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1. Introduction. The phase field method is a powerful methodology to describe
phase transition phenomena. The method has been used to describe solidification
processes [7, 34] as well as microstructure evolution in solids [15] and liquid-liquid
interfaces [28]. There are phase field models for pure substances [7, 34] and binary
alloys [9, 21] for eutectic, peritectic, and monotectic systems [45, 31, 32, 33, 39].
Furthermore, the evolution of grain boundaries also can be modelled by phase field
models or order parameter models [12, 16]. For recent reviews of phase field methods
we refer to [13, 5, 14].

Traditionally the evolution of interfaces, such as the liquid-solid interface, has
been modelled as a moving boundary problem. This means that pure phases are
separated by a sharp interface. In the phases, partial differential equations, e.g., de-
scribing mass and heat diffusion, are solved. These equations are coupled by boundary
conditions on the interface, such as the Stefan condition demanding energy balance
and the Gibbs–Thomson equation. Across the sharp interface certain quantities (e.g.,
the heat flux, the concentration or the energy) may suffer jump discontinuities.

In phase field models the individual phases are distinguished by one or more so-
called phase fields. In different phases the phase fields attain different values and
interfaces are now modelled by a diffuse interface; i.e., the phase fields and all other
quantities do not jump across an interface, but they change smoothly on a very thin
transition layer (the diffuse interface). For example, for a solid-liquid phase transition
we choose a phase field taking the value one in the solid and zero in the liquid; across
an interface, the phase field varies smoothly from one to zero.

The use of diffuse interface models to describe interfacial phenomena dates back
to van der Waals [42], Landau and Ginzburg [26], and Cahn and Hilliard [10]. In
the theory of solidification this idea was introduced by Langer [27] and Caginalp [7].
Caginalp and Fife [8] used asymptotic expansions to relate the phase field models
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proposed by Langer to classical free boundary problems in the sharp interface limit.
This relation has also been rigorously established for some cases (see, for example,
[38, 41] and the references therein).

Since the original phase field model is not derived from thermodynamical prin-
ciples, a number of so-called thermodynamically consistent phase field models were
proposed in the 1990s (see Penrose and Fife [34], Alt and Pawlow [2], Wang et al.
[44]). All of these models guarantee a positive entropy production.

The classical asymptotics leads to restrictions on parameters which often makes
it difficult to perform practical computations of realistic solidification processes. This
is particularly true in the regime of small undercooling. In recent years Karma and
Rappel [23, 24] (see also [25, 1, 30]) used the so-called thin interface asymptotics to
realize numerical simulations in this regime. There, the Gibbs–Thomson equation is
approximated to a higher order and the temperature profile in the interfacial region is
recovered with a higher accuracy when compared to the classical asymptotics. Further
numerical simulations (see [35, 36, 37]) confirm the superiority of this approach in the
case of small undercooling.

So far, generalizing this approach to more general situations (see the discussion
in [25]) and, in particular, extending the approach to phase field systems handling
multiple phases are still an open problem. Therefore, as a first step, we apply classical
sharp interface asymptotics to handle general systems with multiple phases and com-
ponents. The task of making this approach more efficient by the use of thin interface
asymptotics is left to further research.

The aim of this paper is to derive a phase field model that

• is thermodynamically consistent,
• allows for an arbitrary number of phases and components,
• is defined solely via the bulk free energies of the individual phases, the surface

energy densities (surface entropy densities, respectively) of the interfaces, and
diffusion and mobility coefficients, and

• yields classical moving boundary problems in the sharp interface limit.

The third requirement enables us to define the full set of phase field evolution
equations by quantities which (in principal) can be measured. Since the bulk free
energies determine the phase diagrams (see, e.g., Chalmers [11], Haasen [22]) our
model can be used to model phase transitions for arbitrary phase diagrams. We
note that in a multi-phase field model computing the surface free energy densities
(or surface entropy densities) is difficult. Here one can make use of the studies by
Garcke, Nestler, and Stoth [18], in which free energies for phase field methods with
good calibration properties have been developed. This means that for given surface
free energies (also called surface tensions) one can calibrate the parameters in the free
energies of the phase field model in such a way that the sharp interface limit is defined
via the given surface tensions. In particular the sharp interface problem is defined
with the help of the surface free energies.

In the following section we introduce the phase field model in its full generality
and state the corresponding sharp interface model. In section 3 we give examples
and relate the model we propose to models already existing in the literature. Fur-
thermore, we discuss a variety of different applications for the new model. Due to its
general formulation, the model has the capability to describe phase transformation
processes in nonisothermal multicomponent alloys as well as in grain structure evo-
lution. Different phases and different crystal orientations can be distinguished at the
same time by an appropriate choice of the phase field variables. This allows us to treat
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effects occurring on different length scales such as eutectic grains and interdendritic
structures.

Finally, we show in section 4 via formally matched asymptotic expansions that
the phase field model yields the sharp interface model in the limit when the interfacial
thickness tends to zero.

2. The models. We consider a domain Ω ⊂ Rd, d ∈ {1, 2, 3}, and we assume
that the system has N components with M different phases possible.

2.1. The phase field model. The phase field model is based on an entropy
functional of the form

S(e, c, φ) =

∫
Ω

(
s(e, c, φ) −

(
εa(φ,∇φ) +

1

ε
w(φ)

))
dx.(1)

We assume that the bulk entropy density s depends on the internal energy density e,
the concentrations of the N components ci, 1 ≤ i ≤ N , and the phase field variable
φ = (φα)Mα=1. The variable φα denotes the local fraction of phase α, and we require
that the concentrations of the components and the phase field variables fulfill the
constraints

N∑
i=1

ci = 1,

M∑
α=1

φα = 1.(2)

It will be convenient to use the free energy as a thermodynamical potential. We
therefore postulate the Gibbs relation

df = −sdT +
∑
i

µidci +
∑
α

rαdφα(3)

(see Alt and Pawlow [3], who show that the Gibbs relation is a consequence of the
entropy principle). Here, T is the temperature, µi = f,ci are the chemical potentials,
and rα = f,φα

are potentials due to the appearance of different phases.
We set

e = f + sT,(4)

and hence

de = Tds +
∑
i

µidci +
∑
α

rαdφα,(5a)

ds =
1

T
de−

∑
i

µi

T
dci −

∑
α

rα
T
dφα.(5b)

If we interpret s as a function of (e, c, φ), then we have

s,e =
1

T
, s,ci =

−µi

T
, s,φα =

−rα
T

.

Later it will be convenient to switch among the variables (T, c, φ), (e, c, φ), (T, µ, φ),
and (− 1

T ,
1
T µ, φ), and we therefore assume for the rest of this paper that

• c �→ f(T, c, φ) is strictly convex,
• T �→ f(T, c, φ) is strictly concave.
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This will make the above exchanges of variables possible.

We note that given the free energy densities of the pure phases, we obtain the
total free energy as a suitable interpolation of the free energies fα, i.e., such that
f(T, c, eα) = fα(T, c), with eα being the αth coordinate vector.

So far we have neglected interfacial effects. The thermodynamics of the interface
gives additional contributions to entropy and free energy. Let us first consider how
interfacial contributions are accounted for in a sharp interface model. Let Γαβ denote
an interface between phases α and β and let ναβ denote the unit normal at Γαβ

pointing into the β-phase. Then in sharp interface models an interfacial term

−
M∑

α<β
α,β=1

∫
Γαβ

γαβ(ναβ)dHd−1(6)

with a positive function γαβ on Sd−1 is added to the entropy (see [29], [43]). The
notation dHd−1 indicates integration with respect to the (d− 1)-dimensional surface
measure.

