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ABSTRACT

Multicore processors bring parallelism to every desktop com-
puter, but multicore application tuning can be a costly chal-
lenge because of the increasing diversity of parallel platforms.
Hard-coded program optimizations for one platform might
not work on others, which harms program portability. Auto-
tuners can tackle this problem by re-tuning applications on
every new platform prior to productive execution; they search
for optimum performance by using run-time feedback infor-
mation and adjusting the performance-critical parameters of
a program in a loop. An important question that has not
been answered satisfactorily so far is which tuning algorithms
work well for multicore applications on today’s desktops and
servers, and how effective they are. This paper provides quan-
titative answers for a range of algorithms that don’t require
application-, input-, or platform-specific performance models.
It proposes a novel approach of binary search sampling com-
bined with non-linear model prediction, which requires fewer
iterations and has an error an order of magnitude lower than
other classical optimization approaches. The empirical anal-
ysis is based on data from more than 60 experiments with
113 workloads, gathered from 22 multicore applications on
9 multicore platforms. The data also provides evidence that
most applications perform better with a non-intuitive number
of threads; this number is often significantly higher than the
number of hardware threads and varies among platforms.

1. INTRODUCTION

With multicore chips, parallel computing has arrived on
every desktop. The parallelization of a large number of per-
formance-critical applications is a great challenge, but it’s
not the only one. An additional problem is parallel perfor-
mance optimization. Present day multicore platforms differ
in many hardware and software characteristics, such as the
number of cores, threads per core, clock rate, cache architec-
ture, memory bandwidth, or operating system — to name just
a few. This complicates performance tuning because a code
optimization targeted at one platform might lead to bad re-
sults on others. The problem is serious, as it might offset all
benefits of parallelization. Hand-tuning as a last resort con-
fronts on the one hand programmers with tedious tasks and
on the other hand managers with exploding costs for portabil-
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ity maintenance, due to combinatorial state-space explosion
of platform configurations.

Auto-tuners provide a solution to this problem by automat-
ing for a program the empirical search of the software param-
eter value configuration that leads to the best performance
on a particular platform. If multicore applications are made
tunable (e.g., via command line parameters), they can be it-
eratively re-tuned after migration to other platforms, based
on run-time feedback information gathered on a particular
platform. From the software engineering point of view, auto-
tuning separates performance tuning concerns from code de-
velopment concerns and simplifies portability. Tedious per-
formance experiments can be delegated to an auto-tuner.
Programmers have more time to focus on parallel code that
is less complex, easier to read, understand, and maintain.
These key issues help reducing part of the complexity and
cost of parallel programming.

Which algorithms should an auto-tuner use for tuning?
How well do they work and how do they compare to each
other? This question has not been answered satisfactorily
so far for parallel applications running on today’s multicore
desktops and servers. This paper will focus on tuning algo-
rithms that do not require specific performance models for
each application, input, and platform, and shows that it is
nevertheless possible to obtain good results with algorithm-
implicit general models. This approach is very beneficial be-
cause it avoids dealing with state-space explosion of platform
configuration information. We contrast tuning algorithms
inspired by classical optimization, sampling, and non-linear
modeling, and present own approaches.

We validate the proposed algorithms using a total of 22
multithreaded applications taken from different areas, such
as project management, virus scanning, numerics, and graph-
ics. Several of these applications were developed by different
teams over a period of several months. We conducted over
60 experiments on 9 multicore platforms covering a spectrum
of hardware and software characteristics. The results show
that our approach based on binary search sampling combined
with non-linear curve fitting prediction works well; compared
to classical optimization based on hill climbing or simulated
annealing, we need fewer iterations and obtain errors by an
order of magnitude lower. In addition, we provide empirical
evidence falsifying common belief that the maximum num-
ber of software threads must equal the number of hardware
threads. In fact, most programs perform better with signif-
icantly more software threads than hardware threads, indi-
cating that latency-hiding is useful.

The paper is organized as follows. Section 2 presents the
motivation, principles, and concepts of auto-tuning. Section
3 discusses auto-tuning algorithms. An experimental evalu-
ation is done in Sections 4 and 5; Section 4 details the ex-
perimental setup, and Section 5 the results. Section 6 shows



how software engineers can put the insights of this paper
into practice by using Autotunium, an extensible platform-
independent tuner. Section 7 contrasts related work, and the
conclusion in Section 8 summarizes key insights.

2. AUTO-TUNING - AN OVERVIEW

This Section presents the motivation, the general princi-
ples, and the definition of auto-tuning used in this paper.

2.1 Is Auto-Tuning Necessary?

Figure 1 shows the performance of two real multithreaded
applications. The left table shows performance results from
PBzip2, an open-source multithreaded compression program;
the right table presents a multithreaded project management
application estimating project durations stochastically. Both
applications (described in Section 4.2) can be configured to
run with a different number of threads and are executed with
the same respective inputs on different multicore platforms
(see Table 1). The code of the second application has also
been compiled with two different compilers.

PBzip2 Parallel Project Management App.
(Compiler: VS:Visual Studio, I: Intel)
Platform 7 8 9 2-VS| 2-1 [3-VS| 3-1 [6-VS| 6-
#Threads at max speedup 9 34 60 39| 54| 60| 63 62 8
Max speedup 6,2 13,1] 10,0 20| 20| 19] 19| 58| 62
Potential performance penalty Potential performance penalty
Fixing #threads at 8] 1% 5%| 31%| 12%

Fixing #threads at 16]  3%| 27%| 29% 2%| 1%| 12%
Fixing #threads at 32| 13%| 3%| 7% 1%| 3%| 5%
Fixing #threads at 64| 14%| 4%| 1% 1%| 2%| 5%

Figure 1: Performance penalty maps illustrating a
migration scenario for two multithreaded applica-
tions.

