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ABSTRACT. We present numerical simulations which support the formal asymptotic anal-
ysis relating a multi order parameter Allen—-Cahn system to a multi phase interface
problem with curvature dependent evolution of the interfaces and angle conditions at
triple junctions. Within the gradient energy of the Allen—-Cahn system, the normal
to an interface between phases ¢ and j is modeled by the irreducible representations
(uiVu; —u; V) /|uiVu; — u; V|, where u; and u; are the i-th and j—th components of
the vectorial order parameter u € RY.

In the vectorial case, the dependence of the limiting surface tensions and mobilities on
the bulk potentials of the Allen—-Cahn system is not given explicitly, but in terms of all
the N components of the planar stationary wave solutions. One of the issues of this paper
is to find bulk potentials which allow a rather easy access to the resulting surface tensions
and mobilities.

We compare numerical computations for planar and circular phase boundaries in two
and three phase systems. The difference is, that in a three phase system, the third
phase generally will be present in the interfacial region between two other phases. We
demonstrate how this influences the solutions. In addition, we calculate the evolution
of triple and quadruple junctions in three and four phase systems. Finally, we show a
simulation of grain growth starting from many grains initially.

1. INTRODUCTION

Phase field models have been used to describe phase transition phenomena. In these
models the phase boundary is modeled to be an interfacial layer of positive but small
thickness. It has been shown that phase field concepts recover well known free boundary
problems such as motion by mean curvature, the Stefan problem and the Mullins—Sekerka
evolution, when the interfacial thickness tends to zero. In these sharp interface models, the
transition takes place across a hypersurface. The relation between phase field models and
sharp interface problems for the two phase case was first suggested by formal asymptotic
expansions (see [25, 7]) and later proved rigorously (see [11, 30, 27] and the references
therein). Bronsard and Reitich [5] were the first to study an Allen-Cahn system and they
showed formally that in the sharp interface limit of the Allen—Cahn system one obtains an
angle condition known as Young’s law wherever three phases meet.

The aim of our work is to study the phase field concept for multi phase systems. We
restrict ourselves to the theory of perfect conductors, i.e. temperature is constant, and the
bulk phases influence the evolution of the interface only through a difference of constant
bulk energies (see e.g. Angenent and Gurtin [2]). In this case, one has to study a system
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of parabolic equations of Allen—Cahn type. This system can also be used to describe the
evolution of grain boundaries in multi phase polycrystalline materials. Hence, when using
the term phases and phase fields we also think of grains and order parameters where the
order parameters describe different orientational variants of the same phase. We hope this
does not cause any confusion.

In a recent paper [15], we studied an Allen-Cahn system which is based on a Ginzburg-
Landau free energy for a vector valued phase field u € R

E(u) = ef(u,Vu) + 1¥(u) 4+ &(u) ) () de, (1)
/. )

with a generalized gradient energy f and bulk potentials ¥ and ®. We demonstrated
by formally matched asymptotic expansions that this Allen—Cahn system can be used
to approximate the anisotropic multi phase curvature flow with driving forces given by
differences in bulk energies. The new feature of the Ginzburg-Landau free energy we used
is that the gradient part is based on antisymmetric terms which involve the phase field and
its gradient. This goes back to the theory of irreducible representation (see Landau and
Lifschitz [17]). To be more precise, we give f in its isotropic version as

N -
fiso(uvvu) = Z ;:j

1,j=12<g

uiVuj — ujVui|2 . (2)

This type of free energy was first proposed for multi phase field models by Steinbach
et al. [28]. For results which used phase field generalizations of the {-vector and the
stress tensor to identify the asymptotic limit of multi phase systems we refer to Wheeler
and McFadden [31] and Nestler and Wheeler [19]. Applications of a phase field model to
describe solidification of a eutectic alloy was studied by Wheeler, McFadden and Boettinger
[32] and for related results on Cahn-Hilliard systems see Bronsard, Garcke and Stoth [4]
and Garcke and Novick—Cohen [16].

As a further extension of a model which is based on a free energy defined by (1) and
(2), Nestler and Wheeler [21] introduced a free energy potential that also depends on
concentration and temperature. The incorporation of bulk fields enables to treat phase
transitions that appear in solidification processes of alloys by allowing different phases to
have different compositions. The Gibbs free energies in the model of [21]) are thermody-
namically consistent and such that the properties and shapes of eutectic and peritectic
phase diagrams are incorporated. Herewith, Nestler and Wheeler [21] developed a phase
field model which describes realistic features of peritectic and eutectic solidification.

The aim of this paper is to perform numerical simulations to investigate the relation
between the Allen—Cahn system and its asymptotic limit. To formulate this limit, it is
necessary to determine several parameters such as the surface tensions and the mobilities
which are associated to all possible pairs of phases. The surface tension between phases ¢
and j is for any v € IR? determined by the expression

oty =20t VED P & D)y, 3)

where p ranges over all Lipschitz continuous functions p : [—1,1] — ¥ | connecting the
vectors e and e/. Here, ¥ = {u € RY : Efvzl u; = 1} and e' denotes the i'th standard
unit vector and ¥y is assumed to have global minima exactly at the e’. We associate
the vector e’ with phase i (see Section 2 for more details). One objective of this paper is




to determine bulk potentials ¥, which are good for phase field approximations of sharp
interface problems.

