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Abstract

The MSSM possesses many new sources of flavor violation. In addition to the minimally

flavor-violating interactions involving the CKM matrix there are terms which have a

priori a generic flavor structure (including possible complex phases) stemming from the

supersymmetry-breaking sector.

Especially, the trilinear A-terms can have an important effect on flavor-violating observ-

ables because they are both chirality and flavor violating. In the presence of generic sources

of flavor-violation processes mediated by squarks and gluinos are of special interest because

they involve the strong coupling constant. This would lead to dangerously large effects,

which would be in contradiction with experiment if the flavor structure were arbitrary.

The difficulty to explain why the soft-supersymmetry breaking terms are approximately

universal, or aligned to the quark sector, is known as the ”SUSY flavor problem”.

An important effect that can amplify corrections in the MSSM is chiral enhancement.

Chiral enhancement is always related to self-energies because a large chirality-changing

parameter in a SUSY correction occurs instead of a small fermion mass. A parametric

enhancement by a factor of Af
ii/(MSUSYY fi) or tan β can then (at least partly) compensate

for the suppression factor of αs/(4π).

The results of this thesis include the following1:

• The finite renormalization of fermion masses and mixing matrices by one-particle

irreducible self-energies is presented. We apply this formalism to the chirally en-

hanced pieces of the MSSM self-energies taking also into account the important NLO

corrections to the fermion masses and mixing angels.

• Applying ’t Hooft’s naturalness argument strong constraints on the soft-supersymmetry-

breaking parameters δf LR
ii and δq LR

ij (j > i) are obtained by demanding that the

SUSY corrections to fermion masses and CKM angles should not exceed the mea-

sured values. The NLO effects also allow us to constrain the combinations δf LR
13 δf LR

31

1The results of this thesis have already been published for the most part in Ref. [1–6]
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and δd LR
23 δf LR

32 . This is especially important with respect to δu RL
13,23 which are uncon-

strained from FCNC processes.

• Chirally enhanced corrections to FCNC processes are computed. We show that all

such (N)NLO contributions can easily be included into the LO analysis by renormaliz-

ing the squark-quark-gluino vertex. It is found that these corrections are important in

the presence of chirality-violating terms if the squark masses are non-degenerate. Tak-

ing into account these corrections, new bounds on the flavor-violating mass-insertions

δd AB
12,13,23 are calculated.

• A model in which the light fermion masses are generated radiatively via sfermion-

gaugino loops using the trilinear A-terms is proposed. We show that this model does

not only possess a higher flavor symmetry in the Yukawa sector but is also capable

to solve the SUSY CP as well as the SUSY flavor problem. The phenomenologi-

cal consequences of this model are worked out using the improved FCNC analysis

which includes the chirally enhanced corrections. It is found that the dominant ef-

fects occur in b → s(d)γ and in Kaon mixing. If the model is extended to the lepton

sector, the anomalous magnetic moment of the muon requires the smuon mass to be

approximately between 1 TeV and 3 TeV.

• The constraints on the mass-splitting of the first two generations of left-handed

squarks obtained from ∆MK , ǫK and D−D mixing is studied. The different con-

tributions from gluino, neutralino and chargino diagrams are examined in detail,

concluding that it is not justified to neglect electroweak gaugino diagrams if the

squark mass matrices contain flavor non-diagonal LL elements. We find that the

constraints on the mass-splitting are very strong for light gluino masses. However,

if the gluino is heavier than the squarks the constraints on the mass-splitting are

much weaker. There are even large regions in parameter space where the different

new physics contributions cancel each other, leaving the mass-splitting nearly uncon-

strained.

• We show that a sizable right-handed W coupling can be generated within the MSSM

by using the unconstrained elements δu RL
13,23 . This anomalous coupling effects the ex-

traction of Vub and Vcb from inclusive and exclusive decays and is capable to solve the

apparent discrepancies between the different determinations of these CKM elements.
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1. Introduction

The Standard Model (SM) of particle physics (supplemented with neutrino masses) pro-

vides a remarkably successful description of the presently known phenomena. Its predic-

tions are compatible with experiments ranging from laboratory-size low-energy precision

experiments up to the largest terascale particle colliders. Electroweak precision data ob-

tained by LEP have established the SM mechanism of spontaneous symmetry breaking

(except for the still lacking discovery of the Higgs particle) and direct searches for new

particles at the Tevatron experiments CDF and DO/ at Fermilab gave no hint for physics

beyond the SM. Furthermore, the B-factories BABAR and BELLE have confirmed the

Cabibbo-Kobayashi-Maskawa (CKM) mechanism of flavor violation with very high accu-

racy. Especially, even though Flavour-Changing Neutral Current (FCNC) processes are

very sensitive to new physics (NP) (since the SM contribution is strongly suppressed) all

results are in reasonable agreement with the SM.

However, it still seems clear that the SM is not the ultimate ”theory of everything” since it

does not incorporate gravity. Therefore, we already know at least one scale of new physics

(NP): The reduced Planck scale MP =
√

8πGNewton = 2.4 × 1018GeV, where gravitational

effects become important and classical General Relativity (GR) is no longer valid. Further-

more, there is compelling evidence for a Grand Unified Theory (GUT) in which the three

SM gauge couplings unify at some high scale MGUT ≈ 1014GeV−1016GeV. In the simplest

GUT, SU(5), all SM particles fit nicely into its representations and since SU(5) is a simple

group this can explain the quantization of electric charge. In a more complicated GUT,

SO(10), also the right-handed neutrinos find their natural places.

The fact that the scale of NP, MGUT or MP is many orders of magnitude above the

electroweak scale raises the infamous ”hierarchy problem”. However, it should be kept

in mind that this is not a problem of the SM itself but rather an intricate sensitivity of

the Higgs potential to radiative corrections associated with heavy new particles present in

extensions of the SM. The origin of this extreme sensitivity to quantum loop corrections is

the fact that the Higgs is a scalar particle whose renormalization is plagued by quadratic
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divergences.

The best studied (and maybe also the best motivated) solution to the hierarchy problem

is supersymmetry (SUSY). It introduces superpartners to all SM particles which have the

same couplings and quantum numbers but which differ in spin by 1/2. Since a fermionic

loop has the opposite sign as a bosonic one, the contributions to the Higgs mass cancel

exactly in the limit of unbroken SUSY in which the particles in a supermultiplet have

the same masses. However, we know that SUSY cannot be exact but rather must be

broken since no superpartners have been detected (yet). Nevertheless, the renormalization

property of the Higgs mass is significantly better since now the divergence depends on the

ratio MSUSY/MSM. However, in order to provide a convincing solution for the hierarchy

problem one should expect the SUSY scale to be of the order of one TeV.

Since we can at best speculate about the mechanism that breaks SUSY, explicit soft-

supersymmetry-breaking terms are introduced which parameterize our ignorance. Soft

means in this context that the terms are chosen in such a way that the non-renormalization

theorem, which guarantees the stability of the Higgs potential, is still valid. Yet, the effect

of these soft SUSY breaking terms is not only to give (additional) masses to the SUSY

particles. In fact, they are also potential new sources of CP and flavor violation since there

is a priori no constraint which requires them to be flavor diagonal and real in the same

basis as the Yukawa couplings. These new flavor-changing (and CP violating) interactions

involve the strong coupling constant (in the quark sector) and since we expect the SUSY

scale to be of the order of 1 TeV a fully unconstrained version of the MSSM would be dis-

astrous for the FCNC transitions. Therefore, SUSY-breaking scenarios with alignment or

flavor universality were invented. However, this condition is usually imposed at some high

scale and is not renormalization group invariant. This means that at the lower (SUSY)

scale off-diagonal elements are induced which are proportional to Yukawa matrices.

Anyway, since we expect the SUSY scale to be of the order of 1 TeV, given the strong

suppression of FCNC processes it is very interesting (and important for model building)

to calculate the resulting bounds on the flavor (and chirality) violating SUSY-breaking

parameters [7–27]. The common parameterization for these flavor (and chirality) changing

quantities is motivated by the mass insertion approximation and is therefore called the

mass insertion parameterization [28]. Even though we will not use this approximation in

our analysis it is very helpful for a qualitative understanding of the effects and we will

also use the mass insertion parameterization for the off-diagonal elements of the sfermion

mass matrices. The mass insertion parameter δf AB
ij is usually defined to be the off-diagonal
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element of the sfermion mass matrix divided by the geometric average of the corresponding

diagonal elements (see chapter 2 for details):

δf AB
ij =

∆f AB
ij

M f̃
i AM f̃

f B

(1.1)

Here i and j are flavor indices while A and B denote the chiralities L and R. While all

flavor-changing elements in the down sector can be constrained, the elements of the up

sector which involve the third generation are rather unconstrained.

If the mass insertion parameter δf AB
ij is chirality changing (A �= B) another interesting

and important effect occurs: chiral enhancement. In the flavor-conserving case the non-

decoupling chirality-changing part of a SQCD self-energy can be of order one compared to

the corresponding quark mass because of a parametric enhancement by a factor of tanβ or

Af
ii/(MSUSYY fi). Also in the flavor-changing case order one effects are possible because one

has to compare the self-energy to the corresponding quark mass times the CKM element.

Since they can be of order one, the chirally enhanced corrections lead to formally (N)NLO

diagrams which can be of the same order as the leading order process. Therefore, these

corrections have to be included into the calculation.

Even though the chirality-changing part of the self-energy can be of order one it cannot be

distinguished from a mass term in the decoupling limit. However, it corrects the relation

between the physical mass and the Yukawa coupling (or between the measured CKM

element and the one in the Lagrangian). According to ’t Hooft, a small quantity is natural

if a symmetry is gained if it is set to zero. Large accidental cancellations, not enforced by

symmetry, are unnatural and therefore should not occur in a valid theory. This argument

enforces that the SUSY corrections to the fermion masses and to the CKM matrix should

not exceed the experimentally measured values. Out of this requirement strong bounds on

the mass insertions δf AB
ij can be obtained.

Furthermore, in the case when the SUSY corrections are as large as the measured values one

recovers a very interesting scenario: radiative mass generation. Since the A-terms generate

the Yukawa couplings via loops they are necessarily aligned to them. In this way the SUSY

flavor and the SUSY CP problem can be solved. However, the top quark and the tau

lepton are too heavy to be generated radiatively and because of the successful bottom-

tau Yukawa coupling unification (and in order to be consistent) it is sensible to keep the

bottom Yukawa as well. Therefore, in the quark sector a misalignment between the Yukawa

matrices, diag(0, 0, Yq3), and the A-terms, which generate the light quark masses and the
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CKM matrix, occurs. This leads to observable deviations from MFV if the third generation

is involved. In the lepton sector this model affects the anomalous magnetic moment of the

muon (and to less respect also the electron) which receives corrections due to the chirality

changing nature of Aℓ
22.

Since flavor-changing self-energies evaluated at zero external momentum can be of order

one they also lead to (N)NLO contributions to FCNC processes which can be of the same

order as the LO processes. This occurs since we can treat diagrams with FC self-energies

in the external legs as one-particle irreducible [29]. Therefore, a inclusion of these effects is

important and, as we will show later, can be easily achieved by including the self-energies

into an effective squark-quark-gluino vertex.1 It will turn out that these effects drop out for

degenerate squark masses but can be dominant for unequal masses, especially if transitions

between the first two generations are involved.

A mass splitting is especially interesting for the left-handed squarks. Already in the early

stages of MSSM analyses it was immediately noted, that a super GIM mechanism is needed

in order to satisfy the bounds from flavor changing neutral currents (FCNCs) [30]. There-

fore, the mass matrix of the left-handed squarks should be (at least approximately) propor-

tional to the unit matrix, since otherwise flavor off-diagonal entries arise inevitably either

in the up or in the down sector due to the SU(2) relation between the left-handed squark

mass terms. The idea that non-degenerate squarks can still satisfy the FCNC constraints

(K and D mixing) was first discussed in Ref. [31] (an updated analysis can be found in

Ref. [32]) in the context of abelian flavor symmetries [33, 34]. In all MSSM analyses the

main focus has been on the gluino contributions, while the chargino and neutralino contri-

butions were usually neglected claiming that they are suppressed by a factor of g4
2/g

4
s [9–11,

25, 31, 35, 36]. However, it is no longer a good approximation to consider only the gluino

contributions in the presence of off-diagonal elements in the LL block of the squark mass

matrices because the winos couple to left-handed squarks with g2. In addition, the gluino

contributions suffer from cancellations between the crossed and uncrossed box-diagrams,

especially if the gluino is heavier than the squarks. Therefore, the neutralino and chargino

contributions can even be dominant if M2 is light and the gluino is heavier than the squarks.

This situation can occur in GUT-motivated scenarios in which the relation M2 ≈ mg̃α2/αs

holds. Therefore, we want to update the evaluation of the constraints from K and D mix-

ing with focus on the mass splitting between the first two squark generations taking into

1Similar effects occur in the lepton sector, however they are less important since they don’t involve the

strong coupling constant.
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account the weak contributions as well.

There is another interesting feature of flavor-changing A-terms: They can generate a sizable

right-handed W coupling via loops. We find that the right-handed W -coupling can only

be sizable with respect to b → u and b → c transitions. Furthermore, the decoupling

corrections to the left-handed coupling are suppressed due to cancellations between the

genuine vertex correction and the self-energy diagrams and cannot be sizable. In opposite

to left-right symmetric models [37] the corresponding dimension six operator does not lead

to a right-handed coupling to neutrinos. Therefore, the constraints from neutrino masses

on a right-handed W coupling do not apply in this case. A generic analysis of such higher-

dimensional right-handed couplings has been performed in Ref. [38] aiming at a better

understanding of K → πµν data. The general effect of left- and right-handed anomalous

couplings of the W to charm was studies in Ref. [39] and the coupling of the W to up in

[40]. We will investigate the effect of a right-handed W -coupling on the extraction of |Vub|
(|Vcb|) and show that current tensions between SM and data can be removed (alleviated).

This work is composed as follows: Chapter 2 gives a short introduction to the MSSM with

special emphasis on the new sources of flavor violation. Chapter 3 discusses the finite renor-

malization induced by SQCD self-energies beyond leading order. A numerical evaluation

of the fine tuning constraint obtained by applying ’t Hooft’s naturalness argument is given

in chapter 4. Chapter 5 discusses the chirally enhanced corrections to FCNC processes in

the presence of generic flavor violation. We use this improved analysis in the study of the

phenomenological consequences of a model with radiative mass generation in chapter 6.

The importance of the electroweak contributions to ∆F = 2 processes in the presence of

LL mass insertions is discussed in chapter 7 with focus on the mass splitting between the

first two generations of left-handed squarks. In chapter 8 we show that the MSSM can

generate a sizable right-handed W coupling. The effect of such a coupling on the deter-

mination of Vub and Vcb from inclusive and exclusive decays is discussed in the effective

field theory approach. We conclude in chapter 9 and an appendix summarizes the loop

functions, Feynman rules etc. needed for the computation.



2. The MSSM

As already noted in the introduction, the SM is for sure not the ultimate ”theory of

everything”. Even the force which is most familiar to us from everyday life, gravity, is

not included and quantum gravitational effects become important near the Planck scale.

Therefore, we already know at least one scale of new physics: MP =
√

8πGNewton = 2.4 ×
1018GeV. Furthermore, there is compelling evidence for a grand unified theory:

• The SM fermions fit nicely into the 5̄ and 10 representation of SU(5) and the gauge

bosons can be naturally embedded into the 24 dimensional adjoint representation.

• Taking into account the running of the three SM gauge couplings they (nearly) meet

at an energy scale of 1014GeV.

• The hypercharge quantum numbers of the SM fermions look random. However,

combining hypercharge Y with the baryon number B and lepton number L into

Y − (B − L)/2 one recognizes the pattern of a right-handed isospin. This hints

towards a left-right symmetric model which can be embedded into SO(10) GUTs.

Furthermore, in SO(10) GUTs the right-handed neutrino is naturally incorporated

as a SU(5) singlet.

However, any scale of new physics (MPlanck, MGUT) which is far above the scale of elec-

troweak symmetry breaking of the standard model causes the infamous hierarchy problem

[41–44]: Let’s illustrate this by a simple example. Consider the generic coupling term of a

fermion to the Higgs field in the Lagrangian −λf f̄fH. The resulting Higgs self-energy is

shown in Fig. 2.1a. If we use a ultraviolet ΛUV cutoff for the regularization procedure we

get the following correction to the Higgs mass:

m2
H → m2

H − |λf |2
8π2

Λ2
UV + log div. + finite (2.1)

As we see from (2.1), this correction is especially disturbing for the top quark due to its

large Yukawa coupling. However, this problem also arises for any new heavy particle (for
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f

HH

HH

S

(a) (b)

Figure 2.1: a) Higgs self-energy which a fermion leads to a quadratic divergence. b) Higgs

self-energy which a scalar particle which also leads to a quadratic divergence but with

opposite sign than the one resulting from Fig. a).

example if we have some heavy gauge boson of a GUT). Consider now the coupling of a

new complex scalar with the Lagragian term −λs |H|2 |S|2. Calculating the corresponding

Higgs self-energy (Fig. 2.1b) the correction to the Higgs mass squared reads:

m2
H → m2

H +
λs

16π2
Λ2

UV + log + log div. + finite (2.2)

If we compare (2.1) with (2.2) we immediately see a way to solve the hierarchy problem.

If any fermion that couples to the Higgs has associated complex scalars with coupling

λS = |λf |2 the contributions exactly cancel due to the relative minus sign between the

femionic and the bosonic loop. However, as already explained in the introduction, ’t Hooft’s

naturalness argument forbids large accidental cancellation. Therefore, we need a symmetry

which enforces this cancellation by relating bosons to fermions: supersymmetry.

Even though the cancellation of quadratic divergences is a main motivation for supersym-

metry it possesses several other pleasant features which makes it maybe the best motivated,

but at least most studied way to extend the SM:

• According to the Coleman Mandula theorem [45, 46] it is the only possible symmetry

which can relate internal and external symmetries in a non-trivial way.

• Local supersymmetry incorporates gravity since the anticommutator of the super-

symmetry-generators yields a space-time translation.

• Supersymmetry is a prediction of string theory. For consistency a world-sheet super-

symmetry is required because non-supersymmetric string theories have a tachyon in
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their particle spectrum. Remarkably (and also maybe surprisingly) two dimensional

world-sheet supersymmetry also leads to space-time supersymmetry.

• Supersymmetry improves the merging of the gauge couplings at the GUT scale.

Furthermore, the unification-scale is pushed to higher energies which ensures the

consistency of the predicted life-time of the proton with experiment.

2.1. Construction of the MSSM

In order to obtain a realistic supersymmetric version of the Standard Model one has to

extend the field content of the theory by adding appropriate scalar or fermionic partners to

the ordinary matter and gauge fields. However, one also has to extend the Higgs sector due

to the analyticity of the superpotential. Analytic means that it can only be constructed

as a function of fields and not of their complex conjugates. Therefore, it is impossible to

generate all fermions masses using a single Higgs doublet. Instead at least two of them

with opposite hypercharge are required. Therefore, the minimal field content of a realistic

supersymmetrized version of the SM is:

• Vector supermultiplets containing gauge bosons and gauginos transforming in the

adjoint representation of the SM gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

– VY ⊃ Bµ, λ̃B: The U(1) hypercharge gauge field and its superpartner the bino,

respectively. Both couple to matter fields with g1

– V k
W ⊃ W k

µ , λ̃k
W : The three gauge bosons associated with SU(2)L and their su-

perpartners the winos.

– V a
g ⊃ ga

µ, g̃
a: Eight gluons and gluinos associated with SU(3)C .

• Three generations (with flavor indices i, j) of chiral supermultiplets containing the

SM fermions and their scalar partners the sfermions which are denoted by a tilde:

– SU(2)L antilepton singlets: Ēi ⊃ ℓC
iR, ℓ̃∗iR

– SU(2)L antiquark singlets:
Ūi ⊃ uC

iR, ũ∗
iR

D̄i ⊃ dC
iR, d̃∗

iR

– SU(2)L lepton doublets: Li =

(
Lνi

Lℓi

)
⊃
(

νi

ℓiL

)
,

(
ν̃i

ℓ̃iL

)
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– SU(2)L quark doublets: Qi =

(
Ui

Di

)
⊃
(

uiL

diL

)
,

(
ũiL

ũiL

)

• Two chiral superfields containing the two Higgs SU(2)L doublets and their fermionic

superpartners, the higgsinos:

Hd =

(
H1

d

H2
d

)
⊂
(

h0
d

h−
d

)
,

(
h̃0

d

h̃−
d

)
, Hu =

(
H1

u

H2
u

)
⊂
(

h+
u

h0
u

)
,

(
h̃+

u

h̃0
u

)

The subscripts u and d anticipate to which quarks the Higgses will couple to.

In order to complete the supersymmetric part of the MSSM one has to write down the

superpotential. The most general analytic gauge invariant expression which does not violate

SM conservation laws is:

WMSSM = µHd · Hu − Y ℓ
ijHd · LiĒj − Y d

ijHd · QiD̄j − Y u
ijHu · QiŪj (2.3)

The dot represents the SU(2)L invariant contraction of two doublets ǫDEADBE . The ma-

trices in flavor space, Y f
ij , are the Yukawa couplings and µ is the higgsino mass parameter.

