
A MULTI PHASE FIELD CONCEPT:NUMERICAL SIMULATIONS OF MOVING PHASE BOUNDARIESAND MULTIPLE JUNCTIONSHARALD GARCKE, BRITTA NESTLER, AND BARBARA STOTHAbstract. We present numerical simulations which support the formal asymptotic anal-ysis relating a multi order parameter Allen{Cahn system to a multi phase interfaceproblem with curvature dependent evolution of the interfaces and angle conditions attriple junctions. Within the gradient energy of the Allen{Cahn system, the normalto an interface between phases i and j is modeled by the irreducible representations(uiruj �ujrui)=juiruj � ujruij, where ui and uj are the i{th and j{th components ofthe vectorial order parameter u 2 IRN .In the vectorial case, the dependence of the limiting surface tensions and mobilities onthe bulk potentials of the Allen{Cahn system is not given explicitly, but in terms of allthe N components of the planar stationary wave solutions. One of the issues of this paperis to �nd bulk potentials which allow a rather easy access to the resulting surface tensionsand mobilities.We compare numerical computations for planar and circular phase boundaries in twoand three phase systems. The di�erence is, that in a three phase system, the thirdphase generally will be present in the interfacial region between two other phases. Wedemonstrate how this in
uences the solutions. In addition, we calculate the evolutionof triple and quadruple junctions in three and four phase systems. Finally, we show asimulation of grain growth starting from many grains initially.1. IntroductionPhase �eld models have been used to describe phase transition phenomena. In thesemodels the phase boundary is modeled to be an interfacial layer of positive but smallthickness. It has been shown that phase �eld concepts recover well known free boundaryproblems such as motion by mean curvature, the Stefan problem and the Mullins{Sekerkaevolution, when the interfacial thickness tends to zero. In these sharp interface models, thetransition takes place across a hypersurface. The relation between phase �eld models andsharp interface problems for the two phase case was �rst suggested by formal asymptoticexpansions (see [25, 7]) and later proved rigorously (see [11, 30, 27] and the referencestherein). Bronsard and Reitich [5] were the �rst to study an Allen{Cahn system and theyshowed formally that in the sharp interface limit of the Allen{Cahn system one obtains anangle condition known as Young's law wherever three phases meet.The aim of our work is to study the phase �eld concept for multi phase systems. Werestrict ourselves to the theory of perfect conductors, i.e. temperature is constant, and thebulk phases in
uence the evolution of the interface only through a di�erence of constantbulk energies (see e.g. Angenent and Gurtin [2]). In this case, one has to study a system1991 Mathematics Subject Classi�cation. 35K55, 82C26, 65-05, 65M06, 35B25, 82C24.Key words and phrases. phase �eld models, multi phase di�usion, Allen{Cahn systems, triple junctiondynamics, numerical simulations. 1



of parabolic equations of Allen{Cahn type. This system can also be used to describe theevolution of grain boundaries in multi phase polycrystalline materials. Hence, when usingthe term phases and phase �elds we also think of grains and order parameters where theorder parameters describe di�erent orientational variants of the same phase. We hope thisdoes not cause any confusion.In a recent paper [15], we studied an Allen{Cahn system which is based on a Ginzburg{Landau free energy for a vector valued phase �eld u 2 IRNE(u) = Z
 �"f(u;ru) + 1"	(u) + �(u)�(x) dx; (1)with a generalized gradient energy f and bulk potentials 	 and �. We demonstratedby formally matched asymptotic expansions that this Allen{Cahn system can be usedto approximate the anisotropic multi phase curvature 
