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Chapter 1

Introduction

1.1 Objective

Historically, electricity systems are designed to satisfy a given demand. This

paradigm divides the electricity market into a supply-side and a demand-side

with a transmission system transporting the electricity from the generator

to the consumer. In this view the demand is considered as short term inelas-

tic. The supply-side is categorized into base-load, peak-load and mid-load

generation based on a grading of its flexibility in supplying electricity in

different aspects of demand.

However, weather dependent renewable generation capacity does not

comply with this viewpoint. It contributes to the generation of electricity

but cannot be chategorized as base-load, peak-load and mid-load generation.

In fact, it is considered as demand-reducing rather than demand-serving gen-

eration and may cause negative electricity prices. An increasing relevance

of renewables therefore requires a stronger focus on the flexibility in an

electricity system and shifts the general approach of producing electricity

when needed to consuming electricity when available. With this emphasis

on flexibility, all generation and consumption capacity can be grouped into

short-term flexible capacity, be it provided by power plants or demand-side-

management (DSM), and inflexible capacity. Also, the role of the transmis-

sion system is changed to that of a buffer mitigating electricity excess and

shortages. This work analyses the central marketplace for flexibility, the bal-

ancing energy market, in the setting of the German electricity market. In an

empirical analysis of the balancing energy demand the following questions

are addressed:

• Are there predictable components in the balancing energy demand?

• For what reasons do market participants resort to the balancing energy

market?

1



2 CHAPTER 1. INTRODUCTION

• To what extend is balancing energy deployed?

• What are the implications of the specific balancing energy market

positions on the German electricity market?

• How do these findings relate to the development and harmonization of

balancing energy markets in Europe?

Despite their importance for the integration of high shares of renewables

in future electricity markets, see for example EU (2008) and U.S.Congress

(2009), balancing energy markets are considered as a market of last resort in

scientific publications about European electricity markets. This reduces the

balancing energy market to a technical necessity and neglects the existence

of active positions in the balancing energy market that this analysis proffers.

1.2 Approach

Among European electricity markets the German electricity market stands

out as the only major market that does not impose transaction cost or

explicit penalties on energy transactions in the balancing energy market.

Therefore, it gives the unique opportunity to observe the strategic positions

in the balancing energy market and analyze their interplay with other mar-

ketplaces. At the same time, the generation stock in the German electricity

market that is based on thermal generation, allows to relate the results to

many other markets that similarly have a limited flexibility in their electric-

ity system.

In this thesis Germany is regarded as one electricity market, even though

its balancing energy market is divided into four control areas. This hypo-

thetical single control area corresponds best to the single German electricity

exchange. Also, deviations of different control areas that chancel out and

represent no deviation for the total German market do not complicate the

analysis. This issue is resolved in netting the balancing energy demand of

all control areas. However, the balancing energy prices cannot be combined

in the same way because there is no stringent weighting of the four control

areas’ prices. Therefore, a detailed analysis of balancing energy prices re-

mains beyond the scope of this thesis. Consequently, the analysis is focused

on a particular control area, if the balancing energy price is required.

The fundamental approach is to build an econometric model for the total

balancing energy demand. In this model the balancing energy demand can

be separated into several components that are analyzed separately. How-

ever, the components and corresponding strategic positions are derived from

a statistical analysis. Therefore, strategic positions are represented by their
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expectation value, conditional on the historic dynamic of the balancing en-

ergy demand. These strategic positions are analyzed with respect to different

factors capturing the interplay of the balancing energy market with other

marketplaces in Germany.

1.3 Outline

This thesis touches many characteristics of electricity markets and encom-

passes an econometric analysis of the balancing energy demand. The work

is split into two parts. Part I provides an introduction to the specifics of an

electricity market, as well as the theoretical background for the concepts and

methodologies used throughout the analysis. Part II discusses the approach

and findings in the analysis of the German balancing energy demand. It is

based on the results of Möller et al. (2010), Möller et al. (2009b), and Möller

et al. (2009a).

The presentation in Part I consists of two chapters. Chapter 2 covers the

basic concepts of electricity markets. This discussion is complemented by

an outline of the general technical components needed in the operation of an

electricity system. Concluding the market design of the German electricity

market that is in the focus of this thesis is introduced.

Chapter 3 describes econometric concepts of time series analysis. This

description is centered around linear time series models and specifically the

univariate case. In addition, the distribution of the innovations governing

the time series is considered in detail. Finally, both the linear time series

model and the innovations’ distribution are combined in an outline of a

model building approach.

Part II encompasses the analysis of the German balancing energy de-

mand. In Chapter 4 an econometric model for the German balancing energy

demand is developed. This model allows the identification and separation

of three strategies proffered in this thesis based on the time frame they are

deployed. The following discussion maintains this separation and presents

the underlying incentives that govern the identified strategies.

The proposed model is than applied to extract the strategic positions in

the German balancing energy market for an empirical analysis in Chapter

5. Specifically, the interplay of these strategic positions with two alternative

marketplaces the day-ahead market and the capacity reserve market is ana-

lyzed. This interplay accentuates the need to consider the balancing energy

market on an equal footing with other electricity marketplaces.

In Chapter 6 the main results established in Part II are evaluated in

the context of the German electricity market and its projected future de-

velopment. In particular, the implication of a further harmonization of the
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European electricity markets is raised. Finally, recent developments in the

German electricity market are reported, which constitute a promising ba-

sis for further research and a deeper understanding of the role of balancing

energy in a liberalized electricity market.



Part I

Theoretical background
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Chapter 2

Electricity markets

Among energy commodities electricity takes a unique role. It practically

cannot be stored and its transportation over vast distances is ineffective and

expensive. Therefore, electricity markets have to be considered as localized

markets and the specifics of individual markets have to be taken into ac-

count. In this chapter the basic components of an electricity market are

introduced and an overview of the mechanisms implemented to ensure effi-

cient functioning of these components is given. The presentation is focused

on the analysis in this thesis and therefore concentrates on the German

market. The terminology introduced in this chapter and used throughout

the thesis keeps to the terminology used in the handbook of the union for

the coordination of transmission of electricity (UCTE). For further reading

refere to Eydeland and Wolyniec (2003), and Geman (2005).

Historically, electricity markets have been highly centralized and were

often centered around one public owned monopolistic player. These play-

ers were characterized by vertical integration, controlling every aspect of

the electricity market. By the end of last century more and more countries

started to liberalize their electricity markets. Thus transforming the mo-

nopolistic vertically integrated market into a competitive marketplace for

diverse and specialized players. This liberalization increased the necessity

to understand and model the behavior of the electricity market. Particu-

larly, this holds for the market participants that are exposed to newly unfold

inner market risks. Additionally, regulators and the increasing interaction

between financial markets and electricity markets drive model development

and academic interest.

2.1 Basic concepts of electricity markets

Electricity is mediated by electro-magnetic fields that propagate at the speed

of light and cannot be stored efficiently. Therefore, the equilibrium of supply

7



8 CHAPTER 2. ELECTRICITY MARKETS

and demand is a key aspect of electricity, as it has to be maintained dynam-

ically at every instant. In fact, a black out being a static zero equilibrium

will be initiated to protect the infrastructure, if a dynamic equilibrium can-

not be maintained.

The following sections present basic concepts along the line of the tra-

ditional division into supply-side and demand-side. These concepts are fun-

damental for an understanding of the operation of electricity markets.

2.1.1 Electricity demand

The consumption of electricity is omnipresent in modern life, and is contin-

uing to gain importance as indicated by ever growing electricity demand.

It ranges from small household applications to large-scale industrial appli-

cations. Naturally, electricity demand therefore follows the same cyclical

patterns as modern life. Thus, electricity demand shows the same seasonal-

ity of day-time and night-time, weekday-day and weekend and summer and

winter. Figure 2.1 demonstrates this seasonality with the example of the

German electricity demand. The data shown is taken from two weeks in

2006. The summer-winter seasonality creates an offset between the summer

and the winter demand curves because heating and lighting induce an addi-

tional demand. The periodical change form low night-time to high day-time

demand is obvious in both curves. Also, the difference between the first five

and the sixth and seventh weekday cycle can easily be identified. A closer

inspection of the week-day cycles reveals an additional hump during evening

hours that is only present in the winter week, and marks another manifes-

tation of the summer-winter cycle. Additionally, this example demonstrates

how an electricity market is influenced by local specifics such as the demand

profile. By comparison, the demand profiles of Scandinavia with a more

pronounced heating demand in the winter, or California with high cooling

demand in the summer, each lead to their own respective seasonality.

Flexible demand

Typically, electricity demand is considered as short-term inelastic. For one

consumers do not reconsider their use of electricity each time they use it.

Even if they did, they do not respond to short-term information because

consumers are usually supplied by long-term contracts. From this point of

view, the supply-side of the market has to account for all the flexibility to

keep the electricity system in an equilibrium state. In general, this is a valid

assumption. However there are some exceptions.

Pumped-storage facilities are a widely used example of flexible demand.
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Figure 2.1: Weekly load pattern (Monday to Sunday) in summer and winter
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They extend the flexibility of hydroelectric dams by reversing the direction

of flow. During periods of low demand electricity is used to pump water

into a reservoir. This power can than be released during periods of high

demand. Naturally, pumped-storage facilities are electricity consumers that

are overall using electricity to produce electricity. Also other physical and

chemical forms of energy storage are considered to provide flexible demand.

Up to now however, these processes do not reach the efficiency of pumped-

storage and play only a minor role.

In general, a great variety of industrial processes such as aluminum elec-

trolysis or cold storage houses have the potential to implicitly store energy

by diverting electricity consumption to a time of lower demand. Such de-

mand alterations are subsumed in the so-called demand side management

(DSM), and can be extended even to minor household appliances such as

a fridge. Obviously, DSM relies heavily on the flow of information and on

adequate process control. This so-called smart grid is not implemented in

the German market on a significant scale.

2.1.2 Electricity supply

The discussion of electricity demand in the previous section marks demand

as dynamic. Taking into account the influence of external factors as the

weather, electricity demand is evidently not entirely predictable. Consid-

ering all the unpredictable events that influence electricity demand — in-

cluding human behavioral patterns — gives an indication of the flexibility

needed on the production side of the market to meet this dynamic demand

and guarantee the instantaneous equilibrium of supply and demand. This

flexibility is created by a diverse generation stock with the exact generation

mix reflecting the economic, geographic and political conditions of a specific

market.

In general, it is helpful to divide the generation stock into three groups

reflecting the kind of demand served. The groups are the so-called base-

load, peak-load and mid-load units. Base-load units are designed to generate

electricity as cheap as possible. They are operated to cover the consistent

fraction of electricity demand that does not vanish even during the off-peak

periods at nights or weekends. Thus, the design allows for a high degree

of technical sophistication that amortizes with the units’ usually large ca-

pacity and over the many operating hours. Therefore, base-load units are

characterized by high fixed cost and low variable cost. Naturally, output

alterations play little role in the design of base load units, and they are

therefore inapt to counter the changes in demand. In contrast, peak-load

units are designed to be as cheap as possible to generate electricity during

periods of high demand. Peak load units often have a small capacity, which
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increases the flexibility of their use. The design focues on minimal fixed cost

of peak units and brings about high variable cost that lead to a steep price

increase during periods of peak demand. The third group of units are the

so-called mid-load units. They are operated to counter the cyclic changes

between day-time and night-time demand. These regular operating hours

allow for the amortization of some technical sophistication in the design.

Cyclic units combine moderate fixed cost with moderate variable cost and

fill the gap between base-load and peak-load units.

The variable cost of all generation units can be ordered based on the

variable cost. This ordering results in the so-called merit-order-curve. It

ranges from low merit-order base-load to high merit-order peak-load units.

In a perfectly competitive electricity market the value of the merit-order-

curve at a given period’s demand is the price of electricity for that period.

See Figure 2.2. This relationship helps to understand the seasonality of elec-

tricity prices and, considering the non-linear shape of the merit-order curve,

the extreme price changes common in electricity markets.

In the following different types of generation are introduced and charac-

terized in the context of this work with a focus on the German electricity

mix.

Conventional thermal and nuclear

Conventional thermal and nuclear power stations are designed to convert

the heat of some heat source into steam, which in turn drives a turbine that

generates electricity. They can easily be categorized into one of the three

groups based on the targeted load spectrum because they are designed with

respect to a specific niche. On the base-load end of the spectrum are nuclear

or lignite power plants that tap cheap sources of energy at considerable tech-

nical expense. Also, the installed capacity of such units tends to be large due

to efficiency of scale considerations. Coal power plants are often designed as

mid-load units, though some coal fired plants are also operated as base-load

units. Thermal peak load plants are often fired by natural gas. However,

modern combined cycle technology gas fired plants are also competitive as

mid-load units. Concerning liquid oil based fuels, the electricity sector is

in competition with the transportation sector leading to unattractive fuel

prices. Therefore, these fuels only play a minor role in the German mar-

ket. (See BDEW Bundesverband der Energie- und Wasserwirtschaft e.V.

(2009).)

The combined heat and power CHP technology greatly increases the ef-

ficiency of fuel usage. Such units have to be operated under the additional

constraint of heat demand. Therefore, these units are suited as the base-load
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Figure 2.2: Merit-order curve of a hypthetical electricity market
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and mid-load units only and are operated outside merit-order at times.

Renewables

In contrast to conventional power stations, renewable power is designed to

tap a given energy source rather than serveing a given demand profile. In

addition, renewable energy has to follow the natural fluctuations in the avail-

ability of the used energy source. Therefore, it is often helpful to consider

renewables as demand reducing rather than demand serving units.

Hydroelectricity is a well established form of renewable electricity gen-

eration. It can be subdivided into run-of-the-river and dam sites. Run-of-

the-river units have to utilize the hydro power as it arrives and consequently

reduce the base-load in lock-step with the water flow. In contrast, hydro-

electric dams utilize the storage capacity of the reservoir and also serves the

more profitable peak-load.

Like run-of-the-river units, wind turbines reduce the demand, as the

wind energy cannot be stored directly. However, wind speed is dependent

on the time of day. Thus, statistically wind turbines also partially reduce

peak demand. (See von Roon and Wagner (2009) and Oliver and Zarling

(2009).) Nonetheless, the availability of wind power is subject to large fluc-

tuations that the electricity system has to compensate.

Solar energy obviously follows a peak-load production pattern. However,

despite technical advances solar-thermal and photovoltaics only contribute

marginally to the German electricity production.

In contrast to wind and solar power, biomass is a freely deployable renew-

able energy source. Biomass is thermally converted into electricity, either

directly or via gasification in a biological or chemical process. The gasifi-

cation process is operated continuously, but in combination with adequate

storage infrastructure, biomass can contribute to the flexibility needed to

balance demand fluctuations.

2.1.3 Electricity network

Electricity supply and demand are connected by the electricity network.

This network serves two basic needs. First, electricity has to be transported

over distances by the transmission system and than onward to all the in-

dividual consumers by the distribution system. Second, the network serves

as a buffer balancing all fluctuations that occur. All suppliers and con-

sumers are connected synchronously, i.e., everyone physically connected to

the network is directly affected by fluctuations and directly affects everyone

else. Therefore, fluctuations in the network have to be actively controlled
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and kept within a certain bandwidth. Should this bandwidth be violated a

black-out has to be initiated to protect the infrastructure from damage.

The operation of the network is entrusted to a single player in a given re-

gion, the so-called transmission system operator (TSO). Even in liberalized

markets the TSO is organized as a monopolistic player. This concentra-

tion of responsibility reduces the overall control interventions necessary. By

aggregating all fluctuations at the highest possible level, off-setting fluctu-

ations cancel and do not need to be controlled. Therefore, a single TSO

incurs less cost than active balancing of several sub-entities.

The flexibility to control fluctuations is expensive. It is therefore more

efficient to replace the most flexible intervention measures with a less flex-

ible and less expensive one. It is common to group response measures into

the following three categories:

Primary reserve The primary reserve or spinning reserve automatically

reacts to changes in the load. A load change results in a phase shift between

grid frequency and spinning turbines in effect initiating the necessary energy

adjustment. In order not to stall the power plants, automatic control detects

these changes and alters the plant power operation accordingly. Plants par-

ticipating in primary control have to keep operational margins, i.e., a plant

that can operate from 70% to 100% installed capacity may only be operated

between 80% to 90% installed capacity to keep sufficient reserve in either

direction. Primary reserve capacity is limited and expensive. If not released

by an offsetting fluctuation in the network, it should therefore be released

by secondary reserve. Calling secondary reserve results in an offsetting load

change and the automatic control brings the primary control plants back

to their initial operating point. Primary control covers load changes for

a time frame of the order of minutes. The energy output of participating

power plants does not change on average because secondary reserve releases

primary reserve capacity by innitiating an offsetting load change. There-

fore, primary reserve is compensated entirely based on capacity payments,

as effectively no additional energy is delivered or consumed.

Secondary reserve While primary reserve covers small fluctuations that

are by all likelihood canceled by another fluctuation; secondary reserve cov-

ers unforeseen events. A provider of secondary regulatory power has to

satisfy a TSOs’ demand for up or down regulation within several minutes.

Usually, this time is insufficient for start up or shut down, so secondary reg-

ulation is served by adapting the operational state of running production or

consumption capacity. As secondary reserve implies the exchange of energy,

secondary reserve has prices for both reserving capacity and the actual en-
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ergy delivered. A system can be operated entirely on primary and secondary

reserve. However, it might be cheaper to replace secondary reserve with yet

another level of reserve, the tertiary reserve.

Tertiary reserve In general, the tertiary reserve is not different to the

secondary reserve, other than in its response time. It is used to cover the

risk of big and long lasting events such as a forced outage of a nuclear power

station. As these events are rather rare and response time constraints are

less rigorous, tertiary reserve can be served by technically less advanced

facilities, opening the market of regulatory energy to a wider category of

providers. Potentially, this lowers the cost of balancing energy. Like in the

case of secondary reserve, the cost of tertiary reserve include both capacity

payments and payments for the exchanged energy.

In addition to the balancing of fluctuations, there are other factors the

TSO has to monitor that are closely related. The network has to be provided

with sufficient supply and transmission reserves to compensate fluctuations.

Specifically, it has to be ensured that the electricity flow keeps to the phys-

ical limitations set by the transmission capacity. This involves planning

the electricity flow in the network in advance and initiating necessary ad-

justments. It is further complicated by the interaction with other networks

through non-synchronous direct current interconnector lines that have to be

planned as prodution or consumption units depending on the direction of

energy flow. These tasks reinforce the importance of a single responsible

TSO. However, in the context of this thesis the TSO is reduced to the tasks

of controlling fluctuations, the procurement of capacity reserve, and a pre-

cise metering of all suppliers and consumers that is used to settle possible

energy transactions evoked by fluctuations.

2.2 Marketplaces for electricity

The design of a liberalized electricity market provides several marketplaces

that are linked to different aspects introduced in Section 2.1. The following

discussion of these marketplaces is organized along the time line, from long

before to after the actual delivery and consumption of electricity. It is also

focused on bilateral markets. This is the common European market design

and constitutes a further step in liberalization as compared to the alternative

pool market design with a monopolistic buyer.
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2.2.1 Futures market

Electricity futures are traded long before the actual delivery of the traded

electricity. Typical delivery periods range from one year to a week. The

contracts specify a constant delivery of electricity over the entire delivery

period. Therefore the cash flow of a futures contract is equal to the average

electricity price during the delivery period. Futures correspond to the long-

term planning needs of market participants, for example those that need to

hedge the risk of large investments such as a base-load power plant.

To account for the seasonality of electricity demand within the delivery

period futures are often designed as base-load and peak-load futures. The

peak-load contracts aggregate the hours of high seasonal demand, in con-

trast to 24/7 delivery of base-load contracts. With a combination of these

contracts typical production and consumption patterns in the electricity

portfolios can be roughly approximated and hedged.

2.2.2 Day-ahead market

At a time close to delivery more detailed information is available and market

participants can predict their electricity consumption or production more

accurately. From the perspective of network operation this information is

vital in planning procedures as it indicates the expected electricity flows in

the network. Market participants are therefore urged to balance any open

position in their estimates. This fine tuning of portfolios is achieved on

the day-head market. The day-ahead market practically offers a selection

of futures contracts with — depending on the market — hourly or half-

hourly delivery periods. These contracts allow for a much more accurate

approximation of portfolios and many market participants use this market

to finalize their positions. Therefore, the day-ahead market is also referred

to as the spot market.