In general, many programmers tend to fix the maximum
number of threads to some constant (e.g., the number of hard-
ware threads). Is this a good idea? A migration scenario
for our two applications shows that this intuitive approach
can be inefficient. To be able to compare, we exhaustively
tried out all thread counts from 2 to 64 on each platform and
determined the speedup maximum. The penalty maps illus-
trate what would happen if the number of threads is fixed
while the application is migrated to another platform: None
of the intuitively chosen thread counts works equally well on
all platforms! In addition, the optimum thread count also
depends on other factors, such as the chosen compiler. Using
intuitive thread numbers can lead to significant slowdowns
on other platforms (79% and 111% in the worst case). This
case study example illustrates with real empirical data that
hard-coding performance parameters such as the number of
threads is not a good idea. It can be difficult to intuitively
guess an optimum value that remains applicable after pro-
gram migration, so an context-based adaptation is necessary.
The results motivate this paper to focus the empirical evalu-
ation on the number of threads as one of the most important
types of performance parameter, even though most of the
presented algorithms can be applied to other types of metric-
scaled, numerical parameters.

2.2 Auto-Tuning Principles

This paper assumes that auto-tuning is a discrete optimiza-
tion problem defined in the following way: Starting point is
a parallel program with input I and z tunable parameters
a={ai,...,a:}. We assume that the program has been de-
veloped in a way that an auto-tuner can set values for each
a; (1 < i < %), which are chosen from a predefied domain
dom(a;). Examples for such parameters are: The number of

threads in an application thread pool, the maximum num-
ber of workers in a master-worker pattern, the block size
in KB of a particular buffer (which can affect cache behav-
ior), etc. The entire configuration search space is defined by
C = dom(ay) x dom(a2) X ... x dom(ayn). The auto-tuner
searches for a configuration ¢ € C that maximizes a given
objective function f (which is typically the speedup or the
negative execution time of the program). To evaluate f(c),
the auto-tuner executes the program with input I and each
parameter a; set to value ¢; and gathers feedback informa-
tion used to compute a new vector c. The process repeats in
a loop until some termination criterion holds.

Offline auto-tuners compute new tuning parameter config-
urations between different program runs. For example, feed-
back information can represent the entire execution time of
a program or the execution time of a particular function in-
strumented with measurement probes. Generating config-
urations for new runs can be realized for example by set-
ting command line parameters or by recompiling the whole
program after code transformation or generation. By con-
trast, online tuners work during program run-time and apply
a variety of techniques (e.g., machine learning [4]) to tune
long-running programs which execute some functionality in
a repeated fashion (e.g., multimedia decompression on video
streams). This work concentrates on offline tuning. We as-
sume that the same program is executed with the same input
several times. The paper investigates empirical search algo-
rithms how to traverse the search space, obtain new config-
urations ¢ € C in each tuning run, and how to find the best
speedup for an entire application.

3. EMPIRICAL SEARCH ALGORITHMS

This Section presents auto-tuning algorithms for empirical
search that are inspired from different fields, such as combi-
natorial optimization, sampling, and nonlinear modeling. We
start with a discussion of general requirements.

3.1 Requirements

Auto-tuning search algorithms should deliver high-quality
configurations ¢ € C within an acceptable time frame.

Given cmqez as the configuration of the true global opti-
mum and cfoung as the best solution found by an algorithm,
result quality can be measured by the difference f(cmaz)—
f(cfouna) and by the relative error (f(cmaz) — f(Cfound))/
f(¢maz). The problem is that ¢mas is usually unknown, and
that the completeness property that the global optimum is
found can only be guaranteed either by searching the entire
space or by having additional information that can be used
to safely prune configurations and exhaustively search the re-
maining space. Either way, exhaustive search can be imprac-
tical; it is therefore reasonable if a search algorithm has the
Probabilistic Approzimately Complete (PAC) property, which
is a convergence criterion meaning that given enough itera-
tions, the probability of not finding the optimum solution is
arbitrarily small [9].

An additional constraint of practical relevance is that each
algorithm iteration requires a program execution that may
take a long time. An existing optimum should be found with
as few iterations as possible. This constraint influences the
design and choice of auto-tuning algorithms and differs from
many classical optimization problems that assume an infinite
or arbitrary large number of iterations.

In the following Sections, all algorithms will share some
characteristics. The configuration with the lowest execution
time also has the highest speedup, so we use speedup to better
compare results from different platforms. Every algorithm



has the input data that represents the search space by a set of
pairs data = {(z2,92), ..., (Tn,yn)}, with n as the maximum
number of threads. For each pair p; = (z;,y;) with i,n € N
and 2 < i < n, yi € R represents the speedup that was
measured with x; threads. Every algorithm computes a pair
p € data with the highest speedup found.

3.2 Local Search Approaches

Local search techniques are widely applied for optimiza-
tion. They require a starting point in the search space, and
iteratively move to neighboring points — based on local knowl-
edge only — until some termination criterion is satisfied. The
search trajectory through the search space consists of a fi-
nite sequence of visited points. Two classical combinatorial
optimization algorithms are analyzed in the context of auto-
tuning: Hill Climbing (Algorithm 1) and Simulated Anneal-
ing [11] (Algorithm 2).

Algorithm 1. Auto-Tuning based on Hill Climbing

Input: start € data  Output: p € data
1: ready < false; visited < 0; current «— start
while not ready do
visited «— visited U current
next <« pick point with highest speedup from
{current U direct neighbors of current}
if current==next then ready «— true
else current «— next
end if
end while
return p € visited that has highest speedup

Hill Climbing iteratively improves a starting solution, but
can get stuck in a local optimum. Simulated Annealing [11,
14] was proposed as an analogy to thermodynamic phenom-
ena; in our context, it can overcome a local optimum as fol-
lows: if the speedup S(next) of a newly picked point is worse
than the speedup of the current point S(current), then the

algorithm can move to the new point with the probability
S(next)—S(current)

e temp . The parameter temp is changed in each

run according to a so-called cooling function. The basic idea

is that more random moves are allowed in early iterations

— potentially escaping local optima— while in later iterations

the algorithm behaves more and more like hill climbing.