ow with driving forces given bydi�erences in bulk energies. The new feature of the Ginzburg{Landau free energy we usedis that the gradient part is based on antisymmetric terms which involve the phase �eld andits gradient. This goes back to the theory of irreducible representation (see Landau andLifschitz [17]). To be more precise, we give f in its isotropic version asfiso(u;ru) = NXi;j=1;i<j ~�ij~�ij juiruj � ujruij2 : (2)This type of free energy was �rst proposed for multi phase �eld models by Steinbachet al. [28]. For results which used phase �eld generalizations of the �{vector and thestress tensor to identify the asymptotic limit of multi phase systems we refer to Wheelerand McFadden [31] and Nestler and Wheeler [19]. Applications of a phase �eld model todescribe solidi�cation of a eutectic alloy was studied by Wheeler, McFadden and Boettinger[32] and for related results on Cahn{Hilliard systems see Bronsard, Garcke and Stoth [4]and Garcke and Novick{Cohen [16].As a further extension of a model which is based on a free energy de�ned by (1) and(2), Nestler and Wheeler [21] introduced a free energy potential that also depends onconcentration and temperature. The incorporation of bulk �elds enables to treat phasetransitions that appear in solidi�cation processes of alloys by allowing di�erent phases tohave di�erent compositions. The Gibbs free energies in the model of [21]) are thermody-namically consistent and such that the properties and shapes of eutectic and peritecticphase diagrams are incorporated. Herewith, Nestler and Wheeler [21] developed a phase�eld model which describes realistic features of peritectic and eutectic solidi�cation.The aim of this paper is to perform numerical simulations to investigate the relationbetween the Allen{Cahn system and its asymptotic limit. To formulate this limit, it isnecessary to determine several parameters such as the surface tensions and the mobilitieswhich are associated to all possible pairs of phases. The surface tension between phases iand j is for any � 2 IR2 determined by the expression�ij(�) = 2 infp Z 1�1p	(p)f(p;p0 
 �)dy; (3)where p ranges over all Lipschitz continuous functions p : [�1; 1] ! � , connecting thevectors ei and ej. Here, � = fu 2 IRN : PNi=1 ui = 1g and ei denotes the i'th standardunit vector and 	j� is assumed to have global minima exactly at the ei. We associatethe vector ei with phase i (see Section 2 for more details). One objective of this paper is2



to determine bulk potentials 	, which are good for phase �eld approximations of sharpinterface problems.First, we ask the free energy to have good calibration properties: In applications, thesurface tensions are given and one wants to choose a gradient energy f and a bulk potential	 with enough degrees of freedom to allow to easily calibrate the free energy such that thegiven surface tensions are obtained by (3). We stress that this calibration problem doesnot appear for two phase systems, since there the explicit formula�(�) = 2 Z 10 p	(p; 1 � p)f((p; 1 � p); (1;�1) 
 �)dpholds, if we impose that f is homogeneous of degree 2 in the gradient variable. No suchformula holds in the vectorial case.The next requirement is the property of reduction to a two{phase system locally ininterfacial regions: As we think of the component ui to be the fraction of phase i we wanta transition layer between phases i and j to have the property that uk = 0 for all k 6= i; j.It turns out that this is satis�ed if the minimum in (3) has this property.A third request, which is not as crucial as the other two and which we only want forcomputational convenience, is locality of the interfacial layer: While the standard smoothdouble well potential for the two phase case has an in�nite transition layer, the doubleobstacle potential has a �nite transition layer with the phase �eld being exactly �1 awayfrom a small interfacial layer which is of order " (see Blowey and Elliott [3] and Nochetto,Paolini and Verdi [23]). A similar property we require for the multi phase case.To compare di�erent potentials and to study how it is possible to calibrate parame-ters, we perform numerical simulations in planar and radial geometry with and withoutdriving forces. It turns out that a modi�cation of a multi obstacle potential has the bestperformance with respect to the three requirements stated above. Hence, we choose thispotential for simulations in more complicated geometries. We simulate the evolution oftriple junctions, the stability of quadruple points and perform a larger computation whichdemonstrates that it is possible to use the multi phase �eld method to simulate situationswith four order parameters and lots of grains. We numerically verify the validity of qual-itative features such as the well known von Neumann law. In this context, we also referto the work of Chen and Yang [10] and Fan and Chen [14] who used a multiple orderparameter model to perform numerical simulations for systems with many non conservedorder parameters. Their main concern lies in the study