In diffuse interface models the surface entropy functional (6) is replaced by a
Ginzburg–Landau type functional of the form

−
∫

Ω

(
εa(φ,∇φ) +

1

ε
w(φ)

)
dx.(7)

Here, a is the gradient energy density which is assumed to be homogeneous of degree
two in the second variable; i.e.,

a(φ, ηX) = η2a(φ,X) ∀(φ,X) ∈ RM × Rd×M and ∀η ∈ R+,

and w is a nonconvex function with exactly M global minima at the points eβ =
(δα,β)Mα=1, 1 ≤ β ≤ M , with w(eα) = 0. It has been shown under appropriate
assumptions on a that the functional (7) converges to the perimeter functional (6)
when ε converges to zero. We refer to [18], [19] and section 3 for appropriate choice of a
and w. We assume in this paper that a and w and, hence, the interfacial contributions
to the entropy, do not depend on (T, c), but these dependences can be included, leading
to a much more complicated model.

Our goal is to derive balance equations,

∂te = −∇ · J0 (energy balance),(8a)

∂tci = −∇ · Ji (mass balances, i = 1, . . . , N),(8b)

that are coupled to

∂tφα = right-hand side (RHS)(8c)

in such a way that the second law of thermodynamics is fulfilled in an appropriate local
version. Here, J0 is the energy flux and J1, . . . , JN are the fluxes of the components
c1, . . . , cN . In order to derive appropriate expressions for the fluxes J0, . . . , JN , we use
the generalized thermodynamic potentials (compare (5b)) δS

δe = 1
T and δS

δci
=
(−µi

T

)
,

which will drive the evolution. Now we appeal to nonequilibrium thermodynamics
and postulate that the fluxes are linear functions of the thermodynamic driving forces
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∇ δS
δe ,∇

δS
δc1

, . . . ,∇ δS
δcN

to obtain

J0 = L00(T, c, φ)∇δS

δe
+

N∑
j=1

L0j(T, c, φ)∇ δS

δcj

= L00(T, c, φ)∇ 1

T
+

N∑
j=1

L0j(T, c, φ)∇−µj

T
,(9a)

Ji = Li0(T, c, φ)∇δS

δe
+

N∑
j=1

Lij(T, c, φ)∇ δS

δcj

= Li0(T, c, φ)∇ 1

T
+

N∑
j=1

Lij(T, c, φ)∇−µj

T
(9b)

with mobility coefficients

(Lij)i,j=0,...,N .

To fulfill the constraint
∑N

i=1 ci = 1 during the evolution, we assume

N∑
i=1

Lij = 0, j = 0, . . . , N,(10)

which implies
∑N

i=1 Ji = 0, and, hence, ∂t(
∑N

i=1 ci) = ∇ · (
∑N

i=1 Ji) = 0. We further
assume that L is symmetric (Onsager relations). In addition, L is assumed to be
positive semidefinite; i.e.,

N∑
i,j=0

Lijξiξj ≥ 0 ∀ξ = (ξ0, . . . , ξN ) ∈ RN+1.(11)

This condition will later ensure that an entropy inequality is satisfied. We note that
we include cross effects between mass and energy diffusion in the model. One can
neglect them by setting Li0 = 0 and L0j = 0 for all i, j ∈ {1, . . . , N}.

For the nonconserved phase field variables φ1, . . . , φM , we assume that the evolu-
tion is such that the system locally tends to maximize entropy conserving concentra-
tion and energy at the same time. Therefore we postulate

ωε∂tφα =
δS

δφα
− λ

= ε
(
∇ · a,Xα

(φ,∇φ) − a,φα
(φ,∇φ)

)
− 1

ε
w,φα

(φ) − f,φα

T
− λ,

(12)

where we denote with a,Xα the derivative with respect to the variables corresponding
to ∇φα. ω is (in this paper) a constant kinetic coefficient and λ is an appropriate

Lagrange multiplier such that the constraint
∑M

α=1 φα = 1 is satisfied; i.e.,

λ =
1

M

∑
α

[
ε (∇ · a,Xα

− a,φα
) − 1

ε
w,φα

− f,φα

T

]
.(13)

Relevant for the dynamics are the variational derivatives of S that take the con-
straints (2) into account. We can therefore reformulate (9b) and (12) in terms of
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the projection of ( δSδe ,
δS
δcj

, δS
δφα

) onto the tangent space of the linear subspace whose

elements satisfy the constraints. Defining

ΣK = {d ∈ RK :

K∑
k=1

dk = 1},

and its tangent space

TΣK = {d ∈ RK :

K∑
k=1

dk = 0},

the constraints (2) read as c ∈ ΣN and φ ∈ ΣM . In the following, PK will denote the
projection onto TΣK . Then the relevant quantities for the definition of the fluxes are(

PN
(
− 1

T
µ
))

i

= − 1

T

⎛
⎝µi −

1

N

∑
j

µj

⎞
⎠ = − 1

T

1

N

∑
j

(µi − µj),

whereas there are no changes to δS
δe . We note that the quantities

µi =
1

N

∑
j

(µi − µj)

can be interpreted as generalized chemical potential differences. For two components
we obtain µ1 = (µ1 −µ2)/2, i.e., the usual chemical potential difference multiplied by
the factor 1/2.

With the above notation we can rewrite the fluxes as

J0 = L00(T, c, φ)∇ 1

T
+

N∑
j=1

L0j(T, c, φ)∇−µ̄j

T
,

Ji = Li0(T, c, φ)∇ 1

T
+

N∑
j=1

Lij(T, c, φ)∇−µ̄j

T
.

Similarly we can rewrite (12) as

ωε∂tφ = PM

[
ε
(
∇ · a,X(φ,∇φ) − a,φ(φ,∇φ)

)
− 1

ε
w,φ(φ) − f,φ

T

]
.

Altogether the total entropy density is given by

bulk entropy + surface entropy = s(e, c, φ) −
(
εa(φ,∇φ) +

1

ε
w(φ)

)
,

and a straightforward computation shows (setting µ0 = −1)

∂t(entropy) = ∂t

(
s(e, c, φ) − εa(φ,∇φ) − 1

ε
w(φ)

)

=
N∑

i,j=0

∇−µi

T
· Lij∇

−µj

T
−∇ ·

⎛
⎝ N∑

i,j=0

−µi

T
Lij∇

−µj

T

⎞
⎠

+ ωε
∑
α

(∂tφα)
2 − ε

∑
α

∇ · (a,Xα∂tφα)

≥ −∇ ·
(

N∑
i=0

−µi

T
Ji − ε

M∑
α=1

a,Xα∂tφα

)
.
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The above inequality shows that the local entropy production is positive where
the entropy flux Js is given by

Js =

N∑
i=0

(
−µi

T
Ji

)
− ε

M∑
α=1

a,pα
∂tφα.(14)

The first term represents the entropy flux due to mass and energy diffusion, and
the second one is due to moving phase boundaries (compare [2]). We refer to Alt and
Pawlow [3], who show that for conserved phase fields (they call them order parameters)
either the energy flux or the entropy flux has to depend on ∂tφ in order to describe
phase transitions.