First, we ask the free energy to have good calibration properties: In applications, the
surface tensions are given and one wants to choose a gradient energy f and a bulk potential
¥ with enough degrees of freedom to allow to easily calibrate the free energy such that the
given surface tensions are obtained by (3). We stress that this calibration problem does
not appear for two phase systems, since there the explicit formula

sv)=2 | AT AT =) B v

holds, if we impose that f is homogeneous of degree 2 in the gradient variable. No such
formula holds in the vectorial case.

The next requirement is the property of reduction to a two-phase system locally in
interfacial regions: As we think of the component u; to be the fraction of phase ¢ we want
a transition layer between phases ¢ and j to have the property that u = 0 for all & £ ¢, j.
It turns out that this is satisfied if the minimum in (3) has this property.

A third request, which is not as crucial as the other two and which we only want for
computational convenience, is locality of the interfacial layer: While the standard smooth
double well potential for the two phase case has an infinite transition layer, the double
obstacle potential has a finite transition layer with the phase field being exactly +1 away
from a small interfacial layer which is of order ¢ (see Blowey and Elliott [3] and Nochetto,
Paolini and Verdi [23]). A similar property we require for the multi phase case.

To compare different potentials and to study how it is possible to calibrate parame-
ters, we perform numerical simulations in planar and radial geometry with and without
driving forces. It turns out that a modification of a multi obstacle potential has the best
performance with respect to the three requirements stated above. Hence, we choose this
potential for simulations in more complicated geometries. We simulate the evolution of
triple junctions, the stability of quadruple points and perform a larger computation which
demonstrates that it is possible to use the multi phase field method to simulate situations
with four order parameters and lots of grains. We numerically verify the validity of qual-
itative features such as the well known von Neumann law. In this context, we also refer
to the work of Chen and Yang [10] and Fan and Chen [14] who used a multiple order
parameter model to perform numerical simulations for systems with many non conserved
order parameters. Their main concern lies in the study of the long time behavior of such
systems, and in particular they were interested in investigating laws for the evolution of
the average domain size of different grain variants. In contrast to this, we concentrate
on local qualitative features and especially we use the numerical simulations in order to
relate order parameter models to sharp interface models. Other numerical methods, which
have been used so far to simulate the evolution in multi phase systems, are based on sharp
interface models. We refer to Bronsard and Wetton [6] and Neubauer [22] for numerical
computations based on parameterizations of interfaces and to Merriman, Bence and Osher
[18] for a level set approach for the motion of multiple junctions. So far, there appeared no
simulations for an anisotropic multi phase system in the literature. In a forthcoming paper,
we plan to present numerical simulations for the anisotropic multi phase field concept.

In Section 2, we introduce the multi phase field concept and state the corresponding
sharp—interface model. We then give several forms of free energies and discuss how to



calibrate the parameters (Section 3). In the main part of the paper (Section 4), we sys-
tematically compare results from numerical simulations to the predictions of the formal
asymptotic expansion of [15]. In particular, we try to find a potential which makes it as
easy as possible to calibrate the parameters. Finally, in an appendix, we present a self
similar profile for the sharp interface model and show that this profile is exponentially
attractive. We use this profile as a reference solution for our simulations.

2. THE MULTI PHASE FIELD CONCEPT

In this section we introduce the multi phase field concept. We assume that N phases
are present in the system and we introduce a multi phase order parameter u which lies in
IRY. The i’th component u; of u stands for the fraction of phase 7. Therefore, the phase
space for a multi phase order parameter u is

Yi={uecR" : Zu,:u. (4)

In view of this constraint, it turns out to be convenient to introduce the projection T onto
the tangent plane TY := {u € R" : Ef\il u; = 0}, by

(Tll), = Uy — %Z Uy. (5)

In addition, we ask all components of the order parameter u to be nonnegative, i.e., we
want u € G, where

G:={ueX : u >0} (6)

is the Gibbs simplex in RY. Now, let § be a bounded domain in IR? with outer normal
Vaq and tangent Tog. Then, the vectorial Allen-Cahn system is the L?—gradient flow of the
free energy & (see (1)) for a function

u:(0,7)xQ—X. (7)
The system takes the form
ew; = edivl f x (u, Vu) — eT fy(u, Vu) = 17T y(u) — TP y(u), (8)
together with the natural boundary condition
Tfx(u,Vu)-vsg = 0. (9)

Here, ¢ 1s a generally small length scale parameter. The functions f, ¥ and ® model the
surface energy and the bulk energy, respectively, and we require:

fu,X) >0, for X = (Xij)i:1,...,N;j:1,...,'m
U(u) >0 and Y(u)=0cu=¢e',

where e’ denotes the i—th standard unit vector in IR”™. In addition, we assume that f is
homogeneous of degree two and convex in the variable X. The function ¢ models deviations
from thermodynamical equilibrium.

If N =2and f = fis (see (2)), we recover the standard scalar Allen-Cahn equation for

¢ = uy — uy (see [13]).



