There are trivializations {¢( 5‘(] — Uy X B)}rea and {w Flu, —

Uy X Cy}rea for (€ o 2) and (f> (2), resp., (with the same open cover
{Ux}rea of §2) such that the trivialized induced maps

\ ( (/\)) (N)
AW .y B e A o

€T

are Fredholm operators for all € U, for all A € A.
(4) For all trivializations {gb(A Eu, — Ux X By}aea and {ﬂ} Fiv, —
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Vie X Cy}rex for (€ < (2) and <.7:>q— (2), resp., the trivialized induced maps

(A1 ()
A_(l.A’H) : B)\ (¢w ) gfv A, z

Fa

Ci

are Fredholm operators whenever x € U, NV, # (.

Proof.

“(1)=(2)" Let {¢pM}rea and {10} c be the trivializations from A.4.3 (cp).
Since the composition of isomorphisms with Fredholm operators are Fredholm
operators (2) follows from the assumption.

“(2)=-(3)”: This follows from the same argument as the step “(c;)=-(cg)” in the
proof of Proposition A.4.3.

“(3)=(4)": Using the construction and its notation from the step “(co)=>(c3)”
in the proof of Proposition A.4.3 we obtain the operator composition

-1

(¢a) I N T A
Bt Bl Fa 2O

I ¢ Poduo(6?) a0

C

which together with the argument used in the step “(1)=-(2)” proves (4).

“(4)=(1)" Foreachx € 2let ¢ : Ey — UXB, ¢ : Fjy — V xC be trivializing
maps with x € U, x € V' (such maps obviously exit, since every bundle has a
trivialization by definition). Then A, = (%3)_1 o1hy0 A, 0 (gbx)_l o ¢, and by
the assumption and the argument of step “(1)=-(2), (1) follows. O






Appendix B

Sheaves

For the convenience of the reader we recall some basic definitions from sheaf
theory. We remark that the main intention of this chapter is to introduce and
fix notations. We refer to, e.g., [Hor67] Chapter 7, [GR65] Chapter 4 and the
monographs [Kul70], [Ten75] and [GR84| where the reader will find proofs that

we will omit here.
Furthermore, we state well-known results that we use in this thesis.

We will restrict ourselves to analytic sheaves over open subsets of C, as only
those occur during this thesis, and the following notions will be used only in
the “customized” version defined below.

During this chapter, let () # (2 cC.

B.1.3 Definition and Remark (Local Homeomorphism)

Let F be a topological space. Then p : F — (2 is called a local homeomorphism
ift for every a € F there are U C Fand O C 2 such that a € U and
p : U — O is a homeomorphism.

A local homeomorphism is continuous and open (see e. g. [Ten75] Lemma 1.3.5).

B.1.4 Convention (Ring, Module)

With rng we always mean a commutative ring with identity. The underlying
ring R of a module M (*R-module M” for short) will always be a ring in
the sense above. The underlying ring homomorphism of an algebra is always
assumed to be of the form C — M where M is a ring in the sense above; in
particular, we will only deal with C-algebras.

(We refer to e. g. [Bos04] Sections 2.1, 2.9 and 3.3, resp., for precise definitions

113
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of the mentioned structures and corresponding homomorphisms. For intuition,
we remark that loosely speaking, a ring is a field without division, i.e. there
are associative, commutative and “compatible” operations “+7, “—" and “.”,
and corresponding neutral elements 0 and 1. Also, loosely speaking, a module
M is a vector space where the field is replaced by a ring R, i.e. there are
operations “+”7 and “—” for elements in M a corresponding neutral element
0 and a “compatible” scalar multiplication - : R X M — M. Furthermore,
an algebra is a ring that additionally allows a compatible scalar multiplication

with elements of C.)

As an example, the space of analytic functions A(f2) is a C-algebra; again
loosely speaking that means, that for all f,g € A(f2) and a € C there are
operations f + g, f — ¢, [+ g, af and the constant analytic functions 0, 1 are
the corresponding neutral elements. Furthermore, e.g. A(£2, C?) is an module

over A(£2).