However, since no suppersymmetric particle has been discovered (yet), we know that they

must be much heavier than the SM particles. Therefore, SUSY cannot be exact but rather

must be broken. In order for the non-renormalization theorem to stay valid, the SUSY

breaking terms must be ”soft” or of positive mass dimension. Therefore, in R-parity con-

serving SUSY, we can write down the following soft-supersymmetry terms which respect

both gauge invariance and SM conservation laws:

• Sfermion mass terms:

−
(

q̃∗iL

(
M

q̃ 2
LL

)
ij

q̃jL + ũ∗
iR

(
Mũ 2

RR

)
ij

ũjR + d̃∗
iR

(
Md̃ 2

RR

)
ij

d̃jR

+ℓ̃∗iL

(
Mℓ̃ 2

LL

)
ij

ℓ̃jL + ℓ̃∗iR

(
Mℓ̃ 2

RR

)
ij

ℓ̃jL

) (2.4)

A priori, the matrices in flavor space M
f̃
AB are arbitrary. However, in order to obtain

physical sfermions with positive mass, the diagonal entries must be bigger than the

off-diagonal ones. Note that due to SU(2) invariance the mass terms for left-handed

up and down squarks are equal.

• Majorana mass terms for the gaugions:

+
1

2

(
M1

¯̃λ0PLλ̃0 + M2
¯̃λk

W PLλ̃k
W + mg̃

¯̃gaPLg̃a
)

+ h.c. (2.5)
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• Bilinear couplings of the Higgs fields:

m2
d |hd|2 + m2

u |hu|2 + (Bµhd · hu + h.c.) (2.6)

• Trilinear couplings of sfermions to the Higgs fields analogous to the Yukawa terms in

the superpotential:

hd · ℓ̃iLA
ℓ
w ij ℓ̃

∗
jR + hd · q̃iLA

d
w ij d̃

∗
jR + q̃iL · huA

u
w ijũ

∗
jR + h.c. (2.7)

The parameters A carry a subscript w to remind us that they are given in a weak

eigenbasis. Note that these terms are not only potential sources of flavor violation,

they also connect left-handed with right-handed sfermions.

• Non-analytic trilinear coupling of sfermions to the wrong Higgs field:

hI∗
u ℓ̃I

iLA
′ℓ
w ij ℓ̃

∗
jR + hI∗

u q̃I
iLA′d

w ij d̃
∗
jR + hI∗

d q̃I
iLA′u

w ijũ
∗
jR + h.c. (2.8)

Even though these terms are not generated in the most popular SUSY breaking

scenarios they are allowed by gauge invariance and SM conservation laws. As we

will see later, in gaugino-mediated FCNCs the combination vdA
d (vuA

u) cannot be

distinguished from vuA
′d (vdA

′u). However, the non-analytic A terms can lead to

large effects in Higgs mediated FCNCs since they generate non-holomorphic Higgs

couplings at the one-loop level.

2.2. The mass spectrum of the MSSM

In order to obtain the physical spectrum at low energies we have to carry out the standard

procedure of spontaneous symmetry breaking. Thus, each of the Higgs fields acquires a

vacuum expectation value in its neutral component:

〈hu〉 =

(
vu

0

)
, 〈hd〉 =

(
0

vd

)
(2.9)

In this way, the SU(2)L gauge bosons receive their masses and the neutral W mixes with

the U(1) gauge boson resulting in the photon and the Z. In this respect all SM formulas

for the one Higgs doublet model hold with the simple replacement v →
√

v2
u + v2

d. The

normalization in (2.9) is chosen in such a way that the (tree level) masses are given by:

m
q(0)
ij = vqY

q
ij

m
ℓ(0)
ij = vdY

ℓ
ij

(2.10)
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We arrive at the mass eigenbasis by diagonalizing these matrices by a biunitary transfor-

mation:

U
(0)f†
L m

(0)
f U

(0)f
R = m

D(0)
f (2.11)

Here m
D(0)
f is a diagonal matrix containing the singular values. Note that this relation is

defined for the uncorrected tree-level masses. This will be important later, when we discuss

the definition of the super-CKM basis in the presence of order one loop-corrections. With

these conventions the CKM matrix is given by:

V (0) = U
(0)d†
L U

(0)u
L (2.12)

However, we can simplify things by using our freedom to specify a weak basis. We choose:

U
(0)d
L = U

(0)d
R = U

(0)u
R = U

(0)ℓ
L = U

(0)ℓ
R = 1̂, U

(0)u
L = V (0) (2.13)

2.2.1. Sfermions

Using the six dimensional vector f̃ =

(
f̃L

f̃R

)
as a basis, we can define the sfermion mass

matrices. However, in order to consider FC processes it is very useful to switch to the

super-CKM basis because in this way unphysical fermion field rotations can be absorbed

into the definition of the sfermion mass matrices. We arrive at the super-CKM basis by

applying the same rotations to the sfermion field which were needed to diagonalize fermion

Yukawa couplings:

ũ =

(
ũL

ũR

)
→
(

V (0)†f̃L

f̃R

)
(2.14)

Then the sfermion mass matrices in the super-CKM basis are given by:

M2
ũ = (2.15)


V (0)†M

q̃ 2
LLV (0) + cos 2β

6
(m2

Z + 2m2
W ) 1̂ +

(
m

D(0)
u

)2

−V (0)† (vuA
u
w + vdA

′u
w) + m

D(0)
u µ cotβ

−
(
vuA

u†
w + vdA

′u†
w

)
V (0) − m

D(0)
u µ∗ cot β Mũ 2

RR + 2 cos 2β

3
m2

Z sin2 θW 1̂ +
(
m

D(0)
u

)2




M2
d̃

=


 M

q̃ 2
LL − cos 2β

6
(m2

Z − 4m2
W ) 1̂ +

(
m

D(0)
d

)2

−vdA
d
w − vuA

′d
w + m

D(0)
d µ tanβ

−vdA
d†
w − vuA

′d†
w − m

D(0)
u µ∗ tan β Md̃ 2

RR − cos 2β

3
m2

Z sin2 θW 1̂ +
(
m

D(0)
d

)2




M2
ℓ̃

=



 Mℓ̃ 2
LL − cos 2β

6
(m2

Z − 2m2
W ) 1̂ +

(
m

D(0)
ℓ

)2

−vdA
ℓ
w − vuA

′ℓ
w + m

D(0)
ℓ µ tanβ

−vdA
ℓ†
w − vuA

′ℓ†
w − m

D(0)
ℓ µ∗ tan β Mℓ̃ 2

RR − cos 2βm2
Z sin2 θW 1̂ +

(
m

D(0)
ℓ

)2
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Thus the trilinear terms of the super-CKM basis, Af , and those in the weak basis are

related as:

Ad,ℓ = Ad,ℓ
w , Au = V (0)†Au

w (2.16)

It is common to parameterize the sfermion mass matrices, given in the super-CKM basis

in the following way:

M2
f̃

=




(
M f̃

1L

)2

∆f̃ LL
12 ∆f̃ LL

13 ∆f̃ LR
11 ∆f̃ LR

12 ∆f̃ LR
13

∆f̃ LL∗
12

(
M q̃

2L

)2

∆f̃ LL
23 ∆f̃ RL∗

12 ∆f̃ LR
22 ∆f̃ LR

23

∆f̃ LL∗
13 ∆f̃ LL∗

23

(
M q̃

3L

)2

∆f̃ RL∗
13 ∆f̃ RL∗

23 ∆f̃ LR
33

∆f̃ LR∗
11 ∆f̃ RL

12 ∆f̃ RL
13

(
M q̃

1R

)2

∆f̃ RR
12 ∆f̃ RR

13

∆f̃ LR∗
12 ∆f̃ LR∗

22 ∆f̃ RL
23 ∆f̃ RR∗

12

(
M q̃

2R

)2

∆f̃ RR
23

∆f̃ LR∗
13 ∆f̃ LR∗

23 ∆f̃ LR∗
33 ∆f̃ RR∗

13 ∆f̃ RR∗
23

(
M q̃

3R

)2




(2.17)

This is useful because in gaugino mediated FCNCs always the whole off-diagonal element

enters. However, the sfermion mass matrices are not (necessarily) diagonal in flavor space.

Therefore, we have to diagonalize (2.17) by a unitary transformation in order to obtain the

squark masses and mixing angles:

W f̃†M2
f̃
W f̃ = M

(D)2

f̃
(2.18)

The matrix M
(D)2

f̃
contains the six physical sfermion mass eigenvalues squared, m2

f̃s
, as

diagonal elements. These rotations matrices, W f̃
st, which parameterize the misalignment

between the squarks and the quarks enter in the squark-quark-gluino vertex (see appendix).

In order to understand flavor changes induced by sfermion mass matrices qualitatively the

”mass insertion approximation” is useful. This just corresponds to the expansion of (2.17)

in the (assumed) small off-diagonal elements ∆f̃ AB
ij over the diagonal ones. Therefore, the

vertices are flavor diagonal in this approximation, but flavor-changing mass terms appear

on the squark lines (see Fig. 2.2). Every insertion of such a mass terms yields an additional

squark propagator. This motivates the following definition for the mass insertion parameter:

δf AB
ij =

∆f̃ AB
ij

M f̃
i AM f̃

f B

(2.19)

Note that even though this parameter is dimensionless, it does not only contain SUSY

quantities. In the case when it is chirality flipping (A �= B) it is proportional to a elec-

troweak vacuum expectation value (vev). Therefore, theses elements do not stay constant

if one scales all SUSY parameters by a common factor but decrease as v/MSUSY
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−i∆f̃ AB
ij

i

p2−
(

M
f̃
iA

)2
i

p2−
(

M
f̃
jB

)2

Figure 2.2: Insertion of a flavor-changing mass term into a sfermion line.

2.2.2. Charginos

The charged higgsinos and winos have the same quantum numbers and mix after elec-

troweak symmetry breaking. The four 2-component spinors λ̃1
W , λ̃2

W , h̃−
d , h̃+

u form two phys-

ical Dirac fermions χ̃±
1 , χ̃±

2 with masses mχ̃±

1 , mχ̃±

2 arising from a biunitary transformation

of the chargino mass matrix:

U χ̃±∗

(
M2 g2vu

g2vd µ

)(
V χ̃±

)−1

=

(
mχ̃±

1 0

0 mχ̃±

2

)
(2.20)

Interactions involving charginos are proportional to the CKM matrix (see Appendix).

Therefore, charginos contribute to flavor changing processes even in the case of minimal

flavor violation.

2.2.3. Neutralinos

As in the case of the charginos also the bino, the neutral wino and the neutral higgsinos

share the same quantum numbers and mix among each other.

(
Z χ̃0

)T




M1 0 −g1vd√
2

g1vu√
2

0 M2
g2vd√

2
−g2vu√

2

−g1vd√
2

g2vd√
2

0 −µ
g1vu√

2
−g2vu√

2
−µ 0




Z χ̃0

=




mχ̃0

1 0 0 0

0 mχ̃0

2 0 0

0 0 mχ̃0

3 0

0 0 0 mχ̃0

4




(2.21)

Note that the neutralinos possess a symmetric mass matrix. Therefore, the transposed

and not the hermition conjugate of Z appears on the left side. Like the gluinos, also the

neutralinos contribute only to FCNC processes (at one loop) in the case of non-minimal

flavor violation.

This completes the physical content of the MSSM and we can now switch to the applications

in flavor-changing processes. The simplest possible flavor-changing diagrams (with external
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fermions) one can construct are self-energies. We will study their effects in the following

chapter.
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3. Finite renormalization of fermion

masses and mixing matrices

In this chapter we compute the finite renormalization of fermion masses and flavor valued

wave functions induced through one-particle irreducible self-energies. We first consider the

general case and then specify to the MSSM in which NLO effects become important due

to a possible chiral enhancement.

3.1. General formalism

In this section we consider the general effect of finite one-particle irreducible self-energies

on the mass and wave-function renormalization of fermions. It is possible to decompose

any self-energy into its chirality-flipping and its chirality-conserving parts in the following

way:

Σf
ij(p) =

(
Σf LR

ij (p2) + p/Σf RR
ij (p2)

)
PR +

(
Σf RL

ij (p2) + p/Σf LL
ij (p2)

)
PL . (3.1)

Note that chirality-changing parts Σf LR
ij and Σf RL

ij have mass dimension 1, while Σf LL
ij

and Σf RR
ij are dimensionless. With this convention the tree-level fermion masses

m
(0)
fi

= Y fi (0)vd,u (3.2)

receive the following corrections at the one-loop level:

m
(0)
fi

→ m
(0)
fi

+ Σf LR
ii (m2

fi
) +

1

2
mfi

(
Σf LL

ii (m2
fi
) + Σf RR

ii (m2
fi

)
)

+ δmfi
= mfi

. (3.3)

If the self-energies are finite, the counter-term δmfi
in (3.3) is zero in a minimal renor-

malization scheme like MS. Even though in a minimal renormalization scheme m
(0)
fi

is not

equal to the physical fermion mass we choose the MS scheme from now on for two reasons:

• Off-diagonal elements of the sfermion mass matrices, in particular the trilinear A-

terms, are theoretical quantities which are not directly related to physical observables.



16 3. Finite renormalization of fermion masses and mixing matrices

fj

−iΣf
ij

fi

Figure 3.1: Flavour-valued wave-function renormalization.

For such quantities it is always easier to use a minimal scheme which allows for a

direct relation between theoretical quantities and observables.

• We will consider the limit in which the light fermion masses and CKM elements are

generated radiatively. In this limit it would be unnatural to have tree-level Yukawa

couplings and CKM elements in the Lagrangian which would cancel with the counter-

terms in the on-shell scheme.

We will further elaborate on this important point in section 3.4 and section 5.1.

Note that mfi
on both sides of equation 3.3 is the measured fermion mass in the MS scheme.

Even though the fermion mass on the left-handed side arises via the equation of motion,

it can be shown that taking into account the loop corrections it equals the MS mass [47].

This observation is consistent with the result in the effective field theory approach (see for

example [48]).

The self-energies of equation (3.1) do not only renormalize the fermion masses. Also a

rotation, δij +∆Uf L
ij , in flavor-space which has to be applied to all external fields is induced

through the diagram in Fig. 3.1:

∆Uf L
ij =

1

m2
fj
− m2

fi

(
m2

fj
Σf LL

ij

(
m2

fi

)
+ mfj

mfi
Σf RR

ij

(
m2

fi

)

+mfj
Σf LR

ij

(
m2

fi

)
+ mfi

Σf RL
ij

(
m2

fi

))
for i �= j,

(3.4)

∆Uf L
ii =

1

2
Re
[
Σf LL

ii

(
m2

fi

)
+ 2mfi

Σf LR′
ii

(
m2

fi

)
+ m2

fi

(
Σf LL′

ii

(
m2

fi

)
+ Σf RR′

ii

(
m2

fi

))]
.

The prime denotes differentiation with respect to the argument. The flavor-diagonal part

arises from the truncation of flavor-conserving self-energies. The equations (3.3) and (3.4)

are valid for arbitrary one-particle irreducible self-energies and we are going to apply them

to the MSSM after we have calculated the supersymmetric self-energies in the next section.
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3.2. Self-energies in the MSSM

Self-energies with supersymmetric virtual particles are of special importance because of

a possible chiral enhancement which can lead to order-one corrections. In this section we

calculate the chirally enhanced (by a factor
A

ij
f

MSUSY Y
ij
f

or tanβ) parts of the fermion self-

energies in the MSSM. For this purpose it is sufficient to evaluate the diagrams at vanishing

external momentum.

We choose the sign of the self-energies Σ to be equal to the sign of the mass, e.g. calculating

a self-energy diagram yields −iΣ. Then, with the Feynman rules given in the appendix,

the fermion self-energies with a gaugino and a sfermion as virtual particles are given by:

Σλ̃ LR
fi−fj

=
−1

16π2

6∑
s=1

l∑
k=1

mλ̃k
Γλ̃kL∗

fif̃s
Γλ̃kR

fif̃s
B0

(
p2; m2

λ̃k
, m2

f̃s

)

Σλ̃ RL
fi−fj

=
−1

16π2

6∑
s=1

l∑
k=1

mλ̃k
Γλ̃kR∗

fif̃s
Γλ̃kL

fif̃s
B0

(
p2; m2

λ̃k
, m2

f̃s

)

Σλ̃ LL
fi−fj

=
−1

16π2

6∑
s=1

l∑
k=1

Γλ̃kL∗
fif̃s

Γλ̃kL

fif̃s
B1

(
p2; m2

λ̃k
, m2

f̃s

)

Σλ̃ RR
fi−fj

=
−1

16π2

6∑
s=1

l∑
k=1

Γλ̃kR∗
fif̃s

Γλ̃kR

fif̃s
B1

(
p2; m2

λ̃k
, m2

f̃s

)

(3.5)

Here λ̃ stands for the gauginos (g̃, χ̃0, χ̃±) and l denotes their corresponding number (2 for

charginos, 4 for neutralinos and 8 for gluinos). The loop functions B0 and B1 are defined

as:

B0 (p2; m2
1, m

2
2) =

(2πµ)4−d

iπ2

∫
ddk

1

k2 − m2
1

1

(k − p)2 − m2
2

pµB1 (p2; m2
1, m

2
2) =

(2πµ)4−d

iπ2

∫
ddk

kµ

k2 − m2
1

1

(k − p)2 − m2
2

(3.6)

Note that the self-energies in equation (3.5) are both finite and independent of the renor-

malization scale if the flavor or chirality change stems from the sfermion mass matrix.

Since we know from experiment that the SUSY particles must be much heavier than the

five lightest quarks we can expand the functions in equation(3.6) in the external momentum

p. Using

1

(k − p)2 − m2
=

1

k2 − m2
+

2kµpµ

(k2 − m2)2 +
p2m2 + kµkν (4pµpν − p2gµν)

(k2 − m2)3

+
−4 ((kµkνkρ (gµνp

2 − 2pµpν) − kρm2p2) pρ)

(k2 − m2)4 + ...

(3.7)
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we obtain:

B0 (p2; m2
1, m

2
2) = B0 (m2

1, m
2
2) + p2m2

2D0 (m2
1, m

2
2, m

2
2, m

2
2) + ...

B1 (p2; m2
1, m

2
2) =

1

2
C2 (m2

1, m
2
2, m

2
2) + m2p2E2 (m2

1, m
2
2, m

2
2, m

2
2, m

2
2) + ...

(3.8)

The explicit formula for the loop-functions are given in the appendix. As already noted in

the introduction the chirally enhanced parts, which just correspond to vanishing external

momentum, are of special importance. We give explicit results for these part below since

we will need them for our numerical analysis in chapter 4 and 5. First of all, the quark

self-energy with a gluino and a squark as virtual particles is given by

Σg̃ LR
qiqj

=
2αs

3π
mg̃

6∑

s=1

W q̃∗
(j+3)sW

q̃
isB0(m

2
g̃, m

2
q̃s

) (3.9)

For the fermion self-energy with a neutralino we get:

Σχ̃0 LR
fifj

=
−1

16π2

6∑
s=1

m∑
k=1

mχ̃0
k

(
−
(
af

1g1g2Z
χ̃0

k2 + af
2g

2
1Z

χ̃0

k1

)
Z χ̃0

k1 W f̃
isW

f̃∗
j+3,s

−
(

af
3

g1√
2
Z χ̃0

k1 + af
4

g2√
2
Z χ̃0

k2

)
Y fiZ χ̃0

k3 W f̃
isW

f̃∗
js

+af
5

√
2g1Y

fiZ χ̃0

k3 Z χ̃0

k1 W f̃
i+3,sW

f̃∗
j+3,s

+
(
Y fiZ χ̃0

k3

)2

W f̃
i+3,sW

f̃∗
js

)
B0

(
m2

χ̃0 , m2
d̃s

)

(3.10)

The coefficients af are one for the leptons and in the case of down-type and up-type quarks

they are given by:

ad
1 = 1

3
ad

2 = −2
9

ad
3 = −1

3
ad

4 = 1 ad
5 = 1

3

au
1 = 2

3
au

2 = 2
9

au
3 = 1

3
ad

4 = −1 au
5 = −2

3

(3.11)

Finally we receive for the down-quark and lepton self-energy with a chargino:

Σχ̃± LR
didj

=
−1

16π2

6∑
s=1

2∑
k=1

3∑
m,n=1

(
mχ̃±

k

(
V χ̃±

k2 Y um∗Y djW ũ
m+3,s − g2V

χ̃±

k1 Y djW ũ
ms

)

U χ̃±

k2 V CKM∗
mi V CKM

nj W ũ∗
ns B0

(
m2

χ̃±

k

, m2
ũs

)) (3.12)

Σχ̃± LR
ℓiℓj

=
1

16π2

6∑

s=1

2∑

k=1

3∑

m,n=1

mχ̃±

k
g2V

χ̃±

k1 U χ̃±

k2 Y ℓjV CKM∗
mi V CKM

nj W ũ
msW

ũ∗
ns B0

(
m2

χ̃±

k

, m2
ν̃s

)
(3.13)
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The corresponding expression for up-type quarks is easily obtained by interchanging u and

d. We denote the sum of all contribution as:

Σq LR
ij = Σg̃ LR

qiqj
+ Σχ̃0 LR

qiqj
+ Σχ̃± LR

qiqj
(3.14)

Σℓ LR
ij = Σχ̃0 LR

ℓiℓj
+ Σχ̃± LR

ℓiℓj
. (3.15)

These self-energies can lead to significant quantum corrections to fermion masses, but

except for the gluino, the pure bino (∝ g2
1) and the negligible small bino-wino mixing

(∝ g1g2) contribution, they are proportional to at least one power of a tree-level Yukawa

coupling. However, if the light fermion masses are generated radiatively from chiral flavor-

violation in the soft SUSY-breaking terms, then the Yukawa couplings of the first and

second generation even vanish and the latter effect is absent at all. Radiatively generated

fermion mass terms via soft tri-linear A-terms correspond to the upper bound found from

the fine-tuning argument where the correction to the mass is as large as the measured

physical mass itself. This fine-tuning argument is based on ’t Hooft’s naturalness principle

(see chapter 4 for details) and we will use it to constrain the soft SUSY breaking parameters.