As the parameter ¢ gets small, the system (8), (9) aims to approximate a sharp interface
model. In two spatial dimensions, the domain will be split into time dependent phases €);,
where u takes the constant value e'. Those domains will be separated by interfacial curves
', and since we are dealing with a multi phase problem, those curves may intersect in triple
(or even multiple) junctions m.

In its full generality, the governing equation for an interface I' separating bulk phases
; and Q; is given by the kinetic Gibbs-Thomson law

fii(0)V = — (5:;(0) + 675(0)) = + B(e’) — B(e'). (10)
Here, V and k are the normal velocity and the curvature of the interface I' with respect
to the normal v, pointing from €2; to (1;, and 8 is the angle that the normal v forms with
the z—axis. (The sign of the curvature is chosen so, that the curvature of a ball with the
normal pointing outwards is positive.) The coefficients fi,; and &,; are the mobility and the
surface energy associated with a transition from phase ; to ;. In the anisotropic case,
both the mobility and the surface energy depend on the orientation of the interface.

At triple junctions m, where three interfaces I'y, I'y and I's, separating the bulk phases
Q; — Q;, Q; — Qp and Qi — Q;, respectively, intersect, the force balance

(6i(01)m1 — 65;(01)1) + (Gi0(02)72 — 6 (B2)r2) + (Gki(0a)73 — 63(Bs)ra) =0 (11)

holds. Here 7; is the tangent to I';, so that (v;,7;) form a positively oriented basis of IR”.
At boundary points m € 0f2, where an interface I'; separating the bulk phases €; and
(1, intersects, the tangential force vanishes:

(&,J(G)T — &:](9)1/) TN — 0. (12)
For a derivation of this sharp interface model from the Allen—-Cahn model we refer to
previous work [15]. There we showed, that the surface energies 6,; and [i;; associated with

a transition from the i—th phase to the j—th phase can be determined from the energies f
and ¥ of the Allen-Cahn model. The surface energy is given by

it =232t [ N 13)

where p ranges over all Lipschitz continuous functions p : [~1,1] — ¥ , connecting e’ to e’
(see also Sternberg [29]). The surface energy may as well be represented, using a solution
q: R — ¥ of the (reparameterized) Euler-Lagrange equation

0=—(Tfx(a,d @) v+Tfula.qd @v)+T¥.u(q), (14)

connecting e' to e/. Then (for a suitable solution q of (14))

mi) = [ (e o)+ V) d- (15)

[ee)

The mobility p;; is given by

i) = [ P de. (16)

[ee)

The quantities & and i relate to o and p, respectively, via

o(0) =o(v(8)),  [(f) = u((h)), (17)
with v(8) = (cos 8, sin §).



In the present paper, we study the isotropic case. Hence, we associate to a transition
from the i—phase to the j—phase a (constant) surface tension o;; and a (constant) mobility
tti; and to the i-phase we associate the bulk free energy m;. The interface problem then
consists of the kinetic Gibbs—Thomson law

pis V.= —oijk + m; —mi, (18)
with the triple point condition
071 + o2 + okiTs = 0, (19)
and the boundary condition
T+ Tag = 0. (20)

We note, that in order for the triple point condition to be solvable, we must always assume
that

Oij + Ojk > Oki, (21)
for all possible choices 7, j, k. The triple point condition may as well be expressed in terms

of the angles ¢, of the i—th phase (Young’s law):

sing;  sing;

sin ¢,
Ok Oki Tij

(22)

In practice, physical parameters like the surface tensions o;;, the mobilities p;; and the
bulk free energies m; are given and one would like to choose the gradient energy f and the
potentials ¥ and ® such that the asymptotic limit of the Allen-Cahn system (8) satisfies
(18)—(20) with the given parameters o;;, y;; and m;. Comparing (10) and (18), we notice
that we have to choose the potential ® such that ®(e’) = m,. The more difficult part is to
determine the surface tensions and the mobilities in terms of f and ¥ out of the equations
(15) and (16). Here, one needs to solve the minimum problem (13) which is in general
difficult to solve explicitly in multi phase systems.

The question now is: How to choose the gradient energy f and the potential ¥ in order
to obtain given surface energies and mobilities in the formulas (15) and (16)I' Our goal is
to find f and ¥ such that it is easy to find the minimizer in (13), or at least to have a
good approximative minimizer.

3. THE FREE ENERGIES

In this section, we propose several forms of free energies and we discuss how it is possible
to calibrate the parameters in the potential in order to recover given o’s and p’s. We require
a simple relation between the parameters in the functions f and ¥ and the given surface
energies and mobilities. For f we will always choose the isotropic surface potential (see

28], [15], [19])

fiso(u, Vu) = Z ?ij |uqu] — ujVui|2. (23)

i<y i




It is easily verified that this surface potential leads to isotropic surface energies and mo-
bilities. As possible choices for ¥, we either take the standard multi well bulk potential

Wop(w) := 9 fiijbijuin, (24)
i<
or a higher order variant
Boi(u) o= Calu) + ) oipufulu, (25)
1<j<k

or the multi obstacle potential (see [3], [13])