B.1.5 Construction (The Sheaf of Germs of Analytic Functions)

For all z € (2 and functions f : {2 D Dy — Cand g: 2 D D, — C we write
f ~. g iff there is a neighborhood O of z, such that O C DyN D, f,g € A(O)
and f =g on O.

Then ~. is an equivalence relation and the residue class ~.(f) of such f is
called the germ (of f at z).

Furthermore, let O, be the set of all residue classes with respect to ~, and

O(£2) := | O, their disjoint union.
z€f?

Obviously, if a € O,, then there exists a function f : 2 D Dy — C with
a=.(f) and a(z) := f(z) is well-defined.

For each z € 2 O, is endowed with the ring structure (O,, 4+, -,) induced by
the ring structure of the space of analytic functions, i.e. if for each ¢ = 1,2
a; € O, and f; € A(O;), then the ring operations are given by a; +, as :=
v.(fi + f1), a1 > as := v.(f1 - f1), where f; denotes the restriction of f; to
01N Oy, and the neutral elements are the residue classes of 0, 1 € A({2), resp..

We define a function p : O(£2) — 2: If a € O(S2) then by definition of the
disjoint union, there exists exactly one p(a) € 2 with a € Op,. p is called
projection.

We endow O({?2) with the topology that is defined by the base of all sets of the
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form {f <O} :={~.(f): z € O} where O C Qand f € A(O), i.e. a subset
of O(f2) is open iff it is the union of sets of this form.

Then p is a local homeomorphism: Indeed, for all § # O C Q and f € A(O)

the restriction p(r40y : { if(f)O} : g is a homeomorphism.

O(12) is called the sheaf of germs of analytic functions (over (2), cf. Re-
mark B.1.8.

B.1.6 Definition (Analytic Sheaf)
Let F be a topological space. Furthermore, let p : 7 — {2 be surjective and a
local homeomorphism.

For each z € 2 F, := p*({z}) is called stalk. The elements of F, are called
germs.

Furthermore, assume that each stalk F, carries the structure of an O,-module.

Weset FoF = J F.xF,and O(2) o F= {J O, x F..
z€f? Z2€L2

We define + : FoF — F and - : O(§2) o F — F by the pointwise operations
of the corresponding module. Finally, assume that +, - and X 3 x — 0, € F
(where 0, is the neutral element in F,) are continuous.

Then (by abuse of notation) F is called an (analytic) sheaf (over §2).

p is called projection.

B.1.7 Remark
If F is a sheaf, then the induced topology (by F) on each stalk F, is the
discrete topology (i.e. every subset is open).

B.1.8 Remark
O(£2) is a sheaf. (For each z € 2 O, is a module over itself). We also remark
that 23 z+— 1, € O(2) (where 1, is the identity in O.) is continuous.

B.1.9 Definition and Fact .
Let F be a sheaf over 2 and ) # O C (2. A continuous map s : O — F with
pos=1dis called a section (over O).

We denote the set of all sections over O by I'(O, F).

The stalkwise ring structure of O(£2) (or, viewed from a different point®:

LCf. Remark B.1.10.
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the ring structure of A(f2)) induces a ring structure on I'(O, O(f2)) and the
stalkwise module structure of F induces a I'(O, O({2)) module structure on
I'(O,F), cf. [Kul70] 1.§ 2. Moreover, the C-algebra structure of A({2) induces
C-vector space structures on both I'(O, O(£2)) and I'(O, F).

B.1.10 Remark (Identification of A(O) with I'(O,O({2)))

Let 0 # O c 0.

For all f € A(O) we define o(f) : O — O by [0(f)](2) := 7.(f). Then
S F(O, O(Q))

The so-defined map o : A(O) — I'(O, O({2)) is bijective.

B.1.11 Remark

By the preceding remark we can identify the sections of O({2) with analytic
functions. On the other hand, the construction of O({2) was based on analytic
functions. There is a general result regarding the correspondence of a sheat and
its spaces of sections, see [Ten75| Chapter 2 (especially 5.7 Terminology) for a

detailed explanation. In particular, the topology chosen in Construction B.1.5
occurs in a more general context.

In particular, the following sheaves can be constructed analogously to Con-
struction B.1.5.