2.2. The sharp interface model. In section 4 we use the method of asymptotic
expansions to relate the phase field model of the previous subsection to the sharp
interface model which we state in the following. We obtain that when the domain Ω
is separated in phase regions Ω1,. . . ,ΩM occupied by the pure phases 1, . . . ,M such
that in every phase Ωα, α = 1, . . . ,M , the following evolution equations hold:

∂te
α = −∇·

⎛
⎝Lα

00(T
α, cα)∇ 1

Tα
−

N∑
j=1

Lα
0j(T

α, cα)∇
µα
j

Tα

⎞
⎠ (energy balance),(15)

∂tc
α
i = −∇·

⎛
⎝Lα

i0(T
α, cα)∇ 1

Tα
−

N∑
j=1

Lα
ij(T

α, cα)∇
µα
j

Tα

⎞
⎠∀i (mass balances).(16)

These equations can be formulated in the variables (T, µ) (in which case the inter-
nal energy eα and the concentrations cα are given as eα = eα(Tα, µα) and cα =
cα(Tα, µα)) or, more commonly, in the variables (T, c) (in which case the inter-
nal energy eα and the chemical potentials µα are given as eα = eα(Tα, cα) and
µα = cα(Tα, cα)).

On a (smooth) boundary Γαβ between two phases α and β we have (assuming an
isotropic surface energy)

Tα = T β =: T (continuity of temperature),(17)

µ̄α
i = µ̄β

i =: µ̄i ∀i (continuity of chemical potentials),(18)

[e]
β
α v = [J0]

β
α · ν (energy balance),(19)

[ci]
β
α v = [Ji]

β
α · ν ∀i (mass balances),(20)

mαβ v = γαβκ +
[f ]βα −

∑
i µ̄i [ci]

β
α

T
(Gibbs–Thomson relation).(21)

Here, ν = ναβ is the unit normal pointing into β, v is the speed of Γ in this direction,
and κ is the mean curvature. The quantities

µ̄α
i = µα

i − 1

N

N∑
j=1

µα
j =

1

N

N∑
j=1

(µα
i − µα

j ),(22)

where µα
i = fα

,ci(T, c) are the generalized chemical potential differences in phase α, and

[·]βα denotes the jump of the quantity in the brackets across the interface. The quantity
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γαβ is the surface entropy density and the relation between the surface entropy and
the entropy density in the phase field model is given by

γαβ = inf
p

{
2

∫ 1

−1

√
w(p)

√
a(p, p′ ⊗ ν)

}
,(23)

where the infimum is taken over all Lipschitz continuous functions p connecting the
minima of w corresponding to the phases adjacent to the interface, i.e., p(−1) = eα
and p(1) = eβ . The kinetic coefficient mαβ can also be expressed in terms of the
minimizer p (see [17]).

In general, a and w might depend on temperature and on the concentrations
leading to a temperature- and concentration-dependent surface entropy in the sharp
interface limit. In this case, the surface terms would also enter the internal energy.

For a thin interface analysis of a partially linearized model for pure substances
we refer to [30]. Performing a thin interface analysis for our model would require
studying higher order corrections of fields like s, f , T , and c in the interface region.
We do not pursue this issue further at this stage.

We note that the Gibbs–Thomson equation can be derived by locally maximizing
entropy, conserving concentration and energy at the same time. For a stationary flat
interface the equations (17), (18), and (21) yield the classical equilibrium for phase
boundaries. The equilibrium condition at a flat boundary at rest separating phases
α and β is

µ̄α
i = µ̄β

i for all i = 1, . . . , N.

In addition the temperature has to be the same and (see (21))

[f ]βα −
∑
i

µ̄i [ci]
β
α = 0.

For M phases to be in equilibrium we therefore have (N + 1)(M − 1) conditions. For
each phase we can choose N − 1 components and the temperature. All together there
are

MN − (N + 1)(M − 1) = N −M + 1

degrees of freedom. This is the Gibbs phase rule. We note that for two component sys-
tems the equilibrium conditions between two phases lead to the well-known common
tangent construction.

Finally, at triple junctions where three phases α, β, and δ meet, a force balance
of the form

γαβταβ + γβδτβδ + γδατδα = 0(24)

has to hold (compare [19]). Here, ταβ , τβδ, and τδα are the tangents to the interfaces
Γαβ ,Γβδ, and Γδα. All are assumed to either point in the direction of the triple
junction or point away from the triple junction at the same time. It can be easily
seen that this force balance is equivalent to certain angle conditions at the triple
junction.

In the appendix we will demonstrate that the entropy does not decrease for so-
lutions of the above problem. In particular, for a closed system we obtain, using
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appropriate transport theorems and assuming m ≥ 0 and L = (Lij)i,j=1,...,N is posi-
tive semidefinite, the following:

d

dt

(∫
Ω

s(e, c)dx−
∫

Γ

γdHd−1
)

=

∫
Ω

(
∇ 1

T
· J0 +

∑
i

∇−µ̄i

T
· Ji

)
dx,

+

∫
Γ

mv2dHd−1 ≥ 0,

where the integral over Γ is an integral over all possible interfaces.

3. Examples. In this section we will first demonstrate that the phase field
method is able to model systems with a very general class of phase diagrams. In the
way it is formulated, the model can describe systems with concave entropies sα(e, c)
in the pure phases. This corresponds to free energies fα(T, c) which are convex in
c and concave in T . In the case where f(T, c) is not convex in the variable c, the
free energy needs to contain gradients of the concentrations (as in the Cahn–Hilliard
model).

We will first give a rather general example, which already covers most exam-
ples in practice, and then discuss relations to existing models and possible partial
linearizations of the system.

3.1. Possible choices of the free energy. Choosing the phase field φ such
that φ = eM corresponds to the liquid phase, we define bulk free energies for the
individual phases by

fα(T, c) =

N∑
i=1

(
ciL

α
i

T − Tα
i

Tα
i

+
R

vm
Tci ln(ci)

)
− cvT (ln(T ) − 1)

with LM
i = 0, and Lα

i , i = 1, . . . , N , α = 1, . . . ,M − 1, being the latent heat per unit
volume of the phase transition from phase α to the liquid phase of the pure component
i. Furthermore, Tα

i , i = 1, . . . , N , α = 1, . . . ,M − 1, is the melting temperature of
the ith component in the phase α, and cv is the specific heat, which is assumed to be
independent of c and φ; the molar volume vm is supposed to be a constant, and R is
the gas constant. Then we define the total free energy density as follows:

f(T, c, φ) :=

M∑
α=1

N∑
i=1

(
ciL

α
i

T − Tα
i

Tα
i

h(φα)

)
(25)

+

N∑
i=1

(
R

vm
Tci ln(ci)

)
− cvT (ln(T ) − 1),

where h is a monotone function on [0, 1] that satisfies h(0) = 0 and h(1) = 1. Examples
are h(φ) = φ and h(φ) = φ2(3− 2φ). The last one has the property h′(0) = h′(1) = 0
which is suitable for phase field models as we will see below. With this choice of h
the function f is an interpolation of the individual free energy densities fα.

We can calculate

s = −f,T = −
M∑
α=1

N∑
i=1

(
ci
Lα
i

Tα
i

h(φα)

)
−

N∑
i=1

(
R

vm
ci ln(ci)

)
+ cv ln(T ),(26)
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so that

e = f + Ts = −
M∑
α=1

N∑
i=1

(ciL
α
i h(φα)) + cvT.(27)

We note that if Lα
i = Lα for all components i, then e does not depend on c. The

chemical potentials are given as

µi(T, c, φ) = f,ci(T, c, φ) =

M∑
α=1

(
Lα
i

T − Tα
i

Tα
i

h(φα)

)
+

R

vm
T (ln(ci) + 1).(28)

Expressions for the quantities above in the pure phases are obtained by setting φα =
eα. For example, we have

µα
i = ∂cifα = ∂cif(T, c, eα) = Lα

i

T − Tα
i

Tα
i

+
R

vm
T (ln(ci) + 1)

for the chemical potential of the ith component in the phase α.
Now we give some examples for the terms modelling interfacial contributions to

the free energy. The simplest form of the gradient energy is

a(φ,∇φ) = |∇φ|2 =

M∑
α=1

|∇φα|2.