16 Y.
Top(u):= — > fiibijuin, (26)
i<y

whenever u € G, and ¥(u) = +oo, whenever u ¢ G, or a higher order variant

\I/Ob(ll) = \I/Ob(ll) + Z Ok U U ;UL (27)
i<j<k
For the obstacle potentials the system of Allen-Cahn equations (8) has to be replaced by a
parabolic variational inequality. We refer to Blowey and Elliott [3] for a precise statement
of the formulation in the two phase case. The generalization of the variational inequality to
N-phases is straightforward and we do not present the details here. The formal asymptotic
expansions in [15] which related the multi phase field system to the sharp interface model
only covers the case of the smooth potentials (24) and (25). But an analogous asymptotic
is possible for the obstacle potentials (26) and (27).
For the lower order bulk free energy ®, we choose

D, (u) = Z mu?(3 — 2u;), (28)

or

Do) = Z miu;. (29)

In two phase systems (N = 2) the standard bulk potential ¥, reduces to the standard
quartic double well potential (see [15]) and the multi obstacle potential reduces to the
double obstacle potential which was studied by Blowey and Elliott [3].

The parameters f;; and &;; and the absolute numbers in the surface potential f and
the bulk potentials ¥ are chosen with the following property. If, in (13) we only minimize
over the smaller class of all p : [~1,1] — OG connecting e' to e’, then this minimum is
exactly 0;;, and the mobility calculated with the corresponding reparameterized minimizer
q: R — 0G is exactly fi;;. Thus, we will have o;; = &;; and p;; = fii;, whenever the
actual minimizer in (13) lies on the boundary of the Gibbs simplex. This is the case in
the two phase problem (N = 2) with any of the potentials. In the case N > 3, the actual
minimizer generally lies in the interior of the Gibbs simplex, and in the transition region
connecting phase 7 to phase j, the other N —2 phases are present. We then have o,; < 7;;.
The steeper the potential is in the interior of the Gibbs simplex, the better o;; ~ ;5.

As mentioned before, the parameters o;; and p;; in practice are given physical param-
eters, and &;; and fi;; should be chosen so that the algorithm given by solving (14) and
(15) or (16), respectively, gives o;; and p;;. Thus, it is important to have an easy access



on the dependence of o;; and p;; on &;; and fi;;. In practical computations it turns out
that for the higher order potentials with o, chosen appropriately, it is sufficient to choose
o;; and fi;; equal to o;; and p;; because they fairly agree. For this reason, in most of our
calculations, we will either use \ilst or \ilob. We will demonstrate the difference to choosing
¥, or ¥, in some experiments comparing the evolution of a 1-2-interface in a two phase
system (N = 2) to the evolution of a 1-2—interface in a three phase system (N = 3).

4. NUMERICAL SIMULATIONS

We now describe the numerical method used to solve the initial value problem to (8) and
(9). The domain © = (0,a) x (0,b) is a rectangle, that we discretize uniformly with a cell
size Az. If not otherwise stated, we use a = b =1.01, ¢ = 0.1, Az = e, At = 5(Ax)?,
where At is the time step. We use an explicit algorithm to calculate the update for the
new time step. We discretize all the differential operators, using nearest neighbors, and
we implement the Neumann boundary condition by extending the values from the interior
points constantly to the boundary. For the case of the obstacle potential, we first solve the
smooth part of the differential equations, and then project back onto the Gibbs simplex.

In all the calculations, we always use the standard surface potential f,, given by (23).
If not otherwise stated, we choose p;; = 1 and o5 = 500 for ¥ = \ilst, and o;;, = 5 for

T =0,

4.1. THE CHOICE OF THE POTENTIAL. In this section we investigate the dependence
of o;; and p;; on o;; and ;5. To this end, for a given set of parameters U,] and 1,5, we

calculate a solution of (14) for any of the potentials ¥y, e, ¥ + and \I/Ob, by solving
the time dependent problem with ¢ = 1 and initial conditions making a transition from
the corner e’ to the corner e’ of the Gibbs simplex. We compute until the solution gets
numerically stationary. The final solution has one transition layer and is a numerical
approximation of a solution to the ODE (14) connecting e’ to e/. We then use the result
to determine o;; and f;;, using (15) and (16).

For the two phase case (N = 2), we choose the standard bulk potential ¥ = ¥, given
by (24) with parameters &13 = fi;2 = 1. Then, numerically 015 = 12 = 0.9969989.

For the three phase case (N = 3), we choose any of the four potential ¥ = U, \ilst,
T, Uy, given by (24), (25), (26) and (27), with three choices of parameters

(12, 023,031) = (1,1,1), (1,1,0.2), (1.8,1,1).

In Figure 1, we plot the solution to the ODE given by (14) for a 1-2 interface with
(012,023,031) = (1,1,0.2). We observe that for ¥, ¥, and U, the third phase appears
in the transition layer. For all choices of the o¢’s stated above we observe that \ilob has
interfacial layers with us being zero. The same is true for U, if all surface tensions are
equal. But in general the solution q of (14) does not lie on the boundary of the Gibbs
simplex.