If we restrict ourself to the case with vanishing first and second generation tree-level Yukawa

couplings, the off-diagonal entries in the sfermion mass matrices stem from the soft tri-

linear terms. Thus we are left with δf LR
ij only. In the mass insertion approximation with

only one LR insertion the expressions for flavor violating self-energies simplify. For the

gluino (neutralino) self-energies which are relevant for our following discussion for the

quark (lepton) case we get:

Σg̃ AB
qiqj

=
2αs

3π
Mg̃mq̃jB

mq̃iA
δq AB
ij C0

(
m2

g̃, m
2
q̃jB

, m2
q̃iA

)
, (3.16)

ΣB̃ AB
ℓiℓj

=
α1

4π
M1ml̃jB

ml̃iA
δℓ AB
ij C0

(
M2

1 , m2
ℓ̃jB

, m2
ℓ̃iA

)
. (3.17)

Since the sneutrino mass matrix consists only of a LL block, there are no chargino diagrams

in the lepton case with LR insertions at all.

3.3. Mass and wave function renormalization in the MSSM

Since the SUSY particles are known to be much heavier than the five lightest quarks it

is possible to evaluate the one-loop self-energies at vanishing external momentum and to

neglect higher terms which are suppressed by powers of m2
fi
/M2

SUSY . (We will not need the

chirality conserving part of the self-energies until we discuss the renormalization of the W
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vertex in chapter 8.) Therefore (3.1) simplifies to

Σ
f (1)
ij = Σ

f LR (1)
ij PR + Σ

f RL (1)
ij PL (3.18)

at the one-loop level (indicated by the superscript (1)). In this approximation the self-

energies are always chirality changing and contribute to the finite renormalization of the

quark masses in (3.3) and to the flavor-valued wave-function renormalization in (3.4). At

the one-loop level we receive the well known result

m
(0)
fi

→ m
(1)
fi

= m
(0)
fi

+ Σ
f LR (1)
ii (3.19)

for the mass renormalization in the MS scheme. According to (3.4) the flavor-valued rota-

tion which has to be applied to all external fermion fields is given by:

∆Uf L (1) = (3.20)



0
mf2

Σ
f LR (1)
12 + mf1

Σ
f RL (1)
12

m2
f2
− m2

f1

mf3
Σ

f LR (1)
13 + mf1

Σ
f RL (1)
13

m2
f3
− m2

f1

mf1
Σ

f LR (1)
21 + mf2

Σ
f RL (1)
21

m2
f1
− m2

f2

0
mf3

Σ
f LR (1)
23 + mf2

Σ
f RL (1)
23

m2
f3
− m2

f2

mf1
Σ

f LR (1)
31 + mf3

Σ
f RL (1)
31

m2
f1
− m2

f3

mf2
Σ

f LR (1)
32 + mf3

Σ
f RL (1)
32

m2
f2
− m2

f3

0




.

The corresponding corrections to the right-handed wave-functions are obtained by sim-

ply exchanging L with R and vice versa in (3.20). Note that the contributions of the

self-energies Σ
f LR (1)
ij with i > j are suppressed by small mass-ratios. Therefore, the cor-

responding off-diagonal elements of the sfermion mass matrices ∆
f LR (1)
ij cannot be con-

strained from the CKM and PMNS renormalization.

However, since we treat, in the spirit of Ref. [29], all diagrams in which no flavor appears

twice on fermion lines as one-particle irreducible, chirally-enhanced self-energies can also

be constructed at the two-loop level (see Fig. (3.2)):

Σ
f RR (2)
ij (p2) =

∑
k �=i,j

Σ
f RL (1)
ik Σ

f LR (1)
kj

p2 − m2
fk

, Σ
f LL (2)
ij (p2) =

∑
k �=i,j

Σ
f LR (1)
ik Σ

f RL (1)
kj

p2 − m2
fk

,

Σ
f LR (2)
ij (p2) =

∑
k �=i,j

mfk

Σ
f LR (1)
ik Σ

f LR (1)
kj

p2 − m2
fk

, Σ
f RL (2)
ij (p2) =

∑
k �=i,j

mfk

Σ
f RL (1)
ik Σ

f RL (1)
kj

p2 − m2
fk

.

(3.21)
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fj

−iΣ
f (1)
kj

fk

−iΣ
f (1)
ik

fi

Figure 3.2: One-particle irreducible two-loop self-energy constructed out of two one-loop

self-energies with i �= j �= k.

Therefore, the chirally-enhanced two-loop corrections to the masses and the wave-function

renormalization are given by:




m
(0)
f1

m
(0)
f2

m
(0)
f3




→




m
(0)
f1

+ Σ
f LR (1)
11 − Σ

f LR (1)
12 Σ

f LR (1)
21

mf2

− Σ
f LR (1)
13 Σ

f LR (1)
31

mf3

m
(0)
f2

+ Σ
f LR (1)
22 − Σ

f LR (1)
23 Σ

f LR (1)
32

mf3

m
(0)
f3

+ Σ
f LR (1)
33




, (3.22)

∆U
f (2)
L = (3.23)




−

∣∣∣Σf LR (1)
12

∣∣∣
2

2m2
f2

−

∣∣∣Σf LR (1)
13

∣∣∣
2

2m2
f3

−Σ
f LR (1)
13 Σ

f LR (1)
32

mf2
mf3

Σ
f LR (1)
12 Σ

f RL (1)
23

m2
f3

Σ
f RL (1)
23 Σ

f RL (1)
31

mf2
mf3

−

∣∣∣Σf LR (1)
23

∣∣∣
2

2m2
f3

−

∣∣∣Σf LR (1)
12

∣∣∣
2

2m2
f2

Σ
f LR (1)
21 Σ

f RL (1)
13

m2
f3

Σ
f RL (1)
32 Σ

f RL (1)
21

mf2
mf3

−Σ
f RL (1)
31 Σ

f LR (1)
12

mf2
mf3

−

∣∣∣Σf LR (1)
13

∣∣∣
2

2m2
f3

−

∣∣∣Σf LR (1)
23

∣∣∣
2

2m2
f3




,

where we have neglected small mass ratios. In the quark case, we already know about

the hierarchy of the self-energies from our fine-tuning argument. In this case (3.23) is just

necessary to account for the unitarity of the CKM matrix as we will see in the next section.

However, the corrections to m
(0)
f1

in (3.22) can be large. For this reason we can also constrain

Σ
f LR (1)
31 with ’t Hooft’s naturalness criterion if at the same time Σ

f LR (1)
13 is different from

zero.

In the decoupling limit our diagrammatic method is equivalent to the effective field theory

approach illustrated in Fig. 3.3. Diagonalizing (pertubatively) the effective Yukawa cou-
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diRdfLdfL diR

dfL diR diRdfL−Y d
fi

H0
u H0

u

H0
d

µY d
fjµY d

ji

∆d̃ LL
fj

H0
d

Ad
fi

∆d̃ RR
ji

Figure 3.3: Tree–level coupling with Y d
ij and FCNC loop corrections with Ad

fi (upper row)

and ∆d̃ LL,RR
fi (lower row) in the mass insertion approximation for MSUSY ≫ v. Replacing the

Higgs fields by their vevs gives the contributions to the down–type quark mass matrix. The

lower diagrams contribute to the mass matrix with an enhancement factor of tanβ = vu/vd

compared to the other two contributions.

pling with a biunitary transformation, the rotations necessary for this diagonalization are

given by 1 + ∆U
f (1)
L,R + ∆U

f (2)
L,R .

Since inverse quark masses enter equation (3.20) and (3.23), we must address the proper

definition of these masses in the presence of SQCD and ordinary QCD corrections. If

we worked in the decoupling limit and calculated the diagrams of Fig. 3.3, we would

encounter the MS-renormalized Yukawa couplings evaluated at the renormalization scale

Q = MSUSY, at which the heavy SUSY particles are integrated out. Translating that result

into the language of our diagrammatic approach amounts to the evaluation of the inverse

quark masses in the MS scheme at Q = MSUSY. One can derive this (somewhat surprising)

result by studying QCD corrections to the diagrams of Fig. 3.5 [47]. The first element

in this proof is the observation that e.g. Σq LR
fi , viewed as the Wilson coefficient of the

two-quark operator qfPRqi, renormalizes in the same way as the quark mass, so that the
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di uf

W

g̃

d̃s ũs

Figure 3.4: Genuine SQCD vertex correction

ratios Σq LR
fi /mqi

in (3.20) are independent of Q. Since the SUSY parameters entering Σfi

are defined at the high scale Q = MSUSY, our constraints derived in the next chapter will

involve mqi
(MSUSY). The second element in the proof is the explicit analysis of gluonic

corrections to the diagrams of Fig. 3.5. While at intermediate steps a quark pole mass

enters through the Dirac equation p/qi = mpole
qi

qi, gluonic self-energies add to mpole
qi

in such

a way that the final result only involves the properly defined MS mass mqi
[47]. Note that

this observation is independent of the renormalization scheme used for the supersymmertric

corrections to the quark masses. Also we we treat the latter ones in the MS scheme the

propagator always contains the sum vqY
qi + Σq LR

ii = mMS
qi

due to the Dyson resummation.

3.4. Renormalization of the CKM matrix

In this section we calculate the renormalization of the CKM matrix in the MSSM with

generic sources of flavour violation. There are two possible contributions, the self-energy

diagrams of Fig. 3.5, which of course correspond to the flavour-valued wave-function renor-

malization of (3.20), and the proper vertex correction shown in Fig. 3.4. In the limit

MSUSY ≫ v the self-energy contributions reproduce the results of the diagrams in Fig. 3.3.

(For a discussion of this feature in the MFV case see Refs. [49, 50].)

From previous considerations we know that we need some parametric enhancement (by e.g.

a factor of |Aq
fi|/(MSUSY|Y q

fi|) ≫ 1) to compensate the loop suppression and the diagrams

of Fig. 3.5 involve such enhancement factors. The vertex diagram involving a W coupling to

squarks is not enhanced and moreover suffers from gauge cancellations with non-enhanced

pieces from the self-energies. However, as we will discuss in Chapter 7, a sizable right-

handed W coupling can be induced.
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di ufdj di uj uf

W W

Figure 3.5: One-loop corrections to the CKM matrix from the down and up sectors.

Therefore, for the renormalization of the CKM matrix we only need to consider self-

energies, just as in the case of the electroweak renormalization of the CKM matrix in

the SM [51–55].

3.4.1. Super-CKM basis beyond tree-level

Since we work beyond tree-level, we have to clarify how we define the super-CKM basis in

the presence of radiative corrections. Recall from chapter 2 that starting from some weak

basis with Yukawa matrices Y d and Y u we perform the usual rotations in flavour space

in equation (2.11) to diagonalize Y q and the tree-level mass matrices m
(0)
q = Y qvq and

apply the same rotations to d̃L,R and ũL,R. This defines the super-CKM basis in which the

elements of M2
q̃ in (2.17) are defined. We also recall that the tree-level CKM matrix is then

given by equation (2.12):

V (0) = U
(0) u†
L U

(0) d

L (3.24)

To fix the relation between V (0) and the physical CKM matrix V we must define a renor-

malization scheme. First note that all radiative corrections discussed in this chapter are

finite, so that the notion of minimal renormalization means that all counter-terms are

simply equal to zero. Two possibilities come to mind:

i) Minimal renormalization of V : The Lagrangian contains diagonal Yukawa matrices

and V (0) without counter-terms, while the measured CKM matrix V differs from

V (0) by the radiative corrections in Fig. 3.5. Recall that for mj �= mi one can treat

the diagrams of Fig. 3.5 in the same way as genuine vertex corrections, i.e. there

is no need to truncate such diagrams or to introduce matrix-valued wave function

counter-terms [29].
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ii) On-shell renormalization of V : The Lagrangian contains finite counter-terms to cancel

the flavour-changing self-energies of Fig. 3.5. These counter-terms arise from a per-

turbative unitary rotation of the quark fields in flavour space, qL,R → [1 + δU q
L,R]qL,R

[52]. This in turn induces a counter-term

δV = δUu†
L V (0) + V (0)δUd

L (3.25)

to the CKM matrix. In the on-shell scheme we can identify V = V (0), but after the

extra rotation of the quark fields we are no more in the super-CKM basis and the

bare Yukawa matrices Y d and Y u are no more diagonal.1

We choose method i), because it involves the super-CKM basis, so that we can immediately

use the ∆q̃ XY
ij ’s defined in (2.17), permitting a direct comparison with FCNC analyses. This

issue of the definition of ∆q̃ XY
ij formally goes beyond the one-loop order, but is numerically

highly relevant, because the tree-level elements V
(0)
ij and the finite counter-terms [δU q

L]ij

are similar in size: If one works in an alternative basis in which the (s)quark superfields

are rotated by [1 + δU q
L,R], the off-diagonal elements ∆q̃ XY

ij of the squark mass matrices

can substantially differ from those of our definition of the super-CKM basis.

In our super-CKM scheme i) the inclusion of the radiative correction is equivalent to the

use of the tree-level coupling in the ūW+d vertex with the replacement

V (0) → V =
(
1 + ∆Uu†

L

)
V (0)

(
1 + ∆Ud

L

)
(3.26)

and we identify V with the physical CKM matrix. In the on-shell scheme ii) the counter-

terms δUd
L = −∆Ud

L and δUu
L = −∆Uu

L cancel the loops and V (0) = V is maintained.

It is crucial that 1 + ∆U q
L is unitary, otherwise the unitarity of V (and electroweak

gauge invariance) would be spoiled [51–55]. To our one-loop order this means that ∆U q
L is

anti-hermitian. We can easily verify from (3.20) that ∆Ud
L fulfills this criterion owing to

Σq RL
fi (0) = [Σq LR

if (0)]∗.

The self-energies do not decouple for MSUSY → ∞ and, in accordance with the decoupling

theorem [58], we find that their mere effect is the renormalisation of the CKM matrix, as

implemented in scheme ii).

It is important to stress that the replacement rule in (3.26) only absorbs the effects of

the self-energy diagrams of Fig. 3.5 correctly, if both quark lines are external lines. If some

1That is, in our Feynman diagrammatic approach the FCNC Higgs couplings of Refs. [17, 48, 56, 57]

enter the Lagrangian through a finite FCNC counter-term to Yukawa couplings.
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ufW
+di vertex appears in a loop diagram, one or both self-energies are probed off-shell and

one must work with V (0) and must calculate the loop diagram with the nested self-energy

explicitly.

We can now understand how to treat self-energies with a top quark in (3.20): If the top

quark appears on the internal line of the right diagram in Fig. 3.5, that is j = 3, the

self-energy involved must be evaluated at p2 = 0, because the external quark is up or

charm. The unitarity of V now forces us to evaluate Σu RL
31 and Σu RL

32 at p2 = 0 as well.

Interestingly, from today’s precision data in K and B physics one can determine V from

tree-level data only [59]. Of course, none of these measurements involves top decays, so

that the values of Vts and Vtd inferred from these measurements (through unitarity of V )

indeed correspond to the definition in (3.26), with self-energies Σu RL
3i evaluated at p2 = 0.

While FCNC processes of K and B mesons involve Vts or Vtd, we cannot determine these

CKM elements from FCNC processes in a model-independent way, because new particles

(in our case squarks and gluinos) will affect the FCNC loops directly. Clearly nothing can

be learned from measuring the tW+di couplings (in, for instance, single top production or

top decays) if MSUSY ≫ mu3
= mt. However, if mt ∼ MSUSY any on-shell t → s or t → d

transition involves

∆σt
i ≡

Σu RL
3i (m2

t ) − Σu RL
3i (0)

mt

with i = 1 or 2. (3.27)

Here the first self-energy enters the calculated tW+di process explicitly, while Σu RL
3i (0)

stems from the relationship between V and V (0). ∆σt
i decouples as m2

t /M
2
SUSY, but can be

sizable for O(200 GeV) superpartners, since it involves poorly-constrained FCNC squark

mass terms. We conclude that the flavour structure of tree-level top couplings can help to

study new physics entering chirality-flipping self-energies, while this effect is unobservable

in charged-current processes of light quarks: Here the chirality-flipping self-energies merely

renormalise the CKM matrix; the physical effect in a charged-current process with external

quark q is suppressed by a factor of m2
q/M

2
SUSY. The experimental signature would be an

apparent violation of CKM unitarity, since the measured value of Vts or Vtd would be in

disagreement with the value inferred from CKM unitarity. Unitarity is restored, once the

correction ∆σt
i is taken into account.

We close this section by recalling the relationship between the Yukawa matrices Yq =

diag (Y q1, Y q2, Y q3) and the quark masses [49, 50]:

Y qi =
mqi

vq (1 + ∆qi
)

=
mqi

− Σq LR
ii, A

vq (1 +
Σq LR

ii, µ

mqi

)
. (3.28)
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In (3.28) we have used the fact that Σq LR
ii can be decomposed into Σq LR

ii, A + Σq LR
ii, µ if the

physical squark masses are chosen as input parameters. Σq LR
ii, µ is proportional to µ Y qi and

Σq LR
ii, A is proportional to Aq

ii. If we neglect the A-terms (3.28) reduces to the expression of [50]

for down-type quarks. For a detailed discussion of the relation between the Yukawa matrices

and the quark masses with different choices of input parameters see [47]. (3.28) holds in the

super-CKM scheme i), which has the advantage that no FCNC Yukawa couplings occur.

In the on-shell scheme ii) the rotations of the quark fields in flavour space lead to the

loop-induced finite FCNC Yukawa couplings of Refs. [17, 48 56, 57]. In the super-CKM

scheme these effects are reproduced from diagrams with flavour-diagonal Yukawa couplings

and FCNC self-energies. Finally note that ∆qi
can be complex, so that the entries of Yq

(and m
(D)
q = Yqvq entering the squark mass matrices in (2.15)) are not necessarily real.

3.4.2. The CKM matrix in charged-Higgs and chargino couplings

CKM elements do not only enter the Feynman rules for W couplings but also appear in the

couplings of charged Higgs bosons and charginos. The Feynman rules in the super-CKM

scheme i) involve V (0) = U
u (0)†
L U

d (0)
L throughout as described in section 2. Whenever a

charged Higgs boson or a chargino couples to an external quark there are chirally enhanced

one-loop corrections similar to those in Figs. 3.5. We can include these diagrams by working

with the tree-level diagrams and replacing U
q (0)
L by

U q
L = U

q (0)
L (1 + ∆U q

L) , (3.29)

if the external quark is left-handed. For instance, we have shown that the loop corrections

to the ūfW
+di coupling were correctly included by this replacement (see (3.26)). That

is, in the case of ūfW
+di coupling one simply uses the physical CKM matrix Vfi instead

of the tree-level CKM matrix V
(0)
fi . One immediately notices that (in the super-CKM

scheme) the ũ∗
fW

+d̃i coupling still involves V
(0)
fi , because the supersymmetric analogues of

the diagrams of Fig. 3.5 are not chirally enhanced and will only lead to small corrections

of the typical size of ordinary loop corrections. Enhanced corrections to charged-Higgs and

chargino interactions have been discussed for MFV scenarios with large tanβ in Refs. [48,

60]; in this section we derive the corresponding results for the non-MFV case using our

diagrammatic approach.

Flavour-changing self-energies lead to antihermitian corrections to the matrices U
(0)q
L .

Charged-Higgs and chargino couplings also involve right-handed fields; the corresponding

corrections to U
(0)q
R are obtained by simply exchanging the chiralities in the expressions for
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∆U q
L (cf. Eqs. (3.20) and (3.29)). The CKM matrix which enters charged-Higgs or chargino

vertices is not the physical one, because in these cases V (0) does not add up to V together

with enhanced loop corrections. The charged Higgs interaction ūfH
+di has the Feynman

rule

−iΛ
(0)
H+ = i

(
Y uf∗V

(0)
fi cos βPL + V

(0)
fi Y di sin βPR

)
. (3.30)

The effect of self-energies in the external legs is included by substituting this Feynman rule

with

Λ
(0)

H+ −→ −
3∑

j,k=1

[(
1 + ∆Uu†

R

)
fj

Y uj∗
(
1 − ∆Uu†

L

)
jk

Vki cos βPL

+ Vfj

(
1 − ∆Ud

L

)
jk

Y dk
(
1 + ∆Ud

R

)
ki

sin βPR

]
. (3.31)

Using the explicit expression for ∆U q
L,R given in (3.20) and expressing Y qj in terms of quark

masses through (3.28) the substitution rule of (3.31) becomes

Λ
(0)
H+ → (3.32)

−
3∑

j=1







mu1

1+∆u1

−ΣuRL
12

1+∆u2

−ΣuRL
13

1+∆u3

−ΣuRL
21

1+∆u2

mu2

1+∆u2

−ΣuRL
23

1+∆u3

−ΣuRL
31

1+∆u3

−ΣuRL
32

1+∆u3

mu3

1+∆u3




fj

Vji cos β

vu

PL +
Vfj sin β

vd




md1

1+∆d1

−ΣdLR
12

1+∆d2

−ΣdLR
13

1+∆d3

−ΣdLR
21

1+∆d2

md2

1+∆d2

−ΣdLR
23

1+∆d3

−ΣdLR
31

1+∆d3

−ΣdLR
32

1+∆d3

md3

1+∆d3




ji

PR




We observe a cancellation between the inverse quark masses in ∆U q
L (see (3.20)) and the

factors of mqi
from the Y qi’s in the effective off-diagonal couplings.