Algorithm 2. Tuning based on Simulated Annealing

Input: start € data; maxlters € N; temp € R > 0
Output: p € data

1: ready < false; visited < 0; current «— start
2: for i = 0; ¢ < maxlters; i++ do

3: visited <« visited U current

4: next <+ random direct neighbor of current
5: if S(current)<S(next) then

6: current < next

T else

S(newt)—S(current)

8: if random[0,1) <e™  fmr  then
9: current < next
10: end if

11: end if

12: temp — cooling Function(temp)
13: end for

14: return p € visited that has highest speedup

3.2.1 Properties and Questions

The local knowledge used to make decisions in both of the
algorithms is incomplete and the same location may be vis-
ited several times. Only Simulated Annealing has the PAC
property guaranteeing convergence to the global optimum,
but only if the number of iterations is sufficiently large (po-
tentially infinite) [11, 14].

Several questions need to be answered empirically later in
the paper. How well do these algorithms work for finding
the optimum speedup of multicore applications? Are there
many local optima in which the algorithms get stuck or is
this problem less relevant, e.g., because there are just a few
optima close to the global optimum? How many iterations
are typically needed? In addition, no general recommenda-
tions for initial temperature or cooling function are available;
they are both context-dependent and usually determined in
an experimental way.

3.3 Sampling Approaches

Sampling techniques are appealing for tuning because they
can be designed to work in a simple way, i.e., with poten-
tially less overhead than other techniques. We investigate
non-adaptive techniques and also propose a novel adaptive
technique, called binary search sampling, which steers the
number of samples as well as the region from which samples
are taken based on an implicit model.

3.3.1 Random Sampling

Picking 1 < j < n random samples p; € data can be done
in two ways: With replacement (Algorithm 3) which means
that a particular value p; can be sampled more than one time,
or without replacement (Algorithm 4) where a particular
p; can be picked exactly one time.

For a given sample size j, it is generally known that sam-
pling with replacement is inherently less efficient than sam-
pling without replacement, because the variance of the sam-
ple mean is lower [24]. From the tuning perspective, however,
sampling with replacement can be advantageous for programs
whose executions with the same parameter need not be re-
peated one more time, and if the speedup value can be re-
trieved from a temporary cache populated with values from
earlier runs. The experimental evaluations presented later
will quantify the error difference between tuning based on
sampling with and without replacement.

3.3.2 N-Step Sampling

This is a systematic sampling technique, which arranges
a population in a certain order and samples according to a
regular pattern [24]. N-step sampling assumes that all pairs
(x2,92),- .., (Tn,yn) are ordered by x; and picks every N-th
pair (Algorithm 5). Programmers often use this pattern
to tune the number of threads when they cannot afford to
exhaustively sample the entire parameter space.

3.3.3 Binary Search Sampling

We introduce binary search sampling as a novel adaptive
sampling method for performance tuning (Algorithm 6). In
contrast to random sampling, it guides the sampling process
and takes advantage of population characteristics to sample
more interesting values with a higher probability. The pur-
pose is to gain precision (in finding high speedups) and ef-
ficiency (i.e., with fewer iterations). It assumes an implicit
model in which a locality principle holds, i.e., if it finds a
point with good speedup, it assumes that other points in an
interval around that point have good speedups, too.

In principle, binary search sampling works as follows: The
search space is divided into two halves. Random samples are



taken from each half. After determining which half contains
the sample with the highest speedup, the algorithm repeats
the procedure for that half. If both halves contain a point
with equal maximum speedup, one half is chosen at random.
This is done as long as the width of the sampling interval is
greater than the number of samples that need to be taken.

Algorithm 6. Auto-Tuning based on Binary Search
Sampling with Fixed Sample Size #s

Input: #s € N; visited « 0, min = 2, max =n

Output: p € data

1: while (maz — min) > #s do

2 mid = [min + (max — min) /2|

3 left ={s1,...,5%s|8: rnd from [DPmin, Pmid| }

4 mazL —y; | (zi,y:) € left and Bz, 9;) | y; > vi
5: right = {s1, ..., s%s|s; rnd from [pmid, Pmac] }

6:  mazR —y; | (zi,yi) € right and B(z;,v;) | y; > i
T visited <— left U right

8 if maxzL < mazxzR then min = mid

9 else if maxzL > mazR then max = mid

0 else if randomchoice({0,1}) = 0 then min = mid
else maxr = mid

11: end if

12: end while

13: return p € visited that has highest speedup

[y

We propose two versions: With fixed sample size

(Algorithm 6) and with dynamic sample size (Algorithm 7).

With a fixed sample size, the algorithm takes from every half
a predefined constant number of samples. In the dynamic
version, the number of samples to take from each interval
is specified by a predefined percentage of the interval width.
This means that more samples are taken during early iter-
ations, while the number of samples decreases later on; the
rationale is that this strategy avoids picking the wrong big-
ger interval, so we don’t search for good speedups in a totally
wrong place. We omit the pseudocode for the dynamic ver-
sion (Algorithm 7) as it contains just minor modifications.
The probability of picking a particular thread-speedup pair
depends on which pairs were sampled earlier, so the proba-
bility of being picked is conditional (samples are not taken
from discarded intervals).

Sampling the interval with the rnd function (in Algorithm
6) can be done with and without replacement. In the ver-
sion with replacement, one particular sampled point can be
sampled again (though it would not count as a new iteration
if the old value is cached). Without replacement, the algo-
rithm will never re-sample a point that was already sampled.
It chooses another point if there are free ones in the cur-
rent interval; if all available points were sampled earlier, rnd
returns the empty set. We did experiments with and with-
out replacement, but present later only the better results,
which were obtained for sampling without replacement. We
also remark that the total number of samples can vary: In
some cases, the best values might have been already sampled
in early iterations. When the intervals become iteratively
smaller, the algorithm has already encircled good values and
might not find more value to sample. In other situations,
such small intervals might have more points available (that
were not sampled in earlier iterations).

3.3.4 Properties and Questions

Sampling algorithms have the advantage that the number
of tuning iterations can be predicted, and more iterations

lead to better predictions. The probabilistic behavior helps
escape local optima. The algorithms obviously have the PAC
property — with a large number of executions they will eventu-
ally visit all points in the search space. Question is whether
it is possible to guide the sampling process towards better
solutions and thus reduce the number of iterations.

Random sampling has no mechanism for steering the sam-
pling process. Nevertheless, it can be used as a benchmark
for tuning quality: A tuning algorithm requiring the same
number of samples p € data can be compared to random
sampling and should produce a lower error to justify the addi-
tional implementation effort. Random sampling can be used
as a benchmark to compare tuning approaches and contrast
results in the literature.