However, it has been shown [17, 19, 39] that gradient energies of the form

a(φ,∇φ) =
∑

α,β=1
α<β

Aαβ(φα∇φβ − φβ∇φα),

where Aαβ are convex functions that are homogeneous of degree two, are more con-
venient with respect to the calibration of parameters in the phase field model to the
surface terms in the sharp interface model. A choice that leads to isotropic surface
terms is

a(φ,∇φ) =
∑
α<β

γ̃αβ
m̃αβ

|φα∇φβ − φβ∇φα|2

with constants γ̃αβ and m̃αβ that can be related to γαβ and mαβ in (21) (cf. [17]).
For the bulk potential one may take the standard multiwell potential

wst(φ) = 9
∑
α<β

m̃αβ γ̃αβφ
2
αφ

2
β

or a higher order variant

w̃st(φ) = wst(φ) +
∑

α<β<δ

γαβδφ
2
αφ

2
βφ

2
δ .

For practical computations the multiobstacle potential yields good calibration prop-
erties. It is defined by

wob(φ) =
16

π2

∑
α<β

m̃αβ γ̃αβφαφβ
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with a higher order variant

w̃ob(φ) = wob(φ) +
∑

α<β<δ

γαβδφαφβφδ,

where wob and w̃ob are defined to be infinity whenever φ is not on the Gibbs simplex
G = {d ∈ ΣM : dα ≥ 0}. We refer to [18] and [19] for a further discussion of the
properties of the surface terms.

3.2. Possible choices of the mobility matrix. Here we give an example only
for the part of the mobility matrix (Lij)i,j=0,...,N that defines mass diffusion resulting
from chemical potential differences; i.e., we do not specify Li0 = L0i for 0 ≤ i ≤ N .
An example for those terms, which in particular define cross effects between mass and
energy diffusion, will be given in section 3.4.

If li(ci, T, φ) are the nonnegative bare mobilities of the pure components, we can
argue as in [4] to obtain

Lij(T, c, φ) = li(T, ci, φ)

(
δij −

( N∑
q=1

lq(T, cq, φ)
)−1

lj(T, cj , φ)

)
, 1 ≤ i, j ≤ N.

To give a simple example, we assume that all bare mobilities are the same constant
(e.g., li(T, ci, φ) = 1). Hence

(Lij)
N
i,j=1 = id− 1

N
1 ⊗ 1,

where 1 = (1, . . . , 1) and ⊗ is the tensor product. Often it is more reasonable to as-
sume that the bare mobilities li are linear in ci, and in the simplest case (li(T, ci, φ) =
ci) we obtain

(Lij)
N
i,j=1 = (ci(δij − cj))

N
i,j=1.

Choosing a free energy of the form (25) and taking (28) into account, we get the
following equations for the concentrations:

∂tci = −∇ ·

⎡
⎣Li0∇

1

T
+

N∑
j=1

ci(δij − cj)∇
(
−

M∑
α=1

(
Lα
j

(
1

Tα
j

− 1

T

)
h(φα)

)

− R

vm
(ln(cj) + 1)

)⎤⎦

= ∇ ·

⎡
⎣Li0∇

1

T
+

M∑
α=1

N∑
j=1

Lij∇
(
Lα
j

(
1

Tα
j

− 1

T

)
h(φα)

)⎤⎦+
R

vm
∆ci.

3.3. Relation to the Penrose–Fife model. In this subsection we will demon-
strate that our model includes the model of Penrose and Fife [34] as a special case.
In this case there is only one component, and we can neglect the variable c. There
are two phases, so we will write the equations in terms of the solid fraction ψ = φ1.
Then by (2), φ2 = 1 − ψ.
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The first phase, the solid one, is characterized by φ = 1; hence ψ = 1. We assume
its free energy density to be

fs = L
T − Tm

Tm
− cvT (ln(T ) − 1),

where Tm is the melting temperature and L the latent heat of the solid-liquid phase
transition. The second phase, the liquid one, is characterized by φ = e2; therefore
ψ = 0, and we take the free energy density to be

f l = −cvT (ln(T ) − 1).

We have

f(T, ψ) = L
T − Tm

Tm
h(ψ) − cvT (ln(T ) − 1);

hence

s(T, ψ) = − L

Tm
h(ψ) + cv ln(T )

so that e(T, ψ) = −Lh(ψ)+cvT . The evolution equation for the energy density yields

cv∂tT − Lh′(ψ)∂tψ = −∇ ·
(
L00∇

1

T

)
.

Now we choose L00 = cvK2T
2, λ(ψ) = Lh′(ψ)/cv, and

a(φ,∇φ) =
c

2
|∇φ|2 =

c

2
(|∇φ1|2 + |∇φ2|2),

where c = κ1cv/(2ε) for some constant κ1. Setting ω = 1, K1 = cv/(2ε) and

s0(ψ) = − 1

εcv
w(ψ, 1 − ψ) − L

cvTm
h(ψ).

We arrive at the system

∂tψ = K1

(
λ(ψ)

T
+ s′0(ψ) + κ1∆ψ

)
,

∂tT − λ(ψ)∂tψ = K2∆T

which is the model of Penrose and Fife [34, Chapter 6].

3.4. A linearized model. In this subsection we are going to partially linearize
our model. This is done in such a way that the evolution equations in the pure
phases are linear and they indeed reduce to standard linear diffusion equations. We
restrict ourselves to binary systems but a generalization to higher order systems is
straightforward.

We denote by c = c1 the concentration of the first component; therefore c2 = 1−c.
Using that L is symmetric and the algebraic constraints (10), we obtain

L01 = L10 = −L02 = −L20 and L11 = L22 = −L12 = −L21.
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Furthermore, we introduce the chemical potential difference

µ = f,c = f,c1 − f,c2 = µ1 − µ2.

Then the conservation laws for energy and concentration read (up to a factor 2 in the
last term of the right-hand sides)

∂te = −∇ · L00∇
1

T
−∇ · L10∇

−f,c
T

,(29)

∂tc = −∇ · L10∇
1

T
−∇ · L11∇

−f,c
T

.(30)

Choosing

L11 = D
T

f,cc
, L10 = L01 = e,cD

T

f,cc
, and L00 = e2

,cD
T

f,cc
+ KT 2,

the system (29)–(30) reduces to

∂te = ∇ ·
(
K∇T + e,cD∇c + e,cD

f,cφ
f,cc

∇φ

)
,(31)

∂tc = ∇ ·
(
D∇c + D

f,cφ
f,cc

∇φ

)
.(32)

Here K and D are coefficients that may depend on φ. Equations (31) and (32) then
have to be coupled to the phase field system (12).

We assume as in (27) that the internal energy density is affine linear in the
variables (T, c). Then the system (31)–(32) reduces in regions where φ is constant,
i.e., in the pure phases, to (here K and D are constants)

cv∂tT = ∇ ·K∇T = K∆T, ∂tc = ∇ ·D∇c = D∆c.