For the potential \ilst, we noticed that the third component us in an interfacial layer
becomes smaller if we increase o;5,. In Figure 2, we plot the graph of the third component
gs of the solution of the ODE for different values of o;j;. In addition, we give the graph of
012 as a function of o, while all ,; = 1. We see that 015 converges to 612 = 1 for large

Uz’jk-
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FiGURE 1. Plot of the components uy, us, us for the different choices of the

potential W, Uy, \ilst, T, (left to right and top to bottom) and with surface
energy parameters g3 = 093 = 1;03; = 0.2.

In Table 1, we give the values of 019, 093, 031 and 12, o3, p31 and we observe that \ilob
gives the best results. This is meant in the sense that it is easy to calibrate the parameters
n \ilob. The discrepancy between p15 and fiyo and 019 and ;5 is bigger for the standard
or obstacle potential than for their higher order variants. This is due to the fact that for
the higher order variant the connecting orbits are closer to the edges of the Gibbs simplex
than for the potentials ¥, and ¥.

We thus conclude, that it is very difficult to properly calibrate the parameters in the
potentials U, and ¥, by considering only phase transitions with the third phase not
present. For the higher order variants of the potentials with a suitable big o, we find that
o ~ ¢ and p ~ 1. But, in practice, we are not allowed to choose o, arbitrarily large, since
close to the center of the Gibbs simplex Uijku?uguz ~ 051073 or opuiujug & 401073
have to stay order of 1 with respect to e. This motivates our choice of o, = 500 or o1 = 5
for \ilst or \ilob, respectively.
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FiGURE 2. The first plot shows the third component of an 1-2 interfacial
solution for the potential ¥, using different values of o;j;. The second graph
shows how good 042 approximates &, as a function of o

12 13 23 T T
k2 ts K Wy oy W oy W,

1 1 1 1.008 1.008 1.008 || 0.997 0.997 0.997 || 1.014 1.014 1.014 || 0.996 0.996 0.996
1 1 1 0.723 0.723 0.723 || 0.997 0.997 0.997 || 0.898 0.898 0.898 || 0.997 0.997 0.997

1 1 1 0.988 1.056 1.056 || 0.997 1.367 1.367 || 0.998 1.019 1.019 || 0.996 0.997 0.997
0.2 1 1 0.186 0.584 0.584 || 0.199 0.818 0.818 || 0.196 0.880 0.880 || 0.199 0.997 0.997

1 1 1 0.992 1.074 0.992 || 0.997 1.377 0.997 || 1.009 1.065 1.009 || 0.996 0.996 0.996

1 1.8 1 0.785 1.049 0.785 || 0.997 1.478 0.997 || 0.909 1.449 0.909 || 0.997 1.795 0.997

TABLE 1. Calculated results of o;; and p;; for given &;; and f,;, depending
on the potential.

The higher order variant \ilob of the obstacle potential ¥, proves to be very useful. It
has the additional advantage, that the interfacial region is localized, so that in principle
the phase field equations have only to be solved in some neighborhood of the interfaces.

4.2. PLANAR AND CIRCULAR INTERFACES IN A TWO PHASE SYSTEM (N = 2). For
a two phase system (N = 2) we calculate the evolution of a planar interface under bulk
driving forces, the evolution of a radial interface under the kinetic Gibbs—Thomson law
with no bulk driving forces, and the evolution of a radial interface under the kinetic Gibbs—
Thomson law with bulk driving forces close to an equilibrium value.

Since for N = 2 a calibration is not necessary we use the standard bulk potential
U = U, given by (24) with the parameter ;5 = 1 and the forcing term ®,; given by (28).
We describe the following three experiments.

10



i) Planar interface with driving forces: As bulk energies, we choose ms = 0 and different
values for my. In Table 2, we display —V/my, and observe a good agreement with the
theoretical value 1 as given by the kinetic Gibbs—Thomson law (18).

my 6 |-4]|-2]-1]0]05|1]2 3 4 6 8

pi2 1062111111 |1f1|1.008]|1.017|1.062]1.111

TABLE 2. Calculated mobility p2 for different bulk energies m;.

ii) Radial interface without driving forces: We choose different initial configurations cor-
responding to radial interfaces with initial radius r and we look at vanishing bulk driving
forces my = my = 0. In Figure 3 we plot the evolution of the radius as a function of time
for different initial radii and compare the result to the theoretical values predicted by the

kinetic Gibbs—Thomson law (18).
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FIGURE 3. Plot of the dissolution process of spherical particles for different
initial radii.

iii) Radial interface with driving forces close to equilibrium: We choose initial data with a
spherical interface of radius r = 0.505 with phase 1 lying inside the ball. As bulk energies
we choose m; = 0 and vary m..

In Figure 4 we plot the evolution of the radius as a function of time for different values
of the driving force m := my —m;. If m is chosen so that X = m, then we observe that the
evolution is stationary as predicted by the kinetic Gibbs- Thomson law (18), whereas in

11
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FIGURE 4. Calculated evolution of the radius as a function of time for dif-
ferent driving forces close to equilibrium.

the other cases the interface either shrinks or expands. This is due to the fact that r = %
is the critical radius for a nucleus, when the bulk energies are m; and ms.