For all Higgs processes the genuine vertex correction Λ
(1)
H+ is of the same order as the di-

agrams with self energies in the external leg. Furthermore, in the absence of terms with

the “wrong” vev in the squark mass matrices there is an exact cancellation between the

genuine vertex correction and the external self-energies in the decoupling limit. This can-

cellation was observed for neutral Higgs couplings in Ref. [61] and can be understood from

Fig. 3.3: The upper right diagram involving Ad
fi merely renormalizes the Yukawa coupling

and maintains the type-II 2HDM structure of the tree–level Higgs sector. Therefore the

loop-corrected Higgs couplings are identical to the tree-level ones, provided they are ex-

pressed in terms of Vfi and the physical quark masses. In our diagrammatic approach Aq
fi

enters both the proper vertex correction and ΣqLR
jk and cancels from the combined result.

We neglect all external momenta, so that our expression for Λ
(1)

H+ is not valid for top or H+

decays unless the gluino or the squarks appearing in the loop function are much heavier
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than the top quark and the charged Higgs boson. The proper vertex correction, to be added

to Eqs. (3.31) and (3.32), reads:

Λ
(1)

H+ =−2αs

3π
mg̃

6∑

s,t=1

3∑

k,l=1

{(
V

(0) u LL

s fk V
(0) d RR

t li PR + V
(0) u RL

s fk V
(0) d RL

t li PL

)
H+LR

kl

+
(
V

(0) u LR

s fk V
(0) d LR

t li PR + V
(0) u RR

s fk V
(0) d LL

t li PL

)
H+ RL

kl

+
(
V

(0) u LL

s fk V
(0) d LR

t li PR + V
(0) u RL

s fk V
(0) d LL

t li PL

)
H+LL

kl

+
(
V

(0) u LR

s fk V
(0) d RR

t li PR + V
(0) u RR

s fk V
(0) d RL

t li PL

)
H+RR

kl

}

×C0

(
mũs , md̃t

, mg̃

)

(3.33)

The coefficients H+AB
kl are given in (10.6) of the appendix.

In the case of chargino interactions we must take into account that a squark never comes

with an enhanced self-energy, even if the squark line is an external line of the considered

Feynman diagram. The Feynman rules for the chargino-quark-squark coupling are given in

equation (10.4) and (10.5). Again we include the self-energy corrections, and express V (0)

in terms of the physical CKM matrix. Then the effective chargino couplings read:

Γ
χ̃±

k L∗ eff

uid̃s
=

3∑
j,k=1

U χ̃±

k2 W d̃∗
j+3,tY

dj

(
1 − ∆Ud†

L

)
jk

V ∗
ki − gwU χ̃±

k1

3∑
j,k=1

W d̃∗
jt

(
1 − ∆Ud†

L

)
jk

V ∗
ki,

Γ
χ̃+

k R∗ eff

uid̃s
= V χ̃±∗

k2

3∑
j,k,l,m=1

W d̃∗
jt

(
1 − ∆Ud†

L

)
jk

V ∗
kl (1 − ∆Uu

L)lm Y um (1 + ∆Uu
R)mi ,

Γ
χ̃±

k L∗ eff

diũs
=

3∑
j,k=1

V χ̃±∗
k2 W ũ∗

j+3,tY
uj

(
1 − ∆Uu†

L

)

jk
Vki − gwV χ̃±∗

k1

3∑
j,k=1

W ũ∗
jt

(
1 − ∆Uu†

L

)

jk
Vki,

Γ
χ̃±

k R∗ eff

diũs
= U χ̃±

k2

3∑
j,k,l,m=1

W ũ∗
jt

(
1 − ∆Uu†

L

)

jk
Vkl

(
1 − ∆Ud

L

)
lm

Y dm
(
1 + ∆Ud

R

)
mi

.

(3.34)

We have seen in this section that in the case of non-minimal flavour violation the CKM

matrix (including loop corrections) entering charged Higgs and quark-squark-chargino ver-

tices is not simply the physical one. Instead it has to be corrected according to (3.31) or

(3.32) and (3.34), leading to potentially large effects.
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In this chapter we are going to give a complete evaluation of the all possible constraints

on the SUSY breaking sector from ’t Hooft’s naturalness argument.

Large accidental cancellations between the SM and supersymmetric contributions are, as

already mentioned in the introduction, unlikely and from the theoretical point of view

undesirable. Requiring the absence of such cancellations is a commonly used fine-tuning

argument, which is also employed in standard FCNC analyses of the δq XY
ij ’s [9–14, 25].

Furthermore, in our case we can use ’t Hooft’s naturalness argument since we gain a flavour

symmetry if the light fermion masses are generated radiatively. Therefore, the situation is

different from e.g. the little hierarchy problem, where no additional symmetry is involved.

First of all, it is important to note that all off-diagonal elements of the fermion mass

matrices have to be smaller than the average of their assigned diagonal elements

(
∆m2

F

)ij

XY
<
√

m2
f̃iX

m2
f̃jY

, (4.1)

since otherwise one sfermion mass eigenvalue is negative. We note that in Ref. [10] this

constraint is not imposed.

All constraints in this section are non-decoupling since we compute corrections to the

Higgs-quark-quark coupling which are of dimension 4. Therefore, our constraints on the

soft-supersymmetry-breaking parameters do not vanish in the limit of infinitely heavy

SUSY masses but rather converge to a constant. However, even though δf LR
ij is a di-

mensionless parameter it does not only involve SUSY parameter. It is also proportional

to a vacuum expectation and therefore scales like v/MSUSY. Thus, our constraints on

δf LR
ij do not approach a constant for MSUSY → ∞ but rather get stronger. Similar ef-

fects occur in Higgs-mediated FCNC processes which decouple like 1/M2
Higgs rather than

1/M2
SUSY [49, 56, 62]. However, Higgs-mediated effects can only be induced within su-

persymmetry in the presence of non-holomorphic terms which are not required for our

constraints. An example of a non-decoupling Higgs-mediated FCNC process is the observ-

able RK = Γ (K → eν) /Γ (K → µν) that is currently analyzed by the NA62-experiment.
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In this case Higgs contributions can induce deviations from lepton flavour universality

[63–65].

4.1. Constraints on flavor-diagonal mass insertions at one loop

The diagonal elements of the A-terms can be constrained from the fermion masses by

demanding that Σ
f LR (1)
ii ≤ mfi

(see (3.19)). The bounds on the flavor-conserving A-term

for the up, charm, down and strange quarks as well as for the electron and muon are shown

in Fig. (4.1). The upper bound derived from the fermion mass is roughly given by

∣∣∣δq LR
ii

∣∣∣ �
3π mqi

(MSUSY )

αs(MSUSY )MSUSY
(4.2)

for quarks and
∣∣δℓ LR

ii

∣∣ �
8πmℓi

α1MSUSY
(4.3)

for leptons in the case of equal SUSY masses. In the lepton case (4.3) can be further

simplified, since we can neglect the running of the masses:

|δℓ LR
11 | � 0.0025

(
500GeV
MSUSY

)
,

∣∣δℓ LR
22

∣∣ � 0.5
(

500GeV
MSUSY

)
.

(4.4)

However, as already pointed out in Ref. [66] a muon mass that is solely generated radiatively

potentially leads to measurable contributions to the muon anomalous magnetic moment.

This arises from the same one-loop diagram as Σℓ LR
22 with an external photon attached.

Therefore, the SUSY contribution is not suppressed by a loop factor compared to the case

with tree-level Yukawa couplings.

4.2. Constraints on flavor-off-diagonal mass insertions from CKM

and PMNS renormalization

4.2.1. CKM matrix

We use the standard parameterisation for the CKM matrix and quark masses defined in

the MS scheme with the central PDT values [67]. As discussed at the end of Sect. 3.4, the

masses enter the loop contributions to V in (3.20) at the renormalisation scale Q = MSUSY,

at which the self-energies are calculated.
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Because of the V–A structure of the W vertex only self-energies Σq LR
fi with f < i enter

the renormalisation of the CKM matrix in the approximation mqf
= 0 (see (3.20)). This

implies that for f < i only δq LR
fi is constrained in the leading order of the mass insertion

approximation. In order to constrain δq LL
fi or δq RR

fi an additional insertion of some δq LR
jk is

needed. Even three insertions are needed to involve δq RL
fi . These diagrams with multiple

insertions of δq XY
jk can give useful bounds on one of these quantities only if the δq LR

jk

providing the needed chirality-flip is large. Indeed, we find useful bounds on |δdLL
13 | in the

large-tanβ scenario, where δd LR
33 /md3

is large. The analogous contributions involving δd RR
ij

are suppressed with respect to those with δd LL
ij δd LR

jj by a small ratio of quark masses. The

upper limits on δq RR
fi and δq RL

fi from vacuum stability [68], electric dipole moments and

FCNC processes are stronger than ours.

We use the following input parameters [67]:

ms(2 GeV) = 0.095 GeV, mc(mc) = 1.25 GeV,

mb(mb) = 4.2 GeV, mt(mt) = 166 GeV,

|Vus| = 0.227, |Vub| = 0.00396, |Vcb| = 0.0422. (4.5)

4.2.2. Down-sector

We present our bounds on |δd LR
ij | and |δdLL

ij | in Sects. 4.2.2 and 4.2.2, respectively.

Constraints on |δdLR
ij |

Constraints from Vus,Vcd: Vus and Vcd are experimentally well known. Their absolute

values are nearly equal and they have opposite sign in the standard parameterisation, which

is respected by the corrections (3.20). Fig. 4.2 shows the dependence of the constraints on

the squark mass with different ratios mg̃/mq̃. In the approximation md1
= 0, only δd LR

12 is

constrained. Looking at the dependence on the gluino mass (Fig. 4.3), it is interesting to

note that there is a minimum for mg̃ ≈ 1.5mq̃.

Constraints from Vcb,Vts: In this case, the situation is nearly the same as in the case of

Vus, except that the constraints are weaker (see Fig. 4.4), because mb is much larger than

ms. |Vts| is essentially fixed by the measured value of |Vcb| through CKM unitarity.

Constraints from Vub: The last pair of of CKM elements to be discussed is (Vub, Vtd). In

this case |Vub| does not fix |Vtd|, because |Vtd| is largely affected by the CKM phase. Now
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|Vub| is experimentally better known than |Vtd|, because Vtd is extracted from FCNC loop

processes by comparing the corresponding experimental result with the SM prediction. In

beyond-SM scenarios, this is not a valid procedure anymore, because the new particles will

alter the FCNC loop processes. Therefore, we can only exploit the constraint from |Vub|.
The anti-hermiticity of ∆Ud

L in (3.20) implies that δd LR
13 gives a negative contribution of

the same size to Vtd. This cannot be the whole contribution, since |Vub| �= |Vtd| and in

the standard CKM parameterisation ReVtd and Re Vub are both positive. The hierarchical

structure of the CKM matrix is responsible for a second contribution: Since Vub and Vtd are

of third order in the Wolfenstein parameter λ, the two-loop process in Fig. 4.7 involving the

loop-contributions to Vus ∝ λ and Vcb ∝ λ2 is important as well. This diagram corresponds

to the correction ∆U
q (2)
L 31 given in equation (3.23) which adds in this case a contribution of

Vus ∗ Vcb = 0.0088 to Vtd. Together with the one-loop contribution from δd LR
13 , this yields

the correct value for Vtd. We stress that this does not imply any additional constraint on

the SUSY parameters entering the self-energies, to order λ3 we just reproduced a unitarity

relation of the CKM elements: Vtd = −V ∗
ub + VcdVts ≃ −V ∗

ub − V ∗
usVts, which (with insertion

of Vtb ≃ Vud ≃ 1) equals the product of the first and third rows of the CKM matrix.

The last possible constraint is the phase of the CKM matrix, which one could infer from

γ = arg(−V ∗
ubVud/(V ∗

cbVcd)). However, since γ is large, no fine-tuning argument can be

applied to derive bounds. Only in a given scenario of radiatively generated CKM elements,

the measured value of γ can be used to derive a constraint on the complex phases in the

mass matrix of (2.17).

Constraints on δdLL
ij

In the presence of large chirality-flipping flavour-diagonal elements in the squark mass

matrix, also δq LL
ij can be constrained. This is the case for large Aq

jj terms or (if q = d)

for a large value of µ tanβ. Here we only consider the second possibility, which is widely

studied in the literature. The strongest constraints are obtained for δd LL
13 , because Vub is

the smallest entry of the CKM matrix. We have included the correction term ∆b of (3.28)

in our analysis. Our result is shown in Fig. 4.6. Our constraint is compatible with the

experimental bound on Br(Bd → µ+µ−) for values of tanβ around 30 or below [69].

We next discuss the constraint on δd LL
23 : It is clear that our bound will be looser by a

factor of |Vcb/Vub|. Furthermore, for large tanβ and typical values of the massive SUSY

parameters we find Br(Bs → µ+µ−) more constraining. To find bounds on δd LL
23 from

|Vcb| which comply with Br(Bs → µ+µ−) we need a smaller value of tan β around 20 and
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therefore a quite large value for µ, if the masses of the non-standard Higgs bosons are

around 500 GeV. We do not include a bound on δd LL
23 in our table of results in Sect. 4.2.4.

4.2.3. Up-sector

In the up-sector, everything is in straight analogy to the down-sector. The only difference

is that the constraints are weaker because of the larger charm and top masses. But the

upper bounds are still restrictive, except the ones obtained from Vts or Vcb (see Fig. 4.8).

Remarkably, we now have a powerful constraint on δu LR
13 from the second diagram in Fig. 3.5

with quf
= u and qdi

= b.

4.2.4. Comparison with previous bounds

In this section we compare our bounds with those in the literature, derived from FCNC

processes [11, 14 25 70] and vacuum stability (VS) bounds [68]. We take MSUSY =√[
M2

q̃

]
ss

= mg̃ = 1000 GeV:

quantity our bound bound from FCNC’s bound from VS [68]

|δd LR
12 | ≤ 0.0011 ≤ 0.006 K mixing [11] ≤ 1.5 × 10−4

|δd LR
13 | ≤ 0.0010 ≤ 0.15 Bd mixing [14] ≤ 0.05

|δd LR
23 | ≤ 0.010 ≤ 0.06 B → Xsγ; Xsl

+l− [70] ≤ 0.05

|δd LL
13 | ≤ 0.032 ≤ 0.5 Bd mixing [14] −

|δu LR
12 | ≤ 0.011 ≤ 0.016 D mixing [25] ≤ 1.2 × 10−3

|δu LR
13 | ≤ 0.062 — ≤ 0.22

|δu LR
23 | ≤ 0.59 — ≤ 0.22

Our value for δd LL
13 is calculated with

µ tan β

1 + ∆b

= 20 TeV. The quoted bound on δd LR
23

from b → sγ and B → Xs l+l− has been rescaled by an approximate factor of 3 from the

value quoted for MSUSY = 350 GeV in Ref. [70]. The VS bounds on δu LR
ij have also been

obtained by scaling the quoted values for MSUSY = 500 GeV of Ref. [68] by a factor of 1/2.

The VS bounds on δu LR
13 and δu LR

23 are obtained by multiplying the bound on δu LR
12 with

mt/mc. FCNC effects are decoupling and scale as 1/M2
SUSY, but the constraints on δq LR

ij

are proportional to MSUSY rather than M2
SUSY, because the definition of δq LR

ij involves a
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factor of v/MSUSY. Both our constraints and the VS bounds on the trilinear SUSY-breaking

terms are independent of MSUSY (i.e. non-decoupling), so that the bounds on δq LR
ij scale

like 1/MSUSY. We conclude that all our bounds on δd LR
ij are more restrictive than those

from FCNC processes for MSUSY ≥ 500 GeV, and our bound on δu LR
12 is stronger than the

quoted FCNC bound for MSUSY ≥ 900 GeV.

Substantially stronger bounds than ours are only listed for the VS bounds on |δu LR
23 |, |δu LR

12 |
and |δdLR

12 |. However, the VS bounds related to the latter two quantities are of the form

Aq
12 < Y q2 f, (4.6)

where f = O(MSUSY) depends on other massive parameters of the scalar potential. The

bounds are obtained by studying the scalar potential at tree level and Y q2 enters the

analysis through the quartic coupling of strange squarks to Higgs bosons. The smallness

of Y q2 makes this coupling sensitive to large loop corrections and the quoted bounds have

to be considered as rough estimates at best. Our results for δq LR
12 rest on a firmer footing.

4.2.5. Threshold corrections to PMNS matrix

Up to now, we have only an upper bound for the matrix element Ue3 = sin θ13e
−iδ and thus

for the mixing angle θ13; the best-fit value is at or close to zero: θ13 = 0.0+7.9
−0.0 [71]. It might

well be that it vanishes at tree level due to a particular symmetry and obtains a non-zero

value due to corrections. So we can ask the question if threshold corrections to the PMNS

matrix could spoil the prediction θ13 = 0◦ at the weak scale. We demand the absence of

fine-tuning for these corrections and therefore require that the SUSY loop contributions

do not exceed the value of Ue3,

|∆Ue3| ≤
∣∣∣Uphys

e3

∣∣∣ . (4.7)

The renormalization of the PMNS matrix is described in detail in [72], where the on-shell

scheme was used. As discussed in Sec. (3.1) we also use the MS scheme in this section.

Then the physical PMNS matrix is given by:

Uphys = U (0) + ∆U , (4.8)

where ∆U should not be confused with the wave function renormalization ∆Uf L. Then

∆U is given by

∆U =
(
∆U l L

)T
U (0). (4.9)



36 4. Naturalness constraints

Note that in contrast to the corrections to the CKM matrix, there is a transpose in ∆U l L,

because the first index of the PMNS matrix corresponds to down-type fermions and not

to up-type fermion as in the CKM matrix. Only the corrections to the small element Ue3

can be sizeable, since all other elements are of order one. If we set all off-diagonal element

to zero except for δ13
LR �= 0, we get

∆Ue3 =
∆U l L

31 Uphys
τ3 − Uphys

e3

∣∣∆U l L
31

∣∣2

1 +
∣∣∆U l L

11

∣∣2

≈ −Uphys
τ3

Σl RL
31

mτ

.

(4.10)

Note that here, in contrast to the renormalization of the CKM matrix, the physical PMNS

element appears. This is due to the fact that one has to solve the linear system in (4.9) as

described in [72]. By means of the fine-tuning argument we can in principle derive upper

bounds for δl LR
13 . The results depend on the SUSY mass scale MSUSY and the assumed

value for θ13.

Here, we consider the corrections stemming from flavor-violating A-terms to the small

matrix element Ue3. The δl LL
13 -contribution was already studied in [72] with the result that

they are negligible small. We also made a comment about the δl LR
13 -contribution which is

outlined in more detail. Our results depend on the overall SUSY mass scale, the value of θ13

and of δl LR
13 . In Fig. (4.9) you can see the percentage deviation of Ue3 through this SUSY

loop corrections in dependence of δl LR
13 (top) and θ13 (bottom) for MSUSY = 1000 GeV.

The constraints on δl LR
13 get stronger with smaller θ13 and with larger MSUSY. In Fig. (4.10)

the excluded
(
θ13, δ

l LR
13

)
-region is below the curves for different MSUSY scales. The derived

bound can be simplified to

∣∣δl LR
13

∣∣ � 0.2

(
500 GeV

MSUSY

)
|θ13 in degrees| . (4.11)

Exemplarily, we get for reasonable SUSY masses of MSUSY = 1000 GeV and θ13 = 3◦ an

upper bound of
∣∣δl LR

13

∣∣ ≤ 0.3. The constraints on δl LR
13 from τ → eγ are of the order of

0.02 [72] and in general better than our derived bounds if θ13 is non-zero. As an important

consequence, we note that τ → eγ impedes any measurable correction from supersymmetric

loops to Ue3 : E.g. for sparticle masses of 500 GeV we find |∆Ue3| ≤ 10−3 corresponding

to a correction to the mixing angle θ13 of at most 0.06◦. That is, if the DOUBLE CHOOZ

experiment measures Ue3 �= 0, one will not be able to ascribe this result to the SUSY
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breaking sector. Stated positively, Ue3 � 10−3 will imply that at low energies the flavor

symmetries imposed on the Yukawa sector to motivate tri-bimaximal mixing are violated.

This finding confirms the pattern found in [72] where the product δl LL
13 δl LR

33 has been

studied instead of δl LR
13 .

4.3. Constraints from two-loop corrections to fermion masses

Combining two flavor-violating self-energies can have sizable impacts on the light fermion

masses according to (3.22). Requiring that no large numerical cancellations should occur

between the tree-level mass (which is absent in the case of a radiative fermion mass) and

the supersymmetric loop corrections we can derive bounds on the products δf LR
ij δf LR

ji which

contain the so far less constrained elements δf LR
ij , i > j.