Here cv is the specific heat. These are classical linear diffusion equations for temper-
ature (Fourier’s law) and concentration (Fick’s law).

3.5. Relation to the Caginalp model. If we further linearize the system it
can be seen that our model leads to a generalization of the original phase field model
[7] to the case of alloy solidification. We consider a three-phase system for a binary
alloy. We choose the free energy density

f(T, c, φ) =
(
κ
c

2
−

3∑
α=1

Lα
1φα

)
cT − cvT (ln(T ) − 1) −

3∑
α=1

Lα
2φα,

where Lα
2 are latent heat coefficients and Lα

1 and κ, respectively, are coefficients
entering the chemical potentials. Then we get

s = −f,T = −
(
κ
c

2
−

3∑
α=1

Lα
1φα

)
c + cv ln(T ),

e = f + Ts = cvT −
∑
α

Lα
2φα,

µ

T
=

f,c
T

= κc−
∑
α

Lα
1φα,

rα
T

=
f,φα

T
= −Lα

1 c−
Lα

2

T
.
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Choosing the mobility matrix as in the previous subsection we obtain

∂te = ∂t

(
cvT −

∑
α

Lα
2φα

)
= ∇ · (K∇T ),

∂tc = ∇ ·D∇
(
κc−

∑
α

Lα
1φα

)
.

For the gradient energy we take the isotropic function a(φ,∇φ) = 1
2

∑
α |∇φα|2.

Then the equations for the phase field variables are

ωε∂tφα = ε∆φα − 1

ε
w,φα

(φ) + Lα
1 c +

Lα
2

T
− λ,

where λ is the Lagrange multiplier (13). Now we linearize the term 1
T in the above

equation around a temperature Tm to obtain

ωε∂tφα = ε∆φα − 1

ε
w,φα

(φ) + Lα
1 c + Lα

2

(
1

Tm
− 1

T 2
m

(T − Tm)

)
− λ.

The equations for (T, c) are linear and all terms in the equation for φ are linear
except for the term w,φα . A complete linearization cannot be expected because sys-
tems with moving interfaces can never be linear, as can be easily seen for the sharp
interface model.

Finally, we note that this simplification of the model leads to a linearized phase
diagram; in particular, the magnitude of the jump of the concentration in the sharp
interface model is constant for each of the phase boundaries.

3.6. Fields of application. In this paragraph, we comment on the generality
of the presented phase field model, on the new features, and on the various different
applications to solidification processes, microstructure formation, and polycrystalline
grain growth. With the phase field model set up for an arbitrary number of alloy com-
ponents and phases in a nonisothermal system, the set of governing equations is able
to describe the coupled heat and mass diffusion processes as well as the phase trans-
formations in multicomponent systems. Due to the flexibility to choose parameters
in the gradient and in the potential free energy, the model consists of enough degrees
of freedom to prescribe the physics of each phase boundary and interface separately
by defining values for appropriate surface energies γ̃αβ and for the mobilities m̃αβ .
The model allows for both kinetic and surface energy anisotropies. Different types of
anisotropy such as smooth and crystalline expressions corresponding to Wulff shapes
with a different number of vertices can be realized in three dimensions. Consider-
ing the application point of view, the effect of the type and strength of anisotropy
on the growth structure can be investigated. Examples of experimentally observed
anisotropic characteristics in eutectic systems are tilted or spiral phase formations
and the growth of neighboring eutectic grains.

The phase field variables φα can represent different phases and different grains of
orientational variants at the same time. Therefore, phenomena such as eutectic grain
formation involving different length scales (grains on the larger scale and a eutectic
structure on a smaller scale) and interpretations of the nonconserved order param-
eters can be described using the new model. A main focus of application in future
development is the two- and three-dimensional numerical simulation of solidification
in multicomponent alloy systems with arbitrary phase diagrams. By choosing the
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specific thermodynamical quantities—the latent heats of fusion Lα
i and the melting

temperatures Tα
i —and by inserting these data as input parameters for the numeri-

cal simulations, different types of phase transformations, such as peritectics, eutectics,
and monotectics, are modelled. In particular, the stability of ternary eutectic lamellae
with phase arrays of different period length and phase permutations will be investi-
gated by phase field simulations in a forthcoming paper. The results of computed
structures are compared with a generalization of the classical Jackson–Hunt theory
for ternary eutectics. The occurrence of a ternary phase impurity leads to the forma-
tion of eutectic colonies. The resulting complex structure is of multiscale type and
can also be modelled with the new approach.

4. Relating the models by asymptotic expansions. By matched asymp-
totic expansions we want to establish the relation between the phase field model and
the sharp interface model that were described in section 2. We are going to generalize
methods developed by Caginalp and Fife [8], Bronsard, Garcke, and Stoth [6], Garcke
and Novick-Cohen [20], and Garcke, Nestler, and Stoth [17]. We restrict ourselves to
two space dimensions, i.e., d = 2, but generalizations are possible.

Since the quantities (T, µ̄) are continuous across a phase boundary it will be
convenient to use them in the asymptotic expansions. More precisely we will use the
variables φ and u = (−1

T , µ̄1

T , . . . , µ̄N

T ). Since f(T, ·, φ) is strictly convex and f(·, c, φ)
is strictly concave, we obtain that the mappings

(T, c, φ) �→ (u, φ) and (e, c, φ) �→ (u, φ)

are both invertible and an exchange of variables between these quantities is possible.
We will use the variables (u, φ) in the asymptotics but the equations can always

be reinterpreted with respect to the variables (T, c, φ) or (e, c, φ). We write the con-
servation laws as

∂tci(u, φ) = ∇ ·
N∑
j=0

Lij(u, φ)∇uj , 0 ≤ i ≤ N,

where we have set c0 = e.
The phase field equations are

ωε∂tφ = PM
[
ε
(
∇ · a,X(φ,∇φ) − a,φ(φ,∇φ)

)
− 1

ε
w,φ(φ) + u0f,φ(T (u, φ), c(u, φ), φ)

]
.

We assume that the matrix L = (Lij)
N
i,j=0 is strictly positive definite for all

arguments on the space

HN :=
{
d = (di)

N
i=0 ∈ RN+1 :

N∑
i=1

di = 0
}

= R × TΣN .

In addition, we will frequently make use of the fact that a is homogeneous of degree
two in the variable X. In particular, we have (cf. [17])

a,X(φ, ηX) : X = 2ηa(φ,X),(33)

a,φ(φ, ηX) : X = η2a,φ(φ,X),(34)

a(φ, 0) = 0,(35)

a,X(φ, 0) = 0.(36)



790 HARALD GARCKE, BRITTA NESTLER, AND BJÖRN STINNER

4.1. Outer expansion. We expect, based on experiences from numerical sim-
ulations, that several phases arise which are separated by diffuse interfaces whose
thickness is of order ε. We will see that these phases correspond to the M minima
of the potential w. In such a phase, away from an interface to another phase, we
consider an outer expansion in the bulk region. For a function b in (t, x) we present
the ansatz

bout(t, x) =

∞∑
K=0

εKbKout(t, x).(37)

In this way we expand the variables uj and φα, 0 ≤ j ≤ N , 1 ≤ α ≤ M . For the
constraints φ ∈ ΣM and u ∈ HN to be satisfied we assume

φ0
out ∈ ΣM , φK

out ∈ TΣM , K ≥ 1,

uK
out ∈ HN , K ≥ 0.

First we consider the equation for the phase field variables. We expand PMw,φ(φ) as

PMw,φ(φ) = PMw,φ(φ0
out) + ε(PMw,φ),φ(φ0

out) · φ1
out + O(ε2).