of the long time behavior of suchsystems, and in particular they were interested in investigating laws for the evolution ofthe average domain size of di�erent grain variants. In contrast to this, we concentrateon local qualitative features and especially we use the numerical simulations in order torelate order parameter models to sharp interface models. Other numerical methods, whichhave been used so far to simulate the evolution in multi phase systems, are based on sharpinterface models. We refer to Bronsard and Wetton [6] and Neubauer [22] for numericalcomputations based on parameterizations of interfaces and to Merriman, Bence and Osher[18] for a level set approach for the motion of multiple junctions. So far, there appeared nosimulations for an anisotropic multi phase system in the literature. In a forthcoming paper,we plan to present numerical simulations for the anisotropic multi phase �eld concept.In Section 2, we introduce the multi phase �eld concept and state the correspondingsharp{interface model. We then give several forms of free energies and discuss how to3



calibrate the parameters (Section 3). In the main part of the paper (Section 4), we sys-tematically compare results from numerical simulations to the predictions of the formalasymptotic expansion of [15]. In particular, we try to �nd a potential which makes it aseasy as possible to calibrate the parameters. Finally, in an appendix, we present a selfsimilar pro�le for the sharp interface model and show that this pro�le is exponentiallyattractive. We use this pro�le as a reference solution for our simulations.2. The multi phase field conceptIn this section we introduce the multi phase �eld concept. We assume that N phasesare present in the system and we introduce a multi phase order parameter u which lies inIRN . The i'th component ui of u stands for the fraction of phase i. Therefore, the phasespace for a multi phase order parameter u is� := fu 2 IRN : NXi=1 ui = 1g: (4)In view of this constraint, it turns out to be convenient to introduce the projection T ontothe tangent plane T� := fu 2 IRN : PNi=1 ui = 0g, by(Tu)i := ui � 1N NXj=1 uj: (5)In addition, we ask all components of the order parameter u to be nonnegative, i.e., wewant u 2 G, where G := fu 2 � : ui � 0g (6)is the Gibbs simplex in IRN . Now, let 
 be a bounded domain in IR2 with outer normal�@
 and tangent �@
. Then, the vectorial Allen{Cahn system is the L2{gradient 
ow of thefree energy E (see (1)) for a functionu : (0; T )� 
! �: (7)The system takes the form"ut = "divTf;X(u;ru)� "Tf;u(u;ru)� 1"T	;u(u)� T�;u(u) ; (8)together with the natural boundary conditionTf;X(u;ru) � �@
 = 0: (9)Here, " is a generally small length scale parameter. The functions f , 	 and � model thesurface energy and the bulk energy, respectively, and we require:f(u;X) � 0; for X = (Xij)i=1;:::;N ;j=1;:::;n;	(u) � 0 and 	(u) = 0, u = ei;where ei denotes the i{th standard unit vector in IRN . In addition, we assume that f ishomogeneous of degree two and convex in the variableX. The function � models deviationsfrom thermodynamical equilibrium.If N = 2 and f = fiso (see (2)), we recover the standard scalar Allen{Cahn equation for� = u2 � u1 (see [15]). 4



As the parameter " gets small, the system (8), (9) aims to approximate a sharp interfacemodel. In two spatial dimensions, the domain will be split into time dependent phases 
i,where u takes the constant value ei. Those domains will be separated by interfacial curves�, and since we are dealing with a multi phase problem, those curves may intersect in triple(or even multiple) junctions m.In its full generality, the governing equation for an interface � separating bulk phases
i and 
j is given by the kinetic Gibbs{Thomson law�̂ij(�)V = � ��̂ij(�) + �̂00ij(�)��+ �(ej)� �(ei): (10)Here, V and � are the normal velocity and the curvature of the interface � with respectto the normal �, pointing from 
i to 
j, and � is the angle that the normal � forms withthe x{axis. (The sign of the curvature is chosen so, that the curvature of a ball with thenormal pointing outwards is positive.) The coe�cients �̂ij and �̂ij are the mobility and thesurface energy associated with a transition from phase 
i to 
j. In the anisotropic case,both the mobility and the surface energy depend on the orientation of the interface.At triple junctions m, where three interfaces �1, �2 and �3, separating the bulk phases
i ! 
j , 
j ! 
k and 
k ! 