In fact, the clearing price of the day-ahead market is often used as a

reference price in other contracts, as financially settled futures. The prices

reflect the information of the merit-order-curve known 24 hours ahead with

a given time resolution of one hour or half-hour. In the event of a scarcity

the day-ahead market prices tend to the extreme and a price ten times the

average level is not rare. This behavior can be attributed to the non-storable

character of electricity and an inelastic demand. Therefore, the day-ahead

market has a central role in the electricity market because it incorporates

all relevant information and serves as a price reference.
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2.2.3 Intraday market

After the day-ahead market is closed some markets allow for further ad-

justments of portfolios in an intraday market. However, compared to the

day-ahead market this market has a lower liquidity. Market participants can

use this market to incorporate new information affecting their portfolio. At

some point in time the so-called gate-closure the trading is stopped. The

remaining time is needed for the TSO to aggregate all portfolios and ensure

this aggregation is compatible with operational constraints. The intra-day

market is most relevant for market participants with positions often affected

by events between day-ahead market and gate-closure. However, it usually

does not reach the liquidity of the day-ahead market.

2.2.4 Capacity reserve market

After the gate-closure the planned electricity consumption and production

should be in equilibrium. However, despite all planning efforts the electricity

system will always be affected by unforeseen events. As discussed in Section

2.1 reserve capacity is allocated by the TSO in advance to account for such

deviations between the true electricity flow and the electricity flow sched-

uled at gate-closure. Capacity reserve is rewarded by a capacity premium

because the energy demand due to this deviations is uncertain. In addition,

prices for the net energy flow are specified.

The duration of corresponding contracts for reserve capacity dependents

on the type of reserve capacity —primary/ secondary/ tertiary— but com-

monly exceeds the duration of day-ahead market contracts. Therefore, the

capacity reserve market does not fit into the concept of presenting the differ-

ent markets along the time line as contracts are closed at the same time as

in the futures market. However, capacity reserve represents the ex ante view

on the fluctuations that occur after gate-closure, which places the capacity

reserve market on the time line between intraday and balancing energy mar-

ket.

2.2.5 Balancing energy market

Balancing energy is the ex-post view on the fluctuations that occur after

gate-closure. It refers to the settlement of the net deviation of market par-

ticipants due to fluctuations in a specified balancing period. Often the

balancing periods coincide with the periods traded on the day-ahead mar-

ket. In the balancing energy market the cost caused by energy fluctuations

is apportioned to the market participants causing a fluctuation. The main

price setting criteria is the net deviation of all market participants. Natu-



18 CHAPTER 2. ELECTRICITY MARKETS

rally, balancing energy is expensive when there is a shortage of electricity

and inexpensive during balancing periods with an oversupply.

The TSO takes a central role in the balancing energy market in many

ways comparable to the mediating position of an exchange. All other market

participants are organized in a so-called balancing responsible party (BRP)

that settles its fluctuations with the TSO. The TSO meters the energy flow

for each BRP and compares it to the energy scheduled by the BRP at gate-

closure. A BRP having consumed electricity relative to its forecast then

pays the TSO for this energy, while a BRP having feed in electricity relative

to its schedule is compensated by the TSO. In the following a sign conven-

tion is used where a positive deviation denotes electricity consumption by a

BRP relative to it schedule. A negative deviation denotes electricity supply

relative to the schedule.

It is important to note that the balancing energy market serves two main

objectives. First, it is designed to settle the inevitable fluctuations that oc-

cur due to unpredictable events. The sum of such fluctuations should be

kept minimal because accidence of fluctuations that can be managed by the

TSO results in a black-out. Second, the balancing energy market is central

in mitigating the adequate preliminary schedule for the real-time operation

of the electricity system. In this respect all transactions in marketplaces up

to the gate-closure in the intra-day market are a means of composing the

preliminary schedule. The value of this preliminary schedule with respect to

the physical transactions of electricity is than determined in the balancing

energy market.

In the context of energy transactions in the balancing energy market two

basic schemes for the settlement of fluctuations can be distinguished: the

single-price settlement scheme and the dual-price settlement scheme. In the

single-price settlement scheme the TSO sets one price for each settlement

period. All BRPs with a positive deviation pay this balancing energy price

for their deviation, and all BRPs with a negative deviation are compensated

based on this price.

In contrast, the TSO sets two prices for each settlement period in the

dual-price settlement scheme. BRPs being supplied by the TSO pay the

price for positive deviations, while BRPs with a negative deviation are re-

imbursed another price for their energy delivery. In effect, this can be un-

derstood as the single-price scheme with an additional transaction cost to

discourage speculation. In fact, markets with a dual-price settlement scheme

often have an explicit penalty for transactions in the balancing energy mar-

ket.

The design of the balancing energy market varies among electricity mar-

kets, reflecting a different weighting of the two main objectives. Some mar-
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kets organize the balancing energy market as a real-time market. The TSO

constantly informs market participants about the price, thereby allowing

them to adjust their preliminary schedule if feasible. In contrast, prices are

set after the actual occurrence of a fluctuation in European electricity mar-

kets. In particular, they are therefore unknown at the initiation of a position

in the balancing energy market. The European balancing energy markets

differ in the transaction cost and —if applicable— in the explicit penalties

that are levied on transactions in the balancing energy market. An effect

of these cost is a transition from a cost reflective preliminary schedule, to

a preliminary schedule with a fixed zero position in the balancing energy

market to avoid transaction cost. This zero-position preliminary schedule

characterizes a strong focus on network security, and disregards any alter-

native secure schedule. The discussion of such alternative secure schedules

is taken up in Part II. For a further discussion of different market designs

refer to Zhou et al. (2003), EU (2005), and Nordel (2008).

2.3 German electricity market

The details of electricity market designs are diverse, and necessarily reflect

local specifics as generation stock or customary operation policies. Due to

the limited interconnecting transmission capacity between control areas, the

report by ETSO (2007) sees this diversity prevailing in the future. At the

same time a great potential is seen in the harmonization of balancing energy

mechanisms. (See ERGEG (2006)). This section introduces relevant details

of the German electricity market that is in the focus of this thesis.

The German market design is particularly suited for an analysis for two

main reasons. First, the German balancing energy market does not impose

transaction cost. Consequently, its interplay with other markets can be

observed without such distortions. Second, the German balancing energy

market has a shorter settlement period than the respective day-ahead mar-

ket. Thus, the interplay of balancing energy and day-ahead market can be

neglected on the sub-hourly time frame, allowing a direct comparison to the

capacity reserve market. In general, the results of the analysis are applica-

ble to a wide range of markets with a comparable thermal-based generation

stock that are characterized by a high value of flexible generation capacity.

2.3.1 Generation stock

Germany has a diverse generation stock and does not rely on any particular

type of generation to more than 25%. The base-load is primarily covered
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by nuclear and lignite power plants that account for about 23% of German

electricity production each. Coal burning power plants account for another

20% of generation, serveing predominantly cyclic demand. Natural gas is

the third important fossil fuel and is predominantly imported from Russia

and the North Sea. Natural gas fired power plants serve peak-load demand

and account for 13% of production. Both natural gas and coal power plants

often employ CHP technology, roughly 50% of natural gas electricity pro-

duction and 25% of coal electricity production stemming from CHP power

plants. In total 15% of German electricity is produced with CHP technol-

ogy. (See BMU (2009))

The renewable sector contributes 15% to the German electricity con-

sumption. Among the renewables wind turbines take the largest share, gen-

erating 6.5% of the electricity consumed. Biomass and hydro also take a

market share of over one percent, serving 4.5% and 3.4% respectively. (See

BMU (2009).)

The remainder of the electricity generation is contributed by marginal

sources like pumped-storage, oil based thermal and photovoltaics. Germany

is also strongly interconnected with neighboring countries. However, these

interconnections are used for both imports and exports of electricity. Over-

all the interconnections amount to an electricity export. It should be noted

though, the usage of interconnections varies strongly and it is therefore not

possible to characterize interconnection lines as a strict supply or demand

factor. Appendix D.3 gives an quantitative overview of the elctricity supply

and demand in the analyzed time period.

2.3.2 Marketplaces

Electricity exchange

Germany has a liberalized electricity market that is based on bilateral con-

tracts between market participants and a large fraction of transactions is

settled in over-the-counter (OTC) trades. However, the prices at the Eu-

ropean energy exchange (EEX) often serve as a price reference for these

contracts. Therefore, the EEX can be regarded as the central German mar-

ketplace, despite its relatively small market share of about 15% of German

electricity consumption. (See Michalk (2008).) Hence, in this analysis the

day-ahead market serves as the reference market the balancing energy mar-

ket is linked with.

The standard products traded at the EEX are hourly day-ahead contacts

as well as bundled base and peak contracts. The closing prices of the hourly

contracts are published in the so-called Phelix index. Monthly base and peak

futures are written on the average Phelix price of the corresponding hours
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as the underlying. Additionally, year and quarter futures are available that

are cascaded down — via quarter futures — to month futures. Electricity

futures have a maturity of up to six years at the EEX. Futures are settled

financially at the EEX. However, holders also have the option to expand to

physical delivery. The EEX then automatically sets market orders for the

corresponding hours of the futures contract.

Since 2006 the EEX also operates an intra-day market based on the same

hourly contracts traded in the day-ahead market. It has a gate-closure of

75 minutes prior to the hour of delivery. European Energy Exchange (2010)

Capacity reserve

Naturally, in the capacity reserve market the TSO as the single buyer takes

a central role. In the particular case of Germany the electricity system is

operated in four control areas by four independent TSOs shown in Figure

2.3. These four TSOs organize auctions for their reserve capacity allocation,

which used to be independent but were combined to joined auctions later. In

both cases, the location of a particular bidding installation is incorporated

in the auctions to account for possible restrictions.

Primary and secondary reserve is allocated in contracts that span over

longer periods of time. These periods used to be half a year but were changed

to one month. Tertiary reserve is allocated in day-ahead auctions in frac-

tions of four hour periods of the following day. Compared to the hourly

day-ahead contracts the averaging periods of the secondary and tertiary

reserve are longer. Consequently, the prices cannot respond to short-term

supply shocks in the same way. This is an important point that is developed

further in Part II of this thesis.

It is important to recall that primary reserve is deployed in a way that

ensures a total of zero energy exchange. Therefore, it is compensated by

capacity payments only. In contrast, secondary and tertiary reserves imply

an energy exchange when called, so in addition to the capacity payment

an energy price is fixed for these contracts. Due to the importance of ca-

pacity reserve for system stability, the TSOs set technical standards for the

authorization of facilities to the capacity reserve market. These standards

establish response-time and reliability requirements for the different types

of reserve. In general, the requirements are readily met by power plants,

while they impose a considerable entrance barrier for DSM capacity. There-

fore, the capacity reserve market auctions are dominated by the supply-type

bidders. Information on the organization of the capacity reserve market auc-

tions of the four TSOs is joinedly presented at regelleistung.net (2009).



22 CHAPTER 2. ELECTRICITY MARKETS

Balancing energy

The cost generated in balancing fluctuations is passed on from the TSO to

the BRPs. All four German TSOs use a single-price balancing energy settle-

ment scheme in combination with quarter-hourly settlement periods. Thus,

the settlement scheme implyes no transaction cost. Roughly, the balancing

energy price is four to five times the average day-ahead market price during

periods with a positive net deviation of the control area, and zero during

periods with a negative net deviation. Also, it is important to note that the

price is set by the TSO after the occurrence of a deviation based on the cost

incurred during a particular balancing period. In turn these cost reflect the

energy prices of secondary and tertiary reserve deployed in the respective

period. Despite the uncertainty of the price, it is still financially beneficial

for a BRP to deviate contrary to the net deviation of the control area on

account of the high price spread between periods with positive and negative

net deviation.

This is controversial because it encourages speculation about the net

deviation. Such speculations support network stability by compensating de-

viations with a countering deviation when it is successful. However, it is

potentially endangering network stability by amplifying deviations when it

is false. Other European countries therefore employ a dual-price settlement

scheme. In fact, the German scheme also acknowledges the potentially desta-

bilizing effect of speculative positions and penalties are set in network-access

contracts for an abuse, i.e., excessive speculation. Nevertheless, speculation

is allowed within limits, and certainly encouraged by the high price spread

between positive and negative net deviation periods. For a more detailed

discussion of network access contracts refer to Appendix B.

Another peculiarity of the German balancing energy market design is

the discrepancy between the balancing energy settlement periods of quarter-

hours and the minimal tradable period in the day-ahead and intra-day mar-

ket of one hour. Therefore, it is practically impossible for a BRP to repro-

duce its electricity portfolio with corresponding contracts on a sub-hourly

time scale. This aspect is employed for the direct analysis of the interplay

of balancing energy with the capacity reserve market because an influence

of the day-ahead market can be neglected on this time scale.

2.3.3 Market concentration

After the liberalization of the German electricity market in 1998 four big

vertically integrated players formed that dominate the German market on

all levels. These four players are: E.ON AG (e.on), Rheinisch-Westfälisches
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Figure 2.3: The four German control areas. Source: Verband der Netzbe-
treiber (VDN).
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Elektrizitätswerk AG (RWE), EnBW Energie Baden-Württemberg (EnBW)

and Vattenfall and their multiple specialized subsidiary companies.

This market concentration is most obvious in the transmission system,

where the corresponding four subsidiary companies constitute the four Ger-

man TSOs. (See Figure 2.3). It is argued this division of the German market

was unnecessary and a combined German control area would be more effi-

cient by netting the deviations of the current control areas. (See Bundes

Netz Agentur(2009; 2010)). The issue of concentration in the transmission

system was also raised by the European commission that continuously works

towards an unbundling. In the last year the market moved into this direc-

tion. All but the RWE control area use a common balancing energy price

based on the net-deviation of the corresponding three control areas. Also,

the transmission system of e.on and Vattenfall were sold to a Dutch and

Belgian competitor.

In terms of electricity generation the four biggest players account for

almost 90% of generation. This high level of concentration is persistent

over time when assessing certain market situations as was confirmed in EU

(2007). However, it should be noted that the influence of interconnection

lines has to be taken into account. This raises again the issue of vertically

integrated companies and the transmission system operation by the four

biggest players.

Undoubtedly the market shows to be concentrated, but this gives no

indication of the potential abuse of market power. Several studies identify

signs of such abuse in an analysis of prices at the EEX. However, these re-

sults are controversial as such studies necessarily rely on model assumptions

and simplifications. (See Ockenfels (2007a; 2007b) and Möst and Genoese

(2009)). As of now, no company was convicted of market power abuse, and

the issue remains open. A more detailed discussion of the analysis of market

power in the German electricity generation is added in Appendix A.

In the retail market the dominance of the four biggest players is less

pronounced and they amount to a market fraction of about 50%. However,

retail prices contain tax and network charges as a large fraction. This fixed

price component of retail prices dampenes competion in the retail market,

and the completion is strongest for large scale consumers where small price

differences tip the balance.

The general picture of market concentration in the electricity market

mirrors the situation in the neighboring countries. This underlines the im-

portance of regulation and an efficient market design.



Chapter 3

Methods and mathematical

concepts

In this chapter mathematical methods and concepts used throughout this

work are introduced. It is focused on econometric time series analysis in

discrete time, reflecting the data set of quarter-hourly balancing energy de-

mand the analysis in this thesis is based on. (Refer to Appendix D for

detailed information on the data). The essence of time series models is to

capture aspects of phenomena that are constant over time and aspects that

are random in one model. Such a model provides a reliable forecast of the

phenomena while at the same time describing the risk associated with this

forecast.

3.1 Linear time series models

In a econometric model in discrete time a time series is regarded as a re-

alization of a sequence of a random variable xt. In particular, a situation

is considered where the only available information is the time series itself.

Despite this limitation a forecast is feasible under certain conditions. This

section is focused on linear time series models. In these models an additional

factor the innovation time series (ǫt) is introduced. This factor represents

the randomness in the model. One such example is the Gaussian white noise

process where each time step is a realization of an independent drawing from

a normal-distribution (a i.i.d. sequence of N (0, σ2)). In this simple example

the forecast is zero and the risk is captured by the constant σ.

3.1.1 Preliminary conditions

Time series have to have certain properties to make forecasting by linear

models feasible. The most important property is stationarity. For a forecast

25



26 CHAPTER 3. METHODS AND MATHEMATICAL CONCEPTS

a time series has to have a property that stays constant over time, so that it

can be continued into the future. A process is strictly stationary if the joint

distribution of an arbitrary sequence is invariant with respect to an arbitrary

shift in time. This condition is expressed in the following equation:

(Xt, Xt+1, . . . Xt+n)
d
= (Xt+h, Xt+1+h, . . . Xt+n+h) ∀t, h

The independent identically distributed (i.i.d.) sequence is a strictly station-

ary process but allows for very little dynamic. Relaxing the conditions of

stationarity leads to the concept of weakly or covariance stationary processes.

Formally, a process is weakly stationary if it satisfies the following conditions:

E(xt) = µ ∀t

Cov(xt, xt−h) = γh ∀t, h

A weakly stationary process has time independent first and second moments.

However, the covariance may depend on the time lag. Moreover, any sta-

tionary process with finite first and second moment is weakly stationary.

Without a loss of generality the mean can also be assumed to be zero be-

cause any stationary time series with non-zero mean can be transformed

into a zero mean time series (xt − µ). For convenience, the term stationary

is used in the meaning of weak stationarity in the remainder of this thesis.

Two characteristics are important about stationarity. First, the time in-

dependent first and second moment form a basis to forecast the time series.

In combination with the Gaussian white noise this allows for a quantification

of the risk of these forecasts, as well. Second, any stationary time series can

be expressed as a possibly infinite linear time series model. The feature is

known as the Wold’s decomposition theorem and guaranties the theoretical

feasibility to tackle stationary time series with linear models.

3.1.2 Moving average models

Specifically, the Wold’s decomposition theorem states the following for a

stationary process ((xt)):

xt = ǫt +
∞∑

i=1

θiǫt−i , where
∞∑

i=0

|θi| < ∞ (3.1)

Any stationary time series can be expressed by a linear combination of some

innovation process. Such a model is called a moving average (MA) process

of order q, where q denotes the index of the last non-negligible summand.
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Furthermore, the linear model relies exclusively on past innovations. This

property is causality and can always be achieved by defining another time

shifted innovation process. Despite the great flexibility of MA models span-

ning all stationary time series, the possibly infinite series of parameters θi

can make the MA representation of a time series practically useless.

3.1.3 Autoregressive models

Another linear time series model is the autoregressive (AR) model of order

p. In this model the time series is represented by a linear combination of its

past p realizations, as follows:

xt = ǫt +

p
∑

i=1

φixt−i. (3.2)

A MA(q) can also be represented by an AR(∞) model if the time series is

so-called invertible. At the same time Wold’s decomposition theorem still

holds for a stationary time series. Therefore, a stationary AR(p) process can

be represented as MA(∞). In fact, the AR and the MA representation are

complementary in the sense that a stationary AR(1) model is represented

by a MA(∞) model and an invertible MA(1) model is represented by an

AR(∞) model. (See Appendix C.1.)

3.1.4 Autoregressive moving average models

As MA and AR model are complementary to each other, it is of much avail

to combine the two. The combined model is the so-called autoregressive

moving average (ARMA) model of order p, q with the orders of the AR and

MA model, respectively. The key advantage of an ARMA representation lies

in parameter parsimony. In the case of a stationary invertible time series

both, a strict AR and MA representation, are theoretical feasible, how-

ever, the possibly infinite number of parameters make these representations

impossible to estimate. Therefore, ARMA models are the most general rep-

resentation for stationary invertible time series. After introducing the lag

operator L (Lixt = xt−i) the ARMA(p, q)-model in equation (3.3) can be

expressed in terms of two polynomials in L in equation (3.4):

xt = ǫt +

p
∑

i=1

φixt−i +

q
∑

i=1

θiǫt−i (3.3)

φ(L)(xt) = θ(L)ǫt (3.4)
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This representation can be a major convenience when working with an

ARMA model, as the operator can be treated as a sort of multiplication.

Applying this representation it is straightforward to show that the station-

arity of a time series depends solely on the p parameters of the AR part of

an ARMA process. (See Appendix C.2.)

3.1.5 Integrated autoregressive moving average models

All models presented above are limited to the precondition of a stationary

time series. However, many time series do not fulfill this requirement. One

such example is the random walk (xt = xt−1 + ǫt). To be able to model such

a time series in the ARMA frame work it has to be modified. In the follow-

ing, the time series transformed through the difference operator (∆ = 1−L)

is considered. The new time series (yt = ∆xt = ǫt) is the stationary inno-

vation time series introduced above. To obtain a model of the original time

series the modeled innovations have to be added or integrated starting at

some known point (x0). Therefore, these models are called integrated au-

toregressive moving average (ARIMA(p, d, q))-models where the parameter

d describes the order of differencing necessary to obtain a stationary time

series. Equation (3.5) shows a general ARIMA(p, d, q) model:

φ(L)∆d(xt) = θ(L)ǫt (3.5)

It should be added that besides differencing the logarithm and the calcula-

tion of a return series are common techniques to transform a non-stationary

time series into a stationary time series that can be described by an ARMA

model.