To leading order O(ε−1) the equation (12) becomes

0 = PMw,φ(φ0
out) = w,φ(φ0

out) −
1

M

(
M∑
α=1

w,φα
(φ0

out)

)
1.(38)

As we are searching for stable solutions for this equation, φ0
out is one of the base

vectors {eβ}1≤β≤M . We can conclude that to leading order the whole domain Ω is
partitioned into phases which are characterized by the M possible values of φ0

out.
The O(1)-equations for the conserved variables are (0 ≤ i ≤ N)

∂tci(u
0
out, φ

0
out) = ∇ ·

N∑
j=0

Lij(u
0
out, φ

0
out)∇u0

j,out.(39)

Boundary conditions for these equations will be obtained by matching with the inner
expansion. One should note that we have expanded the coefficients Lij in (u0

out, φ
0
out)

in the same way as PMw,φ in φ0
out. In phase α, i.e., at points where φ0

out = eα, we
write Lα

ij(u) = Lij(u, eα). Then the O(1)-equations become

∂tci(u
0
out, eα) = ∇ ·

N∑
j=0

Lα
ij(u

0
out)∇u0

j,out.

Since c0 = e, u0 = − 1
T , and uj =

µj

T we obtain (15) and (16). We note that an upper
index in (15) and (16) refers to the phase, whereas an upper index in this section
refers to the order in the expansion.

4.2. Inner expansion. Now we consider an interfacial region where two phases
meet. Without loss of generality we assume that φ0

out = e1 in one of the outer regions,
denoted by Ω1, and φ0

out = e2 in the other one, denoted by Ω2. We assume that these
two regions are separated by a family {Γt}t of evolving smooth curves. Let ψ be a
smooth function such that s �→ ψ(t, s) is an arc-length parametrization of Γt. The
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unit tangential vector τ(t, x) on Γt in x = ψ(t, s) is given by τ(t, x) = ∂sψ(t, s), and
the unit normal ν(t, x) on Γt in x = ψ(t, s) is such that (ν, τ) is positively oriented.
We choose the orientation in the parametrization ψ such that ν points into Ω1.

Since the parametrization is smooth, it is possible to introduce new space co-
ordinates (z(t, x), s(t, x)) in a strip S around Γt in the following way. We define
r(t, x) = d(x,Γt) to be the signed distance between a point x and Γt; i.e., r is positive
in Ω1 and negative in Ω2. Then the variable z is defined by z(t, x) = 1

εr(t, x). Let
Pt be the projection of S onto Γt. Then by the smoothness of Γt one can use the
strip S narrow enough such that there is exactly one s(t, x) for every x ∈ S such that
Pt(x) = ψt(s). The following holds:

∇xz(t, x) =
1

ε
ν(t, Pt(x)),

∇xs(t, x) = τ(t, Pt(x)) + O(ε).

In the new variables (t, z, s) we present for some real function b in (t, x) the ansatz

bin(t, x) =

∞∑
K=0

εKbKin(t, z(t, x), s(t, x)).(40)

Introducing the notation ν(Pt(x)) = ν(t, s(t, x)) and, similarly, τ(Pt(x)) = τ(t, s(t, x)),
we obtain

∇xbin(t, z(t, x), s(t, x)) =
1

ε
[∂zbin(t, z, s)]ν(t, s) + [∂sbin(t, z, s)]τ(t, s) + O(ε),

and for some vector field �b we have

∇x ·�b(t, z(t, x), s(t, x)) =
1

ε
(∂z�b(t, z, s)) · ν(t, s) + (∂s�b(t, z, s)) · τ(t, s) + O(ε).

Moreover, it follows that

∂tz(t, x) = ∂t
1

ε
d(x,Γt) = −1

ε
v(Pt(x)),

∂ts(t, x) = −vτ (Pt(x)) + O(ε),

where v is the normal velocity and vτ the tangential velocity. We note that vτ depends
on the parametrization, whereas v is an intrinsic quantity. This leads to

d

dt
bKin(t, z(t, x), s(t, x)) = ∂tb

K
in(t, z, s) − 1

ε
v∂zb

K
in(t, z, s) − vτ∂sb

K
in(t, z, s) + O(ε).

Now we expand φ and u in the variables (t, z, s) and we assume

φ0
in ∈ ΣM , φK

in ∈ TΣM , K ≥ 1,

uK
in ∈ HN , K ≥ 1,

to ensure that the constraints on φ and u are satisfied. Taking a Taylor expansion of
Lij around (u0

in, φ
0
in) and writing L0,in

ij = Lij(u
0
in, φ

0
in), we obtain from the conserva-

tion laws for mass and energy to lowest order, i.e., O(ε−2),

0 =
d

dz

⎛
⎝ N∑

j=0

L0,in
ij ∂zu

0
j,in

⎞
⎠ , 0 ≤ i ≤ N,(41)
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where we used that ∂zν = 0. Integrating yields

L∂zu
0
in = k(42)

for some vector k ∈ RN+1. Later, the matching with the outer solution will give
k = 0.

We have

∂zν = 0, ∂zτ = 0, ∂sτ = κν, ∂sν = −κτ,

where κ is the curvature of Γt. Concerning the sign of the curvature we note that
for a circle of radius r whose normal is outward oriented (with our orientation the
tangent is then running counterclockwise) the curvature is −1/r.

Hence the O(ε−1)-equations of the conserved quantities are

−v∂zci(u
0
in, φ

0
in) = −κ

⎛
⎝ N∑

j=0

L0,in
ij ∂zu

0
j,in

⎞
⎠+

d

dz

⎛
⎝ N∑

j=0

L0,in
ij ∂zu

1
j,in

⎞
⎠(43)

+
d

dz

⎛
⎝ N∑

j=0

((Lij)
0,in
,u · u1

j,in + (Lij)
0,in
,φ · φ1

in)∂zu
0
j,in

⎞
⎠ .

These equations will further simplify when an expression for u0
in has been derived.

Now we consider the equations for the phase field variables. As done in [17] we
expand the a-terms in (φ0

in, ∂zφ
0
in⊗ν), the w-term in φ0

in, and the f -term in (u0
in, φ

0
in).

To leading order O(ε−1) we then obtain the equation

0 =
d

dz

(
PMa,X(φ0

in, ∂zφ
0
in ⊗ ν)

)
ν − PMa,φ(φ0

in, ∂zφ
0
in ⊗ ν) − PMw,φ(φ0

in).(44)

Multiplying this equation with ∂zφ
0
in ∈ TΣM gives

0 =
d

dz

(
a,X(φ0

in, ∂zφ
0
in ⊗ ν) : (∂zφ

0
in ⊗ ν) − a(φ0

in, ∂zφ
0
in ⊗ ν) − w(φ0

in)
)
.(45)

The equation of order O(1) is

−ωv∂zφ
0
in =

d

dz

[
(PMa,X),φ · φ1

in(46)

+(PMa,X),X : (∂sφ
0
in ⊗ τ + ∂zφ

1
in ⊗ ν)

]
ν +

d

ds
(PMa,X)τ

−(PMa,φ),φ · φ1
in − (PMa,φ),X : (∂sφ

0
in ⊗ τ + ∂zφ

1
in ⊗ ν)

−(PMw,φ),φ · φ1
in + PMu0

0,inf,φ(T (u0
in, φ

0
in), c(u0

in, φ
0
in), φ0

in),

where w and all its derivatives are evaluated in φ0
in and a and its derivatives in

(φ0
in, ∂zφ

0
in ⊗ ν).