i, respectively, intersect, the force balance��̂ij(�1)�1 � �̂0ij(�1)�1�+ ��̂jk(�2)�2 � �̂0jk(�2)�2�+ (�̂ki(�3)�3 � �̂0ki(�3)�3) = 0 (11)holds. Here �i is the tangent to �i, so that (�i; �i) form a positively oriented basis of IR2.At boundary points m 2 @
, where an interface �, separating the bulk phases 
i and
j , intersects, the tangential force vanishes:��̂ij(�)� � �̂0ij(�)�� � �@
 = 0: (12)For a derivation of this sharp interface model from the Allen{Cahn model we refer toprevious work [15]. There we showed, that the surface energies �̂ij and �̂ij associated witha transition from the i{th phase to the j{th phase can be determined from the energies fand 	 of the Allen{Cahn model. The surface energy is given by�ij(�) = 2 infp Z 1�1p	(p)f(p;p0 
 �)dy; (13)where p ranges over all Lipschitz continuous functions p : [�1; 1]! � , connecting ei to ej(see also Sternberg [29]). The surface energy may as well be represented, using a solutionq : IR! � of the (reparameterized) Euler{Lagrange equation0 = � (Tf;X(q;q0 
 �))0 � + Tf;u(q;q0 
 �) + T	;u(q) ; (14)connecting ei to ej. Then (for a suitable solution q of (14))�ij(�) = Z 1�1 (f(q;q0 
 �) + 	(q)) dz: (15)The mobility �ij is given by �ij(�) = Z 1�1 jq0j2 dz: (16)The quantities �̂ and �̂ relate to � and �, respectively, via�̂(�) = �(�(�)); �̂(�) = �(�(�)); (17)with �(�) = (cos �; sin �). 5



In the present paper, we study the isotropic case. Hence, we associate to a transitionfrom the i{phase to the j{phase a (constant) surface tension �ij and a (constant) mobility�ij and to the i{phase we associate the bulk free energy mi. The interface problem thenconsists of the kinetic Gibbs{Thomson law�ijV = ��ij� +mj �mi; (18)with the triple point condition �ij�1 + �jk�2 + �ki�3 = 0; (19)and the boundary condition � � �@
 = 0: (20)We note, that in order for the triple point condition to be solvable, we must always assumethat �ij + �jk > �ki; (21)for all possible choices i; j; k. The triple point condition may as well be expressed in termsof the angles �i of the i{th phase (Young's law):sin �i�jk = sin�j�ki = sin�k�ij : (22)In practice, physical parameters like the surface tensions �ij, the mobilities �ij and thebulk free energies mi are given and one would like to choose the gradient energy f and thepotentials 	 and � such that the asymptotic limit of the Allen{Cahn system (8) satis�es(18){(20) with the given parameters �ij, �ij and mi. Comparing (10) and (18), we noticethat we have to choose the potential � such that �(ei) = mi. The more di�cult part is todetermine the surface tensions and the mobilities in terms of f and 	 out of the equations(15) and (16). Here, one needs to solve the minimum problem (13) which is in generaldi�cult to solve explicitly in multi phase systems.The question now is: How to choose the gradient energy f and the potential 	 in orderto obtain given surface energies and mobilities in the formulas (15) and (16)? Our goal isto �nd f and 	 such that it is easy to �nd the minimizer in (13), or at least to have agood approximative minimizer. 3. The free energiesIn this section, we propose several forms of free energies and we discuss how it is possibleto calibrate the parameters in the potential in order to recover given �'s and �'s. We requirea simple relation between the parameters in the functions f and 	 and the given surfaceenergies and mobilities. For f we will always choose the isotropic surface potential (see[28], [15], [19]) fiso(u;ru) :=Xi<j ~�ij~�ij juiruj � ujruij2: (23)6



It is easily veri�ed that this surface potential leads to isotropic surface energies and mo-bilities. As possible choices for 	, we either take the standard multi well bulk potential	st(u) := 9Xi<j ~�ij~�iju2iu2j ; (24)or a higher order variant 	̂st(u) := 	st(u) + Xi<j<k �ijku2iu2ju2k; (25)or the multi obstacle potential (see [3], [13])	ob(u) := 16�2Xi<j ~�ij~�ijuiuj; (26)whenever u 2 G, and 	ob(u) = +1, whenever u 62 G, or a higher order variant	̂ob(u) := 	ob(u) + Xi<j<k �ijkuiujuk: (27)For the obstacle potentials the system of Allen{Cahn equations (8) has to be replaced by aparabolic variational inequality. We refer to Blowey and Elliott [3] for a precise statementof the formulation in the two phase case. The generalization of the variational inequality toN{phases is straightforward and we do not present the details here. The formal asymptoticexpansions in [15] which related the multi phase �eld system to the sharp interface modelonly covers the case of the smooth potentials (24) and (25). But an analogous asymptoticis possible for the obstacle potentials (26) and (27).For the lower order bulk free energy �, we choose�st(u) :=Xi miu2i (3� 2ui); (28)or �ob(u) :=Xi miui: (29)In two phase systems (N = 2) the standard bulk potential 	st reduces to the standardquartic double well potential (see [15]) and the multi obstacle potential reduces to thedouble obstacle potential which was studied by Blowey and Elliott [3].The parameters ~�ij and ~�ij and the absolute numbers in the surface potential f andthe bulk potentials 	 are chosen with the following property. If, in (13) we only minimizeover