4.3. TWO PHASE CONFIGURATIONS IN A THREE PHASE SYSTEM (N = 3). For a three

phase problem (N = 3), we calculate the evolution of planar and radial interfaces between
the 1-phase and the 2-phase. We use

o U =10, ¥, given by (24), (25) with & = &, given by (28),
o U =0, U, given by (26), (27) with & = ¢, given by (29),

with parameters 615 = &3 = 631 = 1. We do the same experiments as in the two phase
case (N = 2), always initially setting us = 0. Our issue here is to study whether the third
component of the phase field has an influence on a configuration which involves only two
phases.

For the planar front experiment, we display —V/m; in Table 3 for the three different
potentials. In all experiments fi;3 = 1, and having in mind that our goal is to have
fi12 & p12 = —V/myq, we see that all potentials give quite good results with the obstacle
potentials being slightly better.

In Figure 5, we plot the evolution of the radius as a function of time for the radial in-
terface experiment, using the four different potentials, and compare this to the solution of
the sharp interface problem determined by the kinetic Gibbs—Thomson law 97 = —012%

(18). The results for the obstacle potential ¥, and its higher order variant \ilob are graph-
ically indistinguishable. We stress, that the discrepancy in the results is not a numerical
error, but due to the more or less successful calibration of the potentials as described in
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my -4 -2 |-1] 0.5 1 2 3 4 6 8 12

W || 0.966 1 0.982 | 1 |1.014 | 1.015|1.029 | 1.053 | 1.048 | 1.059 | 1.096 | 1.086
Wep || 1.109 1 1 1 1 1 1 0.992 1 0.983 | 0.940
Uy |l 1.011 | 1.015 | 1 1 1 1.029 | 1.019 | 1.021 | 1.029 | 1.030 | 1.036
T || 0.989 1 1 1 1 1 1 0.985 | 0.985 | 0.971 | 0.913

TABLE 3. Calculated mobility pi2 depending on the driving force and the
different potentials.
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FIGURE 5. The radial interface experiment for different potentials

Paragraph 4.1. In this experiment, the two obstacle potentials clearly give the best results.

Finally, we give one result which is not covered by the asymptotic analysis of [15]. In
Figure 6, we plot the graph of the first component u; of the solution for the obstacle
potential U, with &,; = f;; = 1, with the parameters ¢ = 1, ¢« = b = 10.1, and with
driving forces my = 0 and m; = (16/72) & 0.0001.

At the value m; = (16/7?) the potential part (1/¢)¥ + P of the free energy changes from
being bistable into being stable, and only having one local minimum. For values slightly
less than the critical value, we still observe a traveling wave solution connecting the two
local minima, whereas for values slightly above the critical value, the traveling wave profile
gets unstable.
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FIGURE 6. Transition from a stable (left) to an instable (right) profile of the
component uy of the solution as the driving force becomes larger than m; =

(16/7%)

4.4. TRIPLE JUNCTIONS IN A THREE PHASE SYSTEM. For a three phase system (N = 3),
we calculate the evolution of triple junctions. We choose ¢ = 0.05, ¥ = $ given by (27)
with 0,5, = 5. If not otherwise stated, there will be no forcing terms (® = 0).

For multi phase systems we determine the interfaces by the following strategy: We
divide the Gibbs simplex into N parts, phase ¢ being represented by all u with w«; bigger
than the other components, and associate to any of the phases a color. Then, we divide
the domain ) into colored subregions according to the value of u in the numerical cells.
Interfacial cells are then defined to be cells with a neighboring cell of different color. The
location of the triple point is numerically determined by a maximum of uy - uy - us.

We do the following experiments:

1) Axially symmetric triple junction: ~We choose the parameters
Olg =015 =1 and 03 varies,
which correspond to the angle configurations

¢y varies and Py = P3.

As initial configuration, we choose a T—shaped triple junction. We note, that this initial
configuration is not consistent with Young’s law (19).

In Figure 7, we plot the location of the interfaces at several times (for ¢; = 90°), and
we display an enlarged region around a triple junction. We note, that first very rapidly
the angle condition is attained, and that then the shape of the interfaces starts to change,
approaching a constantly transported profile. Finally, when the 2-3 interface disappears
the triple point vanishes and the 1-2 interface and the 3-1 interface shrink to the corners
of the square. In an enlargement of the region around the triple junction we see that the
®1 = 90° angle is attained numerically.

For the sharp interface model (18), (19) and (20), the constantly transported profile
can be constructed explicitly, and it turns out to be exponentially attractive. We give
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FIGURE 7. Simulated motion of the interfaces and the triple junction in a
symmetric three phase configuration for different times.

the construction and a proof of this observation in the appendix. In Figure 8, we plot
for ¢; = 90° the calculated transport velocities of the interface for different values on the
y—axis and we see that they converge to the velocity of the explicit solution of the sharp
interface problem.
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FIGURE 8. Transport velocities at different points on the y-axis compared
to the velocity of the constantly transported solution of the sharp interface
problem.
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In Figure 9, we compare the calculated solution to the profile of the explicit solution.
In addition, we give the transport velocity Vi,qns as a function of the angle ¢y and compare
it to the theoretical value given in the appendix.
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FIGURE 9. Comparison of the simulated interface profile (lower branch of
Figure 7) with the constantly transported sharp interface solution (left).
Calculated transport velocity as a function of the angle at the triple junction
in comparison to the exact sharp interface solution (right).