N-step sampling is vulnerable to periodicities in an ordered
population. Using the right/wrong sampling interval can lead
to results better/worse than random sampling, which most
programmers are unaware of. The paper will present experi-
mental results for good values of N for the workloads intro-
duced later.

Binary search sampling guides the sampling towards poten-
tially favorable locations, and the number of steps is asymp-
totically logarithmic in the search space size. Experiments
will analyze the effectiveness and quantify the error depend-
ing on the number of samples.

3.4 Prediction with Non-linear Models

This approach works as follows (Algorithm 8): First,
gather k pairs p = pi1,...,pr € data. Given a function
speedup = f(numthreads), find the parameters of f that
fit f best on p, i.e., which minimize the sum of square er-
rors. Then, the maximum of f is determined using calculus,
i.e., we obtain a prediction at which number of threads ¢
the speedup curve reaches its highest value. As curve fitting
works with non-discrete functions, the result is mapped to
the pair p; = (z;,y;) whose z; is closest to t. Finally, the
algorithm outputs the pair with the highest speedup from all
visited points p; U p.

The overall goal is to make accurate speedup predictions
for the entire population data with a low number k of pairs.
Pairs used for curve fitting can be gathered in different ways,
e.g., using the sampling techniques described in Section 3.3.

A key question is which model to use for the prediction
function f. An intuitive choice could be a higher-order poly-
nomial, based on the assumption that higher orders can bet-
ter approximate the data. However, we hypothesize for multi-
core workloads that other models work better in practice than
high-order polynomials, for the reason illustrated in Figure
2.

The Figure shows that an 8th degree polynomial has a
lower error (i.e, higher R?) when fitting the samples, but in-
troduces unrealistic swings that misguide the prediction for
the actual maximum speedup. The lower-order polynomial’s
error is slightly higher, but the curve averages the results in a
more favorable way for the overall speedup prediction. This
observation suggests that the shape of lower order polyno-
mials needs to be corrected using other functions, instead of
increasing the order of the polynomial.

We consider the following functions to include in the non-
linear model: (1) Log(z) can model a typical workload shape
for parallel applications that improve speedups with an in-
creasing number of threads, but where increases at higher
thread numbers are lower due to overhead or Amdahl’s law.
(2) Tanh(x): The hyperbolic tangent has a sigmoid shape
that is useful for modeling speedup increases and decreases
that may be caused by saturation effects or communication.
(3) Sin(z) and Cos(x) may better capture swings and peri-



8th-degree Polynomial (R?=0.93)
3rd-degree Polynomial (R?=0.90)

[ %
5 ’ 1 @ oo
[ E Real f °
Samples : Workload
4 r ! Values
g3 best predicted at | S
@ | : (48, 5-18)§ (63, 5.56)
2¢ i i
; i best predicted at
lpe i (12, 3.08) ;
0 i | i P R R i [ 1 #\Th\re\ad\s .

0 10 20 30 40 50 60

Figure 2: Example of a prediction with two non-
linear models.

odicity in the workload shape.
In summary, the following model alternatives will be eval-
uated and compared experimentally:

firy=a+b-z+c-(x+d)?

fery=a+b-z+c-(x+d?+e (x4 ) +g- Log(z) +
h-Tanh(i-z+ j)

fary=a+b-zt+c-(z+d)?+e-(x+ f)>+g-Log(z)+h-
Tanh(i-z+j)+k-Sin(l-z+m)+n-Cos(o-z+p)

fary=a+bz+tc (z+d)°’+...40 (z+p)°®

The simple model f; assumes that there is a sweet spot for
parallelization where the optimum speedup is reached, i.e.,
too few threads do not exploit all parallelization potential,
whereas too many threads cause overhead and slowdowns.
Model f2 aims to improve the prediction accuracy of fi by
accounting for typical workload shapes. Model f3 aims to
improve f2 by accouting for swings and periodicity. Model
fa is an 8th degree polynomial used for comparison.

3.4.1 Properties and Questions

Compared to random sampling, non-linear curve fitting in-
troduces a model to improve the prediction accuracy. As
it’s based on sampling, it also has the PAC property. Curve
fitting requires in the worst case an additional iteration and
more complex computations. The question which model works
best will be answered experimentally; even though f3 and f4
might be able to model more shape variations, they also need
more samples and might lead to over-fitting. Another ques-
tion to be answered is how to sample the data used for curve
fitting; it will be shown that a combination with binary search
sampling works better than random sampling.

4. EXPERIMENTAL SETUP

We describe next the experimental approach, the employed
benchmark applications, and the workloads.

4.1 Methodology

We evaluate the proposed algorithms on 113 real work-
loads. First of all, the real workloads are collected by exe-
cuting each application exhaustively with 1...64 threads in
increments of 1 on various multicore platforms. We compute

for each thread number the average execution time of sev-
eral runs to avoid noise, and the speedup in relation to the
execution time with 1 thread.

To be able to compare results, we use a controlled environ-
ment in which we simulate how an auto-tuner would work on
a real program, except that instead of executing the program,
we look up the data in the existing workloads. In addition, we
exhaustively search for the global speedup optimum in each
workload, which allows us to compute the error between a
particular algorithm output and the real optimum. This is
one of the first papers to do so in a systematic way, using
many realistic multicore workloads.

We try out every algorithm 1000 times on each of the 113
workloads and collect in every trial the number of required it-
erations and the relative error. The number of trials has been
determined experimentally as it has not shown significant
convergence improvements for higher numbers (e.g., 10,000
and 100,000 trials). If the same point in a workload is visited
more than one time, we count it as one iteration; this is be-
cause we assume that in reality the measurement would also
not be done twice, but looked up in a cache. We finally gener-
ate empirical distributions of the average error and standard
deviation for a particular number of iterations, as well as a
distribution of the number of iterations.

The complete experimental environment as well as all al-
gorithms have been implemented in Mathematica [27]. This
was beneficial for the symbolic computations needed to solve
the optimization problem in the non-linear curve fitting ap-
proach (the concrete model functions differ for every sample
set, workload, and trial).