the smaller class of all p : [�1; 1] ! @G connecting ei to ej, then this minimum isexactly ~�ij, and the mobility calculated with the corresponding reparameterized minimizerq : IR ! @G is exactly ~�ij. Thus, we will have �ij = ~�ij and �ij = ~�ij, whenever theactual minimizer in (13) lies on the boundary of the Gibbs simplex. This is the case inthe two phase problem (N = 2) with any of the potentials. In the case N � 3, the actualminimizer generally lies in the interior of the Gibbs simplex, and in the transition regionconnecting phase i to phase j, the other N �2 phases are present. We then have �ij < ~�ij.The steeper the potential is in the interior of the Gibbs simplex, the better �ij � ~�ij.As mentioned before, the parameters �ij and �ij in practice are given physical param-eters, and ~�ij and ~�ij should be chosen so that the algorithm given by solving (14) and(15) or (16), respectively, gives �ij and �ij. Thus, it is important to have an easy access7



on the dependence of �ij and �ij on ~�ij and ~�ij . In practical computations it turns outthat for the higher order potentials with �ijk chosen appropriately, it is su�cient to choose~�ij and ~�ij equal to �ij and �ij because they fairly agree. For this reason, in most of ourcalculations, we will either use 	̂st or 	̂ob. We will demonstrate the di�erence to choosing	st or 	ob in some experiments comparing the evolution of a 1{2{interface in a two phasesystem (N = 2) to the evolution of a 1{2{interface in a three phase system (N = 3).4. Numerical SimulationsWe now describe the numerical method used to solve the initial value problem to (8) and(9). The domain 
 = (0; a)� (0; b) is a rectangle, that we discretize uniformly with a cellsize �x. If not otherwise stated, we use a = b = 1:01, " = 0:1, �x = 110", �t = 110(�x)2,where �t is the time step. We use an explicit algorithm to calculate the update for thenew time step. We discretize all the di�erential operators, using nearest neighbors, andwe implement the Neumann boundary condition by extending the values from the interiorpoints constantly to the boundary. For the case of the obstacle potential, we �rst solve thesmooth part of the di�erential equations, and then project back onto the Gibbs simplex.In all the calculations, we always use the standard surface potential fiso given by (23).If not otherwise stated, we choose �ij = 1 and �ijk = 500 for 	 = 	̂st, and �ijk = 5 for	 = 	̂ob.4.1. The choice of the potential. In this section we investigate the dependenceof �ij and �ij on ~�ij and ~�ij . To this end, for a given set of parameters ~�ij and ~�ij , wecalculate a solution of (14) for any of the potentials 	st, 	ob, 	̂st and 	̂ob, by solvingthe time dependent problem with " = 1 and initial conditions making a transition fromthe corner ei to the corner ej of the Gibbs simplex. We compute until the solution getsnumerically stationary. The �nal solution has one transition layer and is a numericalapproximation of a solution to the ODE (14) connecting ei to ej. We then use the resultto determine �ij and �ij, using (15) and (16).For the two phase case (N = 2), we choose the standard bulk potential 	 = 	st givenby (24) with parameters ~�12 = ~�12 = 1. Then, numerically �12 = �12 = 0:9969989.For the three phase case (N = 3), we choose any of the four potential 	 = 	st, 	̂st,	ob, 	̂ob, given by (24), (25), (26) and (27), with three choices of parameters(~�12; ~�23; ~�31) = (1; 1; 1); (1; 1; 0:2); (1:8; 1; 1):In Figure 1, we plot the solution to the ODE given by (14) for a 1{2 interface with(~�12; ~�23; ~�31) = (1; 1; 0:2). We observe that for 	st, 	̂st and 	ob the third phase appearsin the transition layer. For all choices of the �'s stated above we observe that 	̂ob hasinterfacial layers with u3 being zero. The same is true for 	ob, if all surface tensions areequal. But in general the solution q of (14) does not lie on the boundary of the Gibbssimplex.For the potential 	̂st, we noticed that the third component u3 in an interfacial layerbecomes smaller if we increase �ijk. In Figure 2, we plot the graph of the third componentq3 of the solution of the ODE for di�erent values of �ijk. In addition, we give the graph of�12 as a function of �ijk, while all ~�ij = 1. We see that �12 converges to ~�12 = 1 for large�ijk. 8
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i) Planar interface with driving forces: As bulk energies, we choose m2 = 0 and di�erentvalues for m1. In Table 2, we display �V=m1, and observe a good agreement with thetheoretical value 1 as given by the kinetic Gibbs{Thomson law (18).m1 -6 -4 -2 -1 0 0.5 1 2 3 4 6 8�12 1.062 1 1 1 1 1 1 1 1.008 1.017 1.062 1.111Table 2. Calculated mobility �12 for di�erent bulk energies m1.ii) Radial interface without driving forces: We choose di�erent initial con�gurations cor-responding to radial interfaces with initial radius r and we look at vanishing bulk drivingforces m1 = m2 = 0. In Figure 3 we plot the evolution of the radius as a function of timefor di�erent initial radii and compare the result to the theoretical values predicted by thekinetic Gibbs{Thomson law (18).
