
VOLUME 93, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S week ending
19 NOVEMBER 2004

First published in: 
Dendritic to Globular Morphology Transition in Ternary Alloy Solidification

Denis Danilov and Britta Nestler
Institute of Applied Research, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133 Karlsruhe, Germany

(Received 3 June 2004; published 15 November 2004)
215501-1
The evolution of solidification microstructures in ternary metallic alloys is investigated by adaptive
finite element simulations of a general multicomponent phase-field model. A morphological transition
from dendritic to globular growth is found by varying the alloy composition at a fixed undercooling.
The dependence of the growth velocity and of the impurity segregation in the solid phase on the
composition is analyzed and indicates a smooth type of transition between the dendritic and globular
growth structures.
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Multicomponent alloys form the most important class
of metallic materials for technical and industrial pro-
cesses. Combined with the number of components is a
wealth of different phases, solidification processes, and
pattern formations. The mechanical properties of a ma-
terial strongly depend on the morphology and on the
characteristical quantities of the microstructure. One of
the most common growth morphologies in metallic al-
loys are dendrites. During growth, dendritic patterns
generate solute microsegregation forming the structure
of grain boundaries on a larger scale. The growth of
dendrites from an initially undercooled metallic melt is
caused by a negative concentration gradient ahead of the
solidification front. Extensive studies have been made to
explore dendritic growth in pure substances and in binary
alloys. The constitutional undercooling and the corre-
sponding concentration gradient at the growing front
are the main factors leading to morphological instabil-
ities of the solid-liquid interface [1,2]. In a binary alloy,
the relation between the temperature interval �T0 of the
liquidus and solidus line, the concentration of the impu-
rity component c0 in the melt, the partition coefficient ke,
and the liquidus slope me is given by �T0 � �mec0�1�
ke�=ke, according to the equilibrium phase diagram of a
stationary planar front. The temperature interval deter-
mines the magnitude of the constitutional undercooling at
a growing solid-liquid interface and is hence a significant
material quantity for the stability properties. The more
pronounced concentration boundary layer of the impurity
ahead of the moving interface at larger values �T0 drives
the occurrence of instabilities leading to the formation of
cellular and/or dendritic structures. For multicomponent
alloys as, e.g., in ternary systems, the interface instabil-
ities are driven by the characteristic diffusion properties
of each solute field in the multicomponent system. Using
an approximated model with independently acting sol-
utes, it was analytically shown in [3] that each solute
enhances morphological instability of a solidification
front with different weighting factors. A variation of the
alloy composition causes a change of the strength of
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instability forces on the growing interface, because the
value of the liquidus-solidus temperature interval strongly
depends on the alloy composition. Investigations of the
interacting quantities and of the fundamental mecha-
nisms during solidification of ternary or higher compo-
nent materials have just recently become more intensive
by means of numerical modeling.

To numerically treat the complex solid-liquid interface
geometry of dendritic crystals, a phase-field approach has
the advantage of avoiding the explicit tracking of the
phase boundary. The solid and liquid are distinguished
by a phase-field variable ��x; t� with a smooth transition
from 0 to 1 leading to a diffuse interface. In the sharp
interface limit, classical free boundary problems and the
Gibbs-Thomson law can be recovered from the phase-
field approach (see, e.g., [4], and references therein). In the
two past decades, there has been a great progress in phase-
field modeling of growth structures in pure substances
and alloy systems. For a historical background and appli-
cations, see the review article in [5], and references
therein.

In this Letter, the influence of changing the alloy
composition on the interface stability, on the character-
istic morphology, and on the growth velocity is investi-
gated by performing numerical simulations of a general
multicomponent phase-field model with interacting and
coupled diffusion fields. We chose the ternary
Ni60Cu40�xCr alloy system as a prototype for this study
and herewith build upon intensive studies of the binary
Ni-Cu system (e.g., [6,7]). Hence, the corresponding
physical parameters are established relatively well.
Furthermore, the liquidus-solidus interval for binary
Ni60Cu40 is about 3 times larger than the interval for
binary Ni60Cr40 and one can expect a significant depen-
dence of growth morphology on the concentration of the
alloy components.

For the subsequent computations of ternary alloy so-
lidification, we apply a recently developed phase-field
model to the case of three components and two phases.
The general formulation of the phase-field model in [8]
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allows for an arbitrary number of phases and components
and is based on an entropy density functional of the form
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The bulk entropy density s depends on the internal energy
e, on a concentration vector c � �c1; . . . ; cN�, and on a
phase-field vector � � ��1; . . . ; �M�. The vector compo-
nents ci, i � 1; . . . ; N, represent the solute concentrations
in an N-component alloy. The variable ��, � � 1; . . . ;M,
denotes the local volume fraction of phase � in an
M-phase system. The thermodynamics of the interfaces
is determined by the gradient energy density a��;r��,
by the multiwell potential w���, and by the small scale
parameter " related to the thickness of the interface. The
gradient energy and the multiwell potential depend on the
surface entropy density �. The evolution equations are
obtained from Eq. (1) in a thermodynamically consistent
way ensuring a combination of positive local entropy
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where f�c; T;�� is the free energy density, � is a
Lagrange multiplier taking the constraint �1 � � � � �
�M � 1 for the phase fields into account, and ! is a
kinetic factor related to the kinetic coefficient �. In the
sharp interface limit, it has been discussed in [8] that
Eq. (2) relates to the Gibbs-Thomson equation for a
moving interface.