4.3. Matching and resulting jump conditions. For some quantity b(t, x) we
gave by (37) and (40) expansions in bulk regions, respectively, in a strip around an
interface between such regions. Now we want to match these expansions in an overlap
domain. We will need the matching conditions of order zero and one. For the outer
expansions in Ω1 and Ω2 we will use the subscripts bout1 and bout2.
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We observe that near Γt we can express the functions bKout(t, x) in the variables
(t, z, s). By expanding in a Taylor series at the point (0, s(t, x)) which corresponds to
the boundary point ψt(s(t, x)) ∈ Γt (remember that z(t, x) = 1

εr(t, x) and ∂r = ν ·∇x),
we obtain

bKout(t, x) = bKout(t, r(t, x), s(t, x))

= bKout(t, 0, s(t, x)) + r∂r(b
K
out)(t, 0, s(t, x)) + O(r2)

= bKout(t, 0, s(t, x)) + εz(∇xb
K
out(t, 0, s(t, x)) · ν(t, 0, s(t, x))) + O(ε2),

where bKout(t, 0, s) and ∇xb
K
out(t, 0, s) mean the evaluation in (t, Pt(x)). We get

bout(t, x) = b0out(t, 0, s) + ε
(
z(∇xb

0
out(t, 0, s) · ν(t, s)) + b1out(t, 0, s)

)
+ O(ε2).

Now we consider an intermediate variable zε = η(ε)z for some z > 0, where η(ε)
is some function in ε in the overlap domain of validity of the two expansions (which we
suppose to exist); i.e., η = o(1) and ε = o(η). Because of z = r/ε we have zε → ±∞
as ε → 0.

We substitute the variable z in our expansions by this intermediate variable zε
and consider their difference; the expansions of u match if, in the limit as ε → 0, the
terms of every order εK vanish. For the O(1)-terms this means

0
!
= lim

ε↘0

(
b0out1(t, 0, s) − b0in(t, zε, s)

)
= lim

zε→∞

(
b0out1(t, 0, s) − b0in(t, zε, s)

)
,

0
!
= lim

ε↗0

(
b0out2(t, 0, s) − b0in(t, zε, s)

)
= lim

zε→−∞

(
b0out2(t, 0, s) − b0in(t, zε, s)

)
,

while for the O(ε1)-terms the matching condition is

0
!
= lim

zε→∞

(
zε∇xb

0
out1(t, 0, s) · ν(t, s) + b1out1(t, 0, s) − b1in(t, zε, s)

)
,

0
!
= lim

zε→−∞

(
zε∇xb

0
out2(t, 0, s) · ν(t, s) + b1out2(t, 0, s) − b1in(t, zε, s)

)
.

First we apply the matching conditions on the functions u0
j,in, 0 ≤ j ≤ N , solving

the differential equations (42). The assumption on L yields

∂zu
0
in = L−1k.

By the matching conditions of order zero, u0
in must be bounded if |z| → ∞. Then the

assumption on L necessarily gives k = 0 so that u0
in is constant.

Since u0
in is constant, we obtain that u0

out1(t, 0, s) = u0
out2(t, 0, s) and hence u,

and therefore the temperature and the chemical potential differences are in the sharp
interface limit continuous across an interface.

Now, due to ∂zu
0
j,in = 0, the O(ε−1)-equations (44) for the conserved variables

simplify to

−v∂zci(u
0
in, φ

0
in) =

d

dz

⎛
⎝ N∑

j=0

Lij(u
0
in, φ

0
in)∂zu

1
j,in

⎞
⎠ .

Integrating with respect to z from −∞ to ∞ (or, more correctly, integrating from −R
to R and then considering the limit as R → ∞) and using that v(t, s) is independent
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of z, we obtain

v
[
ci(u

0
in, φ

0
in)

]z↗∞
z↘−∞ = −

⎡
⎣ N∑
j=0

Lij(u
0
in, φ

0
in)∂zu

1
j,in

⎤
⎦
z↗∞

z↘−∞

.

As has been shown in [8, 6] the matching conditions of order one for the b1j,in yield

∂zb
1
j,in → ∇xb

0
j,out1 · ν for z → ∞(47)

and

∂zb
1
j,in → ∇xb

0
j,out2 · ν for z → −∞,(48)

where the right-hand sides are evaluated in (t, x) = (t, ψt(s)) or, in the other coordi-
nates, in (t, r, s) = (t, 0, s(t, x)). In fact, these are the boundary values of ∇xu

0
j,outβ ·ν,

β ∈ {1, 2}, on Γt. After matching for the phase field variables φ we obtain

v[ci]
1
2 = v

(
ci(u

0
out1, φ

0
out1) − ci(u

0
out2, φ

0
out2)

)
(t, x)

= v
[
ci(u

0
in, φ

0
in)

]z↗∞
z↘−∞

= −
( N∑

j=0

L0,out1
ij ∇xu

0
j,out1 − L0,out2

ij ∇xu
0
j,out2

)
(t, x) · ν(t, x)

=
(
Ji(u

0
out1, φ

0
out1) − Ji(u

0
out2, φ

0
out2)

)
(t, x) · ν(t, x)

= [Ji]
1
2 · ν.

We will refer to this fact as the jump condition for the inner energy density e = c0
and the concentrations ci, 1 ≤ i ≤ N .

4.4. Matching and the Gibbs–Thomson relation. In the bulk regions we
have φ0

outβ = eβ , β ∈ {1, 2}. Hence for each s, we have to solve equation (44) of
second order in z with respect to the boundary conditions e1 for z → ∞ and e2 for
z → −∞.

By integrating (45) and using (35), (36) and w(e1) = w(e2) = 0 we obtain

0 = a,X(φ0
in, ∂zφ

0
in ⊗ ν) : (∂zφ

0
in ⊗ ν) − a(φ0

in, ∂zφ
0
in ⊗ ν) − w(φ0

in).

Using (33) we deduce

a(φ0
in, ∂zφ

0
in ⊗ ν) = w(φ0

in),(49)

which is known as equipartition of energy. We set

(50)

C0,1
αβ ([−1, 1],ΣM ) ={
p : [−1, 1] → ΣM | p Lipschitz continuous, p(−1) = eα and p(1) = eβ

}
,

and define the surface entropy for some e ∈ Rn to be

γαβ(e) = inf

{
2

∫ 1

−1

√
w(p)

√
a(p, p′ ⊗ e)(y)dy | p ∈ C0,1

αβ

}
.(51)
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As shown in [40, 17], if a minimizer exists for e = ν(t, s), then a reparametrization of
the minimizer fulfills (44) and, in addition,

γ2,1(ν) =

∫ ∞

−∞

(
a(φ0

in, ∂zφ
0
in ⊗ ν) + w(φ0

in)
)
dz.(52)

Now we want to deduce the Gibbs–Thomson law. We multiply the equation (44) for
φ0
in by ∂zφ

1
in ∈ TΣM and the equation (47) for φ1

in by ∂zφ
0
in ∈ TΣM . Observe that

we can drop the projections PM . Then we sum up the two equations and integrate
from −∞ to ∞ with respect to z. Some straightforward calculations together with the
matching conditions for the boundary values yield the following solvability condition
for equation (47):

−ωv

∫ ∞

−∞
(∂zφ

0
in(z, s))2 =

d

ds

(∫ ∞

−∞
a,X(φ0

in(z, s), ∂zφ
0
in(z, s) ⊗ ν(s)) · ∂zφ0

in(z, s)dz

)
τ(s)