4.2 Benchmark Applications

We use a total of 22 multithreaded applications that run
on multicore platforms. For some of the applications, sev-
eral versions were implemented using different parallelization
strategies, I/0 strategies, libraries, languages, and compilers.
In addition, most of the applications were developed by dif-
ferent teams over a period of several months. All applications
are tunable, i.e., they are written in a way that tuning pa-
rameters (e.g., number of threads and others) can be set via
command line parameters. The applications are summarized
as follows:

Five parallel compression applications. Four differ-
ent multithreaded versions of the BZip2 algorithm were im-
plemented by different developers using C++-, Pthreads, and
gee (three versions were part of a lab project [18]). In ad-
dition, we use pbzip2 [8], an open-source multithreaded im-
plementation written in C++4 and Pthreads. Bzip2 works
on independent data blocks passing a pipeline of algorithms.
The applications differ in the employed parallelization strate-
gies and in the way they employ task parallelism, data par-
allelism, and parallel patterns such as master-worker or pro-
ducer-consumer. Implementation details are shown in [18].

Three parallel virus scanners. The sequential, open-
source ClamAYV virus scanner was parallelized by three differ-
ent teams during a semester project, using C++, Pthreads,
and gcc. In principle, all teams have a queue or some other
data structure filled with work units (i.e., lists of files) that
are taken and processed by several threads. Each thread
independently scans the files of a work unit for virus signa-
tures (we used fake signatures in our tests, not real viruses).
The team’s implementations differ in the granularity of work
within a work unit and in the swapping strategies from disk
to main memory.

Eight parallel project management applications.
These are variant implementations in C++ with OpenMP



of a project management application for stochastic project
duration prediction. It uses Monte Carlo simulation to esti-
mate the overall project duration based on probability dis-
tributions of individual project tasks. Four of the applica-
tions perform I/O and continuously write temporary results
to disk, whereas the other four perform reductions in main
memory and just write the final histogram to disk. The im-
plementations also differ in the strategies and employed con-
structs that synchronize histogram updates. Each application
was compiled with the Visual Studio C++4 compiler and with
Intel’s C++ compiler. Details are sown in [19].

Four parallel matrix multiply programs. Matrix mul-
tiply is an important numerical kernel in many compute-
intensive applications. It is not only important for scientific
computations, but can also be applied to other areas, such
as finding shortest paths in graphs [1]. In contrast to the
other applications, it contains most of the work in loop struc-
tures. We use two Java implementations and two C++ with
OpenMP implementations in gec [13]; the implementations
differ in the way the loops iterate over matrices, which influ-
ences cache usage, offering potential for superlinear speedups.

One parallel Mandelbrot Set calculator. We use this
application as a representative for compute-intensive, em-
barassingly parallel computations. It is written in Java and
generates an RGB image [13].

One parallel ray tracer. The open-source Tachyon ray
tracer [23] is used as an example for a parallel graphics ap-
plication. It is written in C++ and Phthreads.

4.3 Workloads

Due to the combinatorial explosion, it would take a long
time to exhaustively benchmark all applications with 1 to 64
threads on all of our multicore platforms and operating sys-
tems (see Table 1). The selected workloads that form our
total population try to distribute various characteristics in
several dimensions: Out of 113 workloads, about half per-
form file I/O (49 perform file I/O, 64 do not). The number
of workloads on each hardware platform is distributed as fol-
lows: 28 are executed on Intel 2-core, 12 on Intel Quadcore,
34 on Intel 8-core, 17 on Niagaral 8-core, and 22 on Niagara?2
8-core platforms. We have more workloads from 8-core plat-
forms because they become widely spread, but on the other
hand we do not want to completely ignore platforms with
fewer cores. The workload distribution for operating systems
is as follows: 46 on Windows OS, 28 on Linux, and 39 on
Solaris.

As we test all algorithms on one workload (and this for
many workloads), we do not require workloads to be evenly
distributed across machines. Parallel compression has 26
workloads, all with an input file of about 80 MB gathered
from machines 7, 8, and 9. Parallel virus scanning has 3
workloads obtained from machine 8, using an input directory
containing over 7000 files of about 300 MB in total. Paral-
lel matrix multiply has 24 workloads gathered from machines
5, 7, and 9; as inputs, we used square matrices of size 512,
1024, and 2048. The parallel project management applica-
tion has 42 workloads gathered from machines 2, 3, and 6;
as described earlier, we employed 8 parallelization strategies
and two different compilers. All workloads use the same input
file, which is a project schedule with 17 tasks. Parallel Man-
delbrot has 12 workloads gathered from machines 4, 8, and 9,
and uses square image output sizes of 1024, 2048, 4096, and
8192 pixels. Parallel ray tracing has 6 workloads gathered
from machines 5, 7, and 9; it uses a 389KB and 453KB scene
description file as input and generates 669x834 and 512x512
pixel TGA images that are written to disk in half of the cases,
and just displayed in all other cases.

S. EXPERIMENTAL RESULTS

This section first sketches some descriptive statistics of our
multicore workloads. We then present the experimental al-
gorithm evaluations and discuss potential threats to validity.

5.1 Workload Descriptive Statistics

Figure 3 presents a performance overview for all 113 work-
loads. The x-axis groups workloads by the platform on which
they are executed. The empirical workload data shows an
interesting non-intuitive result: Most applications have the
best speedup at a number of software threads that is higher
than the number of hardware threads (see Table 1), possibly
due to latency hiding with more threads. Some programs
have superlinear speedups due to cache effects. The results
contradict popular recommendations to set the number of
software threads to the number of hardware threads. In addi-
tion, most optimum thread counts are not a power of 2, which
applies to 107 (95%) of the workloads. Out of 113 work-
loads, 87 (77%) have the best performance at a thread count
greater than 8 and 58 (51%) at a thread count greater than
39. Splitting up specific application workloads, the best per-
formance with a thread count greater than 8 applies to 88% of
compression workloads, 100% of Mandelbrot workloads, 33%
of matrix multiply workloads, 34% of project management
workloads, 33% of ray tracing workloads, and 100% of virus
scan workloads.