In our numerical investigations, the alloy composition
will be changed by keeping the Ni concentration at a
constant 60 at.% and by exchanging Cu by Cr, i.e.,
Ni60Cu40�xCrx with 0< x< 40 at:%. Three assumptions
are applied: (i) We examine primary dendritic growth
involving only two phases in the ternary system: a solid
and a liquid. The eutectic region in the Ni-Cr phase
diagram is not considered. For a solid-liquid system, the
phase-field model reduces to one variable � denoting the
fraction of solid phase. (ii) The system is considered in
ideal solution approximation with a free energy density of
the form

f�c;�� �
X3
i�1

ciLi
T � Ti
Ti

h��� �
RT
vm

X3
i�1

ci lnci; (3)

where Li and Ti are the latent heat and the melting
temperature of component i, respectively, R is the gas
constant, vm is the molar volume, and h��� is a monotone
function on 	0; 1
 that satisfies h�0� � 0 and h�1� � 1.
(iii) Following [6], we impose an isothermal temperature
field T. This approximation is valid because the thermal
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diffusivity of the alloy is about 4 orders of magnitude
larger than the solutal diffusivity. In addition, for the
considered undercooling, the growth takes place under
diffusion limited conditions.

Surface energy and kinetic anisotropy are incorporated
into the model by formulating orientation dependent gra-
dient energy a��;r�� and kinetic factor !��;r��:

a��;r�� � �jr�j2 � �0	1� "c cos�4#�
jr�j
2; (4)

!��;r�� � !0	1� "k cos�4#�
; (5)

where # is the angle between the vector r� and the x axis.
Assuming the mass fluxes to be linear functions of the

thermodynamic driving forces �i �
@f
@ci

, the mass bal-
ance equations for the three components are
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with mobility coefficients given by
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The form of Eq. (7) allows different values of the bare
trace diffusion coefficients Di��� for the different com-
ponents i and satisfies the constraint c1 � c2 � c3 � 1.

Numerical aspects of phase-field modeling have been
discussed in [9] including the conditions for spatial grid
resolution in comparison to the interface thickness. The
evolution Eqs. (2) and (6) are solved using a finite element
method with a semi-implicit time discretization on a
nonuniform adaptive mesh having the highest order of
spatial resolution in the vicinity of the solid-liquid inter-
face where the gradients of the phase field and of the
concentrations reach maximal values. The adaptive grid
refinement criterion has been defined ensuring a mini-
mum of 7–10 grid points in regions of the diffuse phase
boundary. To verify the origin of interface instability,
simulations with different time and spatial resolution
have been performed leading to the same growth mor-
phology. Hence, it has been shown that the interfacial
instabilities are of Mullins-Sekerka–type and not nu-
merically induced.

The solidus and liquidus lines of the binary Ni-Cu
and of the Ni-Cr phase diagram can be constructed
from the free energy, Eq. (3), using the melting tempera-
tures TNi � 1728 K, TCu � 1358 K, TCr � 1465 K, the
latent heats LNi � 2350 J=cm3, LCu � 1728 J=cm3,
LCr � 1493 J=cm3, and the molar volume vm �
7:42 cm3. The values of the melting temperature and of
the latent heat for Cr are adjustable parameters in order to
recover the actual binary phase diagram in the given
region of concentrations. The above values lead to a
partition coefficient ke � 0:843, to a liquidus slope me �
�3:27 K=at:%, and to the undercooling �T0 � 24:4 K
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for the binary Ni60Cu40 system. Similarly, we obtain ke �
0:905, me � �2:08 K=at:%, and �T0 � 8:7 K for the
binary Ni60Cr40 system on the corresponding equilibrium
phase diagram.

To accentuate the effect of solidification interval, we
assume that surface properties (surface energy density &
and kinetic coefficient �) do not depend on alloy compo-
sition and have the values & � �0T � 0:37 J=m2 and
� � 3:3 mm=�sK� [6]. The anisotropy of the interface
properties plays an important role in the selection of
the operating state during dendritic growth. In this study,
we use the values obtained from molecular-dynamics
simulations for the anisotropies in pure Ni, Eqs. (4) and
(5), "c � 0:023 for surface free energy density, and "k �
0:169 for the kinetic coefficient [7]. As reported in [7],
the diffusion coefficients of Ni and Cu in melt are DNi �
3:82� 10�9 m2=s, DCu � 3:32� 10�9 m2=s, and we as-
sume DCr � 1:5� 10�9 m2=s. The diffusion coefficient
in the solid phase is set equal to 10�13 m2=s for all
components. The value of the small length scale parame-
ter in the entropy functional, Eqs. (1) and (2), is chosen to
be " � 0:1 �m.