3.1.6 Seasonal integrated autoregressive moving average mod-

els

The ARIMA model can capture seasonality, but in the event of two ARIMA

processes governing the time series at different time scales, interdependence

between these processes is introduced. (See Appendix C.3). This inter-

dependence is captured by the seasonal integrated auto regressive moving

average (SARIMA(p, d, q)×(P, D, Q)s) model as in equation (3.6):

φ(L)Φ(Ls)∆d∆D
s (xt) = θ(L)Θ(Ls)ǫt (3.6)

Here the parameters p, d, q and P, D, Q are the parameters of the ARIMA

processes at the basic interval and the seasonal interval (s), respectively.
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3.1.7 Factor models

The discussion of linear models above is restricted to cases where there is no

information outside the history of a time series. However, valuable informa-

tion is often available in addition to the time series itself. The trajectory of

such information is a random variable itself. In the style of factor analysis

it is called a factor in this thesis. A time series can be regressed based on

these factors (f) yielding a model of the type in equation (3.7):

xt = ǫt +
n∑

i=1

βfn,t. (3.7)

This form represents a very general class of models as it includes non-linear

dependencies as well as an AR type regression on lagged values of a particu-

lar factor. Any concept of dependency that is more complex than the linear

model can be fully ascribed to the definition of the factors. As an example

one factor can be defined as the lagged value of a random variable or as any

function thereof.

3.2 Innovation process

The discussion of the linear time series models above concentrates on the

description of predictable components and attributes the randomness to the

innovation process (ǫt). This section is focused on the description of the

innovation process. In this context the linear time series model can be re-

garded as a filter extracting the innovation process from the time series.

In describing the randomness, the innovation process is crucial in captur-

ing the risk involved in the forecast of a particular time series. Whenever the

inevitable error of a forecast has to be countered by appropriate measures,

one has to rely on the specification of the innovation process to appropri-

ately dimension these measures in advance.

In general, there is an abundance of distributions that can be used to

describe an innovation process. However, the innovations can often be con-

sidered to be caused by many independent events with their magnitude

described by one common distribution. In this case, the general central

limit theorem (gCLT) marks out the class of α-stable distributions for mod-

eling the innovation process. As the sum of any appropriately scaled series

of independent random variables will converge in distribution to a member

of this class. In other words, whenever many individual shocks have to be

considered at the same time α-stable distributions are the natural choice for

modeling these innovations.
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3.2.1 Normal distribution

The general central limit theorem is often better known on a specialized

subset as the central limit theorem (CLT). It states that the sum of a series

of independent random variables from a common distribution with finite

first and second moment converges in distribution to a normal distribution.

It can be defined by its probability density function that is given in equation

(3.8):

f(x) =
1√
2πσ

e−(x−µ)2/2σ2
(3.8)

The two defining parameters are:

• σ: the scale parameter, σ ∈ (0, +∞);

• µ: the location parameter, µ ∈ (−∞, +∞).

Through centering and rescaling, the distribution can be confined to the

standard normal distribution with parameters µ = 0 and σ = 1 that is

displayed in Figure 3.1. The existence of a simple closed-from expression for

the density in combination with the central limit theorem might explain the

normal distribution to be the standard assumption of classical time series

analysis. However, often phenomena are exposed to extreme events that are

extremely improbable under the assumption of a normal distribution. Two

reasons might be the course of this discrepancy from the normal distribution.

First, the condition of finite first and second moments of the underlying

distribution might not be fulfilled. Second, the number of summands might

be too small to allow a sufficient convergence towards the theoretical limiting

distribution (i.e., the time scale under consideration is too short to apply the

limiting distribution). In fact, the convergence to the normal distribution

may be arbitrarily slow.

3.2.2 α-stable distribution

By relaxing the assumption of finite first and second moments of the un-

derlying distribution, the central limit theorem is generalized. The general

central limit theorem defines a set of distributions that the distribution of

the sum of any identical independent distributed random variable will con-

verge to. This set of distributions is the set of α-stable distributions. In

general, there is no closed form expression for the density function of α-

stable distributions. Therefore, α-stable distributions are characterized in
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Figure 3.1: Probability density of the standard normal distribution and a
standard α-stable distribution (α = 1.5)
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the frequency domain by their characteristic function as in equation (3.9):

φstable(u; α, σ, β, µ) = E[eiuX ] (3.9)

=







exp
(

iµu − |σu|α
(

1 − iβ(sign u) tan
πα

2

))

, α 6= 1

exp

(

iµu − σ|u|
(

1 + iβ
2

π
(sign u) ln |u|

))

, α = 1,

where

sign t =







1, t > 0

0, t = 0

−1, t < 0

In this parameterization, the four parameters (α, β, σ, µ) have the following

domain and interpretation:

• α: the index of stability or the shape parameter, α ∈ (0, 2);

• β: the skewness parameter,β ∈ [−1, +1];

• σ: the scale parameter, σ ∈ (0, +∞);

• µ: the location parameter, µ ∈ (−∞, +∞).

Figure 3.1 shows an α-stable distribution together with a standard normal

distribution. Two important effects can be observed that result in four inter-

sections of the probability density functions. First, the α-stable distribution

is more peaked around the center of the distribution. Second, the α-stable

assigns more weight to the tail of the distribution. The normal distribution

is a special case of an α-stable distribution where the parameter α is two

and the parameter β has no effect. It links the general central limit theorem

to the central limit theorem discussed in the previous section. Commonly,

the parameters are estimated in the frequency domain as there are only two

additional cases with a closed form density function besides the normal dis-

tribution.

The advantageous feature of α-stable innovations lie in constant para-

meter α when adding the effect of i.i.d distributed events over arbitrary time

horizons. Specifically, this allows the adequate description of risk. However,

a non-existent second moment and, in the case of α less or equal to one, a

non-existent first moment, are often too strong an assumption and pose a

considerable drawback in many applications.

3.2.3 Tempered stable distribution

In many applications it is possible to constrain the domain of the underly-

ing distribution. Mathematically speaking, this results in all moments to be
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finite. Therefore, such phenomena are clearly in the domain of the central

limit theorem with the normal distribution as the limiting distribution for

the infinite sum of independent random drawings from the underlying dis-

tribution. However, the convergence to the normal distribution can be slow.

For such intermediate cases that are in the theoretical limiting domain

of the normal distribution but show excess kurtosis and possibly skewness,

the class of tempered stable distributions has been proposed. (See Menn

et al. (2005), Kim et al. (2008), and Menn and Rachev (2009).) This class

is designed to resemble an α-stable distribution at the center of the distri-

bution. However, in contrast to the general α-stable distribution the tails

decay-off exponentially. Like the α-stable distribution the tempered stable

distribution is characterized in the frequency domain by its characteristic

function as in equation (3.10):

φCTS(u; α, C, λ+, λ−, m) = exp(ium − iuCΓ(1 − α)(λα−1
+ − λα−1

−
)

+ CΓ(−α)((λ+ − iu)α − λα
+ + (λ− + iu)α − λα

−
)). (3.10)

Here m and C determine the location and scale as do µ and σ in the α-

stable distribution. The parameters λ+ and λ− allow for skewness as well

as a faster than α-stable decay in the tails. Figure 3.2 and 3.3 compare the

probability density function of a CTS and an α-stable distribution. The

additional parameter allows for a more peaked probability density near the

center of the distribution. As in the case of the standard normal and an

α-stable distribution this causes four intersections of the respective density

functions (i.e., the CTS distribution has a more heavy-tailed appearance

near the center). At the same time the probability density’s exponential

decay in the fare-tail assigns less weight to these extreme events. This

causes another two intersections of the probability density functions.

In this work the name classical tempered stable (CTS) distribution is

used. It should be noted, however, the tempered stable distribution has been

introduced under different names in the literature including the truncated

Levy flight by Koponen (1995), the KoBoL distribution by Boyarchenko

and Levendorskĭi (2000), and the CGMY distribution by Carr et al. (2002).

The fundamental feature is the combination of fast decaying extreme tails

with a highly peaked center of the distribution. The first feature guaranties

finite moments while the second feature allows to access the broad range of

relations of the small to the extreme events given by α-stable distributions.
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Figure 3.2: Probability density of a standard CTS and a standard α-stable
distribution, parameters as in Table4.7
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Figure 3.3: Tail of probability density of a standard CTS and a standard
α-stable distribution, parameters as in Table4.7
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3.2.4 Goodness-of-fit tests

Both the α-stable distribution and the tempered stable distribution intro-

duce additional parameters in the model as compared to the normal dis-

tribution. To conclude the discussion of the innovations process, methods

to guide in the selection of the appropriate innovations distribution are dis-

cussed. Among these methods are visual methods to display the available

information to get an insight about the appropriate distribution, and statis-

tical tests that are able to quantify the distribution selection problem.

Quantile-quantile plot

The quantile-quantile (QQ) plot is a widely used graphical inspection method.

It displays the theoretical quantiles of the proposed distribution plotted ver-

sus the empirical quantiles of the observed innovations as filtered from the

time series. If the data corresponds well to the proposed distribution, the

QQ-plot will mark a straight line of slope one. A QQ-plot that marks

a shifted straight line or a line of different slope indicates an inadequate

specification for the parameters of location and scale of the theoretical dis-

tribution. More importantly in the context of innovations is a non-linear

QQ-plot. Figure 3.4 shows the QQ-plot of heavy-tailed data and the as-

sumption of the normal distribution. Here, the flattening of the QQ-plot

indicates the higher probability of extreme events in the empirical data.

The QQ-plot is a visual inspection technique and is therefore subjective.

The advantage of the QQ-plot is that it allows a conclusion about the fitness

of the proposed distribution for the innovations. Additionally, it provides

information about the type of difference between the empirical distribution

and the suggested distribution.

Kolmogorov-Smirnov test

For an objective classification of the distribution’s fitness goodness-of-fit

tests are developed. The Kolmogorov-Smirnov (KS) test is set up to test

the null-hypothesis of the empirical distribution to follow the suggested dis-

tribution. Its test statistic is based on the maximal distance of the empirical

cumulative density function (Femp.(x)) and the empirical and theoretical cu-

mulative density function (Ftheo.(x)):

KS =
√

n sup |Femp.(x) − Ftheo.(x)|

The KS test statistic can than be compared to critical values that are listed

corresponding literature and implemented in standard statistical software
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Figure 3.4: QQ-plot of heavy-tailed data (X) under the Gaussian hypothesis
(Y )
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Anderson-Darling test

The KS statistic measures the vertical distance of the empirical and theoret-

ical cumulative density function. Therefore, it is most sensitive to deviations

close to the center of the distribution where the cumulative density function

runs almost vertically. However, the risk of extreme events in the tails is

often in the focus of a particular analysis. To assign more weight to the tails

of the distribution the distance of the empirical cumulative density function

(Femp.(x)) and the empirical and theoretical cumulative density function

(Ftheo.(x)) is scaled in the Anderson-Darling (AD) test statistic:

AD =
√

n sup

∣
∣
∣
∣
∣

Femp.(x) − Ftheo.(x)
√

Ftheo.(x)(1 − Ftheo.(x))

∣
∣
∣
∣
∣

The scale factor (1/
√

Ftheo.(x)(1 − Ftheo.(x))) reaches its minimum at the

center of the distribution thereby enhancing the importance in the tails.



38 CHAPTER 3. METHODS AND MATHEMATICAL CONCEPTS

Cramer-von Mises test

Both the KS-test and the AD-test rely on a single value from the sample,

the maximal distance that is weighted in the latter case. The Cramer-von

Mises (CvM) test is designed to account the differences of the empirical and

the theoretical cumulative density function over the total sample size:

CvM = n

∞∫

−∞

(Femp.(x) − Ftheo.(x))2dFtheo.(x)

As the definition shows the CvM-test statistic depends on the area between

the empirical and theoretical cumulative density function. In contrast to

the KS-test the critical values of the CvM-test depend on the distribution

analyzed. However, they can be estimated in a Monte Carlo simulation.

Squared Anderson-Darling test

As in the case of the KS-test the CvM-test can be modified to assign more

weight to the tails of the distribution. This modified test is called quadratic

Anderson-Darling (AD2) test:

AD2 = n

∞∫

−∞

(Femp.(x) − Ftheo.(x))2

Ftheo.(x)(1 − Ftheo.(x))
dFtheo.(x)

As in the case of the CvM-test the critical values have to be estimated in a

Monte Carlo simulation.

3.3 Model building

The linear model and the innovation process are the fundamental building

blocks to model a given time series. In this section the approach to model-

selection proposed by Box and Jenkins (1970) is described.

3.3.1 Unit root

Stationarity is a necessary condition for the linear time series models pre-

sented in Section 3.1. In the case of an integrated process stationarity is

achieved by an appropriate transformation of the time series. Therefore,

the time series has to be tested for the presence of a unit root. The time

series can be modeled in the described framework only if it is stationary and
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the presence of a unit root can be rejected.

A standard test for a unit root is the augmented Dickey-Fuller test. (See

Dickey and Fuller (1979).) The null hypothesis of a unit root is tested by

estimating an AR model of order p for the once differenced time series also

including the un-differenced realizations of lag one. Equation (3.11) shows

the underlying regression model:

∆xt = ǫt + γxt−1 + φp(L)∆xt−1 (3.11)

Under a true null hypothesis the parameter γ has to be compatible with

zero. However, if the parameter γ significantly deviates from zero the dif-

ferenced time series can be regarded as over-differenced or, equivalently, the

time series shows no indication of a unit root. The parameter p has to be

selected high enough to capture the relevant structure of the time series.

Generally, the test less likely rejects the null hypothesis the higher the value

p is.

Should a unit root not be rejected the test has to be repeated for the

differenced time series until a unit root can be rejected. In this way multiple

roots are accounted for and the appropriate degree of differencing for a given

time series can be determined.

3.3.2 Sample autocorrelation function and sample partial au-

tocorrelation function

In this section a stationary invertible time series that can be represented by

an ARMA(p, q) process centered around zero is considered. The two orders

p and q are unknown and have to be identified. This identification can be

based on the autocorrelation function (ACF) and the partial autocorrela-

tion function (PACF) or more precisely their respective sample estimations

(SACF and SPACF). As discussed in Section 3.1, the time series can be

represented as both a MA and an AR process. It can be shown that the

ACF of a finite MA(q) process will vanish at the q-th lag while the PACF

of a finite AR(p) process vanishes after the p-th lag. Therefore, the sample

estimates of the ACF and the PACF give an indication of the appropriate

orders for the estimation of a general ARMA(p, q) process. The selected

models can than be estimated and compared.

Autocorrelation function

The discussed ARMA model relies on information from past observations of

the time series. To capture this, the autocorrelation (ρ) of the time series
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can be calculated at different lags (k):

ρk = Cov(xt, xt−k)/V ar(xt)

Looking closer at the covariance and using the representation of the ARMA

process by polynomials given in equation (3.3) the following results:

γk = Cov(xt, xt−k) = E(xt · xt−k) = E(xt−k · xt) = γ−k

= E((ǫt +

p
∑

i=1

φixt−i +

q
∑

i=1

θiǫt−i) · xt−k)

= φ1γk−1 + . . . φpγk−p

+ E(ǫt · xt−k) + θ1E(ǫt−1 · xt−k) + . . . θqE(ǫt−q · xt−k)

Using the invertibility of the time series xt−k it can be expressed by a MA

process:

xt−k =
θ(L)

φ(L)
ǫt−k ≡ θ̃(L)ǫt−k =

∞∑

i=0

θ̃iǫt−(k+i)

⇒ E(ǫt−lxt−k) = E(ǫt−l

∞∑

i=0

θ̃iǫt−(k+i)) =

{
θ̃l−kσ

2, ∀ l ≥ k

0, ∀ l < k

⇒ γk =

p
∑

i=1

φiγk−i + σ2 · 1[1,q](k)

q
∑

j=k

θj θ̃j−k

⇒ ρk =

p
∑

i=1

φiρk−i

︸ ︷︷ ︸

AR(p)

+1[1,q](k)

q
∑

j=k

θj θ̃j−k

︸ ︷︷ ︸

MA(q)

(3.12)

Equation (3.12) has two summands for the AR and the MA part of the

process, respectively. The summand of the AR part shows the same au-

toregressive behavior as the time series and, therefore, slowly decays to zero

with increasing k. In contrast, the summand of the MA part abruptly falls

to zero as k increases to values lager than q in the indicator function.

On a finite sample of a time series of size N the autocorrelation func-

tion has to be estimated. Equation (3.13) shows the computation formula

suggested in Rachev et al. (2007):

ρ̂k =

N∑

i=k+1

(xi − x̄)(xi−k − x̄)

N∑

i=1
(xi − x̄)2

(3.13)



3.3. MODEL BUILDING 41

Implicitly, the estimators of the covariance in the numerator and the variance

in the denominator are normalized by the same factor in this computation.

This disregards that the covariance has k summands less than the variance.

However, this bias is insignificant for lags k that are much smaller than the

sample size N . At the same time it guaranties the estimated autocorrelation

function of the given time series to be associated with a stationary time series

thereby increasing the robustness of the calculation (Rachev et al. (2007)).

Partial autocorrelation function

The autocorrelation function represents the unconditional correlation of two

realizations separated by lag k. In contrast, the partial autocorrelation (α)

represents the correlation between to realizations separated by lag k condi-

tional on the correlation that might exist to intermediate realizations. In

other words, the partial autocorrelation is the k-th coefficient of an autore-

gression model where the contribution of the intermediate lags is taken as

given:

αk =
Cov(xt, xt−k|xt−1, . . . xt−(k−1))

V ar(xt)
.

To obtain the partial autocorrelation function a pure AR estimation of order

k∗ is applied for each lag. Taking the expectation value results in the set

of equations of the autocorrelation function of the pure AR(k∗) process for

each lag given in equation (3.12):

ρk =
k∗

∑

i=1

φ̃iρk−i

⇒ αk∗ = φ̃k∗

This set of equations is called Yule-Walker equations. Based on the known

autocorrelation ρk the coefficients φ̃i can be calculated. Considering a time

series that is described by an AR(p) process, the coefficients of an applied

process φ̃i are zero for all lags greater than p as the time series is fully

described by the first p coefficients. In contrast, a pure MA process has an

AR representation of infinite order. Therefore, its partial autocorrelation

function will only decay to zero.

The estimate of the PACF can be calculated by using the estimates

of the autocorrelation and successively solve the Yule-Walker equations for

each lag. It is useful to base this estimation on a matrix representation of
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the Yule-Walker equations:








1 ρ̂1 . . . ρ̂k∗
−1

ρ̂1 1 ρ̂k∗
−2

...
. . .

...

ρ̂k∗
−1 ρ̂k∗

−2 . . . 1















φ̃k∗,1
...

φ̃k∗,k∗
−1

φ̃k∗,k∗








=








ρ̂k∗,1
...

ρ̂k∗,k∗
−1

ρ̂k∗,k∗








Yk∗ φ̃k∗ = ρ̂k∗

In this representation the value of the PACF can than be found by applying

Cramer’s rule resulting in equation (3.14):

α̂k∗ =
det(Yk∗,k∗)

det(Yk∗)
(3.14)

In fact this procedure can be used to estimate the parameters of a purely

autoregressive model of order p where the sample partial autocorrelation

function is an estimate of the model parameters.

3.3.3 Estimation

Based on the inspection of the sample autocorrelation function and the sam-

ple autocorrelation function, appropriate orders for an ARMA(p, q) repre-

sentation of a time series are selected for further inspection. The parameters

of these selected ARMA(p, q) representations have to be estimated to com-

pare the representations. As stated in the previous section the parameters of

a purely autoregressive model can be estimated using the sample partial au-

tocorrelation function. However, in the case of a general ARMA(p, q) model

the estimation is complicated by the unknown innovations time series.

A popular concept to estimate the parameters is the maximum likelihood

(ML) procedure. This procedure searches the parameter space to identify

the parameter set that makes the realized time series most probable. In

statistical terms the ML procedure maximizes the joint probability density

of all realizations. It is convenient to start the estimation at the p + 1-th

observation to avoid the problem of estimating the initial values. Also, the

first innovations are estimated by their expectation value (i.e., zero). Under

these assumptions the joint probability density function can be decomposed

into a series of independent density functions, namely the innovations. In

turn the distribution type of the innovations can be set, for example to the
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normal distribution:

f(xT , . . . xp+1|xp, . . . x1, ǫp = 0, . . . ǫp−q+1 = 0;φ, θ, σ2)

=
T∏

i=p+1

f(xi|xi − 1, . . . x1, ǫp = 0, . . . ǫp−q+1 = 0;φ, θ, σ2)

=
T∏

i=p+1

1√
2πσ2

e
(ǫi)

2

2σ2

where ǫi = xi −
p

∑

j=1

φjxi−j +

q
∑

j=1

θjǫi−j

In other words, the density function conditional on the past observations is

the density function of the innovations centered on the linear forecast based

on the past observations. Transforming the likelihood function by taking

the logarithm results in the log-likelihood function in equation (3.15):

lnL(xT . . . xp+1; φ, θ, σ)

= −0.5T · ln(2π) − 0.5T · ln(σ2) − 0.5σ−2
T∑

i=p+1

ǫ2i . (3.15)

Once the log-likelihood function is established it can be used in an iterative

maximization procedure. As the number of parameters might be high it is

important to employ a suitable search algorithm such as the gradient decent

or Newton’s method.