5.2 Algorithm Evaluations

Figure 4 shows aggregated results for all algorithms de-
scribed in Section 3. It also shows for different algorithm
parameters the resulting median number of iterations and
the average error. Additional details on the empirical distri-
butions are illustrated in Figure 5.

(1) Hill Climbing has the worst result of all algorithms.
Different choices for the starting point (e.g., with 2 threads,
random, or a random power of 2) all produce higher errors
than most of the other algorithms. The first variant requir-
ing 7 iterations is even worse than random sampling with 5
samples. Choosing the starting point at a random power of 2
is slightly better than the other choices. The explanation for
the bad results is that most workloads are not smooth and
have many local maxima in which this algorithm gets stuck.
In addition, Figure 5 (a) shows a large error standard devia-
tion and a large variance in the number of iterations. More
iterations do not reduce the error.

(2) Simulated Annealing is evaluated with a cutoff of 20
and 40 iterations as well as different cooling functions com-
monly suggested in the literature [14]. Except for one con-
figuration in which the cooling function cools off faster than
the others, the average error improves in comparison to hill
climbing, but is still worse than most other algorithms. Fig-
ure 5 (b) reveals large error and iteration variances, but in
contrast to hill climbing, more iterations reduce the error.

(3) Random Sampling and (4) N-Step Sampling.
Surprisingly, random sampling with and without replacement
has better tuning results than the classical optimization algo-
rithms (1) and (2), and even requires fewer samples. Random
sampling sets the bar that other tuning algorithms must beat.
As expected, sampling without replacement has slightly lower
errors than sampling with replacement [24]. Figure 5 (c)
quantifies the difference, which becomes bigger at a higher
number of samples. The results for N-step sampling show
for step sizes between 2—4 or 6-8 lower errors than sampling
without replacement, possibly due to exploitation of periodi-
ties. At the same time, N-step sampling does not perform
well with an inappropriate step size.



Machine  Processor(s) Clock[GHz] Cores HWThreads/Core L2Cache]MB] RAM[GB] OS

1 Intel E6600 2.4 2 1 4 2 WinVistax32

2 Intel T2500 2 2 1 2 2 WinXPx32

3 Intel E6400 2,13 2 1 2 3 WinVistax32

4 Intel Q6600 2.4 4 1 8 4 Win7x64

5 Intel Q6600 2,4 4 1 8 4 Ubuntu Linux8x32

6 2xIntel5320QC 1.86 2x4 1 8 8 Win2003x64

7 2xIntel5320QC 1.86 2x4 1 8 8 Ubuntu Linux8x32

8 Sun Niagara 1 T2000 1 8 4 3 16 Solarisb.1

9 Sun Niagara 2 T5120 1,2 8 8 4 16 Solarisb.1

Table 1: Multicore platforms used for benchmarking
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Figure 3: Performance Overview

(5) Binary Search Sampling beats all algorithms dis-
cussed so far in terms of average error. This observation
applies to both variants (with fixed and with dynamic sam-
ples size). Thus, the experiments support the hypotheses of
the underlying model that guides the sampling mechanism.
The approach with a fixed number of samples per interval has
lower errors than the dynamic approach that adapts the num-
ber of samples to the interval length. This result implies that
it is less efficient to have more samples in early iterations and
fewer samples in later iterations, as the algorithm might miss
the relevant points when it finally gets to a smaller promising
region. The empirical distributions in Figure 5 (d) are more
stable and better predictable, compared to hill climbing and
simulated annealing. We remark that we also conducted ex-
periments for binary search sampling with replacement. We
omit, however, their presentation and present just the best
results. The results of binary search sampling with replace-
ment are slightly worse compared to the versions without
replacement.

(6) Prediction with Non-Linear Models. Figure 4
shows that model fi does not lead to significant improve-
ments over random sampling without replacement, which sug-
gests that this model does not capture all relevant aspects.
By contrast, the model f2 has consistently better results than
all other models. For the employed workloads, it supports
our hypothesis that models other than high-order polynomi-
als can have a better prediction accuracy, and supports the
assumptions behind the functional components of fo. Mod-
els f3 and fs4 are better than random sampling, but worse

than model f>. All curve-fitting approaches, however, are
worse than binary search sampling with a similar number of
iterations.

(7) Binary Search Sampling combined with Non-
Linear Modeling. As binary search sampling produces bet-
ter results than random sampling, the results of curve fitting
can be improved if the samples used to fit the model are
chosen differently. Figure 4 and Figure 5 (e) show that the
strategy combining the best binary search sampling strategy
(fixed number of samples, without replacement) with the best
curve fitting model (f2) works well and produces the lowest
errors. The Figure also illustrates that the advantage of the
combination can be attributed to the lower errors made for a
smaller number of iterations. The advantage becomes smaller
when the number of iterations increases.

5.3 Threats to Validity

As described in Section 4, all experiments are done in a
controlled environment on workloads generated exhaustively
from real programs. Due to the combinatorial explosion, how-
ever, it is difficult to exhaustively benchmark all applications
on all platforms with all parameter permutations. A selection
is necessary, which can influence the results. We are confi-
dent, however, that the criteria and the aggregated workload
properties described earlier offer an acceptable tradeoff. As
we compare all algorithms on one workload (an repeat this
process for many different workloads), we do not create work-
loads for every permutation of parameter values and appli-



[Method [Parameters #lter |AvgError Eethod [Parameters #lter |AvgError [Method [Parameters #lter |AvgError
1|Hill Climbing(1) startldx: 2 7| 18,92% 23|Random withoutRepl(8) 40 samples 40 0,90% 49|CurvefFitting f1 (2) 20 random samples 21 2,49%
2|Hill Climbing(2) random 2 18,18% 24|N-StepSampling(1) N=10 7 5,81% 50|CurveFitting f1 (3) 25 random samples 26 1,90%!
3|Hill Climbing(3) 2°random 1 16,24% 25|N-StepSampling(2) N=8 8| 5,51% 51|CurveFitting f1 (4) 30 random samples 31 1,44%!
4|SimAnnealing(1) maxiters: 20, CoolF: 7| 12,59% 26|N-StepSampling(3) N=7 10 3,42% 52|CurveFitting f2 (1) 15 random samples 16 2,37%

T=0.9T, Tinit=20 27|N-StepSampling(4) N=6 " 3,34% 53|CurveFitting f2 (2) 20 random samples 21 1,73%!