We also performed numerical simulations with the constantly transported profile of the
sharp interface problem as initial data. Here, we used different values of ¢ and Az and we
compared the error between the sharp interface solution and the numerical solution of the
phase field system at later times. We found a high agreement and observed a reduction in
the error as ¢ and Az became smaller.

ii) Triple point evolution without axial symmetry: Now we choose
G2 =1/V3, =1, G =2/V3,
which determines the angles of a triple junction to be
¢ = 90°, Py = 120°, o3 = 150°.

As initial configuration we again choose a T—shaped triple junction. In Figure 10, we plot
the evolution of the triple point together with the location of the interfaces at different
times. We observe that the angle condition at the triple junction are approximated rather
good and that it is easy to determine the trace of the triple point.

iii) Triple point evolution under curvature and bulk driving forces:  We choose two surface
tensions the same, namely

5'12:1, 5'13:]_7 5'23:\/5.
This choice of parameters corresponds to the angle configurations

o1 =90°, ¢y = 135°, b3 = 135°.
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FiGURE 10. Numerical calculation of the triple junction evolution for the

case of three different angles ¢; = 90°, ¢ = 120°, ¢35 = 150°.

We choose a nonzero driving force ® = @, given by (28) with parameters
mlzl, m2:2, m3:1.

As initial configuration we again choose a T—shaped triple junction. In Figure 11 we display
the evolution of the interface at different times. Although the initial data are symmetric we
have symmetry breaking because phase 2 (the phase to the top right) has a higher energy.
The sharp interface problem (18)—(20) is a gradient flow of the energy

E = Z oi;Length(L;;) + Z m;Area(§);)
i i

where I';; denotes an interface separating bulk phases 2; and Q; (see [24]). To decrease

this energy it is efficient to decrease the area of phase 2 quickly. This effect is observed in

our numerical simulations.

4.5. STABILITY OF QUADRUPLE JUNCTIONS.  For a system with four order parameters
(N = 4), we choose numerical parameters as before, except that At = -(Axz)?. We use

the higher order obstacle potential ¥ = \ilob given by (27) with o, = 5, no forcing term
(® = 0), parameters 13 = F13 = 024 = 034 = 6 := 1 and we perform experiments for the
following choices of the remaining surface tensions:

® 0y3 =014 = 1,

® 093 = 014 = 1.4,

® 5’23 = 5'14 =1.9
Initially we choose a cross shaped configuration, with the phases numbered from left to
right and top to bottom. The values of u were chosen slightly perturbed in the 1-phase.

In Figure 12, we plot the evolution at different times for the three experiments. The
location of the interfaces is plotted for the times ¢ = 0, 0.06, 0.12, 0.18, ..., 0.36 in the first
experiment and for the times ¢t = 0, 0.24, 0.48, 0.72, 0.96 in the second experiment. We
calculated the third experiment until the time ¢ = 2 and the initial distribution of the phases
remained the same. We see that the quadruple point is instable for the first two choices of
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FiGURE 11. Triple junction motion driven by surface tension and bulk driv-
ing forces.

023 and 614. In those cases, the quadruple point splits into two triple points and we observe
that the evolution in the second case is much slower than for the first. This corresponds to
the theoretical prediction that a quadruple point is instable if &3, 514 < V26 and stable
if 543,814 > V/26. This was noticed by Cahn, Holm and Srolovitz [8]. Graphically, their
condition can be interpreted as follows: A quadruple point splits into two triple junctions
if the two outer angles in the triple junctions are larger than the corresponding angles in
the quadruple junction (for a precise statement see [§]).

FiGURE 12. Numerical calculation with a quadruple junction as initial con-
dition for different surface tensions.

4.6. APPLICATION TO GRAIN GROWTH. Finally, we performed a larger simulation
to demonstrate that the multi phase field model can be used to describe grain growth
evolution. In this context, one should rather speak of a multi order parameter model
because the components of u describe different oriententional variants in a crystalline
material. In such systems, 120° degree angle conditions are observed and therefore, we
choose all surface tensions to be equal, in particular we set them equal to 1. The calculations
shown in Figure 13 were performed for N =4, ¢ = 0.02, Az = 0.0033 and with the higher
order obstacle potential ¥ = T, given by (27) with o, = 5.
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The von Neumann law says, that if n curves enclose a region D(¢) at time ¢, and any
of the curves moves by curvature V = &, keeping a 120° angle condition at intersections,
then

d

%Area(D(t)) = g(n —6). (30)

In application to grain growth, this means that grains with less than six neighbors shrink,
grains with more than six neighbors grow and six—sided grains keep their area in time. In
Figure 13, we marked by a cross a region which shrinks and by circle a region which keeps
the area. We remark that the number of neighbors of a grain changes in time and therefore
the value of n in (30) is constant only for a certain period of time.