We apply the fine-tuning argument to the two-loop contribution originating from flavor-

violating A-terms, e.g.
∣∣∣Σf LR(2)

11

∣∣∣ ≤ mf1
. The bound Σ

f LR(2)
11 = mf1

corresponds to a 100%

change in the fermion mass through supersymmetric loop corrections which is equivalent

to the case that the fermion Yukawa coupling vanishes. The upper bound depends on the

overall SUSY mass scale and is roughly given as

∣∣∣δq LR
i3 δq LR

3i

∣∣∣ �
9π2 mqi

mq3
(MSUSY )

(αs(MSUSY )MSUSY)2
, i �= 3 (4.12)

for quarks and
∣∣δl LR

13 δl LR
31

∣∣ �
64π2ml1ml3

(α1MSUSY)2
(4.13)

for leptons. Again, (4.13) can be further simplified

∣∣δl LR
13 δl LR

31

∣∣ ≤ 0.021

(
500 GeV

MSUSY

)2

. (4.14)

It is important to calculate bounds on the product δu LR
13 δu LR

31 because δu LR
31 cannot be

severely constrained by FCNC processes [73]. As studied in Ref. [74], single-top production

involves the same mass insertion δu LR
31 which can also induce a right-handed W coupling

if at the same time δd LR
33 �= 0 (see chapter 8). Therefore our bound can be used to place

a constraint on this cross section. Also the product δu,l LR
23 δu,l LR

32 cannot be constrained,

since the muon and the charm are too heavy. However, δd LR
23 δd LR

32 can be constrained and

the results are depicted in Fig. (4.11). In the quark case also the bounds from the CKM

renormalization on δq LR
13,23 are taken into account.
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Figure 4.1: Constraints on the diagonal mass insertions δℓ,u,dLR
11,22 obtained by applying

’t Hooft’s naturalness criterion.
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5. Chirally enhanced corrections to

FCNC processes

In this chapter we study the effects of chirally-enhanced flavor-changing self-energies on

FCNC in the generic MSSM. As discussed in chapter 3 there are two possibilities for

a chiral enhancement. The first is a factor of Ad
ijvd/(MSUSY Max[mdi

, mdj
]) with a flavor-

changing trilinear SUSY-breaking term Ad
ij dominating over a small quark mass mdi,j

in the

denominator. MSUSY is the mass scale determining the size of the loop diagram, i.e. MSUSY

is roughly the maximum of the gluino and squark masses running in the loop. The second

possible chiral enhancement factor is (v/MSUSY) tanβ accompanied by a flavor-changing

squark mass term involving squark fields of the same chirality. We have analyzed these self-

energies in the context of charged-current processes in chapter 4 and this chapter contains

the complementary study of FCNC processes. As an example, consider Bs−Bs mixing: In

the presence of chirally enhanced corrections one must also take into account two- or even

tree-loop diagrams, because the loop suppression is offset by the chiral enhancement factor

(see Fig. 5.1). Similar corrections have been considered before in Ref. [19–22]. However,

the authors of these papers have used a different definitions of the super-CKM basis and

of the parameters δq AB
fi describing the flavour violation in the squark mass matrices. As

a consequence, our results are hardly comparable to the ones obtained in Ref. [19–22].

We elaborate on the differences between Ref. [19–22] and our analysis in the next section.

We note that models in which CKM elements and light-fermion masses are generated

radiatively [66] (see chapter 6) require large trilinear SUSY-breaking terms. In the presence

of these large A-terms (or of a large factor of mbµ tanβ in combination with chirality-

conserving flavor violation) it is important to include the effect of the chirality-flipping self-

energies into FCNC processes. We will accomplish this in the next section by renormalizing

the quark-squark-gluino vertex by a matrix-valued quark-field rotation in flavor space. In

Sect. 5.2 the radiative decay b → sγ is examined in detail. The chirally enhanced corrections

are only relevant for the large-tanβ case here (or if vdA
d
33 large). In Sect. 5.3, ∆F = 2

processes are investigated, where large corrections occur irrespective of the size of tanβ
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Figure 5.1: Examples of chirally enhanced two-loop and three-loop diagrams contributing

to Bs mixing which can compete with (or even dominate over) the one-loop diagrams.

if the flavor violation is due to A-terms and if the squarks are not degenerate. Up-to-

date measurements and theoretical Standard-Model predictions are used. The theoretical

uncertainties of the SM are treated in a consistent and systematic way. In each case we

compare the size of the FCNC transition to the previously known LO result: With the

inclusion of our self-energies the bounds on the off-diagonal elements of the squark mass

matrix change drastically, especially if the SUSY particles are rather heavy.

5.1. One-loop renormalization of the quark-squark-gluino vertex

In this section we show how to treat the chirally enhanced parts of flavor-changing self-

energies in the full MSSM and how to absorb them into mixing matrices entering the Feyn-

man rule of the quark-squark-gluino vertex. In this way all enhanced two-loop and three-

loop diagrams are automatically included in the LO calculation to all orders in v/MSUSY.

Chirally enhanced corrections, in which we are interested here, have been calculated
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in Ref. [19–22] from a loop-corrected quark mass matrix, in a formalism in which the

heavy SUSY particles are integrated out. When these expressions are combined with some

one-loop amplitude this method can, in principle, reproduce the chirally enhanced two-

loop (or three-loop) FCNC amplitude to leading non-vanishing order in v/MSUSY, where

v =
√

v2
u + v2

d = 174 GeV is the electroweak vev. Since the squark mixing angles scale as

v/MSUSY, scenarios with large left-right mixing among squarks are not properly covered in

this approach. In particular, the widely-studied large-tanβ scenarios typically involve large

sbottom mixing and therefore call for an analysis beyond the decoupling limit. Another

important difference between Ref. [19–22] and this paper concerns the definitions of the

super-CKM basis and the mass insertion parameters:

• We use the tree-level definition of the super-CKM basis which permits an analytical

solution to the necessary all-order resummations of enhanced corrections. With the

on-shell definition of Ref. [19–22] the self-energies and the squark mass matrices de-

pend mutually on each other, which requires an iterative numerical evaluation of both

quantities. This definition clouds the relations between observables and fundamental

parameters like the trilinear SUSY-breaking terms Au,d
fi (as discussed later in this

section). Our results are more transparent and enable us to identify a previously ne-

glected parameter region with dramatically enhanced corrections to meson-antimeson

mixing (see Sect. 5.3.)

• Concerning the definition of the mass insertion parameters δq AB
fi we choose the most

common one (see for example [10–14, 16, 23–25, 75]) in which the mass insertion

is the entire off-diagonal element of the squark mass matrix divided by the average

squark mass. On the other hand, the authors of Ref. [19–22] only include the term

vqA
q into their definition of the mass insertion parameters. This leads to an artifi-

cial dependence of all corrections, even the ones independent of a quark mass, on

tanβ. Furthermore, if the authors of Ref. [19–22] would have chosen our definition of

the mass insertions (while keeping their definition of the super-CKM basis) all chi-

rally enhanced corrections would be simply absent, instead they would be implicitly

contained in the definition of the δq AB
fi ’s.

As already mentioned, the chirally enhanced parts of the SQCD self-energies do not de-

couple. This means they do not vanish in the limit MSUSY → ∞ but rather converge to a

constant. Therefore the corresponding FCNC diagrams of the type in Fig. 5.1 scale with

MSUSY in the same way as the LO diagram. We will find that the two-loop and three-loop
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diagrams compete with the LO ones, especially for rather large and non-degenerate squark

masses. There are different possibilities to handle flavor-changing self-energies in external

legs: The conceptually simplest version is to treat them in the same way as one-particle-

irreducible diagrams [29] as already done in chapter 3. So far we have implied this method,

which is best suited to identify chirally enhanced contributions. Calculations are easiest,

however, if one absorbs the chirally enhanced corrections into the quark-squark-gluino ver-

tex through the unitary rotations ∆U q
A of (3.20). These rotations alter the Feynman rule

for the squark-quark-gluino vertex:

W q∗
s,i → W q∗

s,j

(
1 + ∆U q

L ji

)

W q∗
s,i+3 → W q∗

s,j+3

(
1 + ∆U q

R ji

) (5.1)

The procedure in (5.1) can be viewed as a short-cut to include the self-energy in the external

quark line, in the spirit of Ref. [29]. Alternatively (5.1) can be interpreted as a finite

matrix-valued renormalization of the quark fields which cancels the external self-energies

and reappears in the Feynman rule of the quark-squark-gluino vertex.1The inclusion of

the enhanced corrections into the LO calculation is now simply achieved by performing

the replacements of (5.1) in this Feynman rule. Therefore, here the exact diagonalization

of the squark mass matrix is preferred over the mass insertion approximation. The exact

diagonalization has also the advantage that the analysis can be extended to the large tanβ

region in which certain off-diagonal entries can have the same size as the diagonal ones.

Here a comment on the definition of the super-CKM basis and the renormalization scheme

is in order (see also section 3.4):

i) Recall that we defined the super-CKM basis as follows: Starting from some weak basis

we diagonalize the tree-level Yukawa couplings and apply this unitary transformation

to the whole supermultiplet. This is a natural definition of the super-CKM basis

because of the direct correspondence between the SUSY-breaking Lagrangian and

physical observables. Whenever we refer to some element of a squark mass matrix,

1We stress that we do not introduce ad-hoc counter-terms to the quark-squark-gluino vertex. Super-

symmetry links the renormalization of the latter to the quark-quark-gluon vertex (which is unaffected by

the rotations in (3.20)) and the renormalization of the soft SUSY-breaking terms (which can feed into

the renormalization of the squark rotation matrices). The requirement to maintain the structure of a

softly broken SUSY theory within the renormalization process restricts the allowed counterterms to the

quark-squark-gluino vertex. Counterterms stemming from field renormalizations, however, are harmless in

this respect, because field renormalizations trivially drop out from the LSZ formula for transition matrix

elements.
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this element is defined in this basis. When passing from LO to NLO or even higher

orders the definition of the squark mass matrices is unchanged, i.e. no large chirally

enhanced rotations appear at this step. Any additional non-enhanced (i.e. ordinary

SQCD) corrections are understood to be renormalized in a way which amounts to a

minimal renormalization of the squark mass matrices.

ii) From given squark mass matrices we calculate the self-energies Σq RL
fi and then the

rotations ∆U q
L,R in (5.1). Calculating LO amplitudes with the corrected W q∗

sk from

(5.1) then properly includes the desired chirally enhanced effects. The order of the

two steps is important: First the super-CKM basis is defined from the tree-level

structure of the Yukawa sector and the finite loop effects are included afterward,

without influence on the definition of the super-CKM basis.

Alternatively one could define the super-CKM basis using an on-shell scheme which elimi-

nates the self-energies in the external legs by shifting their effect into the definition of the

super-CKM basis: Applying the inverse of the rotation in (5.1) first to the whole (s)quark

superfields will leave the squark-quark-gluino vertex flavor-diagonal. (Further supersym-

metry is still manifest, e.g. the sbottom field is the superpartner of the bottom field. This

would not be the case if different rotations were applied to quark and squark fields.) If one

defines this basis as the super-CKM basis (which now changes in every order of pertur-

bation theory) one will find very different constraints on the off-diagonal elements of the

squark mass matrices than with our method. The effect of the enhanced self-energies will

be entirely absorbed into the values of the elements of the squark mass matrices, these

self-energies will not appear explicitly, and the calculation of LO diagrams in the usual

way will be sufficient. However, the squark mass matrices determined from data using this

method will not be simply related to a mechanism of SUSY breaking, because the extracted

numerical value of a given matrix element will also contain the physics associated with the

chirally enhanced self-energies. Effects from SUSY breaking and electroweak breaking are

interwoven now and further the elements of the squark mass matrix do not obey simple

RG equations anymore.

It is illustrative to consider the popular case of soft-breaking terms which are universal at

a high scale, say, the GUT scale. The unitary rotations diagonalizing the Yukawa couplings

will lead to soft-breaking terms which are proportional to the unit matrix in flavor space.

The RG evolution down to low scales will then lead to small flavor-off-diagonal LL entries

of the squark mass matrices which are governed by the tree-level CKM matrix. Obviously,
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the elements of the squark mass matrices defined in this way are the quantities which one

wants to probe in order to discriminate between high-scale universality and other possible

mechanisms of soft flavor violation. The above-mentioned unitary rotations diagonalize

the tree-level Yukawa couplings, while the rotations with ∆U q
L,R are only meaningful after

electroweak symmetry breaking and are therefore a low-scale phenomenon. During the RG

evolution the Yukawa couplings essentially stay diagonal and the small unitary rotations

bringing the low-scale Yukawa couplings back to diagonal form are unrelated to the soft

breaking sector (and involve no chiral enhancement). Therefore the procedure described in

items i) and ii) is the adequate method to probe the flavor structure of SUSY breaking.

For a discussion of renormalization schemes in the context of MFV see Ref. [76].

Consider an FCNC transition di → df in MIA: If the squark mass md̃i
is degenerate

with md̃f
, the renormalization effects of the squark-quark-gluino vertex drop out in FCNC

processes. This can be understood in the diagrammatical approach by realizing that di-

agrams with a flavor-changing self-energy in the outgoing f leg cancel with the diagram

where the self-energy is in the incoming i leg, because the intermediate loop is the same for

both diagrams. Thus, in order to demonstrate the effects of the renormalized quark-squark-

gluino vertex non-degenerate squarks are necessary. For definiteness we choose the flavor-

diagonal left-handed and right-handed mass terms equal and further set mq̃1,q̃2 = 2mq̃3
if

not mentioned otherwise. Lighter third-generation squarks are plausible in scenarios with

high-scale flavor universality, in which renormalization group (RG) effects usually drive the

bilinear soft terms of the third generation down.

At this point we may compare our results in (3.20) with the corresponding expressions in

Ref. [19–22]. Unlike our ∆U q
L,R the enhanced corrections in Ref. [19–22] depend explicitly

on tan β. This feature reflects the different definitions of the δq AB
fi ’s adopted in the two

approaches. In particular, the constraints which we will derive from ∆F = 2 processes in

Sect. 5.3 are very different from those in Ref. [19–22].

5.2. B → Xsγ

In this section we examine the radiative decay b → sγ. We show how the renormal-

ization of the quark-squark-gluino vertex affects the branching-ratio for different val-

ues of µ.2 Throughout this section we assume that µ and the elements ∆q AB
ij with

AB = LL, LR, RL, RR, of the squark mass matrices are real. We consider only the case

2We find agreement of our LO Wilson coefficients with the gluino part given in Ref. [15, 66].
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Figure 5.2: Br[B → Xsγ] as a function of δd LL
23 and δd RR

23 , respectively, for mg̃ = 750 GeV,

mq̃1,2 = 2mq̃3 = 1000 GeV and tanβ = 50. Yellow(lightest): experimentally allowed

range for Br[B → Xsγ]. Green, red, blue (light to dark): theoretically predicted range

for µ/(1 + ∆b) = ±600 GeV without renormalization, +600 GeV with renormalized ver-

tices, −600 GeV with renormalized vertices. In the left figure the green band with positive

(negative) slope corresponds to the LO branching-ratio with µ/(1 + ∆b) = +600 GeV

(µ/(1 + ∆b) = −600 GeV).

in which |µ| tanβ is large, because otherwise our new contributions are suppressed and

no new constraints can be found. The reason for this feature is the chirality structure of

the magnetic transition mediated by the operator O7: Both the flavor-changing self-energy

and the now flavor-conserving magnetic loop are necessarily chirality-flipping. The chiral

enhancement of the latter is achieved by a large value of |µ| tanβ. We further recall that

the contributions from the dimension-six operators O7b,g̃ and O8b,g̃ (defined according to

Ref. [66]) are suppressed by a factor of MSUSY

µ tan β
compared to the contributions from O7g̃ and

O8g̃. Furthermore, since all other SQCD contributions are also suppressed we only need to

consider the magnetic operators and their chromomagnetic counterparts:

O7g̃ = eg2
s(Q) s̄σρνPRb F ρν , O8g̃ = g3

s(Q)s̄σρνT
aPRbGaρν (5.2)

Õ7g̃ = eg2
s(Q) s̄σρνPLb F ρν , Õ8g̃ = g3

s(Q) s̄σρνT
aPLbGaρν (5.3)

In [66] the matching scale Q is chosen as Q = MW . We use Q = mt instead, because it

is closer to the SUSY scale while still permitting 5-flavor running of αs. The experimental

value of [67] is taken at 2σ confidence level. For the theoretical prediction, the value of

reference [77] is used at the lower and upper end of the error range. We have not used the
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cumbersome NNLO formula of Ref. [77], but have instead fitted C7SM in the simple LO

formula to reproduce the numerical NNLO result for Γ (b → sγ). The LO expression reads

Γ (b → sγ) =
m5

bG
2
F |VtbV

∗
ts|2 α

32π4

(
|C7|2 +

∣∣∣C̃7

∣∣∣
2
)

C7 =
−16

√
2π3αs (µb)

GF VtbV
∗
tsmb

C7g̃ + C7SM

C̃7 =
−16

√
2π3αs (µb)

GFVtbV
∗
tsmb

C̃7g̃

(5.4)

To check our approximations we have also calculated the NLO evolution with matching at

Q = MSUSY, but found only a slightly different result.

We now discuss the dependence of b → sγ on the different squark mass parameters ∆d AB
23

(or, equivalently, on the usual dimensionless quantities δd AB
23 ): If the chirality-conserving

elements ∆d LL,RR
23 are the non-minimal source of flavor violation b → sγ depends very

strongly on µ tanβ already at the one-loop level (i.e. without the renormalization of the

quark-squark-gluino vertex). With the inclusion of the flavor-changing self-energies in the

external legs C7g̃,8g̃ is enhanced (suppressed) if µ is negative (positive) compared to the LO

coefficient. The size of the effect is rather different for δd LL
23 and δd RR

23 , because only in the

first case interference with C7SM is possible (see Fig. 5.2).

For the chirality-violating elements of the squark mass matrix, ∆d LR,RL
23 , this dependence

on µ tanβ is absent at LO and comes only into the game by the renormalization of the

squark-quark-gluino vertex. Again the behavior is different for δd LR
23 compared to δd RL

23 ,

since only in the first case interference with C7SM is possible (see Fig. 5.3).

As we easily see from Fig. 5.3 the inclusion of the two-loop effects can substantially change

the branching ratio. For positive (negative) values of µ the size of the Wilson coefficient

C7g̃ decreases (increases), i.e. the qualitative effect of our corrections is the same as for the

LL and RR elements in Fig. 5.2.

In Fig. 5.4 we plot the constraints obtained from Br[B → Xsγ] on δd AB
23 versus µ/(1 + ∆b)

for different values of mg̃. (∆b = ∆d3
is defined in (3.28).) All four different chirality

combinations are shown. The constraints on δd LR
23 and δd LL

23 are stronger than the ones on

δd RL
23 and δd RR

23 with exception of the ”conspiracy” regions where the SUSY contributions

overcompensate the SM value for C7. For δd LR,RL
23 the allowed region widens from bottom

to top, meaning that negative values of µ strengthen the bounds on these quantities while
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Figure 5.3: Br[B → Xsγ] as a function of δd LR
23 and δd RL

23 , respectively, for mg̃ = 750 GeV,

mq̃1,2 = 2mq̃3 = 1000 GeV, and tanβ = 50. Yellow(lightest): experimentally allowed range

for Br(B → Xsγ). Green, red, blue (light to dark): theoretically predicted range for µ/(1 +

∆b) = 0 GeV, µ/(1 + ∆b) = 600 GeV, µ/(1 + ∆b) = −600 GeV.

positive values of µ weaken them. For δd LL,RR
23 the effect of µ is different, as one can

verify from the two lower plots in Fig. 5.4: The bounds on δd LL,RR
23 always get stronger for

increasing |µ| but are more stringent for µ < 0 than for µ > 0.

5.3. ∆F = 2 processes

In this section, we consider Bd, Bs, and K mixing. We show that the enhanced effects of the

renormalized quark-squark-gluino vertices vanish for degenerate squark masses. However,

if the squarks are non-degenerate our (N)NLO corrections are even dominant in a large

region of the parameter space. In this analysis we consider complex δd AB
ij ’s to exploit the
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data on CP asymmetries. The effective Hamiltonian is given by

HSUSY
eff =

−α2
s

216

[
V d LL

s 23 V d LL
t 23

[
24m2

g̃D0

(
m2

d̃s
, m2

d̃t
, m2

g̃, m
2
g̃

)
+ 66D2

(
m2

d̃s
, m2

d̃t
, m2

g̃, m
2
g̃

)]
Q1

+V d RR
s 23 V d RR

t 23

[
24m2

g̃D0

(
m2

d̃s
, m2

d̃t
, m2

g̃, m
2
g̃

)
+ 66D2

(
m2

d̃s
, m2

d̃t
, m2

g̃, m
2
g̃

)]
Q̃1

+V d LL
s 23 V d RR

t 23

[
504m2

g̃D0

(
m2

d̃s
, m2

d̃t
, m2

g̃, m
2
g̃

)
Q4 − 72D2

(
m2

d̃s
, m2

d̃t
, m2

g̃, m
2
g̃

)
Q4

+24m2
g̃D0

(
m2

d̃s
, m2

d̃t
, m2

g̃, m
2
g̃

)
Q5 + 120D2

(
m2

d̃s
, m2

d̃t
, m2

g̃, m
2
g̃

)
Q5

]

+V d LR
s 23 V d LR

t 23

[
204m2

g̃D0

(
m2

d̃s
, m2

d̃t
, m2

g̃, m
2
g̃

)
Q2 − 36m2

g̃D0

(
m2

d̃s
, m2

d̃t
, m2

g̃, m
2
g̃

)
Q3

]

+V d LR
s 23 V d RL

t 23

[
−132D2

(
m2

d̃s
, m2

d̃t
, m2

g̃, m
2
g̃

)
Q4 − 180D2

(
m2

d̃s
, m2

d̃t
, m2

g̃, m
2
g̃

)
Q5

]]
.