B.1.12 Construction (The Sheaf of Germs of Analytic Sections of a Bundle)
Let (€ < 2) be a bundle. If we substitute in Construction B.1.5 A(O) with
ro,& < (2)) for each ) # O C £, we obtain a sheaf called the sheaf of
germs of sections (of the bundle (€ < §2)) and it is denoted by? O<5£Q>((Z).

In particular, for a fixed z € {2 two sections of a bundle s; € I'(O;, (€ < 2))
for each ¢ = 1,2 are equivalent if there is a neighborhood O of z, such that

O C O1NOgand s;1 = sson O. Thus a € O<5£Q>(Q) iff thereis a € O C 2 and
seI'(0,(& < (2)) such that a is the residue class of s. Again, the topology of
O<5£Q>(Q) can be described by the open sets {s <O} :={7.(s): z € O} for
all O C Q2 and s € o, <5£Q>)

B.1.13 Construction
Let X be a Banach space. If we substitute in Construction B.1.5 A(O) with

2Again, by abuse of notations the symbol is used both for the sheaf and the underlying topo-
logical space.
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A(O, X) for each § # O C 2, we obtain a sheaf OX(£2). Clearly O%(02) =
O({2) and once we have introduced the sum of sheaves, cf. Definition B.1.22,
we obtain that O (£2) coincides with OT(£2))".

B.1.14 Remark
Analogously to Remark B.1.10 we can identify

10, (£ Q) with T(0, OE2(Q))
and A(O, X) with I'(O, O*(£2)) where ) # O c 0, <8£ (2) is a bundle and

X a Banach space.

B.1.15 Definition
For each O C 2 I'(O,O({?2)) is endowed with the Fréchet space structure of
A(O) (cf. Fact 1.5.6) via the bijection given by Remark B.1.10.

B.1.16 Fact and Definition
Let F be a sheaf over (2. Assume that for each () # O C 0 I'(O,F) carries a
Fréchet space structure such that
1. I'(O, F) is a Fréchet I'(O, O) module, i. e. the multiplication I'(O, O) x
I'O,F) — I'(O, F) is continuous and
2. for all ) # 0 C O the restriction map I'(0,F) 3 5+ 5, € I'(0, F) is
continuous.

Then F is called a Fréchet sheaf.

B.1.17 Definition (Homomorphism of Sheaves)
Let F; and F5 be sheaves over {2 with projections py, ps, resp.. A continuous
map H : F1 — F> is called a homomorphism iff poo H = p; and for each z € (2

the restriction of H to (F1), is a O,-homomorphism between the modules (F7),
and (.7:2)2

B.1.18 Definition and Fact (Isomorphism of Sheaves)
A homomorphism H : F; — F> that is bijective is called an isomorphism. In

that case, H™! : Fy — JFj is an homomorphism of sheaves, cf. [Kul70] Satz
[.3.1.

B.1.19 Definition (Restriction of a Sheaf)

Let F be a sheaf over {2 with projection p and 0 # O C . Endow (@)
with the induced topology from the topological space F. For each z € O
endow p~1({z}) with the O.-module structure given by the identification with
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F.. Then Fjp := p~'(O) is a sheaf over O with projection |7, called the
restriction of JF.

B.1.20 Definition (Subsheaf)

Let F; and F5 be sheaves over {2 with projections py, ps, resp.. Furthermore,
assume that the topological space F7 is an open subspace of F5, that p; is the
restriction of py to Fp and that for each z € 2 (F7). is a submodule of (F3)..
Then F; is called a subsheaf of Fs.

In that case, for each O C {2 I'(O, Fy) is a submodule of I'(O, F).

B.1.21 Definition (Quotient of Sheaves)
Let F be a sheaf over {2 with projection p and let G be subsheaf of F. Let

H = U ]:Z/gz be the disjoint union of the pointwise quotient modules and
z€(?
denote by p : H — (2 the canonical projection. For each z € {2 we denote

by ¢, : F — ]:Z/QZ the canonical projection and we define ¢ : F — H by
F 2 a v+ qy)(a). Finally, we endow ‘H with the quotient topology induced
by q.

Then f/g := 'H is a sheaf over {2 with projection p, called the quotient sheaf
of F and G.