3.3.4 Diagnostic checking

In general, the model selection has to balance the description of the realized

time series with the complexity of the model. A higher number of para-

meters allows the model to capture the behavior of the realized time series

better but it introduces the risk of capturing purely stochastic features and

inevitably introduces an additional error from the parameter estimation.

As a first step the residuals of the estimated model can be inspected

within the same frame work as the original time series. In particular, the

residuals should present a sample ACF and a sample PACF that are com-

patible with a pure white-noise process. This notion is formalized in the

Portmanteu tests like the Ljung-Box test. Its test statistic (Q) is based on

the first K sample autocorrelations (ρ) of a sample of size (T ) and is χ2
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distributed:

Q = T (T + 2)
K∑

k=1

ρ̂k

T − k

It is important to note that the Ljung-Box test does not incorporate the

number of parameters (n) and therefore favors highly parameterized models.

Also, the test can only be used to reject a model based on its autocorrelated

residuals but does not guarantee the independence of the residuals.

Two selection criteria are established to select among models that cap-

ture the relevant time series features. These criteria are the Akaike infor-

mation criterion (AIC) and the Bayesian information criterion (BIC). Both

criteria can be calculated from the log-likelihood value in equation (3.15)

of an estimated model, where a specific penalty term for the number of

parameters (n) is added:

AIC = −2 lnL + 2n

BIC = −2 lnL + n · ln(T )

Both criteria suggest selecting the model with the lowest value. As is evi-

dent from the definition, the BIC has a stronger focus on a low number of

parameters than the AIC. No model can be rejected based on the AIC or

BIC values. In addition, model selection should therefore always be guided

by a careful inspection of the residuals.



Part II

Analysis of balancing energy

strategies

45





Chapter 4

Patterns in the balancing

energy demand

Following the discussion in Chapter 2 balancing energy can be regarded as a

forecasting error because it accounts for the fluctuations and unpredictable

events that are not included in the BRPs preliminary scheduled electricity

feed-ins and withdrawals. From this point of view balancing energy demand

should be unpredictable on any relevant time scale. That is a time scale that

allows BRPs to adjust their portfolios. In the case of the German market

this time scale is at most the billing period of one month in which the BRPs

are informed about their deviations and the control area’s net deviation.

At the same time balancing energy is physical transaction of energy and

can therefore be used by BRPs to balance their forecasted feed-ins and with-

drawals to some extent. Such positions in the balancing energy market shift

the inevitable fluctuations towards the positive or negative, and allow an op-

timization of the preliminary schedule. However, just like the fluctuations

intent positions in the balancing energy market have to be limited to ensure

secure network operation.

The market designs introduced in Section 2.1 reflect a different weighting

of these two aspects of the balancing energy market. In the case of the Ger-

man market there are no strict boundaries for active positions, but rather

fuzzy limits that are imposed by a system of balancing energy prices and

penalties. (See Bundes Netz Agentur (2006)). In this chapter1 the German

balancing energy demand is analyzed for predictable components that con-

tradict the interpretation of balancing energy as a pure forecasting error.

In addition, a econometric model for these predictable components is build,

which allows to quantify the fuzzy limits in empirical terms. This analysis is

organized in three sections reflecting the different time scales and incentive

1This chapter is based on Möller et al. (2010) and Möller et al. (2009b)
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structures that are associated with particular intent positions, and is based

on the time span 2003-2008.

4.1 Literature review

Depending on the market design the incentives for an active position in the

balancing energy market can be diverse. Longstaff and Wang (2004) ana-

lyze the price convergence of the day-ahead and the real-time market in the

setting of the Pennsylvania — New Jersey — Maryland (PJM) electricity

market. They find a sustained premium of the day-ahead forward contracts

over the real-time market that they attribute to risk factors in the style of

Bessembinder and Lemmon (2002). Moreover, Saravia (2003) observe in a

similar study of the elecricity market in New York a reduction in the forward

premium after the authorization of virtual bids in the real-time market (i.e.,

an enhancement of active positions by allowing purely speculative positions

that are not motivated by the management of physical electricity transac-

tions.) This example demonstrates how strategic positions in the balancing

energy market contribute to an efficient functioning of an electricity market.

In contrast, other markets are designed to undermine any strategic po-

sition. One such example is the electricity market in the Netherlands. In

the Netherlands the TSO follows the explicit objective to drive all BRPs

to present preliminary schedules without active position in the balancing

energy market. (See Beune and Nobel (2001)). Boogert and Dupont (2005)

test the effectiveness of the market design in accomplishing this objective.

They find that the dual-price market design does not allow profitable strate-

gic positions even with the superior knowledge of the control area’s future

average net deviation. Only under the ex-ante knowledge of extreme fluc-

tuations can a profitable strategy be implemented. Boogert and Dupont

therefore conclude the strategic positions in the balancing energy market

can be disregarded in the case of the Netherlands.

In general, a dual-price settlement scheme compromises the interaction

of the balancing energy market with alternative marketplaces. Regardless,

the marketplaces are interchangeable. Therefore, the specific pricing of bal-

ancing energy may lead to biased preliminary schedules nonetheles as the

following two examples demonstrate. Kirschen and Garcia (2004) state that

balancing energy is too expensive in the market in England and Wales. As

a result, market participants keep their own reserve capacity rather than

resorting to system reserves. Consequently, deviations will be actively man-

aged even if an offsetting deviation exists somewhere else in the control

area. This results in an inefficiently high allocation of reserve capacity be-

cause market participants refrain from selling reserve capacity to the TSO
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and buying back with the additional transaction cost (i.e., the market is in

oversupply of production capacity). In contrast, Mielczarski et al. (2005)

have argued that in Poland balancing energy is too inexpensive. So market

participants use the system’s reserve to supply about 4% of total electricity

demand (i.e., the market is in undersupply). Also, Belmans et al. (2009)

describe that the preliminary schedule can be distorted by the dual-price

settlement scheme. Moreover, they identify this settlement scheme as a

market entrance barrier because transaction costs are avoided by netting

out fluctuations in a BRPs portfolio. Naturally, this is most effective in the

portfolio of large players.

The single-price settlement scheme of the German market bridges the

gap between the dual-price settlement scheme and the real-time market.

It allows and encourages strategic positions in the balancing energy mar-

ket, however, once initiated these positions cannot be adapted during the

real-time operation. Nailis and Ritzau (2006) analyze the balancing energy

prices in the four German control areas. However, they are unable to identify

strategic positions and an interplay with the day-ahead market due to the

high variability of the balancing energy prices. In the following analysis of

the balancing energy demand this barrier is avoided and strategic positions

are identified.

4.2 General model

It is helpful to discern five factors that influence balancing energy demand

(DB) on different time scales. Most prominent there is a non-predictable

event risk (σ). This factor will be present in any balancing energy market be-

cause it is designed to settle electricity transactions caused by unpredictable

events. In addition, the German balancing demand shows four other factors

that correspond to the representation of the preliminary schedule. These fac-

tors are the gradient of load (∇L), a day-ahead market statistical-arbitrage

incentive (I), a technical incentive (Itec), and a varying general market po-

sition (f). Assuming independence of the four factors, these factors can be

modeled separately, yielding equation (4.1) as a general model for balancing

energy demand in this thesis:

DB(t) = q(∇L(t)) + h(I(t), Itec(t)) + f(t) + σ(t) (4.1)

There is a twofold separation in the model. First, the model separates

strategic positions according to the time scale to which they are applied.

These time scales are the quarter-hour interval, the hour interval, and po-

sitions taken over extended periods of time. The presentation of the results

is organized along the line of this separation. Second, the model separates
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positions corresponding to the two alternative marketplaces, the day-ahead

market and the capacity reserve market. In particular, the balancing energy

market is an alternative marketplace for the capacity reserve market on the

quarter-hourly time frame, whereas the day-ahead market is regarded as the

representative market on hourly and longer time frames (i.e., an equilibrium

of day-ahead and capacity reserve market is assumed on these time frames.)

All the model components —except for the σ term— demonstrate that mar-

ket participants are not using their best minimum-variance forecast because

they represent predictable components.

4.3 Quarter-hourly pattern

Balancing energy is set with quarter-hour settlement periods in Germany,

whereas the smallest contractual period on the day-ahead market is one

hour. This discrepancy creates a distinct pattern, which is appropriately

termed the quarter-hourly pattern in this work. At the same time the longer

contractual period in the day-ahead market inhibits any direct interaction

with the balancing energy market on the sub-hourly time frame because no

countering positions can be initiated. In fact, the balancing energy market

constitutes the only liquid marketplace for electricity transactions on a sub-

hourly time frame in Germany. (See Section 2.3)

4.3.1 Modeling approach

The model is based on a consideration of the situation during an hour with

an increasing load. The minimum-variance forecast for this hour that is

tradable in the day-ahead market is the mean load during that hour. With

this forecast the deviation will be negative in the first and second quarter

of that hour and positive during the third and fourth quarter of that hour.

Obviously, the same argument with opposite signs holds for a load decline.

This effect will be more pronounced the higher the gradient of the load

during that hour is. This gradient effect is also observed by Nailis and

Ritzau (2006). Consequently, the effect can be modeled by the average load

during the four quarter-hour periods (L̄q(t)) and the average load during

the corresponding hour (L̄h(t)). This leads to the model in equation (4.2):

q(∇L(t)) = q · (L̄q(t) − L̄h(t)) q ∈ [0, 1) (4.2)

Here, the parameter q represents the electricity producers’ ability to keep

to their step function profile of hourly scheduled production. Should con-
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sumption and production change at the same rate, the factor will be zero.

A value of one indicates a perfect step function of output corresponding to

a theoretical infinite ramping speed of power stations. Negative values are

excluded for the parameter q because consumption is assumed not to follow

the step function schedule of day-ahead contracts.

To test this model it is compared to the empirical average pattern re-

trieved from the balancing energy data. This average pattern is defined

by the mean-balancing energy demand relative to the corresponding hour’s

mean value, conditional on the quarter-hour interval of a day. Figure 4.1

shows the resulting pattern using 2004 data. Here, the four quarter-hour

intervals of each hour are joined by lines to sort the 96 values. Note that

by definition this pattern cannot be influenced by effects on hourly or even

longer time scale, as each hour segment is centered on zero. In particular,

any influence of the day-ahead market is separated. These are discussed in

Section 4.4 and Section 4.5.

An estimation of the parameter q using a 2004 load measurement in

quarter-hourly resolution yields q = 0.424. Comparing the pattern retrieved

from this model to the empirical pattern results in an R2 equal to 0.8696,

which is significant at the 0.1% significance level. This demonstrates the

high explanatory power of the model for the quarter-hourly pattern. Ad-

ditionally, fully exploiting the model’s prediction could reduce the sample

variance by 12.03%.

To improve the illustration, the depicted segments in Figure 4.1 are

joined in Figure 4.2. In this figure the missing information on the gradient

between two consecutive hours is estimated as the average of the adjacent

segments. Figure 4.2 shows the joint pattern based on the load data scaled

by an estimated parameter. Clearly, the empirical pattern resembles the

average German load profile. This is yet another indication of the model’s

fitness. A close inspection shows a pronounced difference of model and data

between interval 20 and 24. While the model predicts a gradual increase,

the real data presents a plateau. This coincides with mid-load units syn-

chronizing to the grid frequency and going online between five and six in

the morning to cover the steep load increase of the following hours. Con-

sequently, the ability of the production side to follow the step function of

day-ahead contracts is reduced in that hour. In the context of the hourly

pattern this results in an even more pronounced effect that will be discussed

in Section 4.4. In general, the model in equation (4.2) cannot capture such

technical aspects in the quarter-hourly pattern. However, such aspects can

be regarded as constant over the analyzed period.

To further investigate the quarter-hourly pattern, the patterns of all

years in the interval 2003 to 2008 are therefore retrieved. These patterns
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Figure 4.1: Expected quarter-hourly deviation conditional on the interval
during a day (quarter-hourly pattern). Intervals forming an hour are joined
by lines.
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Figure 4.2: Comparison of model (dark) and scaled data (light) using 2004
data.
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are used to predict the other patterns in this group in an out-of-sample

analysis as shown in Table 4.1. The high R2 values indicate the consistency

of the quarter-hourly pattern. Moreover, the explanatory power tends to

be higher for subsequent years demonstrating that this simple factor cap-

tures aspects not included in the gradient model in equation (4.2). When

using the pattern of the total sample and an additional scaling factor to

predict the yearly patterns, a diminishing amplitude of the quarter-hourly

pattern is observed as can be seen in Table 4.1. This finding is supported

by Figure 4.3 which displays the patterns of hourly line segments joined

into daily patterns for illustration. In comparison to the gradient model,

the prediction of the quarter-hourly pattern by the out-of-sample pattern of

the preceding year reaches an even higher accuracy. This predictor better

incorporates technical issues such as the flattening between interval 20 and

24, and therefore lends itself for modeling. However, one should bear in

mind that this modeling is vulnerable to a change in the shape of the load

profile. The gradient model is based on a more general understanding and

can therefore be employed in such situations.

4.3.2 Incentive for the quarter-hourly pattern

It is important to note that the quarter-hourly pattern is driven by the

consumption side of the market rather than the production side. Overall

it can be said that the production side follows the step function dictated

by hourly contracts, while the consumption changes gradually. This brings

about the quarter-hourly pattern. As there is no liquid market to trade

electricity with sub-hourly delivery periods in Germany, there is practically

no way to avoid the quarter-hourly pattern. For this reason BRPs that are

positively correlated to the load pattern (consumers) incur additional cost,

while BRPs that are negatively correlated to the load pattern (producers)

have a financial gain. So there is an economic incentive for BRPs to re-

distribute part of its load within an hour and obtain a negative correlation

to the quarter-hourly pattern for that part of its load. Such a strategy is

equivalent to buying electricity during periods with an expected lower net

deviation and price, and selling it at higher prices during periods with an

expected higher net deviation.

The described strategy results in an intervention similar to that of re-

serve capacity and aids network stability. So, on a quarter-hourly time

frame the balancing energy market is an alternative marketplace to the ca-

pacity reserve market. However, in contrast to the capacity reserve market

there are no pre-qualification standards. Also, there is no fixed compensa-

tion but rather a statistical-arbitrage return. Consequently, the balancing
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Figure 4.3: Shape of the load curve as estimated from quarter-hourly bal-
ancing energy data
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energy market will also attract additional capacity which is not tradable

on the capacity reserve market. In fact, the diminishing amplitude of the

quarter-hourly pattern is an indication of market participants recognizing

and exploiting the balancing energy market in this manner. In Chapter 5

these ideas are developed further.

4.4 Hourly pattern

By definition the quarter-hourly pattern will always average to zero over the

four intervals of an hour. Consequently, the quarter-hourly pattern has no

implications on electricity spot prices. However, on an hourly time frame

the balancing energy market is an alternative marketplace for the electric-

ity trades in the day-ahead market and contracts in the capacity reserve

market. (See Section 2.3). To investigate the balancing energy data on this

time frame the data is integrated to hourly values, which correspond to the

hourly contracts traded in the day-ahead market. All subsequent analysis

is based on these hourly balancing energy data. Furthermore, it is assumed

for simplification that the day-ahead market is in equilibrium with the other

marketplaces including the capacity reserve market. (See Wieschhaus and

Weigt, 2008). Therefore, the general market can be represented by the day-

ahead market prices only.

4.4.1 Describtion and incentive structure

As introduced in Section 2.1, there is a fundamental weekly seasonality in

the German electricity market, as shown in Figure 2.1. To match this sea-

sonality a weekly pattern from the balancing energy data is extracted using

the following approach. For each day of the year a symmetric time window

of seven weeks is applied, and the balancing energy data are aggregated

over the years 2003-2008. The pattern is then estimated by the average

demand conditional on the hour within a week. The resulting hourly pat-

tern is presented in Figure 4.4. When compared to the load in Figure 2.1,

a similar seasonality is inherent in the balancing energy demand matching

the seasonal characteristics of the load in many details. The hourly balanc-

ing energy pattern is capturing both the weekly peak and off-peak shape,

and the summer-winter dependence, well characterized by the presence of

an additional pronounced demand peak during evening hours in the win-

ter months. The presence of this pattern is clearly incompatible with all

BRPs providing a balanced minimum-variance forecast because such fore-

casting should result in a purely random pattern of conditional expectation

values. In general, the observed hourly positions result either from a reluc-
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tance of market participants to provide balanced forecasts, or they indicate

intentional strategic behavior. An inadequate consideration of transmission

losses and a load-dependent risk of failures could be the reason behind the

former. The latter is linked to statistical-arbitrage incentives between the

balancing energy market and the day-ahead market. As outlined in Section

2.1 these strategic positions result in a cost reflective preliminary schedule.

While it is impossible to disregard the reluctance of market participants,

the following analysis demonstrates that the detected positions are at least

partially of strategic nature.

To test the continuity of the hourly pattern yearly patterns are calcu-

lated. In an adaption of the approach used for the hourly pattern, the data

are averaged over summer and winter months. Consequently, the resulting

patterns will not uncover the summer-winter dependence. However, individ-

ual years can be compared by using the out-of-sample average pattern for

each year as a prediction for the in-sample pattern. The results are presented

in Table 4.2. With the exception of 2004, this simple one factor model has

reasonable predictive power. A further inspection of the prediction error

in 2004 shows the prediction is capturing the general shape well. However,

it overestimates the amplitude. This finding is supported by an in-sample

fit of a scale parameter to the out-of-sample pattern reported as R2∗ . The

scale parameter of 2004 is almost halved. Reluctance does not explain such

sudden changes in the observed pattern as it would change gradually if at

all. So this reduced scale indicates a change in strategic positions in the bal-

ancing energy market. Moreover, 2004 was a year with an exceptionally low

number of electricity price spikes in the day-ahead market. In this context

the absence of spikes reduces the statistical-arbitrage incentive between the

balancing energy market and the day-ahead market, and may explain the

change in amplitude of the hourly pattern. This hypothesis of an adaption to

a varying statistical-arbitrage incentive is tested in the following discussion

that considers the arguments on balancing energy demand and day-ahead

prices in Section 2.3 further.

German balancing energy prices depend on the prices of secondary and

tertiary capacity reserve and the balancing energy demand. Furthermore,

the prices of capacity reserve reflect only the small fraction of readily ad-

justable installations. In contrast, the price in the day-ahead market reflects

the supply and demand equilibrium of the full merit-order-curve at an hourly

time scale. In addition, demand remains the sole determining factor of bal-

ancing energy prices responsive on an hourly time frame because secondary

and tertiary reserve capacity prices involve longer contractual periods of one

month and four hours respectively.

Consequently, market participants have an economic incentive to con-
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Table 4.1: R2 using yearly quarter-hourly pattern and scaled total quarter-
hourly pattern for prognosis. R2 values significant at the 0.1% significance
level.

Predictor Year
pattern 2003 2004 2005 2006 2007 2008

R2

2003 - 0.9853 0.9074 0.9413 0.8867 0.7830
2004 0.9865 - 0.9393 0.9520 0.9130 0.8427
2005 0.9396 0.9569 - 0.9738 0.9681 0.9329
2006 0.9538 0.9588 0.9683 - 0.9775 0.9260
2007 0.9243 0.9367 0.9673 0.9809 - 0.9703
2008 0.8746 0.9010 0.9405 0.9457 0.9743 -
Totalscaled 0.9820 0.9861 0.9896 0.9909 0.9866 0.9667

Scalein−sample 1.1478 1.1025 0.9301 1.0229 0.9405 0.8657

Table 4.2: R2 using out-of-sample average and scaled out-of-sample average
for the prediction of the hourly pattern. R2 values significant at the 0.1%
significance level.

Year 2003 2004 2005 2006 2007 2008

R2 0.7857 0.2003 0.7435 0.7712 0.8316 0.8492

R2∗ 0.7863 0.6229 0.8019 0.8286 0.8381 0.8536

Scalein−sample 0.9733 0.5483 0.7874 1.3570 1.0961 1.0772
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Figure 4.4: Weekly balancing energy pattern (Monday to Sunday) in sum-
mer (light) and winter (dark) (hourly pattern)
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sume more of the risky but evenly priced balancing energy as demand and

prices on the day-ahead market rise. Therefore, an hourly pattern in bal-

ancing energy should resemble the load profile. This represents an superior

preliminary schedule under the condition of demand uncertainty as com-

pared to a preliminary schedule with no strategic position in the balancing

energy market. In practice, market participants would exercise their grid

excess as a real option when electricity prices are high as long as balanc-

ing energy is expected to have a favorable price (i.e., until the two markets

reach an equilibrium). It should be stressed that exploiting this spread be-

tween day-ahead market prices and expected balancing energy prices is a

statistical-arbitrage opportunity as balancing energy prices are uncertain at

the time a position is entered.