5|SimAnnealing(2) maxiters: 40, CoolF: 9 11,36% 28|N-StepSampling(5) N=5 13| 3,99% 54|CurveFitting 2 (3) 25 random samples 26 1,41%!

T=0.9T, Tinit=20 29|N-StepSampling(6) N=4 16| 3,31% 55|CurvefFitting 2 (4) 30 random samples 31 1,13%!

6|SimAnnealing(3) maxiters: 20, CoolF: 6 11,67% 30|N-StepSampling(7) N=3 22 2,07% 56|CurveFitting f3 (1) 20 random samples 21 2,18%

T=0.9T, Tinit=10 31|N-StepSampling(8) N=2 32 1,55%! 57|CurvefFitting 3 (2) 25 random samples 26 1,52%!

7|SimAnnealing(4) maxiters: 20, CoolF: 5| 19,46% 32'EnarySS»ﬁx. withoutRepl(1) 1 samplefinterval 10 1,76%| 58|CurveFitting f3 (3) 30 random samples 31 1,36%!

T=0.5T, Tinit=20 33|BinarySS-fix, withoutRepl(2) |2 samples/interval 16 0,96% 59|CurveFitting f4 (1) 20 random samples 20 2,14%

8|Random withRepl(1) 5 samples 5 6,72% 34|BinarySS-fix, withoutRepl(3) |3 samples/interval 21 0,75% 60|CurveFitting f4 (2) 25 random samples 25 1,64%!

9|Random withRepl(2) 10 samples 10] 4,45%] 35|BinarySS-fix, withoutRepl(4) |4 samples/interval 25 0,40% 61|CurveFitting 4 (3) 30 random samples 30 1,37%!

10|Random withRepl(3) 15 samples 15 3,42% 36|BinarySS-fix, withoutRepl(5) |5 samples/interval 29| 0,31% 62'EnarySS(ﬁx, without Repl f2, 1 sample/interval " 1,29%|
11|Random withRepl(4) 20 samples 20 2,78% 37|BinarySS-fix, withoutRepl(6) |6 samples/interval 32 0,25% +Curve fitting f2 (1)

12|Random withRepl(5) 25 samples 25 2,34% 38|BinarySS-fix, withoutRepl(7) |7 samples/interval 34 0,20% 63|BinarySS(fix, without Repl f2, 2 samples/interval 17 0,69%
13|Random withRepl(6) 30 samples 30| 2,00% 39|BinarySS-fix, withoutRepl(8) |8 samples/interval 36| 0,14% +Curve fitting 2 (2)

14|Random withRepl(7) 35 samples 35 1,71%! 40|BinarySS-dyn, withoutRepl(1) |0,01*interval length 10 1,84%! 64|BinarySS(fix, without Repl 2, 3 samples/interval 22| 0,51%
15|Random withRepl(8) 40 samples 40 1,52%] 41|BinarySS-dyn, without Repl(2) |0,02*interval length 12 1,71%] +Curve fitting 2 (3)

16|Random withoutRepl(1) |5 samples 5| 6,57% 42|BinarySS-dyn, without Repl(3) |0,05%interval length 17 1,06%| 65|BinarySS(fix, without Repl f2, 4 samples/interval 26 0,35%
17|Random withoutRepl(2) |10 samples 10 4,23%] 43|BinarySS-dyn, without Repl(4) |0,07*interval length 23 0,67% +Curvefitting f2_(4)

18|Random withoutRepl(3) |15 samples 15] 3,13% 44|BinarySS-dyn, without Repl(5) |0,08interval length 25 0,40% 66|BinarySS(fix, without Repl 2, 5 samples/interval 29 0,29%
19|Random withoutRepl(4) |20 samples 20 2,42% 45|BinarySS-dyn, without Repl(6) |0,11*interval length 28 0,32% +Curve fitting f2_(5)

20|Random withoutRepl(5) |25 samples 25 1,89%! 46|BinarySS-dyn, without Repl(7) |0,12*interval length 30 0,32% 67|BinarySS(fix, without Repl 2, 6 samples/interval 33 0,22%
21|Random withoutRepl(6) |30 samples 30 1,50%! 47|BinarySS-dyn, without Repl(8) |0,13*interval length 34 0,18% +Curvefitting f2 (6)

22|Random withoutRepl(7) |35 samples 35 1,17%)| 48|CurvefFitting f1 (1) 15 random samples 16 3,11%
Figure 4: Aggregated Results
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cation on every platform. Using over one hundred different
workloads helps test the robustness and prediction accuracy
of the described algorithms, and reduces the probability of
(but does not exclude) outlier workloads in which all of the
described algorithms would behave in an entirely different
way.

6. AUTOTUNIUM - AN EXTENSIBLE
PERFORMANCE TUNER

How can software engineers take advantage of the insights
in this paper? To allow auto-tuners be used easily in everyday
practice, we developed Autotunium, an auto-tuner that can
be extended with user-defined tuning algorithms. It is imple-
mented in Java an runs as an Eclipse plugin to help program-
mers implement and tune parallel applications directly in a
development environment. Alternatively, Autotunium can be
run as a stand-alone application or from the command line,
which is useful when applications are re-tuned after deploy-
ment or migration to new multicore platforms. Autotunium
has been tested on Windows, Linux, and MacOS.

A special feature of Autotunium its plugin extensibility,
e.g., with tuning algorithms and so-called evaluators that pro-
vide run-time feedback to the auto-tuner. For example, an
evaluator can measure the execution time or speedup of a
whole program and pass the value to an algorithm plugin via
a predefined interface. The tuning algorithm designer can
fully concentrate on the essential algorithmic issues without
implementing an entire infrastructure. It is thus possible to
create libraries with tuning algorithms that can be shared
and accessed by a broad range of developers.

Figure 6 shows the application configuration screen, which
allows developers to specify the tuning parameters and their
ranges. For now, Autotunium assumes that tunable programs
have numeric command line parameters for every tunable pa-
rameter, and that the ranges of these parameters are defined
either via the graphical user interface or via a configuration
file. Autotunium can also generate specific project-related
command lines with information gathered from the Eclipse
IDE.