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m1 -4 -2 -1 0.5 1 2 3 4 6 8 12	st 0.966 0.982 1 1.014 1.015 1.029 1.053 1.048 1.059 1.096 1.086	ob 1.109 1 1 1 1 1 1 0.992 1 0.983 0.940	̂st 1.011 1.015 1 1 1 1.029 1.019 1.021 1.029 1.030 1.036	̂ob 0.989 1 1 1 1 1 1 0.985 0.985 0.971 0.913Table 3. Calculated mobility �12 depending on the driving force and thedi�erent potentials.
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Figure 5. The radial interface experiment for di�erent potentialsParagraph 4.1. In this experiment, the two obstacle potentials clearly give the best results.Finally, we give one result which is not covered by the asymptotic analysis of [15]. InFigure 6, we plot the graph of the �rst component u1 of the solution for the obstaclepotential 	ob with ~�ij = ~�ij = 1, with the parameters " = 1, a = b = 10:1, and withdriving forces m2 = 0 and m1 = (16=�2)� 0:0001.At the valuem1 = (16=�2) the potential part (1=")	+� of the free energy changes frombeing bistable into being stable, and only having one local minimum. For values slightlyless than the critical value, we still observe a traveling wave solution connecting the twolocal minima, whereas for values slightly above the critical value, the traveling wave pro�legets unstable. 13
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Figure 6. Transition from a stable (left) to an instable (right) pro�le of thecomponent u1 of the solution as the driving force becomes larger than m1 =(16=�2)4.4. Triple junctions in a three phase system. For a three phase system (N = 3),we calculate the evolution of triple junctions. We choose " = 0:05, 	 = 	̂ob given by (27)with �ijk = 5. If not otherwise stated, there will be no forcing terms (� � 0).For multi phase systems we determine the interfaces by the following strategy: Wedivide the Gibbs simplex into N parts, phase i being represented by all u with ui biggerthan the other components, and associate to any of the phases a color. Then, we dividethe domain 
 into colored subregions according to the value of u in the numerical cells.Interfacial cells are then de�ned to be cells with a neighboring cell of di�erent color. Thelocation of the triple point is numerically determined by a maximum of u1 � u2 � u3.We do the following experiments:i) Axially symmetric triple junction: We choose the parameters~�12 = ~�13 = 1 and ~�23 varies;which correspond to the angle con�gurations�1 varies and �2 = �3:As initial con�guration, we choose a T{shaped triple junction. We note, that this initialcon�guration is not consistent with Young's law (19).In Figure 7, we plot the location of the interfaces at several times (for �1 = 90�), andwe display an enlarged region around a triple junction. We note, that �rst very rapidlythe angle condition is attained, and that then the shape of the interfaces starts to change,approaching a constantly transported pro�le. Finally, when the 2{3 interface disappearsthe triple point vanishes and the 1{2 interface and the 3{1 interface shrink to the cornersof the square. In an enlargement of the region around the triple junction we see that the�1 = 90� angle is attained numerically.For the sharp interface model (18), (19) and (20), the constantly transported pro�lecan be constructed explicitly, and it turns out to be exponentially attractive. We give14



Figure 7. Simulated motion of the interfaces and the triple junction in asymmetric three phase con�guration for di�erent times.the construction and a proof of this observation in the appendix. In Figure 8, we plotfor �1 = 90� the calculated transport velocities of the interface for di�erent values on they{axis and we see that they converge to the velocity of the explicit solution of the sharpinterface problem.
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In Figure 9, we compare the calculated solution to the pro�le of the explicit solution.In addition, we give the transport velocity Vtrans as a function of the angle �1 and compareit to the theoretical value given in the appendix.