(5.5)

For definiteness we have quoted (5.5) for Bs mixing but the translation to other processes

is trivial. The definitions of the operators can be found in Ref. [11, 14, 23]. We further used

the following abbreviations:

V q RL
s fi ≡ W q̃

f+3,sW
q̃∗
is V q LR

s fi ≡
3∑

j,k=1

W q̃
fsW

q̃∗
i+3,s

V q LL
s fi ≡

3∑

j,k=1

W q̃
fsW

q̃∗
is V q RR

s fi ≡
3∑

j,k=1

W q̃
f+3,sW

q̃∗
i+3,s

(5.6)

In the limit of two mass insertions and degenerate squark masses equation (5.5) simplifies

to the result of [14] by substituting

D0,2 (mq̃s, mq̃t , mg̃, mg̃) → F0,2 (mq̃, mq̃, mq̃, mq̃, mg̃, mg̃)

V q LL
s fi → m2

q̃δ
d LL
fi , V q RR

s fi → m2
q̃δ

q RR
fi , V q RL

s fi → m2
q̃δ

q RL
fi , V q LR

s fi → m2
q̃δ

q LR
fi .

(5.7)

(5.5) agrees with the result in Ref. [78] and corrects two color factors in Eq. II.9 of Ref. [9].

In Ref. [24], a NLO calculation of the effective ∆F = 2 Hamiltonian has been carried out.

The authors reduce the theoretical uncertainty and find corrections of about 15 percent

to the LO result. They miss our effects from the flavor-changing self-energies, because

they work with degenerate squark masses, so that the self-energy contributions cancel as
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discussed at the end of Sect. 5.1. As we will see, including the renormalized vertices can

yield an effect of 1000% and more. So it is sufficient for our purpose to stick to the LO

Hamiltonian of (5.5) with the renormalized vertices of Sect. 5.5. To incorporate the large

logarithms from QCD we use the RG evolution computed in Refs. [14, 79]. For the bag

factors parameterizing the hadronic matrix elements we take the lattice QCD values of

Ref. [80]. We show the effects of the renormalization of the squark-quark-gluino vertex on

∆Md,s and the general pattern of the new contributions in the following subsection.

A complete NLO calculation of supersymmetric QCD corrections to ∆F = 2 Wilson coef-

ficients with exact diagonalization of the squark mass matrices and non-degenerate squark

masses was performed in [81]. However, our chirally enhanced effects are not included, be-

cause Ref. [81] adopts the definition of the super-CKM basis based on an on-shell definition

of the quark fields, as described above. With this definition the chirally enhanced effects

are implicitly contained in the numerical values of the δq AB
ij . While the NLO corrections of

Ref. [81] are typically numerically much smaller than ours, they are important to control

the scale and scheme dependences of the LO diagrams. Therefore our results and those of

Ref. [81] are complementary to each other.

5.3.1. B−B mixing

The amplitude of Bq −Bq mixing, q = d or s, is conventionally denoted by M12. New

physics contributions will typically change magnitude and phase of this amplitude. |M12|
is probed through the mass difference ∆mq among the two mass eigenstates of the B−B

system, while any new contribution to arg M12 will modify certain CP asymmetries. For

the formalism and phenomenology of B−B mixing we refer to Ref. [82], an update of the

SM contributions to B−B mixing can be found in Ref. [83].

The chirally enhanced contributions are important for the constraints on δd LR
ij = δd RL ∗

ji .

They are also relevant if one seeks constraints on δd LL
ij in the large-tanβ region, but for

this case Br[B → Xsγ] is more powerful. Therefore we restrict our discussion in this sec-

tion to the LR elements, for which our new effects lead to drastic changes in the SUSY-

contributions to ∆Mq. We denote the result with renormalized squark-quark-gluino vertices

by ∆Mq,ren. In Fig. 5.5 we show the ratio of ∆Mq,ren to the LO result ∆Mq,LO, which is

calculated from the gluino-squark box diagram without our new contributions. As one

can easily see, the effects from the finite vertex renormalization drop out for degenerate

squark masses, while dramatic effects for large and unequal squark masses are observed:

For instance, a value of ∆Mq,ren/∆Mq,LO = 50 implies that the constraint on the studied
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δd AB
ij is stronger by a factor of

√
50 ≈ 7, because both ∆Mq,ren and ∆Mq,LO are practically

quadratic in δd AB
ij (cf. MIA to see this). We remark that the value of tanβ is inessential

in this section, varying tanβ leads to O(1%) changes of our ∆F = 2 results.

In order to determine the possible size of new physics (NP), it is necessary to know the SM

contribution to the process in question. For B−B mixing, this first requires the control

over hadronic uncertainties, which presently obscure the quantification of NP contributions

from the precise data on ∆Md [67] and ∆Ms [84, 85]. In the case of Bd−Bd mixing one

must also address Vtd, because Bd−Bd mixing is used to determine this CKM element

through the usual fit to the unitarity triangle. A first analysis combining different quantities

probing the Bs −Bs mixing amplitude has revealed a 2σ discrepancy of arg M12 with

the SM prediction [83]. Since then the CKMfitter [86] and UTfit collaborations [87] have

constrained the possible contributions of new physics to the Bd−Bd mixing and Bs−Bs

mixing amplitudes with sophisticated statistical (Frequentist and Bayesian, respectively)

methods, using new information on arg M12 gained from tagged Bs → J/ψφ data [88, 89].

We use the corresponding recent UTfit analysis as shown in Fig. 5.6.

The quantities CBq and φBq shown in the plots are defined as:

CBqe
2iφBq = ∆q =

〈Bq|Heff |Bq〉
〈Bq|HSM

eff |Bq〉
=

M12

MSM
12

=
|MSM

12 | + |MNP
12 |e2iφNP

|MSM
12 | (5.8)

Here φNP is the difference between the phase of the new physics contribution MNP
12 and

the phase of the SM box diagrams. Refs. [83] and [91] show the experimental constraints

in the complex ∆q planes instead. The plots in Fig. 5.7 show the allowed regions in the

complex δd LR
23 and δd LR

13 planes. The analogous constraints on the complex δd RL
23 and δd RL

13

planes look identical, because |∆F | = 2 processes are parity-invariant. To obtain Fig. 5.7

we have parameterized the border of the 95% CL region in Fig. 5.6 and determined the

values Re[δd AB
13,23] and Im[δd AB

13,23] which correspond to this region by using (5.8) with MNP
12

calculated from HSUSY
eff in (5.5). The hadronic matrix elements are conventionally expressed

in terms of the product of the squared decay constant f 2
Bq

and a bag factor. The dependence

on fBq drops out in the ratio defining CBqe
2iφBq , which only involves the ratios of the bag

factors of the different operators. That is, the sizable uncertainty of fBq does not enter

at this step, but entirely resides in the allowed region for CBqe
2iφBq plotted in Fig. 5.6.

Therefore our results in Fig. 5.7 correspond to the ranges for fBq

√
Bq (where Bq is the

bag factor of the SM operator) used in (the web update of) Ref. [90]. These ranges are

fBs

√
Bs = (270 ± 30) MeV and fBs

√
Bs/(fBd

√
Bd) = 1.21 ± 0.04 (both at 1σ). In the

case of Bs−Bs mixing the colored regions corresponding to different gluino masses do not
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overlap and do not contain the point δd LR
23 = 0, because the SM value MSM

12 is not in the

95% CL region of the UTfit analysis. The tension with the SM largely originates from the

Bs → J/ψφ data [88, 89]. A large gluino mass suppresses the supersymmetric contribution

to M12, so that a larger value of Im δd LR
23 is needed to bring arg M12 into the 95% CL region.

5.3.2. K−K mixing

In K−K mixing the situation is very different from B−B mixing, because the chiral

enhancement factor Ad
12/ms involves the small ms rather than mb. The observed smallness

of FCNC transitions among the first two generations not only forbids large δq AB
12 elements

but also constrains the splittings among the squark masses of the first two generations

severely. This observation suggests the presence of a U(2) symmetry governing the flavor

structure of the first two (s)quark generations. This symmetry cannot be exact, as it is at

least broken by the difference Y s − Y d of Yukawa couplings. That is, the numerical size of

flavor-U(2) breaking is somewhere between 10−4 and a few times 10−2, depending on the

size of tan β. We may therefore fathom deviations from flavor universality in the same ball-

park in the squark sector. Counting Σd RL
12 as first-order in some U(2)-breaking parameter,

we realize that our chiral enhancement factors are of zeroth order in U(2) breaking due

to the appearance of the factor 1/ms in (3.20). Therefore K −K mixing is extremely

sensitive to the remaining source of flavor-U(2) breaking in the problem, the mass splitting

mq̃2
−mq̃1

. At this point we mention that it is important to control the renormalization of

ms in the presence of ordinary QCD corrections. In Appendix B of Ref. [47] it has been

shown that all QCD corrections combine in such a way that the inverse power of ms is the

MS mass evaluated at the scale Q = MSUSY, provided that gluonic QCD corrections to

Σd RL
12 are also calculated in the MS scheme.

The sensitivity of the chirally enhanced corrections to the squark-mass splitting is displayed

in Fig. 5.8. Constraints on δd AB
12 from K−K mixing have been considered for a long time (see

Refs. [10, 11]). Again we use the UTfit analysis (cf. the left plot of Fig. 5.9) exploiting the

mass difference ∆MK and the CP-violating quantity ǫK . We show our improved constraints

on the complex δd LR
12 element in the right plot of Fig. 5.9.

Figs. 5.8 and 5.9 are analogous to Figs. 5.5–5.7 addressing B−B mixing; we refer to the

corresponding figure captions for further explanation. We find that K−K mixing indeed

probes flavor violation in the squark sector of the first two generations at the per-mille

level. The constraints on δd LR
12 sharply grow with |mq̃2 − mq̃1|.
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For a related CKMfitter analysis see Ref. [91].
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6. Radiative generation of light fermion

masses

In chapter 3 we have seen that chirally-enhanced self-energies with sfermions and gauginos

as virtual particles significantly correct the relations between the physical masses and the

Yukawa couplings. Furthermore, we have derived very strong bounds on the mass-insertions

δf LR
11,22 by requiring that the supersymmetric corrections do not exceed the measured masses.

This suggests the idea that the light fermion Yukawa couplings might be zero at tree-level

and are generated radiatively via loops involving the trilinear A terms. In this chapter

we want to study the phenomenological implications of such a model with radiative mass

generation taking into account the chirally enhanced corrections to FCNC processes as

described in section 3.4 and chapter 5.

6.1. Description of the model

The smallness of the Yukawa couplings of the first two generations suggests that these

couplings are generated through radiative corrections [66, 92–96]. In the context of su-

persymmetric theories these loop-induced couplings arise from diagrams involving squarks

(sleptons) and gluinos (binos) for quarks (leptons)1 . Of course, the heaviness of the top

quark requires a special treatment of Y t and the successful bottom-tau Yukawa unifica-

tion suggests to keep the tree-level Yukawa couplings for the third generation. At large

tan β, this idea gets even more support from the successful unification of the top and bot-

tom Yukawa coupling, as suggested by some SO(10) GUTs. In the modern language of

Refs. [97, 98] the global [U(3)]5 flavor symmetry of the gauge sector (here we do not con-

sider neutrinos) is broken down to [U(2)]5 × [U(1)]2 by the Yukawa couplings of the third

generation. Here the five U(2) factors correspond to rotations of the left-handed doublets

and the right-handed singlets of the first two generation quarks and leptons in flavor space,

1Of course also the bino diagram conributes to the quark masses, but it is supressed by a factor 3α1

8αs
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respectively. This means we have

Y f =




0 0 0

0 0 0

0 0 yf


 , V (0) =




1 0 0

0 1 0

0 0 1


 (6.1)

in the tree-level Lagrangian2. We next assume that the soft breaking terms ∆q̃ LL
ij and ∆q̃ RR

ij

possess the same flavor symmetry as the Yukawa sector, which implies that Mq̃ , Md̃ and

Mũ are diagonal matrices with the first two entries being equal. For transitions involving

the third generation the situation is different because flavor violation can occur not only

because of a misalignment between Au and Ad but also due to a misalignment with the

Yukawa matrix. So the elements Au,d
j3 do not only generate the CKM matrix at one-loop,

they also act as a source of non-minimal flavor violation and thus are constrained by FCNC

processes.

This model has several advantages compared to the generic MSSM:

• Flavor universality holds for the first two generations. Thus our Model is minimally

flavor-violating according to the definition of [97] with respect to the first two gener-

ations since the quark and the squark mass matrices are diagonal in the same basis.

This provides an explanation of the precise agreement between theory and experi-

ment in K and D physics. However, double mass insertions affect transitions between

the first two generations (see next section).

• The SUSY flavor problem is reduced to the quantities δq RL
13,23. However, these flavor-

changing elements are less constrained from FCNCs and might even explain a possible

new CP phase indicated by recent data on Bs mixing. Furthermore, as we will see

in chapter 8 these elements can also induce a right-handed W coupling which can

explain discrepancies between inclusive and exclusive determinations of Vub and Vcb.

• The flavor symmetry of the Yukawa sector protects the quarks of the first two gen-

erations from a tree-level mass term.

• The model is economical: Flavor violation and SUSY breaking have the same origin.

• Small quark masses and small off-diagonal CKM elements are explained by a loop

suppression.

2We assume that the large mixing angles of the PMNS matrix do not stem from the charged leptons

but rather from the neutrinos.
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• The SUSY CP problem is substantially alleviated by an automatic phase alignment

[66]. In addition, the phase of µ does not enter the EDMs at the one-loop level because

the Yukawa couplings of the first two generations are zero.

6.2. Phenomenological consequences in the quark sector

Although the B factories have confirmed the CKM mechanism of flavor violation with very

high precision, leaving little room for new sources of FCNCs, we want to show in this

section that the possibility of radiative generation of quark masses and of the CKM matrix

still remains valid. Even though our model is minimally flavor-violating regarding only the

first two generations, this is no longer true if the third generation is involved. The reason

for this is that the A-terms cannot be constructed out of the tree-level Yukawa coupling

and vice versa as demanded by the definition of MFV given in Ref. [99]. While Vus and Vcd

are solely generated by a misalignment between Au and Ad the situation concerning the

CKM elements containing the third generation is more involved since the top and bottom

Yukawa couplings fix the rotations involving the third generation. Therefore, Vub, Vcb, Vtd

and Vts are generated by the misalignment between the loop-corrected Yukawa couplings

Y u
eff and Y d

eff . In the following we will concentrate on the two simple limiting cases in which

either Ad is diagonal (in the same basis as Y d) and the CKM elements are generated by

the off-diagonal elements of Au or on the opposite case in which Au is diagonal but Ad is

not. For obvious reasons we will call theses scenarios ”CKM generation in the down-sector”

and ”CKM generation in the up-sector”, respectively. Even though the elements δq RL
13,23 are

not needed for the generation of the CKM matrix, they can in principle be different from

zero. However, we will concentrate on the minimal case in which δq LR
13,23 are the only sources

of non-minimal flavor violation. Note that it is in principle also possible to generate the

fermion masses with the non-holomorphic terms given in equation (2.8). Such a scenario

(as proposed in Ref. [66, 100]) would then lead to additional effects in the Higgs sector.

6.2.1. CKM generation in the down-sector

If the CKM matrix is generated in the down sector, the off-diagonal elements ∆d LR
13,23 are de-

termined by the requirement that they generate the observed CKM matrix. From equation

(3.20) and (3.23) the off-diagonal elements are determined by:

Σd LR
13 = mbVub (6.2)

Σd LR
23 = mbVcb (6.3)
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Here the bottom quark mass has to be evaluated at the same scale as the self-energy. Since

the off-diagonal elements needed to generate the CKM matrix in the down-sector are very

small (see figure 4.5 and 4.4) the mass-insertion approximation excellently reproduces the

exact result. Therefore, we can solve analytically for ∆d LR
13,23 by using equation (3.16).

In leading order of the MIA the flavor off-diagonal elements δd LR
13,23 enter FCNC processes

involving the third generation. Furthermore, also Kaon and D mixing are affected by dia-

grams containing the combination δd LR
13 ×δd RL

32 . Even though Kaon mixing is very sensitive

to NP, especially to new sources of CP violation, the product δd LR
13 × δd RL

32 is too small

to give sizable effects. The contribution to D mixing is even further supressed since it is

generated by a chargino diagram. However, b → s(d)γ is very sensitive to δd LR
23 (δd LR

13 )

since it is both flavor and chirality violating. Even though the relative effect (compared

to the SM contribution) in b → sγ and b → dγ is approximately equal, b → sγ turns out

to be the process which is most sensitive to radiative flavor violation stemming from the

down sector since it is measured much more precisely than b → dγ. The new contributions

affect the Wilson coefficients C7 and C8 and the interference with the SM contribution

is constructive. However, one has to take into account the chirally enhanced corrections

discussed in the previous chapter. Therefore, also the gluino constraints depend on µ and

tan β (see figure 6.1).

In principle, no symmetry argument forbids non-vanishing terms Ad
31,32,33 in our model.

However, δd RL
13,23 contribute to C ′

7 and C ′
8 and δd RL

33 is already non-zero since it also contains

mbµ tanβ. As we see from equation (5.4) the primed Wilson Coefficients do not interfere

with the SM ones. Therefore, in the absence of sizable charged Higgs contributions, their

effect on the branching ratio is suppressed. Furthermore, since the sign of δd RL
13,23 is not fixed a

destructive interference with the charged Higgs contribution is possible which could weaken

the bounds on the charged Higgs mass (in addition to a possible chargino contribution).

6.2.2. CKM generation in the up-sector

If the CKM matrix is generated in the up-sector the off-diagonal elements are determined

by:

Σu LR
13 = −mtVub (6.4)

Σu LR
23 = −mtVcb (6.5)

Due to the large top mass these off-diagonal elements are much larger than in the case of

CKM generation in the down sector. Therefore, already the requirement that the lighter
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Figure 6.1: Allowed regions in the mg̃ − mq̃ plane.

Left: Constraints from b → sγ for different values of mbµ tanβ/(1 + ∆b) assuming that

the CKM matrix is generated in the down sector. Yellow(lightest): mbµ tanβ/(1 + ∆b) =

120 TeV2, red: mbµ tanβ/(1 + ∆b) = 0 TeV2 and blue: mbµ tanβ/(1 + ∆b) = −120 TeV2.

Right: Constraints from Kaon mixing for different values of M2 assuming that the CKM ma-

trix is generated in the up sector. Yellow(lightest): M2 = 800 GeV, green: M2 = 600 GeV,

red: M2 = 400 GeV and blue: M2 = 200 GeV.

stop mass does not violate the bounds for direct searches requires the diagonal elements

of the squark mass matrix to be heavier than approximately (700GeV)2. Furthermore,

the mass-insertion approximation does not necessarily hold for such large off-diagonal ele-

ments. Therefore, one cannot solve analytically for ∆u LR
13,23 but rather has to determine these

elements numerically. However, for squark masses above 700GeV the off-diagonal elements

determined by the mass-insertion approximation turn out to be only up to ten percent

bigger than the numerically obtained elements. Therefore, it is still possible to rely on the

MIA for an qualitative understanding of the flavor structure.

If the CKM matrix is generated in the up-sector one would naively expect chargino con-

tributions to b → sγ, b → dγ and Bs,d mixing. However, Bs,d mixing does not give useful

constraints on δu LR
13,23 and b → sγ also heavily depends on µ and tan(β). Furthermore, we

again have to take into account the chirally enhanced effects by using the effective chargino

vertex of equation (3.34). In the present case of radiative flavor violation in the up-sector
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these expression simplifies to:

Γ
χ̃±

k
L

diũs
=

3∑
j=1




Vud Vus 0

Vcd Vcs 0

0 0 1




ji

(
V χ̃±∗

k2 Y u3δj3W
ũ∗
j+3,s − g2V

χ̃±∗
k1 W ũ∗

js

)
,

Γ
χ̃±

k R

diũs
= U χ̃±

k2 Y d3δi3

3∑
j=1




Vud Vus 0

Vcd Vcs 0

0 0 1




ji

W ũ∗
js .

(6.6)

Note that the Yukawa couplings of the light fermions are zero and also the CKM matrix

elements connecting the third with the first two generations vanish for external down-type

quarks. This is easy to understand since the tree-level Yukawa couplings of the light quarks

are zero and the CKM matrix is induced in the up-sector meaning that the down quarks

are not rotated by self-energies.