To capture this incentive for strategic positions in the balancing energy

market a factor (I(t)) is introduced . This factor is defined by the difference

of day-ahead prices from the current price level. As a specification of the

price level the median price of the preceding four weeks is used. The time

span of four weeks is chosen in an effort to balance stability and slackness

considerations in the definition of a price level. This is supported by testing

other multiples of weekly time spans that did not change the substance of

the results. However, the median was explicitly chosen to create a spike-

insensitive measure for the price level, so that the defined factor will capture

price spikes.

The marks in Figure 4.5 show the mean balancing energy demand condi-

tional on the factor value. Here, the balancing energy demand is measured

relative to a long-term mean level of four weeks. This separates effects of

longer time duration that are discussed in Section 4.5. Each individual year

in the dataset is displayed demonstrating an overall continuous structure.

The dependence structure reaches from a central linear domain into a do-

main of saturation at higher factor values. The effect of saturation is to be

expected in view of the limited reserve capacity the grid operator provides.

These constraints are reflected by balancing energy prices and enforced in

grid access contracts. (See Appendix B). In principle, these findings apply

as well to all four control areas individually as can be seen in Figure 4.6.

However, the data cannot account for balancing activity between control ar-

eas. Such effects are excluded by netting all four control areas, and therefore

the further investigation is restricted to the hypothetical combined control

area that corresponds to the single German day-ahead market.
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Figure 4.5: Factor value (I(t)) and hourly balancing energy demand
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Figure 4.6: Conditional average hourly balancing energy demand versus
factor value (I(t)) in the four German control areas
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4.4.2 Factor model

A three-parameter factor model is proposed for the hourly balancing energy

deviation pattern (see first summand in equation (4.3)):

h(I(t), Itec(t)) = a ·
(

2

1 + b · e−c·I(t)
− 1

)

+ Itec(t) ∀a ∈ Rb, c ∈ R+ (4.3)

Figure 4.7 and Table 4.3 show parameter estimates from out-of-sample fits

for each year and corresponding R2 values. Evidently, the dependence struc-

ture is constant over time. Moreover, this factor model captures the change

in amplitude that in imposed by less volatile electricity prices in 2004.

When compared to the R2 values in Table 4.2, the factor model does

not seem to explain the hourly pattern fully. A further inspection of the

residual pattern shows the change in amplitude for the year 2004 to be cap-

tured well, but some pronounced seasonal effects remain. One such example

is a highly negative balancing energy demand between five and six at week-

day mornings. As discussed in Section 4.3 this coincides with peak units

synchronizing and going online to cover the following steep ramping hours.

In this view the oversupply in the first half of the hour is explained by the

positive load gradient, while the oversupply in the second half is related to

power stations synchronizing with the grid frequency and starting to feed-in

electricity ad minimal capacity. Through this combination the hour five to

six in the morning is on average in constant oversupply.

To include such technical effects that will be constant over time, the out-

of-sample weekly average pattern is used as an additional factor (Itec(t)).

The resulting combined model in equation (4.3) can explain much of the

detected seasonal variation. (See Table 4.3.) Also, when compared to the

R2∗ values in Table 4.2, the combination of statistical-arbitrage incentive

and technical effects shows similar predictive power. However, the latter

model does not resort to in-sample information. Using this out-of-sample

prediction, the variance of the hourly balancing energy data is reduced by

19.2%.

The detected hourly pattern can be modeled by equation (4.3). While

the Itec component in this model is compatible with a reluctance of mar-

ket participants to provide a balanced forecast, the contribution of the

statistical-arbitrage incentive is evidence of strategic balancing energy de-

ployment. Clearly, market participants recognize and implement the statis-

tical-arbitrage opportunities between the day-ahead market and the balanc-

ing energy market in their portfolio management. Such strategies result in

a lower than average amplitude of the hourly balancing energy pattern in

years with less than average electricity price spikes as 2004.
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Figure 4.7: Factor model (I(t)) prediction (solid lines) and data (asterisk).
R2 values significant at the 0.1% significance level.
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4.5 Long-term pattern

After a few of their respective cycles, the average of both the quarter-hourly

pattern and the hourly pattern is zero. In fact, in Section 4.3 and 4.4

these patters are by definition referenced to the average value on a longer

time frame. This guarantees the separation of effects on the different time

scales. In order to complete the analysis, positions in the balancing energy

market that are persistent over longer periods of time are investigated. These

positions are extracted from the residuals of the hourly factor model in

equation (4.3), by application of a seasonal autoregressive integrated moving

average (SARIMA) model as applied in similar setting by Olsson and Söder

(2008).

4.5.1 SARIMA model of residuals

To adapt a linear time series model to the residuals, the data need to be

checked for stationarity. For this an augmented Dickey-Fuller unit root test

is employed. The null hypothesis of a unit root is rejected at a significance

level below α = 0.001 even when including the first 168 lags for the regres-

sion and stationarity is accepted.

This finding is supported also by a consideration of the physical boundary

conditions of the underlying data. Balancing energy demand is fulfilled by

the TSO to ensure grid balance. This energy has to be delivered physically

by power stations. Thus, the installed capacity imposes a hard boundary.

This boundary can, however, never be reached because the response time

and response capacity of power stations impose an even tighter boundary.

Due to their design powers stations cannot run on an arbitrary fraction of

their designed capacity, but have to be operated within a certain bandwidth

instead. Additionally, a complex system such as a power station has a con-

siderable amount of inertia, and cannot instantaneously adapt to changes

in operation. When looking at the total generation stock, these facts do

not translate into a hard boundary. Instead, the true limits depend on

the exact condition and history of all individual facilities connected to the

grid. Nonetheless, a limit to fluctuations the TSO can manage always exists.

Consequently, it is physically impossible for the balancing energy demand to

grow to very large positive values or to fall to very small negative values. On

the contrary, balancing energy will always be within a bandwidth around

zero. Mathematically, this argument relates to a stationary time series, and

the absence of unit roots. The residuals can therefore be modeled without

the need of further differencing.

As a first step an inspection of the SACF and SPACF of the residu-

als in Figure 4.8 shows the presence of SARIMA effects in the data. The
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Figure 4.8: Sample autocorrelation and partial autocorrelation
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autocorrelation decays off with increasing lag. Additionally, this decay is

disturbed at multiples of 24 indicating a seasonality of 24 hours. This is

supported by the partial autocorrelation function displaying a drop at lag

one and 24, together with a decaying negative partial autocorrelation at lags

following multiples of 24. Moreover, the SPACF indicates another step at

lag three. Therefore the multiplicative models SARIMA(1, 0, 0) × (1, 0, 1)24
and SARIMA(3, 0, 0) × (1, 0, 1)24 are chosen as candidates for the model.

In addition to the classical model with Gaussian innovations, models with

t-distributed innovations are included as representatives of heavy-tailed in-

novations in the analysis. This is the standard approach suggested by Zum-

bach (2006). It provides a compromise between a heavy-tailed innovation

distribution and robust parameter estimation for the SARIMA model. Table

4.4 holds the AIC and BIC values of different specifications including both

Gaussian and t-distributed innovations. The SARIMA(1, 0, 0) × (1, 0, 1)24
model with t-distributed innovations is chosen for two reasons. First, the

AIC and BIC values indicate a preference of t-distributed innovations over

the Gaussian case. Second, the TSO’s information disclosure to market par-

ticipants is several days to a month. Therefore, the low-lagged coefficients

are of minor practical relevance in the context of this analysis because their

effect decays off rapidly and cannot be utilized on a relevant time frame.

The ar3 coefficient is consequently disregarded. Note that the suggested

t-distributed innovations demonstrate the necessity of a heavy-tailed noise

term in the model. This reflects the importance of unpredictable extreme

events for the balancing energy demand as will be further investigated in

Section 4.5.3.

To conclude this section, an analysis of the consistency of the model over

time and a test of the validity of its forecasts is performed. Table 4.5 reports

the parameter estimates of the model based on yearly sub-samples. The

parameter estimates are consistent with the overall model. It is therefore

decided to test the forecasts of the overall model rather than the individual

yearly models.

As stated above, the TSOs do not reveal the information on balancing

energy demand to the market continuously, but rather publish the data for

the preceding month once a month. So the data for May will be available

by July. Therefore, it is of no practical relevance to test the one-time step

forecast because this has no practical implication in the given market de-

sign. Instead, a forecast horizon adapted to the information revealed to the

market is tested. As a result forecasting is performed once a month based on

the information lagged one month (i.e., the forecast horizon is 720 to 1,440

lags). Additionally, a forecasting horizon of three days is tested because one

of the TSOs also publishes the balancing demand data in its control area
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with this time delay (i.e., a forecast horizon of 72 to 96 lags). In both cases,

the sample variance is reduced by subtracting the conditional expectation.

When using the monthly forecast, the variance is reduced by 3.69%. Apply-

ing a three-day forecast horizon results in a 11.22% reduction.

Based on the model coefficients, this additional variance reduction as

compared to the analytical model in Section 4.4 can be decomposed into

two components. The first component represents comparatively short-lived

patterns in the data. These patterns can be understood as a linear correction

term for the analytical model. The second component captures a non-zero

conditional mean of the time series. This component is in the focus of this

section and represents a long-term position in the balancing energy market.

Neither the gradient effect nor the statistical-arbitrage incentive described

in Section 4.3 and Section 4.4 can account for such positions because they

are defined to average to zero over a few cycles of their respective seasonal-

ity. However, when looking at the average forecast of the SARIMA model in

Table 4.6, it is evident that the SARIMA forecast does not average to zero

over a few cycles, but displays a long-term pattern in the balancing energy

demand.

4.5.2 Incentives for long-term positions

In this section these results are considered in the context of electricity port-

folios. Market participants use the balancing energy market not only for

short-term adjustments to their portfolio as in the hourly pattern, but also

take positions over extended periods of time. This is supported by the re-

sult displayed in Figure 4.9 that shows the timely evolution of the three-day

forecast. It clearly displays the predictable long-term offset in the balancing

energy demand. The magnitude and the sign of this offset vary over the

years. This finding persists even in the case of the long forecast horizon of a

month. Thus, this offset cannot be attributed to a lack of information, and

the change in amplitude and sign indicates intentional positions.

As in the case of the hourly pattern, a long-term position in the bal-

ancing energy market coincides with a countering position in the futures

market. Specifically, the day-ahead futures market serves as a reference in

this analysis. From this perspective, the price of the deviation is the differ-

ence between the balancing energy price and the day-ahead market price.

In other words, a positive deviation can be described as a short position in

a day-ahead contract, and a long position in the balancing energy market,

and vice versa for a negative deviation. In turn, the cost of deviations are

obtained by multiplying price and volume, and the cost function can be ap-

proximated by the average cost for a given deviation.

Figure 4.10 shows the estimated cost function in the different control



4.5. LONG-TERM PATTERN 69

Figure 4.9: Prediction values with a three-day lag in information disclosure
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areas using 2003-2008 as the sample data. At a deviation close to zero, the

cost increase linearly indicating a constant price. However, the cost func-

tion levels for large negative deviations, whereas it increases drastically at

large positive deviations. Considering strategic long-term positions in the

balancing energy market, this asymmetry in the cost function is an impor-

tant point. For a given forecasted distribution of an electricity portfolio

such positions shift the location parameter of the distribution, while scale

and higher moments will not be affected. Under the described cost func-

tion, shifting the deviation towards the negative (i.e., a surplus of day-ahead

contracts) will continuously incur cost from additional negative deviation.

At the same time this shifting reduces the risk of high cost at high positive

deviation. So given an unavoidable uncertainty in the portfolio or forecast-

ing error, a negative net position is a rational response to the observed cost

function.

For further inspection of the linear domain, the analysis is concentrated

on the largest control area in terms of load, the RWE control area. The

cost functions of individual years are estimated as displayed in Figure 4.11.

Evidently, the slopes of the cost function vary. Particularly interesting is

the difference in slope for positive and negative deviations within individual

years. A difference in slope provides an incentive to move deviation risk

towards the flatter side of the cost function in order to reduce cost. In the

example of the RWE control area the cost functions for the years 2005 and

2006 indicate an incentive to shift deviation towards the positive. For the

other four years investigated a negative net deviation would have been prof-

itable. Finally, the opening angle between the linear domains at the positive

and the negative branch of the cost function varies. Here, a wider opening

angle will incur less cost for a strategic deviation.

Using these arguments, the increasing long-term position in 2005, 2006,

and 2008 (see Figure 4.9) is an adequate adaption to a cost function tilting

towards positive deviations. In the cases of 2003, 2004, and 2007, a negative

position coincides with a cost function tilted towards negative deviations.

Additionally, the opening angle of the cost function narrowed in 2008 pro-

viding an incentive to reduce strategic positions.

A complete investigation should include all four control areas. However,

there is no balancing energy price for the net deviation of all four control

areas to base such an analysis on. Nonetheless, these findings demonstrate

that there are economic incentives behind the detected long-term balanc-

ing energy positions. With its asymmetric cost function for the balancing

energy, the German market design appears being prone to push market par-

ticipants to a strategic short position in the balancing energy market. These

positions have to be countered by a long position in the futures markets. In
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Figure 4.10: Cost of deviation conditional on deviation [e] versus deviation
[MWh] in the four German control areas
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Figure 4.11: Empirical cost function of deviation [e] versus deviation [MWh]
in the RWE control area from 2003 to 2008
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other words, the German market design creates a virtual demand in the

day-ahead market.

4.5.3 Innovation distribution

The parameter estimation of the SARIMA model used in Section 4.5.1 is

based on a t-distributed innovation process. Models with Gaussian innova-

tions were rejected based on AIC and BIC values reported in Section 4.5.1.

In the following, the analysis is completed by the identification of the innova-

tion process that is crucial for an assessment of associated risks. Therefore,

the identified heavy-tailed innovation process is investigated further.

The innovation process is of particular importance in the balancing en-

ergy market as it governs the risk involved in balancing the network. In

general, TSOs have to allocate sufficient capacity reserves to be able to

maintain grid operation and avoid a blackout. The capacity that is consid-

ered sufficient is usually defined by a threshold probability for a blackout

(i.e., the probability of fluctuations exceeding the allocated capacity). The

more precise the quantiles of the innovations’ distribution are known, the

more efficiently resources may be allocated. In addition, the balancing en-

ergy demand is a key risk factor in the patterns discussed in this chapter.

Therefore, the innovations’ distribution is of high relevance with respect to

the risk of the corresponding strategies.

The first step of the investigation is the QQ-plot of the innovations’ time

series and the fitted t-distribution in Figure 4.12. From this figure it can

be seen that the t-distribution does not adequately capture the risk in the

tails of the empirical distribution because the QQ-plot deviates from the

diagonal.

Due to the conceptual advantage of modeling data with a distribution in the

proximity of the gCLT as discussed in Section 3.2, both the α-stable and the

CTS-distribution are tested as more adequate models for the innovations’

time series. Both distributions are estimated by the Fourier inversion for-

mula and their characteristic functions given by equations (3.9) and (3.10).

This inversion is in turn numerically estimated by the fast Fourier transform

(FFT) method. A more detailed description of the method is given in Nolan

(1997) and Kim et al. (2009). Table 4.7 shows the estimated parameter sets.

As can be seen in Figure 4.13, the heavy-tailed distribution captures the like-

lihood of extreme events more accurately than the t-distribution.

In the next step, all three distributions are compared using the goodness-

of-fit tests mentioned in Section 3.2.4. The results are summarized in Table

4.8.

The p-values of the KS-test clearly indicate that the CTS-distribution
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Table 4.3: Hourly pattern: parameters and R2 fitting to out-of-sample data

Parameters R2 factor model
Year a[MWh] b[E] c[1/e] I(t) only I(t) and Itec(t)

2003 940.045 1.053 0.035 0.6948 0.7252

2004 901.082 1.113 0.039 0.4448 0.6170

2005 918.633 1.089 0.039 0.6069 0.7518

2006 902.485 1.072 0.038 0.8424 0.8499

2007 928.798 1.081 0.037 0.7571 0.7998

2008 884.110 1.068 0.043 0.6530 0.7025

Figure 4.12: QQ-plot t-distribution
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Table 4.4: Parameter estimates of the SARIMA model

SARIMA
(1, 0, 0) × (1, 0, 1)24 (3, 0, 0) × (1, 0, 1)24
Gaussian t(ν) Gaussian t(ν)

ar1 0.8185 0.8238 0.7974 0.8036

ar3 - - 0.0084 0.0079

ar24 0.9572 0.9571 0.9419 0.9427

ma24 -0.8502 -0.8529 -0.8291 -0.8328

σ 341.9658 341.9410 341.7744 342.0834

ν - 9.1080 - 9.1396

AIC 763,170 762,080 763,060 761,970

BIC 763,200 762,110 763,090 762,000

Table 4.5: Parameter estimates of the SARIMA model

Parameter a1 a24 b24 σ ν

total 0.8238 0.9571 -0.8529 341.9410 9.1080

2003 0.8522 0.9307 -0.7973 341.9410 9.4983

2004 0.7860 0.9421 -0.8184 328.8776 12.3724

2005 0.7810 0.9359 -0.8248 325.6431 10.7623

2006 0.8092 0.9455 -0.8397 336.8019 9.0538

2007 0.8067 0.9586 -0.8620 329.9785 10.1529

2008 0.7861 0.9515 -0.8541 341.9410 9.2676

describes the innovations best because its p-value is 49 and 9 orders of mag-

nitude greater than the p-value of t-distribution and α-stable distribution,

respectively. However, the p-value of the CTS-distribution is still low. As

discussed in Section 3.2.4, the KS-test is responsive to small fluctuations in

the location parameter. Though such fluctuations are to be expected with

heavy-tailed distributions. Thus, the SARIMA model implies a location pa-

rameter of zero for the innovation process, so the test does not need to focus

on the location parameter. Therefore, the mean of the innovations’ time

series is corrected for such fluctuations within the 95% confidence bounds.

The corresponding statistics are identified by an asterisk (∗). Again, the

CTS-distribution provides the best description of the data. Furthermore,

the CTS-distribution is accepted at a 5% significance level. The other sta-

tistics reported provide further support for choosing the CTS-distribution

over both the t-distribution and the α-stable distribution.
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Table 4.6: Average prediction of the SARIMA model

Average prediction [MW] at horizon
Year One month Three days

2003 -198.9537 -372.3728

2004 -179.9403 -307.2270

2005 -110.6992 -214.6126

2006 21.8594 18.6222

2007 -118.4479 -217.6485

2008 -52.1579 -190.4806

Table 4.7: Estimated parameters of heavy-tailed distributions

Distribution Parameters

α-stable
α σ β µ

1.9107 0.0048 0.6711 0-fixed

CTS
α C λ+ λ− m

0.9122 1
Γ(2−α)(λα−2

+ +λα−2
−

)
1.4856 1.5168 0-fixed

The identification of the CTS-distribution underlines the importance of

heavy-tailed phenomena in the balancing energy data. It shows that extreme

events effect the balancing energy demand on an hourly time frame. More-

over, the distribution in the proximity to the α-stable distribution causes

the influence of extreme events to prevail over long time frames. At the

same time, the rejection of the α-stable distribution indicates that events

in the fare-tails are improbable. In fact, the sample contains missing data

in the year 2006, when a black-out disturbed the system operation in some

control areas. In other words, the balancing energy demand is limited by

physical boundray conditions as indicated by the CTS-distribution.

Concluding, the results of this section are combined to one model of the

long-term balancing energy demand in equation (4.4) defined on the residual

hourly data (DBres
):

f(t) = 0.8238 · DBres
(t − 1) + 0.9571 · DBres

(t − 24)

−0.7885 · DBres
(t − 25) − 0.8529 · σ(t − 24) + σ(t) (4.4)

where σ(t) ∼ 341.9410 · CTS(0.9122, 0.3410, 1.4856, 1.5168, 0)

In combination with equation (4.3) this is the proposed model for the Ger-

man balancing energy demand in hourly resolution. It is important to note



4.5. LONG-TERM PATTERN 77

Figure 4.13: QQ-plot CTS-distribution
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that equation (4.4) is only valid in combination with the model of the hourly

pattern. A direct SARIMA modeling could not capture the dynamics of and

the non-linear dependence on the statistical-arbitrage incentive discussed in

section 4.4.
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Table 4.8: Goodness-of-fit statistics and p-values

Distribution
t α-stable CTS

Test Statistic p-value Statistic p-value Statistic p-value

KS 0.0331 1.37·10−50 0.0156 1.75·10−11 0.0082 0.0016

AD 0.0883 - 0.0333 - 0.0170 -

KS∗ 0.0316 5.73·10−46 0.0134 1.40·10−8 0.0059 0.0538

AD∗ 0.0854 - 0.0316 - 0.0126 -

CvM∗ 23.4809 - 2.2939 - 0.5144 -

AD2∗ 625.3888 - 685.0225 - 611.5575 -



Chapter 5

Implications in the market

The discussion in Chapter 4 identified and quantified strategic positions by

the means of the models in equation (4.2), equation (4.3), and equation

(4.4). While these positions mark the German balancing energy market to

be actively deployed in the management of electricity portfolios, their rel-

evance with respect to alternative marketplaces and the market design as

such cannot be evaluated directly from the positions.