In that case, for each O cQ F(O,F/g) coincides with the quotient module
F(O’]:)/F(O G) cf. |Kul70] Satz 1.5.3. and the remark thereafter.

B.1.22 Definition (Sum of Sheaves) .

Let n € N and Fq,...,F, be sheaves over 2. Let G := |J (F1). DD (F,).
ze
be the disjoint union of the pointwise direct sums and denote by p : G — (2 the

canonical projection. We endow G with the induced topology of the topological
product space Fi X --- X F,.

Then F1 @ --- & F, := G is a sheaf over {2 with projection p, called the
(Whitney) sum of the sheaves Fi,..., F,.

fF=F=-=F,thenweset (F)" =F BB F,.

B.1.23 Definition (Ker H, Range)

Let H : F — G be an homomorphism. Then Ker H := {a € F : H(a) =
Opa) } is a subsheaf of F (where p denotes the projection of F and 0. denotes
the zero element of F.) and Range H := H(F) is a subsheaf of G.
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B.1.24 Definition (Fzact Sequences)

Let n € N and Fi,...,F, be sheaves over {2. We say there exists an exact
sequence F; — Fy — ... — F,, if there exist homomorphisms H; :
Fi — Fiyq foreach 2 = 1,...,n — 1 such that Range H; = Ker H;,; for all
1=1,...,n—1.

The sheaves that occur in this thesis share an additional property, called “co-
herence”.

B.1.25 Definition (BCAF sheaf)

Let F be a Fréchet sheaf over {2. Assume that for each z € {2 there exist an
neighborhood O C 2 of z and Banach spaces X and Y such that there exists
an exact sequence of the form

0% (0) — OY(0) — Fo —0.

Then F is called a Banach coherent analytic Fréchet sheaf, or BCAF sheaf for
short.

B.1.26 Definition (Coherent sheaf)
If in Definition B.1.25 both Banach spaces X and Y are of finite dimension for
each z € £2, then F is called a coherent (analytic) sheaf.

B.1.27 Remark
The above definitions are adjusted to the situation of analytic sheaves over

Q C C. Tnorder to allow a comparison with more general definitions commonly
found in the referenced literature, we outline the correlation with the general
situation. We will omit details and refer to the cited references for precise
definitions.

BCAF sheaves (locally) allow exact sequences
O (0) — 0*(0) — ... — 0% (0) — Fjo — 0.

of arbitrary (finite) length, i.e. BCAF sheaves are BCAF sheaves in the sense

of |[Lei78] Definition 2.1. (This is a consequence of {2 C C, cf. |Lei78| Problem
2.4 and the reference therein.)

Coherence in the sense of Definition B.1.26 can be characterized by the re-
quirement that both F and all corresponding sheaves of relations are finitely
generated (see [Kul70] for the definitions of finitely generated sheaves and the
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sheaf of relations): This is a consequence of the requirement that the underly-
ing rings of the module structure are the stalks of O(f2), cf. [Kul70] Satz 28.2
and the fact that O((2) is coherent, cf. Oka’s Coherence theorem [Kul70] Satz
28.7.

B.1.28 Remark

In the situation of Definition B.1.26 the requirement that F is a Fréchet sheaf
can be dropped. Indeed, by [KK83| Theorem 55.5 for all U c0 I'(U,F) can
be endowed with a topology such that F is a Fréchet sheaf:

B.1.29 pFact )
Let (€ = X) be a bundle. Then O (£2) is a BCAF sheaf (Cf. [Bun68]
Theorem 4.2).

B.1.30 Fact (Induced Homomorphism of Banach Vector Bundles on Sheaves)
Let A : (& < 2) — (F d (2) be a homomorphism of bundles. Let a €
O<5£Q>(_Q). Then by definition there is O C 2, s € I'(O, (5£ 2)) and z € O
such that a = 7.(s). We set Ap(a) := 7.(Apo(s)).

Then Ao : OE) (2) — OF) (£2) is a well-defined homomorphism of sheaves,
called the induced (sheaf) homomorphism by A.

Furthermore, if A is Fredholm, then Ker Ap and

OF92) ()
Coker Ap := (£2) Range Ao
are coherent. (See [Kuc93] Theorem 1.6.14.)
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