However, there are other, not so obvious, contribution to FCNC processes: Kaon and D

mixing. An effective element δu LL
12 eff is induced through the double mass insertion δu LR

13 ×
δu LR∗
23 . Note that this element is proportional to two powers of an electroweak vev and

is therefore not subjected to the SU(2) relation which connects the left-handed squarks.

Therefore, on the one hand only chargino diagrams contribute to K mixing while on the

other hand no chargino diagrams contributes to D mixing. However, since Kaon mixing

is more sensitive to CP violation, and δd LL
12 eff carries the CKM phase γ, these constraints

turn out to be stronger than the constraints from D mixing. The allowed regions in the

mq̃-mg̃ plane for different values of M2 are shown in figure 6.1 b). Note that the constraints

are nearly independent of µ and tanβ since the quark-squark coupling is to the gaugino

component of the charginos.

Another process which is sensitive to the combination δu LR
13 × δu LR∗

23 via chargino loops is

K → πνν [18, 101–103]. Even though, at present, this process does not give useful bounds,

upcoming NA46 results will change this situation in the future. Figure 6.2 and 6.3 shows

the predicted branching ratios for KL → πνν and K+ → π+νν. Note that the branching

ratios are again to a very good approximation independent of µ and tan β.

In principle δu LR
23 also contributes to B → Kνν via a Z penguin (and at the same time also

to Bs → µµ which is strongly correlated to B → Kνν in the MSSM) [8, 26, 104]. Even
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Figure 6.2: Predicted branching ratio for the rare Kaon decay KL → πνν assuming that the

CKM matrix is generated in the up-sector for mq̃ = mg̃. The branching ratio is enhanced

due to a constructive interference with the SM contribution.

though the branching ratios are slightly enhanced, they also depend on At, µ and tan(β).

Furthermore, B → Kνν is also correlated to b → sγ which forbids large effects [104].

Of course also in the up-sector no symmetry argument forbids non-zero elements δu LR
31,32,33.

While δu LR
33 affects as already discussed b → sγ and B → Kνν the elements δu LR

31,32 are rather

separated from FCNC processes since they enter these processes only in combination with

small quark masses and small chargino mixing. Their mere effect is to correct the sqaurk

eigenvalues via diagonalization. However, as we will see in chapter 8, they can induce a

sizeable right-handed W coupling if at the same time also δd LR
33 is large.

6.3. Phenomenological consequences in the lepton sector

As already noted in section 6.1 our model solves the SUSY CP problem because the A-

terms are real in the same basis as the Yukawa coupling of the light fermions. Furthermore,

the phase of µ practically only enters at the two-loop level. Also the decay µ → eγ receives

no contributions in addition to the MFV ones. However, the anomalous magnetic moment

of the muon (and to less extent of the electron) is affected due to the chirality violation in

the slepton mass matrix:

The great triumph of the Dirac equation was the successful prediction of the magnetic
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Figure 6.3: Predicted branching ratio for the rare Kaon decay K+ → π+νν assuming

that the CKM matrix is generated in the up-sector for mq̃ = mg̃. The branching ratio is

enhanced for light SUSY masses but suppressed if the scale of SUSY breaking is higher.

moments of fermions:

�µ = gf

ef

2mf

�S (6.7)

where gf = 2 is the gyromagnetic ratio. However, loop corrections lead to deviations of the

gyromagnetic factor from two. The magnetic dipole moment interaction relevant for this

corrections is given as

ie

2mµ

F (q2)u(pf)σµνq
µǫνu(pi) (6.8)

where q = pf −pi is the momentum and ǫ is the polarization vector of the external photon.

The anomalous magnetic dipole moment of the muon is then given as (g−2)µ = 2F (q2 = 0).

The deviation from two is defined as aµ = (g−2)µ

2
. Hence, comparison of experiment and

theory tests the SM (and its extensions) at its quantum loop level. In this contex, the

anomalous magnetic moment of the muon is of special interest, because the discrepancy

between the SM prediction and experiment is 3.1σ [105]:

aexp
µ − aSM

µ = (24.6 ± 8.0) × 10−10. (6.9)

In exact supersymmetric theories the gyromagnetic ratio for all fermions is exactly 2 [106].

Therefore, the anomalous magnetic moment of the muon directly probes SUSY breaking.

A pleasant feature of supersymmetry, which singles it out with respect to other models, is
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that it would naturally lead to the observed deviation from the SM value [107–114]. The

usual approach is to choose a suitable (large) value of the term mµµ tanβ in the slepton

mass matrix. In order to achieve the right value for the anomalous magnetic moment, the

higgsino mass parameter µ must be positive and large values for tanβ, the ratio of the

two vacuum expectation values, are favored. Even though large tanβ scenarios are also

motivated by the GUT relation yt = yb, problems in processes like b → sγ, Bd,s → µµ

and B → (D)τν can occur, due to the parametric enhancement by tanβ. In supergravity,

Bd,s → µµ and the anomalous magnetic moment of the muon are correlated, limiting the

possible size of aSUSY
µ [115]. Therefore, if tanβ is large, the Higgs has to be heavy in the

constrained MSSM [116].

However, there exists also a second, less studied way in the MSSM how to account for the

anomalous magnetic moment of the muon: The entry in the slepton mass matrix involving

the trilinear A-term3, Al
22, can also reproduce the desired effect without influencing quark

decays or the Higgs potential. This possibility is realized in our model with radiative

generation of fermion masses [66]. Since in our model the trilinear A-terms are chosen in

such a way that they generate the light fermion masses of the first and second generation,

the contributon to the anomalous magnetic moment depends only on the slepton and the

bino mass and is positive definite. In presence of flavor violating elements in the slepton

mass matrix it is possible to generate the muon and electron mass radiatively via couplings

involving yτ . However the very same diagram where an additional photon is attached also

contributes to the anomalous magnetic moment. No chargino diagram contributes due to

the absence of a tree-level Yukawa coupling. Furthermore, we can neglect neutralino mixing

between the bino and the neutral wino. Then the magnetic moment is given by:

aµ =mµ

α1

2π
M1

6∑

s=1

ℜ
(
W ℓ̃∗

2s W ℓ̃∗
5s

)
m2

ℓ̃s
D0(M

2
1 , m2

ℓ̃s
, m2

ℓ̃s
, m2

ℓ̃s
), (6.10)

where the rotation matrix W ℓ̃ and the masses mℓ̃ and M1 must fulfill the following condi-

tion:

mµ
!
=

α1

4π
M1

6∑

s=1

W ℓ̃∗
2s W

ℓ̃∗
5s B0(M

2
1 , m2

ℓ̃s
). (6.11)

For given diagonal elements of the slepton mass matrix, Eq. (6.11) is an implicit equation

for the off-diagonal elements. The same rotation matrix W ℓ̃ must then be inserted in

3Vacuum stability requires either tanβ ≈ 1 or the use of the non-analytic A′ terms [66].
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Figure 6.4: Left: Allowed region in the M1-mµ̃ plane assuming that the muon Yukawa cou-

pling is generated radiatively by vdA
l
22. Here mµ̃ is the lighter smoun mass. Yellow(lightest):

aµ ± 2σ, red: aµ ± 1σ, blue(darkest): aµ.

Right: Allowed region in the M1-mẽ plane assuming that the electron Yukawa coupling is

generated radiatively by vdA
l
11. Yellow(lightest): aµ ± 2σ, red: aµ ± 1σ.

Eq. (6.10). Assuming that the discrepancy in (6.9) can be explained with supersymmetry

we can determine the allowed region in parameter space. The result is shown in the left

plot of Fig. 6.4 where we see that a model with radiative generation of the muon mass

predicts a smuon with masses approximately between 1 TeV and 4 GeV. This is a very

clean and strong prediction which gains special importance in the light of the forthcoming

LHC results: Since the LHC is only sensitive to light slepton ml̃ ≤ 400 GeV a detection

of a smuon would directly disprove the model with radiatively generated fermion masses.

Stated positively, a light smuon would prove a non-zero tree-level Yukawa coupling in the

MSSM and provide us with a lower bound. The same discussion applies as well to the

electron and its Yukawa coupling. However, even though the anomalous magnetic moment

of the electron is measured very precisely [117], it is used to determine α. Therefore, in

order to use the anomalous magnetic moment of the muon in order to put bounds on NP

we need an independent determination of α [72]. The second best way to measure the fine

structure constant is from a Rubidium atom experiment [118]. Using these informations we

can qualitatively make the same statements as in the muon case. However, quantitatively

the constraints are weaker due to the smallness of the electron mass and the uncertainty

coming from the second best measurement of α (see figure 6.4 b)).



7. LL Mass Insertions and constraints

from K and D mixing

Already in the early stages of minimal supersymmetric standard model (MSSM) analyses

it was immediately noted, that a super GIM mechanism is needed in order to satisfy the

bounds from flavor changing neutral currents (FCNCs) [30]. Therefore, the mass matrix of

the left-handed squarks should be (at least approximately) proportional to the unit matrix,

since otherwise flavor off-diagonal entries arise inevitably either in the up or in the down

sector due to the SU(2) relation between the left-handed squark mass terms. The idea that

non-degenerate squarks can still satisfy the FCNC constraints (K and D mixing) was first

discussed in Ref. [31] (an updated analysis can be found in Ref. [32]) in the context of

abelian flavor symmetries [33, 34]. In the meantime, there have been a lot of significant

improvements both on the theoretical and on the experimental side: The mass difference

in the D system was measured and the decay constants and bag factors were calculated to

a high precision using lattice methods. A recent analysis of the constraints put on NP by

Kaon and D mixing can be found in [35]. In all MSSM analyses the main focus has been

on the gluino contributions, while the chargino and neutralino contributions were usually

neglected claiming that they are suppressed by a factor of g4
2/g

4
s [9–11, 25, 31, 35, 36].

However, it is no longer a good approximation to consider only the gluino contributions in

the presence of off-diagonal elements in the LL block of the squark mass matrices because

the winos couple to left-handed squarks with g2. In addition, the gluino contributions suffer

from cancellations between the crossed and uncrossed box-diagrams, especially if the gluino

is heavier than the squarks. Therefore, the neutralino and chargino contributions can even

be dominant if M2 is light and the gluino is heavier than the squarks. This situation can

occur in GUT-motivated scenarios in which the relation M2 ≈ mg̃α2/α3 holds. Therefore,

we want to update the evaluation of the constraints from K and D mixing with focus on

the mass splitting between the first two squark generations taking into account the weak

contributions as well.

The squark spectrum is a hot topic concerning bench-mark scenarios for the LHC. It is
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commonly assumed that the squarks are degenerate at some high scale and that non-

degeneracies are introduced via the renormalization group [119, 120]. In such scenarios,

the non-degeneracies are proportional to Yukawa couplings and therefore only sizable for

the third generation. However, flavor-off-diagonal entries in the squark mass matrix can

also lead to non-degenerate squarks which can have an interesting impact on the expected

decay and production rate of squarks [121]. In principle, there remains the possibility that

squarks have already different masses at some high scale. The question which we want to

clarify in this article is which regions in parameter space with non-degenerate squarks are

compatible with D−D and K−K mixing. We are going to discuss this issue in Sec. 7.2

after reviewing K−K mixing and D−D mixing in Sec. 7.1.

7.1. Meson mixing between the first two generations

Measurements of flavor-changing neutral current (FCNC) processes put strong constraints

on new physics at the TeV scale and provide a important guide for model building. In

particular D−D and K−K mixing strongly constrain transitions between the first two

generations and combining both is especially powerful to place bounds on new physics [35].

In the down sector FCNCs between the first two generations are probed by the neutral

Kaon system, the first observed example of meson- anti-meson mixing. Kaon mixing was

already discovered in the early 50th and the CP violation was established in 1964. The up

to date experimental values for the mass difference and the CP violating quantity ǫK are

[67]:

∆mK/mK = (7.01 ± 0.01) × 10−15

ǫK = (2.23 ± 0.01) × 10−3 (7.1)

However, still today, in the age of the B-factories, the long known neutral Kaon system still

provides powerful constraints on the flavor structure of any NP model. As we see from (7.1)

both the mass difference and the size of the indirect CP violation are tiny and the numbers

are in agreement with the standard model (SM) prediction: The SM contribution to the

mass difference is small due to a rather precise GIM suppression (the top contribution is

suppressed by small CKM elements) and also the CP asymmetry is strongly suppressed

because CP violation necessarily involves the tiny CKM combination VtdV
∗
ts related to the

third fermion generation. Therefore, Kaon mixing puts very strong bounds on NP scenarios

like the MSSM. According to the analysis of Ref. [87] the allowed range in the CMK
−CǫK
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plane is rather limited. At 95% confidence level on can roughly expect the NP contribution

to the mass difference ∆MK to be at most of the order of the SM contribution. The NP

contribution to ǫK is even more restricted. The gluino contribution to K−K mixing was in

the focus of many analyses [9, 10, 30, 31]. An complete study of the gluino contributions,

taking into account the NLO evolution of the Wilson coefficients was done in Ref. [11].

However, neither of these articles considered the electroweak contributions. Only Ref. [122]

calculated the chargino contributions but the gluino and neutralino contribution were ne-

glected in this article and the SU(2) relation connecting the up and down squark mass

matrices was not used. We return to this point in section III.

In the up sector FCNCs are probed by D−D mixing. In contrast to the well established

Kaon mixing, it was only discovered recently in 2007 by the BABAR [123] and BELLE

[124, 125] collaborations. The current experimental values are [126]:

∆mD/mD = (8.6 ± 2.1) × 10−15

AΓ = (1.2 ± 2.5) × 10−3 (7.2)

Short-distance SM effects are strongly CKM suppressed and the long-distance contributions

can only be estimated. Therefore, conservative estimates assume for the SM contribution

a range up to the absolute measured value of the mass difference. However, due to the

small measured mass difference D mixing still limits NP contributions in a stringent way.

Furthermore, a CP phase in the neutral D system can directly be attributed to NP. A

first analysis (also including the implications for the MSSM) was done shortly after the

experimental discovery [25] and a recent update can be found in Ref. [36]. However, these

studies did not consider the electroweak contributions.

In summary, D−D and K−K mixing restrict FCNC interactions between the first two

generations in a stringent way and one should expect the NP contributions to the mass

difference to be smaller than the experimental value [35]:

∆mNP
D,K ≤ ∆mexp

D,K (7.3)

CP violation associated with new physics is even more restricted, especially in the down

sector:

ǫNP
K ≤ 0.6ǫexp

K (7.4)

(7.3) and (7.4) summarize in a concise way the allowed range for NP and we will use them

to constrain the NP contributions to K and D mixing in Sec. 7.2.
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7.2. Constraints on the mass splitting from Kaon mixing and D

mixing.

In this section we want to discuss the constraints on the mass splitting between the first

two generations of left-handed squark. Due to the SU(2) relation between the left-handed

up and down squark mass matrices, M2
ũ = V †

CKMM2
q̃ VCKM , in the super-CKM basis, these

mass matrices are not independent. The only way to avoid flavor off-diagonal mass inser-

tions in the up and in the down sector simultaneously is to choose M2
q̃ proportional to the

unit matrix. This is realized in the naive minimal flavor violating MSSM. In a more gen-

eral definition of MFV [99] flavor-violation due to NP is postulated to stem solely from the

Yukawa sector, resulting in FCNC transitions (which can now also be mediated by gluinos

and neutralinos) proportional to products of CKM elements and Yukawa couplings. There-

fore, such scenarios allow only sizable deviations from degeneracy with respect to the third

generation. However, even though non-degeneracies with the third generation induce addi-

tional CP violation associated with Vub we find that this mass splitting effectively cannot

be constrained. This finding is in agreement with Ref. [127] A bit more general notion

of MFV could be defined by stating that all flavor change should be induced by CKM

elements. This definition would also cover the case with a diagonal squark mass matrix in

one sector (either the up or the down sector) but with off-diagonal elements, introduced

by the SU(2) relation, in the other sector. This setup corresponds to an exact alignment

of the squark mass term m2
q̃ with the product of Yukawa matrices Y †

u Yu (or with Y †
d Yd in

the case of a diagonal down squark mass matrix).

The obvious way how off-diagonal elements of the squark mass matrices enter meson mixing

is via squark-gluino diagrams. These contributions are commonly expected to be dominant

since they involve the strong coupling constant. Also in our case under study, with flavor-

violating LL elements, the gluino diagrams were assumed to be the most important SUSY

contributions to the Wilson coefficient C1 of the ∆F = 2 effective Hamiltonian H∆F=2
eff =

∑5
i=1 CiOi +

∑3
i=1 C̃iÕi [9–11, 25, 31, 35, 36]:

C g̃g̃
1 = − g4

s

16π2

6∑

s,t=1

[
11

36
D2

(
m2

q̃s
, m2

q̃t
, m2

g̃, m
2
g̃

)
+

1

9
m2

g̃D0

(
m2

q̃s
, m2

q̃t
, m2

g̃, m
2
g̃

)]
V q LL

s 12 V q LL
t 12

(7.5)

Our conventions for the loop-functions are given in the appendix and the matrices in flavor

space V q LL
s 12 are defined in equation (5.6). However, if we have flavor-changing LL elements

it is no longer possible to concentrate on the gluino contributions for four reasons:
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• The gluino contributions suffer from cancellations between the boxes with crossed

and uncrossed gluino lines corresponding to the two terms in the square brackets in

(7.5). The crossed box diagrams occur since the gluino is a Majorana particle. This

cancellation occurs approximately in the region where mg̃ ≈ 1.5 mq̃.

• In the SU(2) limit with unbroken SUSY the winos couple directly to left-handed

particles with the weak coupling constant g2. Therefore, flavor-changing LL elements

can contribute without involving small left-right or gaugino mixing angles.

• Since charginos are Dirac fermions, there are no cancellations between different dia-

grams at the one-loop order.

• The wino mass M2 is often assumed to be much lighter than the gluino mass. In

most GUT models the relation M2 ≈ mg̃α2/α3 holds. Since the loop function is

always dominated by the heaviest mass, one can expect large chargino and neutralino

contributions if the squarks masses are similar to the lighter chargino masses.

Therefore, we have to take into account the weak (and the mixed weak-strong) contributions

to C1:

C χ̃0χ̃0

1 = − 1

128π2

g4
2

4

6∑
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, m2
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)
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2
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V q LL
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t 12
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(
m2

q̃s
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q̃t
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V q LL

s 12 V q LL
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C χ̃+χ̃+

1 = − g4
2

128π2
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s,t=1

D2

(
m2

q̃s
, m2

q̃t
, M2

2 , M2
2

)
V q LL

s 12 V q LL
t 12

(7.6)

In (7.6) we have set all Yukawa couplings to zero and neglected small chargino and neu-

tralino mixing. Due to the small Yukawa couplings of the first two generations and the

suppressed bino-wino mixing the only sizable contribution of both the gluino and the elec-

troweak diagrams is to the same operator O1 = s̄γµPLd⊗ s̄γµPLd as the SM contribution.

Note that in all contributions the same combination of mixing matrices enters, since the

CKM matrices in the chargino vertex cancels with the ones in the squark mass matrix.

Ref. [128] calculated all Wilson coefficients contributing to ∆F = 2 processes in the MSSM

and Ref. [27] included also the chargino and neutralino contributions into their numerical
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analysis. However, the main focus of Ref. [27] is not on the mass-splitting between the first

two squark generations and the importance of the different contributions is not apparent

from the scatter plots used in their analysis.

In Fig. 7.1 we show the size of the different contributions to C1 as a function of the gluino

mass. We have normalized all coefficients to C χ̃+χ̃+

1 since only one box diagram contributes

to it and therefore the coefficient depends only on one loop-function which is strictly

negative. Note that for heavy gluino masses always the chargino and in some cases the

mixed gluino-neutralino contribution are dominant.

As stated before, SU(2) symmetry links a mass splitting in the up (down) sector to flavor-

changing LL elements in the down (up) sector. So, if one assumes a ”next-to minimal”

setup in which one mass matrix is diagonal, one has to specify if this is the up or the down

squark mass matrix. If the down (up) squark mass matrix is diagonal, which implies that

it is aligned to Y †
d Yd (Y †

u Yu), one has contributions to D−D (K−K ) mixing.

Assuming a diagonal up-squark (down-squark) mass matrix, the regions in the mũ1
-mg̃

plane compatible with K−K mixing (D−D mixing) are shown in Fig. 7.2. Note that

there are large regions in parameter space with non-degenerate squark still allowed by

K−K (D−D ) mixing due to the cancellations between the different contributions shown

in Fig. 7.1. However, departing from an exact alignment with either Y †
u Yu or Y †

d Yd there

are points in parameter space which allow for an even larger mass splitting [35] due to an

additional off-diagonal element in the squark mass matrix. If this element is real one can

choose an appropriate value which maximizes the allowed mass splitting 1. Nevertheless,

this additional off-diagonal element now present in both sectors due to the SU(2) relation

could also carry a phase additional to the CKM matrix. If this phase is maximal one obtains

the minimally allowed range for the mass splitting due to the severe constraint from ǫK .

These minimally and maximally allowed regions for the mass splittings are also shown in

Fig. 7.2.