This Chapter1 bridges this gap and analyzes the implications of the

determined strategic positions on the day-ahead market and the capacity

reserve market. In the case of the day-ahead market, the analysis is based

on the combined econometric model in equation (4.3) and equation (4.4).

However, the strategic positions identified in this model indicate average

positions, and allow conclusions solely on a general level. Therefore, the

analysis cannot be extended to a particular hour and the proposed implica-

tions represent an average interaction of the marketplaces.

The day-ahead market price is used to represent the general electricity

market on from hourly to longer time frames. Specifically, it is assumed to

represent the capacity reserve market and futures of longer delivery periods.

On a sub-hourly time frame there are no day-ahead market contracts and

the strategic positions have a similar effect as the deployment of capacity

reserve. Therefore, the capacity reserve market is used as a reference point

in the analysis on this time scale. In this case the discussion in Section

4.3 suggest to resort to an out-of-sample quarter-hourly pattern because a

change in the general shape of the load profile can be disregarded.

1This chapter is based on Möller et al. (2009a)
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5.1 Literatur review

Capacity reserve is provided by facilities that can also bring their capacity

to market on the day-ahead market. This interdependence of the two mar-

ketplaces is recognized by Simoglou and Bakirtzis (2008) and analyzed by

Wieschhaus and Weigt (2008) in different theoretical market settings. Wi-

eschhaus and Weigt find that the design and the competitiveness of the ca-

pacity reserve market directly influence the prices realized in the day-ahead

market and reflect the respective equilibrium between the marketplaces.

Moreover, the number of market participants able to meet the prequalifi-

cation standards and partake in the capacity reserve market shows to be a

key factor to increase the competitiveness. In an empirical analysis of the

German market Weigt and Riedel (2007) observe a correlation of positive

reserve capacity prices in the capacity reserve market and day-ahead market

prices and confirm the interdependence of the two marketplaces. Therefore,

in the context of this analysis the day-ahead market prices represent also the

capacity reserve market. However, in the concentrated German electricity

market these prices might be affected by market power. (See Section 2.3)

The issue of market power in the German market is controversial. There

are studies like EU (2007), von Hirschhausen et al. (2007), and Schwarz and

Lang (2006)) that identify substantial market power abuse. However, all

three studies are based on a market simulation that serves as a fully com-

petitive reverence for the empirical prices. The criticism is focused on this

market simulation. As Ockenfels (2007b) points out it is hard to distinguish

the detection of market power abuse from the detection of a bias imposed by

the necessary model simplifications of the simulation. The objective of the

analysis in this chapter is the interplay of the balancing energy market with

the day-ahead market, regardless of its price formation. Therefore, the issue

of market power abuse is neglected in the subsequent analysis. However,

the methodology of the market power studies is adapted and applied in a

simplified form. It is used to asses the impact of strategic positions in the

balancing energy market in the day-ahead market.

5.2 Marketing capacity reserve in the balancing

energy market

In Section 4.3 the quarter-hourly pattern resulting from the discrepancy of

the quarter-hourly settled balancing energy and a minimal delivery period

of one hour in the day-ahead market was discussed. It provides an incen-

tive for BRPs to deviate in opposite direction to the deviation indicated by

the quarter-hourly pattern (i.e., receive payments during periods with an
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expected high net deviation and balancing energy price in the control area,

and make payments during periods with low prices).

In this section a BRP able to shift part of its portfolio within an hour and

obtain a negative correlation to the quarter-hourly pattern for that part is

considered. Like the activation of capacity reserve bids this strategy reduces

the control area’s net deviation. Thus, the strategy aids network security. In

this sense, the balancing energy market can be used as a market for capacity

reserve. It is important to note that balancing energy prices are uncertain at

the time of portfolio adjustments. Therefore, such strategic positions have

no secure profits but offer statistical-arbitrage gains.

The profitability of the described strategy is analyzed in a simulation on

historical data. In this simulation a strategy of shifting one MW of elec-

tricity within each hour is implemented. The energy is shifted from the two

quarter-hour intervals with the highest expected net deviation and prices to

the intervals with a lower expected net deviation. The expected net devia-

tion is determined by the weekly average pattern of the preceding year (in

the case of 2003 the 2004 pattern is resorted to). These patterns are cal-

culated as the yearly average values conditional on the hour within a week.

Provided the technical feasibility of shifting energy in a portfolio on a 15 to

30 minute time scale, the results in Table 5.1 demonstrate that the quarter-

hourly pattern can be profitably deployed. The profitability is similar to

that of marketing one MW on the capacity reserve market that Weigt and

Riedel (2007) estimate to be 50, 000e/a. Moreover, the profitability differs

between the four German control areas. This is a consequence of a differing

intensity of the quarter-hourly pattern in the control areas.

Further inspection shows that not all hours contribute equally. Nat-

Table 5.1: Estimated yearly gains by shifting 1MW according to quarter-
hourly pattern

Year RWE [e/a] e.on [e/a] EnBW [e/a] Vattenfall [e/a]

2003 38,098 24,815 29,835 47,362

2004 45,503 26,322 33,784 45,234

2005 34,292 24,688 28,800 55,112

2006 37,688 19,521 46,269 65,797

2007 34,517 16,597 40,359 59,183

2008 49,953 13,814 48,932 79,170

urally, the statistical-arbitrage gains concentrate in the hours with a large

gradient of load, when the spread between the expected net deviations within

one hour is especially pronounced. As an example, exploiting the statistical-
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arbitrage potential between six and seven at weekday mornings contributes

up to 16% to the overall gains, while it only represents 3% of time. Figure

5.1 displays the contribution of the 24 hours in a day as assessed in the

simulation for the RWE control area. Evidently, the strategy is profitable in

all hours. However, an implementation of the strategy in selected hours sug-

gests itself because of the strong variation betweeen the contribution of the

individual hours. The corresponding firgures of the remaining three control

areas are added in Appendix E.1.

Concluding, the quarter-hourly pattern can be used to market capac-

ity reserves. Furthermore, there are two advantages the balancing energy

market compared to the capacity reserve market. First, there is no response

time requirement to be met. In fact, the described strategy can be imple-

mented already during operational planning procedures at an arbitrary time

horizon. Second, the duration of alternations under the described strategy is

at most half an hour. These advantages are particularly relevant in realizing

the demand side management potential of facilities that cannot meet pre-

qualification standards of the capacity reserve market. In this context the

decreasing amplitude of the quarter-hourly pattern observed in Section 4.4

is an indication of market participants implementing the described strategy.

5.3 Impact on the day-ahead market

5.3.1 Balancing energy as virtual supply or demand

The quarter-hourly pattern has no interaction with futures markets because

the hourly average value of this pattern is always zero. However, after

integrating the balancing energy demand to hourly values predictable com-

ponents remain in the data. These are the strategic positions modeled in

Section 4.4 and Section 4.5. By these positions the preliminary schedule is

improved with respect to the uncertainty of the electricity portfolio and the

asymmetry of the balancing energy cost function. Whatever the incentives

behind these positions are, the positions always coincide with a countering

position in the futures market. That is market participants omit to settle

part of their portfolios in the futures market and move these positions to

the balancing energy market.

As an example the situation of a predictable positive net balancing en-

ergy demand is considered, when the control area is in undersupply relative

to an unbiased minimum variance forecast. To resolve this situation addi-

tional electricity has to be bought in the futures market. Equivalently, a

predictable negative balancing energy demand could be resolved by selling

electricity. Compared to a situation with an unbiased forecast, a positive
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Figure 5.1: Contribution to the quarter-hourly strategy in the RWE control
area

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Hour in day [h]

C
o

n
tr

ib
u

ti
o

n



84 CHAPTER 5. IMPLICATIONS IN THE MARKET

balancing energy demand is therefore termed a virtual supply in the futures

market and a negative position is termed virtual demand. Under the hy-

pothesis of an absence of strategic balancing positions the day-ahead market

settles at different prices. Positions otherwise withheld from the market will

either directly or indirectly, by releasing capacity bound in other trades, be

entered in the day-ahead market.

In this section the impact of the hourly pattern and the long-term pat-

tern in the day-ahead market is assessed. In this assessment the strategic

positions are provided by the forecasted values of the respective models in

Chapter 4. These strategic positions represent the virtual supply and de-

mand in the day-ahead market and are evaluated in a market simulation.

For the purpose of this simulation the virtual demand and supply induced

by the balancing energy positions are assigned entirely to the day-ahead

market.

The simulation is based on an adaption of the day-ahead market model

used in Burger et al. (2004). In this model hourly electricity prices are esti-

mated by an empirical price load curve (PLC) and a grid load measurement

adjusted for availability. For a detailed description of the model refer to

Burger et al. (2004). In contrast to the original model, the model is adapted

directly to the electricity prices rather than the logarithmic prices as to avoid

the issue of prices at or below zero.

Yearly average PLCs are estimated from load data published by the

UCTE and hourly electricity prices at the EEX. Furthermore, the load data

is adjusted for availability calculated from the monthly operation of base

units as published by the UCTE. For the years 2003-2005 the load values

are expanded from the published incomplete UCTE data set by transfer-

ring the seasonality of the 2006 to 2008 data. Additionally, a price spike of

1500e is set at the thermal capacity limit to account for price in scarcity

situations. Figure 5.2 shows the estimated PLCs for the years 2003-2008.

Using these PLCs an equivalent load time series is extracted from the

data also representing the short-term market situation. This equivalent load

is used as a base scenario to simulate the market prices without the strategic

balancing energy positions identified in Chapter 4. The results are displayed

in Table 5.2. It is important to note that the balancing energy position has

to be scaled to relate it to the adjusted load. This scaling factor is de-

termined by the demand fraction of 15% actually traded in the day-ahead

market. (See Michalk (2008).) So on average the balancing energy positions

have to be scaled up by a factor of 6.7 to correspond to the load values the

model is calibrated on.

The most dominant effect of the hourly pattern is reducing demand

in peak hours and increasing demand in off-peak hours. Consequently, the
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Figure 5.2: Estimated price load curves
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Table 5.2: Estimated price mark-up induced by strategic balancing energy
deployment

Hourly pattern Long-term Σtot

Year Off-peak Peak Σh

2003 0.0134 -0.0694 -0.0278 0.1291 0.1107

2004 0.0299 -0.0075 0.0125 0.0589 0.0692

2005 0.0192 -0.0322 -0.0045 0.0597 0.0294

2006 0.0269 -0.0296 -0.0008 -0.0050 -0.0087

2007 0.0084 -0.1171 -0.0538 0.0900 0.0267

2008 0.0366 -0.0825 -0.0191 0.0574 0.0258

price volatility is dampened. Furthermore, a price reducing effect of this

pattern in total can be observed. This is a consequence of the increasing

slope of the PLC at high loads resulting in a stronger impact of the hourly

pattern during high load peak hours. Here, the year 2004 stands out with

a positive total. This simple simulation does not allow analyzing this in

detail, but it should be noted that there are more off-peak than peak hours

and the estimated PLC is comparatively flat in 2004. This PLC reflects the

absence of electricity price spikes in the day-ahead market in 2004 and could

explain the determined net price increasing effect in 2004.

The long-term deployment of balancing energy influences prices as well.

Moreover, these strategic positions continuously influence the day-ahead

market in the same direction. Consequently, this effect dominates the total

price impact of balancing energy in the analysis. In view of the detected

long-term balancing positions the findings correspond to the average long-

term positions in Table 4.6. In terms of the total impact the year 2003 shows

to have the highest mark-up estimation in the sample. It indicates about

11% of the electricity price to be due to virtual demand induced by long-

term balancing energy positions. This mark-up decreases gradually until

it practically vanishes in 2006. The last two years show moderate average

mark-ups.

Due to the necessary simplifications the model can only provide an order

of magnitude of the impact of balancing energy deployment. An in-depth

simulation including availability and market share information on an hourly

basis would be essential to obtain quantitative sound results. Nonetheless,

the results indicate that the balancing energy market not only serves as an

alternative marketplace to the day-ahead market but also directly influences

the day-ahead market.

Also, another investigation of the German day-ahead market confirmes
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the identified impact of strategic balancing energy positions in the day-ahead

market. A brief study of EEX order book data revealed that a change in

demand by as little as 135 MW could trigger a price increase of 23% or

over 500e/MWh in a spike regime. (See Ehlers et al. (2007).) These find-

ings underline the relevance of positions in the order of hundreds of MW

—such as the virtual supply and demand induced by strategic balancing en-

ergy positions— in the day-ahead market. It also gives a direct example of

the detected hourly pattern being able to reduce spike risk. Moreover, this

strong influence of relatively small changes in demand underlines the need

to amplify the assessed balancing energy demand when used in our market

simulation that is adapted to total grid-load.

5.3.2 Balancing energy and market power

The investigation of the impact of balancing energy positions in the day-

ahead market reveals significant price alterations imposed by the long-term

deployment. These long-term positions show particularly high levels of over-

supplied control areas from 2003 to 2005 as indicated by the results in Table

4.6 and Table 5.2. The same period of time is also covered in three studies of

market power. (See EU (2007), von Hirschhausen et al. (2007), and Schwarz

and Lang (2006).) It suggests itself to analyze the possible error imposed

by neclecting the balancing market because none of these studies take into

account its influence on day-ahead market prices.

All studies apply a similar methodology: hourly market prices are com-

pared to model prices derived from models based on fundamental market

data. The data base described in the studies on the other hand differs.

Especially, one study relies on a strong data base being provided with con-

fidential company background by the EU commission. (See EU (2007).)

The general criticism of the methodology of all studies focuses on sys-

tematic errors imposed by the inherent model simplifications. One such

example is neglecting scarcity pricing near the capacity boundary as done

in all the analyses discussed. Obviously, under this simplification the model

price will be lower even when compared to a perfectly competitive market

price. This example suffices in this context, refer to Harvey and Hogan

(2002), Ockenfels (2007a), and Swider et al. (2007) for a detailed analysis of

systematic errors. However, it might illustrate how difficult a quantitative

interpretation of results is. As Newbery et al. (2004) state it is plausible that

the influence of systematic errors is constant over time within one specific

country and modeling approach. In other words, while the absolute values

are difficult to interpret and difficult to compare among the studies, the

evolution of detected levels can be interpreted as long as relevant boundary

conditions are constant.
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Following this interpretation Table 5.3 presents the results of the three

studies. They are presented jointly using the price cost mark-up (PCMU).

In addition, an indicator summarizing the overall indication of the studies

is provided. The results of all studies are compatible within the same year.

Table 5.3: Results of market power studies by comparison taken from
Schwarz and Lang (2006), von Hirschhausen et al. (2007) and EU (2007)

Year PCMUS&L PCMUvH PCMULE

2000 -0.06 - - o

2001 -0.09 - - o

2002 0.04 - - o

2003 0.40 - 0.59 ++

2004 0.22 0.19 0.22 +

2005 0.15 0.14 0.15 +

2006 - 0.25∗ - +

One should, however, appreciate that the studies relay on a similar method-

ological approach. This holds especially for the studies von Hirschhausen

et al. (2007) and Schwarz and Lang (2006). The studies indicate the highest

mark-up in 2003. Furthermore, the magnitude of the mark-up decreases

from 2003 to 2005. The 2006 value is listed for the sake of completeness.

However, the methodology and data source was changed in the correspond-

ing analysis. Consequently, the assumption of constant boundary conditions

is questionable for this value.

When compared to the average long-term balancing energy deployment

in Table 4.6 a similar evolution is evident. In 2003 the control areas are in

strong oversupply. This level of oversupply then diminishes in the following

two years. As demonstrated in Section 5.3 the change in virtual demand in

the day-ahead market effects electricity prices during this period of time in

much the same way. The methodology of all three studies neglects the bal-

ancing energy market. It therefore constitutes a systematic error that is not

considered in previous evaluations. In view of the systematically oversup-

plied control areas during the analyzed time period, all three studies show

to be sensitive to this error.

In contrast to other systematic errors, the error of neglecting the influ-

ence of the balancing energy market could be interpreted as a sensitivity

analysis of market power measurements. In such an approach an analysis

including demand induced by the balancing market would represent mar-

ket power abuse, while the exclusion would represent an unbiased market.

In fact, von Hirschhausen et al. (2007) test their analysis in a similar way.
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In their work they approximate the level of additional demand required to

explain their results in a perfectly competitive market environment. As an

example, a constant additional demand of 9 GW is estimated for the year

2004. For the same year the average long-term induced demand explains

30% of this additional demand. In the context of this analysis these studies

of market power support the assessed impact of balancing energy positions

in the day-ahead market. This impact indicates that the strategic positions

in the balancing energy market are not only influenced by the day-ahead

market prices but in turn also influence the day-ahead market prices.
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Chapter 6

Summary and conclusion

6.1 Summary

This thesis discusses the deployment of balancing energy in the manage-

ment of electricity portfolios in the particular setting of the German electric-

ity market. In contrast to other European electricity markets the German

market design encourages active positions in the balancing energy market

within certain limits. Consequently, the balancing energy demand shows

predictable components in addition to the fluctuations imposed by unfore-

seen events. In this analysis these components are decomposed into three

positions that are well characterized by the time frame of their deployment.

Namely these positions are quarter-hourly, hourly and long-term positions.

At the same time this decomposition allows a separation of the balancing

energy market’s interplay with the capacity reserve market and the inter-

play with the general market represented by the day-ahead market. In the

following the main findings of this analysis are summarized.

6.1.1 Quarter-hourly pattern

Within the hour different settlement periods in the day-ahead and balanc-

ing energy market lead to a pronounced quarter-hourly pattern as discussed

in Section 4.3. A high spread between balancing energy prices during up-

and down-regulation periods translates into an economical incentive to re-

duce the correlation of an electricity portfolio to this quarter-hourly pattern.

This strategy reduces load fluctuations in the network, which is equivalent

to the deployment of capacity reserve. The quarter-hourly pattern can only

interact with the capacity reserve market because the hourly contracts in

the day-ahead market inhibit an interaction with the futures market on the

sub-hourly time frame. On the quarter-hourly time frame a corresponding

91
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strategy sets capacity reserve free otherwise deployed to compensate fluctu-

ations.

The quarter-hourly pattern is attributed to gradient of load within in-

dividual hours that cannot be reproduced by the hourly contracts in the

day-ahead market. Overall it can be said that the production side of the

market follows the step function schedule indicated by hourly day-ahead

contracts while the consumption changes gradually. This discrepancy re-

sults in the quarter-hourly pattern and it can therefore be modeled by the

gradient of load as in equation (4.2). However, the pattern shows to be very

persistent over the years and a higher accuracy of modeling can be obtained

by the out-of-sample average pattern of the preceding year. Therefore, it

suggests itself to model the quarter-hourly pattern by this factor, unless a

change in the general shape of the load profile is expected. In addition,

the amplitude of the quarter-hourly pattern diminishes over the analyzed

period. This indicates an implementation of the corresponding strategies in

the management of electricity portfolios.

6.1.2 Hourly pattern

On an hourly time frame a pattern resembling the German load profile is

identified in Section 4.4. However, the amplitude of this pattern varies

between the years analyzed. This variation is linked to changes in the

statistical-arbitrage incentive between the balancing energy market and the

day-ahead market. Therefore, the hourly pattern shows that market partic-

ipants exploit statistical-arbitrage opportunities. In other words, the hourly

pattern can be understood as the exercise of grid-access as a real option in

many ways comparable to a swing option. Only through the hourly pat-

tern may the electricity price in the day-ahead market and the balancing

energy market reach equilibrium, and a preliminary schedule reflecting the

inevitable uncertainty of the electricity load is achieved.

The hourly pattern shows saturation at high statistical-arbitrage incen-

tives that reflects limits for strategic positions in the balancing energy mar-

ket. It is modeled by a two factor model with three parameters. (See equa-

tion (4.3).) In this model the first factor captures the varying statistical-

arbitrage incentive. The second factor incorporates technical peculiarities

that remain constant over time. In comparison to an in-sample fit of the

average hourly-pattern this model reaches similar R2 values with resorting

to in-sample information.
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6.1.3 Long-term pattern

The residuals of the hourly model show strong autocorrelation. Therefore

the hourly model is supplemented by a SARIMA-model in Section 4.5.1.