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Figure 9. Comparison of the simulated interface pro�le (lower branch ofFigure 7) with the constantly transported sharp interface solution (left).Calculated transport velocity as a function of the angle at the triple junctionin comparison to the exact sharp interface solution (right).We also performed numerical simulations with the constantly transported pro�le of thesharp interface problem as initial data. Here, we used di�erent values of " and �x and wecompared the error between the sharp interface solution and the numerical solution of thephase �eld system at later times. We found a high agreement and observed a reduction inthe error as " and �x became smaller.ii) Triple point evolution without axial symmetry: Now we choose~�12 = 1=p3; ~�13 = 1; ~�23 = 2=p3;which determines the angles of a triple junction to be�1 = 90�; �2 = 120�; �3 = 150�:As initial con�guration we again choose a T{shaped triple junction. In Figure 10, we plotthe evolution of the triple point together with the location of the interfaces at di�erenttimes. We observe that the angle condition at the triple junction are approximated rathergood and that it is easy to determine the trace of the triple point.iii) Triple point evolution under curvature and bulk driving forces: We choose two surfacetensions the same, namely ~�12 = 1; ~�13 = 1; ~�23 = p2:This choice of parameters corresponds to the angle con�gurations�1 = 90�; �2 = 135�; �3 = 135�:16



Figure 10. Numerical calculation of the triple junction evolution for thecase of three di�erent angles �1 = 90o; �2 = 120o; �3 = 150o.We choose a nonzero driving force � = �ob given by (28) with parametersm1 = 1; m2 = 2; m3 = 1:As initial con�guration we again choose a T{shaped triple junction. In Figure 11 we displaythe evolution of the interface at di�erent times. Although the initial data are symmetric wehave symmetry breaking because phase 2 (the phase to the top right) has a higher energy.The sharp interface problem (18){(20) is a gradient 
ow of the energyE :=Xi;j �ijLength(�ij) +Xi miArea(
i)where �ij denotes an interface separating bulk phases 
i and 
j (see [24]). To decreasethis energy it is e�cient to decrease the area of phase 2 quickly. This e�ect is observed inour numerical simulations.4.5. Stability of quadruple junctions. For a system with four order parameters(N = 4), we choose numerical parameters as before, except that �t = 120(�x)2: We usethe higher order obstacle potential 	 = 	̂ob given by (27) with �ijk = 5, no forcing term(� � 0), parameters ~�12 = ~�13 = ~�24 = ~�34 = ~� := 1 and we perform experiments for thefollowing choices of the remaining surface tensions:� ~�23 = ~�14 = 1,� ~�23 = ~�14 = 1:4,� ~�23 = ~�14 = 1:9.Initially we choose a cross shaped con�guration, with the phases numbered from left toright and top to bottom. The values of u were chosen slightly perturbed in the 1{phase.In Figure 12, we plot the evolution at di�erent times for the three experiments. Thelocation of the interfaces is plotted for the times t = 0; 0:06; 0:12; 0:18; :::; 0:36 in the �rstexperiment and for the times t = 0; 0:24; 0:48; 0:72; 0:96 in the second experiment. Wecalculated the third experiment until the time t = 2 and the initial distribution of the phasesremained the same. We see that the quadruple point is instable for the �rst two choices of17



Figure 11. Triple junction motion driven by surface tension and bulk driv-ing forces.~�23 and ~�14. In those cases, the quadruple point splits into two triple points and we observethat the evolution in the second case is much slower than for the �rst. This corresponds tothe theoretical prediction that a quadruple point is instable if ~�23; ~�14 < p2~� and stableif ~�23; ~�14 > p2~�. This was noticed by Cahn, Holm and Srolovitz [8]. Graphically, theircondition can be interpreted as follows: A quadruple point splits into two triple junctionsif the two outer angles in the triple junctions are larger than the corresponding angles inthe quadruple junction (for a precise statement see [8]).