5. CONCLUSIONS

We performed numerical simulations for a multi phase field model and compared the
results to a sharp interface model where the evolution of the interface is governed by the
kinetic Gibbs—Thomson law. In two phase configurations we found a high agreement be-
tween the two models even when the interfacial thickness was rather large (see Paragraphs
4.2 and 4.3). In most of our computations it was sufficient to choose the parameter ¢ which
is proportional to the interfacial thickness equal to 1/10 or 1/20. For three phase systems
including triple junctions our numerical simulations support the formal asymptotic expan-
sions of [15]. This is true for triple junctions evolving under curvature and bulk driving
forces as well as for four phase systems including quadruple junctions and grain growth
simulations. But we point out that the numerical parameters have to be chosen carefully.
For example, if the parameters o;;; in the higher order variants of the potentials are too
large we observed qualitatively wrong results for the evolution of the triple junctions. For
a three phase system one has to choose (1/3)3c;;1. of order 1 to get results which agree with
the formal asymptotic expansions of [15] (see Paragraph 4.1).

We also performed numerical simulations with mobilities y;; that are not equal. Here,
we observed that the discretization has to be chosen carefully. If we first calculate the
divergence in equation (8) by hand and then discretize the resulting terms, we noticed that
the angle conditions were not resolved correctly in the numerical simulations. Whereas, if
we discretize the gradient by forward differences and the divergence by backward differences
we get a stable scheme which gives results in agreement with the asymptotic analysis. It
seemns that the first discretisation destroys too much of the structure of the problem, leading
to a scheme which is less robust.

One of our main goals was to compare different potentials U. It turns out that a higher
order variant of the multi obstacle potential has the best properties. This means it fulfills
the three requirements stated in the introduction: It is easy to adjust the parameters in
the potential to given physical data (good calibration property), in an i—j transition layer
only the order parameters ¢ and j are present (reduction to a two—phase system locally)
and the interfacial region has a finite width (locality of the interfacial layer).

In the case of the higher order obstacle potential, the explicit algorithm can be made
more efficient by using the property of locality of the interfaces. It is only necessary to
compute the solution in a small discrete transition layer. For the two phase case, this fact
has been exploited by the dynamic mesh algorithm (DMA) of Nochetto, Paolini and Verdi
[23] and by the “mask” method of Elliott and Gardiner [12], and a generalization to multi
phase systems is possible. Let us point out that spectral methods which have been used
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widely for numerical simulation of phase field type equations (see [9]) can not be used for
our phase field system. This is due to the fact that our equation is not in a semilinear
form. Hence, we believe that an implementation of an algorithm which uses the locality of
the interfaces will be the most efficient one.

6. APPENDIX

Here, we give the derivation of a constantly transported profile in the axially symmetric
case 019 = oq3 and 12 = p13. We assume, that = (0,a) x IR, the interface between the
2-phase and the 3-phase is located on the line # = «/2 and that the interface between the
l-phase and the 2—phase is a graph x — y = u(t, z) for « € (0,a/2), whereas the interface
between the 1-phase and the 3—phase is the graph « — y = u(t,a — ) for x € (a/2,a).
Then a constantly transported profile takes the form

u(t,z) = v(x) + ct.
The differential equation (18) implies that

"

v (arct ,)
€= 013———— = oz(arctanv
Hi2 127 (v)? 12

The Neumann condition (20) gives v'(0) = 0, and thus

/

&cx = arctanv’(z).
012

Young’s law (19) at the triple junction gives v'(a/2) = cot(¢1/2), where ¢, is given by
cos(¢1/2) = o93/(2012). Thus, we find for the transport velocity ¢

2

aplyy T ¢1 . 033
¢c= 5 — 5 =arctany|/ ———-,
2019 2 2 doi, — 055

and the shape of the profile may be determined using

v(x) =— o1 log COS(MIZC
H12€ J12

x)+d.
The constant of integration may be chosen appropriately. Now, we show that the constantly

transported profile is exponentially attractive. We assume that % were an arbitrary smooth
graph, satisfying the kinetic Gibbs—Thomson law (w.l.o.g. we assume 113 = 013)

with
u'(0) =0, u'(a/2)= cot(d/2).

We take u(t,x) = v(x) 4 ct, where v is the above constructed function with the constant
of integration chosen such that

a2
/0 (a(0,2) —v(x)) de =0.
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Then, since u(t,x) = v(x) + ct solves the same differential equation as @, we obtain for
wi=u—u

,&// u//

a/?2
wy = = (arctan @' — arctan u')/, / w(t,z) de =0, w|/x:o,a/2 = 0.
0

1+ (@) 14 (u)?
Multiplying this by w and integrating the resulting identity results in

1d a/?2 a/?2 a2 a/2
—— w? = —/ (arctan @' — arctan u')(u’ — v') < —C/ (w')? < —C/ w?.,
2 dt 0 0 0 0

In the first inequality, we used the boundedness of @’ (which follows from the maximum
principle) and the monotonicity of the arctan, whereas in the second inequality, we used

Poincaré’s inequality for functions of mean value 0. Now, Gronwall’s inequality finally

implies the exponential decay of foa/z w?.
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