This SARIMA model in Table 4.5 constitutes a linear correction to the pre-

dictions of the hourly pattern. Moreover, it identifies positions taken in

the balancing energy market over extended periods of time that cannot be

captured by the hourly model. Changes in these long-term positions coin-

cide with changes in the asymmetric cost function of balancing energy. This

observed asymmetry provides an economic incentive to present a trimmed

preliminary schedule in order to reduce deviation cost. Historically, the

asymmetry displays a tendency to drive the market towards oversupply.

In addition, the distribution of the innovations is analyzed in detail. The

distribution of the innovations exhibits strong heavy-tailedness that reflects

the bearing of extreme events on the balancing energy demand. At the same

time, balancing energy demand is constrained by physical boundary condi-

tions that restrict events in the fare-tails. These characteristics are uniquely

captured by the CTS-distribution that is proposed for the innovations, while

the t-distribution and the α-stable distribution are rejected at the 5% sig-

nificance level.

The long-term model can only be used in combination with the hourly

model because it is adapted to its residuals. Furthermore, by incorporat-

ing the dynamics of the two factors in the hourly model the residuals can

be modeled with one SARIMA model over the entire analyzed time frame.

Therefore, the combination of hourly factor model and the SARIMA-model

can be employed to calculate hourly expectation values conditional on the

hour within the week and a given day-ahead market price. Additionally, the

proposed CTS-distributed innovation process allows an assessment of the

associated risk.

6.1.4 Interplay with the capacity reserve market

The discussion in Section 4.3 establishes the quarter-hourly pattern that

prevails as no other liquid marketplace exists outside the balancing energy

market. Nonetheless, the diminishing amplitude of the quarter-hourly pat-

tern indicates its active deployment in the management of electricity port-

folios. Such a strategy is equivalent to the deployment of capacity reserve

and its profitability is analyzed in a backtest in Section 5.2.

Based on the prediction of the out-of-sample quarter-hourly pattern of

the preceding year one MW of electrical power is shifted in all hours to re-

duce the correlation of an electricity portfolio to the pattern. Therefore, the

strategy is neutral with respect to energy transactions over hourly periods.
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In a backtest this strategy is on average profitable in all hours in all four

control areas. However, the gains are concentrated in the hours with a steep

gradient of load when the quarter-hourly pattern in most pronounced. This

suggests the implementation of the strategy in the most profitable fraction

of hours.

Overall, the strategy results in earnings similar to those in the tertiary

capacity reserve market. In contrast to the capacity reserve market the earn-

ings are generated entirely by energy payments instead of capacity payments

that dominate earnings of tertiary capacity reserve. Moreover, there are no

pre-qualification standards that have to be met. In particular, the strategy

can be employed at arbitrary response time. Consequently, the strategy

potentially attracts additional capacity reserve into the market that cannot

be brought to the market in the capacity reserve market. Notwithstanding,

the detected amplitude and profitability of the quarter-hourly pattern allow

for a further implementation of corresponding strategies.

6.1.5 Interplay with the day-ahead market

The day-ahead market price has a strong bearing on the balancing energy

demand on an hourly and longer time frame. This dependence is reversed

in Section 5.3 that analyzes the impact of strategic balancing energy posi-

tions in the day-ahead market. The analysis is based on a simple market

simulation using the historic market prices as a reference price. From this

reference scenario the price changes imposed by the hourly and long-term

pattern are estimated.

Both patterns are able to influence the prices in the day-ahead market.

In the case of the hourly pattern the analysis shows only a minor impact

on the average price of electricity. Prices are reduced by imposed virtual

supply in the peak hours and increased by virtual demand during off-peak

hours, resulting in a dampening of volatility. In the case of the long-term

pattern the balancing energy market’s tendency towards oversupply creates

a virtual demand that increases prices in the day-ahead market. In the

same years the long-term pattern creates pronounced virtual demand, rele-

vant studies of market power in the German electricity market identify high

mark-ups. In the context of these studies neglecting the effect of long-term

balancing energy positions constitutes a systematic error. Therefore, the

studies support the assessed influence of strategic balancing energy demand

on day-ahead market prices further.
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6.2 Conclusion

The identified three predictable patterns in the German balancing energy

demand are clearly incompatible with a minimum-variance forecasting ob-

jective of all market participants. Also anohter statistical forecasting objec-

tive, such as minimal absolute error or maximum likelihood, is implausible

in view of the proposed distribution of the innovations. This distribution

slight asymmetry cannot explain the positions determined in the analysis

by the deviation of the mean and median value and the mean and modal

value, respectively. In contrast to the dual-price settlement scheme the sin-

gle price settlement scheme of the German electricity market therefore does

not advocate a forecasting objective in statistical terms. Instead, the market

seems to follow a best economical forecast objective. Part of the electricity

portfolio is actively allocated in the balancing energy market whenever its

expected price is competitive. This interpretation is further supported by

the dynamic changes in the positions. These changes make simple reluctance

of market participants to employ adequate forecasting procedures implau-

sible. Moreover, these changes are linked to statistical-arbitrage incentives

between the balancing energy market and alternative marketplaces.

In general, these incentives exist in the dual-price settlement scheme

adopted in other European countries as well. However, the imposed trans-

action cost and penalties inhibit their exploitation by market participants.

In the case of the quarter-hourly pattern the balancing energy market adds

a liquid and transparent marketplace to trade electricity on a sub-hourly

time frame. The implementation of this pattern in the management of

electricity portfolios results in a similar interaction as the deployment of

capacity reserve. In contrast to the capacity reserve market no prequalifi-

cation standards apply. This is especially advantageous to the demand side

management (DSM) capacity that cannot meet the technical requirements

such as response-time and availability requirements and set by the TSO. As

a result additional flexible capacity enters the market. This tapping of net-

work stabilizing capacity can contribute to the preparation of the electricity

market for an increased share of renewable electricity sources. In contrast,

a dual-price system will even undermine system security with respect to

the quarter-hourly pattern. The imposed transaction cost drive also BRPs

negatively correlated to the net deviation to reduce their fluctuations. Con-

sequently, the net deviation will increase because the stabelizing countering

fluctuations are reduced.

The hourly and long-term patterns lead to a growth of load fluctuations

potentially destabilizing the network. However, these positions are in line

with the price signals set by the market. Moreover, the price dampening

effect of the hourly positions effectively reduces the ability to exploit mar-
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ket power in scarcity situations of electricity supply or demand. Overall the

hourly pattern reflects a reduction of the total cost of electricity supply under

demand uncertainty. Also the long-term positions tending towards negative

balancing energy demand help to reduce the cost of inevitable fluctuations

because the more expensive regime of positive balancing energy demand is

avoided. The combination of hourly and long-term pattern therefore drives

the market towards an optimal starting point for balancing also reflecting

that up-ward regulation is more demanding than down-ward regulation.

In view of a potentially destabilizing effect it should be added that there

is no indication that the German system’s stability was inferior to that of

neighboring markets with a dual-price settlement scheme. In fact, the mar-

ket design strongly discourages extreme positions in the balancing energy

market because statistical-arbitrage returns can be realized with a devia-

tion opposing the net deviation of the control area. Therefore, any strategic

position dominating the market will be misguided and highly unprofitable

speculation. In addition, a dual-price settlement scheme is only effective in

undermining the hourly pattern. It may well result in long-term biased fore-

casts as the examples of England and Poland demonstrate. In these cases

the strategic positions do not only reflect the asymmetric cost of positive and

negative balancing, but also reflect the distortions inflicted by the imposed

transaction cost. However, these positions have a direct impact on electric-

ity prices in the day-ahead market. In view of this impact TSOs should

not only be bound to a secure grid operation and network stability, but also

take an active role in ensuring representative market prices in the day-ahead

market. This is especially true because the distortion of prices imposed by

long-term balancing energy positions is identified as market power abuse by

relevant studies.

The model outlined in this thesis is implemented to forecast balanc-

ing energy demand conditional on the time and the electricity price in the

day-ahead market. Moreover, the proposed CTS-distribution is able to cap-

ture the combination of highly relevant extreme events and limiting physical

boundary conditions that characterize the unpredictable components of bal-

ancing energy demand. Therefore, this model can be employed to increase

the precision of capacity procurement with respect to a given security level

of the electricity system. In this, largest possible event considerations would

be supplemented by conditional probabilities of safety for a given procure-

ment. On the side of market participants the model provides a basis for the

implementation of the discussed strategies. However, the model has to be

expanded so that implicit trading cost such as the market impact can be

evaluated. Furthermore, this expansion would allow transferring the model

to a market with a dual-price settlement scheme and its transaction cost
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and penalties.

Overall, the experience of the German balancing energy market demon-

strates that the market responds to the incentives set by the market design,

and indicates balancing energy to be an integral component of electricity

portfolio management. This constitutes a major conceptual difference to a

dual-price settlement scheme that is designed to inhibit any interaction of

the balancing energy market with alternative marketplaces. Through this

interaction an economical optimal starting point for network operation can

be mediated, so that the cost of electricity under uncertainty is reflected.

Furthermore, an additional reduction of load fluctuations is made accessible

by separating the resolving of a biased forecast from its originator. One such

example is the quarter-hourly pattern where the originator might not have

the technical means of resolving the known forecasting error. Moreover, un-

der the dual-price scheme small portfolios are laden with higher penalty cost

because the effect of netting fluctuations is reduced. Therefore, the single-

price scheme does not discriminate against BRPs with small portfolios as

does the dual-price settlement scheme. In total the single-price balancing

energy market helps to direct investment into the most economical alterna-

tive between capacity extensions and more advanced forecasting procedures

to secure system security. These are key issues in adapting the electricity

market for the challenges of integrating a higher share of renewables. With

respect to a further harmonization of the European electricity markets the

described advantages have to be weighed against the traditional security

considerations that are dominant in other European markets.

6.3 Outlook

Throughout this thesis balancing energy prices are not directly addressed

despite their obvious importance. The reason behind this simplification is

that there is no German balancing energy price corresponding to the sin-

gle German wholesale market. Thus, the prices can only be analyzed in

a given control area. However, demand is the key price setting factor for

balancing energy. Therefore, the model for balancing energy demand could

be combined with a model for balancing energy prices conditional on de-

mand to create a price model for the respective control areas. After the

period analyzed in this thesis, three of the control areas combined their set-

tlement of balancing energy. Starting from April 2009 all control areas but

the RWE control area display a common net deviation and balancing en-

ergy price. The RWE control area is scheduled to join this scheme by June

2010. Therefore, a direct analysis of balancing energy prices suggests itself

for future research.
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There was an additional change in the price formation of balancing en-

ergy after the analyzed period. Negative prices were introduced in Jan-

uary 2009 with the exception of the Vattenfall control area that followed

one month later. In fact, corresponding transitions had taken place in the

intra-day and day-ahead market in September 2007 and September 2008,

respectively. This late transition resulted in arbitrage opportunities in late

December 2008 when negative prices first accured in the day-ahead market.

In contrast to the statistical-arbitrage opportunities discussed in this the-

sis, these opportunities were profitable regardless of the control area’s net

deviation and thereby potentially endangering network security. While this

situation was resolved by the introduction of negative prices in the control

areas the negative prices might have a lasting impact on the asymmetry of

the balancing energy cost function. In turn this should influence the long-

term positions taken in the balancing energy market, which outlines another

direction for future research.
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Appendix A

Measures of market

concentration

Market concentration is a controversial issue in electricity markets. The

short term inelastic demand paired with a the steep increase of the merit-

order curve at peaking units potentially allow market participants with large

generation capacity to exploit their market power by withholding part of

their capacity. Therefore, different measures are used to monitor the level

of market concentration and detect a possible abuse of market power. The

discussion in this section is based on the discussion in EU (2007) that also

provides one of the relevant studies referenced in Section 5.3.2.

A.1 Concentration ratio

The concentration ratio (CR(n)) measures the joined market share (s) of

the largest n players and is calculated as follows:

CR(n) =
n∑

i=1

s(i)

In the case of the German electricity market the CR(4) is almost 90% in

terms of generation capacity suggesting an oligopoly. In terms of retail sales

the CR(4) is about 50% suggesting a higher degree of competition. However,

the CR(n) value does not indicate the concentration among the n largest

players nor does it reflect if the players are able to exploit their dominant po-

sition. In particular, the measure CR(n) does not reflect the high dynamics

of hourly changing electricity demand. Therefore, the concentration ratio is

of limited validity concerning the competitiveness of electricity markets.
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A.2 Herfindahl-Hirschman index

Like the concentration ratio the Herfindahl-Hirschman index (HHI) is based

on the market share (s) of the individual players measured in percent. How-

ever, the information of all players (N) is considered in its calculation. The

HHI is calculated based on percent values:

HHI =
N∑

i=1

s2
i

Therefore, the HHI ranges from 10, 000 · 1
N in a perfectly competitive market

to 10, 000 under a monopoly. A market is said to be concentrated at HHI

values above 1, 800. However, in the case of energy markets a threshold

value of 2, 500 is suggested by regulators. In the case of the German mar-

ket a average HHI-value of 1, 914 is calculated indicating a market on the

borderline to concentration. As in the case of the concentration ratio, the

HHI does not reflect the actual ability of players to exploit their position in

the market, and can therefore indicate only the concentration but does not

directly address the level of competition in the market.

A.3 Pivotal supplier index

To resolve the shortcomings of the CR(n) and the HHI electricity market

specific measures are proposed. The pivotal supplier index (PSI) is a binary

indicator. Its value is one if the capacity controlled by a given company

(CC) is indispensable to supply the electricity demand (D) in an hour and

zero otherwise. Thus, the percentage of all hours (H) a company is pivotal

gives an indication weather the company could exercise market power.

PSIC(%) =

H∑

i=1
1(−∞,0)(D − CC)

H

A threshold value of 20% is suggested to identify markets that are not com-

petitive. For the German market only the largest player has an average PSI

of 49% that is above the threshold value.

A.4 Residual supply index

The binary variable PSI cannot capture the varying degree to which a com-

pany might be pivotal in a market. Therefore, the concept is generalized in
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the residual supply index (RSI). Its value gives the total available capacity

(Ctot) not controlled by a given company in percentage of the electricity

demand in an hour.

RSI =
Ctot − CC

D

It is suggested that a market might not be competitive if the RSI exceeds

110% in over 5% of the time. For the German market two companies pass

that threshold with an exceedance in 77% and 48% of the time, respectively.

A.5 Lerner index

All measures discussed in the previous sections are focused on the potential

exercise of market power but give no indication of an actual abuse of market

power. The Lerner index (LI) captures this information in the percentage

of market prices (P ) explained by a lack of competition. In its calculation

the price of the perfectly competitive market is assumed to be the marginal

cost (MC).

LI =
P − MC

P

Hour specific marginal cost are problematic to obtain in electricity markets.

They have to be inferred from a market simulation that in turn relies on

model assumptions and simplifications. A detailed discussion of this issue

can be found in Ockenfels (2007a; 2007b) and Möst and Genoese (2009).

A.6 Price cost mark-up

In essence the price cost mark-up (PCMU) is just an alternative expression

of the information in the LI. However, it uses the marginal cost as the point

of reference. Therefore, the PCMU presents the mark-up the market players

are able to add due to lack of competition.

PCMU =
P − MC

MC

Again, the marginal cost are the crucial factor and their estimation is con-

troversial.
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Appendix B

Network access contracts

Despite encouraging strategic position in the balancing energy market in the

market design, the German TSOs also acknowledge the potentially adverse

effect of strategic positions on system security. This view is reflected in the

grid-access contracts that bind BRPs with the TSO in the respective control

areas. In this chapter three sample contracts are analyzed with respect to

their implication on the forecasting procedures of the BRPs concerned. (See

Bundes Netz Agentur (2006), Vattenfall Europe Transmission (2009b) and

E.ON Netz (2008).) The analysis is strictly aimed at the statistical aspects

of these sample contracts while judical aspects are excluded.

All sample contracts impose limits on the level of the strategic deploy-

ment of the three patterns proffered in this thesis. The following sections

quotes relevant passages of the three sample grid-access contracts in German

and their suggested translation into English.

B.1 Excerpt from Bundes Netz Agentur

”... Die Inanspruchnahme von Ausgleichsenergie zur Lastdeckung bzw.

zur Kompensation einer Überspeisung des Bilanzkreises ist nur zulässig,

soweit damit nicht prognostizierbare Abweichungen ausgeglichen werden.

Sofern der BKV nicht alle zumutbaren Anstrengungen unternommen hat,

prognostizierbare Abweichungen zu vermeiden, stellt dies grundsätzlich eine

missbräuchliche Inanspruchnahme von Ausgleichsenergie dar. ...”

”... Die ... erstellten Fahrpläne müssen vollständig sein und eine aus-

geglichene Viertelstunden-Leistungsbilanz des Bilanzkreises aufweisen. ...”

”... Eine missbräuchliche Inanspruchnahme von Ausgleichsenergie liegt

insbesondere dann vor, wenn ...”

• ”... Regelmäßige deutliche Über- bzw. Unterspeisung Eine regelmäßige
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deutliche Über- oder Unterspeisung eines Bilanzkreises liegt dann vor,

wenn der arithmetische Mittelwert aller negativen und positiven Viertel-

stunden-Abweichungen im Abrechnungszeitraum in deutlichem Maße

positiv oder negativ ist oder keine ausreichende Anzahl von Null-

durchgängen vorliegt. ...”

• ”... Auffällige Unterspeisung zu Zeiten hoher Börsenpreise bzw. Über-

speisung zu Zeiten niedriger Börsenpreise ...”

• ”... Deutliche, einseitige finanzielle Optimierung der Bilanzkreissalden

(Gutschriften >> Rechnungen) im Laufe eines Jahres ...”

• ”... Keine ausgeglichene Viertelstunden-Leistungsbilanz bei Bilanz-

kreisen, die ausschließlich Fahrplangeschäfte abwickeln. ...”

”... Für jede betroffene Viertelstunde (wird) folgende Vertragsstrafe zum

Ansatz gebracht. Bei Überspeisungen werden die zur Auszahlung an den

BKV errechneten Beträge einbehalten. Bei Unterspeisungen wird dem BKV

zusätzlich der doppelte EEX-Börsenpreis (MCP-Preis der jeweiligen Viertel-

stunde) in Rechnung gestellt. ...”

”... Eine fristlose Kündigung dieses Vertrages ist zulässig, wenn ... (die)

Summe der Einspeisungen von der Summe der Entnahmen ... (entweder)

um mehr als 20 % über einen Zeitraum von einer Woche oder um mehr als

50 % über einen Zeitraum von zwei Tagen ...”

The contract restricts the deployment of balancing energy strictly to the

compensation of imbalances caused by unpredictable events. Specifically,

the BRP is required to apply all reasonable forecasting measures to provide

a balanced quarter-hourly forecast of its feed-ins and withdrawals. Nonob-

servance of this requirement constitutes an abuse of balancing energy and

will be penalized. The abuse of balancing energy is described more precisely

as

• a frequent clear under- or oversupplied forecast of the BRP is identi-

fied. The forecast is clearly biased when its average value is notably

positive or negative or the forecasting error does not display an ade-

quate number of zero crossings.

• a conspicuous undersupply during times of high day-ahead market

prices and oversupply during times of low day-ahead market prices

respectively.

• a clear tendency to financially optimized imbalances. The money re-

ceived from the TSO exceeds by far the money paid to the TSO during

a one year period.
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• any imbalances provided by a BRP managing a portfolio of strictly

day-ahead market contracts.

Should an abuse be detected the penalties are the withholding of compen-

sation during periods the BRP was in oversupply and a fee of twice the

respective day-ahead market price on top of the balancing energy price dur-

ing periods the BRP was in undersupply. Moreover, the contract may be

terminated without notice if the bias exceeds 20% over a period of one week

or 50% during a period of two days.

B.2 Excerpt from E.ON Netz

”... Der BKV ist verantwortlich für eine ausgeglichene Bilanz zwischen Ein-

speisungen und Entnahmen in jeder Viertelstunde. ...”

Die Inanspruchnahme von Ausgleichsenergie zur Lastdeckung bzw. die

Überspeisung des Bilanzkreises für nicht durch stochastische Schwankun-

gen bedingte Unausgeglichenheiten stellen grundsätzlich einen Verstoß gegen

die Rechte und Pflichten aus diesem Vertrag dar. In Fällen in denen eine

missbräuchliche Über- oder Unterspeisung von Bilanzkreisen im Sinne der

Festlegungen der Regulierungsbehörde (Section B.1) ... vorliegt, informiert

der ÜNB den BKV, fordert ihn letztmalig zur Unterlassung der Vertragsver-

letzung auf und weist auf die Rechtsfolgen ... hin. ... ”

”... Im Übrigen kann dieser Vertrag nur aus wichtigem Grund fristlos

gekündigt werden. Ein wichtiger Grund liegt vor, wenn ein Vertragspartner

eine wesentliche Verpflichtung aus diesem Vertrag verletzt hat. Dies ist ins-

besondere bei ... wiederholter missbräuchlicher Über- bzw. Unterspeisung

im Sinne (Section B.1)) der Fall. Soweit möglich und für den ÜNB zumut-

bar, wird der BKV vor Ausspruch der fristlosen Kündigung abgemahnt bzw.

erhält die Möglichkeit die Vertragsverletzung bzw. deren Folgen zu beseiti-

gen. ...”