ca bFigure 12. Numerical calculation with a quadruple junction as initial con-dition for di�erent surface tensions.4.6. Application to Grain Growth. Finally, we performed a larger simulationto demonstrate that the multi phase �eld model can be used to describe grain growthevolution. In this context, one should rather speak of a multi order parameter modelbecause the components of u describe di�erent oriententional variants in a crystallinematerial. In such systems, 120� degree angle conditions are observed and therefore, wechoose all surface tensions to be equal, in particular we set them equal to 1. The calculationsshown in Figure 13 were performed for N = 4, " = 0:02, �x = 0:0033 and with the higherorder obstacle potential 	 = 	̂ob given by (27) with �ijk = 5.18
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The von Neumann law says, that if n curves enclose a region D(t) at time t, and anyof the curves moves by curvature V = �, keeping a 120� angle condition at intersections,then ddtArea(D(t)) = �3 (n� 6): (30)In application to grain growth, this means that grains with less than six neighbors shrink,grains with more than six neighbors grow and six{sided grains keep their area in time. InFigure 13, we marked by a cross a region which shrinks and by circle a region which keepsthe area. We remark that the number of neighbors of a grain changes in time and thereforethe value of n in (30) is constant only for a certain period of time.5. ConclusionsWe performed numerical simulations for a multi phase �eld model and compared theresults to a sharp interface model where the evolution of the interface is governed by thekinetic Gibbs{Thomson law. In two phase con�gurations we found a high agreement be-tween the two models even when the interfacial thickness was rather large (see Paragraphs4.2 and 4.3). In most of our computations it was su�cient to choose the parameter " whichis proportional to the interfacial thickness equal to 1=10 or 1=20. For three phase systemsincluding triple junctions our numerical simulations support the formal asymptotic expan-sions of [15]. This is true for triple junctions evolving under curvature and bulk drivingforces as well as for four phase systems including quadruple junctions and grain growthsimulations. But we point out that the numerical parameters have to be chosen carefully.For example, if the parameters �ijk in the higher order variants of the potentials are toolarge we observed qualitatively wrong results for the evolution of the triple junctions. Fora three phase system one has to choose (1=3)3�ijk of order 1 to get results which agree withthe formal asymptotic expansions of [15] (see Paragraph 4.1).We also performed numerical simulations with mobilities �ij that are not equal. Here,we observed that the discretization has to be chosen carefully. If we �rst calculate thedivergence in equation (8) by hand and then discretize the resulting terms, we noticed thatthe angle conditions were not resolved correctly in the numerical simulations. Whereas, ifwe discretize the gradient by forward di�erences and the divergence by backward di�erenceswe get a stable scheme which gives results in agreement with the asymptotic analysis. Itseems that the �rst discretisation destroys too much of the structure of the problem, leadingto a scheme which is less robust.One of our main goals was to compare di�erent potentials 	. It turns out that a higherorder variant of the multi obstacle potential has the best properties. This means it ful�llsthe three requirements stated in the introduction: It is easy to adjust the parameters inthe potential to given physical data (good calibration property), in an i{j transition layeronly the order parameters i and j are present (reduction to a two{phase system locally)and the interfacial region has a �nite width (locality of the interfacial layer).In the case of the higher order obstacle potential, the explicit algorithm can be mademore e�cient by using the property of locality of the interfaces. It is only necessary tocompute the solution in a small discrete transition layer. For the two phase case, this facthas been exploited by the dynamic mesh algorithm (DMA) of Nochetto, Paolini and Verdi[23] and by the \mask" method of Elliott and Gardiner [12], and a generalization to multiphase systems is possible. Let us point out that spectral methods which have been used20



widely for numerical simulation of phase �eld type equations (see [9]) can not be used forour phase �eld system. This is due to the fact that our equation is not in a semilinearform. Hence, we believe that an implementation of an algorithm which uses the locality ofthe interfaces will be the most e�cient one.6. AppendixHere, we give the derivation of a constantly transported pro�le in the axially symmetriccase �12 = �13 and �12 = �13. We assume, that 
 = (0; a) � IR, the interface between the2{phase and the 3{phase is located on the line x = a=2 and that the interface between the1{phase and the 2{phase is a graph x 7! y = u(t; x) for x 2 (0; a=2), whereas the interfacebetween the 1{phase and the 3{phase is the graph x 7! y = u(t; a� x) for x 2 (a=2; a).Then a constantly transported pro�le takes the formu(t; x) = v(x) + ct:The di�erential equation (18) implies that�12c = �12 v001 + (v0)2 = �12(arctan v0)0:The Neumann condition (20) gives v0(0) = 0, and thus�12�12cx = arctan v0(x):Young's law (19) at the triple junction gives v0(a=2) = cot(�1=2), where �1 is given bycos(�1=2) = �23=(2�12). Thus, we �nd for the transport velocity ca�122�12 c = �2 � �12 = arctans �2234�212 � �223 ;and the shape of the pro�le may be determined usingv(x) = � �12�12c log cos(�12c�12 x) + d:The constant of integration may be chosen appropriately. Now, we show that the constantlytransported pro�le is exponentially attractive. We assume that ~u were an arbitrary smoothgraph, satisfying the kinetic Gibbs{Thomson law (w.l.o.g. we assume �12 = �12)~ut = ~u001 + (~u0)2with ~u0(0) = 0; ~u0(a=2) = cot(�1=2):We take u(t; x) = v(x) + ct, where v is the above constructed function with the constantof integration chosen such thatZ a=20 (~u(0; x)� v(x)) dx = 0:21
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