We have seen that due to the cancellations between the different diagrams contributing to

D−D and K−K mixing there are large allowed regions in parameter space where the squarks

are not degenerate (a mass splitting of 100% and more is well possible). This has also

interesting consequences for the LHC: While most benchmark scenarios assume degenerate

squark masses [119, 120] non-degenerate masses can have interesting consequences on the

branching ratios [121]. The conclusion we can draw from Fig. 7.2 is that there are regions

in parameter space, allowed by K−K and D−D mixing, with very different masses for

1We thank Gilad Perez for bringing this to our attention.
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the first two squark generations. Therefore, FCNC processes alone do not require the

soft-SUSY breaking parameter M2
q̃ to be proportional to the unit matrix at some high

scale. This implicates that there is more allowed parameter space for models with abelian

flavor symmetries than without the inclusion of the electroweak contributions to D−D and

K−K mixing.
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Figure 7.1: Size of the real part of Wilson coefficients (see (7.5) and (7.6)) contributing

to D−D or K−K mixing normalized to the chargino contribution as a function of mg̃ for

different values of mq̃ and M2 assuming a small non-zero (real) off-diagonal element δq LL
12 .

C1SUSY is the sum of all Wilson coefficients contributing in addition to the SM one. The

relative size of the coefficients remains unchanged also in the case of complex elements

δq LL
12 .
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Figure 7.2: Allowed regions according to (7.3) and (7.4) in the mq̃1
−mg̃ plane with mq̃2,3

=

500, 1000 GeV for different values of M2. Yellow (lightest) corresponds to the maximally

allowed mass splitting assuming an intermediate alignment of m2
q̃ with Y †

u Yu and Y †
d Yd [35].

The green (red) region is the allowed range assuming an diagonal up (down) squark mass

matrix. The blue (darkest) area is the minimal region allowed for the mass splitting between

the left-handed squarks, which corresponds to a scenario with equal diagonal entries in the

down squark mass matrix but with an off-diagonal element carrying a maximal phase.
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8. Right-handed W coupling and its

effects on Vub and Vcb

In the standard model (SM) with its gauge group SU(3)C × SU(2)L × U(1) the tree-level

W coupling has a pure V −A structure meaning that all charged currents are left-handed.

Right-handed charged currents were first studied in the context of left-right symmetric

models [37] which enlarge the gauge group by an additional SU(2)R symmetry between

right-handed doublets. In these models new right-handed gauge bosons WR, ZR appear

and the physical SM-like W-boson has a dominant left-handed component with a small

admixture of WR. The latter will generically lead to small right-handed couplings to both

quarks and leptons. The right-handed mass scale inferred from today’s knowledge on neu-

trino masses is so large that all right-handed gauge couplings are undetectable. Most of

these couplings are further experimentally strongly constrained [67]. A different source

of right-handed couplings of quarks to the W-boson can be loop effects, which gener-

ate a dimension-6 quark-quark-W vertex. In this case no right-handed lepton couplings

occur, as long as the neutrinos are assumed left-handed. A generic analysis of such higher-

dimensional right-handed couplings has been studied in Ref. [38] aiming at a better un-

derstanding of K → πµν data. The general effect of left- and right-handed anomalous

couplings of the W to charm was studies in Ref. [39]. The authors conclude that only the

real part of the right-handed charm-bottom coupling can be sizable. The coupling of the

W to up has been studied in [40].

We will investigate the effect of a right-handed W-coupling on the extraction of |Vub| and

|Vcb| in section II and show that current tensions between SM and data can be removed.

In section III we will calculate the loop-corrected W-coupling in the generic Minimal Su-

persymmetric Standard Model (MSSM). We find that the right-handed W-coupling can

be as large as 20% and brings the different determinations of |Vub| into perfect agreement.

The effect on |Vcb| is at most around 2%, which alleviates the tension studied in the next

section.
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8.1. Right-handed W couplings

An appropriate framework for our analysis is an effective Lagrangian. Following the nota-

tion of Ref. [129], we write

L = LSM +
1

Λ

∑

i

C
(5)
i Q

(5)
i +

1

Λ2

∑

i

C
(6)
i Q

(6)
i + O

(
1

Λ3

)
, (8.1)

here LSM is the standard model (SM) Lagrangian, while Q
(n)
i stand for dimension-n opera-

tors built out of the SM fields and are invariant under the SM gauge symmetries. Such an

effective theory approach is appropriate for any SM extension in which all new particles

are sufficiently heavy (Mnew ∼ Λ ≫ mt). As long as only processes with momentum scales

µ ≪ Λ are considered, all heavy degrees of freedom can be eliminated [58], leading to the

effective theory defined in (8.1). The operators Q
(5)
i and Q

(6)
i have been completely clas-

sified in Ref. [130]. Since Q
(5)
i involve no quark fields, they are not needed for our further

discussion, and we skip the superscripts “(6)” at the dimension-six operators and the asso-

ciated Wilson coefficients Ci. In this article, we need the following dimension-six operator

describing anomalous right-handed W-couplings to quarks:

QRR = ūfγ
µPRdi

(
φ̃†iDµφ

)
+ h.c. (8.2)

where φ denotes the Higgs doublet and φ̃ = iτ 2φ∗. The Feynman rule for the W -uf -di

interaction vertex,
−ig2γ

µ

√
2

(
V L

fiPL + V R
fi PR

)
, (8.3)

is found by combining the usual SM interaction with the extra contributions that are

obtained by setting the Higgs field in (8.2) to its vacuum expectation value. In (8.3) V L
fi

and V R
fi denote elements of the effective CKM matrices, which are not necessarily unitary.

V R
fi is related to the Wilson coefficient in (8.1) via V R

fi = CRR

2
√

2GF Λ2
. V L

fi receives contributions

from the tree-level CKM matrix and the LL analogue of QRR in (8.2).

Right-handed couplings to light quarks have been studied in Ref. [38] and to charm (up)

quarks in Ref. [39] (Ref. [40]). Ref. [131] examines such couplings in inclusive b→c tran-

sitions. In Ref. [129] it was pointed out that very strong constraints can be obtained on

V R
tb from b → sγ, because the usual helicity suppression factor of mb/MW is absent in the

right-handed contribution. By the same argument V R
ts (or V R

td if one considers b → dγ) is

tightly constrained. Large effects concerning transitions between the first two generations

are unlikely, because V L
us and V L

cd are larger than other off-diagonal CKM elements. Fur-

ther deviations from Minimal Flavour Violation (as defined in [97]), i.e. deviations from
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∣∣ as a function of Re
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]
extracted from different processes.

Blue(darkest): inclusive decays. Red(gray): B → πlν. Yellow(lightest gray): B → τν.

Green(light gray): V L
ub determined from CKM unitarity.

Yukawa-driven flavour transitions, are unlikely in the first two generations, but plausible

with respect to transitions involving the third generation. We therefore focus our attention

on the remaining two elements V R
ub and V R

cb .

8.1.1. Determination of V L
ub and V L

cb

The experimental determination of |Vub| and |Vcb| from both inclusive and exclusive B

decays is a mature field by now [67]. E.g. the form factors needed for B → πlν are known

to 12% accuracy [132]. More recently, also the leptonic decay B → τντ is studied in the

context of Vub. To discuss the impact of right-handed currents we denote the CKM element

extracted from data with SM formula by Vqb, where q = u or q = c. If the matrix element

of a considered exclusive process is proportional to the vector current, V L
qb and V R

qb enter

with the same sign and the ”true” value of V L
qb in the presence of V R

qb is given by:

V L
qb = Vqb − V R

qb (8.4)

For processes proportional to the axial-vector current V R
qb enters with the opposite sign as

V L
qb , so that

V L
qb = Vqb + V R

qb . (8.5)



84 8. Right-handed W coupling and its effects on Vub and Vcb

In inclusive decays the interference term between the left-handed and right-handed contri-

butions is suppressed by a factor of mq/mb, so that it is irrelevant in the case of Vub and

somewhat suppressed in the case of Vcb. The remaining dependence on V R
qb is quadratic and

therefore negligible.

Starting with |Vub|, we note that the determinations from inclusive and exclusive semi-

leptonic decays agree within their errors, but the agreement is not perfect [67, 86]. The

analysis of B → τν is affected by the uncertainty in the decay constant fB. Within errors

the three determinations of |Vub| are compatible, as one can read off from Fig. 8.1. The

picture looks very different once the information from a global fit to the unitarity triangle

(UT) is included: As pointed out first by the CKMFitter group, the measured value of

B → τν suffers from a tension with the SM of 2.4–2.7σ [86]. First, the global UT fit gives

a much smaller error on |Vub| (as a consequence of the well-measured UT angle β); the

corresponding value is also shown in Fig. 8.1. Second, the data on Bd−Bd mixing exclude

very large values for fB, which in turn cut out the lower part of the yellow (light gray)

region in Fig. 8.1. Essentially we realize from Fig. 8.1 that we can remove this tension while

simultaneously bringing the determinations of |Vub| from inclusive and exclusive semilep-

tonic decays into even better agreement. For this the right-handed component must be

around Re (V R
ub/V

L
ub) ≈ −0.15. Since new physics may as well affect the other quantities

entering the UT, a more quantitative statement requires the consideration of a definite

model.

Next we turn to |Vcb|: The relative uncertainties in the exclusive decays B → D∗lν and

B → Dlν and in the inclusive B → Xcℓν analyses are much smaller than in the b → u

decays considered above. Note that B → Dlν only involves the vector current so that (8.4)

applies. B → D∗lν receives contributions from both vector and axial vector currents, but

the contribution from the vector current is suppressed in the kinematic endpoint region

used for the extraction of |Vcb|. Therefore (8.5) applies to B → D∗lν. The impact of a right-

handed current on B → Xcℓν has been calculated in Ref. [131]. Fig. 8.2 shows that the

agreement among the three values of |Vcb| obtained from these decay modes is not totally

satisfactory within the SM. One further realizes that we can reduce the discrepancy to less

than 1σ if a right-handed coupling in the range 0.03 ≤ Re [V R
cb /V L

cb ] ≤ 0.06 is present.
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8.2. SQCD corrections to the quark-quark-W vertex

In section 3.4 the impact of chirally-enhanced non-decoupling self-energies on of the quark-

quark-W vertex has been discussed. These corrections are unitary and therefore result in

a renormalization of the CKM matrix as required by the decoupling theorem [58]. In this

section we calculate the leading contributions to the quark-quark-W vertex which decouple

for MSUSY → ∞.

The self-energies lead to a flavor-valued wave-function renormalization ∆U q L,R
fi (see (3.4))

for all external left- and right-handed fields. It is useful to decompose these factors further

into an unphysical anti-Hermitian part ∆U q L A
fi , which can be absorbed into the renormal-

ization of the CKM matrix, and a Hermitian part ∆U q L H
fi , which can constitute a physical

effect appearing as a deviation from CKM unitarity:

∆U q L,R H
fi = Σq LL,RR

fi /2. (8.6)

Neglecting external momenta, the genuine vertex-correction originating from a squark-
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di R uf R
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fi∆d LR

ii

W

d̃i+3

g̃

d̃i

ũf+3

ũi

Figure 8.3: Feynman diagram which induces the effective right-handed W coupling of a

down-type quark of flavor i to a up-type quark of flavor f. The crosses stand for the flavor

and chirality changes needed to generate the coupling.

gluino loop is given by

−iΛW g̃
uf di

=
g2√
2

iαs

3π
γµ

6∑
s,t=1

3∑
j,k=1

(
W ũ

fsW
ũ∗
ks V L

kjW
d̃
jtW

d̃∗
it PL + W ũ

f+3,sW
ũ∗
ks V L

kjW
d̃
jtW

d̃∗
i+3,tPR

)

× C2

(
m2

ũs
, m2

d̃t
, m2

g̃

)

(8.7)

The part proportional to PL in (8.7) cancels with the anti-Hermitian part of the wave-

function renormalization due to the SU(2) relation between the left-handed up and down

squarks for MSUSY → ∞ according to the decoupling theorem [58]. Since the loop functions

depend only weakly on MSUSY, the cancellation is very efficient, even for light squarks

around 300 GeV. Therefore, the unitarity of the CKM matrix is conserved with very high

accuracy. A right-handed coupling of quarks to the W boson is induced by the diagram in

Fig. 8.3 if left-right mixing of squarks is present. The effective coupling corresponds to QRR

in (8.2) and vanishes in the decoupling limit. There is no wave-function renormalization of

right-handed quarks which can be applied to the W vertex, therefore no gauge cancellations

occur. We show the relative size of the right-handed coupling involving u,c and b in Fig. 8.4.

Note that the mass insertion δu RL
13,23 are not affected by the fine-tuning argument imposed in

chapter 4 nor severely restricted by FCNC processes [73]. Therefore, the size of the induced

couplings V R
ub (V R

cb ) can be large enough to explain (attenuate) the apparent discrepancies
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among the various determinations of |Vub| (|Vcb|). Nevertheless, if δu RL
13,23 is large single-top

production is enhanced which can be observed at the LHC [74]. In principle also charged

Higgs contributions to B → τν have to be considered in the MSSM. However, these

contributions are only important in the special case in which both tan(β) is large and the

charged Higgs is light. Furthermore, a charged Higgs always interferes destructively with

the SM, making the discrepancy between the different determinations of Vub even bigger.
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In this thesis we have examined the effects of non-minimal sources of flavor violation in

the MSSM.

First we computed the finite renormalization of fermion masses and mixing angles, taking

into account the leading two-loop effects. These corrections are not only important in order

to obtain a unitary CKM matrix, they are also numerically significant for light fermion

masses. As another application of these results, we have derived supersymmetric loop cor-

rections to the couplings of charged Higgs bosons and charginos to quarks and squarks. In

these couplings the squark-gluino loops which renormalize the CKM elements are physical

and can have a significant numerical impact because of their chiral enhancement. We have

further pointed out that the calculated flavor-changing self-energies can have observable

effects in the W -mediated production or decay of the top quark, with the SUSY effects

decoupling as m2
t/M

2
SUSY for MSUSY → ∞.

According to ’t Hooft’s naturalness principle, the smallness of a quantity is linked to a

symmetry that is restored if the quantity is zero. This argument applies to the small Yukawa

couplings of the first two generations (as well as to the small CKM elements involving the

third generation) since a flavor symmetry is gained if the Yukawa couplings are set to zero.

We use ’t Hooft’s naturalness criterion to constrain the chirality-changing mass insertion

δu,d,ℓ LR
IJ from the mass and CKM renormalization. All constraints given in this context

are non-decoupling. This means they do not vanish in the limit of infinitely heavy SUSY

masses unlike the bounds from FCNC processes. Therefore, our constraints are always

stronger than the FCNC constraints for sufficiently heavy SUSY (and Higgs) masses. The

NLO corrections also allow us to constrain the product δf LR
13 δf LR

31 (and δd LR
23 δd LR

32 ) which

is important because the elements δu RL
13,23 were unconstrained.

In the analysis of FCNC processes in the generic MSSM we have pointed out that they

receive chirally enhanced two-loop or three-loop corrections which can numerically domi-

nate over the usual one-loop diagrams. The chirally enhanced contributions involve a flavor

change in a self-energy sub-diagram attached to an external leg of the diagram. These ef-
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fects can be absorbed into a finite renormalization of the squark-quark-gluino vertex. Our

new effects vanish if the squark masses are degenerate. Their relative importance with

respect to the LO diagrams is larger for heavier squarks.

In our phenomenological study of FCNC processes we first addressed B → Xsγ. In this

process our new effects are only relevant if |µ| tanβ is large. We presented new bounds on

the four quantities δd LL
23 , δd LR

23 , δd RL
23 , and δd RR

23 which parametrize the off-diagonal elements

of the down-squark mass matrix linking strange and bottom squarks for large tanβ. These

bounds are depicted in Fig. 5.4 for the case of real MSSM parameters. As a general pattern

we find that the chirally enhanced contributions decrease the size of the SUSY contribution

to Br [B → Xsγ] if µ is positive. Conversely, the chirally enhanced two-loop contributions

increase the SUSY contribution to δd AB
23 for µ < 0. That is, for positive values of µ, which

are preferred by the anomalous magnetic moment of the muon, the bounds on δd AB
23 become

weaker.

As a second application we studied the chirally enhanced effects in Bd, Bs, and K mixing.

Using the data on the mass differences ∆Md and ∆Ms and on CP asymmetries we find new

constraints on the complex δd LR
13 , δd LR

23 , δd RL
13 , and δd RL

23 elements (see Fig. 5.7). In most of

the parameter space the constraints become much stronger compared to the LO analysis

if the sbottom mass differs sizably from the squark masses of the first two generations,

irrespective of the size of tan β. K−K mixing is even more sensitive to the chirally enhanced

self-energies, provided there is a non-zero mass splitting among the squarks of the first two

generations. As illustrated in Fig. 5.9 already mass splittings in the sub-percent range

strengthen the bounds on δd LR
12 and δd RL

12 severely.

Radiative generation of light fermion masses is a pleasant scenario. Within the MSSM this

approach can solve the SUSY CP and the SUSY flavor problem. We studied this model

and its phenomenological consequences in chapter 6. Keeping the third generation fermion

Yukawa coupling, the CKM matrix can either be induced in the up or in the down sector

(in principle also a mixed scenario is possible, however, we did not further investigate

this possibility). If the CKM matrix is generated in the up-sector Kaon mixing severely

constraints the allowed values of mg̃ and mq̃ (see Fig. 6.1 b)). However, the rare Kaon

decay K → πνν can still receive sizable contributions. If the other possibility is realized

and the CKM matrix is generated in the down sector, b → sγ restricts the allowed rage

for the SUSY masses. Taking into account the chirally enhanced correction discussed in

chapter 5 our results are shown in Fig. 6.1 a). The implications for the lepton sector are

even more significant. The anomalous magnetic moment of the muon restricts the allowed
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range of the lighter smuon mass to be roughly between 1 TeV and 3 TeV (see Fig. 6.4).

In chapter 7 we have examined the constraints on the mass splitting between the first two

generations of left-handed squarks from K−K and D−D mixing by considering the gluino

and the electroweak contribution. While nearly all previous analysis were restricted to the

gluino contributions to K−K and D−D mixing in the case of non-minimal flavor violation

[10, 13–15, 29, 35, 39] Ref. [31] included (but only numerically) the electroweak effects.

However, the main focus of Ref. [31] is not on the mass splitting between the squarks

and the importance of the different contributions is not apparent from the scatter plots

shown in their article. In our analysis we have examined in detail the size of the different

contributions (neutralino, neutralino-gluino, gluino and chargino boxes) to D−D and K−
K mixing in the presence of flavor off-diagonal mass-insertions in the LL sector of the squark

mass matrices. It is found that gluino contributions suffer from a cancellation between the

crossed and the uncrossed boxes for mg̃ ≈ 1.5 mq̃. In addition, winos couple directly to

left-handed squark fields (without involving small gaugino or left-right mixing) and their

contribution is not affected by such a cancellation. Therefore, we conclude that the (usually

neglected) contributions from chargino, neutralino and mixed neutralino-gluino diagrams

can be of the same order as (or even dominant over) the gluino contribution especially if

M2 ≈ mq̃ < mg̃.

In the analysis of the allowed mass splitting between the first two generations we focused

on the ”minimal case” in which the up (down) squark mass matrix is diagonal in the

super-CKM basis, but not proportional to the unit matrix. In this case flavor off-diagonal

elements in the down (up) sector are induced via the SU(2) relation and therefore con-

tribute to K−K (D−D ) mixing. It is found that the constraints on the mass splitting

are strong for light gluino masses. However, if the gluino is heavier than the squarks there

are large regions in parameter space, allowed by K−K (D−D ) mixing, with highly non-

degenerate squark masses. This has interesting consequences both for LHC benchmark

scenarios (which usually assume degenerate squarks for the first two generations) and for

models with abelian flavor symmetries (which predict non-degenerate squark masses for

the first two generation) because K−K and D−D mixing cannot exclude non-degenerate

squark masses of the first two generations.

Chapter 8 is devoted to the study of an effective right-handed coupling of quarks to the

W boson and its effects on the determination of |Vub| and |Vcb| from different decay modes.

In both cases a right-handed coupling can improve the agreement among these determi-

nations (Figs. 8.1 and 8.2). In particular, one can simultaneously remove the disturbing
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problem with B → τντ [89] and improve the agreement among inclusive and exclusive

determinations of |Vub|. Second, we have shown that a loop-induced right-handed coupling

is generated within the MSSM if left-right mixing of squarks is present. This coupling has

the right size needed to resolve the tensions in |Vub|. Such a scenario involves a large left-

right mixing between sbottoms (as present in e.g. the popular large-tanβ scenarios) and

a large Au
31-term which enhances single-top production, making it observable at the LHC.

If δu RL
13 ≈ 0.6 a 95% CL signal can already be detected with 50 inverse femto-barn [77].

In b → c transitions the loop-induced supersymmetric right-handed coupling can alleviate,

but cannot fully remove, the discrepancies among the three methods to determine |Vcb|. To

probe b → u transitions we propose to look for right-handed couplings in the differential

decay distributions of B → ρℓνℓ. The smaller right-handed component in b → c transitions

can be probably better studied in B → Xcℓν [131] than in B → D∗ℓν decays, because a

theoretical control of form factors to percent accuracy is challenging.
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10.1. Feynman rules
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10.2. Higgs vertex corrections

In the super-CKM basis the coefficients H+AB
ij in (3.33) are given by

H+ LR
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3∑
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jk Ad
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10.3. Loop integrals

Finally we quote our conventions for the two-point, three-point and four-point one-loop

functions B0, C0 and D0:
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The two-point function B0 is UV-divergent, our definition above is MS-subtracted. UV

divergence and the renormalisation scale Q drop out from our results thanks to the super-

GIM mechanism.
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