This contract requires the BRP to provide a quarter-hourly balanced

forecast of its feed-ins and withdrawals. Any systematic deployment of bal-

ancing energy not caused by unpredictable events is classified as abuse. With

respect to sanctions and a more precise definition of abuse the contract refers

to the regulator, who is the author of the sample contract in Section B.1.

Moreover, the contract may be terminated without notice if an abuse of

balancing energy deployment is detected repeatedly.

B.3 Excerpt from Vattenfall Europe Transmission

”... Der BKV ist insbesondere für eine ausgeglichene Viertelstunden-Leistungs-

bilanz der seinem Bilanzkreis zugeordneten Einspeisungen und Entnahmen
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... verantwortlich. ...”

”... Der BKV ist verpflichtet, durch zumutbare Maßnahmen, insbeson-

dere durch entsprechende Sorgfalt bei der Erstellung der Prognosen, die

Bilanzabweichungen möglichst gering zu halten. Die Inanspruchnahme von

Ausgleichsenergie zur Lastdeckung bzw. zur Kompensation einer Überspei-

sung des Bilanzkreises ist nur zulässig, soweit damit nicht prognostizierbare

Abweichungen ausgeglichen werden. Sofern der BKV nicht alle zumutbaren

Anstrengungen unternommen hat, prognostizierbare Abweichungen zu ver-

meiden, stellt dies grundsätzlich eine unzulässige Inanspruchnahme von Aus-

gleichsenergie dar. ...”

”... Fahrpläne müssen vollständig sein und eine ausgeglichene Viertel-

stunden-Leistungsbilanz des Bilanzkreises aufweisen. ...”

”... Eine fristlose Kündigung dieses Vertrages ist zulässig, bei ... einer

wiederholt festgestellten und der Bundesnetzagentur gemeldeten Prognose-

pflichtverletzungen. ...”

As in the other sample contracts, the contract binds the BRP to pro-

vide a balanced quarter-hourly forecast resorting to adequate forecasting

procedures. Specifically the contract identifies any forecast that leaves open

predictable positions in the balancing energy market as abuse. A repeated

detection of abuse may further be sanctioned by a termination of the con-

tract without notice.

B.4 Discussion

In the context of the strategic position proffered in this thesis the excerpts

of grid-access contracts provided in the previous sections are important be-

cause they impose limits on the extent the relevant strategies may be em-

ployed in the management of electricity portfolios. In this discussion the

sample contract of the Bundes Netz Agentur (2006) takes a central posi-

tion because it includes specific reference to the quarter-hourly, hourly and

long-term pattern. All contracts require the BRP to provide a balanced

forecast on a quarter-hourly time frame. However, this requirement cannot

be interpreted as an unbiased forecast. On the contrary, the requirement

calls the BRP to present a biased forecast so that it may be balanced by

corresponding positions in the futures and the day-ahead market that do

not offer quarter-hourly periods. Also the hourly and long-term pattern are

directly addressed as potential abuse in Bundes Netz Agentur (2006). At

the same time the contract leaves a bandwidth within which corresponding

strategies can be executed. Namely, the strategies are not categorized as

abuse up to the unspecified a threshold where they become obvious and

conspicuous.
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In statistical terms all contracts specify rather fuzzy limits on strategic

balancing energy positions because no contract specifies a forecasting objec-

tive. Therefore, any forecast that is within the bulk of the density function

of the forecast can be considered a balanced forecast in the context of these

contracts. Furthermore, with respect to the patterns that are observable

over the entire analyzed period and described in this thesis, it can be as-

sumed that the forecast’s mean deviation is not ”clearly” positive or negative

nor does it show ”conspicuously” arbitrage-like correlation with day-ahead

exchange prices, if justifiable within the forecast’s density function.

However, the grid access contracts represent a considerable risk for a

BRP should its strategic positions in the balancing energy market be clas-

sified as abuse. Nonetheless, in combination with the results presented in

this thesis one can conclude that strategic positions in the balancing energy

market are encouraged up to a level where they become conspicuous and

excessive (i.e., a BRP has some flexibility in providing a balanced forecast).
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Appendix C

Examples of math and

methods

C.1 Stationarity, causality and invertibility

The following linear filter is stationary (see Brockwell and Davis (2002)):

xt =
∞∑

i=−∞

θiǫt−i , where
∞∑

i=−∞

|θi| < ∞

Moreover, it is causal if all parameters of future innovations are zero (see

Brockwell and Davis (2002)):

xt =
∞∑

i=0

θiǫt−i , where
∞∑

i=0

|θi| < ∞

Therefore, the Wold decomposition theorem provides a causal representation

of a stationary process.

A linar filter is invertable if (see Brockwell and Davis (2002)):

ǫt =
∞∑

i=0

φixt−i , where
∞∑

i=0

|φi| < ∞

Thus, causality and invertibility are complementary properties of a given

process. In the following the example of an AR(1) and a MA(1) are consid-

ered. By repeatedly substituting the representation both processes can be

transformed into a MA(∞) representation and an AR(∞) representation,

respectively.

111



112 APPENDIX C. EXAMPLES OF MATH AND METHODS

In the case of an AR(1):

xt = ǫt + φ1xt−1 = ǫt + φ1(ǫt−1 + φ1xt−2) = . . .

= ǫt +
∞∑

i=1

φi
1ǫt−i =

∞∑

i=0

φi
1ǫt−i

⇒ V ar(xt) = E(
∞∑

i=0

φi
1ǫt−i ·

∞∑

i=0

φi
1ǫt−i) =

∞∑

i=0

φ2i
1

The series only converges for |φ1| < 1. Under this condition the AR(1)

process can be represented by a stationary and causal MA(∞) process. In

the case of a MA(1):

xt = ǫt + θ1ǫt−1

⇒ ǫt = xt − θ1ǫt−1 = xt − θ1(xt−1 − θ1ǫt−2) = . . .

=

∞∑

i=0

θi
1xt−i

The invertibility condition (
∞∑

i=0
|φi| < ∞) is only fullfilled for |θ1| < 1. Under

this condition the MA(1) can be represented as an AR(∞) process.

C.2 Stationarity condition of an ARMA process

Using the polynomial representation of a general ARMA(p, q) process it is

straightforward to see that the stationarity of the process is entirely deter-

mined by the AR polynomial φ(L):

φ(L)xt = θ(L)ǫt

⇔ (1 − λ1L)n1 · . . . (1 − λpL)npxt = θ(L)ǫt

⇔ xt = θ(L)(1 − λ1L)−n1 · . . . (1 − λpL)−npǫt

⇔ xt = θ(L)φ−1(L)ǫt

The resulting MA(∞) representation is stationary if the coefficients are ab-

solutely summable. The q coefficients of the θ(L) polynomial are absolutely

summable. However, the polynomial φ−1(L) has generally an infinite num-

ber of coefficients. This series of coefficients is absolutely summable only

if the root of the AR polynomial φ(L) are all outside the unit circle in the

complex plane. In this case the representation is also causal.

Following the same argumentation with the exchanged role of xt and ǫt
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it is shown that the invertibility of an ARMA process is determined entirely

by its MA polynomial. Only if the roots of the MA polynomial θ(L) are

outside the unit circle the process is invertible.

C.3 Interdependence term in a SARIMA model

The SARIMA model introduced in Section 3.1.6 can be expanded into an

ARIMA representation. The following exemplifies this ARMA representa-

tion with the example of a SARIMA(1, 0, 1) × (1, 0, 1)24 process:

φ(L)Φ(L24)(xt) = θ(L)Θ(L24)ǫt

(1 − φ1L)(1 − Φ1L
24)(xt) = (1 + θ1L)(1 + Θ1L

24)ǫt

(1 − φ1L − Φ1L
s + φ1Φ1L

25)(xt) = (1 + θ1L + Θ1L
s + θ1Θ1L

25)ǫt

The resulting model is an ARMA(25, 25) model, with two parameter con-

straints φ̃25 = −φ1Φ1 and θ̃25 = θ1Θ1, respectively. In general, the con-

straints result in an ARMA(p + sP, q + sQ) representation. Provided the

orders p and q are less than the seasonality s the constraints are given by

φ̃i+j·s = −φiΦj and θ̃i+j·s = θiΘj .
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Appendix D

Data sources

D.1 Balancing energy demand and prices

Germany is subdivided into four control areas that are managed by sub-

sidiaries of the four major players in the German electricity market. (See

Figure 2.3.) These subsidiaries act as the TSO in the respective control

areas. The control areas’ net deviation and balancing energy prices that

are fundamental to the billing of balancing energy are published according

to the transparency rules of the regulator. This information is conveniently

accessed via regelleistung.net (2009) that is a shared platform of the four

German TSOs.

RWE Transportnetz Strom/ Ampiron

• RWE Transportnetz Strom is a subsidiary of RWE.

• It manages the largest German control area in terms of load.

• RWE Transportnetz Strom was renamed Amprion in September 2009.

• The data was downloaded from RWE Transportnetz Strom (2009).

• Historical data is available ranging from February 2001 up to today.

• RWE Transportnetz Strom publishes the data in text format providing

the control area’s net deviation [MW] and the corresponding balancing

energy prices [cent/kWh] in quarter-hourly time resolution. Figure D.1

displays the net deviation with the corresponding balancing energy

prices.
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Figure D.1: Balancing energy demand and corresponding prices in the RWE
control area from 2003 to 2008
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E.ON Netz/ Transpower

• E.ON Netz is a subsidiary of E.ON.

• It manages a large control area in central Germany from the coast to

Bavaria.

• E.ON Netz was renamed Transpower in May 2009.

• Transpower was sold to Tennet that is based in the Netherlands in

January 2010.

• The data was downloaded from E.ON Netz (2009).

• Historical data is available ranging from December 2001 up to today.

• E.ON Netz publishes the data in monthly MS-Excel files providing the

control area’s net deviation [MW] and the corresponding balancing

energy prices [cent/kWh] in quarter-hourly time resolution. Figure

D.2 displays the net deviation with the corresponding balancing energy

prices.
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Figure D.2: Balancing energy demand and corresponding prices in the E.ON
control area from 2003 to 2008
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EnBW Transportnetze

• EnBW Transportnetze Strom is a subsidiary of EnBW.

• It manages the smallest German control area in the South-West of

Germany.

• The data was downloaded from EnBW Transportnetze (2009).

• Historical data is available ranging from January 2002 up to today.

• EnBW Transportnetze publishes the data in monthly MS-Excel files

providing the control area’s net deviation [MW] and the corresponding

balancing energy prices [cent/kWh] in quarter-hourly time resolution.

Figure D.3 displays the net deviation with the corresponding balancing

energy prices.
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Figure D.3: Balancing energy demand and corresponding prices in the
EnBW control area from 2003 to 2008
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Vattenfall Europe Transmission/ 50Hertz Transmission

• Vattenfall Europe Transmission is a subsidiary of Vattenfall Europe.

• It manages a control area in the Eastern part of Germany.

• Vattenfall Europe Transmission was renamed 50Hertz Transmission in

January 2010.

• 50Hertz Transmission was sold to Elia that is based in Belgium in

March 2010.

• The data was downloaded from Vattenfall Europe Transmission (2009a).

• Historical data is available ranging from September 2002 up to today.

• Vattenfall Europe Transmission publishes the data in monthly MS-

Excel files providing the control area’s net deviation [MW] and the cor-

responding balancing energy prices [e/MWh] in quarter-hourly time

resolution. Figure D.4 displays the net deviation with the correspond-

ing balancing energy prices.



122 APPENDIX D. DATA SOURCES

Figure D.4: Balancing energy demand and corresponding prices in the Vat-
tenfall control area from 2003 to 2008
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Hypothetical German control area

For the purpose of the analysis in this thesis the balancing energy demand

data are combined to the balancing energy demand of a hypothetical single

German control area. This German balancing energy demand corresponds

best to the single German wholesale electricity market, and is calculated

as the sum over the control areas’ net deviation of all four German control

areas. Implicitly, this approach resolves the issue of control areas presenting

countering net deviations because such deviations cancel each other in the

sum. Therefore, the combined data treats the German market as a single

market as unconstrained by congestions which is the underlying assumption

in the wholesale market, as well. Figure D.5 shows the histogram of the

original data together with a histogram of the residual of the model apply-

ing a one-month forecasting horizon. The less peaked and wider shape of

the original data’s histogram demonstrate the predictable components. At

the same time the residuals’ histogram reveals the impact of unpredictable

events on balancing energy demand.

Unfortunately, it is not possible to combine the balancing energy prices

of the four control areas to a representative price for the hypothetical single

German control area. Such a combination has to be based on a weighted

average price of the respective four balancing energy prices. However, the

weighting of these prices is problematic. Therefore, the analysis resorts to

the original prices on a control area specific bases whenever balancing energy

prices are needed.
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Figure D.5: Histogram of the original data and the model residuals based
on hourly values from 2003 to 2008
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Regelzonenübergreifender einheitlicher Bilanzausgleichsenergiepreis

The three TSOs EnBW Transportnetze, Transpower (E.ON Netz) and Vat-

tenfall Europe Transmission have combined the settlement procedure of their

respective control areas in May 2009. Therefore, deviations in these con-

trol areas are settled at a common price, the Regelzonenübergreifender ein-

heitlicher Bilanzausgleichsenergiepreis (reBAP). A company registered as

BRP in more than one of the reBAP control areas will settle the respective

deviations in the three control areas. However, the common price and the

single price settlement put the company effectively in a single control area

position. In many respects this combination reduces the number of control

areas in Germany to two, the RWE control area and the reBAP control area,

with their respective net deviation and balancing energy prices. Moreover,

the RWE control area is expected to join into a common settlement scheme

in 2010.

D.2 Day-ahead market prices

• The European energy exchange (EEX) is the electricity exchange for

the German market.

• The central products are 24 day-ahead futures of hourly delivery and

day-ahead base (24/7 delivery) and peak (weekdays 8-20) contracts.

• In addition, monthly, quarterly, and yearly futures are derived from

these day-ahead contracts.

• The data was downloaded from European Energy Exchange (2009).

• Historical data is available ranging from September 2001 up to today.

• EEX publishes the data in weekly html-files providing hourly prices

[e/MWh] and the corresponding trading volume [MWh]. Table D.1

gives an overview of the prices that occurred in the years analyzed.

• The market features a 0 e/MWh and a 3000 e/MWh price cap.

• In September 2008 negative prices were introduced in the market and

the lower price cap was changed to −3000 e/MWh. The first occur-

rence of negative prices was in late December 2008.

• As typical for electricity markets, the prices display a strong load de-

pendence and corresponding seasonality that is evident in Appendix

E.2 and Figure D.6.
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Figure D.6: Sample of hourly electricity prices in a week
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Table D.1: Prices at the EEX from 2003 to 2008 based on EEX clearing
prices.

Price statistic [e/MWh]
Year Mean Std. deviation Minimum Maximum

2003 29.49 26.49 0.00 1719.72

2004 28.52 10.80 0.45 149.96

2005 45.98 27.22 0.00 500.04

2006 50.79 49.42 0.00 2436.63

2007 37.99 30.35 0.00 821.90

2008 65.76 28.65 -101.52 494.26

D.3 Demand data

The electricity supply and demand are key factors in electricity markets

because the instantaneous equilibrium of supply and demand transfers the

dynamics of the electricity demand directly to the dynamics of electricity

prices. This relationship allows to calculate the electricity demand as the

sum of electricity produced in a given time period and area if electricity

imports and exports are also accounted for. In turn, the supply side can

be estimated by the installed capacity because capacity extensions happen

gradually over extended periods of time. However, the availability of ca-

pacity has to be taken into account. In the case of the German market the

availability of the base-load nuclear and lignite units is of particular impor-

tance. Their maintenance is typically concentrated in the summer month

when their capacity is not dispensable for the security of supply. The data

described in Section D.3.1 was supplemented by a similar 2004 load mea-

surement in quarter-hourly time resolution provided by the University of

Karlsuhe IIP (2008) to allow the in-depth analysis of the quarter-hourly

pattern in Section 4.3.

D.3.1 Production, consumption, and exchange package

• The Union for the Co-ordination of Transmission of Electricity (UCTE)

is responsible for the coordination of Central European electricity net-

works.

• It provides an extensive data base including country specific so-called

production, consumption, exchange packages. These packages include

hourly load data [MW] of the third Wednesday of each month and

monthly consumption and production data [GWh].
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• The UCTE and other unions of European TSOs formed the European

Network of Transmission System Operators for Electricity (ENTSO-E)

in July 2009.

• The data was downloaded in the production, consumption, exchange

package from https://www.entsoe.eu.

• Historical data is available ranging from September 2000 up to today.

• From 2006 onwards the data includes hourly load values for all days.

Also, the monthly production of lignite power plants is given.

• The availability is estimated by the monthly generation of nuclear and

lignite power stations over the theoretical value of generation at full

capacity.

• For the years 2003 to 2005 hourly load values are approximated by

transferring the hour of the week seasonality of the years 2006 to 2008,

while observing the total monthly generation.

Table D.2: Electricity consumption and production in Germany from 2003
to 2008 based on the UCTE data

Consumption Production [TWh]
[TWh] Total Thermal Renewables

Year Total Total Nuclear Lignite Other & Others

2003 544 560 155 351 22

2004 553 569 158 387 25

2005 556 574 155 358 62

2006 559 588 159 137 222 70

2007 556 584 133 140 226 85

2008 557 587 141 138 218 90
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E.1 Apportioning of quarter-hourly pattern gains

Figure E.1: Contribution to the quarter-hourly strategy in the E.ON control
area
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Figure E.2: Contribution to the quarter-hourly strategy in the EnBW con-
trol area
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Figure E.3: Contribution to the quarter-hourly strategy in the Vattenfall
control area
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E.2 Data basis: price load curves

Figure E.4: Electricity prices and estimated equivalent load in 2003
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Figure E.5: Electricity prices and estimated equivalent load in 2004
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Figure E.6: Electricity prices and estimated equivalent load in 2005
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Figure E.7: Electricity prices and estimated equivalent load in 2006
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Figure E.8: Electricity prices and estimated equivalent load in 2007
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Figure E.9: Electricity prices and estimated equivalent load in 2008
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E.3 Balancing energy cost functions in the control

areas

Figure E.10: Yearly average balancing energy cost conditional on the net
deviation in the E.ON control area
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Figure E.11: Yearly average balancing energy cost conditional on the net
deviation in the EnBW control area
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Figure E.12: Yearly average balancing energy cost conditional the on net
deviation in the Vattenfall control area

−150 −100 −50 0 50 100
0

1000

2000

3000

4000

5000

6000

7000
2003

−150 −100 −50 0 50 100
0

1000

2000

3000

4000

5000

6000

7000
2004

−150 −100 −50 0 50 100
0

1000

2000

3000

4000

5000

6000

7000
2005

−150 −100 −50 0 50 100
0

1000

2000

3000

4000

5000

6000

7000
2006

−150 −100 −50 0 50 100
0

1000

2000

3000

4000

5000

6000

7000
2007

−150 −100 −50 0 50 100
0

1000

2000

3000

4000

5000

6000

7000
2008



142 APPENDIX E. INTERPLAY WITH MARKETPLACES



BIBLIOGRAPHY 143

Bibliography

BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. (2009).

Brutto-Stromerzeugung 2008 nach Energieträgern in Deutschland.
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Möst, D. and Genoese, M. (2009). Market power in the German wholesale

electricity market. Journal of Energy Markets, 2 (2), 47–74.

Nailis, D. and Ritzau, M. (2006). Studie zur Marktausgestalltung der Regel-

und Ausgleichsenergie vor dem Hintergrund des neuen EnWG. Tech. rep.,

BET.

Newbery, D., Green, R., Neuhoff, K., and Twomey, P. (2004). A review of

the monitoring of market power. Etso report, University of Cambridge

and University of Hull Business School.

Nolan, J. P. (1997). Numerical calculation of stable densities and distrib-

ution functions. Communications in Statistics - Stochastic Models, 13 ,

759–774.

Nordel (2008). Description of balance regulation in the Nordic countries.

Tech. rep., Nordel.

Ockenfels, A. (2007a). Measuring market power on the German electric-

ity market in theory and practice - critical notes on the LE study. En-

ergiewirtschaftliche Tagesfragen, 57 (09), 2–19.

Ockenfels, A. (2007b). Strombörse und Marktmacht. Energiewirtschaftliche

Tagesfragen, 5 , 44–58.

Oliver, A. and Zarling, K. (2009). Time of Day correlations for improved

wind speed predictions. Tech. rep., Renewable Energy Systems Americas

Inc., http://www.res-americas.com/Resources/AWEA2009-Time-of-Day-

Correlations-for-Improved-Wind-Speed.pdf.
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