With Autotunium, we also applied multidimensional auto-
tuning successfully using several parameters and parameter
types other than threads count. For example, we applied Bi-
nary Search Sampling to PBzip2, and simultaneously tuned
thread count as a parameter in one dimension, and compres-
sion block size as a second parameter in another dimension.

Figure 7 shows the algorithm configuration screen, where

Command line to run:

@\test\pbzip2.exe -k -f ctestcompressfile.tet ~#[BlockSize] -p{Threads]

Parameters
Tl\lemdg | ‘ MNew parameter ‘ Parameter name:
BlockSize -_— Thecads
Delet: et
[ Use parameter in command fine| =-fa -

Run St Load configuration H Save configuration

Run configuration | Advanced configuration | Results (2D Plot) | Resuits (Table) | Log

Figure 6: Autotunium application configuration.

the user specifies the optimization details, such as which al-
gorithm to use, optimization goal, algorithm-specific param-
eters, evaluator to use, and maximum timeouts for program
execution. In addition, an external directory for plugin ex-
tensions can be specified (e.g., for plugins that users might
download from the Internet). Autotunium also supports a
simulation mode for testing purposes, which uses workload
data that was previously stored in a file instead of gathering
run-time data from an executing program.

® Autotunium £2 . [Z Problems| @ Javadoc| [, Declaration ]

Global preferences Optimization goal

Extension directory minimize @ maximize
Algorithms
Strategy/Evaluation Optimization algorithm _BinarySearchSamplingFix -
Evalustor  SpeedupEvaluator R — =
Timeout | 3600 = z
] unique random numbers
Simulation

Enable simulation

Simulation date: [Load]

Run configuration | Advanced configuration |Resuits (2D Plot) | Results (Table) | Log

Figure 7: Autotunium algorithm configuration.

The results of each tuning iteration are logged and can
be viewed as a graph or in tabular form. All values can
be exported and analyzed with external programs. Figure 8
depicts tuning results in tabular form for measurements exe-
cuted on a 4-core machine, along with a highlighted parame-
ter combination that leads to the best speedup. The tuning
results show on that particular machine that compressing a



20MB binary file with PBzip2 has the best speedup at 28
threads and a block size of 500KB.

® Autotunium 2 [£{ Problems| @ Javadoc| [& Declaration i =0

Threads (1) BlockSize (1) Speedup
10 10 10 750 00
10 10 2722220200222023 200 00
200 10 2.752808988764045 670 00
370 90 2.3250493670886076 360 00
550 90 2.370967741935484 300 00
10 20 1.2985865724381624 5660 00
10 10 1.2962962962962063 5670 00
640 20 2.4581029799331103 %0 00
640 70 1.6819221967963387 4370 00
3.1818181818181817 810 00
2.893700787401575 540 00
2.282608605652174 220 00
32.5670611650485437 2060 00 -

Runtime  Emor code

30 10
160 10
300 50
280 50

export data

Run configuration | Advanced configuration | Results (2D Plot} | Results (Table) | Log

Figure 8: Autotunium tabular results.

Autotunium allows the developer to explore the multidi-
mensional search space graphically. The first screenshot in
Figure 9 shows the sampled thread count and block size
value combinations. The second screenshot shows another di-
mensional cut, which is speedup against number of threads.
The third screenshot illustrates yet another cut, which is the
speedup against the block size (¥*100 KB) used for compres-
sion.
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Figure 9: Autotunium graphical analysis.

Programmers can directly interact with Autotunium’s graph-
ical outputs to better understand the application behavior
and its performance on a certain platform. This is meant to
speed up developer productivity.

7. RELATED WORK

Most of the related work is domain-specific and has been
done in numerics and large-scale parallel applications on clus-
ters. Key approaches, libraries, and tools are discussed in [3].
In contrast to our approach, auto-tuners like ATLAS [26],
Spiral [20], FFTW [6] focusing on numerical programs also
generate different code versions (e.g., for Fourier Transform)
that are tried out by an auto-tuner (e.g., with different loop
unrollings or buffer sizes). In our approach, we aim to make
auto-tuning easier applicable to all sorts of multicore applica-
tions without imposing a particular type of application. An
environment for dynamic tuning is discussed in [15], how-
ever, without evaluating tuning algorithms. A run-time tun-
ing approach targeted at Grid environments is presented in
[5]. In [10], the FIBER tuning facility is presented for clusters
and adapted to an eigensolver, with tuning based on random
sampling and fitting 5th order polynomials. The need for
auto-tuners on multicore platforms is advocated in [2]. A
pattern-based search is introduced in [21], but the improve-
ments are only 3% better than random sampling; by contrast,
our approach of binary search sampling combined with curve
fitting reduces the error by an order of magnitude, compared
to random sampling. Compiler flag combinations that lead
to best speedups on dual-core machines are evaluated in [4],
and [7] presents a collective tuning infrastructure in which
users can exchange data relevant for performance optimiza-
tion. Compiler optimizations for automatic performance tun-
ing on SPARC II and Pentium IV platforms are discussed in
[16]. An approach for procedure-level autotuning for compiler
optimizations is introduced in [17]. Direct search methods are
theoretically contrasted in [12]. A method to automatically
tune the number of processors and optimize loops has been
proposed in [25] for applications using the SPMD program-
ming model. Machine learning tuning techniques are used
in [22] on clusters to predict numerical program performance
based on application-specific models.

8. CONCLUSION

This paper is among the first to quantify the effectiveness
of auto-tuning algorithms on a large set of multicore appli-
cations running on contemporary desktops and servers. The
results show that applications need to be re-tuned on new
multicore platforms. Classical optimization approaches such
as hill climbing and simulated annealing don’t work well for
finding the optimum number of application threads. In con-
trast, the proposed combination of binary search sampling
and non-linear modeling reduces errors by an order of magni-
tude. The approach is effective and at the same time does not
require input-, application- or platform-specific models. This
way, it avoids altogether the state-space explosion problem
that appears when many platform configurations exist.
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Figure 5: Empirical distributions for errors, standard deviations, and number of iterations. The numbers
within the graphs refer to Figure 4.
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