+

∫ ∞

−∞
u0

0,inf,φ(T (u0
in, φ

0
in)c(u0

in, φ
0
in), φ) · ∂zφ0

indz.(53)

Using that u0
0,in and ū0

in = (u0
1,in, . . . , u

0
N,in) are independent of z, the last term on

the RHS of (53) yields∫ ∞

−∞
u0

0,inf,φ(T 0
in, c

0
in, φ

0
in) · ∂zφ0

indz

=

∫ ∞

−∞

(
d

dz

(
u0

0,inf(T 0
in, c

0
in, φ

0
in)

)
− u0

0,inf,c(T
0
in, c

0
in, φ

0
in) · ∂zc0in

)
dz

=

∫ ∞

−∞

(
d

dz

(
u0

0,inf(T 0
in, c

0
in, φ

0
in)

)
+ ū0

in · ∂zc0in
)
dz

=
[
u0

0,inf(T 0
in, c

0
in, φ

0
in) + ū0

in · c0in
]z↗∞
z↘−∞

=:
[
u0

0

(
f(T 0, c0, φ0) − f,c(T

0, c0, φ0) · c0
) ]1

2
.

Here we use the abbreviation T 0
in = T (u0

in, φ
0
in), c0in = c(u0

in, φ
0
in), T 0 = T (u0, φ0),

and c0 = c(u0, φ0). Finally, as [c0] ∈ TΣN we obtain∫ ∞

−∞
u0

0,inf,φ(T 0
in, c

0
in, φ

0
in) · ∂zφ0

indz = −
(

[f0]12 − µ0 · [c0]12
T 0

)
(t, x).

Calculating the total derivative of γ2,1, which becomes with (52)

Dγ2,1(ν) =

∫ ∞

−∞
a,X · ∂zφ0

indz,

and setting

m(ν) = ω

∫ ∞

−∞
(∂zφ

0
in)2dz,

we reduce the solvability condition to (writing ∇s · g = (∂sg) · τ for the surface
divergence of some vector field g on Γt)

m(ν)v = −∇s ·Dγ2,1(ν) +
[f0]12 − µ0 · [c0]12

T 0
.



796 HARALD GARCKE, BRITTA NESTLER, AND BJÖRN STINNER

Considering ν and γ as functions in an angle θ ∈ [0, 2π), i.e., setting ν(θ) = (cos(θ),
sin(θ)) and γ̂(θ) = γ(ν(θ)), one can derive (see [17])

∇s ·Dγ2,1(ν) = −(γ̂2,1(θ) + γ̂′′
2,1(θ))κ

with the curvature κ = −∇s · ν which may be inserted into the solvability condition
to yield

m(ν)v = (γ̂2,1(θ) + γ̂′′
2,1(θ))κ +

[f0]12 − µ0 · [c0]12
T 0

.

Finally, the force balance at triple junctions (24) can be derived as in [17]. Therefore,
all equations defining the sharp interface model have been derived by asymptotic
expansions.

5. Appendix. In this appendix we will show that for the sharp interface model
described in section 2 the entropy does not decrease in time. We consider a situation
where a bounded domain Ω is partitioned into M phases Ω1(t), . . . ,ΩM (t) which are
separated by smooth boundaries Γαβ(t) = Ωα ∩ Ωβ ∩ Ω. For simplicity we restrict
ourselves to two space dimensions, but the calculations can also be done in higher
dimensions.

Given some domain R(t) ⊂ Ω with smooth boundary ∂R(t) and a smooth evolving
curve Γ(t) ⊂ Ω with normal velocity v, we will make use of the following transport
identities:

d

dt

(∫
Γ(t)

γ dH1

)∣∣∣
t=t0

= −
∫

Γ(t0)

γκv dH1 +
∑

endpoints

ṗ · τ and

d

dt

(∫
R(t)

u dx

)∣∣∣
t=t0

=

∫
R(t0)

∂tu dx +

∫
∂R(t0)

uv dH1(x)

for some smooth function u = u(t, x) and some constant γ; κ is the curvature of the
interface Γ, and ν is the unit normal. By ṗ we denote the velocity of the endpoints
of Γ and by τ the exterior tangent vector to Γ(t) at the endpoints.

Let the evolution in each phase be given by

∂te
q = −∇ · Jq

0 , ∂tc
q
i = −∇ · Jq

i , 1 ≤ i ≤ N, 1 ≤ q ≤ M,

with the fluxes given in (15) and (16). We assume that the functions are smooth in
their domain Ωq and that the fluxes vanish at the external boundary of Ω. Observe
that −∂tc = ∇ · J ∈ TΣN . Then

d

dt

(∫
Ω(t)

s(e, c) dx

)∣∣∣
t=t0

=
∑
α

∫
Ωα(t0)

∂ts(e, c) dx−
∑
α<β

∫
Γαβ(t0)

[s]βαv dH1

=
∑
α

∫
Ωα(t0)

(
s,e∂te +

∑
i

s,ci∂tci

)
dx−

∑
α<β

∫
Γαβ(t0)

[s]βαv dH1

= −
∑
α

∫
Ωα(t0)

(
1

T
∇ · J0 +

∑
i

−µ̄i

T
∇ · Ji

)
dx

−
∑
α<β

∫
Γαβ(t0)

[s]βαv dH1



A DIFFUSE INTERFACE MODEL FOR MULTIPLE PHASES 797

=
∑
α

∫
Ωα(t0)

∇ 1

T
· J0 +

∑
i

∇−µ̄i

T
· Ji dx

+
∑
α<β

∫
Γαβ(t0)

⎛
⎝[

1

T
J0 +

∑
i

−µ̄i

T
Ji

]β

α

· ν − [s]βαv

⎞
⎠ dH1.

The fact that L is positive semidefinite leads to

∇ 1

T
· J0 +

∑
i

∇−µ̄i

T
· Ji ≥ 0.

In addition, we make use of the continuity conditions (17), (18) and the jump condi-
tions (19), (20) to obtain

d

dt

(∫
Ω(t)

s(e, c) dx

)∣∣∣
t=t0

≥
∑
α<β

∫
Γαβ(t0)

(
1

T
[e]βαv +

∑
i

−µ̄i

T
[ci]

β
αv −

[Ts]βα
T

v

)
dH1

=
∑
α<β

∫
Γαβ(t0)

[f ]βα −
∑

i µi[ci]
β
α

T
v dH1.

Furthermore, we have

d

dt

(
−
∫

Γαβ(t)

γαβ dH1

)∣∣∣
t=t0

=

∫
Γαβ(t0)

γαβκv dH1 −
∑

endpoints

ṗ · ταβγαβ

so that we get

d

dt
S
∣∣∣
t=t0

=
d

dt

⎛
⎝∫

Ω(t)

s(e, c) dx−
∑
α<β

∫
Γαβ(t)

γαβ dH1

⎞
⎠∣∣∣

t=t0

≥
∑
α<β

∫
Γαβ(t0)

(
[f ]βα −

∑
i µi[ci]

β
α

T
+ γαβκ

)
v dH1

=
∑
α<β

∫
Γαβ(t0)

m(ν)v2 dH1 ≥ 0.

In the last equality we used the Gibbs–Thomson relation (21), the fact that the
mobility coefficient m is supposed to be positive, the force balance at triple junctions
(24), and the fact that in a closed system the interfaces intersect the exterior boundary
by a 90◦ angle condition (compare [6] and the references therein).
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