We conducted numerical computations for different
alloy compositions varying from Ni60Cu36Cr4 to
Ni60Cu4Cr36 and for fixed undercooling conditions. We
kept the concentration of Ni at 60 at. % and adjusted the
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initial undercooling at 20 K measured from the equilib-
rium liquidus line for a given composition. The corre-
sponding shapes of growing crystals are shown in Fig. 1.
At small contents of Cr, the solid phase forms a dendritic
structure that has a pronounced preferable growth direc-
tion determined by the anisotropy of surface energy and
interface kinetics (first three images of Fig. 1). An in-
crease of Cr concentration in the melt leads to an increase
of dendritic tip velocity V. This is accompanied by a
thickening of the primary dendritic trunk. Further rise
of Cr concentration (middle three images of Fig. 1) causes
a morphological transition from a dendritic to a globular
growth shape at a composition Ni60Cu20Cr20. The globu-
lar form of the crystals is stable after this morphological
transition for further change of alloy composition to
Ni60Cu4Cr36. Within the globular regime of solidification,
the anisotropy of the interface has a smaller effect on the
crystal shape. The preferred growth directions are less
pronounced in comparison with the dendritic shape for
amounts of Cr less than 20 at.%. To investigate the de-
pendence of the spatial redistribution of the alloy com-
ponents in the solid phase on the melt composition, we
consider isolines corresponding to the average concentra-
tion of nickel atoms in the solid phase. These isolines
separate Ni depleted and Ni enriched domains (see Fig. 1,
solid lines). The character of the isolines for copper and
FIG. 1. Transition from den-
dritic to globular morphology
for different initial melt compo-
sitions at a constant initial
undercooling of 20 K. Shaded
regions correspond to the solid
phase, i.e., � 
 0:5, and solid
lines represent the isolines of
average concentration of Ni in
solid. The values for the tip ve-
locities V and for the area esti-
mations � are stated in each
image.
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FIG. 2. Simulated area S covered by the crystal in relation to
a normalized triangular area S0 for different melt composi-
tions. The � � 0 line marks the transition from dendritic to
globular growth morphologies.
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chrome is qualitatively the same having only small quan-
titative deviations. Two independent parts can be found in
the geometry of the isolines. The first part is aligned in a
direction parallel to the dendritic trunk remaining in this
position after the transition to the globular morphology.
The second part develops in diagonal direction and it
disappears at the morphological transition.

The morphological transition can be measured quanti-
tatively using the deviation � � �S� S0�=S0 of area S
covered by the solid phase from the triangular area S0
between the dendritic tips and the center of the initial
seed, Fig. 2. With the change of melt composition, the
deviation � changes the sign from a negative value for
dendritic morphologies to a positive value for globular
shapes. The transitional value � � 0 corresponds to the
composition Ni60Cu20Cr20 and is hence in good agreement
with the transition point given by the vanishing diagonal
part of the isoline. The transition takes place in a smooth
manner. On the one hand, this follows from the linear
increasing of the growth velocity V of the dendritic or
globular tip with increasing Cr concentration (see the
values for V in Fig. 1). On the other hand, the smooth
transition is confirmed by the smooth dependence of the
deviation � on the melt composition, Fig. 2. The morphol-
ogy of the growing structure is determined by the con-
currence of the stabilizing force due to the surface energy
and of the destabilizing force due to the concentration
gradients on the interface [1,2]. The morphological tran-
sition can be explained considering the balance between
the stabilizing and destabilizing forces. During the com-
puted transition from a dendritic to globular shape for
varying composition of the ternary alloy Ni60Cu40�xCrx
with 0< x< 40, the liquidus slope and the deviation of
the equilibrium partition coefficient from unity decrease.
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This leads to a reduction of the destabilizing forces on the
interface. The globular growth shapes are becoming sta-
ble against perturbations. Although the phase-field simu-
lations of the ternary system were conducted for fixed
undercooling, we remark that a similar morphological
transition from dendritic to globular growth shapes has
been observed in numerical simulations of dendritic
growth in binary alloys [10], where the initial undercool-
ing acts as a control parameter for the transition. In this
case a morphological transition occurs through a coales-
cence of side branches with increasing of the
undercooling.

In summary, our numerical simulations show the oc-
currence of a morphology transition from dendritic to
globular growth structures in the ternary Ni-Cu-Cr sys-
tem for a varying alloy composition. The results demon-
strate the general potential of the phase-field approach in
modeling multicomponent solidification in a thermody-
namically consistent way. Together with previous devel-
opments [5], the work in this Letter shows that the diffuse
interface formulation provides a uniform description for
modeling complex microstructure evolution in pure, bi-
nary, and multicomponent alloy systems.
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